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Abstract

We investigate the nonlinear behaviour of the dynamically unstable rotating star for
the bar mode by both three-dimensional hydrodynamics in Newtonian gravity and our
simplified mathematical model. We find that an oscillation along the rotation axis is
induced throughout the growth of the unstable bar mode, and that its characteristic
frequency is twice as that of the bar mode, which oscillates mainly along the equatorial
plane. We also find that, by examine several azimuthal modes, mode coupling to even
modes, i.e., the bar mode and higher harmonics, significantly enhances the amplitudes
of odd modes, unless they are exactly zero initially. Therefore, non-axisymmetric
azimuthal modes cannot be neglected at late times in the growth of the unstable
bar-mode even when starting from an almost axially symmetric state.

Dynamical bar instability in a rotating equilibrium star takes place when the ratio 8 (= T/W)
between rotational kinetic energy 7" and the gravitational binding energy W exceeds the critical value
Bayn (= 0.27 for an uniformly rotating incompressible body in Newtonian gravity [1]). Determining
the onset of the dynamical bar-mode instability, as well as the subsequent evolution of an unstable
star, requires a fully nonlinear hydrodynamic simulation. Recent numerical simulations also show that
dynamical bar instability can occur at significantly lower § than the threshold (..t ~ 0.27 in some cases.

Our main concern in this paper is not to determine the onset of the instability, but to study the
dynamical features of the bar. For this purpose, we numerically study the growing behaviour of the
azimuthal modes in the nonlinear regime for a longer timescale. One interesting issue of nonlinear
evolution is the possibility of resonant growth of other azimuthal modes triggered by the dynamical bar-
mode instability. One candidate for such resonance is Faraday resonance, which is excited by the external
periodic force. The dynamically unstable bar mode may work for other azimuthal oscillation modes as
an external periodic force. Although the oscillation is not exactly periodic, but rather quasi-periodic, it
may trigger a parametric resonance.

The other interesting issue of nonlinear evolution is to study the physical mechanism of the growth of
odd modes. Are there unstable modes with odd numbers (e.g., m = 1 or 3) in addition to the unstable
bar mode? Are the amplitudes of the odd modes enhanced by mode coupling? In order to understand the
growth of odd modes, we investigate the evolution of a simplified model. The model’s description of mode
coupling, unstable growth, and decay mimics the realistic system very well. Moreover, the number and
growth rates of the unstable modes are easily controlled. The model, therefore, deepens our understanding
of the nonlinear behavior of unstable bar-mode growth in rotating stars. The physical mechanism is
confirmed by comparing the model problem with a more realistic calculation of a dynamically unstable
star simulated using three-dimensional hydrodynamics in Newtonian gravity.

A more detailed discussion is presented in Refs. [2, 3]. Throughout this paper, we use the geometrized
units with G = 1 and adopt Cartesian coordinates (z,y, z) with the coordinate time .

We study four different differentially rotating stars, which are detailed in Table 1 of Ref. [2] to investi-
gate the nonlinear behaviour of the non-axisymmetric dynamical bar instabilities using three dimensional
hydrodynamics in Newtonian gravity. We disturbed 1% of the equilibrium density by a non-axisymmetric
perturbation to enhance any dynamically unstable mode.

We show the diagnostics of the model IIT (the weakest dynamically bar unstable system among model
I — III) here, which contain both amplitude and phase in Fig. 1. The behaviours in the diagnostics

I1E-mail: saijo@rikkyo.ac.jp
2E-mail: kojima@theo.phys.sci.hiroshima-u.ac.jp



L0 B L ot B R L0 e B
C ] 0.2— C .
0.01% E 0.0lj ]
0.1— - ]
as o ok o o -
E 01 E =
-0.0lj —] E -0.0lj —]
- - -0.2— - -
) o b b b PREEEU AN NN ) e b b [y M
8:82\\\\‘\\\\‘\\\\‘\\\\ 0-03.:93\\\\‘\\\\\\\\‘\\\ "% 10 20 %0 4
g t/P,
0.03f
>
&
_4
=
-0.03F
) o b b b o b b e
0'060 10 20 30 40 0'370 10 20 30
tiP, t/P

