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Abstract 
A proof of principle experiment carried out at JLab’s 

magnetron R&D test stand has demonstrated a -25dB in-
jection signal to phase lock a 2.45 GHz 1.2 kW CW mag-
netron within 2.1 Hz of root mean square deviation 
(RMSD) value with the optimization of magnetic field 
trimming of ±25% in order to overcome the frequency 
pushing of more than 4 MHz in the RF power output range 
of 45-100%. In addition, a test stand for a newly built 1497 
MHz, 13 kW, CW magnetron prototype is ready for the 
high power injection test with outcome aimed for the CE-
BAF klystron replacement. Based on these R&D results, a 
915 MHz, 275 kW CW commercial heating type magne-
tron system is being developed as high efficiency (>80%) 
RF source to drive an electron linac for industrial applica-
tions.  

INTRODUCTION  
Magnetrons typically have a higher electronic efficiency 

than conventional klystrons and solid state amplifiers. We 
have compared the efficiencies from available commercial 
tubes [1] and developed an R&D program to study critical 
techniques for 915 MHz, 1497 MHz and 2450 MHz mag-
netron application with aim of driving superconducting and 
normal conducting accelerators for scientific and industrial 
uses at lower cost (<$1/W) and higher efficiency (>80%). 

Since the first demonstration of injection phase locking 
to drive a superconducting cavity [2, 3], we have concen-
trated on a scheme of amplitude modulation to compensate 
for the cavity’s microphonics, frequency change, varia-
tions of cavity voltage and beam current loading. To be 
able to do a fast and efficient modulation and to compen-
sate for the frequency pushing effect due to the anode cur-
rent change, the magnetron’s magnetic field can be 
trimmed by an external coil [4]. The first open loop manual 
modulation to trim coils by DC voltage was carried out for 
the proof of principle experiment into a matched load. A 
closed loop experiment to stabilize an RF cavity’s voltage 
will be done next. The rate at which the field can be mod-
ulated is limited by the self-inductance of the coils and the 
magnetic circuit of the tube as well as eddy current in the 
tube body. To address this, a low eddy current, low external 
Q 1497 MHz, 13kW CW magnetron has been designed and 
prototyped [5, 6]. Meanwhile, we have procured an 
AMTek Microwave 915 MHz, 75 kW, CW industrial oven 
type magnetron transmitter for the injection and power 

combining R&D. Tests to compare phase locking and 
power combining performance with use of silicon-con-
trolled rectifiers, switching and klystron power supplies 
will be carried out. The first application would be demon-
stration of a system capable of driving a 1MV, electron 
linac for environmental remediation and material treat-
ment, scalable up to 1 MW. 

UPDATES ON 2.45 GHz MAGNETRON 
R&D TESTS  

Injection phase locking of the magnetron output has 
again been demonstrated into WR340 to a coaxial matched 
load and a normal conducting (NC) RF cavity. The back 
injection signal of a few Watts is supplied through two 
WR340 circulators having more than 55 dB total isolation 
from forward to reflected power. The test stand configura-
tion for this test is shown in Fig. 1. The WR340 waveguide 
phase shifter and stub tuner used previously have been re-
moved to minimize frequency pulling by output reactance 
and maximize it by back injection. After a demonstration 
of injection phase lock to the cavity frequency at a fixed 
wall loss of 633 W and with signal to noise ratio of 39.3 dB 
at 262 Hz sidebands, we changed back to the broadband 
load for the amplitude modulation test with trim-coils. It 
was determined that filament off condition can maintain 
the output power with reduced efficiency by ~5% as indi-
cated by Fig. 2. The electron emission is sustained by spent 
energy electrons returning to the cathode, with injection on, 
the S/N ratio is much improved due to reduction in thermal 
noise from the filament.  The injection lock did not reduce 
the electronic efficiency any further. In order to accommo-
date the addition of trim-coils, a small amount of material 
was machined off yoke frame to make room for the coil 
pancakes and this changed the I-V and I-P characteristics 
as shown in Fig. 3.  

 
Figure 1: Schematic of 2.45 GHz, 1.2 kW CW cooker type 
magnetron R&D set up for an RF cavity/matched load test. 

 ___________________________________________  
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Figure 2: I-V and I-E curves measured with matched load. 

 

 
Figure 3: Measured I-V and I-P curves before (Jan. 2019) 
and after modification with trim coils (May 2019) and their 
linear fits. All measurements are with injection on and fil-
ament off. 

 

 
Figure 4: Injection power verses frequency locking band-
width measured on YJ1540 magnetrons and their data fit-
ted to the Adler/Chen equation (1). 

The tuning slope of Pout/Va=-3.89 (W/V) on the orig-
inal structure was changed to -1.15 (W/V). The higher-
power commercial magnetrons already use electromag-
nets so this would not be a problem in those cases. 

