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Abstract

We construct infinite dimensional symmetries of the Chalmers-Siegel action describ-
ing the self-dual sector of non-supersymmetric Yang-Mills. The symmetries are
derived by virtue of a canonical transformation between the Yang-Mills fields and
new fields that map the Chalmers-Siegel action to a free theory which has been used
to construct a Lagrangian approach to the MHV rules. We describe the symmetries
of the free theory in a quite general way which are an infinite dimensional algebra
in the group algebra of isometries.

We dimensionally reduce the symmetries of the action to write down symme-
tries of the Hitchin system and further, we extend the construction to the N = 4
supersymmetric, self-dual theory.

We review recent developments in the approach to calculating N=4 Yang-Mills
scattering amplitudes using symmetry arguments. Super-conformal symmetry and
the recently discovered dual super-conformal symmetry have been shown to be re-
lated as a Yangian algebra and moreover, anomalous terms appearing in their action
on amplitudes lead to deformations of the generators which gives rise to recursive

relationships between amplitudes.
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Chapter 1

Introduction and Outline

The well known Feynman approach to calculating scattering amplitudes, (see, for ex-
ample, [1] for reviews), in quantum field theory has been hugely successful. However,
the complexity of calculations grows quickly in relation to the number of particles
and in high loop order. Even at tree-level, a 10-point gluon scattering amplitude
with 2 negative helicity gluons (known as the MHV amplitude) has over 107 dia-
grams which we must evaluate, for example, [2-4]. The observation that tree-level
gluon scattering amplitudes localise on simple curves in twistor space [5] led to the
proposal of a new set of rules for calculating such amplitudes [5-8] with drastically
reduced complexity. (See also [9] for a review of Penrose’s Twistor space.) For
instance, the n-point MHV amplitude takes a particularly simple form known as
the Parke-Taylor amplitude, [10]. It was observed later that any tree-level N"MHV
amplitude with m + 2 negative helicity gluons can be written in terms of amplitudes
of fewer points knitted together by a Feynman propagator, leading to the BCFW
recursion relations: see [11,12]. Beyond the pure Yang-Mills setting, the four dimen-
sional, maximally supersymmetric N = 4 theory, [13,14], is proving to be a useful
tool to study gauge theory amplitudes because of its high degree of symmetry. The
extension of these recursion relations to planar N = 4 supersymmetry was discussed
in the papers [15,16].

The N = 4 scattering amplitudes in the planar limit are expected to be invari-
ant under super-conformal transformations, [5]. The symmetry is known to survive

even in the presence of UV divergences but the dimensional regularisation applied
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Chapter 1. Introduction and Outline 2

at loop-level for IR divergences breaks the special conformal symmetry since confor-
mal symmetry is only manifest in d = 4 dimensions, [20]. This might suggest that
at loop-level the super-conformal symmetry is masked or broken altogether, [21],
but the situation is even worse than this. Even at tree-level, the super-conformal
symmetry is broken when particles become collinear. It was recently observed that
when written in dual-space, scattering amplitudes are invariant under a new set
of symmetries, namely the dual super-conformal symmetry, [16] (Also see [22-25]).
Beisert (et-al) [21] argue that the existence of this new set of symmetries suggests
that super-conformal symmetry is not beyond repair and they propose correction
terms added to the generators which may change the number of legs of the ampli-
tude. The dual super-conformal symmetry is related to the ordinary super-conformal
symmetry as the quantized version of a loop algebra, the Yangian algebra [26]. The
original super-conformal generators are the level zero Yangian generators and the
dual generators have been shown recently to be related to the level one Yangian
generators in the infinite ‘tower’ of Yangian generators, [27]. The Yangian gener-
ators annihilate the amplitude but extending the work in [21], the authors of [2§]
calculate deformations of the Yangian generators to account for anomalous terms,
thus constraining amplitudes at 1-loop order (also see [29]). In §(2) we review this
recent work as an example of how infinite dimensional symmetries are important
as regards integrability in the hope that N = 4 super Yang-Mills in 4 dimensions
might be our first integrable quantum field theory.

The MHV rules were proven initially using twistor methods, [12]. A method
of deriving the rules in the Lagrangian formalism was considered in [30] and [31],
using a non-local canonical transformation that maps the self-dual part of the action
in light-cone coordinates to the action of a free theory. Since free theories have a
high degree of symmetry we expect the self-dual part of the Yang-Mills action to
exhibit the same degrees of symmetry. A field that undergoes a transformation

o(z) — o(x) + A¢(z) has generators
M; = /dd:)sAigb(x)ﬁ;(w) (1.1)

as discussed in [32] and [33]. As is easy to understand, a free-theory with Euler-

Lagrange equation (x)¢(x) = 0 has a symmetry if the operator, Q transforms



Chapter 1. Introduction and Outline 3

covariantly when x — g, because if Q(zg) = AQ(z), then 0 = Q(zg) d(zg) =
AQ(x) ¢(zg), so ¢(z¢) is a new solution. Taking the transformation G close to the
identity gives the change in the field, 0 ¢(z) = ¢(xg) — ¢(x) which can be used to
construct the usual Noether currents and conserved charges. However, because the
Euler-Lagrange equation is linear we can also construct a new solution as ¢(x) +
e p(xg), with G a finite transformation. The change in the field is then ¢ ¢(z) =
e p(xg), ergo we have Ap(x) = ep(xg) from Dolan’s work, [32] and (1.1). This leads
to higher derivative conserved currents such as the ‘zilch’ of the electromagnetic field
discovered in the 60s by Lipkin [34].

In §(3) we construct infinite dimensional symmetries of the simple Klein-Gordon
field on Minkowski space when x — x4 is a translation and calculate the Noether
current. Further generalizations are made to include the case when *r — x4 is a
Lorentz transformation and then to the case of the Klein Gordon field on curved
backgrounds where we also consider the field on the Anti de-Sitter background as
an example. A final generalization is made to the Lagrangian £ = PP where
is some arbitrary space-time object and 2 is an operator. Such a procedure creates
an uncountable set of symmetries but we may consider transformations created
from discrete sub-groups of the isometry group, * — xg. Commutators between
transformations d;0 = €;0(z¢,) and d;¢ = €;p(2g;) where G; and G; are members
of the isometry group G are shown to satisfy the closure property for a Lie algebra
and the Jacobi identity. Further, the conjugacy classes of the isometry group are
shown to be related to the trivial centre of the Lie algebra. By considering discrete
sub-groups of SO(3) combined with discrete time translations we show how to create
a loop algebra that is related to the aforementioned Yangian algebra, [35,36], whose
zero-mode sub-algebra we consider for several examples of discrete crystallographic
sub-groups of SO(3).

The Yang-Mills action is split into two parts; the Chalmers-Siegel action, [37]
describing the self-dual part of the action plus the rest. The canonical transforma-
tion, which is a power series solution to a functional differential equation, maps the
Chalmers-Siegel action to the free theory whose symmetries we calculate in §(3).

The rest of the action encompasses the interaction terms and care must be taken
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that the transformation does not introduce any extra terms that survive the LSZ
procedure which is addressed in [31]. In §(4) we review the work in [30] and [31]
where the authors derive the form of the canonical transformation, its conjugate and
inverse. Remarkably, when written in terms of independent momenta the coefficients
in the expansion reduce to very simple expressions. We may use the canonical trans-
formation to write the symmetry of the Yang-Mills fields in terms of the symmetries
of the free fields and then use the inverse transformation to write the symmetry
in terms of the original variables order by order in powers of the fields. Again, by
writing in terms of independent momenta, the coefficients in the series reduce to
simple expressions which can be written in terms of the coefficients of the canonical
transformation itself. We first perform our procedure for the one parameter sub-
group of isometries in (2, 2) space that leave the coefficients in the series unchanged.
We then guess a more general expression where the isometries are members of the
full Lorentz group of physical (1,3) space and prove this leaves the Chalmers-Siegel
action invariant. Further, we show that the symmetries that we calculate satisfy the
same algebra as the free theory from which they were constructed.

The extension of the MHV rules and recursion relations for calculating scattering
amplitudes to N = 4 super Yang-Mills has been given in the literature, for example
[19]. In particular, the Lagrangian formulation of the N = 4 super Yang-Mills
MHYV rules was recently discussed by Feng and Huang, [38]. Given the power series
expansion for the transformation of the component gluon fields derived in [30] and
[31], they conjectured the form of the power series in terms of N = 4 superfields
and then proved it leaves the Chalmers-Siegel action invariant. In §(5) we extend
our consideration of the symmetries of free field theories to the NV = 1 chiral super
multiplet and further, to the free N = 4 multiplet. Then by analogy with the
procedure we discuss in §(4) we use the transformation to write the symmetry of
the Yang-Mills superfield in terms of the transformation of the free superfield. We
derive the inverse of the transformation given in [38] to write the symmetry of the
Yang-Mills field in terms of the original variables. It is possible to then calculate
the transformations of the component fields and we give an example.

Two dimensional field theories are generally integrable and have high degrees
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of symmetry. In 4 dimensions, the existence of infinite local symmetries renders
the theory as non-interacting. Should the symmetries of the self-dual action that
we derive in §(4) and §(5) survive the full theory our ‘get out clause’ is that the
symmetries we calculate are non-local. To conclude this thesis, we describe a 2d
self-dual theory in our final chapter, §(6), called the Hitchin system, [39]. We impose
translational invariance of the 4d theory over 2 of the dimensions to write down the
self-dual equation in 2 dimensions and use our result of §(4) to calculate non-local

symmetries of this system.



Chapter 2

Yangian Symmetry of N=4 SYM
Scattering Amplitudes as an

Infinite Dimensional Algebra

We review current developments in the subject that show how infinite dimensional
symmetries have been used to constrain amplitudes, most prominently by authors
such as Heslop, Plefka, Beisert, Drummond (et-al) in the papers [21, 28] and [29].
The N=4 Super Yang-Mills scattering amplitudes have long been expected to be
invariant under generators of a super-conformal symmetry [5], at least at tree-level;
although there is a technicality relating to the holomorphic anomaly [21]. These
generators are written in terms of \;, 5\1 and 7; and include translations, Lorentz
transformations, dilations, SUSY generators and special conformal transformations.
An n-point tree-level amplitude is given by the simple expression

5(P)5*(Q)
(12) (23) - (n1)

A, = PN, D) (2.1)

as written down in [19] using the spinor-helicity formalism (see [4] for details) where

A; are two-spinors satisfying

AN = () 1+ 0 p;

with ¢ = (0',02,03) being the Pauli matrices and (p;, p) being the momenta of

the on-shell gluons and the bracket (i,7) = (A, Aj) = A*Ajo. The delta functions
6
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an Infinite Dimensional Algebra 7

impose momentum and ‘super momentum’ conservation with

Pt = Z AT, Q™ = Z i

The factor P is a polynomial in 7 of degree 4m corresponding to N™MHYV amplitudes
and clearly the MHV amplitudes correspond to the constant term Py = 1.

It has been shown by Drummond (et-al) in [22] (also see [15]) that there exists
further symmetries of the amplitudes which manifest themselves when the ampli-
tude is written in terms of dual-space coordinates. Referred to as the ‘dual super-
conformal symmetries’, the generators which are written in terms of \;, S\i, n;, x; and
0;, where x and 6 are suitably defined, annihilate the amplitude subject to certain
constraints defining a surface on the dual-space.

It has proven interesting to consider commutators of the conventional super-
conformal symmetry with the dual super-conformal symmetry [27]. To do this, one
must write the dual generators in terms of A, X and 1 by a simple change of variables
and ultimately show that the dual generators are intimately related to level one
Yangian generators, [26]. A Yangian algebra is an associative Hopf algebra (See for
example [40]). As discussed in [27], take for instance generators of an algebra J,

which satisfy the mixed commutator relations

[Jay o} = fop e

Now Beisert (et-al), in [28] write the level one Yangian generator as

Jo= £ (D)i(Je);

i<j
which satisfies
[ja, Jp} = fu e
and also satisfies the Serre relations, [27] and [26], given by,
[ [Ty JYY + (=)l QD7 17 T 4 (= 1)lelel D17 17 70
= A=) WL, T, T fo g™ f™ 7

where the mixed commutator of operators O; and O, is defined as

(01,05} = 0,04 — (~1)211%210,0,
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with |O| being the Grassmanian order of the operator O and the bracket [0y, Oz, O3}
is the graded symmetrizer.

Now even at tree-level when particles are collinear the symmetries are broken
by the holomorphic anomaly which we shall discuss, and at loop-level they are
broken by the conformal anomaly. In two excellent papers, [21] and [28], they
use this fact to write ‘deformed’ symmetry generators to correct the anomaly and
this leads to expressions relating, for example, n-point amplitudes to n — 1 point
amplitudes or 1-loop amplitudes to tree-level amplitudes. A further paper by Heslop
(et al), [29], writes an n-point amplitude as a linear combination of box functions
and uses the conformal anomaly equation arising from the generator of special dual
super-conformal transformations, which we shall write down later, to constrain the

coefficients of this linear combination.

2.1 Super-Conformal Symmetry of Amplitudes

It is convenient to compute scattering amplitudes of the superfield
1 1 1 _
O(z,n,7) ==A(y) + ="M (y) +i—=n"1PCaply
(7777)8()877 () Vol 5(Yy)
V2 4 op

+ 5 eanep A (y) + TgnAananeABcnéfl(y)
where the Grassman variables, 7, carry helicity 1/2 and so one can calculate am-
plitudes for scattering of the desired particles by choosing the relevant term in
the expansion of n. The amplitude is a function of the spinor-helicity coordinates

An(N, AL Ans A M,) as given by (2.1). The representation of the generators

given in [27] on the kth leg of an amplitude is as follows,

pféd =\ 5\? ki = 0iaOia
Mgy = N iaOig) Miag = Ai(aDig)
d; = %A?@m + %X?@-d +1 ity = —ni0ip + iégnfaic
gt =2t Gy = A Dia
SiaA = 0ia0ia Si6 =10

1 1~ 1
i = 1 —X-"@ia - —Aqaid - = A@ 22
c + 2 7 2 7 2771 A ( )
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where ¢ is the central charge that extends psu(2,2|4) to su(2,2[4), related to the
total helicity h; by ¢ = > (1 — h;) with h;A, = A, since the helicity of the
multiplet ®; is one. The algebra can be further extended to u(2,2[4) by including a
hypercharge b but this generator is not a symmetry of the amplitude. The amplitude

is invariant under the action of the generators .J,, viz
JoAn =0

where J is given by summing over the generators acting on individual legs, in what

is the standard tensor product form.

n

Ja - Z Ji,a

i=1
with J; , being the above generators acting on the ith leg.

Convincing oneself of the invariance of the super amplitudes under these trans-
formations is a matter of a few prototype calculations. The simplest is p®* where

Qc - - aya 54(P)68<Q) o
b A”_;(A M@y

simply using the fact the sum is zero given momentum conservation. Similarly for
¢*“*. Naively we may also show, for example, that 54 annihilates the MHV part of

the amplitude using the calculation presented in [21] thus

. 954(P) D64 (P)
A 4 A 4 B BB
A5%( § :77 D;a0* (P ; 1: AN L ~pa = @ . (2.3)

since in (2,2) signature space-time the denominator does not depend on X and so
54 only acts on the delta function §*(P). By virtue of the delta function 6%(Q) the
above expression is zero as required. However, in physical (1,3) space-time A and A
are related by conjugation and as discussed in [21], this breaks the invariance. We
shall see how the authors resolve this later as their method leads to an interesting

result. We can show that s,4 annihilates the MHV amplitude, given by

WMHV T B 04(P)° (Zf R 77]3>
AN = /Zl_Il(d niexp(n; Nin)) [12][23] - - - [n1]

where the bracket |.,.] is [5\1, 5\3} = S\WS\;" The action of so4 = >, OkaOka brings a

factor of 7, down from the exponential when performing the 7,4 derivative and the
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Aio derivative acts only on §%(P) thus

. n . n 58 <Zn_ S\QﬁB> 4
S— 5 i=17"iB ) 954 (P)
SaAAn = / (kz:; )\k'r]kA :Zl:[ d n,eXp i nzB)) [12] [23] e [nl] apaﬂ

which reduces to zero by virtue of the delta function §° (Z i1 )\] n; B).
For completeness, we write commutation relations of the su(2, 2|4) super-conformal
algebra which are also written down in [27]. The commutators of a generator [ with

the generators of Lorentz transformations, m and m and internal rotations r are, [21]

« (0% 1 a (0% (0% 1 (0%
= & ! & =6 74 6 L cans
1
[rs, lc] = —5ng + 15310, [r5, 1) = 6§14 — Zagzc

The dilation generator, d and the central charge generator ¢ act on generator [, thus
A1) = dim()l,  [e,1] = hyp(d)

where dim(/) and hyp(l) are the dimensions and hypercharges of the generators,

given by
: . o1 . s 1
dim(p) = 1, dim(q) = dim(q) = Y dim(s) = dim(s) = ~3
. _ 1 _ 1
dim(k) = —1, hyp(q) = hyp(s) = 5 hyp(q) = hyp(s) = —5

and all others are zero, [27]. The rest of the non-zero commutators are,

{Gor, G5} = 04poc, {52,548} = 0gkaa
[Pac, s ] 5aqo¢7 [Kad, (]A] 553&A
[Pads 53] = 040as, (ko 7] = 851
as, p*) = 6265d + m P87 + m, 57

{45, sg} = maﬁéf + (52‘7“BA + %(52‘55@ +¢)

. . . 1.
{qu’ 563} = maﬁ-ég — 5gT’AB + 5(5;52(61 — C)

also written down in [27].
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2.2 Dual Super-Conformal Symmetry of Ampli-
tudes and the Yangian

Earlier, we wrote down the level one Yangian generator as
Jo= 1" (B)ilJe); (2.4)
i<j
satisfying
[Jas T} = fu% e (2.5)
and the Serre relation written down earlier and in [27]. In the paper [27], the
authors prove the level one generators annihilate the amplitude and discuss how
they are related to recently discovered ‘dual super-conformal symmetry’, [22]. The

authors discuss how these symmetries become manifest in the dual-space coordinates
(A, i, ni, T, 0;) with x and 6 defined thus,

(Ti = Tig1)aa = Aiaj\id = Piac (05 — 9i+1)£ = >\m77§4- (2.6)
It would seem natural to impose the identification (2,1, 6,41) = (x1,0;). However,
as explained in the literature referred to herein, it turns out to be more convenient
to act on the amplitude as a distribution rather than a loop by introducing an
extra point (T,11,0n41) # (21,61). Then, the delta functions §*(P) and §%(Q)
appearing in the amplitude reimpose the loop because 6*(P) = 6*(z; — z,41) and
6%(Q) = 6%(01 — 0,,.1). In the papers [22] and [27], the expression for the generator
of special dual super-conformal transformations on the space (x,0) is given as

Kaazz {xiaﬁ'xozﬁ 0 ‘ +1U?59?B 0 ]

i B
i=1 (%?ﬂ 89?

and this is written in terms of the whole space by adding terms so that the action of
the generator preserves the surface defined by (2.6). The procedure followed in [27]
is to add terms thus,

: & 3 a4 O : 0
Ko = — aPr — 4 x?ﬁQ?B—] + the rest.
; [ é@f s 395 B

Now the action of this new K on the amplitude A,, gives rise to conformal weights,

as explained in their paper thus

KA, = z”: T8 A,
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so the generator
n
Kod — Kadz + Zx?d
i=1

annihilates the tree-level amplitudes. Then by using (2.6) to eliminate z; and 0;
a a aA aA a, A
>j i>]
for 2 < i < n+ 1, the authors write K purely in terms of (N, i, n;) as

n i—1
K =S [+ S S+ 3

=1

Jj=1 z Jj=1
and similarly for the generator S they write,
4 n . 5 a 3
s1=-3 [Z)\ " AWW+ZW = SNl B+Zw]}
1= i 7j=1
which both annihilate the amplitude. The remaining dual generators are simply
calculated using the commutation relations.

Since these generators are now written in terms of ()\1'7:\7;,777;) we can consider
commutators between conventional and dual super-conformal generators. We know
that the level one generators (2.4) satisfy (2.5) so it suffices to show how the dual
super-conformal generators are related to the conventional generators by (2.5). In

27], they make the observation that f,% has the property

faCb - _(_]‘)‘bHleabc

using (2.4). They emulate this symmetry property in their expression for S’ by
adding the term AS which annihilates the amplitude by itself by virtue of the

conventional symmetry generators

1 1 - 1
ASY = 3 [ —¢'m] + qﬁidA + nglt 4+ pPsd + ¢Pri — qﬁzdn]

where d) = ), A % and d,, = ), 77{38”% are referred to in the paper as counting

operators. Their calculation reveals the following

A 1 S
S/a + ASﬁ :§ Z {m:aqg 2(d + Cz)q]a +p7,a ]/8 + qla ]B (Z — j):|

(2]

= 1
+Y gihei— 50
=1
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The left hand side annihilates the amplitude and the last term on the right hand
side annihilates the amplitude by itself therefore the operator
1 3 . .
D=3 [mZaq;i — i+ e0)aje + Py + s — (i )
1>]
is a symmetry of the amplitude and as they show in their paper exactly corresponds
to the level one Yangian (2.4) not just by using consistency arguments but also by
directly calculating (2.4).
One could continue this procedure ad-infinitum to obtain an infinite ‘tower’ of
Yangian generators. However, even just the level zero and level one generators have
been shown in the recent papers, [21] and [28] to be useful in constraining amplitudes

at tree-level and at 1-loop level.

2.3 Deformed Yangian Symmetry

2.3.1 The Holomorphic Anomaly

In the previous section we reviewed the discussion in [21] of the generator s given
by

5 =10
on the tree-level amplitude, (2.1). In that argument, the authors make the assump-
tion that the denominator of (2.1) depends on A and not on X in (2,2) signature
space-time. In physical space-time however they make the observation that \ and A
are related by conjugation and the action of § on A,, is subject to the holomorphic

anomaly. The anomaly arises by defining the complex measure d*z = dxdy and

/d22(52(2) =1

and then using Green’s theorem

to show that
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Then Beisert (et-al) [21] explain that this gives rise to extra terms in the action of
son A,, since
o 1 :
T—:']T(SQ )\, €~'~B.
I\ <)\>ﬂ> (< ,u)) a,@:u
In physical (1,3) space-time the action of the generator § on A, is given in that

paper as

=40 (PO (Q)
SaAn—;”k oxe (12) - (k — L k) (k. k + 1) --- (nl)

6 oa 584 ) 0 ((A-1A))dt (P (Q)
= _W;‘gdﬁ' <)\£flnk o /\/anq) <12> T <k —1, k>0 . <n1>7

clearly not annihilating the amplitude as it does so simply in (2,2) space-time.

2.3.2 Generators That Change the Number of Legs

Beisert (et-al), [21], consider generators that deform the number of legs acting on

the sum of [-loop, n-point amplitudes, AY in powers of the coupling constant, g,

(o S lNe o]

Ag) = grrAD
n=4 [=0

They write the generators of the symmetries as the series
Jalg) = 3 D gR (),
mn=1 1=0
where m is the number of incoming legs and n is the number of outgoing legs. The
generators also contain loops, labelled [. The free generator J; is defined to be Jﬁl
and takes one leg of the amplitude to one leg and contains no loops. The action of
generators on the amplitude can create extra loops by taking two legs from an n+1
leg amplitude into one leg of an n point amplitude. (See fig(2.1) and see the original
figure in [21].) The action of the deformed generators on this amplitude is written

in [21] as,

TLAD + I Auer + B ALY + AT + 7347,

5

FAGATY + IHAD =0

and with this expression in mind it is possible to not only write tree-level n-point

amplitudes in terms of n — 1 point amplitudes but also write [-loop amplitudes
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+...=0

Figure 2.1: Action of Generators on an n-point, [-loop Amplitude

in terms of amplitudes that are lower order in the loop expansion as done in the
paper [28].

