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Abstract

We revisit the issue of defining the entropy of a spatial region in a broad class of quantum theories.
In theories with explicit regularizations, working within an elementary but general algebraic framework
applicable to matter and gauge theories alike, we give precise path integral expressions for three known
types of entanglement entropy that we call full, distillable, and gauge-invariant. For a class of gauge theories
that do not necessarily have a regularization in our framework, including Chern-Simons theory, we describe
arelated approach to defining entropies based on locally extending the Hilbert space at the entangling edge,
and we discuss its connections to other calculational prescriptions. Based on results from both approaches,
we conjecture that it is always the full entanglement entropy that is calculated by standard holographic
techniques in strongly coupled conformal theories.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction and summary

Studying the structure of entanglement in quantum field theory and many-body systems has
long been the focus of a tremendous amount of activity.” One of the most fundamental measures
of entanglement in such systems is the entropy associated to a spatial subregion. This paper is
fully devoted to exploring certain subtle issues that arise in defining this quantity.

It is common — but imprecise — to define the entanglement entropy Sy of a spatial region V
in a quantum state p as the von Neumann entropy, —Trpy log py, of the reduced density matrix
py obtained by tracing out the degrees of freedom outside of V, i.e. as py = Try p. The issue
is that this definition assumes that the Hilbert space factorizes into a direct product of degrees of
freedom on V and its complement V. This assumption fails in many cases, including in strictly
continuum QFTs (see the remarkably clear note [11] and references within) and in any lattice
gauge theory [12-18].

A more precise approach is to define Sy as the entropy of an algebra of operators Ay sup-
ported on V (see [19,20] and references therein). If the Hilbert space does factorize and if Ay
is the maximal algebra supported on V, its entropy agrees with the one defined via tracing out.

2 See, for instance, [1-7] for a very incomplete sampling of important insights; see [8] for a venerable review, [9] for a
modern QFT-oriented review, and [10] for a succinct and prescient summary of many relevant ideas.
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If the Hilbert space does not factorize but the theory is fully regularized (e.g. it is defined on
a finite lattice), the algebraic definition of entropy is meaningful even though tracing out is not
defined. If the theory is defined directly in the continuum, the entropy associated to a subalge-
bra is not definable — but related quantities, such as relative entropy, will still be well-defined
algebraically.

A catch in the above definition is that there is no unique algebra supported on a given region.
For instance, even if the Hilbert space factorizes, if Ay is not the maximal algebra on V, the
associated entropy will not generically agree with the tracing-out prescription. Moreover, for
every non-maximal algebra there will be several natural entropic measures that can be associated
to it. This is well known and has been discussed in, for example, refs. [14,21].

In this paper we will explore these algebraic choices in more generality. We will focus on
theories with explicit regularizations: spin systems, fermion and scalar lattice field theories, and
lattice gauge theories. (It is perhaps worth stressing that all of these theories require similar
choices in their definitions of entropies; the issues we explore are not fundamentally due to the
non-factorizability of gauge theory Hilbert spaces.) Our goal is to clarify which entanglement
entropy one talks about when computing it using various prescriptions that exist in the literature.
Many of the ideas here are not new; here we publicize them further and show how they are
connected to each other.

Our main focus will be on replica trick path integrals, which are perhaps the most useful
way of computing entanglement entropy in field theories. One of our main results is an explicit
dictionary that, for a fixed entangling region V, translates between certain choices of algebras
and boundary conditions in these path integrals. (Basic aspects of this connection were presented
in [22].) We will identify algebras that correspond to open, Dirichlet, and Neumann boundary
conditions on the entanglement edge dV in path integrals with matter fields. In gauge theories,
we will similarly identify algebras corresponding to natural gauge-invariant boundary conditions
that we will call electric and magnetic. All of these boundary conditions are imposed on the
entanglement edge only on a single time slice, and at other times the fields are unconstrained.

We will also demonstrate several new points. One is that when a particular choice of algebra
Ay corresponds to a particular type of a boundary condition, then it generically corresponds to
a combination of all possible conditions of that type. For instance, an algebra corresponding to
Dirichlet conditions for a scalar field ¢ (x) will have a natural entropy calculated by a (weighted)
sum over all possible boundary conditions {k(x)} of the type lim,_, x| @(x) =k(x)) forx € dV.
Another important lesson will be that the choices of algebras have relatively little to do with the
entangling edge itself. While some choices of Ay will correspond to boundary conditions of
various sorts on 9V, other choices will correspond to “boundary” conditions (or constraints) in
the interior of V. The choices in the definition of entanglement entropy that we discuss here are
thus much more general than the ambiguities in introducing a regulator for the conical defect in
the replica path integral, and our analysis holds even in these more general cases.

The analysis described so far, being rather microscopic and micromanaging in nature, will
not apply to theories that do not have known lattice discretizations. Examples include many field
theories of interest, including chiral theories in even spacetime dimensions and Chern-Simons
theory. However, a different prescription for calculating entanglement entropy allows us to say
a bit about some of these theories, too [12,13,17,18,23,24]. The procedure in question involves
local extensions of the Hilbert space that make it factorize on the entanglement edge: instead of
regularizing these theories fully, we add the minimal amount of degrees of freedom needed to
regularize the entangling edge alone. This allows us to apply the original tracing-out prescription
to e.g. Chern-Simons theory, and to draw some instructive parallels to the algebraic approach.
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Having thus whetted the reader’s appetite, we overview the structure of the paper. In section 2,
we set the notation and carefully review some dry (but important) facts about finite systems. We
set up the analysis so that it works for arbitrary lattice theories, so our results will have obvious
analogs in continuum scalar, matter, and gauge theories with known actions and field content.

In section 3, we connect different operator algebras on spatial lattices M to different types
of boundary conditions on boundaries dM of these lattices. This is a warm-up: we focus on
pure states, and there are no entangling regions, reduced density matrices, replica tricks, etc.
This analysis is also important unto itself, e.g. for the purposes of analyzing exact dualities of
quantum theories on manifolds with boundaries.

In section 4 we perform a similar analysis for algebras on subregions V C M. The only
difference between scalar and gauge theories arises at this step: for scalar theories, maximal sub-
algebras will never have a center, while for gauge theories, maximal gauge-invariant subalgebras
always will. We will establish how analyzing the center of a chosen algebra Ay tells us all we
need to know about the type of boundary condition that will be obeyed by the appropriate reduced
density matrix.

