
Eur. Phys. J. C           (2023) 83:23 
https://doi.org/10.1140/epjc/s10052-022-11116-z

Regular Article - Theoretical Physics

Late time cosmology in f (R,G) gravity with exponential
interactions

A. Chanda1,a, A. Haldar2,b, A. S. Majumdar2,c, B. C. Paul1,d

1 Physics Department, University of North Bengal, Raja Rammohunpur 734013, India
2 S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700106, India

Received: 24 October 2022 / Accepted: 5 December 2022
© The Author(s) 2023

Abstract Cosmological models with f (R) modified grav-
ity are significant to investigate the present and late-time
behavior of the Universe. The dynamics of the Universe is

studied in the framework of f (R) = R + γ R2 − λ
(

R
3m2

s

)δ

gravity (γ , λ, δ are arbitrary constants) with a coupled Gauss–
Bonnet (GB) term in the gravitational action and estimate the
constraints on the model parameters as well as the late time
behavior of the Universe. In this case, the coupled Gauss–
Bonnet term is coupled with a free scalar field in the presence
of interacting fluid. In addition, we investigate the same for
a different form of gravity f (R) = R, where the coupled
GB term is coupled with a scalar field in a self-interacting
potential.

1 Introduction

Modern cosmology has passed through a remarkable transi-
tion from speculative science to an experimental one in recent
years. This is mostly due to the high precision observations
like Supernova Ia, Baryon Acoustic Oscillations (BAO), Cos-
mic Microwave Background (CMB) measurements etc. [1–
6], which have imposed tight constraints on the theoretical
models. Cosmological and astronomical observations pre-
dict that the present universe is passing through an accel-
erated phase of expansion. The accelerating nature of the
universe along with the issue of dark matter are two of the
most challenging problems in modern cosmology. The stan-
dard model of cosmology can explain this accelerated phase
of expansion of the universe by introducing a cosmological
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constant (Λ) [7–10]. The Λ cold dark matter (ΛCDM) model
is the most successful model to describe the dark energy (DE)
era. Although the model is fairly compatible with the cosmic
microwave background data, the existence of both the con-
stituents of the model are in question. Recent observations
have further established the fact that the expansion rate of the
universe based on local data is different in comparison to the
expansion rate which the universe had in the past based on
the cosmic microwave background data, an issue known as
the Hubble tension [11–15]. The ΛCDM model also suffers
from the serious problem of fine tuning [16].

An alternative approach is to modify the geometrical sec-
tor of the Einstein field equations (EFE) to fit the miss-
ing matter-energy content of the observed universe. Various
modified theories of gravity have been considered in the lit-
erature [17–26] to describe the evolution of the universe.
Such theories can provide a successful description of the late
time DE dominated era and can also explain the early infla-
tion [27] with different coupling parameters. A large class
of works in modified gravity consider higher order curvature
invariants in the Einstein–Hilbert action which leads to cur-
vature based f (R) gravity formalisms [28]. Other modified
theories of gravity have also been proposed such as f (T )

models [29–31], and f (G) gravity [32], etc. Such modified
theories offer several possibilities for theoretical descriptions
of cosmology and astrophysics in conformity with observa-
tions.

The DE era of the universe has been widely modeled
through the f (R) theory of gravity. In f (R) gravity mod-
els the modifications to general relativity (GR) appear natu-
rally in the low energy limit of the effective actions [33] of
promising candidates of quantum gravity, such as superstring
theory. The advantage of f (R) theory of gravity lies in the
fact that these models are conformally related to GR with a
self-interacting scalar field and can unify both early inflation
and the late time acceleration of the universe [34,35]. In fact,
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the inflationary cosmological scenario was first obtained by
Starobinsky [27] in a higher derivative theory of gravity. Cos-
mological models can be constructed in the f (R) theory of
gravity following two different approaches, viz., the Palatini
approach where the field equations are second-order differ-
ential equations [36–39], and the metric variational approach
where the field equations are of fourth order [40]. Different
functional forms of f (R) have been considered to study cos-
mological and astrophysical scenarios [41–48]. Solar system
tests are implemented to check the viability of these models
[49–54]. However, it may be noted that a cosmological model
which fails the solar system test can admit the present accel-
erating universe. These local tests can thus be bypassed in
favor of an independent test at a cosmological scale [55–59].

Recently, a particular class of cosmological models have
received attention, where the cosmic fluid components inter-
act with each other via energy exchange [60–64]. Interacting
cosmologies are interesting because of their physical as well
as mathematical properties. Interactions are introduced in
several cosmological scenarios to obtain a complete descrip-
tion of the universe. The cosmic matter sector may possess
multiple interacting components as shown in case of M the-
ory, inflationary models and also in case of the accelerat-
ing universe [65–70]. The cosmic fluid components violate
the energy conservation equation individually, but the total
energy density remains conserved. It should be pointed out
here that the role of interaction is not to explain the current
accelerating phase of the universe, rather, it could provide
a plausible solution of the cosmic coincidence problem. In
the literature a number of authors have investigated this issue
[71–80]. The addition of interaction among the dark compo-
nents of the universe can also help alleviate the tension on
the local Hubble constant [81,82].

In this work the dynamics of late type evolution of the
universe is studied in the framework of f (R,G) gravity with
interacting components. We consider an exponential form of
interaction to study the effect of the interaction parameter on
the dynamics of evolution, as it is the simplest generalization
of the usual linear interaction forms [83]. The gravitational
action has a Gauss–Bonnet (GB) term coupled to a scalar
field. Einstein–Gauss–Bonnet theory can provide a viable
description of the dynamics of the early universe as well as
the late time era. In the usual four-dimensional framework,
the GB terms do not contribute to the dynamics of the uni-
verse, however, when coupled with a scalar dilaton field in
the gravitational action, they can significantly alter the phe-
nomenology of the universe evolution. (For a detailed review
of GB cosmology see Refs. [84–88]). In the present analysis,
we investigate the dynamics of an interacting cosmological
model of f (R) gravity with a GB term. We further analyze
the viability of our model against the backdrop of recent
observational data.

The paper is organised as follows: in Sect. 2, we obtain
the field equations in f (R) gravity coupled to a GB term.
The cosmological parameters to probe the Universe are also
obtained. In Sect. 3, we consider interaction among the cos-
mic fluid components, namely the non-relativistic matter sec-
tor which includes dark matter, and the dark energy. The
conservation equation is rewritten incorporating the inter-
action terms. In Sect. 4, we obtain cosmological models in
the framework of two different modified theories of grav-
ity and investigate the late time evolution of the universe. In
Sect. 5, we probe our model with the observed data of type
Ia supernovae (UNION 2.1 data) and obtain the constrain on
the model parameters. Finally in Sect. 6 we summarize the
results obtained followed by a brief discussion.