For now, let us review how the holomorphic anomaly is used in [21] to constrain
tree-level amplitudes. The authors write the amplitude and the generator s in a

functional formalism. They write,
_ Al4 gay L
An(J) = Z dMAL - d AnETr(J(Al) e J(A)) An(Ar - A)

and

(50)4 = — / d4|4ATr(nAadJ(A)%(A))

for a generating functional J and where A = (A*, X% n?4) and d'*A = d*Ad*). A
calculation reveals the action of 5y on A,, using the expression for the holomorphic

anomaly as

(50)3./4,1[1]] = =T / H d4|4Ak Tr([J(An), J(Al)] e J(An_1)>€o'éé5\ini4><

0%((n1))d*(P)0*(Q)
(12) -+ - (n—1,n)

After some careful variable changes under the integrals and after evaluating the
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various Jacobians and one integral (see [21] for details) this expression can be written

n—1
(50)21.1% = 272 / H d A, dA, d*iy dov €a55\27714><
k=2

0*(P)d%(Q)

where they make the variable transformation

A, =N\ sin «, N = (T sin v + 1) cos )
Alz}\lcosaqu;\, M =M1 cosa — Nsin
and
y 1 [ .
J(A) = —/ de™? J (e ).
21 Jo

The term J arises by noting that the amplitudes are homogeneous under phase
shifts of the arguments, that is A(Ay, -+, e%Ag, -+, A,) = e 2PA(A, -+, Ay).

The authors observe that this is equivalent to writing

(s0)a Ay = (S)a A

where (5,) is given by

_ - . 5
(5,.)4 = 2n / A dy do eacXing Tr ([T (M), T(Ag)) 5= ( A))
after the further redefinition
A1 = Asina, 7 = nsina + 1) cos «
Ay = Acosa, 7o = 1 COS a + 1) sin .

The conclusion Beisert (et-al) arrive at is that the n-point tree-level amplitude is
written in terms of the n —1 point amplitude using the the generator 5, which alters
the number of legs on A,,_;. By considering the MHV amplitude acted upon by the
generator s, defined in (2.2) they further conclude that the holomorphic anomaly
gives rise to non-zero terms which are corrected by deriving the correction to the

generator as

(5_)an = —27° / AN dad'h oo Te([(A0), 020 (A 5755)
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using a similar procedure to that we have just reviewed whose action gives
(50)an ANV 4 () g AMIV — g,
To summarise, we have the two deformed generators, s and 5 given by
Soa = (50)an + (5 )an, (52 = (50)2 + (5,)4 (27)

where s_ and 5, have been given in [21] and reviewed here. Now Beisert (et-
al) calculate the commutators of the super-conformal generators with the deformed
generators. They conclude that the deformed generators satisfy the super-conformal
algebra and that no other generators acquire quantum corrections except ks which

is defined in (2.2). The deformation that k receives is
k=ko+ky+k_ +k_ (2.8)

where their derived expressions for the corrections are

(k)ag = —2m° / dMA dY) da e g N Te[J (M), a0 d (As)] 5 J(; A)
(k_)aa = —27° / dMA dhy da 64()) e\l Tr[J (A1), Da.ad (As)] 5 J(z A)
(ky_)og = —A4n* / dMA d) do dor cos(a) Tr[eaghdT (A1), [eachsT (As), J(Ag)]]%.

In their paper they show that the deformed generators s, s and k, complete with
the other super-conformal generators, satisfy the super-conformal algebra.

Their expressions for the deformed generators are derived by considering their
action on MHV and MHV amplitudes. Later in the paper, [21], they use the BCFW
recursion relations to show that the expressions for the deformed generators (2.7)

and (2.8) generalize to a general n-point amplitude given by

where A, is an n-point amplitude with & negative helicities and k& — 2 positive
helicities. Then k£ = 2 corresponds to the MHV rules, k = 3 corresponds to NMHV

and so on. The action of k on A, ; is then,

EAn gk = koApp + ki An_1p +h-Ap_1 o1 + by Ap9p1 = 0.
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They argue that the deformed generators give rise to recursive diagrams such as fig
(2.2) where the collinear singularities arising from the holomorphic anomaly seen

by the free generator ky are corrected by ki, k_ or k,_. In that way, they use

symmetry arguments to constrain tree-level amplitudes.

Figure 2.2: Recursive Action of Generators on the Tree-Level Amplitudes

2.4 Chapter Summary

We have reviewed the recent work presented in the papers [27], [21] and [28]. We
began by writing down the generators of the super-conformal algebra and gave
some example calculations of their action on tree-level MHV and MHV amplitudes.
We wrote down the generators of the algebra. Further, we discussed that it has
recently been observed that scattering amplitudes exhibit higher symmetries (see
[22]) referred to as the dual super-conformal symmetry which manifests itself in dual-
space coordinates. It was then reviewed how the dual super-conformal symmetry is
related to the level one Yangian symmetry generators (see [27]) and the commutators
of the level one generators with the level zero, super-conformal generators were

written down along with the Serre relations.
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Figure 2.3: Super-Conformal Dilation Generator Dy .5

The authors of [21] claim that the super-conformal symmetry is broken in (1, 3)
space, even at tree-level by collinearities and the holomorphic anomaly. We discussed
their calculations which led to some of the generators acquiring quantum corrections.
It was shown in their paper that this leads to a recursive relationship between n-
point amplitudes and n — 1 point amplitudes.

It is interesting to consider what quantum corrections the level one Yangian
generators receive. This has recently been addressed in the very detailed paper, [28].
The authors write down the known result for the action of the dual super-conformal
generator K on the 1-loop amplitude in terms of the tree-level amplitude arising
from the conformal anomaly and taking care with collinearities in the loop, [20,41].
They then write the dual super-conformal generator acting on the 1-loop amplitude
in terms of the level zero Yangian generators, alias the ordinary super-conformal
generators, and the level one Yangian generator P and compare the expressions to
find a deformed generator

(PW)yes = —{ Z <ijd(D2—>2)z‘ - PZ-M(D2—>2)J'—1> + (P — PAY) (Do)
1<j<i<n
where Dy_5 is a generator which they calculate that maps two legs of an n-point
tree-level amplitude onto two outward legs thus creating a loop, fig (2.3). The action

of the deformed Yangian generator P® on the tree-level amplitude is thus

(P1)AO) — pO) 4
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demonstrating a recursive relationship between tree-level and 1-loop amplitudes by
virtue of the deformed level one Yangian generator. It is believed by those working
on these particularly interesting ideas, which we have briefly reviewed, that the
infinite tower of Yangian generators which we alluded to earlier may help to constrain

amplitudes at higher loop level, or ultimately to all loops.



Chapter 3

Symmetries of Free Field Theories

3.1 Introduction

We shall illustrate the extended symmetries of free theories with the example of

complex scalar fields ¢ and @ with action

S

= /ddx\/—g (—g“”cﬁ@uﬁygo + m2@p) (3.1)
= / d'z\/= g3y
where ) is an operator given by Q@ = —n**9,0, + m?. Consider the transformation

v — p+0pand ¢ — p+ dp with dp and dp given by
op(x) = ep(ra), 0p(r) = —ep(ra)
resulting from the finite isometry x — x. Now the change in the action is
35 = [ dlay/=g@F@0e) - = [ d'sy/~g@Rlao ) Aakpla). (32)

We are free to apply the isometry x — z¢ to the second integral. By writing

y = xg—1 and realising that the following is true

V—g(@)d'e = /=g(y)d'y
then (3.2) becomes

65 =¢ [ dlan/—g(x)3(2)Q(x)p(2s) — €/ddy\/ —9(W)e(¥)Uye)e(ya)-
21



3.2. Symmetries Produced by Displacements for a Complex Free Scalar
Field 22

Since 2 is an index-less scalar operator we have Q(yg) = Q(y) and we get

58 :e/ddx\/—g(a:)a(x)ﬁ(x)w(xc) —6/ddy\/—Q(y)ﬁ(y)ﬂ(y)ﬂyc),

and since x — ¢ is an isometry we have g = ¢g and €2 = () hence we arrive at the

conclusion that 45 = 0.

3.2 Symmetries Produced by Displacements for a
Complex Free Scalar Field

We consider symmetries generated as above where © — x¢ is a displacement. This
approach differs from the approach taken by Fairlie [42] and the method will allow us
to generalize our approach to more general diffeomorphisms of objects on arbitrary
backgrounds. The displacements form a Lie group with elements j by © — x + a;

where the a; are finite, constant vectors and the ¢; are infinitesimal. We write!

Sp(x) = 3 jexpla; - D)pla) (3.3)

dep(z) = — Z e;exp(—a; - 0)p(x) (3.4)
J
which can be Taylor expanded in powers of a’

a}' oy () a)al20y,0n(x
5E¢(x)zzgj{¢(x)+ ; Onelr) | o500 “p<)+---} (3.5)
J

1! 2!

_ _ a%‘laAlgAp’(x) a’\la&@M@,\Qﬁ(x)
0:p(x) = E £; {—g&(m) + -2 T e o + - (3.6)
- ! !

thus generating an infinite number of symmetries since the whole object is a symme-
try hence the individual linearly independent terms must be a symmetry. Dropping
the summation over j for the moment to reduce notation, our transformations are

then given by the expressions

Smyp(x) = ea™ -+ a™dy, -+ O, ()

SmP(z) = (=1)"ea .- a0y, -0, 5(2).

IThe index j is not a space time index.
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Given that these linearly independent transformations are symmetries of the
action then it is possible by Noether’s theorem to construct conserved currents for

general n by
oL oL

JI = O(n
- aau@ A 90,

with 0(,) as defined and K (‘; ) is to be determined. We assume a zero mass term

=0(n) P — K(n) (3.7)

for simplicity and consider single group elements j. By calculating an expression
for K“ forn =1, n =2, n = 3,--- derivatives in turn, it is possible to deduce
an expression for K s by following the pattern and then proving it explicitly by
checking that the dlvergence of eqn (3.7) is zero as required by the condition that

J{, is a conserved current.
Terms that are first order in a
First calculate K7, ) for terms that are first order in a* in (3.5) and (3.6); we have

Sy = ea™ oy, @

5(1)5 = ga)\la)\lg
Under the transformation the massless Lagrange density changes by

Oy L = 1" 0,01)p0y + ' 0,900,001
= 577“”@18“8,\1@8%0 + 677“”&’\1@958”8,\190
= 58>\1(77”“”a“8u6@<,0)
giving,
K{yy =m0y, G0 ¢ (3.8)

by the swapping of dummy indices giving free index p.
Terms that are second order in a
The change in the field variables is

d2)p = €a a’\Qéb\l@,\z(p

82 = —ea*a*?d,,0,,p.
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Then the change in the Lagrangian is

Oy L = 1" 0,(82)@) Do + 0" 0,20, (0(2))

= —57]“”(%(@’\1a’\28>\13,\2@)&,g0 + &?n“l’ﬁu@&,(akla)aa,\ﬁ&go)

= _EnwjaAla/\z 8)\1 (aua)\Q &01/90) + gnﬂl’a/\l CL)Q 8M0>\2 558/\1 81/%0

— e a™a*0,05, $0r, 0, + en a a0y, (0,P0r,0.p) -
The second and third terms cancel by symmetry of the );, leaving

Oy L = en®a* a*2dy, (0,80,00,% — 0,02, P0,p) -

. . . . . u
Rearranging indices gives our final expression for K @)

KM

(2) = nA1A3aua>\2 (a)q &8&8/\290 - aha)\z@/a)\g@) . (39)

Terms that are third order in «

An expression for K éln) for terms that are higher order in a can be found similarly

by taking out 0d,,. Following the same procedure gives

Oz L = " aMat? o 0,01, 00,05, 90, + " aMa a’\30u§0'0,\18,\2 OrsOup

= n“”aMaAQaA‘"’E)Al (8H8A28A3 QE&,QO + 8#&(%2@38,,@

— 77/“/@)\1 CL)\QCZ/\S (GM&Q@,\S&@AI@V@ —+ (9#8,\1 {5&28,\381,@)

= n“ya)\l aha*”a& (8M8A28A3 0d,p + 8“68)\28>\38V§0)
— " a™Ma*2a’ 0y, (002 PO, 0, p)
+ U“Va/\l CLAQ a)\s (aua)\s 958/\18)\2 61/90)

— 77“”@’\1 a2 a™® (040, 901,02, 0,¢)

= nul/a)qa)\z a)\s a)\l (8#8)\2 aAg 9581/80 + (9“@8)\2 8,\3 81/90 - 8u8/\3 (ﬁa)\z al/(p)
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giving as an expression for K é) by the manipulation of dummy indices,
Kl = 0" a*2a™ (05, 03,05, F0x, 0 — Ox, 02,802, 00, + O, 00, 03,00, 0)

for third order terms.

It is possible to see a pattern emerging. For terms that are n'” order in a* the
first term is made of n derivatives acting on ¢, each contracted with an a* and one
derivative acting on ¢, contracted with the metric. Subsequent terms are made by
commuting one derivative at a time to act on the ¢, each time picking up a minus
sign until the last term when there are n derivatives acting on ¢, each contracted
with an a¢* and one derivative acting on ¢, contracted with the metric. We can now

give a general expression for K fn),

Kﬂ

(n

) :nAMnHauaAz . a)ma)\l @a& . 'aknﬂ%o (310)

A A An >
- 1 +1a“a 2...a 8A18A2¢6A3"'8An+190+"'

-+ (_1)n77>\1>\n+1a'ua'>\2 U a)\nah e a)\n—l &akna/\n-usp

+ (_1)n+177/\1/\n+1aua>\2 . a/\ng)\l . 3/\n@8)\n+1§0‘

Differentiating this expression with respect to the free index p one gets back 6,) L,

the proof of which is simple. We now calculate eqn (3.7) using this expression.

Ty =0 @ a0, 005, - Do+ (1) a0 D00y, - Or, P
- n)\1>\n+1aua>\2 e akna)q @5& e a)\n+190

A An A An >4
+77 1 Jrlalua 2...a a)\la)qgoa)\?’...a)\”wrlgp_...

L (_1)nn>\1>\n+1aua>\2 . axna)\l . a/\n_lgza)\na\nﬂgp

_ (_1>n+1n>\1/\n+1aua/\2 . a%(‘)/\l 00, PO (3.11)

where the first line is %é(n)gp + %(5(@5 from (3.7) and the remaining terms are
the expression for —K (‘; ) Calculating the divergence of this expression gives zero,
as required.

Now generalizing to the massive case is simple by adding extra terms to K (‘; ) and

the proof is similar to before except most of the extra K é; ) terms will cancel each
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other when differentiated and the two remaining terms will cancel by the equations

of motion. We have

gu :n“”ah o CL)‘"ﬁyt,ZaAl Oy, 0+ (—1)n+1n;wa)\1a>\n8y<ﬂa>\l SO\, P
. 77)\1)\n+1a#a>\2 e a)‘"a)\l (:58)\2 e a)\n+1g0

ALA A A ~
+77 1 n+1a:u'a 2...qa ”a)\laAzgpa)\S ...a)\n+1g0_

L (_1)nn>\1>\n+1aua/\Q . ‘al>\n8/\1 . -8,\7171;53)\”8)\%1@

i (_1)n+1n>\1>\n+1aua>\2 .. a)m@)\1 . 'aAnSEaAnHQO

A2ua

—m’ata @’ @Oy, - O,

>‘2 PN a)‘"a)Q&a)\g e 8)\71%0 — e

+ m2ata
(1) O Oy, FON

— (=1)""'m2a’a - - a0y, - - O, P (3.12)

Finally, the current generated by the transformation (3.3) and (3.4) would be the

double sum over the currents (3.12), J(‘; , for the nth derivative and group elements

j.

3.3 Symmetries Generated by Lorentz Transfor-
mations

In flat 3+1 space-time, the isometries are elements of the Poincaré group, that is
the 6 elements of the Lorentz group and the 4 displacements. For the former we
have

= (xH)g = A 2",
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In the infinitesimal case where A* is close to the identity matrix one can write the

field transformations as
p (") — @ (dfa" +edz")
o (") — @(dha" —ead",2")

where a*, are the components of an anti-symmetric matrix since we require the

metric to transform thus,

77W = A‘u,oAVa'np(7
= ((5“p + ea“p) (0" +ea”,)n™”

— g = —g'*

under infinitesimal Lorentz transformations. We may consider building a finite isom-
etry out of repeated infinitesimal isometries generated by infinitesimal Killing vectors
of the space-time X (0,(t)) where 0,(t) are flows generated by the isometry and ¢ is

a parameter [43]. In an infinitesimal case

plre) = (1+eX"9u+--)p(x)

= lw) + eLl@)ple) + -

where Ly is given by X*(z)0,p(x) = a*,2"0,¢ and is the Lie derivative of ¢ in
the direction of the Killing vector X (z), see [43]. Repeated application of such

infinitesimal isometries gives

Llostn) (1, Hosten)

cee X (1+L<‘7I—(to)))gp($)

- e { [ t L)} oto)

0

o(rg) = lmy_o (1—1—

where 7' is the time ordering operator. We know that

2(2) = ple) + p(ec) = p(a) + eTexp { / dime} o)

is a symmetry, where 0,(0) = z and 0,(t) = z¢. We must be careful in our definition

of L(c,(t;)) = X" (0,(t;))d,,. The partial derivative is the derivative with respect
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to y = 0,(t;) which is

_ 9x"(y(t))

Dy, = g d, (3.13)

which we can absorb in to X* by defining

X0(a) = SEX) (3.14)

which gives us the advantage that all the partial derivatives are with respect to x
rather than y(t;) = 0,(t;). The usual product rule will apply when we move deriva-
tives through terms without worrying about which variable we should differentiate
with respect to.

Since all terms in a Taylor expansion of the ordered exponentials are linearly
independent, each term must itself be a symmetry, so the action must be invariant

under the infinitesimal change in the field

t t1 th—1
Somol) = g/ dtl/ it .. / dtaL(t) - Lit)e(x)  (3.15)
0 0 0
for n =0---00. For the conjugate field, the path ordering is reversed and we have
t t1 tn—1
5o B(z) = (—1)"He / dt, / it .. / dtoL(t) - Lt)3(x).  (3.16)
0 0 0
We shall show that the change in the Lagrangian is given by a divergence by con-
sidering the change order by order as follows.
First order terms

The change in the field variables is given by

t
(5(1)gp = 6/0 dtl a’\;l(tl)xma)\lgo
t
(5(1)(;5: 8/ dtl a)‘ol.l (tl)x“@,\lﬁ
0

using (3.15) and (3.16) where
oyt
o

is the Lorentz transformation parameterised by ¢ and

o1 1

oz Oyf
= a
aym oxor P

a’l (t)
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is the Lorentz transformation of a”, which depends on ¢; and is traceless. The change

in the Lagrange density is
t
e == [ty {1 ()0, (700, 3) Do+ 1%, (010,30, (4700, )}
0
Performing the J, and 9, derivatives and noting that J,27 = 9,7 gives
t
oL = e / dtl{n a*l (t1)6571 06, GO + 1 a’}, ()27 0,0, GOp +
0

N a’l ()07 0,800 + 0 a’y ()™ M@V@Al@}'

We now take out the 0y, derivatives and perform the contraction of the 67 with the

a’, (t)
L = s/ot altl{@A1 (n“”aA;I (t1)z Mﬁaygp) — n“”akil(tl)augzaygp
— "'l (1) 27 0,80,05, ¢ + 1™ a’ (1) On, GO,
+ 0" a (0)0u PO, + 1 @'l () mﬁaﬁhs@}-

The second term is zero since a* (t1) is traceless, the third and sixth terms cancel
with each other and the fourth and the fifth terms cancel using the anti-symmetry of
a*, and the symmetry of the metric, leaving only the first term giving our expression

for K (”1), after rearranging indices
t
K(ul) B / dtl 77>‘1)‘2a#01 (t1>xgla>\1§58)\290'
0

Second order terms

The change in the field variables is given by
(5(2 = 6/ dtl/ dtg CL (t2) ”18,\1 (1]028)\2@)
t1
Q= —5/ dt1/ dty a’2,(t2)a™. (t1)z" Oy, (27200, @) -
0 0

The change in the Lagrange density is now
_. / dt, / dtg{ P (0)0 (£2)0, 30, (2710n, (2705,7))

- 77“’/&)‘;1 (752)&)‘;2 (t1)0, 00, (27 Oz, (7202, 9)) }
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Performing all the derivatives and making the same observations as for first order

terms, one gets
t t1
o)L = 5/0 dtl/o dt2{77WGA31 (t1)a’2, (t2){ 0,287 w7205, 0,0 + 0,7 0720, Ory 0
+ 0,027 2720,0), 05,
+ 0,007 05300 + O, o™ 5§fﬁu0>\2<,0}
N (12)0’2, (0) {0,085 2701, 00,5 + Duipa® 6720, 00,5
+ 0,x7' x720,,0), 0, @
+ 0yp071 03202, P + 8,,g0x"15§fﬁuc%2§5} }
The 4th term and the 9th term cancel by anti-symmetry leaving a final expression
for 5(2)£
t t1
5(2)‘C = 6/0 dtl/o dt2{77WaA31 (tl)a/\gz (tQ){aV&(Slemaha)\ﬁo + 81,51'015228)\18)\290

+ 0,017 272 0,05, 0x, 0 + 0,71 0% 8u8A2<p}
P, (12)0%%, (1) {D,p0] 7200, 00,5 + D 0] 00, 00, P

+ 0,7 2720,,0), 05, @ + O,z 5;?8”8)\26} } (3.17)

Now take a guess at the expression for K é) by analogy with the treatment used for

displacements.
t t1
Ké) :/ dtl/ dt2{nh”a“al(tl)a’\§2(Q)(@Algzx‘”@,,(:c"?ahgo))
0 0

- ()% () D03, (700 P) |
where we have replaced the derivatives d,, in the corresponding expression for dis-

placements (3.9) with x7:0,, and maintained the order of terms. Now
0Ky = /0 t dt /0 t dtQ{nM”a“m (t1)a’2, (t2) {Or, 0,87 1720, 05, + O, a7 0720, 05,0
+ O, 9271 2720,,0,0), ¢
+ 00, 0,P17 6720, + 00, P27 672 0,00, 0}
—ak, (t2)a’2, (t) {27 0720, 00, @0, + 7 27205, 0,05, %0, ¢
+ 2712720y, 00,90, 0,

+ 2716520,00, P00 — 27105200, 30,000} }
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The first and eighth terms cancel leaving

0Ky = /Ot dt /Ot 05752{77A1Va“a1 (t1)a’2, (t2) {On, @2716720, 05,0 + O, P 728,005, 0
+ Ox, 0,027 0,20, p + 8,\1<Zx"1(5328u8,\2<p}
—nMat (ta)a™, (tl){x‘“é;?@)\l@)@ PO, + 27 27203, 0,00, 00,
+2716520,0,, 0, — 2 5KT0A2$3M3V¢}}

and this expression coincides with (3.17). Subtracting one from the other, careful
inspection shows some terms cancel trivially when swapping dummy indices and the

rest of the terms cancel by virtue of the anti-symmetry of a.

General order terms

Using the same guess work as for second order terms we can deduce what the

n

general expression for K (n

) will be by replacing the derivatives J,, in the expression
for displacements (3.10) with x7:0,, and maintain the order of terms. With the
operator L, that we defined as

the action of L(t;) on an ordinary partial derivative gives
L(tz)&, = a“a(ti)xgﬁud, = 81,[/(751) — a“l,(ti)aﬂ. (318)
Now we claim that K (‘; ) can be written
t tn—1
Kp, = / dty - / dtn{n*%%(tl)xpah FonL(t) -+ L{ta)y
0 0

— 120k (ty) POy, L(t1)@0r, L(ts) - - L(tn)p + - -+

o (1) (1 )P Dts) - L) 0 Lt )
(1P (1) 2005 D) L(tl)@w}.

