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Abstract: Several classic one-dimensional problems of variational calculus originating in
non-relativistic particle mechanics have solutions that are analogues of spatially homogeneous
and isotropic universes. They are ruled by an equation which is formally a Friedmann equation
for a suitable cosmic fluid. These problems are revisited and their cosmic analogues are pointed
out. Some correspond to the main solutions of cosmology, while others are analogous to exotic
cosmologies with phantom fluids and finite future singularities.
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1. Introduction

Several classic one-dimensional problems of mechanics solved with variational calculus have
analogues in spatially homogeneous and isotropic (or Friedmann-Lemaitre-Robertson-Walker,
hereafter “FLRW”) cosmology. The analytical solutions of these problems often correspond to
particularly important solutions of FLRW cosmology. One can build in the laboratory many
physical systems that are analogous to curved spacetimes describing black holes or universes,
using which one can study curved space quantum effects such as Hawking radiation, particle creation,
or superradiance. These systems include Bose-Einstein condensates and other condensed matter
systems [1-14], fluid-dynamical systems [15-27], and optical systems [28-32] and they have originated
the field of research known as analogue gravity (e.g., References [33-37]), part of which focuses on
analogues of FLRW cosmology in Bose-Einstein condensates [2-7,10,34,38—41]. Cosmic analogue
systems can also be created with soap bubbles [42,43] and capillary fluid flow [44]. Less known
analogues for cosmology, which involve natural systems outside of the laboratory, include glacial valley
profiles [45,46], equilibrium beach profiles [47], the freezing of bodies of water [48], and the Omori-Utsu
law for the aftershocks following a main earthquake shock [49].

Let us go over the basic concepts of FLRW cosmology to fix the notations and the terminology.
The Einstein equations read (we use units in which the speed of light is unity and we follow
the notations of References [50]) [50-52]

1
Rab - E gabR + Agab = 87TGTab ’ (1)

where G is Newton’s constant, g, is the spacetime metric, R is the Ricci tensor, R = R*, is the Ricci
scalar, A is the cosmological constant, and T, is the stress-energy tensor of matter.

The FLRW line element is (the fact that the scale factor depends only on time (i.e., the high degree
of symmetry of FLRW spaces) requires analogue problems to be one-dimensional)

ds®> = —di? + a* (1) [ +r? (d92 + sin29d(p2)] )
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in comoving polar coordinates (f, 1,6, ¢), where the curvature index K can be normalized to K = 1,0, —1
(although this is not necessary), corresponding to a universe with closed three-dimensional spatial
sections, Euclidean spatial sections, or hyperbolic 3-sections, respectively [50-54].

The matter content of the universe causing the spacetime curvature is usually modelled by
a perfect fluid with stress-energy tensor

Tap = (P + p) uqup + Pgap, 3)

where u? is the four-velocity of the fluid and of comoving observers, while the energy density p(t)
and isotropic pressure P(t) are related by some equation of state. Usually the latter has the barotropic
form P = P(p) and often (but not necessarily) P = wp with w = const. Formally, the cosmological
constant term can be treated as a special case of a perfect fluid with effective stress-energy tensor
Ta(;\) = —Agu/(87G) with effective equation of state PA = —pp = —gag-

The scale factor a(t) of the FLRW metric (2), the energy density p(t) and the pressure P(t) obey
the Einstein-Friedmann equations

.\ 2

a 871G K
sz<a> =, @)
i 471G
gz—T(p—H%P), )
p+3H(P+p) =0, ®)

where an overdot denotes differentiation with respect to the comoving time t and H(t) = a/a is
the Hubble function [50-54]. Only two equations in this set are independent: given any two of them,
the third one can be derived from the others. Without loss of generality, we choose the Friedmann
Equation (4) and the energy conservation Equation (6) as independent, while the acceleration
Equation (5) follows from them.