In section 5 we introduce several measures of entanglement that can be associated to the
reduced density matrices constructed so far. In section 6 we show how these entropies are com-
puted using replica trick path integrals, and we demonstrate how choices of algebras are reflected
on the path integral side. In these sections we will focus on three natural types of entropies: the
full entropy, the distillable entropy, and the gauge-invariant entropy. (These will be three out of
many possible entropies one can define.) We will describe how they are related to each other and
give precise path integral expressions for each of them.

In section 7 we present several important remarks that connect our analysis to other ap-
proaches of calculating the entanglement entropy. For instance, we comment on how choices
of algebras in conformal field theories are reflected by conformal boundary conditions in the 2D
Ising model, based on the analysis in [25]. In the context of CFTs more generally, we also argue
that the full and gauge-invariant entanglement entropies are natural candidates for the types of
entropies that may contain universal information on trace anomalies, meaning that either could
agree with the holographic entanglement entropy of Ryu and Takayanagi [5].

In section 8 we return to the discussion of entropies in theories where a lattice realization
is unknown, where we employ local extensions of the Hilbert space. We review a cross-section
of the existing literature on entanglement entropy in gauge theories, present some archetypical
calculations using the extended Hilbert space, and suggest how they fit into our general paradigm.
Building on this, we extend our earlier arguments and conjecture that it is precisely the full
entanglement entropy that contains the universal CFT information obtained using holography
and other techniques. We conclude and stress a few open problems in section 9.

2. Formal preliminaries

Consider a Hilbert space H composed of N copies of a K -dimensional farget space Ho,

N
H=QQH ~HF", D=dimH=K". (1)

i=1
The use of a regular direct product means that this system is bosonic. For fermionic theories we
should use graded products. Instead, we exploit the fact that fermionic systems can be dualized
to bosonic systems in which the target has dimension K = 2; this is possible even in higher
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dimensions, with only mild assumptions on the regularity of spatial lattices [26,27]. This way we
can always work with a Hilbert space H defined as a conventional direct product.

The maximal algebra of operators that acts on this space is the algebra of complex matrices
CDP*D Recall that an algebra is a vector space (in this case, over C) equipped with and closed
under a vector product (in this case, matrix multiplication). This maximal algebra has D* com-
plex dimensions. It is very convenient to express the basis as the set of all possible products of
a small number of generators. Due to the direct product structure of H, it is natural to pick the
basis of CP*P to be generated by operators of the form

1191®..981L-1 80,9111 ®...8 1y, 2

where (; is an operator that generates a basis of CX*X | the maximal algebra on the i’th target
space. For brevity, we will drop the ® signs and factors of 1, so O; will denote the entire direct
product (2).

Only two generators are needed to generate the full basis of 7;, and we will call them the
generalized position and momentum generators ®; and IT; at location i. One simple choice is

1 1
o2mi/K 1
®; = § Com=| . 3)

Q2mi(K—1)/K

For a clock model (a discretized version of the compact scalar theory) these are actual position
and momentum operators. A particular Hamiltonian may describe theories very different from
this one, e.g. a o-model whose target space is a (discretization of) a curved manifold, but any
such theory will have an operator algebra isomorphic to the one generated by the above ®; and
I1;.

From now on, “generators of an algebra” will refer to a set of operators G whose all possible
products form a basis that spans the entire algebra. For a general case of N sites with a K-
dimensional target space on each site, the canonical choice for generators of CP*P is G =
{®i, I;}i=1,.. n. For a spin system, the target space has K =2 and the canonical generators
from eq. (3) are the Pauli matrices, ®; = Z; and I1; = X;. For spinless complex fermions, one
typically chooses Grerm = (Wi ¥, }i=1....v» with {i. v} oc 1 and {y;. ¥} = (i, %]} = 0. The
algebra generated by Grerm is isomorphic to that of a K = 2 bosonic system.”

A pure state |/) € H induces expectation values (O) = (y|O|y) of all operators in CP*P.
More generally, a density matrix is a Hermitian operator p € C?*P that induces expectation
values via

(O) =Tr(pO). €]

Conversely, any set of expectation values induces a density matrix. To see this, it is very useful to
choose an orthonormal basis {O,},—, . p2 for C DxD \yhere all O, are invertible and, except the
identity, traceless. The orthonormality is defined with respect to the natural trace inner product,
such that Tr(Oa_1 Op) = D d,p for all a, b. One example is the canonical basis generated by ®;
and IT; in eq. (3). The explicit expansion of the density matrix in any such basis is

3 This isomorphism can be made very explicit in one spatial dimension, where it is known as the Jordan-Wigner
transformation. It maps a chain of fermions v, forv=1, ..., N to a spin chain, via ¥, = (Xy +1iYy) ]_[Z;% Zy.
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p=3 2 (0 )on ®

Let us now consider non-maximal algebras A C CP*P For our purposes, the relevant objects
are unital x-algebras A. These are algebras that contain the identity and that are closed under
Hermitian conjugation.” In practice, we will only look at non-maximal algebras generated by
different products of generalized positions and momenta ®; and I1;, e.g. {®; D41, [1;}i=1.. N
or {®;, I;};=1,...m for M < N.Not only will algebras thus obtained all be unital and *, the bases
generated by these generators will also automatically be orthonormal, with all basis operators
traceless (except the identity) and invertible.

Given a non-maximal, unital x-algebra A spanned by a basis {O,} of the kind just described,
there exists a unique density matrix p € A that reproduces any list of specified expectations of

elements of A via p = % >ou <(’);,1)(’)a/. At this level of generality, p is still a D x D matrix,

i.e. an operator acting on the full Hilbert space H.

An important fact is that any operator that is nor in A and has zero inner product with all
operators in A will have a vanishing expectation in state p. This is an abstract form of Elitzur’s
theorem [28]. A reduction of the algebra from CP*P to A is intimately related to gauging
degrees of freedom, i.e. to imposing constraints on the space of allowed density matrices.