Now let us prove 3#}((’;) = 0 L. Take the ith term in the series,

t t
/ i / by (~1)FPan (12005 L(tiy) - - L(t) @ L{tis1) - L(t)p
0 0



3.3. Symmetries Generated by Lorentz Transformations 32

and take the divergence to arrive at

t t
o], <—1>”1{nMML(u)aML(m1> (1)@ L{tin) - L)
0 0
PO LEFL)O L) - Lt ) |
The derivatives L(t;) can be simultaneously commuted past the partials 0y, and 0y,

using (3.18) because extra terms cancel due to anti-symmetry of a**(¢;). Writing

out all terms in the series sequentially there is massive cancellation leaving only,

t 11
OuK () :/ dtl/ dt?{nAWaAl@aAQL(tl)"‘L(tz)SO
0 0
(1) Lty - L(Waw}
= omL

as required.

m

Given this expression for K (n

X the Noether current is

t tn—1
Ty = [ dtn{nﬂpapaf;(tl)---L(tn)w
0 0
() PL) - L) 50,
— at, (1) 2 zGO,L(ts) - - - L(tn1)p

+ar, (ta)a" O L(t) @I, L(ts) - - L(tnr)p — -

= (1) at (1 )27 ONL(tn—2) - - - L(t1) G0, L(tn) g

_ (_1)n+1nApaﬂg(tn)mUla/\L(tn_l) . L(tl)& pw}

Here the first two terms are the terms %(5@)@ + %5@)@ from eqn (3.7) and
the remaining terms are —K (’; - Calculating auJ(‘;) we get zero, after invoking the
equations of motion, as we would hope.

Now considering the massive case is easy, by analogy with our treatment of
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displacements we have

/dtl / dty, { "0ppL(t1) - - - L(tn)g

+ (1) L(t) - L) @0y
—at, (0)a7 gD, L(ta) - - L(tn)p — mPa’, (1) 2" @L(t2) - - - L(ta)g

+ P at, (t) 2 ONL(t) @I, L(ts) - - - L(tn)p +mPak, (t2)” L(t1)PL(ts) - - - L(tn)

— (=)™ a’, (t-1) 27 ONL(tn2) - - L(11) 30, L(tn)
— (=1)"m?a’,(ty-1)2" L(ty—2) - - L{t)PL(t,)
— (1) pNa, () e L (tn-1) - - L(t1) @0y
(1) 2 ()2 Lt ) - - L(tl)@p}. (3.19)

Given that the equations of motion will be

" 0,0,p = m2p

" 0,0,p = m2(ﬁ

one can show the divergence of (3.19) is zero by carefully canceling terms.

3.4 Symmetries (Generated by Isometries on Curved
Space-times
The massless Lagrangian density in curved space-times is written as

£ = V39" 0,5(@)d,0(x).

Under the diffeomorphism = — x4 the field variables transform thus

p(x) = plza)

p(x) = Plza).

The metric g, is invariant under a transformation if

9w (Y) = guw(y) Yy
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Then, given that g, transforms as a covariant tensor, under  — x¢ the metric is
invariant if
o 0x° .
(T) = ——=——0gnro(T).
gH ( ) 0:17“ 81,,/9)\0( )
Initially consider the infinitesimal transformation z# — i* = z# + eX*(z) where

X* is a vector field defined on the manifold. Then it is known that the condition

for the metric to be invariant is for it to satisfy Killing’s equation, [44].
Lxgw =V, X,+V,X, =0 (3.20)
where Lx is the Lie derivative of g with respect to X, given by
Lxguw = X069 + 9uc0y X + 9ue0,X°.

From this, an infinitesimal isometry is generated by a Killing vector X#*(z) satisfying
Lx g, = 0. The infinitesimal change in the field variables generated by the isometry
is

p— o+ eX 00

©— o —eX"0,p.

It is possible to generate finite transformations by analogy with the treatment of dis-
placements and Lorentz transformations in flat space-times by taking exponentials.
One must be careful however due to the dependence on z* of the Killing vectors as
we are now in curved space-times. Consider a Killing vector field on the manifold,
M. This field generates a congruence of curves on M whose tangent vectors are the

Killing vectors themselves.

X (o (1)) = 270

where X* are the tangent Killing vectors, o are the trajectories and ¢ is a parameter.

Existence and uniqueness theorems guarantee a solution on a finite bounded interval
of t € R. Given a Killing vector at a point ¢#(0), we evaluate the field at ¢(0,(0))
and then consider moving along the trajectory o# by a finite amount ¢ so that we

have

o(26) = (oa(t)) = p(z) + / 0, X (0, (1)), ()

0

v /Otdtl /0“ L, X (0,(11))On, (XAQ(Ux(tQ))@Z(p(q;))JF,,,
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where 8,\ is
g  0x% 0
Oy Oy Oxei

for y = 0,(t). This expansion can be written as the time ordered exponential

olac) = Teso { [ t (o, (0)01 ) (0

0

as per previous sections, where

A
Ot

and the partial derivative is with respect to x and not y = 0,(¢;). Again, we expect
each term in the time ordered expansion of the exponential is a linearly independent
symmetry of the action. For the symmetry transformations dp = ep(xg) and dp =
—e@(xg-1) we can say that each of the transformations

tn—
0

Somp(a) = /0 o /0 ity / LAt L(t) -+ L(t) o (x)
S P(@) = (~1)"*1e /0 o /0 ity /0 T L) - L))

are symmetries where

L(t;) = )‘(A(x)%.

To nth order, the change in the Lagrange density is
t tn—1
Sl = / dt, - / dtn{@gwaﬂmml) Lt
0 0
F 1B OLL) - L)
and we claim that 0, K éin) = ()L where

t tn—1
Ké;):/ dtl“'/ dtn{\/ggMX“@Afp'agL(tz)---L(tn)go
0 0

— \/Eg’\")\(’”éb\L(tl)aﬁﬁgL(tg) ce L(tn)g@

+ (= 1)"/gg X PONL(ty_s) - - L(t1) POy Lty )0

+ (—1)”*1\/59’\")\('“@[/(%,1) cee L(tl)@%ap}
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It only remains to prove that this expression satisfies 6(,)L = 0, K é‘n) which follows

in exactly the same manner as that in §(3.3). We take the ith term in the series

/ dty - / )G KAL) - D(8)F0,L(tin) - L(ta)

and take the divergence thus,

/ dty - / 1) GV XL (i) - L(t) B0, L(tisr) - L(t) 0}

since /g is a tensor density. Now VuX n = since X K(x) is a Killing vector field

and so the above term becomes

[t [t 0 M 0L ) L) L))

Using the product rule on the Lie derivative L(¢;) and given that the Lie derivative

acting on the metric gives zero we have

/ dt, - / 1) G L)L (i) - L) @00 L(tis) - Lita)s
+ (=) Gg  OL(tir) -+ - L(0)PL(t:) 0y L(tis) - - L(tn) o
By using the Killing equation and the fact that
L(t;)d, = 0,L(t;) — (V,X")0,

when acting on scalars, the Lie derivative L(¢;) commutes through the partials 0y
and 0,. Calculating the divergence of all terms in the series proves the result after
cancellations.

Finally we can trivially write an expression for the conserved Noether current

using Noether’s theorem. We will have

t th—1
7= / - / dtn{ﬁgw WBL(0) - Lit)o + (1) /59" L(ta) - L(t1) 30
0 0

— V99 X OGO, L(ts) - - - L(t,)p
+ /99 XPONL(t1) GO, L(ts) - - - L(ty,)

— (=1)"/g99" X O L(tn-2) - L(t) P05 L(tn)

(1) g RPNt ) - L(tlmw}
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where the first line is %5(@@—1— %5(@9’5 and the remaining terms are — K é‘n). One
can check that the covariant divergence of this expression is zero by noting that the

massless equation of motion will be

V99"V, V0 =0

and similarly for ¢.

3.4.1 Anti de-Sitter Space

Begin by writing an infinitesimal distance on AdS, 2, defined by one of its many

forms of metric, as

1
2 2\ 7.2 2 2702
ds* = —(1+r2)dr" + § Tz)dr +r7dQ;

with AdS, 2 embedded on the space R*?, the €, are angles and the time-like bound-

ary of AdS is at » — oco. The metric is

) 1
G = diag (—(1 +7?), T TZ,TQ)
%

and the Jacobian factor \/—g, where g is the metric determinant, is given by

V=1

because, roughly speaking, there are p angles in AdS, . The inverse metric is

1\"
v o ] 2
9" = diag <—ma (L+r %ﬁ)

and trivially the Lagrangian is
L=V=g(9"0,0,p +m*Pp) .

We now consider the behaviour of the equations of motion in the limit of large r for

reasons we discuss later. The Euler-Lagrange equations for the field o(7,r,€,) are
(V. V¥ —m?) ¢ =0.

Using the symmetries, the solution is separable into a radial part, a time part and

the angular part, which are the spherical harmonic functions Y;(€2),

p = o(r)e“TYi(,).
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Now, the equation of motion is?

1 o UW+2)A+7)e (14720, (rP(1+12)0rp)
T+e2| 077 *

2
—mp=20
r2 rp L

for ¢ and similarly for the conjugate field. Here [ labels the modes of the spherical

harmonic functions. For the behaviour of the solution at large r, we arrive at

——0, (r"*20,¢) —m*r* = 0. (3.21)

rp—2

At the boundary, we write an ansatz for the fields up to multiplication by a complex

number

o(r) ~r, (3.22)

and substitute into eqn (3.21). We note that in the above expression A is real:

see [45], page 45. Then eqn (3.22) is a solution if \ satisfies the condition

APty \/(w + m2) (3.23)

2

which is known as the Breitenlohner-Freedman bound. Now we make the observation

that non-tachyonic modes satisfy

(p+1)?
4

< m2.

We hope that when calculating the expression for K 51 ) we reproduce a consistent
condition on p and m in order to ensure K (“n) vanishes sufficiently quickly on the
boundary, resulting in an invariant Lagrangian and Noether currents.

Our expression for K (’jl ) on a general manifold was

t tn_1
K&):/ dtl“'/ dtn{\/ggA”X“@@&,L(tz)---L(tn)go
0 0

— V99" X OAL(1) P, L(ts) - -~ L(t)p

+ (= 1)"/gg X PONL(ty_2) - - L(t1) POy L(ty)

(1) /G XL (b - L<t1>szaggo}

2We can write V,V* = %(3“ (vag" d,)



3.4. Symmetries Generated by Isometries on Curved Space-times 39

where X*# is the Killing vector field of the manifold. These are translations in time,
7, and rotations of S,. We begin by grouping the 7 and €2, dependence into a field

x and separate out the r dependence viz,

= (r)x(7, ).

We substitute \/g and g*, and K. becomes
/dt1 /n 1alt { X“rp
n X“Tp(l +12)0,5(r)0pp ()X (L(t2) - - - L(tn)X)

X“rp 8@ X0q, (L(t2) - - L(ta)x)@(r)e(r)

F PRt - LX) — - }

! —30-X0: (L(t) -~ LX) E(r)o(r)

because L = X*9,, does not act on r since r is not a Killing vector and X" = 0. At

large r, K reduces to

n—1
/ dty - - / dt, X'rP =2 x

( 0,50, (L(ta) - L{ta)) + X(L(t2) -~ L{t )N

T 00, W0, (L(ts) -~ L{ta)x) + rPm?S(L(ts) -~ L(t)x) + - )
(3.24)

after substituting the large r solution to the field equations ¢ ~ r=*. Now we need
to arrange for A to kill K (‘; ) sufficiently quickly at » — oo. The second and fourth
terms are the highest power in 7, so it is sufficient to consider the condition that
these terms vanish sufficiently quickly at large r. The condition for the isometries

to generate symmetries is

/ Ol 2?2 = / dr /Q ds, / 0Kl dr = 0.

Using the divergence theorem

/d:cp”au[(’“‘—/ da? ', K)o = 0
v sV

where n, is a unit vector normal to the boundary and thus we wish K (‘; ) to vanish

at the boundary. Bringing the boundary at infinity to a finite distance by writing

r=tand
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then close to the boundary we have

(3
r=tan{ - — ~
9 €

for € — 0. Substituting this into (3.24) we get

t tn—1
K!' = dtl dtnX#X
) 0 0

g ( — P20, %0, (L(ta) - -~ L{tn)X) + NP PR(L(t2) -+ - L(ta)x)+

a |

+ 62/\_p+289p)289p<[/(t2) - L(tn)X) + m262k_p%([z(t2) s L(tn)X) +- >

At the boundary, for which e = 0, K éln) vanishes as we require, provided we take the

positive solution for A that is always normalisable, for which
2A—p>1

from (3.23) and that non-tachyonic modes satisfy (p + 1)? + 4m? > 0.

3.5 General Case

It is not difficult to generalize this argument to other space-time objects by writing

the action as
S= / 0o/ (g (@) i) ()P () (3.25)

where (2 is some operator and the transformation as
t \ \
d®(x) = eTexp {/ dtL(a;B(t))} O (x)
0
t
= @(ZL’) +/ dtlL(O'x tl / dtl/ dtg O'x tl L(O’x(tg))@( ) + -
0

§®(x) = —eTexp { / diL(o }5(@

o |

~+ O

it Lo (1)) (x)—/o dt1/01dtzL(ax(t2))L(ax(tl))QD(x)+-«-
(3.26)
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where the operator L is some generalization to the normal Lie derivative of the field.

To understand this result let us begin by writing the field transformations as follows
00" = £ (6, + 5" (2)) D (z — eX) = £ ((z) — L' ()
58; = —e®;(x + X) (&, + e5%(z)) = —¢ (cb () + eLBy(x ))

for an infinitesimal isometry with Killing vector X, given by x* — z# 4+ eX* and

generated by the Lie derivatives L,

LO' = X19,®" — §' @

LB, = X19,®; + ;57
Then the change in the action is

65 :5/dd V—g(2)®(2) () (&7, + €57, (2)) D (x — eX)
—€ / ddx\/T(:U)CTDi(x +eX) (67, + €S (x)) y(2)F (). (3.27)
Now perform the following change of variables in the second integral
r— v —eX
and then the second integral becomes
d*z\/q(z)®;(z) (5ij + ESij([E)) Y, (z — eX)DF (2 — €X)

since d4x+/—g(x) = d%z\/—g(x) for an isometry. Then insert the identity between
2 and ®

d?a\/—g(2)®;(z) (8, + €S,(2)) ¥\ (x — €X)x
x (0% — eSh(2)) (8", + €', (2)) D™ (2 — €X)

and define
Q'y(w) = (5 + €5 () V(= eX) (3 — 5 ())

and since the transformation is an isometry with () = Q then the second integral in

(3.27) becomes
du\/—g(2)Bi(2) (5, + €S, (x)) Y (w — €X) D" (2 — eX)
A/ —g(2)P;( ) (67, + €9, (x)) F(z — €X) (3.28)
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which cancels with the first integral giving 65 = 0 as we required. Repeated in-

finitesimal transformations viz,

b (1 D) (1 Ll

N
(1 M) o
- Texp{ [ diLion(i) } o0

will give us the finite version of (3.28) as

d/=g()B(z) (Texp { [ dinoi N} o @e )

0
t
dlz/—g(z)P;( (Texp{/ dtL(o,(t ))} I (z ))
0
Expanding out the time ordered exponentials we get the following result,

[L(0,()), z)] =0 (3.29)

which we will use presently.

Let us guess the form of the order-by-order expression for K “ . We shall write,

K, _/ dt; - - /n ldt ( gX"OQL(ty) - - L(t,)®

— /=g X L(t)POL(ts) - - - L(t,)® + - - -

oo (=)' =g X L(ty_s) - - - L(t)®QL(t,,)®
+ (=) =g X L(ty_y) - - L(tﬂ&)@@) (3.30)

where

N oz
(@) = 52X )

for y = 0,(t;). Now let us calculate 0, K s (n) 8 per previous sections of this chapter.

Take the ith term in the above expression,

/dt1 /nl )iV =gX Lt 1) - - L(0)BQL(Eisy) - - - L(t,)®

and take the divergence. We have the basic result that for a tensor density

OV —9X" =/ =gV, X"
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and that V,X* = 0 since X* is Killing and thus, for the i¢th term in the expansion
(3.30), we have

/ dt, - / "t ()L { L) - L)BOL () - Lt

where L(t;) is the Lie derivative acting on the scalar quantity, given by L =
X (0,(t;))dy,. The derivative obeys the usual product rule and by using (3.29)

we get
[t [ OV L) LB ) Lt
v [ / DVGL ) -+ L) BOL() L) -+ L),
Then there is cancellation amongst the terms in the divergence of (3.30) leaving only
8[(“ /dt1 / dt \/_<PQL(151) - L(t,)®
/dt1 / 1)"/=gL(t,) - - - L(t;) ®Q

as required.

3.6 Lie Algebra

Let ¢(z) be a free scalar field and © — zg, be a member of the isometry group G
r—zg =Nr+a

where A is the matrix generator of Lorentz boosts and rotations and a is a dis-
placement vector. Then as we have seen, a change in the free field dp(z) given
by

dip(z) = gip(xg,) (3.31)

is a symmetry of the action, (3.1). More generally however, it is obvious that linear

combinations of (3.31),

= Z 5i()0(xGi>
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are also symmetries of (3.1) with e € C and the sum being over a discrete sub-group
of G for simplicity rather than an integral over the full continuous group. These
objects dp(x) clearly satisfy the elementary vector space axioms. Two consecutive

transformations 9; and &y are given by

d1020(x 228 SDxGG ZZS SOC ka)

with a sum over the index k and with C;; *® = 1 for one combination of 4,j and k and
zero otherwise. In that sense the C; ks are a group multiplication table (or Cayley

table) for the discrete sub-group with
GG = C;;"Gy. (3.32)

and so C}; * has only one non-vanishing term in the implied sum over k. Moreover,

Gy % can also be taken outside thus,

5152g0 ZZ& gO xGG 2261820 @ I‘Gk)

and the commutator is given by

(61, 82] Zzg ;= CLY) elae,) —226 e2f. Fopp(x), (3.33)

hence satisfying a closure relation. With the transformations d¢(x) defined this
way, the commutators also satisfy the Jacobi identity as follows. Writing out the

commutators, we arrive at
[[01,02] , 03] + [[d2, d5] , 61] + [[d3, 1] , 02] () =

2225123 l]lflk: +f]klflz +fkilfljm)90(x(}m)

then writing in terms of Cj; k
[[01,02] , 03] + [[02, 3] , 61] + [[05, 01] , 2] () =
o Z Z Zgl ; 3( lclkm o Cijlcklm - Cjilclkm + Cjile;zm

+C; lelz —CulCy™ — ijlcu ™+ Ck:leil "

J

+ Ckz‘lcljm - Ckilcjlm - Oklozg + Cle > (vg,,) =0,

(2
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by using the associativity property (G;G;) Gy = G; (G;Gj) of the group multiplica-
tion and eqn (3.32). Since the objects J; form a vector space, and satisfy commutator
closure relations and the Jacobi identity, they are a Lie algebra g over the field C.
Since G has an infinite number of elements the Lie algebra ¢ not only has an infinite
number of generators, they are also uncountable due to G being a continuous group.
However, there exists an infinite number of discrete sub-groups of G such as the di-
hedral sub-groups of SO(3) which can be used to form discrete infinite dimensional
Lie algebras using the above argument. Algebras constructed in this way are called

‘group algebras’. (See [46] for a full discussion on this subject)

3.6.1 Infinite Dimensional Kac-Moody and Loop Algebras

All the finite dimensional simple Lie algebras (and more generally the semi-simple
Lie algebras) are well understood and classified by their root spaces and Dynkin
diagrams. There are the 4 infinite series; A, B, C and D together with the exceptional
Lie algebras; E, F and G. See for example [47]. In particular these classes of Lie

algebra possess no non-trivial extensions and have commutation relations
_ ok
[M;, Mj] = f.; " My,

where f;* completely define the algebra. On the other hand, as explained in [40,48],
we are far away from classifying completely the infinite dimensional Lie algebras.
However, the Kac-Moody type 1 affine algebra, [48], is associated with a finite

dimensional semi-simple algebra g given by the formal expression
gR Ot e,

where C[t,t™!] is a map from the circle S; to g and C. is the central extension. The

commutation relations are
(M, M| = f, "M — mé™ "6, K
(M K] =0 (3.34)

with m,n = —o00---00. The term md™ ~"0;; KK is referred to as the central exten-

sion. These affine algebras are amongst the infinite dimensional Lie algebras that
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have been classified straightforwardly from the classification of the semi-simple Lie
algebras. In fact their Dynkin diagrams are slight modifications of those of the semi-
simple algebras: see for example [40]. We note that the central extension vanishes
for m,n > 0 and this object is known as the half Kac-Moody algebra. In the case
where K = 0 then the second relation is trivially satisfied and the algebra simply
becomes
(M M| = fi; F e
and we can write a representation of the generators as

M"=Mxt" m=-00---00 (3.35)

where M; is a generator of the semi-simple Lie algebra g. This is referred to as the
loop algebra of the semi-simple Lie algebra g and are the structures we will consider
here. It is worth noting that (3.35) is not a representation of (3.34) for K # 0. Also,
when m = n = 0, we have what is referred to as the zero-mode sub-algebra go.

Let us consider discrete sub-groups of the Poincaré group. We shall restrict

ourselves to the case of discrete rotations and discrete time dilations thus,
(t,%) = (1,%) = (t + am, Rix)

where m = —o0, - - - , 00 are integers and the R; are elements of discrete sub-groups

of SO(3). Then two consecutive transformations gives
(t,x) = (,%) = (t+a(m +n), RiR;x) = (t + a(m + n), Ryx)

thus giving us the closure property. Then by similar arguments to those we gave in

equation (3.33), if we define
0"o(t,x) = g;p(t + ma, R;x)
then we arrive at the loop algebra
[6{”,5?} o(t,x) = fij ké;cn+n90(tvx)

with f;;* = C;;* —C};* and as before the expression also satisfies the Jacobi identity.
This loop algebra has a representation given by (3.35) and we shall now give exam-

ples of the generators M; for the various discrete sub-groups of SO(3) to classify the
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algebra g. It suffices to consider the zero-mode sub-algebra g, to classify g since go

and g are clearly isomorphic,

[6S7 6;)] ¢(t7 X) - fij kéggp(t X)

and so we shall perform changes of basis for go.

3.6.2 Conjugacy Classes of G and the Dimension of g

Clearly the dimension of the zero-mode algebra gq is given by
Dim(g) = |G|

where |G| is the order of the SO(3) sub-group. In the obvious choice of basis, we

have n = |G| generators of gy,

01p(), 0ap(), - -+, Onip (). (3.36)

A Lie algebra can be decomposed into the direct sum of a non-Abelian algebra g and
possibly a trivial Abelian algebra C (g) (See [49], page 135 and also [40]) referred to
as the centre, as follows

g=g®C(g). (3.37)

Furthermore, the group elements G are distributed amongst conjugacy classes which
are subsets of G with mutually conjugate elements [46].

It turns out that the dimension of C (go) equals the number of conjugacy classes
of the group G and this is a well known theorem in the subject of group algebras.
We shall give a proof that pertains to our application. (For an alternative proof in
the more general setting of group algebras, see [46].) Let us consider a conjugacy

class C of G containing r elements say,
Ol — {a17a27 e 7a7‘}

and any other element of the group G, say h. Now,

0a;0n9(Z) = €a;€nP(Ta;n)
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and by using the defining relationship between mutually conjugate elements in a

conjugacy class that h=tah = b this equals

(Slli(;th(x) = é?aé‘th(Ihbi)

where b; is also an element (possibly identical to a;) of C;. Also, for any a; and a;
with a; # a; we have b; # b; by the mutually conjugate property of the conjugacy
class. It is possible to construct a generator § by summing over the elements in Cy,

590(3:) = €a90(l‘a1) + 5@90($a2) +F SaQO(ZEaT) (338)

S0
00np(w) = cath Z ¢ (Ta,n) = €akhn Z o(Ths, ).