2 Background of f (R)-modified gravity with
Gauss–Bonnet terms

In this section we describe the basic features of f (R)-
modified gravity coupled with the Gauss–Bonnet (GB) terms
in presence of a scalar dilaton field. The modified action in
this case in (3 + 1) dimensions is given by [89],

S =
∫

d4x
√−g

(
1

2κ2 f (R) − 1

2
gμν∂μφ∂νφ

−V (φ) − ξ(φ)G + Lm

)
, (1)

where R denotes the Ricci scalar, κ = 1
MP

is the gravi-
tational constant with MP being the reduced Planck mass,
V (φ) is the potential associated with the scalar field, and
ξ(φ) is the Gauss–Bonnet coupling function which depends
on the dilaton field. The Gauss–Bonnet invariant is given
by G = R2 − 4RμνRμν + RμνσρRμνσρ where Rμν and
Rμνσρ are the Ricci and Riemann curvature tensors respec-
tively. The matter Lagrangian corresponding to both rela-
tivistic and non-relativistic perfect fluids is denoted by Lm .
The dynamics of evolution of the universe depends signifi-
cantly on the functional form of the f (R)-modified gravity.
To describe the background spacetime geometry we consider
a flat Friedmann–Robertson–Walker (FRW) metric in this
study. The line element is given by,

ds2 = −dt2 + a(t)2δi j dx
i dx j (2)

with a(t) being the scale factor of the universe. For the cho-
sen background geometry, the Ricci scalar and the Gauss–
Bonnet invariant can be expressed as, R = 6(2H2 + Ḣ)

and G = 24H2(H2 + Ḣ), where the overdot (“.”) denotes
differentiation with respect to cosmic time t and H = ȧ

a
is the Hubble parameter. The scalar field is assumed to be
homogeneous which depends only on the cosmic time.
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Variation of the gravitational action with respect to the
metric tensor (gμν) and the scalar field (φ) leads to the field
equations for the gravitational sector as well as the scalar
field given by,

H2 = k2

3 fR

(
ρ + 1

2
φ̇2 + V (φ)

)

+ fR R − f

6 fR
− H ḟR

fR
+ 8κ2ξ̇H3

fR
, (3)

Ḣ = − κ2

2 fR

(
ρ + P + φ̇2

)
− f̈ R − H ḟR

2 fR
+ 8κ2ξ̇H Ḣ

fR
,

(4)

Vφ + φ̈ + 3H φ̇ = ξφG, (5)

where, ρ and P denote the matter density and pressure of the
cosmic fluid respectively and the suffix φ represents deriva-
tive w.r.t. scalar field φ, also fR = ∂ f

∂R . We assume that
the cosmic fluid is composed of two different type of flu-
ids, namely non-relativistic matter which is composed of
baryons, leptons as well as cold dark matter (CDM) and
relativistic matter components which is mainly composed
of photons and neutrinos. Therefore the total energy density
and pressure of the cosmic fluid are taken as,

ρ = ρ1 + ρr (6)

P =
∑
i

ωiρi (7)

where, ρr = ζρ2 and ρ1, ρ2 are the energy densities of the
fluids, ζ = ρ20

ρ0
with ρ20 being the current density of rela-

tivistic matter, ρ0 is the present value of energy density for
non-relativistic matter and ωi is the equation of state (EoS)
parameter for the i th fluid. Though the present energy den-
sity for radiation is almost negligible, in order to probe the
evolution of the universe for a modest fractional value of the
radiation we consider the second term in Eq. (6).

The evolution of the universe can be better visualized in
terms of the redshift parameter z which can be measured
for different cosmological sources. Thus, to study the late
time evolution of the universe we substitute cosmic time t
by the redshift parameter (z) with late time universe being
represented by low redshifts close to zero. The scale factor
of the universe then becomes,

a(t) = 1

1 + z
(8)

where the present size of the universe (a0) is assumed to be
unity. We also replace the time derivative by the derivative
w.r.t. the redshift parameter (z) as,

d

dt
≡ −H(1 + z)

d

dz
. (9)

Using Eq. (9) all the time derivatives can be replaced by the
derivatives with respect to z and we obtain the following
relations:

Ḧ = −H(1 + z)H ′ (10)

φ̇ = −H(1 + z)φ′ (11)

φ̈ = H2(1 + z)2φ′′ + H2(1 + z)φ′ + HH ′(1 + z)2φ′

(12)

ḟ R = Ṙ fRR + φ̇ fRφ (13)

Ṙ = 6H(1 + z)2(HH ′′ + (H ′)2 − 3HH ′

1 + z
. (14)

These relations will be used to rewrite the field equations
obtained earlier.

We recast the field Eqs. (3) and (5) in the following form,

H2 = κ2

3 fR

(
ρ + 1

2
φ̇2 + V (φ)

)

+ fR R − f

6 fR
− H ḟR

fR
− 8κ2(1 + z)ξ ′H4

fR
, (15)

Vφ + φ̈ + 3H φ̇ = ξφG (16)

where the “prime” (′) denotes differentiation with respect to
the redshift parameter (z). We have rewritten only two of the
three field equations as these two equations will be sufficient
to describe the dynamics of the evolution of the late universe.
To study the cosmological behaviour of the model we now
define a new density parameter as [89–94],

ΩH = ρDE

ρ0
, (17)

where ρDE denotes the DE density. The parameter ΩH will
be used to investigate the evolution of the universe and the
nature of DE. Instead of using Hubble rate and its derivatives
to quantify the cosmological evolution we will use ΩH to
study evolution of the universe. The dark energy density in
this case is assumed to be composed of all the geometric terms
arising in the Friedmann equation and can be expressed as,

ρDE = 1

2
φ̇2 +V + fR R − f

2κ2 − 3H ḟR
κ2 +24ξ̇H3 + 3H2

κ2 (1− fR).

(18)

One may reproduce the usual forms of the Friedmann equa-
tions of GR using Eqs. (18), (3) and (4) which are given by,

H2 = κ2

3

(
ρ + ρDE

)
(19)

Ḣ = −κ2

2

(
ρ + P + ρDE + PDE

)
(20)

where, PDE represents the pressure corresponding to the
dark energy component. The Hubble rate can be expressed
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in terms of the density parameter ΩH as,

H2 = m2
s

[
yH (z) + ρ

ρ0

]
(21)

where, m2
s = κ2 ρ0

3 = 1.87101 × 10−67.
Taking the derivatives of the above expression with respect

to the redshift parameter (z) we get,

HH ′ = m2
s

2

(
y′
H (z) + ρ′

ρ0

)
, (22)

H ′2 + HH ′′ = m2
s

2

(
y′′
H (z) + ρ′′

ρ0

)
, (23)

which will be used to formulate the cosmological parameters.
To study the late time evolutionary behaviour of the universe
one has to solve the field equations (15) and (16). The equa-
tions are highly non-linear, so we adopt numerical techniques
to solve them with respect to the density parameter ΩH and
scalar field φ. The evolutionary behaviour of different cos-
mological parameters will be plotted here with the redshift
(z) for two different models. To differentiate between differ-
ent DE models quantitatively, a geometrical analysis called
statefinder diagnostic was proposed by Sahni et al. [95]. To
study the nature of DE we define the equation of state (EoS)
parameter ωDE and the density parameter ΩDE with respect
to z and ΩH as [89],

ωDE = −1 + 1 + z

3

dlnyH
dz

ΩDE = yH
yH + ρ

ρ0

. (24)

However for a complete understanding of the cosmological
evolution one has to determine the following parameters,

q = −1 − Ḣ

H2 , j = Ḧ

H2 − 3q − 2,

s = j − 1

3(q − 1
2 )

, Om(z) = ( H
H0

)2 − 1

(1 + z)3 − 1
, (25)

where q is the deceleration parameter, j is the jerk parameter,
s is the snap parameter and Om(z) is the Om parameter.
In this work we consider an interacting cosmic fluid model
where the transfer of energy from one sector to another begins
at time t = ti , when the interactions originate among the
different cosmic fluid components which will be considered
in the following section.

