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Abstract

A proof of principle experiment carried out at JLab’s
magnetron R&D test stand has demonstrated a -25dB in-
jection signal to phase lock a 2.45 GHz 1.2 kW CW mag-
netron within 2.1 Hz of root mean square deviation
(RMSD) value with the optimization of magnetic field
trimming of £25% in order to overcome the frequency
pushing of more than 4 MHz in the RF power output range
0f'45-100%. In addition, a test stand for a newly built 1497
MHz, 13 kW, CW magnetron prototype is ready for the
high power injection test with outcome aimed for the CE-
BAF klystron replacement. Based on these R&D results, a
915 MHz, 2x75 kW CW commercial heating type magne-
tron system is being developed as high efficiency (>80%)
RF source to drive an electron linac for industrial applica-
tions.

INTRODUCTION

Magnetrons typically have a higher electronic efficiency
than conventional klystrons and solid state amplifiers. We
have compared the efficiencies from available commercial
tubes [1] and developed an R&D program to study critical
techniques for 915 MHz, 1497 MHz and 2450 MHz mag-
netron application with aim of driving superconducting and
normal conducting accelerators for scientific and industrial
uses at lower cost (<$1/W) and higher efficiency (>80%).

Since the first demonstration of injection phase locking
to drive a superconducting cavity [2, 3], we have concen-
trated on a scheme of amplitude modulation to compensate
for the cavity’s microphonics, frequency change, varia-
tions of cavity voltage and beam current loading. To be
able to do a fast and efficient modulation and to compen-
sate for the frequency pushing effect due to the anode cur-
rent change, the magnetron’s magnetic field can be
trimmed by an external coil [4]. The first open loop manual
modulation to trim coils by DC voltage was carried out for
the proof of principle experiment into a matched load. A
closed loop experiment to stabilize an RF cavity’s voltage
will be done next. The rate at which the field can be mod-
ulated is limited by the self-inductance of the coils and the
magnetic circuit of the tube as well as eddy current in the
tube body. To address this, a low eddy current, low external
Q 1497 MHz, 13kW CW magnetron has been designed and
prototyped [5,6]. Meanwhile, we have procured an
AMTek Microwave 915 MHz, 75 kW, CW industrial oven
type magnetron transmitter for the injection and power
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combining R&D. Tests to compare phase locking and
power combining performance with use of silicon-con-
trolled rectifiers, switching and klystron power supplies
will be carried out. The first application would be demon-
stration of a system capable of driving a IMV, electron
linac for environmental remediation and material treat-
ment, scalable up to 1| MW.

UPDATES ON 2.45 GHz MAGNETRON
R&D TESTS

Injection phase locking of the magnetron output has
again been demonstrated into WR340 to a coaxial matched
load and a normal conducting (NC) RF cavity. The back
injection signal of a few Watts is supplied through two
WR340 circulators having more than 55 dB total isolation
from forward to reflected power. The test stand configura-
tion for this test is shown in Fig. 1. The WR340 waveguide
phase shifter and stub tuner used previously have been re-
moved to minimize frequency pulling by output reactance
and maximize it by back injection. After a demonstration
of injection phase lock to the cavity frequency at a fixed
wall loss of 633 W and with signal to noise ratio of 39.3 dB
at 262 Hz sidebands, we changed back to the broadband
load for the amplitude modulation test with trim-coils. It
was determined that filament off condition can maintain
the output power with reduced efficiency by ~5% as indi-
cated by Fig. 2. The electron emission is sustained by spent
energy electrons returning to the cathode, with injection on,
the S/N ratio is much improved due to reduction in thermal
noise from the filament. The injection lock did not reduce
the electronic efficiency any further. In order to accommo-
date the addition of trim-coils, a small amount of material
was machined off yoke frame to make room for the coil
pancakes and this changed the I-V and I-P characteristics
as shown in Fig. 3.
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Figure 1: Schematic of 2.45 GHz, 1.2 kW CW cooker type
magnetron R&D set up for an RF cavity/matched load test.

WEXXPLS1
2233

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2019). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©



10th Int. Partile Accelerator Conf.
ISBN: 978-3-95450-208-0

Anode Voltage (kv)
Electronic Efficiency (%)

o 100 200 300 00 500
Anode Current (mA)

IPAC2019, Melbourne, Australia

JACoW Publishing
doi:10.18429/JACoW-IPAC2019-WEXXPLS1

P
sin® = 2Q,cosa /P‘?”f% (D
inj 0

where, P, is locking power, P, is output power, Q; is the
loaded Q of magnetron, w; is the frequency of injection sig-
nal, and o is instantaneous natural frequency of magne-
tron. In Fig. 4, the black curve is obtained by fitting Equa-
tion (1) with 0=0° to the measurement data which was with
the trim-current being zero and keeping the RMSD values
within the parabolic locking boundary in <10 Hz. Fitting to
the data with a lower injection power (blue curve, 0=74.5°)
for the same locking bandwidth would lead to less phase
stability in higher RMSD value, like <1kHz. However, the
trimming current give us a third knob to retune the locking
stability back to Hz range while still using a reasonable in-
jection power like the measurement data shown in Fig. 5.