Now since r runs over all elements in the conjugacy class C, the right hand sum

can be written as

€atn D P(Thv,) = €acn D P(Tha,) = Onbip(x)

giving
[6,6,] = 0.
Now if there are m conjugacy classes C1,--- ,C,,, this implies that the number of
Abelian generators is bigger than or equal to m. Equality is proved by assuming we
have found m linearly independent Abelian generators given by (3.38), Sq and then
constructing an (m + 1)th Abelian generator, 6,,,1, as follows,
Omi19(x) = €a Y A1@(Tan) +€a D Map(Tay,) + -
ar€Cy ar€Cy

where the sum over r is the sum over the r elements a,, contained within the
conjugacy class C; and A, is the coefficient of the the rth generator in the gth
conjugacy class. Then if we take the commutator [5,,”1, 6h], it must be zero for all
0y, so take the gth term in the above sum of 5m+15h

Ea€h Z )\v«qtﬂ(%mh) = Eafh Z /\rqSO(Ihqu)

ar€Cq r

by again using the expression h='ah = b. The a,, are all distinct elements so

it follows that the b,, are also distinct by the mutual orthogonality property of
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elements in the conjugacy class. Now relabel the elements b,, as follows, which we

can do because we are summing over all elements a (or alternatively b) in C,,

Om+10np(T) = -+ + €ach Z ArgP(Thay,) + (3.39)
and we require,
5m+15h§0(‘r) = +E€uhn Z )‘f"qu(xharq)"i_' cr =y Z )\rq@(xham)"i_' = 5h5m+1

which is satisfied only if \;; = A, for all r and 7 because the a,, are all distinct

linearly independent elements. So we have
Ag = Agg = -+ = Aig

for all conjugacy classes Cy, hence Om41 1s in fact a linear combination of &y, - - , 6.
Hence, if the n elements of GG are distributed amongst m conjugacy classes there
are exactly m Abelian generators of C (gp) and the dimension of g from eqn (3.37)

i1sn—m.

3.6.3 Triangle Sub-group of SO(3)

Consider rotations of a prism with one of its corners located at the origin and whose
opposite face is perpendicular to the z-axis: see [50]. The matrices corresponding

to the rotations of this prism are given by

100 ~-100 /2 —V/3/2 0
I=1 010, Ba=| 0 10|, R=] —V3/2 -1/2 0 [,
001 0 01 0 (|

1/2 V3/2 0 —1/2 —V3/2 0
Ry=1| 3/2 —-1/2 0 |, Ra=1| v3/2 -1/2 0 |,
0 0 -1 0 0 1
—1/2 V/3/2 0

Rs=1 v3/2 —1/2 0

0 0 1
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Table 3.1: Cayley Table of the Triangle Group

I Rl RQ Rg R4 R5

I I | R | Ry | Rs| Ry | Rs
Ri|| Ry |I |Rs|Ry|Rs| R
Ro || Ro | Ry | T | Rs | Ry | Rs
Ry || Ry | Rs | Ry | I | Ro | Ry
Ry|| Ry | Ry | Ry | Ry | R5 | 1

Rs || Rs | Rs | Ry | Re | I | Ry

which can be easily checked that their determinants are all +1 and all close under
multiplication thus the Cayley table is readily calculated, table (3.1). The conjugacy

classes are

Cl = {]I}7 CZ = {Rla R27 R3}7 CY3 = {R47 RS} (340)
and then by the discussion of §(3.6.2) the generators
7y = ep(Ix)
Zy = ep(Iix) + ep(Rax) + ep(R3x)

Zs = ep(Ryx) + ep(R5x)

commute with everything and can also not appear on the right hand side of the

commutators and thus form the trivial centre of gg. In the following basis we have

We can calculate the commutators
[My, Ms) o = —2M30

[My, M3) p = —2M;

[Ms, My] o = —2Msp
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which is

[M;, M) = —2¢j My

where ¢, is the completely anti-symmetric symbol, so this algebra is in fact su(2).

3.6.4 Tetrahedral Sub-Group of SO(3)

Now let us consider the algebra formed from the discrete group of rotations of a
tetrahedron. See [50] for a description of the tetrahedral group but it is sufficient

for us to write down the matrix representation of the group here. We have

100 1 0 0 -10 0
I=l 010 |.RBi=l0-1 0 |, Re=| o0 1 0 [,
00 1 0 0 -1 0 0 —1
-1 0 0 00 1 0 -1 0
Ry=]1 0 -1 0 |, Re=|100]|.Rs=] 0 0 1],
0 0 1 010 -1 0 0
0 -1 0 0 0 1 0 -1 0
Rs=10 0 -1 |,Bx=]1 0 0], B%=] 0 0 1]/,
1 0 0 0 -1 0 -1 0 0
0 0 —1 0 0 -1 0 1 0
Ry=| =10 0 |, Ro=|1 0 0 [,Ru=] 0 0 —1 (3.41)
0 1 0 0 -1 0 -10 0

and the multiplication table can easily be calculated using computer algebra or by

hand, table (3.2). The conjugacy classes of the tetrahedral group are, [50],
Cl = {H} ) CQ = {Rb R27 R3} ) C3 = {R47 R77 R97 Rl(]} ) C(4 = {R57 RGJ R87 Rll}

so as before the action of the generators

[
™
©
=
e
+
)
S
=
[\o}
z
+
Q)
5
=
®
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Table 3.2: Cayley Table of Tetrahedral Group

I |R |Ry |Ry | Ry |Rs |R¢ | Ry | Rs | Ry | Rio | Rna

I I Ry |Ry |Rs |Ry |Rs |R¢ |Ry | Rs | Ry | Rio | Bux
R | Ry |1 Ry |Ry |Rio|Rs |Rs | Ry | R | Ry | Ry | Rg
Ry | Ry | Ry |1 Ry |R; |Rs | Rii | Ry | Rs | Rio| Ry | Re
Ry | Ry |Re | Ry |1 Ry | Ry | Rs |Riwo|Re | Ry | Ry | Rs
Ry |Ry |Ry |Ry |Riwo|Rs |Rs | R | Rg |1 Ry | Rs | Ry
Rs |Rs |Riun|Re |Rs | Ry |Rg | Ry | Ry | Ry |1 Ry | Ry
R |Re |Rs |Rs |Rii|Rs | Ry |Rigp| Re | Ry | Ry |1 Ry
Ry | Ry |Ry |Riwo| Ry |Rs |Ry | Ry |Rin | Re | Re | Rg |1
Ry || Rs | Re | Rin | Rs |1 Riy| Ry |Ry | Ry | Ry | Ry | Ry
Ry | Ry | Rio| Rye | Ry | Rg |1 Ry |Rg | Rs | Rs | Rin | Ru
Rig|| Rio| Ry | Ry | Ry | Rin | Ry |1 Rs |Ry | Rs | Re | R3
Ryu|Ru|Rs |Rs |Re | Ry | Ry | Ry |1 Ry | Rs | Ry | Ry

commute with everything. If we define generators of the algebra to be
dip = ep(Rix)

then only differences of members of the algebra can appear on the right hand side

of the commutator, for example

[58, 55] © = d10p — O7p.

An exhaustive list of all the commutators is given in appendix (A) and one can
use computer algebra to find a linearly independent set of them. For example, by
writing
Ly =010 =07, La=0d6— 011, L3=05—10s, Ls=209— 04
L5:57—59, L6:58_667 L7:63_527 L8:51—53 (342)

the L; together with the Z; form a basis for the algebra and what is more the set of

L; above is closed under commutation and forms a sub-algebra g. We write down all
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the commutators [L;, L;] in appendix (A) and proceed to use the well known Cartan-
Weyl procedure to make another change of basis to write down the commutators in
a canonical way. In the standard Cartan-Weyl procedure we simultaneously solve
the eigen-problems

(A, E,] = aF,. (3.43)

The eigenvalues « are referred to as the roots and the set of roots ® is called the
root space. Using the Jacobi identity and consistency arguments (see [40]) the rest

of the commutators are given by
[Ea, Ep] = €apEayp (3.44)
for some numbers e, g if o 4+ 5 € ® is also a root and
[Ea, Esl =0 (3.45)
ifa+ 3 #0and a+ [ ¢ ®. Further, we have

[Ea, E-a Z & H,. (3.46)

One begins by observing that the generators L; and Lg with [L7, Lg] = 0 are a
maximally commuting set referred to as the Cartan sub-algebra. We make the

redefinition
1
H, :Z<L8+L7>> Hy = ——=(Ls — L7)

and the following change of basis

1 1
EQZZ(L2+L3), E_a:Z(L1+L4)
1 Ly Ls 1 Li Ly
Ey=—(Le+2+2 Eg=>(Ls+=+=
7 2(6+2+2)’ "2(5+2+2)
1 1
B, =1 (- L), By =7 (L~ Ly)

satisfies (3.43) with
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A
-0 = (—1,0) o= (1’0)

Figure 3.1: Root Space of su(3)

where H = (Hy, Hy), giving us the typical su(3) root space diagram fig (3.1). The

other non zero commutators are then

[E:I:oca Eﬂ:,@] = j:Eﬂ:’Y? [E:I:om E:FW] = :FE:Fﬁ
[Eip, Bz, = £E+,, [E,,E_,] =2H,
[Es, E_g) = —H, + V/3H,, |E,,E_,) = H, +V/3H,

which the reader may wish to check satisfy (3.44), (3.45) and (3.46). The root space
® uniquely defines the algebra as gy = su(3) ® Cz(4).

3.6.5 Dihedral Sub-Groups of SO(3)

Consider rotations of an m-sided prism about an axis, z with rotation matrix G
representing a self congruent rotation of angle 2w /n. The full set of self congruent

rotations about the axis, z, forms the cyclic groups C,, with presentation

with group action rr/ = r**/mod (n). It is obvious the group algebra g (C,) is
Abelian, so we don’t consider it. However, the cyclic group C,, composed with
n, Cy rotations about axes perpendicular to z and orthogonal to the faces of the
prisms forms the full rotation group of an n-sided prism and has abstract group

Dy, = C,, ® Cy called the dihedral group and has presentation

Doy ={r.s:rm=101s*=1s"'rs=r""1
) ) )
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and can be shown to have m < 2n conjugacy classes and so g (Ds,) has a 2n —m
dimensional non-Abelian part by [33,46]. The conjugacy classes for n odd and n

even are different. They are given by the following

odd : {I}, {r*'}, {r=2} .- {r*0 D2} {ris:0<i<n-—1}
even : {I}, {ril} , {rﬂ} e {ri("ﬂ_l))} , {r”/Q} , {TQis 0<i<n/2-— 1} ,

{TQH_IS 0<i<n/2- 1}

giving the following for the number of conjugacy classes, m in the group Ds,

n—1
2

n
m:§+3 :n even

+2 :nodd

m =

Since m = Dim (C (go)), the dimension of the non-Abelian part of gy which is

p = 2n — m for even n is given by

3n
—m—m="— —3
p=22n-m=-
and for odd n, we have
5 3n—3
=2n—m =
P 2

Notice that the dimension of the non-Abelian sub-algebra p is surprisingly a mul-
tiple of 3, so it follows that classifying this algebra completely in terms of the four
classifications of the infinite simple Lie algebras, A,, B,, C, and D, is not possible,
rather a sum over simple Lie algebras, possibly su(2) which has dimension 3. (See
any text book on Lie algebra, for example [40].)

Consider the dihedral groups with even n. Begin by writing the action of the

generators on the fields ¢ as follows,

bip = ep(rix) -

|3
_|_
—
VAN
VAN

Sip = ep(r'sx) 0

I
I
3
|
— N3

with the identifications

671/2 = 6—71/2
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arising from the modular behaviour of the group action. The actions of the genera-

tors which commute with everything to form C(g) are

Zip = ep(r'x) + ep(r 'x) 1<i< g

n—1

Zop = ep(rsx) + ep(risx) + - - +ep(r

Zsp = ep(sx) + ep(r?sx) 4 - - - + ep(r"2sx).

It is easy to show this by calculating the commutators of the Zi, and the Z, and
Zs with all the §; and §;,. Now, by calculating the commutators of the §; and §;
with each other, with careful observation and picking out the linearly independent
terms on the right hand side of the commutators we can deduce that the following

generators form a closed algebra,

M;p = ep(r'x) — ep(r'x) 1<i<—-—1

M; = ep(r'sx) — ep(r't2sx) 0<i<n-3 (3.47)

with commutators

=

[Mia
[Mia M]] = 2Mz—] - Mi—j+2 - Mi—j—2

Mj) = 2Mji — 2M;-;

and with the identifications
Mn = MO
Mn—l—l = Ml

due to the modular nature of the indices attached to § and 6. Further, linear

independence of the generators requires

Mn72:_MO_M2_"'_Mn74

Mnflz_Ml_MB_"'_Mn%S

which can be seen from the definition of M and M, (3.47) and the summations
Mo+ My +---+ M, 5 =0and M; + M3+ ---+ M,_1 = 0. The reader may wish

to check this for the simple n = 4 and n = 6 cases.
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3.7 Chapter Summary

We have derived an expression, 0® and 5@ for a transformation ® — & = & +
which leaves the free action (3.25) invariant given by the time ordered exponential
of an operator (3.26) where ® is some arbitrary space time object. The operator is
the generator of isometries © — x¢ on the space-time. We began this procedure by
considering the free Klein-Gordon action for complex scalar fields (3.1) and wrote
down expressions, (3.3) and (3.4), for dp and d¢ in terms of the field variables eval-
uated at xg where r — x4 are displacements. By Taylor expanding we calculated,
order by order, the boundary terms K é*n ) with 0, K é‘n ) = O£ and calculated the
Noether currents. It was remarked upon that our approach generates higher order
conserved symmetries than those discussed in [42] like those discussed in [34].

This was then extended to the case where £ — z¢ is a Lorentz transformation
of (1,3) signature space-time by considering repeated applications of infinitesimal
isometries resulting in a path ordered exponential of an operator L acting on the
complex scalar field. Again, we calculated boundary terms, order by order, and
simply read off the expression for the Noether current. By analogy, the approach
was extended further to complex scalars on curved backgrounds, guessing the form
of K é; , and taking the order by order divergence to show J,K 51 ) = 0mL. We gave
a concrete example by considering anti de-Sitter backgrounds. Our aforementioned
general result was derived in a similar vein.

Finally, we considered the Lie algebra of transformations ¢ — ¢ + d;¢ for
dip = eip(xg,) where x — x¢, are elements of a discrete sub-group of isometries.
We showed that the generators satisfied the Jacobi identity and further, that the
sum over all the generators of the algebra whose action d;p(z) = g;p(z¢,) for G; that
are elements of conjugacy classes of the group formed Abelian elements of the alge-
bra. We considered how infinite dimensional loop algebras could be constructed by
considering discrete sub-groups of rotations composed with time translations and we
gave three examples of zero-mode sub-algebras constructed from the triangle group,
the tetrahedral group and the dihedral groups. The ‘group algebras’ of the triangle

and tetrahedral groups, respectively, were shown to be su(2) and su(3).



Chapter 4

Infinite Dimensional Symmetries

of Self-Dual Yang-Mills

We discussed in our introduction §(1) that tree-level gluon scattering amplitudes lo-
calise on simple curves in twistor space [5] and this led to the proposal of a new set
of rules for calculating such amplitudes [6]. These provided an efficient alternative
to conventional Feynman rules. Initially they were proven using non-Lagrangian
methods [11], but they may be derived by applying a non-local canonical transfor-
mation to light-cone Yang-Mills theory [51], [30]. This action can be split into a
part, the Chalmers-Siegel action, [37], that describes self-dual gauge theory and the
rest. By itself the self-dual theory has the bizarre property of yielding an S-matrix
that is trivial at tree-level whilst having non-linear Euler-Lagrange equations, and
non-trivial scattering amplitudes at one-loop, [52]. The canonical transformation
maps the Chalmers-Siegel part of the Lagrangian to a free theory, so that the rest
of the Lagrangian furnishes interaction terms. This canonical transformation pro-
vides a new approach to the self-dual sector of gauge theories. We will use it to
construct new non-local symmetries of the self-dual Lagrangian, thereby extending
the programme of [32] off-shell, (see also [53], [54] and [55]).

The free theory with fields B and B has equation of motion 0 = Q(z)B(z) =
Qzg)B(xg) = Q(z)B(xg) where x — x4 is a finite isometry and then B(zq) is
another solution since it is trivial to show that, for {2 as defined later, Q(z¢) = Q(z).

By the linearity of the free equation of motion B(x)+eB(z¢) is a new solution where

o8
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dB(z) = eB(z¢) is the change in the field by our considerations of §(3) which we
may use to construct the Noether currents.

Since the canonical transformation maps the Chalmers-Siegel action to a free
theory we can in principle construct the symmetries of this action for self-dual
Yang-Mills from those of the free theory by inverting the transformation back to
the original variables. This leads to quite cumbersome expressions, so to produce
a compact result we begin by examining just the first few orders (in powers of the
fields) of the transformations A — A + §A and A — A + §A and guess a more

concise general expression for A given by

L. 1 . . . .
6A1:_ezzzl...naF(QG’lG7"' 7]G)F(Q7j+17 7nvla"' 7Z_]-) X

n=2 =2 j=i

XAz Aja - Asa - Ay

and expanded diagrammatically in fig (4.3), which also includes the expansion for
§A. We then prove that this guess is correct by showing that it leaves the Chalmers-

Siegel action invariant.

4.1 Review of the Lagrangian Formulation of MHV
Rules

In recent years, an alternative approach to the usual Feynman diagram expansion
of Yang-Mills theory has been suggested at tree level, [5], and to low order in the
loop expansion. The Feynman approach is well understood but the complexity of
the calculations grows very quickly. In many cases scattering amplitudes are much
simpler than their constituent Feynman diagrams. For example the Parke-Taylor
amplitude [10] for a tree-level process in which the greatest number of gluon helicities

changes is written in terms of the reduced amplitude

Oy M)t
H?:1 <>‘ja )‘j+1>

A= gn—2
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where g is the coupling constant and r and s label the gluons with positive and

negative helicity respectively. The ); are two spinors satisfying

NN = (p);j1+0p;

with o0 = (o', 0%, ) being the Pauli matrices and (p;, p) being the momenta of the

on-shell gluons. The bracket ( , ) is (Aj, \x) = ATi0°\. Then, the full tree-level

amplitude is a sum over colour ordered amplitudes, o:
Ap =Y Tr (TR0 TR §(27) 6% (py + -+ + pa) AT,

These amplitudes (suitably continued off-shell) become the interaction vertices of the
CSW approach to Yang-Mills [6] and [5]. These MHV rules were proven outside the
Lagrangian formalism, indirectly from the BCFW recursion [12] and using twistor
methods. (See [56] through to [63].) An alternative, Lagrangian approach was taken
in [51] and [30] which describe a canonical transformation taking the standard Yang-
Mills action into one generating the MHV rules. See also [64] and [65]. We shall
now give a brief review.
The Yang-Mills action in coordinates (¢, x!, 22, 23) is
1

S = orE / dtdz' dz*dx®Tr (F*™ F,,)

where the trace is taken over the generators of the gauge group 7%, and

FW: [DuaDV] Du :au"'Au
Au — AfTR [TR,TS] — fRSPTP
RS
Te(THTS) = —57.

We will use light-front co-ordinates 2° = ¢t — 23, 20 = ¢t + 23, z = 2! + ia? and
Zz = o' —iz?. By imposing the gauge condition Az = 0, and integrating out the

non-dynamical field Ay we arrive at the transformed action
4 N o o
S:E/dx {L*+L* +L "+ L1} (4.1)

where the L’s are the terms in the Lagrangian, which is defined on the light front

surface as an integral over constant 2 surfaces. The decorations on the L’s label the
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helicity content and we observe that the term L™+~ is unwanted since it contains
only one negative helicity, whereas we need two negative helicities in the MHV
formalism. Further, the terms L™**%7~ are missing. On the quantization surface,
it is worth noting that the fields have the same z° dependence so we don’t have
to explicitly write this and we use the notation (ma, z,Z) = x on the quantization

surface. Explicitly, the L’s are given by [30]

LT [4] = %Tr/d:SXZ(@O&O—@Z@)A
by
LA = %Tr /E dx (~0:0:1A) [A, 4]
L[4] = %Tr / d*x [A, 4] (0.0 17)
b
LAl = %m / dx (— [[A, 0541052 [A,0,A]])
¥

To remove the unwanted term L™~ and generate the missing terms we define a

change of variables A, A — B, B so that
Lt7[A, A+ L™ [A, A] = LT7[B, BJ. (4.2)

B is a functional of A only on the quantization surface, B = B[A], and

dB(x)
6A(y)

where ¥ refers to the quantization surface. It transpires that not only does this

05 (y) = / #x2P™X) g Bx) (4.3)

remove the unwanted vertex, it also generates the missing MHV vertices. The LHS
of eqn (4.2) is known as the Chalmers-Siegel action on the light cone and its Euler-
Lagrange equations give the self-dual Yang-Mills equations.

By substituting (4.3) into (4.2) and noting that terms involving dyA and 0y B
are automatically equal, [30], we arrive at the defining expression relating A and B.
This is given by the following functional differential equation, (suppressing the x°
dependence for brevity),
dB (x)
GA(y)

where we use the same notation to that in [31] in which w(p) = p.ps/py. Using this

[ @y D007 4] ) 51 5 = (0 B (x) (4.4)

expression, one can calculate B in terms of A, and its inverse A in terms of B. In
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momentum space, (4.4) can be written

. 3¢4 . (514(]?1)
o= [ 140, G) 8 (1= o= ) = [ w0)B) 5%

where ((p) = pz/pg. The group generators are absorbed into the fields, we introduce

(4.5)

the notation Ay = A(ps), As = A(—ps) and we introduce the shorthand notation

/ N / (2?)14 gfﬂ

Ettle and Morris define the above notation as integrals over the quantization surfaces

since there is no need to Fourier transform the 2° dependence. Here however, we
shall be applying a linear transformation involving all the space-time coordinates,
so it makes sense to Fourier transform the 2° dependence, which does not affect
the calculations in [31]. We also introduce the notation ((po)n, (P5)n, (P2)n, (P2)n) =
(n,n,n,n) for the n-th particle and the following brackets, their meanings described

in [31]

{pl,pg} = ié—éi
(pr,p2) = 12-21

The relation (4.5) has power series solutions of the form

Alziénnr(l...n)Bg--.Bn (4.6)

using the shorthand notation, and dropping the momentum conserving delta func-
tions and factors of 27 (as we shall do throughout the majority of this thesis).

Similarly, its inverse is given by the power series

Bl:2/2”%1“(1...71)142--~An. (4.7)

We solve for I' and T by putting these expressions into (4.5) thereby extract-
ing a recursion relation. When expressed in terms of their independent momenta,

Y(1,---,n) and ['(1,--- ,n) take the following particularly simple form

L1 3 n—1
T =) oSG L (4:8)
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and also

| 1 1
P == e s wer oy 49

We should pay attention to the fact that these coefficients are independent of pg and
ps when expressed in this way.

In addition, we can express A as a power series in B viz

B k_p =
Ai:ZZ/QWT:k(lg...n)gé...gg...gn (4.10)

=F(12---n) = —TT(12---n). (4.11)

Note we use a different convention for the indices attached to Z. In the paper [31],
the left hand side of the above reads =Z¢~1.