As a concrete and nontrivial example of these ideas, let us explore the connection between
non-maximal algebras and gauging in the context of pure Z, gauge theories in d = 2 spatial
dimensions.” This will also set the stage for our discussion of gauge theories in general. Here
we start with the full (ungauged) Hilbert space H, given as in eq. (1) by a tensor product of a
K =2 bosonic Hilbert space over each link ¢ of a lattice M. This is the setup of Kitaev’s toric
code [29]: no gauge constraint has been introduced yet.® The maximal algebra of observables is
canonically generated by Pauli matrices on links, {Z, X;}. Now, consider the algebra A gener-
ated by {X,, Wr}, where Wy =[] ecp Ly are products of Z operators along faces (plaquettes)

f.7 This algebra has a huge center generated by Gauss operators G, =[] ¢~y X ¢, One per vertex
v of the lattice. Elements of A are precisely the familiar gauge-invariant operators.

4 An algebra encodes the allowed operations that can be performed on a given quantum system. We require that A be
unital because we should always be allowed to leave the system as it is, by acting on it with the identity. We require that
A be a x-algebra because p is necessarily Hermitian, so operators O that appear in the expansion (5) of p must either be
Hermitian themselves, or must come in pairs of Hermitian conjugates. If an operator is in .4 but its conjugate is not, then
it cannot appear in (5). Any density matrix in A thus also belongs to the maximal subalgebra of A that is a x-algebra.
Therefore the entire discussion may be phrased from the outset for x-algebras alone.

5 Henceforth we always use the lowercase d for the number of spatial dimensions.

6 From a traditional gauge theory perspective, one could refer to H as a (globally) extended Hilbert space, the under-
standing being that only the gauge-invariant states are physical and that H simply provides a convenient embedding for
the space of gauge-invariant states. The distinction between gauge-invariant and full/globally extended Hilbert spaces
does not influence any correlation functions of the gauge theory but does appear in calculations of entanglement entropy,
leading us to distinguish between gauge-invariant and full entropies in section 5. In sections 2 through 7 we will use the
globally extended Hilbert space whenever discussing lattice gauge theories, without further comment. In section 8 we
will say more about this choice and define measures of entanglement referring to only the gauge-invariant Hilbert space.
These entropies will be equivalent to what we call full and gauge-invariant entropies when an explicit regularization is
available.

7 On lattices of nontrivial topology, one may add to A gauge-invariant products of operators along noncontractible
cycles. If we do not, A will contain a set of central generators associated to one-form symmetries. These operators are
crucial for understanding dualities, for instance, but we will ignore them here.



J. Lin, . Radicevi¢ / Nuclear Physics B 958 (2020) 115118 7

The fact that the gauge-invariant algebra has a center means that any density matrix p € A
must be block-diagonal in a Hilbert space basis that diagonalizes the center. In other words,
the original Hilbert space splits into superselection sectors, one for each of the two possible
eigenvalues +1 of each G,. For a connected lattice with N vertices and no special boundary
conditions, this means that there are 2V ! sectors (the product of G, over all sites is identically
the identity, hence there is one central element fewer than would be naively expected). For every
state whose density matrix is gauge-invariant, the expectation of any operator orthogonal to A
— say, Zy — is zero. This is the original Elitzur’s theorem.

In a Z, gauge theory, the Gauss law G, = 1 is usually imposed at each vertex. (Sometimes
background sources are inserted, meaning that G, = —1 is imposed on a finite number of sites.)
This operator equation is tantamount to restricting our attention to just one superselection sector
of the full Hilbert space H. (Note that Elitzur’s theorem holds even without this restriction to a
single sector.) In the toric code, and more generally in condensed matter gauge theories, these
gauge constraints are imposed dynamically, by adding — )", G, to the Hamiltonian and then
focusing on the low-energy sector; in particle physics gauge theories, this constraint is imposed
by fiat.

The gauge theory example is an instance of a more general phenomenon: a non-maximal
algebra always has an associated center, and eigenvalues of generators of the center label differ-
ent superselection sectors. All density matrices are direct sums (statistical mixtures) of smaller
density matrices that act only within specific sectors. Sometimes, as with gauge-invariant al-
gebras and states obeying the Gauss law in the preceding paragraph, only one superselection
sector will be populated. At other times, as with more general subalgebras and states to be dis-
cussed below, multiple sectors will be populated. In those cases, within each sector, its labels
can be interpreted as constraints. When the center generators have support only on the edges
of a spatial lattice, these sector labels denote different boundary conditions and are called edge
modes.

3. Algebras and boundary conditions

Consider a system defined on a spatial lattice M with boundary.® There exist several families
of algebras that are supported on all of M, but that differ in the choice of generators present at
the boundary dM. The purpose of this section is to show which families naturally correspond to
which familiar sets of (lattice) boundary conditions.

As a warm-up, we start with a spin chain with N sites. Here we will study families of algebras
obtained by removing edge generators from the maximal algebra CP*? with D = 2. The gen-
eralization to higher dimensions and arbitrary compact scalar theories is immediate.” Fermion
systems in one spatial dimension will be examined next, and they also generalize to higher dimen-
sions and parafermionic models. Finally, we will show how edge modes arise in gauge theories,
where subalgebras of the non-maximal, gauge-invariant algebra 4 are considered.

8 The boundary of a 2d lattice is the set of all links that do not belong to exactly two faces. On a general triangulated
d-manifold, the boundary is the set of all codimension-one simplices which do not belong to two codimension-zero
simplices, together with any nonzero-codimension simplices that do not belong to any codimension-zero simplices.

9 Noncompact scalars, on the other hand, do not have an algebraic formulation unless they are embedded into a compact
scalar theory. We will only discuss compact target spaces in this paper.
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3.1. Spin chains and scalar matter

A spin chain has a maximal algebra generated by Pauli operators X, and Z, on each site v.
(An analogous discussion applies if we start from other generators, say X, and Y,.) Consider
now the algebra Ap o generated by

Gpo=1{X1,....XN,Z2,..., ZN}. (6)

The difference from the maximal algebra is that one generator from the edge of the system, Z1, is
removed. The center of Ap o is generated by X, the remaining generator on the edge. All pure
states with density matrices in this reduced algebra thus must be eigenstates of X ;. Moreover, a
general density matrix will be a statistical mixture of X1 = 1 and X| = —1 states. Thus algebras
missing one generator on the edge correspond to (mixtures of) states with definite values of spins
at that edge. In the case of Ap o, there are thus Dirichlet boundary conditions on one edge, and
open boundary conditions on the other edge.