3 Conservation equations for interacting fluids

We consider an interacting cosmic fluid scenario where the
dark energy interacts with the non-relativistic matter sector.
The relativistic particles do not take part in the interactions.
The interaction is assumed to originate at a later epoch. Such

interactions may originate due to a variety of mechanisms
during particular eras. In case of various scalar field models
of DE, such as quintessence or k-essence, phase transitions
arise during several cosmological epochs, which result in
decay of the cosmological vacuum energy as well as particle
production. For the FLRW line element considered above,
the conservation equations with interactions can be written
as [60–64]:

ρ̇1 + 3H(ρ1 + P1) = −Q (26)

˙ρDE + 3H(ρDE + PDE ) = Q (27)

where, ρ1, P1 and ρDE , PDE are the energy density and
pressure corresponding to the non-relativistic matter and
dark energy, respectively. Here Q represents the interaction
strength which may assume arbitrary forms. Depending on
the sign of Q one can determine the direction of energy flow
between the two components. When Q > 0, energy flows
from the non-relativistic matter sector to the dark energy sec-
tor, whereas Q < 0 corresponds to the energy loss from the
dark energy sector. It is evident from Eqs. (26) and (27) that
although the individual fluids violate the conservation equa-
tions the total energy density of satisfies the conservation
equation together. One can construct an equivalent uncou-
pled set of energy conservation equations as [96]:

ρ̇1 + 3H(1 + ω
e f f
1 )ρ1 = 0 (28)

˙ρDE + 3H(1 + ω
e f f
DE )ρDE = 0, (29)

i.e.,

3∑
i=1

[
ρi + 3H(1 + ω

e f f
i )ρi

]
= 0, (30)

where ω
e f f
i is the effective equation of state parameter corre-

sponding to the cosmic fluid components. The effective EoS
parameters are given by:

ω
e f f
1 = ω1 + Q

3Hρ1
(31)

ω
e f f
DE = ωDE − Q

3HρDE
. (32)

The forms of these interactions are not constrained to spe-
cific functions. Certain phenomenological choices are ini-
tially made and later they are tested using observational
data. In the literature several functional forms of interaction
rates are considered as, Q ∝ ρDE [97], Q ∝ ρ1 [77–80],

Q ∝ (ρ1 + ρDE ) [77–80], Q ∝ ˙ρDE [98], Q ∝ ρ2
DE
ρ1

[99],
etc. Several of these interaction forms agree with the observa-
tional data and lead to stable cosmological models [100,101].
Thus, any new form of interaction must be constrained using
the current observations. In this work we consider an expo-
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nential form of interaction as [83]:

Q = 3HηρDE exp

(
ρDE

ρ1
− 1

)
(33)

where, η is a coupling parameter which denotes the strength
of the interaction. We denote the ratio of energy densities
of these two fluids as α = ρDE

ρ1
. The above interaction can

be rewritten in terms of α as Q = 3HηρDEexp(α − 1).
Thus, the exponential form of interaction reduces to the linear
form when α → 1 i.e., Q = 3HηρDE , while for α → 0,
Q ≈ 3HηρDE . These limits have been studied earlier in
the literature [98]. The Taylor series expansion of Eq. (33)
around ρDE = 0 yields,

Q ∝ ρDE + ρ2
DE

ρ1
+ · · · (34)

One can thus study the effects of the higher order terms
present in the interaction and compare their effect with the
linear counterpart. Recently Yang et al. considered this expo-
nential interaction model and drew a comparison between
different interaction scenarios [83]. It is noted that the expo-
nential model exhibits a considerable deviation near the
present epoch (i.e., z = 0).

One can express the energy densities of the non-relativistic
and relativistic matters as:

ρ1 = ρ0(1 + z)3(1+w
e f f
1 ) (35)

ρ2 = ρ20(1 + z)4. (36)

One can express the total energy density using Eqs. (35) and
(36) as:

ρ = ρ0

[
(1 + z)3(1+w

e f f
1 ) + ζ(1 + z)4

]
. (37)

One can solve field equations (15) and (16) numerically using
the expressions for energy densities and the parameters ΩH ,
and the scalar field φ can be determined. The evolution of
the universe can be studied through the behaviour of the state
finder parameters, the scalar field φ, and other cosmological
parameters like the deceleration parameter q, Om(z) param-
eter, etc. The interaction strength η acts as a free parameter
in this case along with the function f (R), potential func-
tion V (φ) and the GB coupling term ξ(φ). One has to con-
sider specific forms of these functions to study the late time
dynamics of the universe in presence of interacting cosmic
fluid components. The interaction strength severely affects
the evolution of the universe which will be studied in the
next section.

4 Cosmological models in the modified f (R) gravity
with GB terms in the presence of interacting cosmic
fluid

We consider different forms of the coupling function for the
GB terms with a scalar field in presence of interacting cosmic
fluids to study the dynamics of evolution of the late universe.
Two different f (R) gravity models are considered here.

4.1 Model-I

We begin our study by considering the simple Einstein grav-
ity (i.e. f (R) = R) with Gauss–Bonnet terms coupled to
a scalar field. In recent years there is a spurt in activities to
search for a viable universe in the framework of modified the-
ories of gravity that emerged as an alternative for dark energy
in order to accommodate the present accelerating phase of
the universe satisfactorily. A number of modified theories of
gravity came up in the literature to study the early and late
evolutionary phases of the universe which however finally
unify them within a single theoretical framework [111–116].

The string-inspired modified theories of gravity are one of
the promising candidates. Zweibach first pointed out that the
string corrections due to the Einstein action up to first order in
the slope parameter and fourth power of the momenta should
be proportional to the GB terms and leads to a ghost-free non-
trivial interacting theory [117]. Later it was shown that the
field redefinition theorem of Hooft and Veltman [118,119]
may apply in this case. Thus the GB terms arise in the low-
energy effective action for the heterotic strings [120–123] and
also in the second order terms in the Lovelock gravity [124].
It is known that the GB term in 4 dimensions is a constant
which does not play any role in explaining the dynamics of
the universe. However, the scalar field coupled with the GB
terms is important and a number of features of the universe
can be explored. A non-singular universe can be obtained in a
string-induced gravity with GB term near the initial singular-
ity [125,126]. The string-inspired scalar Gauss–Bonnet grav-
ity as well as the modified GB gravity have been employed
to investigate the gravitational dark energy [127].

