

Non-relativistic Neutron Deuteron Scattering

A. Margaryan^{1,a}, J. Vanasse^{1,2,b}, and R.P. Springer^{1,c}

¹Duke University, Durham, NC

²Ohio University, Athens, OH

Abstract. We discuss the calculation of polarization observables, including A_y , in nd scattering to next-to-next-to-next-to-leading order in pionless effective field theory.

We present preliminary results of the first next-to-next-to-next-to-leading order (N^3LO) calculation of the nd scattering amplitude in the framework of nonrelativistic pionless effective field theory (EFT $_{\pi}$). In this theory, the typical momentum exchange in the scattering must be much smaller than the mass of the pion. The power counting parameter for EFT $_{\pi}$ is the ratio $\frac{Q}{\Lambda_{\pi}}$, where Q is the typical momentum exchange in the scattering and Λ_{π} is the EFT $_{\pi}$ breakdown scale, $\Lambda_{\pi} \sim m_{\pi}$. The EFT $_{\pi}$ interaction terms in the two-body sector up to N^3LO are the two two-nucleon-to-dibaryon vertices (for the 3S_1 and 1S_0 channels) at LO, the effective range term at NLO, the SD -mixing interaction at N^2LO , and the shape parameter and two-body P -wave contact interaction terms at N^3LO . Three-body interaction terms enter first at LO and a new energy dependent term appears at N^2LO . The two-body interaction coefficients are matched onto NN scattering data. At LO the three-body interaction coefficient is matched onto the doublet S -wave nd scattering length and the N^2LO energy dependent three-body force to the triton binding energy.

The calculation of the amplitude for nd scattering requires summing an infinite set of diagrams. This sum does not factorize as it does in the two-body case; instead an integral equation must be solved numerically [1]. The n^{th} order correction to the nd scattering amplitude is given by the integral equation shown in Fig. 1 [2–4]. An important part of this calculation is the two-body P -wave contact interaction diagram for nd scattering shown in Fig. 2. To solve the equation shown in Fig. 1 to a given order we project it onto different partial waves and then solve the projected equations numerically [5, 6]. After obtaining the numerical solution for the amplitude we are able to calculate any parity conserving observable of interest. One of the most important observables is A_y , which measures the asymmetry between the cross sections induced by nucleons of opposite transverse spin polarization on an unpolarized deuteron target [7]:

$$A_y = \frac{\frac{d\sigma}{d\Omega}|_{\uparrow} - \frac{d\sigma}{d\Omega}|_{\downarrow}}{\frac{d\sigma}{d\Omega}|_{\uparrow} + \frac{d\sigma}{d\Omega}|_{\downarrow}}. \quad (1)$$

Varying the N^3LO coefficients within the EFT $_{\pi}$ uncertainty gives the results in Fig 3, which shows good agreement with the differential cross section and reasonable agreement with A_y for a variety of energies. We can also pursue the calculation to higher orders to attempt to improve the agreement.

^ae-mail: am343@duke.edu

^be-mail: jjv9@phy.duke.edu

^ce-mail: rps@phy.duke.edu

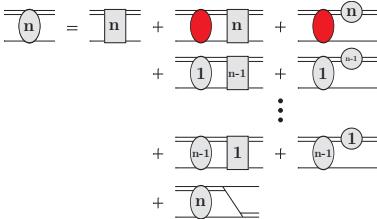


Figure 1. Thin line is nucleon propagator, double line is dibaryon propagator. For $m = 1, \dots, n$ oval with an m is the m^{th} order correction to the nd scattering amplitude, rectangle with an m is $N^m\text{LO}$ corrections that involve all three-nucleons, and this includes three-body forces, circle with m is the m^{th} order correction to the dibaryon propagator. The solid red oval is the LO nd scattering amplitude.

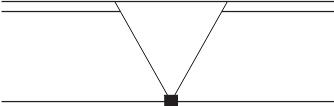


Figure 2. Diagram contributing at $N^3\text{LO}$. The square is a two-body P -wave interaction vertex. This diagram is included in Fig. 1 in the rectangle with $n = 3$.

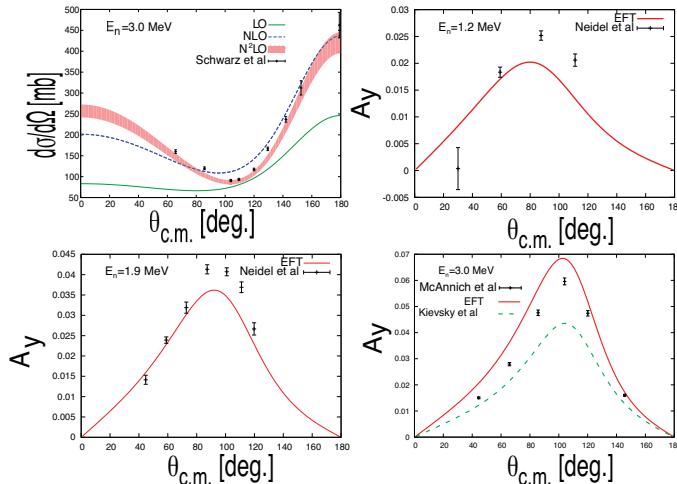


Figure 3. Top left is the EFT_π results up to $N^2\text{LO}$ and data [8] for the cross-section at a neutron lab energy of $E_n = 3.0$ MeV. The band on $N^2\text{LO}$ result represents the estimated error of about 6%. On the other three figures the solid red line represents our preliminary $N^3\text{LO}$ results for A_y at $E_n = 1.2$ and 1.9 MeV with data from [9] and at $E_n = 3.0$ MeV with data from [10]. On the bottom right figure the dashed green line comes from potential model calculations [11].

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-05ER41368.

References

- [1] G.V. Skornyakov, K.A.Ter-Martirosian, Sov. Phys. JETP **4**, 648 (1957)
- [2] P.F. Bedaque, H. Hammer, U. van Kolck, Phys. Rev. C **58**, 641 (1998), nucl-th/9802057
- [3] P.F. Bedaque, U. van Kolck, Phys. Lett. **B428**, 221 (1998), nucl-th/9710073
- [4] P.F. Bedaque, H.W. Grießhammer, Nucl. Phys. A **671**, 357 (2000), nucl-th/9907077
- [5] J. Vanasse, Phys. Rev. C **88**, 044001 (2013), 1305.0283
- [6] J. Vanasse, "Perturbative Techniques in Three-Body Nuclear Systems," Proceedings of Few Body 21
- [7] D. Huber, J.L. Friar, Phys. Rev. C **58**, 674 (1998), nucl-th/9803038

- [8] P. Schwarz, H. Klages, P. Doll, B. Haesner, J. Wilczynski, B. Zeitnitz, J. Kecskemeti, Nuclear Physics A **398**, 1 (1983)
- [9] E. Neidel, W. Tornow, D.G. Trotter, C. Howell, A. Crowell, R. Macri, R. Walter, G. Weisel, J. Esterline, H. Witała et al., Physics Letters B **552**, 29 (2003)
- [10] J.E. McAninch, L.O. Lamm, W. Haeberli, Phys. Rev. C **50**, 589 (1994)
- [11] A. Kievsky, M. Viviani, L.E. Marcucci, Few Body Syst. **54**, 2395 (2013)