If the cosmic fluid satisfies the barotropic equation of state P = wp with w = const., the covariant
conservation Equation (6) integrates to

_ _Po
pla) = aBw+1) ° %

Further, if the universe is spatially flat (i.e., K = 0), the corresponding scale factor is

M
|t _ t0|3|w+1\ '

a(t) = ®)

Solution methods, phase space, and analytic solutions of the Einstein-Friedmann equations
are reviewed in References [55-57]), while References [45,58,59] report new results. In particular,
a mathematical property of the Friedmann Equation (4) relevant here and proved in Reference [59] is
that the graphs of all solutions of this equation are roulettes. A roulette is the locus of a point that lies
on, or inside, a curve that rolls without slipping along another given curve. Special cases include the
elliptical cycloid, which is the curve described by a point on an ellipse as the latter rolls on the x-axis.
When the ellipse reduces to a circle, one reproduces the ordinary cycloid (the trajectory of a point
on the rim of a bicycle wheel as the bicycle advances at constant speed on horizontal ground) and is
probably the most well known roulette.

It may seem that a complete analogy between the Einstein-Friedmann equations and the physical
systems that we will consider is not complete because in the latter the dynamics is described by
a single differential equation (analogous to the Friedmann equation), while the universe is described
by two equations of the set (4)-(6). This is not the case because the information contained in
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the second equation (say, the covariant conservation Equation (6)) has already been inserted into
the first one (the Friedmann equation (4) by using the scaling (7) of the perfect fluid energy density
and of the curvature term with the scale factor a on the right hand side of Equation (4), or a similar
functional dependence p(a) that characterizes the perfect fluid (for example a non-linear equation
of state). Therefore, when we refer to “the Friedmann equation” we mean Equation (4) plus this
extra ingredient, which makes the analogy complete. All the equations for physical and geometrical
problems considered in the following have a form that already includes some familiar dependence
p(a) of the fluid energy density on the scale factor and makes it suitable for a complete analogy.

In the following we review the most celebrated textbook problems of variational calculus in one
dimension, building cosmological analogies where possible.

2. Geodesics of the Euclidean Plane and a Not-So-Trivial Analogue

A simple variational problem consists of finding the geodesic curves extremizing the length
between two fixed points in the Euclidean plane. The infinitesimal arc length along a curve y(x) in
this plane is dl = \/dx? + dy? = /1 + y2 dx, where y' = dy/dx. The finite length betwen two fixed
points along this curve is the functional of the curve

T Iy(x)] —/fdl—/:zdx,/uy/zz/:de(y’(x)). )

Since the Lagrangian L does not depend on y, the canonically conjugated momentum 9L /9y’
is conserved,

/!

Y
=C 10
V1+y? (o
or )
"2 C
= 11
which integrates trivially to y(x) = % x + D, giving straight lines as the geodesics of the Euclidean

plane. This equation gives also

N\ 2 2
C
() =%

(Where C% = C?/(1 — C?)) and the analogous Friedmann Equation (4) is

Ct
2_ -1
H* = - (13)
It describes an empty cosmos with hyperbolic (K = —1) spatial sections, known as the Milne

universe. This solution of the Einstein-Friedmann equations is nothing but Minkowski spacetime
in disguise because of a hyperbolic foliation (i.e., in accelerated coordinates). In these coordinates,
flat spacetime is sliced with negatively curved spatial sections, all the components of the Riemann
tensor vanish identically, but the intrinsic curvature of the spatial 3-sections does not [60].

The function H(a) is given in Figure 1.
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Figure 1. The functions H(a) for the problems discussed. The curves correspond, respectively,
to the catenary/minimal surface of revolution problems (black, solid); the brachistochrone problem
(blue, dashed); the problem of the Poincaré half plane geodesics (red, dash-dotted); the gravity tunnel
problem for K = —1, 0 (green, long-dashed) or K = 1 (black, solid); and the terrestrial brachistochrone
problem (chocolate, dotted).

3. The Catenary Problem

Consider a heavy string hanging in a vertical (x,y) plane and described by the profile y(x).
The linear density is y = dm/dl, where dl = /dx? + dy? = /1 + (y')? dx is the elementary arc length
along the string. The gravitational potential energy of an element of string of length dI located at
horizontal position x is dE; = pugy(x)ds. The total gravitational potential energy of a string suspended
by two points of horizontal coordinates x; and x; is the functional of the curve y(x)

Eg [y(x)] = ug /TZ dxy\/1+ (y')> = /Tz Ldx. (14)

The Lagrangian L (y(x),y’(x)) does not depend explicitly on the coordinate x and, therefore,
the corresponding Hamiltonian is conserved:

AL,

’H—a—y,y—L:cl, (15)

where c; is a constant. Equation (15) (known as the Beltrami identity) simplifies to