Recently, scalar GB and modified GB theories have been
reconstructed for a given expansion of the universe with and
without matter [128]. The bouncing cosmological scenario
is investigated in the framework of scalar GB gravity in both
the Jordan (string) frame and the Einstein frame [129]. Cos-
mological solutions of the field equations obtained from a
ten-dimensional action differing from the superstring cor-
rected action and containing higher derivative terms in the
GB combination have been studied by Paul and Mukherjee
[130]. They found realistic cosmological scenarios in pres-
ence of an inflationary era in the early ten-dimensional uni-
verse. The emergent universe scenario has also been investi-
gated in the framework of scalar GB gravity [131,132]. The
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role of scalar coupled GB terms in the dynamics of evolution
of the late universe has been investigated considering a three-
component cosmic fluid [89]. The scalar coupling function
ξ(φ) is constrained considering the primordial gravitational
wave speed.

In the present paper we introduce a non-linear coupling
between the cosmic fluid components in order to study the
role of interaction between the fluid components. The scalar
potential is assumed to be coupled with the dilaton field in
this case. The functional form of the scalar field potential is
assumed to be:

V (φ) =
(

φ

MP

)4

(38)

with a scalar coupling function of the form,

ξ(φ) =
(

φ

MP

)
. (39)

We assume simple power law models for the scalar field func-
tions with proper normalization. These models are mostly
used in the inflationary epoch where the “slow-roll” condi-
tions are assumed to hold true. The “slow-roll” approxima-
tion neglects the most slowly changing terms in the equations
of motion. However, during the late era, one can take fields
that do not obey the slow-roll conditions. It is known that
theories which involve Gauss–Bonnet terms coupled with
an arbitrary scalar field produce gravitational waves which
propagate with a velocity that deviates from the speed of light
[89]. However, the recent GW170817 event has predicted
that the primordial gravitational wave speed must be equal
to the speed of light [99]. This leads to an incompatibility
in the theoretical framework involving Gauss–Bonnet terms.
If the theory considered is described by massless gravitons
throughout the evolution of the universe, then this problem
can be removed [89]. This implies that the scalar coupling
function should satisfy the differential equation ξ̈ = H ξ̇ . The
Hubble parameter is obtained from the Friedmann equations
which in turn connects the two scalar functions V (φ) and
ξ(φ) in such a way that the differential equation is satisfied.
In this paper we start from arbitrary forms of the scalar field
coupling functions.

In the Einstein gravity f (R) = R with GB terms, we do
not have Ṙ in the field equation, and the second derivative
of the density parameter ΩH is zero. However, the second
derivative of the scalar field φ is proportional to Ω ′

H as seen
from the continuity equation. So, we need only one initial
condition for ΩH to solve the field equations (15) and (16).

We assume that ΩH

∣∣∣
(z=0)

= Λ
3m2

s

(
1 + 1+z f

1000

)
and the initial

values for the scalar field are taken as φ

∣∣∣
(z=0)

= 10−10MP =

dφ
dz

∣∣∣
(z=0)

. The choice of the initial conditions are done in such

a way so that they lead to a physically viable description
of the present observed universe. We consider two types of
interaction among the fluids where energy flows from the
non-relativistic matter sector to the dark energy sector and
vice versa, and summarize the results below.

Case-I: For η > 0 (i.e., Q > 0)
At first, we consider the case of energy transfer from the non-
relativistic matter sector. The interaction coupling parame-
ter η plays a crucial role in determining the stability of the
model. For a suitable choice of the model parameters, the
field equations are solved numerically and we have plot-
ted the cosmological parameters in Fig. 1 for α = 0.9 and
η = 0.0004. From the figure, it is evident that the DE oscil-
lations are absent in the case of f (R) = R gravity, and as
a consequence, all the cosmological parameters are oscilla-
tion free throughout the evolution of the universe. The scalar
field in this case exhibits a monotonically decreasing nature
and attains large negative values at the present epoch. The
deceleration parameter shows a change in sign indicating a
transition from a decelerating to an accelerating phase of
expansion. The parameter ΩH remains constant throughout.
We note that the jerk and snap parameters approach their
corresponding ΛCDM limits at z ∼ 0 (Table 1).

In Table 1 we display the present day values of the cos-
mological parameters as obtained from the theoretical model
and compare them with the PLANCK 2018 results [102]. We
note that for the present model the cosmological parameters
are close to their corresponding ΛCDM values at the present
epoch. The DE variables i.e., the DE density parameter and
the effective EoS parameter are plotted in Fig. 2. From the
figure it is evident that ΩDE increases as the universe enters
the DE dominated phase. The effective EoS parameter in
this case remains almost constant showing a slight devia-
tion from the corresponding ΛCDM value. In the case of
R + GB gravity with scalar potential, we note that stable
cosmological models are found for small values of the inter-
action parameter η. As η is increased, the snap parameter
shows a discontinuity at certain redshifts making the model
unstable. Further, decreasing α increases the allowed range
of η values. So, the presence of the simple f (R) = R grav-
ity with a scalar potential leads to a universe DE oscillations.
The universe in the modified gravity scenario with a scalar
field resembles closely the ΛCDM model near z = 0. The
DE EoS parameter indicates a phantom type DE dominated
universe. This is different from the result obtained in Paul et
al. [103].

Case-II: For η < 0 (i.e., Q < 0)
For Q < 0, i.e., the energy flow from the dark energy
sector, one obtains similar behaviour as the previous case.
For large negative values of η the jerk parameter however
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Fig. 1 Solutions for the statefinder parameter ΩH and scalar field φ over reduced Planck mass with interaction considering α = 0.9 and β = 0.0004
in presence of a scalar field V (φ). Cosmological parameters are also plotted as functions of redshift z

Table 1 Cosmological parameter values at the present epoch for Q >

0, with α = 0.9 and η = 0.0004

Parameter R + V (φ) ΛCDM

q(z = 0) −0.521987 −0.535

j (z = 0) 1.00066 1

s(z = 0) −0.0002167 0

Om(z = 0) 0.313387 0.3153± 0.07

ΩDE (0) 0.681461 0.6847± 0.0073

w
e f f
DE (0) −1.00036 −1.018± 0.031

Table 2 Cosmological parameter values at the present epoch for Q >

0, with different η and α = 0.9

Parameter f (R) with η = 0.006 ΛCDM

q(z = 0) −0.870821 −0.535

j (z = 0) 1.13689 1

s(z = 0) −0.0332856 0

Om(z = 0) 0.322417 0.3153± 0.07

ΩDE (0) 0.916328 0.6847± 0.0073

w
e f f
DE (0) −1.00321 −1.018± 0.031

Parameter f (R) with η = 0.06 ΛCDM

q(z = 0) −0.863784 −0.535

j (z = 0) 0.945195 1

s(z = 0) 0.013395 0

Om(z = 0) 0.340152 0.3153± 0.07

ΩDE (0) 0.916371 0.6847± 0.0073

w
e f f
DE (0) −1.05092 −1.018± 0.031

diverges near z = 0 thus making the model unstable. The
DE oscillations are absent in this case too, and as a result, the
statefinder parameters are also oscillation free. We plot the

results in Fig. 3. In this case, the DE stays in the quintessence
region. We note that stable cosmological models can be con-
structed in this case when the DE interacts only with the
non-relativistic matter sector which was not possible in case
of a three fluid interaction scenario [103].