We can also consider “coarse graining” generators on two adjacent sites near the edge, so the
remaining ones are only sensitive to some (but not all) degrees of freedom near M. For instance,
take an algebra that cannot measure the z-component (magnetization) of individual spins at sites
1 and 2, but that can measure the parity of the fotal magnetization on these sites. This algebra is
generated by

Ono=1{X1,....XN.Z1Z2,23, Z4, ..., ZN}. )

The resulting algebra, An o, has the same number of generators as the Dirichlet-open one, Ap,o.
Its center is generated by X X», and so states whose density matrices belong to this algebra are
(statistical mixtures of) eigenstates of X1 X,. If eigenvalues of X, are labeled by el with
¢y € Z mod?2, then this algebra contains density matrices of states with definite values of ¢; —
¢ ~ d¢1. This means that Neumann boundary conditions are imposed on one end of the chain,
while the other end has open boundary conditions. (See Fig. 1.)

It is straightforward to find algebras that correspond to other combinations of open, Neumann,
and Dirichlet conditions on edges of the system. For instance, Dirichlet conditions on both edges
correspond to the algebra generated by

Gpp=1{X1,....XN.Z2, ..., ZN—1}. (8

It is also possible to choose algebras where different fields are subject to boundary conditions at
the edges. Consider the generating set

gD,D:{X17'-'1XN—19Z27-"7ZN}' (9)

The corresponding algebra has a center generated by X and Zy, so the density matrices in it
correspond to states with definite values of ¢ and ¢y . This notation is inspired by the fact that
Zy is the momentum operator conjugate to the position Xy, so its eigenvalues, schematically,
correspond to time derivatives of the field ¢, at the edge.

The same considerations apply in higher dimensions. Different pairing up of generators on
the boundary can be performed to obtain algebras that correspond to fixed derivatives of fields
parallel or perpendicular to the boundary. (Links are perpendicular to dM if one of their vertices
is on dM and the other one is not.) It is also straightforward to generalize to bosonic systems
with more complicated target spaces: all the operators Z, and X, can be replaced by @, and IT,
from eq. (3) or by their inverses, as appropriate.
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X X X X X X
Maximal (G) ° . . . . . . .
VA VA VA VA VA VA
X X X X X
Dirichlet-open (Gp,0) . . . . . . . .
VA VA VA VA VA
XX X X X X X X
Neumann-open (GN,0) . . . . . . . .
VA Z VA Z VA
X X X X X X X
Mixed Dirichlet (gD.D) ° . . . . . ° °
V4 VA VA VA

Fig. 1. Depictions of generating operators for various choices of algebras for spin chains discussed in the text. Algebras
generated by these sets are all supported on the entire lattice, i.e. there are no sites on which all operators act trivially.
Red indicates locations of central generators. (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

3.2. Fermions

The examples given in this section will focus on fermionic systems in one spatial dimen-
sion. As with spin systems, our conclusions can be generalized to higher dimensions, though
there will be some additional subtleties we will discuss later. Consider any theory of complex
fermions in d = 1, defined on N sites labeled v =1, ..., N. The maximal algebra is generated
by {{ry, 1//3 Jv=1,....n, but unlike the spin operators X, and Z,, the fermionic basis operators nei-
ther form a group nor are they all traceless — and, most importantly, the generators on different
sites all anticommute. This system can, however, be dualized to a bosonic spin system via the
nonlocal Jordan-Wigner map. By thus bosonizing the fermions, the machinery from the last sec-
tion can be imported wholesale.

This procedure might seem cumbersome, but matters are greatly simplified by the requirement
that the Hamiltonian always be bosonic, i.e. that all fermionic systems have a fermion parity
symmetry, generated by the product of operators 21#3 Y, — 1 over all sites. If our attention is
restricted to states of definite fermion parity and not to their superpositions, then only operators
made out of an even number of fermionic generators , and 1//;f will have nonzero expectations.
In other words, the algebra of operators for fermionic systems with conserved fermion parity can
be taken to be the non-maximal one generated by fermion bilinears IIIJ-WU, Yy ¥y+1, and so on.
These operators map locally under the Jordan-Wigner transformation, even in higher dimensions
[26,27], and the dual algebra (acting on the bosonic Hilbert space of Ising spins) is generated by

G ={X1X2, X2X3, ..., Xn-1XN, Z1, ..., ZN}. (10)

We will refer to this algebra as the maximal fermionic algebra on N sites, and we will assume
that we only work with states of definite fermion parity. The center of this algebra is generated
by the fermion parity operator, which is l—[i\;] Z, in the bosonic language. (See Fig. 2.)
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XX XX XX XX XX XX XX
Maximal fermionic (G/) ° . ° ° . . . ’

XX XX XX XX XX XX
Dirichlet-open (gg O) . . . . . . o .

XX XX XX XX XX XX XX
Neumann-open (g]-(l o) . ° . ° ° . . .
77z VA VA VA VA VA Z

i XX XX XX XX XX XX XX
Majorana-open (gl{/l o) ° . . . . . . .
V4 V4 V4 V4 z V4

Fig. 2. Generators of fermionic algebras discussed in the text, presented using their bosonized equivalents. Each algebra
commutes with the product of all Z’s, i.e. with the total fermion parity (=¥ Locations of all additional central
generators are red. In the case of Majorana boundary conditions, the removal of Z is taken to mean that (— DF isstill a
central generator, but that an overall constraint is imposed on superselection sector weights such that (=¥ =0hold as
an operator equation.

What edge modes or boundary conditions can be imposed here? A natural first step is the
removal of the operator X1 X, from G/, resulting in the generating set

Gh o= 1(X2X3, ... XN-1XN. Z1, ... ZN). (11)

This adds another central generator, Z1, to the existing one (the fermion parity). The extra su-
perselection sectors that ensue are labeled by the number of fermions on the edge. This is the
fermionic dual to Dirichlet boundary conditions.

The other natural alternative is

Go=1{X1X2, ... Xn-1XN. 2122, Z3, ... Zy). (12)

The additional central generator here is XX, just like in the Neumann boundary condition
for spins. In the fermionic language this central generator is rather nontrivial: it corresponds
to (w;r - 1//1)(1//; + v¥2). However, in terms of Majorana fermions x, and x,, defined via ¢, =
Xv+ix,, this central generator is simply the Majorana hopping operator iy x2. (In this Majorana
basis, the central generator corresponding to Dirichlet conditions is iy x1.)