Ettle and Morris [31] do not calculate the inverse of (4.10) but the calculation
is similar to the one they describe in some respects. We begin by writing an ansatz
for the inverse of (4.10)

E:i Y / E@k(iz---n)Ag---Z%---Aﬁ. (4.12)

2.m 1

Later, we will calculate §A and write a transformation of the field A — A + §A to
the first three orders in powers of the fields A and A. As discussed already, we will
then guess a more general result to all orders and prove that it leaves the Chalmers-
Siegel action invariant so it is only necessary to calculate the coefficients of the first
five terms in (4.12) to use in the explicit calculations of the first three orders in A
and A in the expression for §A. We differentiate (4.7) with respect to 2°, which in
momentum space gives

n=2

n

/ ET(12---n)As--- Az - Ag (4.13)
2.-n

x>

=2
and then use

Tr / 1A 14; = Tr / iB,1B; (4.14)
1
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to extract a recurrence relation for ©%(12---n) to the first few order in ©. By sub-
stituting eqn (4.13) and eqn (4.12) into the invariant quantity (4.14) and considering

momentum conservation we can easily extract the first five expressions for ©,

©%(123) = —I'(231),

©°%(123) = —I'(312),

©%(1234) = —T(3+4,1,2) ©*(1 4+ 2,3,4) — (2 +3,4,1) ©3(1 + 4,2, 3) — T'(3412),

) =T
) =—IY
©2(1234) = —T(2 +3,4,1) ©%(1 + 4,2,3) — '(2341),
) =—IY
)=-T(3

0%(1234 +4,1,2) 03(1 +2,3,4) — I'(4123). (4.15)

When written in terms of their independent momenta they reduce to the simple

expressions
©2(123) = —I'(231), 0°(123) = —I'(312),
0%(1234) = —%F(1234), 0°%(1234) = —%(1234),
0%(1234) = —%F(1234). (4.16)

4.2 Transformation of A and A

We shall calculate expressions that leave the the Chalmers-Siegel action LT~ [A] +
LT+~[A] invariant under the transformation A — A = A + §A. The operators
appearing in the denominators of L™, L**~ and LT~ are most simply expressed
in momentum space. After performing a Fourier transformation on (4.2) we have
the following expression absorbing the interaction term on the left hand side into

the kinetic term on the right, thus

Tr / (i — pupn} ArAy — iTx / b1 (Co — Go) Ay A3 A(27)36 (py + po + o)
1

123

= Tl”/{ﬁlﬁl — P11} B1B1(4.17)
1

where (, = p/p. In configuration space the isometry is + — z¢ = Az. Now,

Lorentz transformations commute with the Fourier transform, i.e under the isometry
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T — 2¢ = Az we have BY(p) = B(pg) = B(Ap). We write the change in the B

fields as follows

0B(p) = eBlpc)

0B(p) = —eB(pg-1).

We shall consider the finite isometries in momentum space primarily, however it
is instructive to consider the infinitesimal transformations that preserve the quantity

pp — pp and the finite case will follow. We have

@00, 0) = (0,0, P, D) + evi.
In the light-cone coordinates, we have p = p; +ips and p = p; — ip, where p; and po
are real, thus p and p are complex conjugates of each other in (1, 3) space. Therefore
there is no isometry where p is transformed and p is left unaltered or vice-versa in
physical (1, 3) space-time. However, by making ps pure imaginary p and p are real
and independent coordinates in (2,2) space-time. Then a basis for the infinitesimal

isometries of (2,2) space-time, v; is

U1 = (ﬁ)ovﬁa 0)7 Vg = (Oa()? _]57]3)7 Vg = (ﬁ707071§)7

Vg4 = (07ﬁ707p>7 Vs = <07p7ﬁ7 0)7 Ve = (_p7ﬁ7070) .

where p, p, p and p are all real. It is simple to substitute these into p'p’ — p'p’ and
retrieve pp — pp hence showing they have the desired isometry property. By writing
the infinitesimal isometries in configuration space, and then Fourier transforming
them, we discover that isometries which preserve the quantization surface i° =
2° also preserve p in momentum space. Hence the first three isometries above
preserve the constant z° surfaces. It is also convenient to notice that (p',p, ¢/, p') =
(p,p, P, D) + €vs only alters p and p, and leaves p and p unchanged. Since the
coefficients, I' and T depend only on p and p as mentioned earlier, this will simplify
the problem for that one parameter subgroup of isometries. The properties of each

of these transformations will be preserved in the finite case also and we shall use

this to our advantage by considering only the I' and T preserving transformation
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for the moment but generalizing to the other five transformations will turn out to

be fairly straight forward.

4.2.1 Transformation of A for the Isometry that Preserves

Fand Y

Begin with the expression for A in terms of B, derived in [31] and stated earlier,

n=2"2"n

The expression for A in terms of B is

dA, = ZZ/ Y(1...n)By---0B;-- By
= gZZ/ Y(1...n)B;---B;, - By (4.18)

where B.c is shorthand for B(—p;c). To the first four orders, this is

0A; =eBjc + 8/ T<123) {BQGBg + BQBSG}

23
+ 5/ Y (1234) { Bsc B3 B; + B3 B3c B; + B3 B3Bjc}
234

+ E/ Y(12345) { Bsc B3 B1Bs + B3B3 B1Bs + B3B3 Bjc Bs + B; B3B3 Bsc }
2345

(4.19)

Temporarily re-instating the delta functions, we can now substitute the inverse

expression B in terms of A given by
By = Z/ [(1...n)Ag-- Ax(2m)*6* (p1 4+ pn) -
n=2/2mn

There is the added complication that we are evaluating B(p) at B(pg) but this
is dealt with using the property of the delta function that §* (Ap; + -+ Ap,) =
6 (p1 + -+ + pn). Bie is given by

Bic = Z/ ['(1g,2,...,n) Az - Az (2m)*6* (p¥ + -+ + p)
n=22"n
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and we can change variables under the integrals using the isometry p — pg to get
the following expression. It is an isometry so the Jacobian of the transformation is

L,

Blc = Z/ F(lg,Qg,...,ng)Aic---AﬁG(ZT(')454 (p?+---+p§)
n=2v2n

which is
Bie = Z/ T (1¢, 26, na) Age - Age (2m) 6" (p1 + -+ + pn)
n=2 v 2n

using the stated property of the delta function. Further, seeing as for the moment

we are considering the one transformation that leaves I' and Y invariant we have
Bio = Z/ [(1,2,...,n) Ay - Ape(20)*6* (01 + -+ + pa) -
n=27/2n

Performing the substitution into (4.19) and working up to fourth order only for now,
taking care with delta functions, maintaining the order of the A fields and labelling
the momentum arguments we get a somewhat nasty looking expression which is
included in appendix (B.1). When like terms are collected and their coefficients
calculated in terms of independent momenta the expression simplifies into something
more tangible. We shall collect terms order by order. First order is trivial, we
get 0A = €Aic + ---. The next two orders in A are given below and the more

cumbersome fourth order result is included in appendix by (B.1.2).

Second Order

5141 = 5A1G + 5@/

23

Third Order

s / {ig AscAscAse 1G AscAsc Ay 1§ AsAszeAse
51 | (¢:2)(¢,2+3) (¢:2)(q,4) (¢:3)(g, 1)
1q AQGA;;A;; 1q AQAgGAZl 1q AQA:‘))AZLG
(¢:3)(q,;3+4)  (¢:4)(¢q,4+1)  (g,1)(g,1 +2)}
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where for any term with As -+ Aje -+ - Aje - - Ag, ¢ is defined to be ¢ = p; +- - - +p;.
We may now be tempted to hypothesize the full expression. We write

- i, . 4 4
5A1:_€ZZZ/2 ar(q’%-.. ,])F(q7]+1, ,n,l,--- ,Z—l)x
n=2 =2 j=i 4"
XAQA;GAgGAﬁ

(4.20)

where I' is given by (4.9) and ¢ = p; + --- + p; as before. Notice this is a cyclic
insertion of the momentum arguments into the product of the I's. It is a simple
matter to check that this expression does indeed generate the first, second, third and
fourth order terms. A diagrammatic representation of this expression is extremely
beneficial where we attach A fields to the external legs of a momentum flow diagram
whose momenta flow out of the two vertices I' connected by an internal line with

momentum ¢ and summing over all diagrams, fig (4.1), where the vertices labelled

Figure 4.1: Transformation, J A

Vi and V3 are expressed in terms of k, ¢ and I' which we are forcing to be invariant

at the moment and are given explicitly by
r Vis=1T1.

It is reasonable to expect the transformations of the field A satisfy the same
algebra and in fact this is easy to prove. From eqn (4.18) we have
A =D [T By 6By B
n=2 q=2 Y21
Two consecutive transformations are given by

5:0, A, :iiié Y(1---n)By-+0;By-+-6;Bs - Ba

n=2 p=2 q=2
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and the commutator is

o0 n n

[0:,6,] Ay 2222/2 (T(l---n)BQ---5iB,3---5qu---Bﬁ—

n=2 p=2 q=2

—T(l--~n)B§~--6ij~~5qu~-Bn).

After summing over p and ¢, all terms are zero except those for which p = ¢, leaving

only
[6,,0,] Ay = ZZ/ Y(1--n)(Bs--6,0,By- By — By~ 6;0,B,--- By) =
n=2 p=2 72N

[e.9] n

:ZZ/QnT(ln) (BQ"'BﬁGji"'Bﬁ_Bi"'BﬁGU"'Bﬁ) —

n=2 p=2

= (Cijk_cjik)ZZ/ T(l...n)BQ...BﬁGk...Bﬁ:
2--m

n=2 p=2

= (Cy* — C") 6y

ij
which has the same structure constants f;; b= (Cijk — Cjik) as the commutators
in the free theory, eqn (3.33), thus identifying the algebra unambiguously with that
of the free theory, §(3.6). It makes sense therefore to study the algebra of the
transformations given by eqn (4.20) in the free theory knowing that the algebra in

the less trivial self-dual Yang-Mills setting will be the same.

4.2.2 Transformation of A for the Isometry that Preserves
['and T

The expression for the change in the conjugate field is not dissimilar, although the

expansion is significantly more detailed. The change in the free B field is defined as

0B(p) = —eB(pg-1).
Let us consider the change in A in terms of B.

A, = 6B, —/ {
23

=%(123) B30 B3 —

] D>
] D>

=2(123)0 B3 B; —

3
1

=] o>

=%(123)6 B3B3 — 53(123)32333} —
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Now substitute the change in the B fields, 0B, = eB ¢-1 and 0B = —5§pc_1;

(521 - — é\Elel +

2 — p) _
+ €/ {752(123)32g—1 B3 — 752(123)35336—
23 (1 1
-z (123)32033 +¢€ == (123)B§ng—1
1 23 1
5, o 5
+¢ T: (1234)B2G 1B3B; — T: (1234)B§Bchg — T: (1234) B3 B3 Bic
234
3 5 3 _
T: (1234)BQGB3B4 + T: (1234)@33071 B; — T: (1234)3@3332@
i, i, i _
T: (1234)826‘3334 T: (1234) B3 Bsc B + T: (1234)3@33340—1 + .-

to third order. In a similar fashion to the previous calculation, we substitute the
inverse expressions, B[A] and B[A, A] which is given by the expansion in appendix
(B.2). Again, we shall collect terms order by order and we shall see that we have
already done most of the work when calculating the coefficients earlier. First order
is again trivial, we get A4, = —5210—1 + ---. At second order we can pick out the
terms and express = and © in terms of independent momenta, no extra calculation
is required and the result is given below. The third order result is given in the

appendix by eqn (B.2.3).

Second Order

_ _ (2 2 — 33 —
5A1 = —€A1G71 — 6/232{T@A2G1A3G1 — T@A2071 Aggfl
2 2 _ 2 2
iy SN P ity 7
_|_ 1 (31) 3G 1.A3 1 (31) 2413G
33 - 33
— =—As5¢ A5+ s —=A5A:61
gy e |+
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We hypothesize the full expression is

2

(5A1:—EZZZ / If—F(q,z, (g, 7+ 1, n,1l,---,i—1)x
n=2 k=2 =2 j=i Y2 1q

XAs - Asc 5G"'Z12"'Aﬁ
co n k n ]%2

—I—ez Z / —I(q,4, - ,9)(q,7 + 1, n, 1, i —1) X
"o o i gk J2en 14

XAg-Ap - Ase -+ Asc -+ Ap.
(4.21)

It is possible to verify that this expression reproduces first, second and third order
terms and again, encoding the expression in a diagrammatic fashion is beneficial, fig
(4.2). We have a series of similar diagrams to fig (4.1) but with cyclic permutations
of the A field over diagrams in the series. Notice also, the distribution of A and
Ag-1 legs in relation to the position of the conjugate field. The transformed legs
all flow out of the right hand vertex in each diagram. If the conjugate field is
attached to the right hand vertex, then all fields attached to the right hand vertex
are transformed as Ag-1. If the conjugate field is not connected to the right hand
vertex but rather the left vertex, then the fields attached to it are transformed as
Ag. The symbol k labels the position of the conjugate field and a labels the position

of the ‘in-coming’ leg of the diagram. The vertices, V5, V, and V5 are given by

k> i 2
V=""T' V=2  V=—T.
qa a q

We now have a conjecture for 64 and §A for the transformation which leaves p and
p unchanged. We shall not prove this now but instead we shall hypothesize the most
general case by considering the remaining five Lorentz transformations using results

thus far and prove that they leave the Chalmers-Siegel action invariant.
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Figure 4.2: Transformation, § A

4.2.3 Most General Transformation Using the Full Lorentz

Group

Up to now we have considered the one isometry that leaves the coefficients I" and T
invariant, namely
(0,0,0,0) = (0,0,5,p) +€(5,0,0,p).

Generally of course, I is not invariant under the six parameter independent Lorentz
transformations. In the case of the isometries that preserve the quantization surface
(surfaces of constant z, or equivalently constant p), the prefactors 1/¢ and k2 /14
appearing in (4.20) and (4.21) respectively are invariant but more generally these also
transform under the full Lorentz group. Writing the vertex factors in the diagrams
as we have done in fig (4.1) and fig (4.2) it strongly suggests the form of the most
general expressions as fig (4.3), with transformed expressions in the appropriate

vertices. The proof of these invariances is obtained by substituting them into the
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Figure 4.3: Expressions for 4 and §A for the Full Lorentz Group

change in action, (4.17). In fact, in what follows we need not assume the momenta
are real and we need not make any allusion to the explicit form of the isometries
and so our hypothesized expressions will be shown to leave the action invariant in

physical (1,3) space. Algebraically, performing the variation of the action gives us.
08 = TF/{251]51 — pip1} (0A7) A + Tr/{251]51 — pipr} Ar(64,)
1
—in/ 1 (Gs — G2) (0A7) Az Az — ZTT/ P1(Cs — C2) A1(0A3) Az
123

—iTr / P1 (G — () A1 As(6A;3). (4.22)

23
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It will be easier to separate out the free and interacting parts of the action and
consider their diagrams separately, i.e S = 0Sr + 057. Each piece reduces to
a simpler algebraic expression by considering their diagrammatic expansions, and
taken together they will sum to zero. Diagrammatically, the free action S is a sum
over two, two point vertices and the interacting part is a sum over three point vertices

as shown in fig (4.4), where Q = {p1p1 — p1p1}. Recall that  is invariant under

55y = A@—(SA + A @ 5A

oo

Figure 4.4: Change in the Self-Dual Action, 0.5

isometries © — x¢ whereas the expression I appearing in fig (4.4) is not invariant.
The sum over all diagrams for §Sp is relatively straight forward. We have fig (4.5)
where again, the symbol k labels the leg to which the conjugate field is attached and
we are free to label the momentum of this leg, p;. Now we can apply the isometry
r — x¢ to diagrams containing Ag-1, fig (4.6). Notice the cyclic permutation of
the A field which is equivalent to a cyclic permutation of the two point vertex, Q.
Algebraically then, these diagrams reduce to the following expression, involving a
product of I's and sum over k of Q(k) arising from cyclically permuting the € vertex
over the out going legs of the V and V& vertices,

5SF—5ZZZ/ Xij (1, n) Ay Ao Asa - Ay

n=2 1=2 j=i

where the coefficient X ; is given by

3>|'Q>

= QQ + —0 + Q +QGQ + d Qig1+---+ =0
—— (=0 +- i1 G4 0F + = JIRE SRR n
*\1 ’ Jj+1 -

2 i1 j¢
XF(qG7ZG77]G)F(Q7]+1772_1)
The interacting part is similar except for the cyclic permutation of a three point

vertex around the V' vertices as opposed to the two point vertex. We attach the
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Figure 4.5: Change in the Free Part of the Action 6Sg

diagrams 6A and §A from fig (4.3) respectively to 6S; as shown in fig (4.7), where
k, again, labels the conjugate field which we are free to label as momentum p;
and a labels the leg to which the vertex I is attached. We proceed to reverse the
isometry from the appropriate diagrams, fig (4.8). If the leg k£ has momentum py,
these diagrams are interpreted as a cyclic permutation of the three point vertex, I.

Adding cyclic contributions together gives.
551_5222/ Yij (Lo n) Ay Aje - Aje Ay
n=2 1=2 j=i
with the coefficient Y; ; given by

V(Lo ) (Z{ka k+1 } Z {k,k+1} k+1} B,k))x

k=i k’Gl{—Fl k=j+1 kk—l-]_
XF(qG7iG7... ,jG)p(q7j+17... i—1).
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§SF:—€ A k@ &

Figure 4.6: Change in the Free Part of the Action §Sg

The notation, F;, means P;j = p; + - - -+ p;. Expanding out the summations in the

brackets, either explicitly or by comparison with equation (3.6) in [31], they reduce

to

SEEED () gy bt )

—~ fik+1
with ¢ =p; + -+ +pj = —pjy1 — - —pa —p1 + -+ — pi-1 and w, = pp/p. So we
have

Yij:?(qG{WG +wf+---+wf}+(j{wq+wj+1+--~+wi_1}>x
XF(anlGu 7.7G)F(q7j+17 7Z_1>

Now since —q+pi+--~+pj:0and q+pj+1+---+pn—|-p1+---+pi_1 =0 we

can subtract these from each of the brackets w_q 4+ p; + - - - + p; as follows
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A A
88 = —¢ I 4
k
A
A A A
+ (A “)\VKQ
A A 4
A A A
3
A AT

Figure 4.7: Change in the Interacting Part of the Action §5;

A \/G ~ ~
Yi,jz?<qG{qu——q +wiG—zG—|—~~+ij—jG}+
+q{wq—q+wj+1—M+---+wi_1—M}>x

XF(anlGa 7]G)F<Q7j+]-7 7Z_1)

and then take out a factor of 1/p from each term wp — p as follows

iz (4@ -G 5 5 5
Yij=—= GQ(?‘F QG +? QJG - gAqu—i- %Q]ﬂrl +oeet %Qpl X
g \q J¢ q J+1 i—1

xF(qGJ’G,... ,jG)F(q7j+1,... i—1).
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Figure 4.8: Change in the Interacting Part of the Action §.5;

Terms in 2, and _, cancel, using the fact that Q¢ = Q. So we arrive at

S|

¢, 4
7 = | = X T =+ ) X
q2 1 i—1 iG J J ]_'_1 J+ )
XF(aniGa"'7jG>F(Q7j+17"'7i_1)

= —Xij

12 (s - G -G
)gj:—(g91+---+/q\9i_1+q af+..+Lq

and so coefficients of linearly independent, like terms in Az - - - Asc - - - Asc--- Ay in

0SF and 0S5y sum to zero, X;; +Y; ; = 0 and the result follows

0S5 =0Sp+05r=0
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thus not only proving that the expressions (4.20) and (4.21) and their associated
momentum flow diagrams are indeed symmetries of the Chalmers-Siegel action but

also the most general transformations in fig (4.3) are also symmetries of the action

(4.17).

4.3 Chapter Summary

The Chalmers-Siegel action which describes self-dual Yang-Mills theory can be
mapped to a free theory by a canonical transformation arising from the construc-
tion of a Lagrangian formalism of the MHV rules. Free theories have a high degree
of symmetry. In addition to the well known symmetries induced by infinitesimal
isometries there are those in which infinitesimal changes in the fields are related to
finite isometries which we have reviewed briefly. The Lie algebra of these transfor-
mations is built out of the group algebra of the isometries, and this can be used to
decompose the Lie algebra into a direct sum of its Abelian and non-Abelian parts.
By studying the canonical transformation we found the corresponding symmetries
of the self-dual Yang-Mills theory, and showed that these satisfy the same Lie al-
gebra as in the free theory. We might expect that these results are generalizable
to the supersymmetric case and in particular to N = 4 super Yang-Mills on the
light cone which we will discuss is §(5). It will also be interesting to see which (if
any) of these symmetries survive the full Yang-Mills theory on the light-cone, given
by eqn (4.1). We expect only a subset of the transformations to survive. Further,
by considering the dihedral subgroups D(2n) of SO(3) and counting the number of
Abelian generators, we find that the number of non-Abelian generators increases in
multiples of 3 with increasing n. We expect to find that the algebra constructed in
this way using the dihedral groups is going to be a sum of su(2) algebras.
Throughout this chapter we have restricted ourselves to studying the isometries
of the Lorentz group. Extending the result to the include displacements is somewhat
more trivial and a phase factor appears in the expressions using the fundamental

property of Fourier transforms that

oz +a) = P (p).
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For example under a pure translation x — x + a, following the same procedure to

the one we have given throughout, we would get

N i . . .
5"41 = _6222/ 7F(Q,Z,"' 7])F(q7] +17 ,TZ,]_"' y v — 1) X
n—2 im2 j—i /24
neglecting various factors of 2. A similar expression would hold for the transforma-

tion of the conjugate field §A with the exponential factors appearing in each term

of the sum.



Chapter 5

Infinite Dimensional Symmetries
of Self-Dual N=4 Super
Yang-Mills

The normal Feynman approach to calculating n-gluon tree-level scattering ampli-
tudes is well understood but the complexity of calculations grows quickly with n
making the method inefficient and prohibitive. It was recently observed that such
gluon amplitudes localise on simple curves in twistor space [5] and this led to a
new set of rules for calculating them [6]. This approach provides an alternative
to the Feynman rules with drastically reduced complexity, for example the Parke-
Taylor amplitude for tree-level scattering of n — 2 positive helicity gluons and 2
negative is remarkably simple [10]. The new set of rules was initially proven out-
side the Lagrangian formalism using the BCFW recursion relation [12] and using
twistor methods, (See [56] through to [63]). More recently they have been derived
in the non-supersymmetric theory by applying a non-local canonical transforma-
tion to the Yang-Mills action on the light-cone [30,51]. The action is split into
the Chalmers-Siegel action describing the self-dual sector [37] plus the rest and the
canonical transformation maps the self-dual part of the action to a free action. The
transformation was also studied in more detail in [31].

The superspace version of the MHV rules and recursion relations to find all tree-
level supersymmetric amplitudes were also derived initially in the twistor language,

81
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[15,16] but Feng and Huang, [38] then extended the procedure in [30,31] to the
supersymmetric case by defining a field transformation between the Yang-Mills fields
and a new field which maps the self-dual part of the action to a free theory, thus
deriving a Lagrangian formulation of the N =4 MHV rules.

In §(4) we used the non-SUSY version of this field redefinition to create infinite
dimensional, non-local symmetries of the self-dual non-supersymmtric theory. We
used the simple fact that a free theory with Euler-Lagrange equation Q(z)¢(x) = 0

@ is a finite isometry of the space-

has a symmetry if Q(z%) = Q(z) where x — z
time. Then since 0 = Q(z%)¢(2%) = Q(z)¢p(z%), we see that ¢(x) is a new solution.
Because of the linearity of the free Euler-Lagrange equation we can construct a new
solution as ¢(x) + egp(x%). This was said to lead to higher order conserved currents
such as the ‘Zilch’ of the electromagnetic field [34] and those calculated in [42].

In this chapter we shall extend this and construct symmetries of the N = 4
self-dual SYM action by using the supersymmetric canonical transformation of [38]
to map the self-dual action to the free theory and then writing the symmetry in
terms of the free fields. We derive an expression for the inverse transformation and
use it to write the expression in terms of the original variables. We examine the first
4 orders in powers of the fields and then hypothesize the general result. We then

prove the above expression leaves the action invariant and conclude by showing how

we can extract expressions for the transformations of the component fields.

5.1 Light Cone N=4 SYM

We shall review the construction of the N = 4 supersymmetric Yang-Mills action on
the light cone. For a more detailed treatment see [38,66]. Let us start by considering

the action in 10 dimensions, which is given by
10 1 uv 1'711 m a
S=[d"z ZF“ Fuya—l—ézw D (5.1)
for p,v = 0,---,9 and where I' is a generalization of the Dirac gamma matrices

to 10 dimensions. The spinor degrees of freedom satisfy the Weyl and Majorana

conditions and F}j, is given by

Fi, = 0,A, — 0,A;, + gf“bcAZA,ﬁ.
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As stated in [66] it is straightforward to show that the action (5.1) is invariant under
the supersymmetry transformations

1

6A, =T 0 = —5 w7 E.