L
eI 1

which has catenaries as solutions [61].
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Although not necessary, the variational principle is sometimes imposed subject to the constraint
that the string length between x; and x; is fixed, which changes the variational integral to

T = [ 01 2, (17)

where A is a Lagrange multiplier. A shift y — i = y + A reduces this problem to the previous one.
The cosmological analogue of Equation (16) corresponds to a well known situation in cosmic

physics. This equation is recast as
I\ 2
1 1
(]/) = 5 (18)
y iy

the analogue of which for the scale factor a(t) reads

A1

H ===, 19
37 (19)

where A = 3/C? > 0is the cosmological constant. We continue the discussion in the next problem,
which leads to the same cosmic analogue.

4. Minimal Surface of Revolution and Its Analogue

Another classic problem of variational calculus is that of the minimal surface of revolution.
Let y(x) join two points in the vertical (x,y) plane and rotate this curve about the vertical (or y-) axis.
The problem of finding the curve that achieves the surface of minimal area is solved by extremizing

the area integral [61]
_ [ / A

A practical application is given by soap bubbles between wire frames. Since the energy of a soap
bubble is proportional to its area, nature tends to minimize it and to achieve the minimal surface of
revolution when soapy water is placed on a wire frame obtained by rotating about the y-axis a wire
shaped as the graph of y(x).

4.1. Dependent Variable x = x(y)

It is now convenient to take x(y) as the dependent variable instead of y(x) and to rewrite

the integral as
Y2 dx\? _ v dx
) = ["avn 1+ (5) = [(ave (x5 ) en

where 17 = y(x12). Since 0L/9dy = 0 the corresponding Hamiltonian is conserved,

oL , xx'? )

where C is a constant and now x’ = dx/dy. Manipulation of this equation yields

which is solved by separation of variables, leading to

/\/xzd’iiy:ln(\/ﬂ—cux):y_cyo (24)
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where y( is an integration constant. By exponentiating both sides, a little algebra gives easily

the solution , ) )
x(y) = 3 (e% +C2%~ ijo) . (25)

The initial conditions C = %1 yield the catenary curve

x(y) = cosh (y — yo) (26)

and yy = cosh ™! xg where xo = x(0).
The cosmic analogue is obtained by rewriting Equation (23) as

2
x' 1 1
(x) @ e @7)
The analogous Friedmann Equation (4) is

1

A
H? =
3
the right hand side of which contains a contribution from the positive cosmological constant A = 3/C?
and a contribution from the curvature term —K/a?> with K = +1. The analogous universe is well

known as the positively curved universe with no matter and a pure (positive) cosmological constant;

it evolves with scale factor
3 A
a(t) = \/I cosh [1/ 3 (t— to)] ) (29)

This catenary history of the universe includes a contracting phase (eternal in the past) for t < ¢,
a bounce (made possible by the fact that the cosmological constant violates the strong energy condition
and avoids the singularity) at t = to, followed by external expansion for ¢t > t;. The universe
asymptotes to the de Sitter space with scale factor

ags(t) = % exp l\/? (t— fo)] (30)

4.2. Dependent Variable y = y(x)

ast — +oo.

In this case the Lagrangian is

L(xy (x)) =x\/14+y?; (31)

since dL/dy = 0 the canonically conjugated momentum is conserved,

oL xy’
—_—_ ___C 32
A \1+y? 2
This equation leads to
C
y = . (33)

22— (2
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which integrates to y(x) = Cln (\/ x2—C2+ x) + const. and manipulations lead again to x(y) =
cosh (y — yp) if C = +1. There is no cosmic analogue with this choice of variable because the putative
analogue of the Friedmann equation
2 C2
L = (34)
v (-0
contains x explicitly, contrary to the Friedmann Equation (4) that does not contain t explicitly.
The function H(a) is given in Figure 1, while the scale factor a(t) is reported in Figure 2.

t

Figure 2. The scale factor a(t) for the problems discussed. The curves correspond, respectively, to
the catenary/minimal surface of revolution problems (black, solid); the Poincaré half plane geodesics
problem (blue, dashed); and the gravity tunnel problem (red, dash-dotted).