Figure 1: Diagnostics R[D], R[Q], R[O], R[M4], and D, as a function of ¢/ P, for the differentially rotating
star of model IIT (see Table 1 of Ref. [2]). Note that the five diagnostics are defined in Ref. [2]. Hereafter,
P, is the central rotation period of the equilibrium star.

are clearly understood once we compute the spectra of the diagnostics (Fig. 2). From the spectra we
find the following two remarkable features. One is that the spectra |Fy|?, |Fy|?, |F3|? take a peak
around wp,y ~ 5 ~ 6P 1 for model 111, and the other is that |F3|?, |Fy|?, |F.|? take a peak around
Wquad ~ 2wWhar A~ 10 — 12Pc_1f0r bar unstable stars. Combining the present feature with the behaviour of
the amplitude of the diagnostics (Fig. 1) [2], the dynamically unstable bar acts as follows.

Firstly the m = 2 mode grows and acts as a dominant mode of all because of the dynamical bar
instability. Next the m = 4 mode grows because of the secondary harmonic of the m = 2 mode. In fact
the saturation amplitude of the m = 4 is approximately = 0.04, which is the order of the square of the
saturation amplitude of the m = 2 (=~ 0.22). After that Faraday resonance occurs, which is clearly found
in both D, and |F.|? from the fact wquad & 2whar-

Note that Faraday resonance occurs in the fluid mechanics when the oscillation of the vertical direction
is twice (2w) as much as the one in the horizontal direction (w) in the weakly nonlinear interaction [4].
Then, there is a resonance between m = 1 and m = 2, m = 3 and m = 4. The possibility of such
resonances is three wave interaction: either m = 1 (wpar) and m = 2 (whay) generates m = 3 (Whar + Whar)
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Figure 2: Spectra |F,,,|? and |F,|? as a function of wP, for the differentially rotating star of model 111
(see Table 1 of Ref. [2]). Red, blue, green, and black line of |F,,|? denote the values of m = 1, 2, 3, and
4, respectively. Note that the spectra |F,,|? and |F,|? are defined in Ref. [2].



Figure 3: The time-evolution of the amplitudes of the lowest six Fourier modes (m = 1,---,6). Panel
(a) is the result for v = 0.15 (m = 2 stable), (b) for v = 0.05 (m = 2 unstable). The initial coefficients
(@m, by,) of the Fourier series expansion of the flow velocity u(t,x) are az = ag = 1072 for both cases.

The behaviour of very small amplitude, say, log(Cy,) (Crn = vV @m? + bp>) approximately less than —10
in panel (a), mostly comes from numerical truncation errors, and is therefore unimportant.

or m =3 (2wpar) and m = 2 (wpay) generates m = 1 (2wpay — Whar) in the dominant part. It is the fact
found in the nonlinear behaviour of the dynamically unstable bar system.

We introduce a simplified model [3] to examine the nonlinear evolution of the unstable modes, es-
pecially taking into account the nonlinearity and instability caused by an external force. Our model is
Burgers’ equation for a flow velocity u(t, z) coupled to a scalar field ¢(t, x):

Ou + ul,u = V@iu—f— ®, (1)
2p+20 = —u+1, (2)

where v is a diffusion constant. We regard u = 1 and ¢ = 0 as the background state and consider linear
stability and nonlinear growth using Fourier series expansion from this uniform state.