Figure 2: I-V and I-E curves measured with matched load.
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Figure 5: Natural frequency pushing of a magnetron, meas-
urement verses Vaughan analytical model [9], and its opti-
mized trim current.
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Figure 6: Top: Injection phase locked power spectra and
their sidebands suppression with trim coil current optimi-
zation over 10 MHz span. Bottom: Zoomed-in spectra in
1 kHz span (left) and 100 Hz span (right).
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As indicated in Fig. 5, a combination of back injection
and trimming the magnetic field can overcome the fre-
quency pushing from 45% to 100% of magnetron output
power with a locked frequency error <2.1 Hz RMSD value
by ramping the trim-coils from-1.75 to +1.6 A. The locked
frequency performance can be observed by the spectrum
sideband excitation (Fig. 6) and the frequency counter
reading on the forward power. Once a strong phase lock is
optimized, the frequency change is only at the Hz level and
the sidebands are clearly suppressed, except for -27.6 dB
peaks at £120 Hz of noise from the mains. This could be
reduced further by active feedback from digital controller.
There are no sideband excitations within 100 Hz band-
width indicating that we could use this controlled source
for a high power vertical test of a superconducting cavity
again [2] but with a nearly critical coupling.

TRIM COIL BENCH MEASUREMENT

Two 360-turn coil pancakes have been designed and
built to fit inside corners of YJ1540 magnetron yoke with-
out obstructing the cooling of the anode (Fig. 7 bottom
left). The electrical current can be trimmed £2 A resulting
in £31% AC variation of the 0.16 T of DC ferromagnetic
field according the CST simulation as shown on the top
right of Fig. 7. The modulation measurement on the modi-
fied YJ1540 magnetron confirmed that both eddy current
in the magnetron copper body and the proximity effect of
litz-wire coils reduce the effective AC magnetic field at
higher frequency [10] as indicated at the bottom right of
Fig. 7. However useful modulation levels are still achieved
up to 1 kHz covering the range of interest for most micro-
phonics.

.
o1 Linear trimming
014 £1440 Amp-turns
o012 { =£31% of 0.16T —

/X N\

Peak-to-peak Mod Voltage (V)

N 1 E
Figure 7: Top: CST simulation of trim coil modification.
Bottom: Trim coil mount and modulation measurement.

1497 MHz MAGNETRON TEST STAND

Two 1497 MHz, 13 kW, CW magnetrons one copper,
one a stainless steel/copper hybrid anode structure have
been designed by Muons Inc and prototyped by its partners
[6]. These are together with one solenoid and one trim-coil
to be delivered to JLab soon for injection and digital con-
trol in full power tests. To prepare for a low-noise, non-cut-
off filament operation at low output power, an isolation
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transformer and a DC power supply with fiber-optic con-
trol have been purchased to be installed inside of the exist-
ing klystron HV cabinet. A moveable frame has been built
to support circulators and water loads external to the cabi-
net as shown in Fig. 8.

SSL/Cu
bonded
anode
structure

Figure 8: 1497 MHz prototype magnetron test stand devel-
oped using existing 13 kW klystron power supplies.

HIGH EFFICIENCY SOURCE DEVELOP-
MENT FOR SCIENCE AND INDUSTRY

With funding support from the DOE Accelerator Stew-
ardship program, we are also using commercial type mag-
netrons to demonstrate the goal of 1 MW of combined RF
power at 915 MHz with >80% efficiency. The power injec-
tion and LLRF digital control systems for noise reduction
from filament heating, power supply ripple and the optimi-
zation with trimming magnetic field will be critical tech-
niques for building and programing the state-of-art digital
controllers developed from our SRF projects [11] to be im-
plemented on a commercial AMTek magnetron transmitter
(Fig. 9). The end goal is to transfer this technology into
industrial applications with user-friendly interfaces.

Rather than using binary Magic-Tees, new power com-
biner concepts are being investigated for low cost and high
efficiency usage. One approach consists of a zero-dB cou-
pler with a TMO1 mode circular waveguide radially con-
nected to the outputs of multiple magnetrons [12]. A sec-
ond approach is based on the concept by Bostick [13],
where odd number of magnetrons can be operated in par-
allel by using waveguide iris couplers.

mitter to be used as accelerator applications.
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CONCLUSIONS

The R&D experiments on a 2.45 GHz magnetron have
clearly demonstrated that such a device can be used as an
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than -25 dB. The development of high efficiency magne-
trons at 1497 MHz offers an alternative to the existing
klystron sources used in CEBAF. Using a commercial
915 MHz magnetrons with optimized injection locking,
field trimming and digital LLRF control offers a pathway
to a cost effective MW class RF source.
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