5. Cosmic Analogue of the Brachistochrone Problem

The brachistocrone is the curve in the vertical plane that connects two given points
(not on the same vertical) and such that a particle sliding on it without friction arrives at the bottom
in the minimum time. The classic problem of finding this curve was posed to the elite mathematical
community by Johann Bernoulli in 1696 [62].

The speed v of a particle falling from rest (vp = 0) from the height y is given by

energy conservation,

2
mo
= M8y (35)

(where g is the constant acceleration of gravity), from which one obtains the well known result
v = /2gy. The descent time from point 1 to point 2 along the curve y(x) with arc length dI =

Vdx? +dy? is

2 2 X7 2 X7
Tl = [far= (5= [Tan [ = [MaLe,ve), (36)
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where y(x) are trajectories from 1 to 2 in the vertical (x, y) plane, and a prime denotes differentiation
with respect to x. Clearly, it must be y > 0. The descent time is extremized, §] = 0, if L satisfies
the Euler-Lagrange equation.

Since dL/dx = 0 the corresponding Hamiltonian is conserved,

where Cj is a constant. This Beltrami identity can be written as
y(1+y?) =G (38)

(with C; = —1/(Cp/2g) > 0), from which one obtains

2
C (39)
y

which has a cycloid (the prototypical roulette) as its well known solution [61]. One can divide both
sides of Equation (39) by y? to obtain

(y’)z _G 1 )
y A
which is analogous to the Friedmann equation
871G 1
2 _ 0
H” = 33 2 (41)

describing a closed (K = +1) FLRW universe filled with a fluid with equation of state parameter
w = 0, that is, a dust with energy density scaling as p = po/a>. It is significant that the energy density
comes out positive, which could spoil the analogy if it was not true and is not to be taken for granted
when building analogies. This is a very simple matter-dominated universe and a classic textbook case.
The solution is expressed in parametric form by

ay) = Z(—cosy), @)

i) = 2 -sing), 3)

where the parameter 7 is the conformal time, the initial condition a(t = 0) = 0 has been imposed,
and C; = 8mGpy.

On the mechanical side of the analogy, the parameter # (the analog of conformal time) is defined by
dx = ydy, which means that small increments of # are small increments of the coordinate x measured
in units of the height of the point lying on the brachistochrone curve.

Equation (39) shows that ' — co as y — 0: the curve must start vertical, with a cusp, at its highest
point. On the cosmology side of the analogy, this peculiarity corresponds to the fact that a universe
filled with dust and positively curved necessarily begins at a Big Bang singularity; this is a special
case of the general Hawking-Penrose singularity theorems satisfied by matter obeying the null energy
condition (in this case, dust satisfies also the strong, weak, and dominant energy conditions [50]).

The function H(a) is given in Figure 1, while the scale factor a(t) is reported in Figure 3.
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Figure 3. The scale factor a(t) for the remaining problems discussed. The curves correspond,
respectively, to the brachistochrone problem (black, solid) and the terrestrial brachistochrone problem
(blue, dashed).

6. Geodesics of the Poincaré Half-Plane

The Poincaré half-plane is the upper part of the (x,y) plane with y > 0 and the metric given by
the line element .
ds? = 7 (dx2 + dy2> (44)

conformal to the Euclidean metric. The arc length along a curve y(x) is dl = +/dx%+dy?/y
and geodesics are found by extremizing the finite length

X /1 2 X2 ,
Iy (x)] =/Xl dx%zfxl dxL(y,y') (45)

between two given points. Since dL/dx = 0 the corresponding Hamiltonian is conserved,

oL
a—y/y’—L:C<0, (46)
which yields
1
— = —/1+y2. 47
cy~ Vity (47)
The solutions for C = —1 are half-circles perpendicular to the x-axis.

The cosmic analogue obtained from Equation (47)

1 1
2
H=ai 2 (48)
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describes a positively curved (K = +1) universe filled with a radiation fluid with equation of state
P =p/3and p = po/a* po = ﬁ. This is another classic textbook example with scale factor

2
a(t) =V’ 1—(1—(;) , (49)

where C’ = 1/C?2. This analogy was already discussed in Rindler’s textbook [63] and in Reference [42].
The function H(a) is given in Figure 1, while the scale factor a(t) is reported in Figure 2.