It is interesting to examine the generating set obtained by removing Z; from G/,

g{/[’o={X1X2~-~7XN71XN7Z27Z3,---’ZN}~ (13)

This is a natural object in terms of Majorana generators x, and x,, introduced in the preceding
paragraph, as the corresponding algebra is generated by all Majorana bilinears built without x1.'"

10 1t is also possible to remove bilinears involving X{ from the generating set, which corresponds to removing both

X1X5 and Z; from G /. However, the resulting algebra is not supported on all sites — there are no nontrivial operators
acting on site 1 — so we do not consider this case here.



J. Lin, . Radicevi¢ / Nuclear Physics B 958 (2020) 115118 11

This algebra has no center. Moreover, it does not contain the fermion parity operator (—1)F.
Thus, it only describes states with (—1)" = 0 and so it cannot contain the density matrix of
any state with definite fermion parity; it can only contain equal statistical mixes of states with
(—DF =1 and (—1)¥ = —1. We can say that the algebra generated by gl\JjI,O corresponds to
“Majorana boundary conditions.” We will return to such kinds of boundary conditions when
discussing algebras on subregions.

The notion of Dirichlet and Neumann subalgebras of the maximal fermionic algebra can be
extended to higher dimensions. The procedure is the same in spirit as the one outlined above: the
algebra of fermion bilinears is dualized to a (non-maximal) subalgebra acting on a Z, bosonic
system, and appropriate subalgebras with additional central generators at the edges are then con-
sidered. The complication is that duals of fermionic systems in higher dimensions are gauge
theories with non-standard Gauss laws [26,27]. Nevertheless, the fermion bilinears all dualize
into local operators, and the procedure is conceptually straightforward and merely technically
involved.

3.3. Abelian gauge theories

Let us now consider a Z, gauge theory in d = 2. (Generalizations to Zk and U (1) theories
are straightforward.) To recap, the full Hilbert space is a product of K = 2 spaces on each link
¢ of the lattice M. The algebra A of gauge-invariant operators, described in section 2, is gen-
erated by electric fields X, on links, magnetic fields Wy on faces, and Wilson loops W, along
homologically distinct noncontractible 1-cycles. Pure density matrices in .A must describe eigen-
states of Gauss operators G, = [ [,-, X, on vertices, as these operators generate the center of A.
Gauge-invariant states are those with G, = 1 for all v.

What are natural ways to reduce this algebra by removing operators at the edges of the system?
A subalgebra of A without some of the Gauss operators will not contain density matrices of any
pure gauge-invariant states; it will necessarily only contain mixtures of states with G, = 1 and
G, = —1 for those Gauss operators G, absent from the subalgebra. This is analogous to what
happened with fermionic subalgebras that did not contain the fermion parity operator. If our
goal is to formulate gauge theory subalgebras that correspond to boundary conditions on pure
states, the subalgebras must then contain all Gauss operators. Appropriate subalgebras will thus
be obtained either by removing magnetic generators or by removing electric generators while
keeping at least those products of theirs that form Gauss operators.

Consider first the generating set Gg(¢,) obtained by removing the magnetic field operator Wy,
from a plaquette f; that contains the link ¢; € M, see Fig. 3. The removal of Wy, causes
the operator X¢, to become a central generator. Thus pure states whose density matrices are in
Age,) have a definite electric field on the boundary link £;. We can similarly remove magnetic
field operators Wy,, Wy,,...from other plaquettes that contain boundary links £>, £3, and so on.
If all the magnetic operators from boundary faces are removed, we will say that the remaining
generators generate the electric algebra, and will denote it by Ag. This algebra contains density
matrices of all states with definite electric fields at the boundary. In the more common continuum
notation, these are states with definite values of the electric field E) parallel to the boundary. Note
that because of the Gauss law at each boundary site, knowing E as a function of the position
along the boundary is the same as knowing E |, the electric field flowing into the boundary at
each boundary site.

The analysis of what happens when certain electric field operators are removed from A4 is a bit
more involved. The simplest way to obtain a nontrivial subalgebra that contains all the boundary
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oM

Wi [ Xe

Fig. 3. A Z, gauge theory on a lattice M with boundary dM (drawn in blue). There is a central generator G, at every
vertex of this lattice, including on edge sites v € dM. Boundary plaquettes are those faces that contain boundary links;
for instance f1 contains a boundary link £; € dM. When W f; is removed from the algebra, X, becomes another central
generator. It corresponds to the electric field operator parallel to the boundary.

Gauss operators is to consider the generating set Gy that contains none of the individual X,
operators on the boundary of the lattice, but that does contain all the Gauss operators G, for
edge sites v. Pure states whose density matrices are in this algebra Ay are eigenstates of the
Wilson loop along the boundary of the region; in continuum notation, this corresponds to a fixed
value of § A along the boundary. These states hence have definite values of total magnetic flux
through the entire spatial surface. We will call the corresponding Ay the magnetic algebra.

Other admissible subalgebras are obtained by removing more electric operators from plaque-
ttes f; on the boundary in such a manner that every boundary plaquette has only products of an
even number of electric operators acting on its links. This way individual magnetic fields W, on
the boundary can become generators of the center. The pure density matrices in such algebras
Awm ) correspond to states with definite magnetic fields at the boundary.

We introduced Neumann and Dirichlet boundary conditions for 1d fermions as Jordan-Wigner
duals of those boundary conditions for bosons. Given that 2d Abelian gauge theories can be du-
alized to bosonic theories via the Kramers-Wannier transform, it may appear natural to compare
the electric and magnetic conditions of Z, theories to Dirichlet and Neumann conditions in dual
spin systems. However, this is not straightforward. A gauge theory on a lattice with boundary is
dual to a spin system only if it contains no operators on the boundary — Gauss operators included
[30,31]. A duality between boundary conditions can indeed be established, but the paradigm de-
veloped in this section would need to be altered to account for gauge theories without boundary
operators. We will not explore this issue here.

Finally, we note that in relativistic gauge theories there exists another terminology for bound-
ary terms. Any boundary condition that fixes the field strength F),, with u and v both parallel to
the boundary is a Dirichlet condition, while fixing F,, with u or v perpendicular to the bound-
ary is a Neumann condition. This means that our magnetic conditions can be either Neumann or
Dirichlet in d > 3; in d = 2 magnetic conditions can only be Neumann, and in d = 1 they are not
defined. Our electric boundary conditions can only be Dirichlet in d > 2 (if we are fixing X, for
£ € dM) but can always be Neumann (if we are fixing X, for £ L dM). (See Table 1.)