Adler equation [7] stated the injection locking phase  
which was later modified by Chen [8], with a pushing an-
gle  is: 

𝑠𝑖𝑛∅ = 2𝑄௅𝑐𝑜𝑠𝛼ට௉೚ೠ೟௉೔೙ೕ ఠబିఠ೔ఠబ                          (1) 

where, Pinj is locking power, Pout is output power, QL is the 
loaded Q of magnetron, i is the frequency of injection sig-
nal, and 0 is instantaneous natural frequency of magne-
tron. In Fig. 4, the black curve is obtained by fitting Equa-
tion (1) with =0o to the measurement data which was with 
the trim-current being zero and keeping the RMSD values 
within the parabolic locking boundary in 10 Hz. Fitting to 
the data with a lower injection power (blue curve, =74.5o) 
for the same locking bandwidth would lead to less phase 
stability in higher RMSD value, like 1kHz. However, the 
trimming current give us a third knob to retune the locking 
stability back to Hz range while still using a reasonable in-
jection power like the measurement data shown in Fig. 5. 

 
Figure 5: Natural frequency pushing of a magnetron, meas-
urement verses Vaughan analytical model [9], and its opti-
mized trim current. 

     

 
Figure 6: Top: Injection phase locked power spectra and 
their sidebands suppression with trim coil current optimi-
zation over 10 MHz span. Bottom: Zoomed-in spectra in 
1 kHz span (left) and 100 Hz span (right). 
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As indicated in Fig. 5, a combination of back injection 
and trimming the magnetic field can overcome the fre-
quency pushing from 45% to 100% of magnetron output 
power with a locked frequency error 2.1 Hz RMSD value 
by ramping the trim-coils from-1.75 to +1.6 A. The locked 
frequency performance can be observed by the spectrum 
sideband excitation (Fig. 6) and the frequency counter 
reading on the forward power. Once a strong phase lock is 
optimized, the frequency change is only at the Hz level and 
the sidebands are clearly suppressed, except for -27.6 dB 
peaks at ±120 Hz of noise from the mains. This could be 
reduced further by active feedback from digital controller. 
There are no sideband excitations within 100 Hz band-
width indicating that we could use this controlled source 
for a high power vertical test of a superconducting cavity 
again [2] but with a nearly critical coupling.  

TRIM COIL BENCH MEASUREMENT 
Two 360-turn coil pancakes have been designed and 

built to fit inside corners of YJ1540 magnetron yoke with-
out obstructing the cooling of the anode (Fig. 7 bottom 
left). The electrical current can be trimmed ±2 A resulting 
in ±31% AC variation of the 0.16 T of DC ferromagnetic 
field according the CST simulation as shown on the top 
right of Fig. 7. The modulation measurement on the modi-
fied YJ1540 magnetron confirmed that both eddy current 
in the magnetron copper body and the proximity effect of 
litz-wire coils reduce the effective AC magnetic field at 
higher frequency [10] as indicated at the bottom right of 
Fig. 7. However useful modulation levels are still achieved 
up to 1 kHz covering the range of interest for most micro-
phonics. 

 

 
Figure 7: Top: CST simulation of trim coil modification. 
Bottom: Trim coil mount and modulation measurement. 

1497 MHz MAGNETRON TEST STAND  
Two 1497 MHz, 13 kW, CW magnetrons one copper, 

one a stainless steel/copper hybrid anode structure have 
been designed by Muons Inc and prototyped by its partners 
[6]. These are together with one solenoid and one trim-coil 
to be delivered to JLab soon for injection and digital con-
trol in full power tests. To prepare for a low-noise, non-cut-
off filament operation at low output power, an isolation 

transformer and a DC power supply with fiber-optic con-
trol have been purchased to be installed inside of the exist-
ing klystron HV cabinet. A moveable frame has been built 
to support circulators and water loads external to the cabi-
net as shown in Fig. 8. 

 
Figure 8: 1497 MHz prototype magnetron test stand devel-
oped using existing 13 kW klystron power supplies. 

HIGH EFFICIENCY SOURCE DEVELOP-
MENT FOR SCIENCE AND INDUSTRY 
With funding support from the DOE Accelerator Stew-

ardship program, we are also using commercial type mag-
netrons to demonstrate the goal of 1 MW of combined RF 
power at 915 MHz with >80% efficiency. The power injec-
tion and LLRF digital control systems for noise reduction 
from filament heating, power supply ripple and the optimi-
zation with trimming magnetic field will be critical tech-
niques for building and programing the state-of-art digital 
controllers developed from our SRF projects [11] to be im-
plemented on a commercial AMTek magnetron transmitter 
(Fig. 9). The end goal is to transfer this technology into 
industrial applications with user-friendly interfaces. 

Rather than using binary Magic-Tees, new power com-
biner concepts are being investigated for low cost and high 
efficiency usage. One approach consists of a zero-dB cou-
pler with a TM01 mode circular waveguide radially con-
nected to the outputs of multiple magnetrons [12]. A sec-
ond approach is based on the concept by Bostick [13], 
where odd number of magnetrons can be operated in par-
allel by using waveguide iris couplers.  

 
Figure 9: AMTek 915 MHz, 75 kW CW magnetron trans-
mitter to be used as accelerator applications.  
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CONCLUSIONS 
The R&D experiments on a 2.45 GHz magnetron have 

clearly demonstrated that such a device can be used as an 
RF source for accelerator cavities with injection power less 
than -25 dB. The development of high efficiency magne-
trons at 1497 MHz offers an alternative to the existing 
klystron sources used in CEBAF. Using a commercial 
915 MHz magnetrons with optimized injection locking, 
field trimming and digital LLRF control offers a pathway 
to a cost effective MW class RF source.  
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