4.2 Model-II

For the second model, simple forms of the scalar field cou-
pling function ξ(φ) and the potential V (φ) are considered.
The primordial GW speed puts a strict constraint on the forms
of these functions [89], and here we consider a finite GW
speed and a free scalar field. Thus, in absence of the scalar
potential (V (φ) = 0) the GB coupling term is considered as:

ξ(φ) = e
φ

MP . (40)

The f (R) function is considered to be of the form:

f (R) = R +
(
R

M

)2

− λ

(
R

3m2
s

)δ

(41)

where, λ (dimensions of mass squared) and δ are constants.

Here M is approximately equal to M = 1.5×10−5
(

50
N

)
MP ,

with N being the number of e-foldings and the exponent δ is
positive in the interval 0 < δ < 1.

This functional form of f (R) is considered here as it can
give a reasonable description of the inflationary epoch as well
as the late time era [89,103]. The model is also well known
for producing dark energy oscillations in the high redshift
regions. The R2 term dominates the dynamical evolution in
the early epoch, when R is large and controls the inflationary
behaviour, whereas the Rδ term dominates during the present
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Fig. 2 Variation of dark energy
variables, the effective EoS
parameter w

e f f
DE (Right) and

Density parameter ΩDE (Left)
with interaction considering
α = 0.9 and the β = 0.0004

Fig. 3 Solutions for the statefinder parameter ΩH and scalar field φ over reduced Planck mass with interaction considering α = 0.9 and
η = −0.0006 in presence of a scalar field V (φ). Cosmological parameters are also plotted as functions of redshift z

epoch with R → 0 for δ < 1. The presence of the scalar field
further alters the dynamics of the evolving universe.

In the literature, cosmological models with this functional
form of f (R) have been studied earlier. The dynamics of
evolution of the late universe is studied by Odintsov et al. in
presence of string theory motivated axion like particles and
in the presence of a scalar field coupled GB term [89,92–94].
It is found that although Gauss–Bonnet terms alone can pro-
duce oscillation free dark energy era, in presence of f (R)

gravity one cannot avoid DE oscillations in the high redshift
domain indicating that f (R) gravity dominates over the GB
term [104]. Motivated by this result, Paul et al. [103] studied
the late-time evolution of the universe in the f (R) gravity
with GB terms, considering interacting three fluids model.
In the model, the role of interaction that sets in among the
fluid components are investigated. A linear interaction was
considered and they found that even with interactions among
the fluid components the DE oscillations still exist in the
high redshift domain. They found that as the strength of the
interaction is increased the DE oscillations smooths out but
it leads to singularities in the statefinder parameters at some
particular redshifts. Thus, singularity free stable cosmologi-
cal models cannot be realized without DE oscillations for the
specific f (R) gravity under consideration [103].

In the present work, a scalar field is considered with a
non-linear interaction between the cosmic fluid components
to examine the role of interaction on the late-time evolution-
ary features of the universe. The role of such an exponential
interaction between the dark sectors has been studied in the
literature in a GR framework [83]. Different observational
data have been used to constrain the strength of interaction
and it is found that the model is in agreement with the obser-
vations for small values of the parameter η. At the back-
ground level, the cosmological model is found to resemble
the ΛCDM model with a slight deviation under small per-
turbation when CMB temperature anisotropy is considered.
We probe here the exponential interaction between the non-
relativistic matter sector and the DE sector in a f (R) + GB
gravity framework to study late universe in the presence of
interaction.

We consider a set of values of the model parameters
λ = 118.895 × 10−67 eV2, δ = 10−2 and N = 60 e-folding
which lead to a physically consistent cosmology. The current
value of the Hubble parameter is taken from the Planck data
which is, H0 = 67.4 km/s/Mpc [102], which when con-
verted in the unit of eV becomes H0 = 1.37187×10−33 eV.

Equations (15) and (16) are analyzed numerically consid-
ering suitable initial conditions for a range of redshifts that
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describe the last stages of the matter domination epoch up
to the present time, i.e., [zi , z f ] = [0, 10]. The initial condi-
tions are considered to be [89],

ΩH

∣∣∣
(z=10)

= λ

33m2
s

(
1 + γ̃ (1 + z f )

)
,

dΩH

dz

∣∣∣
(z=10)

= γ̃

(
λ

33m2
s

)
,

φ

∣∣∣
(z=10)

= 10−16MP ,
dφ

dz

∣∣∣
(z=10)

= −10−17MP , (42)

which gives a viable description of the present observed uni-
verse. The parameter γ̃ is a dimensionless entity that acts as
a free parameter. The initial conditions assumed here, play
an important role in the dynamical evolution of the universe.
The nature of the evolution of the cosmological parameters
depend on the initial conditions through γ̃ which will be dis-
cussed in the following. We consider γ̃ = 10−3 for the rest
of the manuscript as it yields a reasonable phenomenologi-
cal behaviour of the cosmological parameters, however, it can
assume higher values also in principle. The accurate forms
for the initial conditions may however be obtained consider-
ing some cosmographic approach which is beyond the scope
of the present paper and will be tackled elsewhere. We con-
sider two different scenarios where the energy flows from the
non-relativistic matter sector to the dark energy sector and
vice versa.
Case-I: For η > 0 (i.e., Q > 0)
For the first case, we consider η > 0 (Q > 0) i.e. the energy
flow from the non-relativistic matter sector to the other two
fluids. The system of Eqs. (15), (16) and (37) are analyzed
numerically considering suitable values of the model param-
eters. We plot the variation of different cosmological param-
eters with the redshift z in Fig. 4 for a specific choice of α

and η. From Fig. 4a it is evident that for the chosen values
of the model parameters one cannot nullify the DE oscilla-
tions for z ≥ 3 in the interacting f (R) + f (G) gravity. The
scalar field is found to be free from oscillations and increases
as the universe enters the DE dominated epoch as shown in
Fig. 4b. The variation of the deceleration parameter (q), jerk
parameter ( j), snap parameter (s) and Om(z) parameter with
the redshift z are shown in Fig. 4c–f. For η = 0.006 and
α = 0.9, the oscillating nature prevails at higher redshifts.
However, the oscillations smooths out considerably near the
present epoch (z = 0). The deceleration parameter shows a
flip in sign indicating a transition from a decelerated phase of
expansion to an accelerated phase of expansion of the present
universe. The transition redshift (redshift at which the uni-
verse enters the accelerated phase of expansion) depends on
the type of interaction and the initial conditions which will
be discussed in the following. The statefinder pair j and s
approach their corresponding ΛCDM values ( j = 1, s = 0)
at the present epoch. The Om(z) parameter shows a clear

distinction between the present model (blue, solid) and the
ΛCDM (black, dot dashed) [102]. Even at very low redshifts
this distinction is pretty evident as seen from Fig. 4f. We
have compared the present values of different cosmologi-
cal parameters obtained from our model with the observed
results in Table 2.

In Fig. 5 we plot the evolution of the effective DE EoS
parameter (we f f

DE ) and the DE density parameter (ΩDE ). Both
of these parameters exhibit oscillating nature at high red-
shifts. We note from Fig. 5 that for high redshifts (z ∼ 10),
the effective DE EoS parameter shows oscillations which is
an indication of the transfer of energy from one sector of mat-
ter to the others. At the present epoch, the oscillations die out
reaching a stable configuration with a negative EoS param-
eter indicating the existence of exotic matter obtained from
the transformation mechanism in a modified gravity scenario
with interacting fluids.