7. The Gravity Tunnel

A popular problem in introductory physics courses consists of analyzing the motion of a particle
through a tunnel dug out along a diameter of the Earth, which is modelled as a uniform sphere [64—69]
(see Reference [70] for a non-uniform sphere). A homogeneous sphere of mass M and radius
R has density ps = 43;?1/{[3 and the spherically symmetric Newtonian potential ®(r) satisfies the
Poisson equation

1.d [ ,d®
- = ) =4
r2 dr <r dr) 7Gps G0)
inside the sphere. This readily integrates to
_GM , G
d(r) = SR3 r - + G, (51)

where C;  are integration constants. Regularity at the centre requires C; = 0 and matching the exterior
potential ®,,; = —GM/r at the surface r = R yields C; = — % Therefore, the potential inside

the homogeneous sphere
_GM , 3GM

TR TR
is that of a shifted harmonic oscillator and the particle oscillates up and down the tunnel.
The Lagrangian for a particle of mass m and position r(f) moving without friction through this

D(r) (52)

gravity tunnel is
mi*  GM , 3GM

Lnf) == o "+ 3r (53)
since dL/dt = 0 the corresponding Hamiltonian (which coincides with the particle energy)
is conserved, 5

L
—i_L=E 4
5 , (54)

expressing the energy integral

mi? GM , 3GM
2 m(zmr‘zR)—E' =
This Beltrami identity can be rearranged as
P _GM_K (56)
r) R} 27
where K = — 2 (E + %TM) The analogous Friedmann Equation (4) for a(t) <> r(t) is
[T (57)
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and it exhibits a negative cosmological constant A = —3GM/R3. There is no matter fluid in this
analogous universe. Since H? > 0, only a negative negative curvature index K < 0 is possible to
compensate for the negative A. Apart from the dimensionality, this universe is the anti-de Sitter
spacetime of the AdS/CFT correspondence and the holographic principle [71]. The solution of

Equation (57) is the scale factor
A
a(t)—,/;;l sin( |3|t> . (58)

The function H(a) is given in Figure 1, while the scale factor a(t) is reported in Figure 2.

8. The Terrestrial Brachistochrone

In the terrestrial brachistochrone problem [65,67], tunnels of various curved shape described by
functions r(6) in polar coordinates, are dug out in the uniform Earth of radius R, and one looks for
the shape that minimizes the transit time between two given points. This problem has seen much
renewed attention recently, mostly in the pedagogical literature [72-86] but not only [87-89].

The corresponding Lagrangian is [67]

[ 12+ 1"
L (7’, 7/) = W , (59)

where r’ = dr/d6. Since the Lagrangian does not depend explicitly on 6 the corresponding Hamiltonian
is conserved,

oL ,
’H—yr—L—C, (60)
leading to
- C 61
VRZ =122+ 2 ’ (61)
Further manipulation gives
72 r2
— =—14+ 57— 62
72 JrCz(sz,,z) (62)

The minimum radius is attained where the curve () flattens, r’ = 0, yielding
— min , (63)

then one can write
r2+r/2 7,2 (RZ—r2 )

ol _r:zm . (64)
min
The analogous Friedmann equation
2 a*
H* = -1+ —55—%v (65)
C2 (a3 — a?)

is more interesting than in the situations discussed previously. The universe contains a negative
cosmological constant A = —3 and a perfect fluid with energy density

- a? 8nG 1
p_poa%—az' 3 T

(66)
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By imposing the covariant conservation equation ¢ + 3H (P + p) = 0, one finds the equation of
state of the cosmic fluid. First, we obtain

2 2.2
p=—p— P, 67)

3 (a3 — a?)

0
then, usin _ (ﬂ>2 Landa? = £ % one derives the quadratic barotropic equation
, g @2 ~ \m) @ = oo Mrp/p0)’ q piceq

of state )

5 20
Plp)=——=p—=—. 68
() 37" 300 (68)

Since P < —p this equation describes a phantom fluid [90]. Equations of state of the cosmic fluid
with the form P = Y ' ; ckp’(‘k) have been studied recently in cosmology [45,59,91] as forms of dark
energy. In particular, quadratic equations of state are the subject of several works [92-97]. These exotic
equations of state produce peculiar types of spacetime singularities. While traditional cosmological
solutions for linear barotropic equations of state contain Big Bang, Big Crunch, and Big Rip type
singularities, the discovery of the acceleration of the universe in 1998 prompted the consideration of
many more exotic non-linear equations of state for the dark energy fluid, which must be postulated
in order to explain the cosmic acceleration within general relativity. This broadening of the picture
results in a much wider spectrum of possible singularities [91,98-106].