It is known however that consecutive supersymmetry transformations of this form
do not close to form an algebra off-shell. To make this algebra close requires the
introduction of auxiliary fields, however as explained in [66] it is not known how to

do this. Take for example the commutator of transformations of the spinor field

(5&5& - 6&1552) Y= (E2F“§1) Dlﬂb - % (gQFM&) FMF”DW (5'2)

which, by using the field equation I'*D 4 = 0, closes to

(562(551 - 561652) w = (52IW§1) Du¢-

It is still possible to retain half the SUSY on-shell at this stage by transforming to
a frame in which only p is non vanishing. As explained in the papers [38,66], if we

now split the spinor as follows
1 A ~ ~ ~
p=—5 (IT+IT) v =+
where I = 1/v/2([I° +T") and T’ = 1/y/2 (I — ') then (5.2) now closes with on-
shell degrees of freedom A, and t leaving only the SO(8) sub-group of the original

Lorentz group manifest [38]. Now (L.Brink et al) [66] dimensionally reduce this to

four dimensions which breaks the SO(8) invariance
SO(8) — SO(6) ® SO(2) ~ SU4) @ U(1) (5.3)
leaving the 4 dimensional SUSY algebra
(7", a8} = —iV2630 (5.4)

where A and B are SU(4) indices A, B = 1,2,3,4. A supersymmetry transformation

on superspace (i, T,T,%;0, 9_) generates the following change in coordinates

(5,5, 7,7 0,0) — (az N %gAeA _ %9’45,4,.%, EE 06— 5)



5.1. Light Cone N=4 SYM 84

where 6 are Grassman variables. The transformations give rise to the following

SUSY generators and covariant derivatives, d and d

0 T = A 0 i R
- %) A= g
W Gpn T g TS,
di=-0 g o9 gy (5.5)

904~ 2 s V2
and it is easily verified that ¢ and ¢ do indeed satisfy the SUSY algebra given in [66]
and in (5.4). A chiral superfield is defined by imposing the constraint

ds® =0 (5.6)

and further, the N=4 SUSY multiplet is CPT self conjugate and so we impose a

second ‘reality’ constraint in the same way that was discussed in [66],
ABCD

= dadpdcdp®. (5.7)

A superfield satisfying both (5.6) and (5.7) is written

_ 1 ) 1 _

B(2,0,0) == A(y) + =0 \aly) + i—=0205C ap(y)

) 0 V2

3 . (5.8)

+ 3 V2 gagngc eapcpA\P(y) + EeAeBaoeDeABCDéA(y)
where y = (50 — \%0‘40_14, T, 7, 37:) is known as the chiral basis in which (5.6) is triv-
ially satisfied and the fields A, A and C' are the gauge fields, fermions and scalars
respectively. (See [67], page (30)). In terms of this superfield the N=4 super Yang-

Mills action on the light cone in 4 dimensions is

9o — 88
32

S = /d4xd49d49{<b“ f“bc [ P*P* 9D + complex conjugate}

2
9 cabe pade | L <(I)béq)c) l <(I)déci)e) lq)b(i)ccl)d(i)e
21 {é 5 "3

(5.9)
as given in [66] and [38]. It is straightforward to express this in component form

which agrees with the expression in [66], (Equation (3.13) in their paper).

5.1.1 MHYV Rules Lagrangian for N=4 SYM
Let us examine the helicity content of the action by considering each part. We write

S=85"t+S5 45t g7



5.1. Light Cone N=4 SYM 85

with

STT=Tr / d%d“@d“@{@aa%aa@

}

_.9 1_ _
STt =Tr / d4xd40d49{§g fabcgqﬂcpbaqf}

and so on for S and ST~ F*. In the MHV rules (Maximal helicity violating
amplitude) an n point amplitude consists of 2 negative helicities and n-2 positive
helicities (see [6,10,58]). In parallel with papers by Mansfield, and Ettle and Morris
[30,31], the part of the action S_, . clearly does not satisfy this requirement and
further, terms with more than two positive helicities are missing from the full action
(5.9).

We can express (5.9) in the chiral basis y by expressing the action in terms
of ® only using (5.7) at the expense of introducing covariant derivatives in to the
action. One will get a kinetic term, a cubic term with 4 covariant derivatives and
a further two terms with 8 covariant derivatives, as explained in [38]. Chalmers
and Siegel [37] show that terms which contain only four covariant derivatives, i.e.
S~ 4+ S express the self-dual sector in terms of the Chalmers-Siegel action.
Classically, self-dual Yang-Mills is free so we wish to transform the self-dual sector
S™t 4+ S~ into a free action by a canonical change of fields ®[x]. This procedure
absorbs the unwanted term S~ into a free action, and it turns out the change of
field variables generates all the missing terms S~ . By that argument, Feng and

Huang give us the Chalmers-Siegel action describing the self-dual sector as
4, 4 A5 A9 25 3
Ssp = Tr/d zd*0{® (aa — aa) ®+ 209 [©,00] }
o (5.10)
T / d'zd'0{y (aa . aa) X}

where the free superfield y is written as

1 Q4 L paps L
x(y,0) —éB(y)Jr 30 paly) + \/59 0" D 45 (y) -
3 .

1 .
+3 04020 e xpcpp® (v) + EGAGBGCGDeAggpaB(y)

in the chiral basis with B and B the gauge fields, p and p are fermions and Dyp

is a four by four anti-symmetric matrix of real scalars (thus having six independent
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scalar fields). The field transformation derived in [38] satisfies the equation
< 2. _ .
Tr / d*zd' {—cpaacp + 200 [0,00) } —Tr / d'ed'0{—xdox}  (512)

arising from (5.10) and the condition that ® and y have the same & dependence

(See [30]). Further, we apply the additional constraint
Tr / d*zd*0PDOP = Tr / d*zd*0x 00 (5.13)

as discussed in Feng and Huang, [38]. They calculate the transformation ®[y] in
their paper but not the inverse transformation which we shall also need. We shall
state their result here and calculate the inverse for ourselves using their procedure.

Their field redefinition reads
=1+ ) / C(12---n)xaxz - Xa (5.14)
n=3 721

where we use the abbreviations ®; = ®(p;) and ®; = ¢(—p;) as we shall do through-
out this paper and we drop the momentum conserving delta function §* (p; + py + - -+ + pn)-

In the above we use the notation
/ :/ d*py d*pn
Ln 2m)*  (2m)t

AAAA —2 2
L2342 -n—2n—1n

(2,3)(3,4)---(n—1,n)

The kernel C' is given by

C(12---n) = (-1) (5.15)

where the bracket (, ) is given by (i,7) = 2j — ij. Now let us calculate the inverse

field redefinition x[®] for ourselves. We guess the form of the expansion as

Xi=01+ > [ D(12--n) Byd;--- 0y (5.16)

3 J2m

Under the field redefinition and the product of superfields, the A fields do not mix

with any of the other fields in the multiplet as they are zeroth order in the expansion

of # in the superfield. We can simply read off the field transformation for the A and

B fields.

B, Ay > As As As

R D(12---n
23 2--n )

p1 1Py 1P2iP3  1Pp
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We will compare this to the transformation that is in the literature, namely the

papers [30], [31] and §(4). We have

- 1 1
B, =A, — / " AzAs--- A,
P ; 2...n(> (1,2) (1,2+3) L2+ +(n—1)) ¥

giving our expression for D(12---n) as the following
1"=323...7
(1,2)(1,2+3)--- (1,24 3+ -+ (n—1))

We can prove this expression by substituting it into (5.12), writing down a recursion

D(12---n) = —(=1)" (5.17)

relation for the coefficients D and showing they satisfy this recursion relation as
follows. Given the canonical transformation condition proved in [38], namely

A 1 OX(Y) 4
00— [ aty S loni).

we substitute this in to (5.12), transform into momentum space and rearrange to

arrive at a relation between fields y and ® given by

/ w(pl)@(m);ggl)) +/ [152(19(2921;12!93@(]93)]5(]91 oy pg);q))(((;?l)) _

= w(p)x(p)
where w(p) = pp/p. Then we take the ansatz for the field redefinition (5.16) and

proceed by substituting this into the above expression to extract the recurrence

relation

3
._.

1

D*(1---n) = {k+1 EYD 11,2, k=1, k+(k+1),k+2, - --

w) t+wyt -+ wy

B
||

2
and then substituting (5.17) on the right hand side and taking a factor of D"(12---n)

outside the sum we get
D'(1---n) ={kk+1}
Lwi+ +wn) & Tk +1

(15 pQ,k)

with {7, j} = 1j—1j. The expression under the sum then reduces to —1 (wy + - - - 4 wy)
thus proving the result.

As an aside, we can use the inverse field redefinition to calculate the field re-
definition B[A, A], an expression missing from [30], [31] and §(4). We calculate the
component of (5.16) (which is now proven) that is fourth order in 6 and find

ZZ/ _@k n)As - Ap - Ap

n=2 k=2
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where

~

OF(1---n) = —%F(1-~-n).

A further point to note about (5.16) is that since each term in the expansion is
linearly independent, and since x is a superfield satisfying the constraints (5.6)
and (5.7) then it makes sense that each term in the expansion also satisfies these
constraints and is therefore a superfield which has the same form as the free field x

and the SYM field ®. So if we write the field redefinition as
x(1) = ¥O(1) + (1) + U2(1) 4 - --
and so on, with ¥¥ = ® and defining

g2 = (12---n) Pyd3--- Dy (5.18)

2-m

as the individual terms in the field redefinition, then the U2 trivially satisfies the
constraint (5.6) since y can be written in the chiral basis in which it contains no 6.

We can then write the conjugate of ¥ as the following
(1) = 90(1) + ¥ (1) + 3(1) + - - -

then since x satisfies (5.7) we write

EABCDdAdBdcdD

X(1) = AR (1) + W) + (1) 4
EABCDdAdBdcdD 0 EABCDdAdBdcdD 1 GABCDdAdBdCdD 2
" Wt YW e W
Since all the terms ¥™~2 are linearly independent, we have
IIJO _ (i) _ EABCDdAdBdcdD
48 - 12
\I/l _ EABCDdAC{BdCdD\Ij1
48 - 12
@2 _ EABCDdAdABdCdD \112
48 - 12

and so on, thus showing that all the ¥"~2 individually satisfy both the constraints
and that they have the same form as (5.8)

Wy, 0) I%A(y) " gem@ + i%@A@BQAB@)
7 (5.19)

_ 1 .
+ ?GAGBGCeABCDAD(y) + EeAeBeceDeABCDaA(y)
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where the underscores attached to the component fields are present to distinguish
them from the fields present in (5.8) and depend on some multiples of the fields in

(5.8) and we have dropped the superscripts on ¥.! For example,
A — / _(l')nin—l
- 2~--n(172)(172+3>"'(172+"'+(Tl—1))

N —() i ] )
A _;/2” (1,2)(1,2+3)..-(1,2+---+(n—1))A2'”(AA>'€'”AT’1

A A,

and so on for C, )\ and A. This is a result we need to use later.

5.2 Symmetries in Free Supersymmetric Theories

5.2.1 Transformations of N=1 Chiral Free SUSY

As a precursor to studying symmetries of the N=4 Super Yang-Mills multiplet, let

us study a simpler theory with action
S = /d4m {77“” .00, + Jiy" MZ)} .

Clearly this will be invariant under the component SUSY transformations, for ex-

G

ample see [67]. If x — 2© is a member of the isometry group of the space-time then

the action is invariant under
Sp(x) = eXb(zc), 03(x) = etb(zg-1)A
() = —iy"up(wa), () = Niv"8,3(x 1)

where A is a constant spinor and the 4* are the Dirac gamma matrices. This is

simple to prove, we have
o5 = [ o] 19,5000, () + 19, (Fe N0

@) O (—ir Dyp(ze)N) + <waysz<x(,~1>>w“am<x>}.

Tt is actually a basic fact that products of superfields are also superfields, but as our field ¥ as
defined by (5.18) consists of fields multiplied together at different points and knitted together with
a non-local kernel and integrated over, the situation is not as simple, but as we have discussed it

still holds.
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Multiplying out terms and then taking 0, out of the third term as a total derivative,

we get
4 vy ~ I~, v
08 = /d 13{77” A0, p(2)0(z6) — §>\au%0(5€c—l) {7} 0uib(z)

F 0T e ~ 30,3(0) 1717 uploa) |

Applying the isometry  — 2% in the second and third terms and using the Dirac
algebra

nt = %{’Y“a’YV}
we get 0.5 = 0.

5.2.2 Transformation of the Free N=4 Multiplet

The free action on the RHS of (5.10) was written as
S = Tr/d4xd4ﬁx(x,9)ﬂ($)x(x,9) (5.20)
where Q(z) = 99 — 99 and the change in this action is
5S = OTr / dizd 0 (z, 0)0(z)dx (z, 0)
where the superfield x(z,0) is given by (5.11). The expression for dx is

1 i 1 _
V2

1 .
+ 3 04020 e xpcpop® (y) + EHAGBHCQDGABCD%B@)

where dA,dp,5C,5p and §B are to be determined. In component form the free

action (5.20) is easily expanded out to give

S —Tr / A B()e)B(x) + Dap(a)2x) D) + %EA(x)

%PA(UC)}-
(5.21)
In the paper [66] they give the supersymmetry transformations of the component

fields, B(z), pa(z) and Dap(x). The transformations of their conjugates can easily

be calculated directly from eqns (3.15), (3.16) and (3.17) in their paper, or using

the super-symmetry generators ¢** and g4 given in (5.5). These transformations on
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their own do indeed leave the free action invariant but we can go further than that.

We can write the transformations as

0B = €fAPA($G)

Spa = eV20D45(x%)EP + ev/26,0B(2%)
ODM = —iz (9P (297") = B (297) + PP po () )
0Dap = —ie (pA(xG)EB — pp(a®)Ea + EABCD’fCﬁD<xG_1))

5p" = ev/2E50DPA (S ) + eV26 0B (2
6B = —iep™ (2% "), (5.22)
where ¢4 are finite Grassman numbers carrying SU(4) indices. It is simple to check
that the transformations B — B + dB,p — p+ dp,--- with the ds as given above

@ is an isometry, which

leave the free action (5.21) invariant using the fact x — =z
implies Q(z%) = Q(x) and further that the Jacobian of the transformation is unity.
However defining the transformations in component form in this manner leads to
complications. The terms at the front of the superfield (5.11), B and p, are defined
to transform under the isometry x — xg whereas those at the end of the superfield,
namely p and A, transform under the inverse of the isometry, + — xg-1. This
presents a problem in constructing a superfield formulation of these transformations.
It is solved by noticing that we can interchange 2 and ¢ in (5.22) and this will
also be a symmetry of the action since we can write H = G~! and do the same

calculation. Further, since both these are symmetries, we can add them together to

also form a symmetry of the action thus,

6B = & pa(z%) + EfAPA(fol)

6B = —iep(x¢ ey — iep? (x%)En (5.23)
and then this can be written as the sum of two transformed superfields, one with
arguments 2% in the component fields and the other with arguments 297" s0 roughly
speaking

ox = ex%(x) +ex¢ ' (z) (5.24)
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with

Q
o~
N

b
=
8

Q
S~—

X :—+...

eAPCPY 05000 07" (2€)Eg (5.25)

Sl = Qs

and similarly for XGA. The above is simply the SUSY transformed field with the

arguments of the component fields being z€ (or ¢ ) instead of z.

5.3 Transformation that Leaves the N=4 SYM
Action Invariant

In the previous chapter, we calculate symmetries of the non-supersymmetric Chalmers-
Siegel action. Given the gauge fields A and A we use the field redefinition A[B] map-
ping the Chalmers-Siegel action to that of the free theory to calculate an expression
for § A in terms of the free field § B order by order in B. The inverse expression B[A]
is then substituted to arrive at an order by order expansion of A in terms of the A
field itself to non-trivial order in perturbation theory. We then guess the expression
for 0 A to all orders in perturbation theory and prove that the change in the action

is indeed zero. The expression we arrive at for §A is

S b. 1 . . . .
5A1 :_6222/; EF(qG’ZGv"' 7]G)F(q’j+]—7 7nvla"' 7Z_]-) X
n=2 i=2 j=i V<N
XAQAEGA}GAT@

where I is given by

b i
P == i 2+9) G2 m=1)

We shall extend this to the supersymmetric Chalmers-Siegel action describing
the self-dual sector of N = 4 supersymmetric Yang-Mills on the light-cone (5.10) by
following the same procedure described in §(4) for A® using (5.14) and (5.16), and
the discussion in §(5.2). We shall guess the expression to all orders in perturbation
theory by comparison with (4.20) and substitute this back into the self-dual part of

the action (5.10) to prove it does indeed leave the action invariant.
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Start with our expression for the field redefinition ®[x] from (5.14). The change
in ¢ is then written
AD, = ZZ/ C(12---n)xs - 0x; Xn
n=2 i=2 Y210
where dx is the transformation of the free field as defined by (5.24). We use a capital
Delta to represent the change in ® to distinguish it from the change in the free field

0x. Now as discussed, each term in the series expansion is itself a superfield of the

form (5.8) and
oy :Z/ 5{D(12---n)<1>2---c1>ﬁ}.
n=2 Y21

We shall expand order by order and collect terms. We have
Ady =edy; + E/ C(123) {dxax3 + xadx3}
23
+e [ O(1234) {0xaxsxa + X20x3Xa + Xaxadxa}
234

2
+€/ C(12345){0xax3XaX5 + X30XaXaXs+ (5.26)
2345

+ XzX30XaX5 + XaX3Xi0X5 }
+ e

Now, as per §(4) we substitute the inverse expression (5.16) into the above to get
the extremely cumbersome expression given by (C.1.1). Recall that we wrote down
the inverse of (5.14) as (5.16). Collecting like terms and writing their coefficients in
terms of their independent momenta the expression reduces nicely. We shall write
it out order by order here, where the argument in the kernels labeled with a (—)

is taken to be minus the sum of the remaining arguments. First order is simply

AP =P+ ---.

Second Order

- 5/ {%5{17(— 23) D3 P51} + %5%1}(— 31)®5 + = D(— 12)<1>25c1>3}. (5.27)
23

o] s
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Third Order
- 5/ {Za{p(— 234) D3 D5} + %5{17(— 23)yd3} D(— 41)d;
234

+

—o s

D(— 12)056 {D(— 34)P3d1} + %5%1}(— 341)03d;  (5.28)

— s

(I)qu)gD(— 412)(1321 + TD(_ 123)@5@35@1}.

el S

The fourth order expression is written down in appendix (C), eqn (C.1.2). Note that
in the above, for each term containing § {D(—,4,---,j)®(i)--- P(j)}, we define ¢
to be ¢ =p;+ -+ -+ p;. As was done in §(4) we now hypothesize a generalization to
the expression given in that chapter, (4.20). We write
AD, = —5222/ Oy D=0 {D(—, i, -, §)B; - D5} x
n=2 i=2 j=i J2n (5.29)
XD(=j 41, n, 1o i = 1)y B,

— s

It is now simply a matter of proving that this expression leaves the Chalmers-Siegel
action of self-dual Yang-Mills (5.10) invariant which is a similar calculation to that
in §(4). Because of the CPT self conjugacy property of the N=4 SYM multiplet,
then the ensuing calculation is in fact easier than that given in the pure Yang-Mills

setting of §(4) as A® is eliminated from the self-dual part of the action. Figure

® > . P ~

AP = —¢

Figure 5.1: Transformation, A®

(5.1) is a diagrammatic expression of (5.29) with the dotted leg representing the
argument not integrated over, i.e. p;. In §(4), the transformation of the free fields
was written as 0 B(p) = eB(p¢) and in the expression for 0 A we wrote something of

the form Az --- A;=5Ajo - - - Aje Az7 - - An. Here the situation is more complicated
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and an operation is performed on the group of fields enclosed in the parentheses that
mixes up fermionic and bosonic degrees of freedom. The summation here means to
sum over all n, the total number of legs, and all ¢ and j with 2 <1¢ < j <n. As we
shall see later, there is no conceptual difficulty in calculating the transformations of
each of the component fields.

First however, let us now consider how to prove that the transformation & —
® = & + Ad does indeed leave the action (5.10) invariant. The change in the action
is

ASsp =2Tr / d*pd*0 ®(p)Qp)AD(—p)+
2 AP
ST [0 (- e} AV 1)2(-2)0(-3)
123
2 NPT
+ gTr/ d*0  pi{ps — pa} P(—1)AD(—-2)P(-3)
123
2 NP
+ §Tr/ 40 pr {Bs — o} B(—1)D(—2)AB(—3)
123

with Q(p) = pp—pp as before, after transforming into momentum space and stripping
off § functions and various factors of 27. Using momentum conservation and the
cyclical property of the trace, (recall that the fields contain the generators of the

gauge group), and relabeling arguments the change in the action easily reduces to
ASgp =2Tr / d*pd*0 ®(p)Qp)AD(—p)+
— 2Tr/ d'0  {p1,pa} AP(1 +2)d(—1)P(-2)
12

where the bracket { , } is defined as {p;,p;} = pip; — pip;- We shall separate the
calculation into two distinct parts, ASg, the free part and ASy, the interaction.
The diagrams for these are given in fig (5.2), clearly the free part is just a two point
vertex with {2 as the vertex factor which as we recall is invariant under the isometry
r — 2% and the interacting part is a 3 point vertex with I given by {k, k + 1}. The
vertex factor I is clearly not invariant under  — 2. For each part we shall collect
all possible diagrams and extract algebraic expressions from them for ASg, the free
part, and AS; and show that ASsp = ASr — AS; = 0. As discussed earlier, the

expression enclosed in the brackets

-]
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d
E+1

ASp= @ Ad ASy = AP

Figure 5.2: Change in the Self-Dual Action AS

is itself a superfield with argument ¢ satisfying (5.6) and (5.7) and the solutions to
the constraints are expressed in (5.19). The transformation (5.24) is applied to the
superfield enclosed in the brackets with component fields A4, A, C, A and A. This is

represented as a diagram in fig (5.3). We will proceed by drawing all the possible

i) d d NG

AP = —¢

Figure 5.3: Change of &, A®

diagrams that make up ASp, fig (5.4). Now the expression in brackets satisfies the
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constraints, and so does the part outside the brackets. We write

n=2 i=2 j=i 12--n

—o s

Q)@ Py -+ By { D(—, -+, )Py B5} %

XD(=,j+ 1, 1, i D@ 0y
+G — G

Next we can use the cyclicity of the trace and relabel arguments as follows

co n—1 n

ASp=—e> Y > Tr/z”n%Q(k){D(—,l,--- )01 51 x

n=2 j=1 k=j+1 1

XD(=,j 41, )b Py

+G — G
and then define
1§
GQ(k
@:/ qf)D(q,j+1,--~,n)q>ﬁ---q>ﬁ.
j+1-n k

Both of these have the form (5.18) and as we proved in §(5.1.1) satisfy the constraints
(5.6) and (5.7) and the solution to these constraints are of the form (5.19) with a

similar expression for ©. By writing in component form it is possible to show that

asp =T [ 14 (@0(0) = ~Tr [ U(0)e%(a)

by utilizing the integral over § which picks out the #* component. Therefore, fig
(5.4) becomes fig (5.5) and there is a summation over cyclic rotations of the vertex
) around the diagram. The diagram of fig (5.5) becomes the following expression
where a factor of {D®---®}“ D® .- ® can be taken out of a cyclic clockwise sum
over rotations of €2 with the momentum of the first leg enclosed in brackets being

D1,

co n—1

ASp = —5ZZT1"/ XL, {D(= 1, j)b1---d:} x

n=2 j=1

X D(—j+ 1, )& Py
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(0] & ® G

ASF=—€ o

Figure 5.4: Change in the free part of the self-dual action ASg

where the coefficient X ; is given by

X(1,5 —QGQG QGQG 1 10
(1.5) = 75 U g = S,
J

Moving on to the cubic part of the action, AS;, we have a sum over cyclic
rotations of a three point vertex with factor I around all possible diagrams, as given
in fig (5.6). We can then undo the transformation in the second diagram as before
to arrive at fig (5.7). Similarly then, rotating the vertex I clockwise around the

diagram and with the first leg enclosed in the brackets has momentum p;, we have

oo n—1

AS; = —5ZZTr/1 Y (1,7) {D(—,l,--- 7]')(1)1...(1)5}GX
n=2 j=1 e
X D(—j+ 1, n)Psg- Py
with
V() = S VR E Y ooy S dREEL L s
=1 k¢ k+1 ki1 Kkk+1

The left hand sum should be interpreted as zero when j = 1 and the right hand sum
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o > d NG

ASp = —¢ [

Figure 5.5: Change in the Free Part of the Self-Dual Action ASg

should be interpreted as zero when 7 = n —2. When expanded out, the summations

reduce to -
o
kok+1 )
SR Py = (gt )
— kk+1

where w, = pp/p. Evaluating the sums in (5.30) we get
i, = (ch{w?q + wf +---+ij} +cj{wq +wjn +---+wn}>.