The oscillating behaviour of the cosmological parameters
is a direct consequence of the dominance of the f (R) gravity
part over the Gauss–Bonnet terms. However, the interaction
between the fluids plays a crucial role in this case. We note
that as the interaction strength is increased beyond a certain
point the DE oscillations cease to exist. For α = 0.9, oscil-
lations vanish around η = 0.38. However, in this case, the
statefinder parameter s shows a discontinuous behaviour at a
certain redshift which is not desirable for a stable cosmolog-
ical model. This behaviour is shown in Fig. 6. Thus one can
estimate the range of the strength of interaction leading to a
stable cosmological model. In this work, we consider three
different α values and determined the range of η numerically
for a stable cosmological model.

In Fig. 7 we consider two different γ̃ values namely,
γ̃ = 10−3 and γ̃ = 0.5 to study the dependence of ini-
tial conditions on the DE oscillations. We plot the density
parameter ΩH and the deceleration parameter q for the γ̃

values considered. We note that the DE oscillations are more
pronounced for γ̃ = 10−3. However, the present behavior
of these parameters become independent of the initial con-
ditions. The transition redshift also changes with the choice
of γ̃ .
Case-II: For η < 0 (i.e., Q < 0)
For Q < 0, the energy flows from the DE sector. In a similar
way to the earlier case, we analyze the system of equations
numerically. The results are shown in Fig. 8. The parameter
ΩH is again found to be oscillating in the past, and there-
after at the present epoch, the oscillations die out attaining
a constant value. The behaviour of the scalar field is similar
to the previous case where it gradually increases attaining a
maximum at the present epoch. Thus we conclude that the
behaviour of the scalar field is independent of the direction
of energy flow. The evolution of the cosmological parame-
ters are shown in Fig. 8c–f. The statefinder parameters in this
case exhibit oscillations for higher redshifts (z ∼ 3) similar
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Fig. 4 The density parameter ΩH and scalar field φ over reduced Planck mass for the f (R) gravity with interaction considering η = 0.006 and
α = 0.9. Other cosmological parameters are also plotted as functions of redshift parameter z

Fig. 5 Variation of dark energy
variables, the effective EoS
parameter w

e f f
DE (right) and

Density parameter ΩDE (left)
with interaction considering
η = 0.006 and α = 0.9

to the previous case. We plot the figures for α = 0.9 and
η = −0.006. We note that for large negative values of the
interaction strength η the DE oscillations vanish. However,
as before, the cosmological parameters exhibit singularity at
a certain redshift, thus making the model unstable.

The dark energy density parameter and the effective EoS
parameter are plotted in Fig. 9. The effective EoS parame-
ter is oscillating at high redshifts, but the oscillations damp
down and the EoS parameter approaches the quintessence
value. The difference between these two cases is that in
the previous case the DE turns out to be in the phantom
region at the present epoch, whereas for Q < 0 it stays in
the quintessence region. For smaller η values the difference
between the present day values of w

e f f
DE for Q > 0 and Q < 0

is negligible, however, as η is increased within the permissi-
ble range, the difference becomes significant. We have esti-
mated the present day values of the cosmological parameters
for η = ±0.006 and η = ±0.06 in Tables 2 and 3. It is evi-
dent from these two tables that for larger η values one can
distinguish between the two cases Q > 0 and Q < 0 by
determining the type of DE present in the universe. We note
that for higher redshifts there was a transformation between
the phantom and quintessence type of DE in both cases. As
the universe approached the present epoch (z ∼ 0), the oscil-

lation gets damped significantly and a stable configuration is
reached. For Q > 0, the nature of DE remains in the phan-
tom domain whereas for Q < 0 it stays in the quintessence
region.

Next, we study the effect of linear and exponential inter-
action on the dynamics of the evolution of the universe. For
α = 1, the interaction reduces to a linear form. We compare
the new density parameter ΩH , the deceleration parameter
q, and the effective EoS parameter w

e f f
DE in both cases, and

the results are plotted in Fig. 10. From the figure, we note
that for the exponential interaction with higher order terms,
the DE oscillations are less prominent, however, in both the
interaction types ΩH behave similarly in the present epoch.
The universe transits into an accelerating phase faster when
exponential interaction is taken up. Both the interactions indi-
cate the presence of phantom type DE at the present universe
with Q > 0 whereas they stay in the quintessence region for
Q < 0. Thus one can conclude that the direction of energy
flow determines the type of DE in the present universe rather
than the type of interaction.

We further perform a comparison of the scenarios with and
without interactions between the cosmic fluid components. In
Fig. 11, the parameters ΩH , q and w

e f f
DE are plotted with red-

shift z in the presence and absence of interactions among the
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Fig. 6 Solutions for the density parameter ΩH and scalar field φ over reduced Planck mass for the f (R) gravity with interaction considering
α = 0.9 and η = 0.38. Cosmological parameters are also plotted as functions of redshift parameter z

cosmic fluid components. From the figure, we note that the
oscillating nature of the DE variables persists even without
interaction, and for η > 0, the amplitude of DE oscillations is
greater than the non-interacting scenario which lies between
the η > 0 and η < 0 case. The transition redshift also shows
a similar behaviour where the universe transits from a decel-
erating phase to an accelerating phase earlier in the case of
η < 0. The transition for the non-interacting case is slower
compared to the η < 0 case but faster than the η > 0 scenario.
The plot of the effective DE EoS parameter clearly indicates
that for the non-interacting scenario the effective EoS param-
eter stays close to −1 resembling the ΛCDM model. Thus
the coupled fluid model alters the dynamics of evolution of
the universe but, it cannot change the nature of evolution of
the DE variables which continue to oscillate even in presence
of interaction. This in turn indicates that the phenomenology
of the late universe is mostly governed by the f (R) gravity.

We have compared the present day values of the cosmolog-
ical parameters for both the interaction types and the values
are tabulated in Table 4. We note that the difference between
these values are much less compared to the ΛCDM model or
a cosmological model without interacting fluids. Thus f (R)

modified gravity dominates over the Gauss–Bonnet terms as

we observe oscillation of dark energy in the late time uni-
verse in the presence of interaction between the fluids. The
interacting cosmic fluids play an important role in determin-
ing the evolutionary pattern of the universe. The existence of
oscillation in the density parameter ΩH for z ≥ 4 imposes
an upper bound on the strength of interaction η for a given
α. Beyond this bound, discontinuities can appear in the cos-
mological parameters at a given redshift in the late time uni-
verse. Paul et al. recently studied the effect of linear interac-
tion in a modified f (R) gravity framework with GB terms
and they observed that for a stable cosmological model, DE
oscillations cannot be suppressed even with interacting fluids
[103]. From the above analysis, it is evident that even with
an exponential type of interaction between the cosmic fluid
components, one cannot nullify the DE oscillations in the
late universe. The allowed range of η for different α values
are displayed in Table 5.