3.4. Nonabelian gauge theories

The direct approach indicated in section 2 is not very convenient for nonabelian gauge theo-
ries, so we adjust it as follows [17,32]. We start from a theory in which on each link £ we have
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A summary of correspondences between algebras and boundary conditions in scalar, fermion, and (Abelian) gauge the-
ories. Most common boundary conditions are listed.

Generators of the algebra

Generators of the center

Boundary conditions

Spin chains Xi,...,. XN Z1, ..., ZN None Open
X1, s XN 22y ooy ZN— X1, XN Dirichlet
X1,..., XN,
: N X1 X2, XN—1XN Neumann
212y, 23, ..., ZN-2, ZN-12ZN
’ ’ ’
Fermion chains X],XI’X%XZ""’X’,VXN’ (=DF =(x)x) - Gxyaw) Open
X1X25 Xp X35+ +s XN—1 XN
’ !
XIX1s oo X XN =DF XX Xy xw Dirichlet
X2 X35+ XN—2XN—1
XIXIXAX2 XN i XN—1 XN XN »
X5X31 s XN XN=25 =D, xi{x2. Xpy_1 X Neumann
X1 X2 X3 H3s e s XN XN
Z, gauge theory Xe, Wy = Hch Z, forall ¢, f Gy =[]o, X forallv Open
(any dimension) All X, Wy except Wy, f e oM All G, and X, for ¢ € 9M Electric
All X¢, Wy except Xy, £ € dIM All Gy, and Wyng =[Tpcons Ze  Magnetic
Compact scalar @, =ei?, 1, for all vertices v None Open
(any dimension) All @, I, except I, for v e dM All &, for ve dM Dirichlet
All @,, all I, in the bulk, All &' o, for (v,u) L IM Neumann
only IT, 1T, for links (v, u) L M
U(l) gauge theory X, =e™c Wy= ¢4 for all L f Gy = eh*ix for all v Open
(any dimension) All X¢, Wy except Wy, fedM All G, and X, for ¢ € 9M Electric
All Xy, Wy except Xy, £ € dM All Gy, and Wy for f € aM Magnetic

a Hilbert space #H, spanned by {|U),} for all U in a given gauge group G. Now, on each link
we define an infinite series of finite-dimensional Hilbert spaces, ’Hf, associated to irreducible
representations R of G. A basis of ’Hf is

|Ra/3)@o</dURaﬁ(U)|U)z, o,B=1,...,dimR. (14)

G

Here we omit normalization factors and take dU to be the Haar measure on G. The dimension
of ’Hf is (dimR)?2. The vectors {IRup)e} forall R, a, B span He !

States |Rqp)¢ have definite electric flux in representation R, but their products over all £ are
generally not gauge-invariant. Gauss operators that implement gauge transformations by A € G
are

Gy =[]Lh. (15)
u

where the product goes over all neighboring vertices of v, and ij\u|U ye equals |[AU), or

|UA~1)¢, depending on whether the link ¢ is oriented from v to u or vice versa.'” The oper-

11 A finite approximation to a nonabelian gauge theory can be obtained by keeping only representations below a certain
dimension, but then the algebra of operators may only approximately close under multiplication.
12 1n terms of states [Rqp), these two types of operators act on « and 8 by the matrices R(A™Y) and RT (0), respec-

tively. For example, L?lRaﬁ)[ % fG dUu Raa/(A’l)Ra/ﬁ(U)lU)g = |R;;,(A)Ra/ﬁ)e.
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ators Lf,‘u are nonabelian generalizations of operators built out of electric flux generators X,
from the previous subsection, but unlike them Lf;\u are not gauge-invariant. It is common to view
G as a Lie group and to employ its generators 7¢ to write

pa ja ipaTa
Lf}u = for A=e"T", (16)

with the understanding that the electric flux generators JJ, act either from left or from right and
have sign 4+ or —, depending on the orientation of the link [17].

Gauge-invariant states are products of states | Ryg)¢ in the same representation along a cycle,
with indices «, 8, ... contracted between neighboring links in this cycle. Gauge-invariant opera-
tors are Wilson loops WCR in representations R on cycles ¢, and Casimirs built out of electric flux
generators J,, defined in eq. (16). The analysis of boundary conditions in non-maximal algebras
now proceeds analogously to the Abelian case: removing e.g. all Wf from a face f near dV
turns all the Casimirs on the boundary link from f into central generators. Conversely, removing
all Casimirs and local Wilson loops from 9V makes all the WBRV’S become central.

4. Subalgebras and boundary conditions

The analysis so far has dealt with algebras that are supported on the whole lattice M, and a
particular emphasis was placed on understanding which pure density matrices belong to which
algebras. In this section we will deal with algebras Ay of operators supported on a subregion
V C M. We assume that we are given a density matrix p in the full algebra .4 — or, equivalently,
a list of expectation values (O) of all basis elements O € A. Each pair (p, .Ay) uniquely induces
a reduced density matrix via an analog of eq. (5),

1 -
pAV) =+ Z(Oa,1>oa/, where Ay = span{Oy}. 17)
a/
We seek to understand what kinds of different p (Ay)’s can there be, given a state p and a region
V.

We will focus on algebras Ay that differ by operators at the edges of V, and the resulting set
of different possible py will correspond to different boundary conditions that can be put at the
entangling cut of the system. This is analogous to section 3. Our analysis applies more broadly,
and the same techniques can be applied to algebras Ay lacking generators in the interior of V.

Any reduced density matrix in any subalgebra Ay has the form

1
P(-AV)ZPV@(F]lv), (13)
\%

where py is a properly normalized density matrix of a state in Hy (the product of all target
Hilbert spaces Ho associated to elements of V that carry degrees of freedom), and 1y acts only
on the complement H; of dimension Dy;. This means that the algebra Ay only contains density
matrices of states that are uniform mixtures of all possible field configurations outside V. From
now on we focus only on py, for which there are three possibilities:

1. If Ay is the maximal algebra CPV*PV on Hy, there will be open boundary conditions on
the edges of the interval, and all density matrices py will be allowed.