Now, —¢+p1 +---+pj =0 and —pj;; —--- — p, = 0 and we subtract these from

each of the above brackets to arrive at
. -G . .
Vi, :qG{uﬁq——q +wi — 1G—|-"'+ij—jG}+

+q{wq—q+wj+1—M+~~-+wn—ﬁ}

and then take out a factor of 1/p from each term w, — p as follows

/\G /\G /\G ~ A A
9 e, 9 ~c 9 e 4 q q
Yij==7>20 + =07+ + =07 — Q0 + —=Q 11 + -+ (.

Terms in , and and Q_, cancel since Q¢ = Q. We arrive at

_ 4% e, 4 qe _
YVij=-20 4+ 207+ —Qa+ -+ = = Xy
1¢ ¢ j+1 n

and since all terms in the summation over 5 and n are linearly independent and sum

to zero, we arrive at the result, AS = ASr — AS; = 0 as required.
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)

AS] = —&

Figure 5.6: Change in the Interacting Part of the Self-Dual Action AS;

Since we now have calculated an expression for A® and proved it, we can in
principle calculate the expressions for the transformations of the component fields.
For example, let us pick out the zeroth order # component of AS. We will have

diagrams of the form fig (5.8) or algebraically

0 n k n 2
5A1 :_62222/2R%F(q727 7J)F(Q>j+17 7n71>"' 7i_1)><

n=2 k=2 i=2 j=k
XAQ---AgG---5A)\A,;G---A3G---Aﬁ
+G — G7L

Similarly, one could calculate more complicated expressions for the rest of the com-

ponent fields.

5.4 Chapter Summary

We began by reviewing the formulation of N=4 super Yang-Mills theory on the
light-cone [38] and writing the action in terms of superfields ® and ®, (5.9). The
CPT self conjugacy property of the fields was used to express the action in terms
of ® only, at the expense of introducing covariant derivatives in the action. The

self-dual part however contains only 4 covariant derivatives giving us the Chalmers-
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P
AS; = —¢
o
@
+ <
ve

Figure 5.7: Change in the Interacting Part of the Self-Dual Action AS;

A A AG

AA = —¢ gA)\g

+G — G™!

Figure 5.8: Change in the Component Field AA

Siegel action [37] which is free classically. The full action contains the wrong helicity
content for consistency with the MHV rules so we define a canonical transformation
from the self-dual sector to a free theory with field variables x and we write down
the result given in [38] for the expression ®[x], (5.14). Further, we calculate the
inverse of this field redefinition by writing down an ansatz for x[®] and substituting
it into a recursion relation to prove it.

It was briefly discussed how to construct symmetries in N = 1 chiral supersym-
metry using isometries  — ¢. This helped us to see how to construct symmetries

of a free N = 4 SUSY theory with action (5.20). We proceeded to calculate a field
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transformation order by order (up to fourth order in the field variables) by writing
A® in terms of the free fields y, whose transformation we knew, and then substi-
tuted the inverse field redefinition to write A® in terms of the original variables.
We used these results to guess an expression to all orders in perturbation theory
and this was proved by substituting it back into the self-dual action (5.10) to show
ASgp = 0 thus proving our final result (5.29). We concluded by showing how, in
principle, we can use our result to calculate the component field transformations,

and gave an example of the simplest calculations by writing down AA in terms of

A and A.



Chapter 6

Symmetries of the Hitchin System

6.1 Chapter Introduction

The self-dual Yang-Mills action written in four dimensions has physically relevant
solutions and in particular in Euclidean space the solutions are referred to as in-
stantons. Starting with the Euclidean equations in R* they may be dimensionally
reduced by demanding that solutions are invariant under translations of two of
the coordinates, [39]. The solutions of the dimensionally reduced equations, called
Hitchin’s equations, have the property that they may be defined over a Riemann
surface using analytic maps and are conformally invariant, and they have found
applications in the field of integrability amongst others; see for example [68, 69
and [70] (Also see [71-76] for previous discussions on symmetries of the self-dual
system). We review the procedure taken by Hitchin in [39].

We have seen in previous chapters how to construct infinite symmetries of the
self-dual equations in (1, 3) space using (complex) light-cone coordinates, x, = t—x3,
Ty =t 4+ X3, 2 = X1 + 1Ty, Z = T1 — ixy for t, x1, 19 and w3 real. In particular,
we mentioned in §(4) that by making z, imaginary, the light-cone system became
a set of real coordinates and our arguments extended to (2,2) space-time where A,
and A; are not related by complex conjugation. By writing the Euclidean Cartesian
coordinates (7,1, x2,23) in terms of two complex coordinates, z = x; + izy and
u = x3 + i we write the Hitchin equations by assuming that the fields do not

depend on the imaginary parts of the new coordinates, x5 and 7 where we assume

103
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an anti-hermitian representation of the Lie algebra valued fields with A} = —A, =
and A = —A,. In the case where x5 and 7 are pure imaginary then we arrive at
the same dimensionally reduced equations but now the fields are no longer related
by complex conjugation and on the plane we may impose the gauge A; = 0. Since
the symmetry, (4.20) with real momenta is a symmetry of the 4d action in (2,2)
space (using the light-cone gauge) where fields are not related by conjugation it is
necessarily a symmetry of the equation of motion. By dimensionally reducing the
expression, we write down an expression for the symmetry of the 2d equation of

motion.

6.2 The Hitchin system

We shall review the derivation of the Hitchin equations in R* with Euclidean sig-
nature, first discussed in [39]. We shall consider the space-time with coordinates

(xo, 1, T2, x3) endowed with the metric

Guv =

o o o =
S =
o = O O
_ o O O

%

Hitchin considers the Lie-algebra valued curvature two form

F(A) = Z Fdx" N dx”

p<v

which can also be written as F(A) = dA + A% where A is the connection over the
G-bundle
A = Agdz’® + Arda' 4+ Apdax® + Agda®.

In the above we also have

FMV = [DM’DV]

where the covariant derivative D, is defined as d,+A,. The factor of ¢ that normally

appears in the expression for the gauge covariant derivative is absorbed into the fields
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A, and so we stipulate an anti-hermitian representation of the Lie algebra valued

fields with A* = —A. Given the self-duality condition,

1
Bl = 5\/§5ul//\pF/\pv

in this basis, lowering indices as required with the above Euclidean metric in Carte-

sian form, the self-dual equations are

For = Fy3
Foo = I3
Fos = Fs.

Hitchin, [39], then assumes that the functions A, are independent of two of the
coordinates. We shall assume that the A, are functions of zy and z; only so that

the connection becomes

A= Agdﬂfo + Aldl’l
and we relabel the fields A; and As as
A2 - ¢17 A3 — ¢2

which are referred to as auxiliary fields, or Higgs fields, in [39]. The equations of

motion, which are similar to those in [39], over (x¢, 1) € R? are then

Fo, = [D07D1] = [¢1,¢2] = I3
Foo = [Do, 1] = [¢2, D1] = F5
Foz = [D07¢2] = [Dla(bl] = I,

Then by introducing the complex Higgs field ¢ = ¢; — i¢ these become
1
0= [Dy + Dy, ¢]

and further, Hitchin, [39] writes

1
1
= ~¢*dz



6.3. The Self-Dual Equations 106

where z = 2° + iz! and the equations become

F = —[®,"]

d\®=FAD=0

in basis independent form.
Note that in [39], Hitchin dimensionally reduces the self-dual equations in R*
with Euclidean signature in Cartesian coordinates, which we have briefly reviewed.

We move on to derive the equations in different coordinates.

6.3 The Self-Dual Equations

We have seen the derivation of the Hitchin equations in Cartesian coordinates. The
approach in the papers [30], [31] and §(4) is to write the self-dual action and its
symmetries in (1, 3) light-cone momentum space coordinates, p = p;—ps, p = p;+Ds,
p = p1 + ipy and p = p; — ip; where p and p are related by complex conjugation.
However, we discussed in §(4) that we can make py pure imaginary thereby making
all (p,p,p,p) real. Then the arguments written down in §(4) extend to (2,2) space.
In fact we used this to derive our results to begin with.

With that in mind, we derive the self-dual equations that are dimensionally
reduced from Euclidean space-time in a new coordinate system. We define complex

coordinates (T, x1, za, x3)* of Euclidean space

U = T3+ 17T, 2z =T + 129

= 1 — il‘g (61)

Y

U = T3 — 1T,

with
ds* = dudii + dzdz = dr* + da? + da3 + da?

In these coordinates, the metric is

pv
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Given the usual Yang-Mills field strength tensor
F.=0,A,—0A,+[A,A)
the Hodge dual Fj, is written
* ]‘ Ap
F,uzz = 5\/§€#V>\PF

where the usual definitions apply

FW: [DuaDV] Du :au"'Au
Au — AfTR [TR,TS] — fRSPTP
RS
Te(THTS) = —57.

In the above, g is the metric determinant which has the value g = 1/16, the T4 are
the anti-hermitian generators of the gauge group and €,,,, is the totally antisym-
metric symbol where we define

Euizz = +1.

The self-dual equations are obtained by setting F' equal to its dual tensor F* as
follows

F:z/ =Fu = %\/g‘EW/\pF/\p
and using the metric to raise and lower indices as required, the self-dual equations

in these coordinates are given by

Fuﬂ:_FZE
F,.=0
Faz =0

Using the definition of the field strength tensor these equations are, explicitly,
A, — 0, A, + [Au, Al =0

aﬁAg - 8;1411 + [Aﬂ, Az] - 0
auAa — aﬁAu + [Au, Aa] = —aZAg + agAZ - [AZ, Ag] (62)
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where the fields are related by conjugation with A} = —A, and A} = —A, because
of the anti-hermitian generators. Following Hitchin’s procedure, we assume that the
fields are independent of the coordinates x5 and 7, and the auxiliary (Higgs) fields
are ¢1 = A, and ¢ = A.. Then we have

0. A, = 0, A, — 0z A, =0
O0p, A, = 0:A, — 0,A, = 0. (6.3)

for all the field components, A,. The Hitchin equations in this coordinate system,

(6.2) are then

OuA. — 0. Ay + [Au, A] =0 (6.4)
auAg - aZAa + [Aa, Ag] == 0 (65)
O0uAa — 0y Ay + [Au, Aa) = —0.A5 + 0. A, — [A,, A5 (6.6)

with, [39],
7
¢1 = 5(142 - Az)
7
¢2 = 5(1411 - Au)
and the connection
1
A = §(A2 +A,)
1

Now in [30,31] and §(4) we set the gauge condition A; = 0 which we are free to do
because A; and A, are independent. Here, we have A? = —A, and cannot stipulate
this gauge. Similarly, A; and A, are not independent. So now we consider the
problem in (2,2) space by writing x5 = iy and 7 = it, with ¢ and y real. Then the
coordinates (6.1) are all real and independent with z, = —u, and 9, = —3, and 0,
are derivatives with respect to real coordinates. Further, A; = A; and A, = —A,
with A; # —A, and A; # —A,, thus the fields are no longer related by complex
conjugation.

In an appropriate domain we can make the gauge choice A; = 0 and then by

(6.5) we can set A; = 0 # —A%. Then using (6.6) we can write

0
Ay =—=A
u 8u z
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and substitute into (6.4) to arrive at
0? 0
O+ 2 |A, — | ZA,A | =0 6.7
(0+5) 2~ [0 4 00
or, to make a simplification by defining ¢ = 9, A., we can write

6.4 Symmetries of the 2D Euclidean Self-Dual Equa-
tions on the plane

In §(4) we constructed infinite dimensional symmetries of the self-dual action in
(1, 3) space but by assuming real momenta then the results are valid in (2, 2) space.
The procedure was extended to the N = 4 supersymmetric theory in §(5). The
non-supersymmetric self-dual action on the light cone is
4 4 4 4 -1 A

S = ?Tr/d rA (0905 — 0,05) A+ ?Tr/d x (—8;06 A) [A, &OA} (6.9)
where, for notational convenience in what follows, we define A, = A and A; = A.
Note also that 0, = —3, since in §(4), vo = t — x3 whereas here u = x5+ it = x5 —1
for t = i7 which will give 0,0; — 0,05 = 0.0; + 0,03 on the left hand side. We also
define the notation, ((pu)n, (Pa)ns (Pz)ns (Pz)n) = (7,7, 7, 7) and ¢, = p/p, and also

S

Writing the action in momentum space, bearing in mind v = —x,, we have

Tr/{ﬁ1151 + pupr } At Ay — iTT/ P1 (G — C2) At Az A3 (2m) 6 (p1 + p2 + p3)
1 123

= Tl"/{plﬁl + P11 } BiBy
1
and we perform the transformation A — A’ = A+ cdA and A — A’ + 5 A with
54, = —EZZZ/ G e O 41, my Lo i = 1) x

n=2 =2 j=i
XAQA{GA‘}GAT‘L
(6.10)
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and
oo n k-1k-1 1%2
(SZ = —¢ / —I G,?:G,-.-7'GF ,'—i—l)---?n’l’...’i_l >
1 ;k212;2n1(j (4 7 (a:J )

><A§--~Agc~~A3c--~Z;;-~Aﬁ
k n ~ AG712
q(k ) -1 o1 -1 . .
Z L TAG?l QF(qG 72G 7"'7]G )F<Q7]+17"'7nala"'72_1>><
XAQ---Angl---Z,;Gfl---Ajcfl---Aﬁ

[ee) n n n ]%2
_SZ / A_AF(aniGa"'7jG)F(Q7j+17"'7n71a"'7i_1)><
. - )

xAg---Z,;---A;G---A;c---A,—l.

where ['(12---n) was first written in [31] as

N i
F(L..-’n):—(z) (172)(172+3)'--(172_'_.”(”_1)).

The bracket (i, ) is defined as (i,j) = (ij — 7). The invariance of the action under
these transformations is proven in §(4). Given that they are symmetries of the
action, that is sufficient for us to be able to infer that they are indeed symmetries of
the equation of motion which we derived earlier (6.7). We could have also derived
this equation using the action (6.9).

Here, we are concerned with finding symmetries of the dimensionally reduced

equation (6.8) where, as before, we have defined A, = A = 0,1,
(02 +02) ¢ — [0, 0] = 0. (6.11)
which in momentum space is
(1% + 1%)¢h — /d2p1d2p2(2, 3)13t30%(p1 + P + p3)-

where d?p = dpdp
By writing A, = —ipy, the expression for 0A, (4.20), becomes

n=2 1=2 j=i

D(aniGa"' 7JG)D<Q7]+17 7n717"' 72_1> X

—] s

Xty 4ic - - Ynd" (D Pm)

(6.12)
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where D(1,2,--- ,n) is given by

1"=323...1
(1,2)(1,2+3) (1,243 +-+(n—1)

D(12---n) = —(=1)" (6.13)

in momentum space. The ¢(p,, p1, p2, p3) are the Fourier transform of (7, 21, xa, x3),

4

d
¢(p7'7p17p27p3):/—

T .
(271')46”3“:5”#)(77 Iy, T2, m3>'

Since we assume that ¢ depends only on x; and x3, we have

d$2 i .732 dT i T de i Clj‘l i‘$3
Y(pr,p1,p2,p3) = Eem /%GPT /Wepl b (1, z3)

= 5(p2)5(p7)w’(p1,p3)
= 0(p —p)o(p — p)¥' (P, D).
Substitute this into (6.12) and evaluate the integrals over p; and p; fori =2,--- | n

and we have

=53 [

n=2 i=2 j=i

D(qG7iG7"' 7]G)D<Q7]+]-7 Jna]-a"' 7i_1>x

— s

Xl ¢%52(2pm)5(1§1 —p1)6(pr — p1)

/ N / é?)lz gf;?

and the kernels, D, (6.13) are written in terms of p and p using p = p and p = p.

where now

Then write the inverse Fourier transform, §i(7, 1, x2, z3), of d¢(p1),

p(z) = / d'pre” P h Ty (py)

and evaluating the integrals over p; and p; the final expression is

w335

n=2 1=2 j=i

D(qeaiGJ”' 7]G)D<Q7j+]-7 Jna]-a"' 7i_1>x

—>

G

and the isometry x — x> is simply a rotation of the plane about angle ¢, viz

u®t = cos(t)u + sin(t)z

20 = —sin(t)u + cos(t)z.
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Given two transformations, d;, and d;, and the argument in §(4), the commutator

of the transformations is
[51517 6t2] ¢ - O

and the infinite set of transformations clearly forms an Abelian algebra.

6.5 Chapter Summary

We reviewed the derivation of Hitchin’s equations on Euclidean space and re-wrote
them in terms of two complex coordinates. By transforming to (2,2) space we were
able to impose a light-cone gauge condition by virtue of the fact that A; # —A, in
this space which enabled us to write the dimensionally reduced equations of motion
in the same gauge as we used throughout §(4). By comparing the results of §(4) we
wrote down the symmetry of the 2d self-dual equation on the plane.

In the introduction to this chapter we alluded to the fact that the solutions to
the Hitchin equations may be defined over Riemann surfaces using analytic maps.
It would be interesting to consider how we might extend our approach to find sym-
metries of the self-dual equations on such surfaces, for example Riemann spheres or

Tori.



Chapter 7

Conclusions

The CSW approach to calculating QCD scattering amplitudes discussed in the lit-
erature, [5-7] and [8], has been used to good effect in drastically reducing the com-
plexity of calculations that would otherwise have been prohibitive in the Feynman
approach. This is the case, not only at tree-level, but to higher loop orders also. In
particular, we have reviewed the especially simple form of the MHV amplitude, [10].
When the Yang-Mills action is written in the light-cone gauge the kinetic term and
a second term that has the wrong helicity content to be an MHV term are grouped
together in to what is referred to as the Chalmers-Siegel action describing the self-
dual part, [37], which is mapped to a free theory. This map generates the MHV
Lagrangian, [30, 31].

The map is a canonical, non-local transformation expressing the Yang-Mills fields
in terms of free fields. In §(4) we have used it to construct infinite dimensional, non-
local symmetries of the self-dual part of the action by virtue of the high degree of
symmetry of the free theory to which it is mapped. The method for constructing
symmetries of the free theory has been discussed in a quite general way in §(3)
and the associated Noether currents were calculated. In particular we discussed the
symmetry transformations p(z) — ¢(x) +ep(xg) on flat space-time where x4 is an
element of the Poincaré group. This was then used to construct the symmetries of
the Yang-Mills fields which we showed left the self-dual action invariant. Further,
consecutive symmetry transformations of the free theory thus described were shown

to form a non-trivial Lie algebra and we proved that the symmetry transformation

113
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of the Yang-Mills fields satisfied the same algebra, as we would expect. It is there-
fore beneficial to consider the classification of the algebra in the free theory. We
considered the discrete sub-groups of SO(3) and showed that the Abelian centre of
the algebra is directly related to the conjugacy classes of the group. In the case
where x — x4 was an element of the well known triangle group we calculated the
zero-mode algebra g = su(2) + Cz(3) where the elements of C; commute with ev-
erything. In the case where z — x is an element of the tetrahedral sub-group the
algebra is g = su(3) + Cz(4). We wrote down commutation relations for the case
where x — ¢ is a member of one of the infinite number of dihedral groups and
the number of non-Abelian generators increases in multiples of 3 with increasing
n. We expect to find that the algebra constructed in this way using the dihedral
groups is going to be a sum of su(2) algebras although this remains conjecture. We
briefly discussed the symmetry transformation of the Yang-Mills fields in the case
where © — z is a displacement and in momentum space this simply corresponds to
multiplication by Fourier modes. By combining the SO(3) rotations with discrete
time translations, ¢ — ¢ + na where n is some non-negative integer then we create
a loop algebra. Commutation relations between generators of the algebra for which
n = 0 correspond to the respective algebras we calculated (su(2) and su(3) for the
triangle and tetrahedral groups respectively) and are the zero-mode sub algebras.
The extension of the new methods for calculating QCD amplitudes to N = 4
superspace, [15-18] and [19], led to the need to construct a similar Lagrangian
formalism for the MHV rules in superspace. Feng and Huang, [38], write down the
super-space Lagrangian in the light-cone gauge in a similar fashion to the authors
of [30] and [31]. The CPT self conjugacy property of the N = 4 superfield introduces
covariant derivatives in to the action, but the self-dual part of the action contains
no SUSY covariant derivative. They conjecture an ansatz for a map which maps
the self-dual part of the action to a free theory in a similar vein to the authors
of [30] and [31] in terms of the Yang-Mills superfields, a free superfield and unknown
coefficients to be determined. By expanding out the expression and considering only
the gluon fields, their ansatz is compared to the known transformation for the gluon

fields derived in [30] and [31] to determine the coefficients in the series. In §(5)
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we review their procedure and we also calculate the inverse of their transformation
which we need. Not surprisingly, since the self-dual part of the action contains no
covariant derivatives, the conjugate field is eliminated which reduces our work load.
Owing to the high degree of symmetry in the N = 4 theory, this is in contrast to the
pure Yang-Mills setting where the expression for the conjugate field were markedly
more complicated. We proceeded to calculate symmetries of the free N = 4 theory
and wrote the symmetry transformations of the Yang-Mills fields in terms of the
free fields. Substituting our expression for the inverse field redefinition we got an
order by order expression for the symmetry in terms of the original Yang-Mills field
and guessed a more concise result to all orders as we did in §(4). The proof that
this leaves the self-dual part of the action invariant follows in an almost identical
manner to §(4).

We have not discussed the algebra of the symmetries of self-dual N = 4 Yang-
Mills. However, in principle, we could construct an algebra in exactly the same way
as we did in the pure Yang-Mills setting. Perhaps the most interesting question
arising from our work is the possibility that a subset of these symmetries survives
the full action. In which case, we might hope that the quantized version of the loop
algebra, the infinite Yangian algebra, may be helpful in regards integrability in a
similar way to the literature review we gave in §(2). In this very interesting field,
amplitudes are constrained by deformed level-zero and level-one Yangian generators
which are related to the super-conformal and dual super-conformal symmetries of
scattering amplitudes.

We concluded with a brief discussion on how to write down symmetries of the
Hitchin system. We began by reviewing Hitchin’s equations, [39] and continued
by writing them in a specific coordinate system. By assuming (2,2) space-time
signature we wrote down the symmetry of the 2d equations of motion by using the

results we have derived previously.