In Fig. 12a, b, the evolutions of different cosmological
parameters are shown as well as their mutual dependences.
The parametric representation of Om(z) and j (z) is plotted
in Fig. 12a for different sets of model parameter η and α.
From this figure it can be seen that for each chosen sets of
model parameters, the plot exhibits an attractor like nature

Fig. 7 Solutions for the density
parameter ΩH and the
deceleration parameter q for the
f (R) gravity with interaction
considering η = 0.006 and
α = 0.9. The red curves
correspond to γ̃ = 10−3 and the
blue curves correspond to
γ̃ = 0.5
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Fig. 8 Evolution of the density parameter ΩH and scalar field φ for the f (R) gravity with GB terms and interacting fluids taking α = 0.9 and
η = −0.006. Cosmological parameters are also plotted as functions of redshift z

Fig. 9 Variation of dark energy
variables, the effective EoS
parameter w

e f f
DE (right) and

Density parameter ΩDE (left)
with interaction considering
α = 0.9 and η = −0.006

Table 3 Cosmological parameter values at the present epoch for Q <

0, with different η and α = 0.9

Parameter f (R) with η = −0.006 ΛCDM

q(z = 0) −0.873596 −0.535

j (z = 0) 1.15176 1

s(z = 0) −0.036827 0

Om(z = 0) 0.315478 0.3153± 0.07

ΩDE (0) 0.916325 0.6847± 0.0073

w
e f f
DE (0) −0.993486 −1.018± 0.031

Parameter f (R) with η = −0.06 ΛCDM

q(z = 0) −0.884884 −0.535

j (z = 0) 1.11436 1

s(z = 0) −0.027525 0

Om(z = 0) 0.287331 0.3153± 0.07

ΩDE (0) 0.916333 0.6847± 0.0073

w
e f f
DE (0) −0.948815 −1.018± 0.031

and evolves toward a stable point near j (z) ≈ 0 (but different
values of Om(z)). The corresponding nature of the deceler-
ation parameter q(z) can be observed in Fig. 12b, where the
evolutions of q(z), j (z) and Om(z) are simultaneously plot-

ted in 3d parametric space. From Fig. 12b it can be observed
that q(z) oscillates with z at higher redshifted era. However
as two other parameters j (z) and Om(z) move toward stable
points, the oscillating nature of q(z) diminishes and the value
of q(z) start decreasing rapidly.

Finally, the velocity of the primordial gravitational waves
can be calculated for both the model, which is given by [105–
107]:

c2
T = 1 − Q f

2Qt
(43)

where, Q f = 16(ξ̈ − H ξ̇ ) and Qt = M2
P − 8ξ̇H . The grav-

itational wave speed can assume arbitrary values depending
on the scalar field coupling function ξ(φ). However, despite
being arbitrary, its value is close to unity as Q f << Qt .
The variation of the GW speed with the redshift parameter is
plotted in Fig. 13 for a given interaction strength considering
both models. It is evident from the figure that in both cases
the GW wave speed is close to unity. For the second model
we consider α = 0.9 and η = 0.006, the value of Q f is
of the order Q f ∼ 10−82 whereas Qt ∼ 10−29 and hence,
the ratio is very close to zero. This leads to a GW speed
close to unity which is consistent with the GW170817 event.
From the expression of Q f , one can see that as Q f → 0,
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Fig. 10 Variation of dark energy variables, ΩH (left), deceleration parameter q (middle) and the effective EoS parameter w
e f f
DE (right) with

exponential interaction (blue) and with linear interaction (red) considering η = 0.09 and α = 0.1

Fig. 11 Variation of dark energy variables, ΩH (left), deceleration parameter q (right) and the effective EoS parameter w
e f f
DE (middle) with and

without interaction. The red curve corresponds to the non-interacting scenario and the blue and black curves correspond to η = ±0.09 and α = 0.9
respectively

Table 4 Cosmological parameter values at the present epoch for Q <

0, with exponential and linear interaction

Parameter Exponential interaction Linear interaction

q(z = 0) −0.872836 −0.887245

j (z = 0) 1.14922 1.0965

s(z = 0) −0.036229 −0.023188

Om(z = 0) 0.317226 0.281453

ΩDE (0) 0.916325 0.916337

w
e f f
DE (0) −0.974235 −0.943802

Table 5 Constraints on the interaction parameterη for different fluid
interactions

Types of Interaction α η

Q > 0 α = 0.9 0 ≤ η ≤ 0.38

α = 0.7 0 ≤ η ≤ 0.59

α = 0.5 0 ≤ η ≤ 0.97

Q′ < 0 α = 0.9 −1.2 ≤ β ≤ 0

α = 0.7 −1.91 ≤ η ≤ 0

α = 0.5 −3.11 ≤ η ≤ 0

ξ̈ = H ξ̇ . Thus, the GB coupling parameter is important and
the choice of the scalar coupling function to the GB terms is
not arbitrary.

5 Observational viability

We compare our model with UNION 2.1 data [108]. The
UNION 2.1 data contains the information of 580 type Ia
(Sn1a) Supernovae, in the form of distance modulus μobs

of individual supernova along with their error bounds σμ

and the redshift z. The distance modulus μ is related to the
luminosity distance as,

μ = m − M = 5 log DL + μ0, (44)

where m, M are the apparent and absolute magnitudes of the

Supernovae respectively, and μ0 = 5 log

(
H−1

0
Mpc

)
+ 25 is a

nuisance parameter which is marginalized. Distance modulus
DL for an object placed at redshift z is given by,

DL(z) = (1 + z)
∫ z

0

H0dz′

H(z′)
. (45)

Now, in order to compare our calculated distance modulus
μth with the observed distance modulus μobs, another param-
eter χ2

SN is introduced, which represents the mean square
deviation from the observed data. The parameter χ2

SN can be
defined as,

χ2
SN (η, α) =

580∑
i=1

(μth(zi , μ0, η, α) − μobs(zi ))2

σμ(zi )2 . (46)
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Fig. 12 a Evolution of q(z) and j (z) for different values of η and α in the case of model I. b Parametric representation of q(z), j (z) and Om(z)
for different chosen sets of model parameters η and α in the case of model I

Fig. 13 Variation of the
gravitational wave speed with
redshift parameter z for model I
with α = 0.9 and η = 0.0006
and model II with α = 0.9 and
η = 0.006

Fig. 14 a Comparison of
model I with Union 2.1
supernova data while the model
parameters chosen at η = 0.006,
α = 0.9. b χ2 representation of
model I in η−α parameter plane
using Union 2.1 supernova data.
In this plot the while dashed line
corresponds to the case of η = 0

However, to get rid of μ0, one can redefine χ2
SN as [109,110],

χ2
SN (θ) = χ2

A − χ2
B

χ2
C

. (47)

where χ2
A(η, α), χ2

B(η, α) and χ2
C (η, α) are given by

χ2
A(η, α) =

580∑
i=1

(μth(zi , μ0, η, α) − μobs(zi ))2

σμ(zi )2 , (48)

χ2
B(η, α) =

580∑
i=1

μth(zi , μ0, η, α) − μobs(zi )

σμ(zi )2 , (49)

χ2
C (η, α) =

580∑
i=1

1

σμ(zi )2 . (50)

From Fig. 14a, it can be seen that the model fits well with
the Union 2.1 supernova data, where the model parameters
are chosen at η = 0.006, α = 0.9. The variation of χ2

SN
for different model parameter η and α are graphically repre-
sented in Fig. 14b. In this figure (Fig. 14b) it is observed that,
the parameters values near the dark blue region at higher α

and η fit the best with observational data. From this plot one
can conclude that the model is not observationally viable in
the region [α ≈ 1, |η| ≥ 0.5]. In Fig. 14b, the white dashed
line represents the case of η = 0. It can be seen that, at η = 0,
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Fig. 15 Variation of distance modulus with redshit z for different cho-
sen values of η and α. In this figure, the distance modulus (μ) is
parametrized as μ/μη=0, where μη=0 is distance modulus where the
effect of fluid interaction is not considered

the variation of χ2 value and hence the same distance mod-
ulus with α vanishes. This particular case (η = 0) denotes
the condition, where the effect of fluid interaction is absent
(Fig. 15).