The Ricci scalar

2
—ep—2 (69)

R = —ptotar + 3Protar = G 00

diverges as a — ay, signalling a spacetime singularity where the scale factor stays finite but H, p, and P
diverge. In the mechanical side of the analogy, ap corresponds to R, the boundary of the physical
problem. On the cosmology side of the analogy, ag is a barrier that cannot be crossed dynamically:
a(t) always remains smaller than ag, but it approaches it, as will soon be clear. The graph of a(t) has
a cusp where a reaches ay, as is evident from the Friedmann equation (65). In the analogy, this feature
corresponds to the fact that the terrestrial brachistochrone starts at the surface (r = R, corresponding
to a = ag) perpendicular to it with infinite derivative ' = dr/d6 [67,70].

The fact that there is a minimum value of a(t) also follows immediately from Equation (65).
Since it must be H? > 0, the region a < Amin is forbidden to the dynamics, where

C2a3
2 _ 0
Amin = 1+ c2’ (70)
is the value of a corresponding to H = 0; therefore the dynamics is restricted to the strip of
the (t,a ) plane
Amin < a(t) <dp- (71)
We also have
2 _ 3 _ ﬂ%nin (72)
87Gpy  ad—aZ.

This minimum value of a is the analogue of the minimum radius i, that can be reached, but not
passed, by a particle in motion on the terrestrial brachistochrone (this curve does not pass through
the centre of the Earth) [67,70].

The static universe with a(t) = amy;y is an exact solution of the Einstein-Friedmann equations,
corresponding to a balance between A < 0 (which is attractive) and (p + 3P) < 0, which is repulsive
in the acceleration Equation (5), where these terms appear with opposite sign and compete. Since this
equilibrium is fine-tuned, one expects the static solution to be unstable. Indeed, a linear perturbation
analysis reveals an exponentially growing mode (see Appendix A). This static solution is the only fixed
point of the dynamics and is unstable and a repellor.



Universe 2020, 6, 71 13 of 20

Further, the acceleration Equation (5) gives i > 0 for all values of the scale factor amin < a(t) < a;
the concavity of a(t) faces upward, its derivative 4 increases, and is larger and larger the closer
the orbit of the solution gets to the singularity a¢. The picture of the dynamics that emerges from these
considerations is the following: solutions starting anywhere in the strip amin < a < a9 move toward
the singularity faster and faster, with increasing “speed” 4, until they hit it and the universe ends in
a finite proper time, with this finite value ag of the scale factor.

The analogy that we have created provides an explicit example of a universe dominated by
a phantom fluid with quadratic equation of state. This analogy is useful since the exact solution of
the terrestrial brachistochrone is known [67,70]. It is a hypocycloid, the curve generated by a circle
of radius (R — #min) /2 rolling without sliding at constant speed inside the larger circle of radius R
(clearly, this curve is another roulette). It can be given in parametric form as

R2+me_ (R2—7’2- )

r2(t) = 5 5 M~ cos (2w t) , (73)

ot — tan—l{ R

Tmin

tan(w t)} - rr]réin wt, (74)
where time is the parameter, w = 27t/ T, and

R2 _ 1,2 )
T =my ——==2 (75)
Rg
(with g the acceleration of gravity at the surface) is the travel time between two points on the surface
of the Earth, which is the minimum travel time among all tunnel configurations between these two
points [67,70]. The solution can be written also as [67,70]

_ R —— 7 1 r2—y2.
(r) = tan! —\ e = tan Sl I (76)
R —rZ, RZ+7r 2r2
) = Vo o (R, —27) 77)
Ro 2
2\/Rg R _rmm

The exact solution can immediately be transposed into the solution for the analogous universe

2 _ 2
a3 + a? ag — az.
a*(s) = -0 +2 min _ (% 5 min) cos (2ws) , (78)
t(s) = tan! 70 tan(ws)| — @ws, (79)
Amin ao
or
a2 2 2
Ami a? —a% .
Ha) = fmin | _ min -1 J2 " Imin 80
(a) (amm a3 — a? > ag a% — a2 (80)

\/a? 2
S(Ll) _ a5 — amm <a0 +2a —2a ) . (81)

 2/ag
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The singularity a = gy is approached, and the universe ends its existence, in a finite time. In fact,

22
the limit a — ag in the parametric solution (78) and (79) yields the parameter value sy = 77 1/ %

and the finite time

T Amin
=" ( ; ) (52)
By equating tp with T/2, we obtain
ap + amin)
g 0 (ﬂo — Amin (83)

in the cosmic analogue.
The function H(a) is given in Figure 1, while the scale factor a(t) is reported in Figure 3.