The amplitudes of Fourier series expansion of the flow velocity u(t,z) are shown in Fig. 3. Note
that case (a) is stable to m = 2 mode, while case (b) unstable. In Fig. 3(b), the m = 2 mode grows
exponentially until ¢ ~ 15, where the amplitude of the m = 2 mode reaches the nonlinear regime:
1072 x exp(0.3 x 15) ~ 1. All other even modes, originating from the bilinear coupling term ud,u, also
grow. The m = 6 mode is produced from the coupling between m = 2 and m = 4 and also from the
quadric coupling of m = 3. Therefore, the amplitude of the m = 6 mode is not always smaller than
that of m = 4. The growth of all even modes is slightly suppressed after the turning time ¢ ~ 15. The
turning time is also important for the odd modes. The odd modes decay for ¢ < 15, but grow after that.
Therefore, the nonlinearity of the amplitude of the m = 2 mode cannot be ignored even for the odd
modes. The turning time corresponds to shock formation as will be discussed later. For Egs. (1) and (2)
all odd modes are always zero, if they are exactly zero initially. When there is at least one odd mode
with a finite amplitude, the nonlinearity of the m = 2 mode enhances all odd modes.

The similarity can be seen in the time evolution of the Fourier components both in mathematical and
three-dimensional numerical models [3]. The time evolution of the shape (¢, z) is shown in Fig. 4. The
m = 2 mode initially grows and the shape is enhanced before the turning time ¢ ~ 15. The curve at
t = 47 clearly shows symmetric features due to the m = 2 mode. That is, the shape is the symmetry
under translations x — z + w, a “m-symmetry”. The nonlinearity causes a shock as in the original
Burgers’ equation. After shock formation, the Gibbs phenomenon associated with Fourier series is seen
at t = 8, 16m. The overshoot is a numerical artifact and such behaviour always appears when a function
having a sharp discontinuity is expressed as a Fourier series. Neglecting the Gibbs phenomenon, the
symmetry due to the m = 2 mode can still be seen in the shape at ¢t = 8w, whereas it is partially
broken at t = 16m. The time ¢ = 167 in the mathematical model is much longer than that of nonlinear
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Figure 4: Snapshots of the flow velocity u(¢, z) are shown as a function of 2’ = x /27 for t = 0, 47, 8, 167
for case (b) in Fig. 3. The attached labels denote the time ¢.

saturation and that of growth of odd modes. Therefore, there is no counterpart in three-dimensional
numerical simulations. The mathematical model suggests that a “m-symmetry” (i.e., symmetry under a
180° rotation around the z-axis) in the shape is broken in a longer timescale.

We investigate the nonlinear effects of dynamically bar unstable stars by means of both three dimen-
sional hydrodynamic simulations in Newtonian gravity and our simplified mathematical model.

We find interesting mode coupling in the dynamically unstable system in the nonlinear regime, and
that only before the destruction of the bar. The quasi-periodic oscillation mainly along the rotational
axis is induced. The characteristic frequency is twice as big as that of the dynamically unstable bar
mode. This feature is quite analogous to the Faraday resonance. Although our finding is only supported
by the weakly nonlinear theory of fluid mechanics, we have also found the same feature of parametric
resonance even in the strongly nonlinear regime [2].

We also find that our mathematically simplified model provides a concrete example showing the
importance of mode coupling. The amplitudes of odd modes increase without unstable odd modes being
present in the axially symmetric state; instead, they are enhanced by the bar instability with m = 2.
We also confirmed that this physical picture is consistent with the results from a three-dimensional
hydrodynamics simulation. Generally, the odd modes grow only after the bar instability reaches the
nonlinear regime. The timescales of the mode coupling and the growth of unstable modes may depend on
the rotation law and the strength of the initial instabilities. It is very rare that the initial perturbations in
the hydrodynamics simulation should consist of purely even or odd modes only. Therefore, the unstable
bar mode enhances the amplitudes of the all other modes at late times, no matter whether they are even
or odd.

A similar mode coupling can be seen in numerical simulations for the one-armed spiral instability
and the elliptical instability of rotating stars in Newtonian gravity. The initial models and the growth
mechanism are different, but the turbulent-like behaviour appears in diagnostics of the azimuthal Fourier
components at late times of nonlinear growth. The behaviour is also important for the nonlinear sat-
uration of the unstable mode. Further study is necessary to explore the origin of the similarity seen
in the development of different unstable modes. It is reasonable to assume that the nonlinearity in
hydrodynamics is the source of this similarity.
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