Appendix A

Commutators of the Tetrahedral

Group Algebra

We list the commutators of the tetrahedral group algebra discussed in §(3.6.4).
Writing,

dip(x) = ip(Rix)
where the matrices are given by (3.41) we write the linearly independent set of

generators, L; as

Ly =010 — 07, Ly=206—011, Ls=05—10s, Lyi=0d9g— 04

L5:67_597 L6:58_66> L7:63_527 L8:51_53'

The commutators [L;, L;] are now calculated using the Cayley table, (3.2). We list

all the commutators,

Ly, Lo] = —2L~, (L1, L3] = —2L; — 4Lsg, (L1, Lg) = 4Lg + 2Ly + 2Ls,
(L1, Ls) = L3 — Ly — 2Lg,  [L1, L] = 2Lg + 2L7, (L1, Lr] = 2Ly,
(L1, Lg) = 3L3 — Ly,

(Lo, L3) = 4Ls + 2Ly + 2Ly, [Lo, Ly = 4Ls + 2L7, [Lo, Ls] = —2Lg — 2L,

(Lo, Lg) = Ly — 2L5 — Ly, (Lo, L7] = —2Lo, (Lo, L] = —3L3 + Lo,

116
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(L3, L] = 2L~, (L3, Ls) = —2L7; — 2Ls, [Ls, Lg] = 2L5 + Ly — Ly,
(L3, L7] = —2Ls, (L3, Ls] = —3Ly + Ls,
[Ly, Ls) = 2L¢ + L3 — Lo, (L4, Lg) = 2L7 + 2Lg, (L4, L7] = 2Ly,

[L47 LS] - 3L1 - L47

[L5, L@] — —4L7 - 2L87 [LS; L7] - —3L1 — 3L4 — 4L5, [L5, Lg] - 2L5

[Le, L7] = 3Ls + 3Ly +4Lg, |[Lg, Lg] = —2Ls, L7, Lg] = 0.

Let us do a prototype calculation as an example and take the commutator [Ly, Ls].

We have

LiLsp(x) = Ly (p(Rs5x) — p(Rsx))
= gO(RlORg,X) — (,D(R7R5X) — gD(RloRgX) + (,D(R7R8X).

Using the Cayley table given below, we have

L1 L3p(x) = o(Rex) — p(Rix) — p(Ri1x) + ¢(Rox)

= 2¢(Rex) — 2¢(R1x)

Similarly,
L3L1 = 290(R1X) — 2%0(R3X)
and thus,

[L1, Ls]p(x) = 2¢(Rax) + 20(R3x) — dp(R;1x)

= —2L7p —4Lgyp
as expected. Further, the generators

Zy =01+ 03 + 03
Z3 = 04 + 07 + 99 + 019

Zy = 05 + 06 + 08 + 011
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commute with all the generators L; and with each other and they may not appear
on the right hand side of the commutators between Ly, --- , Ls. We write down the
Cayley table again here for the convenience of the reader who may wish to check

these calculations.

Table A.1: Cayley Table of Tetrahedral Group

I |Ry |Ry |Ry | Ry |Rs |Re | Ry | Rs | Rg | Rio | Rna

I 1 Ry |Ry |Rs |Ry |Rs |R¢ | Ry | Rg | Ry | Rio | R1a
Ry | Ry |1 Ry | Ry |Rio|Rs |Rs | Ry | Rin | Ry | Ry | Rg
Ry || Re | Ry | I Ry |Ry |Rs |Rii | Ry |Rs | Rio| Ry | Re
Ry | Ry |Re | Ry |1 Ry | Ry | Rs |Riwo|Re | Ry | Ry | Rs
Ry |Ry |Ry | Ry |Riwo|Rs |Rs |Ri |Rg |1 Ry | Rs | Ry
Rs |Rs |Riu | Re |Rs |Ro |Ro |Ry | Ry | Ry |1 Ry | Ry
Re |Re |Rs |Rs |Rii|Rs | Ry |Rigp| Re | Ry | Ry |1 Ry
Ry | Ry |Ry |Rio| Ry |Rs |R1w |Ry |Rin|Re |Re | Rs |1
Rg || Rg | Re | Ruy | Rs | 1 Rig| Ry | Ry | Ry | Ry | R3 | Ry
Ry || Ry | Rio| Rse | Ry |Re |1 Ry |Rg | R3s | Rs | Rin | Iu
Rig| Rio| Ry | Ry |Ry |Rii| Ry |1 Rs |Ry | Rs | Re | R3
Ryu||Ru|Rs |Rs |Re | Ry | Ry | Ry |1 Ry | Rs | Ry | Ry




Appendix B

Detailed Calculations from

Chapter 4

B.1 Order by Order Calculation of /A

Expanding 0 A in terms of B as per (4.18) and substituting B[A] up to fourth order,

we arrive at the following expression
0A7; = cAic + / ['(123) Asc Asc +/ ['(1234) Asc Asc Az
23 234

+ / F(12345)A§GA30A1GA5G
2345

+ 8/ T<123) (A2G+/ F(§45)A4GA5G+/ F(§456)A4GA5GA6G) X
23 45 456

X (Ag +/ F(378)A7A8+/ F(3789)A7A8A9)
78 789

+ 5/ T(123) [ As + F(§45)A4A5+/ F(§456)A4A5A6) X
23 45 456

X <A3G+/ F(378)A7GA8G+/ F(3789)A7GA8GA9G)
78 789

+ 6/ T(1234) (A2G+/ F(256)A5GA6G> <A3+/ F(378)A7A8) X
234 56 78
X (A4 + / F(Z.l:g 10)A9A10>
910
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+ 8/ T(1234) (A2 +/ (256)A5A6) (A3G +/ F(378)A7GA8G) X
234 78
X A4 ‘I’ 49 10)1491410)

910

+ Y (1234) (A + [ T(256)As A) (A3+ / F(378)A7Ag) x
78

X (A 49 10)A90A1—OG)
910

+ 5/ T(12345)A§GA3A4A5+6/ T(12345)A§A3GA4A5
345 3

2345

+ 8/ T(12345)A§A3A4GA5+8/ T (12345) A3 A5 A3 A56.
345

2345

Despite looking horrendous, when like terms are collected and their coefficients

calculated the expression simplifies into something more tangible. We shall collect

terms order by order. The reader may wish to study an example to lower orders

first, say cubic terms to become used to the calculations. First order is trivial, we
get 0 A =cAic+---.

Second order isn’t much more difficult, we simply find the terms that are quadratic

in the A fields when expanding out the brackets. We get
0A; = cAje + 5/ {I'(123) Asc Asc + Y(123) Asc Az + Y(123) A3 Asc } + - - -
23

Further, when I" and T are expressed in terms of their independent momenta the

expression is

A ' i A
5141 = SAlG —+ 5/ { (23> A2GA3G — (23) AQGA?) (23> A2A3G}

Third order gets more tricky. Taking the third order terms out of the expansion, we

get
+ 5/ F(1234)AQGA3GA4G+
34

+ 6/ T(123)F(378)A2GA7A8+6/ T(123)P(Q45)A4GA5GA3
2378 2

345

+ 8/ Y (123)T1'(378) A3 A= Age —|—€/ Y (123)1'(245) Az A5 Asc
2378

2345

+ 8/ T (1234) Azc A3 Az -0—8/ 1 (1234) A3 Az6 Az
234 234
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+ 8/ T (1234)A3A3A56 + - -+ .
234

Now we carefully change variables of integration, maintaining the order of the fields

since they contain group matrices, and collect terms,
-+ 6/ {F(1234)A§GA3GA4G + T(154)F(523)A§GA3GA4 + T(125)F(534)AQA3GA21G+
234
+ {T(125)T'(534) + T(1234)} Azc AzA; + { T (154)T'(523) + Y(1234)} A3 Az Az +
+ T(1234)A2AgcA4} + e
where ps is minus the sum of the remaining arguments in the coefficient. For exam-
ple, in the second term, p5s = —p; — py = +p2 + p3. Remarkably, when expressed in
terms of their independent momenta they reduce to simpler expressions, in particu-
lar the fourth and fifth terms whose coefficients are {T(125)I'(534) + T(1234)} and

{T(154)T'(523) + T(1234)} respectively reduce nicely. For example, take the fourth

coefficient bearing in mind momentum conservation, 1 +2+ 3 +4 =0,

T(125)1(534) + T(1234) = <—i(215)> (%354)) " (213) (334)

taking out a factor 1/(34) gives

1 (142 3
a0\ @)

then putting the expression in brackets under a common denominator and expanding

out terms on the numerator

(34) (12)(23)
giving L L
2 12

(12)(23)  (23)(2,3+4)°

Expressing the coefficients in this way and using momentum conservation to express

the denominators in a certain way, the third order expression is

8/ {i(j AQGA?,GAZLG 4 i(j AQGAgGAZl i i(j AQAgGAZLG

a L(@2)(@.2+3) " (¢,2)(q,4) (,3)(q, 1)
1§ Ase Az 4z 1§ AsAsc Az 1§ AsAzAsc
(0.3)(@.3+4) " (¢.9(¢.4+1) (¢, 1)(q.1 +2>}
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where for any term with As -+ Aje -+ - Aje - - Ag, ¢ is defined to be ¢ = p; +- - - +p;.
Given these expressions it is tempting to substitute ¢ = p; +- - - +p; and simplify the
coefficients further. However, we write the terms like this deliberately because as
we shall see fourth order terms follow a similar pattern which would not otherwise
be visible.

We can collect together terms that are quartic in A within the confines of an A4

page too. Doing so, and carefully relabeling variables of integration, we arrive at

- +€/ {F(12345)A20A3GA4GA5G+
2345

+ T<165)F( Ase Ase Aze As + T(126)T (6345)A§A3GA210A5G+

+ Y(1265)T'(634

34)
+ {Y(167)T(623)(745) + T(1645)1'(623)} Azc Azc Az As+
)T(634) A3 Ase Az Ag+

)T(623)0
)T(63

+ {Y(167)T(623)I'(74

5) + Y (1236)T(645)} As Az Aze Ase+

45) + Y(1236)T(645) + Y(1265)T(634) + Y(12345)} Ase Az Az A5+
1
(

(
+{r(126)r'(6
+ {T(1236)1'(645) + T (12345)} A3 Aze Az As+
+ {T(1645)T(623) + T(12345)} A3 A3 Aze As+
+ {T(165)T(6234) + T(1265)T'(634) 4+ Y (1645)['(623) + T (12345)} A2A3A4A5G}

4+ ...
(B.1.1)

The above expression simplifies in a similar way to earlier. We shall state the result

first, and give an example of one of the calculations. The others are similar, the



B.1. Order by Order Calculation of JA 123

most complicated ones can be checked on a computer algebra package. We have

s / . { 14* Ase Aze Age Aze y iCj2AQGAgGA4GA5+

235 L(4:2)(q,2+3)(q,2+3+4) (¢,2)(q,2 + 3)(g,5)
iqA2A§A§GA21GASG i(j2A§GA§GA21A5
(¢:3)(q,3+4)(¢, 1) (¢,2)(¢q,4)(g;4+5)

W@%Mw%+7W@@MMW
(¢,3)(4,5)(q,5+1)  (g:4)(q,1)(q,1 +2)
142 Asc A3 A7 Az 142 A5 Azc A7 As
+ - -
(¢:3)(q,3+4)(¢.3+4+5)  (q,4)(¢,4+5)(q,4+5+1)
iqAZAQAgAzLGAg 1Q2A§A3A4A5G }
+ + SEEEE
(¢,5)(¢;5+ 1)(¢,5+1+2) (¢ 1)(q.1+2)(¢,1+2+3)
(B.1.2)
As an example, let us take the fourth term
_ . _ 12+3) 445 4
Y (167)[(623)T(745) + T(1645)T(623) = —
(167)T(623)T'(745) + T(1645)1/(623) %%x%){@+&4+m (2+&®}’

upon expressing the coefficients I' and T explicitly in terms of their independent
1(2+3)

momenta and taking out a factor ¢ ISR

Further, we substitute py + p5 = —p1 —

p2 — p3 and take out a factor of —1

o 12+8) [ 14243 4
T R)@) | 213415 234 ([

Let us call ¢ = 2 + 3, and put the term in brackets under a common denominator

ie,

i (e +iag)
@@\ Loy )

Now expand the numerator, two terms cancel, then a factor of § can be taken outside

the bracket giving

1¢° L 1(2 + 3)2
BB T Y T e e

Then using momentum conservation, we get the simplified coefficient

=—i

1
(¢,2)(q,4)(q,4 +5)

where ¢ = ps + p3. Calculation of the other terms is equally as simple.

T (167)1'(623)0(745) + T (1645)T'(623) = i
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B.2 Order by Order Calculation of §A4

We expand § A in terms of the free field B, B, §B and 6 B and as per (4.21). Working
to third order only. In a similar fashion to the calculation of appendix (B.1), we

substitute the inverse expressions, B[A] and B[A, A] which is given by the expansion
_ S 3 - _
Bi = A; +/ { Z0?%(123) A3 A5 + T@3(123)AQA§, +

23

1
SR SN SO _
+ T@ (1234) A3 A5A; + T@ (1234)A3A5A; + TQ (1234)A3A5A5 ¢ + -+ - .

Performing this substitution, maintaining third order terms only, we arrive at

_ _ 5 - 3 =<
6/41 _ —5141(;*1 + g/ T@2(123>AQG71A3G71 +€/ T@3<123)A§G71A3G71 +
23 23

+ 5/
234
+ 5/
234

2 — 4 o 5 s _
+ ¢ / ZE2(123) | Aye—1 + / =0%(245) A1 Ase1 + / =0%(245) Age-1 A1 | x
23 1 45 2 45 2
X (Ag+/ F(367)A6A7)
67

_ i, 5 _
=%(123) <A2+ / 562(245)A;1Ag+ / §@3(245)A4A5> X
45

_ 3 _
@4(1234)A§G—1Agg—1A40—1 + 5/ 7@3(1234)AQG—1 A3G71A4G71

234 1

= D> = s

@2(1234)Z§G71 Aggfl AZLG71

—>| D>

_6/
23

45 2

X (Agc —l—/ F(367)A6GA7G)
67

— 5/ 353(123) <A2G+/ F(§45)A4GA5> X
23 1 45
_ 6 - 7 5= _
x | As + -0 (367)145147 + =0 (367)146147
67 3 67 3

+ 5/ 3@3(123) (A2+/ r(245)A4A5> X
23 1 45

N

_ 6 _ —
X Agcfl +/ 752(367)A6G71A7G71 —l—/
67 3 67

2 — 2 _
752(1234)14@14301421 — 8/ 752(1234)14@1431440

234 1

Wl ~

ES (367)266‘71 A7G71 >

—] N>

=2(1234)Ago-1 A3A; — € /

234 1

+ 8/
234
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5 _ 5 _ 5 _
- € == (1234)A§GA3A21 +e == (1234)14@143@71 Aj—¢ == (1234)AQA3A21G
234 1 234 1 234 1
i, _ i, _ i, _
— £ == (1234)A§GA3A21 — & = (1234)A§A3GA4 +e = (1234)AQA3Azlg—l
234 1 234 1 234 1

+

Again, we shall collect terms order by order we shall see that we have already done

most of the work already when calculating the coefficients in appendix (B.1). First

order is again trivial, we get 64, = —eZle + ---. At second order we can pick

out the terms and express = and © in terms of independent momenta, no extra

calculation is required.

A, = —eA g 4 e /

23

{

+

As per [31] we have

E2(123) = —Y(231) = i——

[1]

[1]

o] QO ] N> | B>

2(123)Z§G71 Ag —

3(123) A Ag +

=] N>

=2(123) A3 Asc

=] Q>

A

2
(31)

Z3(123) = —Y(312) = i

and we can deduce for ourselves
©%(123)

©°%(123)

so to second order we find

Ay = —cAoi —c /

23

i

_'_._/R

(12)

—T(231) = ~iEg

ol Q> | N> | B>

— 3 —
@2 (123)AQG71 Aggfl + T@S (123)142(;71 A:—J)Gfl

53(123),4@23@1} 4
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Finally to third order, careful inspection of the expansion will produce the following,

where we have carefully relabelled variables,

+
o

2 — 3 —
/ {T@2<1234>AQG1 Agcfl Az—lgfl + T®3(1234)A§G71 Agcfl Azlcfl
234

64(1234)A§G*1 Aggflz‘—lcfl

—> v

D
52(154)362(523)1456;4 Age1 Az

[1]

2(125)T(534) Aye—1 Az Az +

A

2(154)%@3(523)A2G_1230_1 Az

(1]

[1]

2(125)T(534) A3 Az Aze — ?

2
52(154)561(523)14@143144@

[1]

?(154)>0%(523) A3 A3 Ase

Q> U] Lo

(1]

3(125)=02(534) Asc Az Az —

> oo

4 4 _
z 53(125)3@3(534)A§GA5,A;1

$(154)T(523) Age Aza Az

[1]

[1]

3 o — 5 4 _
3(125)392(534)/1@,436;,1AEG,1 + T53(125)g@3(534),4@,43(;,1AEGA

(1]

3(154)I'(523) Az Az Ao

(1]

2(1234) Ayo-1 A3 Az — SE%(1234) A3 Aza Ag — SE%(1234) A3 Az Age

o1 N> 0] s ] OO ] QO | QOO | OO | RO 5] GO | N> =] o

=] D>
] D>

—> Qo>
[1]
=] Q>
=] Qo>

3(1234)A§GZ3A21+ 53(1234)14@23@71‘44— 53(1234)A§Z3A10

—> ] >
[1]
=] >
] s>

4(1234) Age A3 Az — ~Z*(1234) Az Ase Az + E4(1234)A§AgZ4G_1} e

We shall persevere and collect terms and use relations (4.16) and (4.11),

A\ 2 AN\ 2
2 — _
. 6/ { — <T> F(1234)AQG_1 Agc—l Azlg—l _— <%> ]‘—‘(1234)14?@_11430_1 AZlG—l
234

A\ 2 A\ 2
4 — 2 _
— <T> ]_—‘(1234)145@71 Aggfl AZLG*1 - (T) T<154)P(523>A§G71 AggflAZl

4

A\ 2 2
- (%) T(154)T'(523) Age—1 Age—1 Ag + (1) Y (154)'(523) Asc Asc Aj
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—] D>

()

2

=] o

2

2

=] >

3
— (2]
AN\ 2
(2
1
AN\ 2
(3
+ |z
i
AN\ 2
(4
T |z
i
AN\ 2
5
+ |z
£
AN\ 2
(3
+ |z
i

T (125)T(534) A3 Az Aze — <

4
1

=] Q>

T(125)F(534)AQA3G—1 zicq + <

A

2
%) Y (1234) Az Azc Az

2
) T (1234) A3 A3 Az

{Y(125)0'(534) + Y (1234)} Ay A3 A
{Y(125)['(534) + Y (1234)} Azc AzA;
{Y(125)T(534) + Y(1234)} Ase Az Az
{Y(154)T'(523) 4+ Y(1234)} A3 Az Asc
{Y(154)1'(523) + Y (1234)} A3 A3Asc

{T(154)T'(523) + Y (1234)} AQAEZ4G_1} e

2
) T(125)T(534) Az Age-1 Age

Fortunately, now, we have already calculated the above expressions enclosed in

parentheses in I' and T in the previous calculation of JA in appendix (B.1) so

we do not need to do these again. We can reach the result

<[ -6

2 . —
1qAA§G71 Aggfl Azlel

(q,2)(q,2+3)

)

0

2 . —
1qAA§G71 Aggfl Azlel

(q,2)(q,2+3)

N _ N2 .
(3 1A Age Ao (2 101 Agei Ay
1 (¢,2)(¢,2+3) 1 (¢:2)(g,4)
N2 . _ N2 _
_ § 1(}142@—1 ASG—I Aj é 1gAsc Asc Az n
i (¢,2)(q,4) 1) (4,2)(q.4
N2 . N2 ..
+ 2 1qAA§A3GA4G . 3 12A2A3G71A4—1G71 o
1) (4.3)(g,1) 1 (¢:3)(¢,1)
N2 . _ . -
4 1qAA§A3G71 A 2 1GA5Az6 Az
1 (¢:3)(q, 1) 1) (¢4)(g,4+1)
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A\ 2
3
i
A\ 2
2
i
A\ 2
4)
+ | =
i
A\ 2
3)
+ | =
i

1CjA§G AgZzl

(¢,3)(q,3 +4)

1GA5 A5 Aze

(¢, 1)(q,1+2)

1GA5 Az Ay
(¢,4)(g,4+1)

1QZQA3A1G
(q,1)(q,1+2)

% iéAQGZgA;l B
1) (¢,3)(¢,3+4)
>2

(B.2.3)
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Detailed Calculations from

Chapter 5

C.1 Order by Order Calculation of A® up to Quar-
tic Terms

In §(5.3) we wrote down A® in terms of the free field y, (5.26). Carefully substituting
the inverse field redefinition, (5.16) being careful to label the arguments correctly

and maintain the order of the fields, we arrive at

5@1 = 55(1)1 +€/

23

) {D(123)CI)QCI)3} + 6/ ) {D(1234)<DQCI)3(I)21}

234

+€/ 0 {D(12345)P;D3D;P5}
23

+e/23 C(123) <5<I>2+/455{D(—245)(I>4<I>5}+/ 5{D(—2456)(I>4<1>5<I>6})><

456

X ((I)g—l-/ D(—378)P7d5 + D(—3789)@7@g@g)
78 789

+€/ C'(123) (@Q —l-/ D(—245)D;P5 —l—/ D(—2456)(I)21(I)5(I)6) X
23 45 456

« <5q>g+ / 5 {D(—378)5Ds} + 6{D(—3789)<I>7<I>g<bg})

129
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+ 6/ C'(12345)5P; D3P D5 + 8/ C'(12345) P50 D3P D5
2345 2

345

+€/ 0(12345)®§q>g5@4®5—|—5/ C'(12345)D;P5P50P5. (C.1.1)
2345 2

345
This is a somewhat cumbersome expression but we proceed by collecting like terms.

First order is simply A®; = ed®P; + - --. Second order gives us
R 6/ ((5 {D(123)P5P3} + §P5C(123) P35 + C(123)<I>26<I>3) + -
23

and further, when the coefficients C' and D are written explicitly in terms of their

arguments, rearranged and momentum conservation used this becomes (5.27),
q ey Ten 4 S
ce— 5/ {Té{D(_ 23)D;P3} + T5<I>2D(— 31)®5 + TD(_ 12)(1325(I>3}.
23

We shall now extract the third order terms, carefully multiplying out the brackets

and keeping terms cubic in ® and then relabeling variables of integration. We arrive
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at

-+ 8/ {5 {D(1234)P5P3D3} +
+ C(154)8 { D(—523)P5P3} &5 + C(125)P30 { D(—534) P55} +
+ 005 {C(125)D(—534) + C(1234)} D3P+
+ {C(154)D(—523) + C(1234)} D3P36Pz+

+ C(1234)c1>25<1>3<1>4} o

and the first argument of the kernels C' and D is equal to minus the sum of the
remaining arguments. For example, in the second term, —ps = —ps — p3 = p1 +
ps. Now write individual terms in terms of the independent momenta using the

expressions (5.15) and (5.17) to arrive at our third order expression

AAAA A A

—5234 54
..._|_5/234 {5{ (572)(5,2 n 3) @Q@g@;} — (5,4)(5{ (_5,2) (I)Q(I):")}(I)ZL

25 34 2234
— Py D3D;) 4 6D, D3D;
(2,5) ° {(—5,3) 3@} + 2(2,3)(2,3+4) *°
2324 2342
Dy + BsD30D;
BaAEA+D) T 4(4,1><4,1+2>}

+P50P5

These calculations are almost identical to those performed in appendix (B.1)
so the reader may wish to check these calculations by referring to this paper to
verify that the final expression is indeed (5.28). The fourth order expression is also
calculable without a great deal of effort. By writing the fourth order terms out,
and then expressing them in terms of independent momenta in the above manner,
we find that the calculations are again similar to those in appendix (B.1) (See the
equation (B.1.1)) and so proceed with the calculation in the same manner to find

simpler expressions, and then write in terms of the kernel D. We get
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ce = 6/ {25 {D(— 2345)@@@3@4@5} + %5 {D(— 234)@@@3@4} D(q51)<1>5
2345
Y D(— 12) + %5{1}(— 23)y®3} D(— 45)D;05

+ 29,6 {D(— 345) 3D ®s

+ 29,6 {D(— 34)03D1} D(g51)®5 + %%@35{17(— 45);D5}

> Ry =

+ %&DQD(— 3451) D3 D5 + Lbydds D(— 4512) D3z

Ky =

~

+ %%@35@;@(— 5123)s +

D(_ 1234)(1)2@3@45(1)5} + ...

~

—_

(C.1.2)

It is not hard to envisage that this continues to all orders and we can therefore

hypothesize a final result to all orders in perturbation theory, given by (5.29)
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