9. Discussion and Conclusions

Several classic problems of variational calculus originating in one-dimensional non-relativistic
particle mechanics have solutions that constitute analogues of spatially homogeneous and isotropic
universes because they are ruled by an equation which is formally a Friedmann equation for a suitable
perfect fluid. This property suggest that it is possible to build mechanical analogues of cosmological
spacetimes. If one begins with a universe with a given curvature index K and equation of state
P = w(a)p, the Friedmann Equation (4) looks like an energy conservation equation and immediately
suggests the point-like Hamiltonian

dz 4G 2

(which is constant and equal to —K/2) and the point-like Lagrangian

12 4AnG
L(a,a):%—l— 3 pa?.

(85)

One can then compare this Lagrangian and Hamiltonian with that of an (otherwise
unrelated) mechanical or geometrical system, as we have mostly done throughout this manuscript.
Alternatively, one can compare directly a first order integral for the system with the Friedmann
Equation (4), or compare the second order equation of motion with the acceleration Equation (5).

We make no claim that the analogies proposed are full physical analogies. They may be limited
to the mathematics, that is, formal analogies, as in the classic analogy between (forced and damped)
mechanical oscillators and RLC electric circuits reported in Reference [61] and in most mechanics
textbooks. There, the analogy between the equations governing the two systems is mathematical but,
the equations being the same, they also have the same oscillatory solutions. This is a mathematical
analogy and the two systems are completely different from the physical point of view. However, if one
thinks about oscillations in nature in a general sense, the analogy has also a physical aspect. This is
a physical analogy only on an abstract level and we will not go as far as claiming it is a full physical
analogy (which would bring us into semantics).

We have examined several situations: while most of them give rise to simple, albeit very important,
FLRW solutions corresponding to simple fluids such as dust or radiation or a pure cosmological
constant A, others correspond to phantom fluids [90] with non-linear equations of state originating
exotic singularities at finite time, where the scale factor remains finite while curvature invariants blow
up. These types of singularities are studied and classified in recent literature [91,98-106]. The situations
examined are summarized in Table 1.
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Table 1. Cosmic analogues of variational problems.

Variational Problem Lagrangian Cosmic Analogue
Geodesics of R? L=+y1+y"? K<0,p=0
Milne universe
Catenary problem L=yy/1+y? A>0K>0p=0
Minimal surface of revolution L=xvV1+x"2 same as above
L=xy1+y"? no cosmic analogue
. _ [14y”
Brachistochrone L= 7 K > 0, dust
cycloid
Geodesics of Poincaré plane = 1; v K > 0, radiation
Terrestrial tunnel L=7%— %;A r2 4+ 3GTM A<0,K<0,0=0
anti-de Sitter space
Terrestrial brachistochrone L=,/52 A<0,K=0,P= R
RZ—7 3 3po
hypocycloid

Some of the variational problems that we have examined are centuries old and are textbook
material. It is not surprising that formal analogies with the Friedmann Equation (4) arise, since the latter
takes the form of the first integral of motion corresponding to energy conservation for a particle
in one-dimensional motion, and a variety of solutions are possible corresponding to the three
possible curvatures and the wide range of perfect fluid equations of state (even limiting oneself
to the barotropic equation P = wp with w = const.). Indeed, it is always possible to construct
an analogy between a FLRW space filled by perfect fluids and the one-dimensional motion of a particle
of unit mass and position a(t) in a suitable potential [107], but the latter may be contrived and not
physically meaningful.