6 Summary and conclusions

In this paper, we present late time cosmological models in
f (R) modified gravity with coupled Gauss–Bonnet terms.
The background cosmic fluid is assumed to be composed of
three different components, namely, the non-relativistic mat-
ter section which includes CDM also, relativistic matter com-
ponents as well as dark energy. We consider an interacting
two fluid scenario, where the non-relativistic matter section
interacts with the dark energy. The relativistic particles do
not take part in the interaction [89]. The strength of interac-
tion between the cosmic fluid components plays an important
role in determining the late time evolutionary dynamics of
the universe. In this work we have considered an exponential
form of interaction as it is the simplest generalization of the
linear form, to study the effect of higher order terms on the
background dynamics of the universe. For a specific choice
of model parameters, the interaction effectively reduces to a
linear form and thus, the effect of these two interactions on
the cosmological parameters can be compared.

We have considered two different forms of the gravi-
tational action as: (I) the Einstein–Hilbert form of action
f (R) = R with GB terms coupled with a scalar field in a self

interacting potential, and (II) f (R) = R+
(

R
M

)2 −λ
(

R
3m2

s

)δ

with GB terms coupled in the presence of a dilaton field. The
numerical analysis of our models indicates that for a suit-
able choice of model parameters, the accelerating universe is
accommodated naturally. Different functional forms of inter-

actions are considered to study the role of interactions on the
late time phenomenology.

For the Einstein gravity ( f (R) = R) with GB terms cou-
pled to a scalar field in a potential V (φ) we have obtained
cosmological evolution in presence of interaction Q. The
scalar field coupling function ξ(φ) and the potential V (φ)

are chosen keeping in mind the GW speed constraint con-
dition [89]. We consider two different interacting scenarios
(η > 0 and η < 0) and study the dynamics of evolution of the
late universe. We note that in both cases the DE oscillations
are absent. For small values of the interaction parameter η,
and η > 0, stable cosmological models can be obtained in
this case. The EoS parameter remains constant throughout,
deviating only slightly from the corresponding ΛCDM value.
A similar behaviour can be observed for η < 0 when energy
flows from the dark energy sector to the non-relativistic mat-
ter sector. We can thus conclude that for the Einstein grav-
ity DE oscillations smooth out and the model closely corre-
sponds to the standard model near z ∼ 0.

For the second model we consider the f (R) modified
gravity with additional R2 and Rδ terms where δ < 1, is a
small perturbative term. Such a functional form can accom-
modate the early inflation as well as the late time accelera-
tion [108]. In the present work we consider a free scalar field
(V (φ) = 0) and study the evolution of the universe for two
different interaction scenarios. The form of the GB coupling
function is chosen in such a way as to satisfy the constraint
on the GW speed [99]. Two different cases have been con-
sidered, as before, depending on the sign of the interaction
coupling parameter η. For η > 0, we find that for high red-
shifts, the parameter ΩH oscillates rapidly, though the oscil-
lation gradually subsides as the universe enters the present
epoch. Similar behaviour is observed for the other cosmolog-
ical parameters, as well. The universe enters the accelerated
phase of expansion near z ∼ 2. The model approaches the
ΛCDM limit near z ∼ 0. The presence of the exponential
interaction makes the DE oscillations more prominent in this
case. One interesting thing to note here is that the model
is permitted for small values of η (η ∼ 0) which was also
obtained for a GR background using MCMC simulations
[83]. For the specific f (R) model under consideration, one
cannot get rid of DE oscillations for high redshifts even with
exponential interaction between non-relativistic matter and
dark energy.

The role of the parameter η is significant since the inter-
action strength cannot be increased indefinitely. There exists
an upper limit of η beyond which stable cosmological mod-
els cannot be constructed. The evolutionary behaviour of the
cosmological parameters is affected by the choice of initial
conditions. The initial conditions can be chosen in such a
way that the model becomes consistent with the PLANCK
2018 results [102]. The initial conditions also play a crucial
role in determining the transition redshift. For η < 0, simi-
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lar behaviour is observed regarding the cosmological param-
eters. One major difference between these two interaction
scenarios is evident through the present day values of the
effective DE EoS parameter. For η > 0 the EoS parameter
indicates the presence of phantom DE, whereas for η < 0
the DE is of quintessence type at the present epoch. The
difference is evident for large values of η within the permis-
sible range. The model corresponds to the standard ΛCDM
model at the present epoch up to a certain limit, however the
difference between these two scenarios is evident from the
plots of the Om(z) parameter. The range of allowed interac-
tion strength η has been estimated. For a specific α, stable
singularity free cosmological models cannot be constructed
beyond these specific η values.

Finally, we have compared our theoretical model with the
observed data of type Ia supernovae (UNION 2.1 data). For

the f (R) = R +
(

R
M

)2 − λ
(

R
3m2

s

)δ

gravity with scalar field

coupled GB terms, the model fits well with the Union 2.1
supernova data for η = 0.006 and α = 0.9 validating the
choice of interaction parameters. For a general choice of the
parameters η and α, we find that the model is not observa-
tionally viable in the region [α ≈ 1, |η| ≥ 0.5].

To conclude, in the f (R) = R+
(

R
M

)2−λ
(

R
3m2

s

)δ

gravity

with GB term coupled with a free scalar field, cosmological
models are permitted with oscillating statefinder parameters
in the late time universe. The oscillations however smooth
out considerably as the universe enters the present acceler-
ating phase. The modified form of f (R) has been studied
with and without interactions among the cosmic fluid com-
ponents in the literature, and DE oscillations exist for high
redshifts even with GB terms and interacting fluid scenario
[103]. In the present work, we have studied the late time phe-
nomenology of the universe considering a two fluid interact-
ing scenario with an exponential interaction form. We have
shown that the oscillating nature of DE persists even with
exponential interaction. The oscillations however disappear
if one increases the strength of interaction η up to a certain
point for a fixed α. From our analysis it is further evident
that the Gauss–Bonnet term plays a somewhat sub-dominant
role in the late time era as compared to the f (R) gravity.
Moreover, the constrained nature of the scalar field coupling
functions ensures that the GW wave speed calculated from
the model agrees with the observations [99,103].
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