2. If Ay is not maximal but has a center generated by edge operators, py will split into supers-
election sectors that contain states obeying a specific kind of boundary condition. Examples
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include Dirichlet and Neumann conditions from the previous section. Relative weights of
different sectors depend on the original state and may take arbitrary values.

3. If Ay is not maximal and has no center generated by edge operators, we can add a central
generator and require that its expectation value always be zero. The reduced density matrix
will then split into blocks labeled by eigenvalues of this central generator, but there will be a
constraint on the relative weights of superselection sectors that will force py to be impure.
An example is the Majorana boundary condition from the previous section. In this case the
field at the boundary is random, i.e. it is an equal statistical mixture between states with and
without a fermion at the edge.

Boundary conditions may effectively depend on p in the following sense. If Ay is the max-
imal algebra on V, and if any operator that fails to commute with a given O € Ay has zero
expectation, then py will be block-diagonal with sectors labeled by eigenvalues of O. For
instance, if IT is a momentum operator conjugate to a position operator @, open boundary con-
ditions are the same as Dirichlet conditions in a state where all expectations involving IT vanish
(i.e. if IT = 0). As another example, if Ay is the Dirichlet algebra of a spin system with Z, a
central generator, and if the state has Z,, = 0 for some v € 3V, the Dirichlet boundary conditions
will be the same as random (Majorana) ones: only a uniform mix of Z, = 1 and Z, = —1 states
will appear in py. When specifying a set of boundary conditions, we will always specify them
based on the algebra and not on the particular state in question.

Let us now apply these ideas to our usual test subject, the Z, gauge theory. Gauge invariance
has historically caused a lot of confusion when it came in contact with the study of entanglement.
By the following analysis we wish to very forcefully point out that even when working with the
full Hilbert space the results will be gauge-invariant, as long as only gauge-invariant algebras are
studied. These points have been made in [30].

Consider an algebra Ay of gauge-invariant operators supported on a set V, which in this case
is a collection of links. No operator in Ay has support outside of V — in particular, no Gauss
operator G, for v € 3V is in Ay."? The center of Ay is generated by Gauss operators in the
interior of V and by boundary electric fields

E,=[] X (19)
£Dv
eV
If the original state p is gauge-invariant, then all Gauss operators will have G, = 1, and the
appropriate reduced density matrix py will contain only states that satisfy the Gauss law on all
the interior points, i.e. it will be of the form

~ 1+G
oY = PV l_[ Tv (20)
velnt(V)

The remaining central generators of Ay, E,, ensure that the generic density matrix py de-
scribes a mixture of states with definite electric fluxes through V. This almost corresponds to
electric boundary conditions on dM as described in the previous section. Recall that our orig-
inal definition of electric boundary conditions involved specifying all electric fields on links in
oM. In that situation, all magnetic field generators were removed from plaquettes containing

13 We assume that V is a subregion of M that is far away from the boundary d M of our spatial lattice, if any exists.
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boundary links, and Wypg, the Wilson loop along the boundary of M, was not in the algebra
of operators dubbed Ag. Here, however, all magnetic operators on the boundary are retained,
and in particular Wyy € Ay. Thus, with electric boundary conditions on physical boundaries
of the system, density matrices split into 219V blocks; with electric boundary conditions on the
entanglement edge, they split into 218V1=bo plocks, where by is the number of disconnected com-
ponents of V. We will still refer to these boundary conditions as electric, but this caveat must
be kept in mind, as the by “correction” gives rise to universal quantities such as the topological
entanglement entropy.'*

In nonabelian theories, the center of the gauge-invariant algebra is also given by the Gauss
operators in the interior and by a set of operators on the boundary of V. These boundary operators
are defined as Casimirs built out of products over all interior vertices u neighboring v € 9V,

Er=]]Lh 1)
ueV

How do these operators act in the basis |Ryg)¢ from eq. (14)? Within each "Hf suchthatv el e
V, we have

LY, i IRap)e > IR, (M Rwpde or |Rop Ryrp(A))e, (22)

depending on the orientation of £ (recall that we are summing over repeated indices, and when the
argument of R is dropped it is understood to be the integration variable U appearing in (14)). The
product of these operators, E {,\, has an analogous action on the tofal flux in representation R that
enters the vertex v [17]. Thus, every central operator E2 in a nonabelian theory has an identity
component when represented on the space @), Hf, and hence the reduced density matrix will
contain this product of identities, too. (We will give them a physical interpretation in section 8.)
Beyond this, the analysis of nonabelian theories is analogous to the Abelian case: the existence
of boundary central generators causes py to split into superselection sectors labeled by the tuple
R, which are direct generalizations of Abelian electric fluxes labeled by %.

5. Entropies of reduced density matrices

The algebraic point of view developed in the previous sections allows us to start from any
theory with a known lattice regularization and define the Hilbert space in the natural represen-
tation of any subalgebra of operators Ay. Roughly speaking, this space is the direct product
Hy = Q);cy Hi over all degree-of-freedom-carrying simplices i (vertices, links, faces, etc) on
which at least one operator in Ay acts nontrivially. More precisely, a non-maximal algebra Ay
restricts the possible quantum superpositions between the states in Hy, so the resulting restricted
space will be denoted 1y, . This restricted space Hy, has the same dimension as Hy. The only
difference between them is that 7y, does not allow superpositions of states in different super-

selection sectors. If k labels these sectors, we can write H¥, = @k H(k), where each ’Hg,‘) is a
smaller but more “traditional” kind of Hilbert space where all superpositions are allowed.

14 Non-maximal gauge-invariant algebras, obtained by removing gauge-invariant operators from the vicinity of 3V in
a manner described in section 3.3, can also be viewed as having random boundary conditions for some of the central
generators E,. We will not use this point of view in this paper, but it may be a useful fact when comparing entropies of
different algebras in a fixed quantum state.
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The natural entropy to be associated with py is the von Neumann entropy,

on

n=

d
Sy =-Tr(pylogpy)=——| Trpy. (23)
1

The trace is taken over Hy or, equivalently, over Hﬁv.ls The latter formula is the basis of the
replica trick, to be explored in the next section. We will call this quantity the full entanglement
entropy.