Cosmic  analogues have been reported for fluids [15-27],  Bose-Einstein
condensates [2-7,10,34,38—41], glacial valleys [45,46], optics [28-32,45], capillary fluid flow [44], soap
bubbles [42,43], equilibrium beach profiles [47], the freezing of bodies of water [48], Omori’s law for
the aftershocks following a main earthquake shock [49], and so forth. It is rather surprising, however,
that formal analogies of classic textbook variational problems with FLRW cosmology which, as seen
above, are associated with important solutions of the Friedmann Equation (4), are not reported in
the literature (with the exception of the Poincaré half-space in Reference [42,63]).

From the previous analysis it is clear that one-dimensional variational problems described by
a Lagrangian L (y(x),y’(x)) not depending explicitly on the independent variable x can have a cosmic
analogue, with the Friedmann equation (4) corresponding to the conservation of the Hamiltonian
H= g—yL, y' — L. However, for the cosmic analogy to begin making sense, the corresponding perfect
fluid must have a non-negative energy density p, which cannot be taken for granted and dooms many
would-be analogies (for all the situations discussed in this work, it is p > 0). Moreover, since all
the solutions of the Friedmann equations are roulettes [59], only variational problems that have roulette
solutions can give rise to a cosmic analogy. This fact seems to restrict considerably the range of possible
solutions to the problem of building a cosmic analogue for a given one-dimensional mechanical
system, and makes the existing analogies more valuable. Indeed, in our search for cosmic analogues
we have encountered cycloids, hypocycloids, and catenaries, which are classic examples of roulettes.

In certain cases when dL/dx # 0, it is still possible to switch the dependent and independent
variables from y(x) to x(y) in the action integral (and, correspondingly, change the integration
variable), thus changing its form, and obtain a meaningful cosmic analogy. (Switching dependent
and independent variables does not always lead to a variational principle, for example in the case of
the brachistochrone.) In general, when both descriptions admit cosmic analogues, switching dependent
and independent variables leads to inequivalent cosmologies (this is not always the case, for example
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the problem of geodesics in the Euclidean plane leads to the same Milne universe in both descriptions,
due to the simplicity of the Lagrangian L = /1 + y'?).

The problem of the terrestrial brachistochrone, which has seen renewed attention
recently [70,72-81,83-89], provides an explicit example of a universe dominated by a phantom
fluid with non-linear equation of state, which can be solved explicitly and exhibits a finite future
singularity at a finite value of the scale factor, where the Hubble function, Ricci scalar, energy density,
and pressure all diverge. Finite time singularities have been the subject of much literature in the past
decade [91,98-106] hence, in this problem, the mechanical side of the analogy helps the cosmology
side in the sense that the known exact solution for the terrestrial brachistochrone problem can be
immediately translated into an analytical solution of the corresponding cosmology with complicated
(non-linear) equation of state.

These cosmological analogies are sometimes useful (this was the case for the analogy between
equilibrium beach profiles, which generated solutions unknown to the oceanography community [47];
other times they are not) and they stimulate the imagination, which in the end may turn out to be their
most valuable feature.

The further search for one-dimensional roulette analogues of FLRW cosmologies and the study
of their small fluctuations (possibly mimicking cosmological perturbation theory) will be pursued in
the future.
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Appendix A. Instability of the Static Universe Analogous to the Terrestrial Brachistochrone

Perturb the static universe solution so that a(t) = amin + da () with da > 0 since it can only be
Amin < a(t) < ag. The acceleration Equation (5) yields

4G
1-— T (Pmin + 3pmin) =0 (A1)
to zero order (wWhere ppmin and Ppin are the energy density and pressure corresponding to a = amin).
In general, Equation (5) can be written as
a3 (2a3 — a?
i = % ta. (A2)
C2 (af — a2 ,.)

min

Expanding to first order in da/amin < 1, using Equation (72), and keeping only the zero order
and the linear terms, one obtains

C? 2C2
6 ~ {Za% —a + [a (2{1% — a2t 1) +

Amin min

+ 1} oa } + Amin - (A3)
min
Using the zero order Equation (A1), one obtains the equation satisfied by the perturbations da to
first order
sii = O da (Ad)

where
CZ
2
min

O =14 —— (22 (1+ 20§ — aly, ) +1] (A5)
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is positive because a9 > amin. Therefore, the solution to linear order is

ba (t) = Ae 4 Be ! (A6)

with O € R and it contains a mode that diverges as time progresses. The static solution a = amin

is unstable.
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