We again stress that in a lattice gauge theory, we take Hy to be the set of all states on links
in V — gauge-invariant or otherwise. The projectors in (20) make sure that only states obeying
G, =1 for v € Int(V) contribute to the trace. More interestingly, py does not contain projectors
that enforce G, = 1 for v € dV. This is an important point whose ramifications we study below
eg. (43) and in section 8.

n n
If py is block diagonal in some basis, we can first compute Tr <@k pg,‘)> =>,Tr (pg;))
and then write

9 %
Sy=—> ) Xk:Tr<pV> . (24)

If there is only one relevant superselection sector, i.e. if Ay is the maximal algebra on Hy or if
all sectors but one have zero density matrices, this formula reduces to (23).

In the presence of superselection sectors, the entropy Sy is not the only interesting quantity
to define. Let us first assume that we are working with matter or Abelian gauge theories. It is
useful to define unit-trace density matrices p in each sector:

k ~(k k

o =pipy . p=Tipy . (25)
The entropy associated to Ay is now

Sy=— pilogpc+ Y peSy, (26)

k k

with

s 2| g (ﬁ(">)" 27)

\% on 1 \%
The quantity
i k
SI =" prSY (28)
k

is called the distillable entanglement entropy.'® For a generic state, it is different from the full
entropy Sy whenever Ay has central generators.

15 Itis possible to take other definitions of the trace. For instance, it may be over the smallest faithful representation of
Av , or it may be over all of H. Different choices will lead to entropies that differ by state-independent constants. It is
important to only compare entropies defined using the same trace.

16 The edge terms are not distillable using gauge-invariant operations in the interiors of the entangling region [17],
i.e. they are not convertible to entangled Bell pairs in an external reservoir of qubits via the local operations. The obstruc-
tion is that gauge-invariant operators in the interiors of the regions cannot change the superselection sector. See [18] for
an explicit distillation protocol in a constrained spin system that models a lattice gauge theory.
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In case we are working with nonabelian gauge theories, recall from the discussion around
eqg. (21) that py has more structure beyond splitting into sectors labeled by the representation
R of the gauge group: within each sector, it is a tensor of a dimR x dimR identity matrix and
a nontrivial matrix that we may call the proper reduced density matrix. Each representation R
thus contributes an entropy of logdimR to Sgc). (Here we are using k to denote all labels for
superselection sectors; in general, R will be a subset of k, meaning that there may be multiple
sectors k with the same label R.) In fact, it is natural to define Sg‘) as the entropy of the proper
reduced density matrix in sector k, as the logdimR contribution is also not distillable. Hence, in
a nonabelian gauge theory, we will decompose the full entanglement entropy as

k ,
Sv == pelogpe+ Y pkSy + Y prlogdimR, (29)
k k R

where prg is the total weight of all sectors & that contain R.
With this convention,

- k
ST == pelogpi+ Y piSy’ (30)
k k

will be called the gauge-invariant entropy of V. This is the entropy that we would get if the trace
in (23) was taken in the representation associated to gauge-invariant degrees of freedom only,
instead of using the representation on the full space Hy = @), H¢. We caution the reader that
this name is slightly misleading, as the full entropy (29) is gauge-invariant, too.

6. From subalgebras to path integrals

We will now show how the various entropies defined in the previous section can be computed
using path integrals.'” Let {|¢(k))} be a basis of HY, that diagonalizes all central elements of
Ay, and let {|)} be any basis of Hy - The eigenvalues of central generators are collected in
the tuple k. For instance, in a scalar theory with Dirichlet boundary conditions on the entangling
edge, q)l.(k) could be used to label the position eigenstate with field configuration ¢; for i € Int(V)
and with boundary conditions ¢, = k,, for v € dV. In a gauge theory, instead of including in k
the Gauss operator eigenvalues in Int(V) (which are all equal to unity, cf. (20)), we will simply
require that any |¢®) be invariant under all gauge transformations in Int(V). This way in gauge
theories the tuple k£ will contain only eigenvalues of central operators on the edge.

The wave function of the ground state |W) of a theory with Euclidean Lagrangian L is given
by

(k)
‘I’k("”ﬂ)E<¢(k)’ﬁ"y>=/[d“’]efﬁ°°m’ 31

pi(t=07) =¢l.(k) forieV, ¢@j(r=07)=10;forje V.

17 When working with theories with finite target spaces, like spin systems or fermions, we may either consider the
time t to be discrete, or we may take it to be continuous with the understanding that all integrals are constructed using
the coherent state approach [33]. Either way, 7 is always Euclidean. For gauge theories, it is most helpful to keep
discrete, with fields Ag living on temporal links. Integrating out the Ag’s in any Maxwell/Yang-Mills theory enforces
local conservation of charge, making the path integral include only gauge-invariant configurations [34].
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Fig. 4. A side view of the path integral boundary conditions on the v = 0 slice, illustrating eq. (33). At all other values
of 7, the integral is unconstrained; even at T = 0, there is a sum over all values of fields @ in V, i.e. outside the two red

circles. The setup shown here calculates (;E(k) |pg;> |¢(k)) when central generators are at or near 9V ; their locations are
shown in red. The values of central generators are denoted k and are the same at T = 07 and 7 = 0. The replica trick
calculates Tr[p(\];)]” by taking n copies of this setup and constraining ¢(k) on the replica [ to equal 5“‘) onreplical+ 1,
with n + 1 = 1. The fields in the red region are then eigenstates of central generators with eigenvalue k on each replica.

The notation | ® means that the path integral variables within the region V on the v = 0 slice
are constrained to equal the eigenvalues k of central generators of Ay.'® The path integral is
normalized so that

(k)
PR ACE AN A ﬁ)—z / [dp]e™ " (32)

k.,
The reduced density matrix induced by the algebra Ay is block-diagonal in the basis { |¢(k))},
and each block has matrix elements
(k)

P OIROTRINIE $.0)= Lt
<¢(k))/)v ‘¢(k>>_;wk(¢,z?)‘llk(¢,ﬁ)—/[dﬁf’]e Sl (33)

_ ~(k .
pi(r=0") =¢l~(k), pi(t=07) =¢l.( ) forieV.
On the other hand, the normalized density matrix in sector k (cf. eq. (25)) has matrix elements

(391586 ®) = 7)[d<p]k e o tdr, (34)

with the measure chosen so that Trp(k) =1 for all k. See Fig. 4. For instance, for a spin chain
with Dirichlet boundary conditions at the edge sites {vy, v} of the entangling interval V, the
normalization condition

f [dglie™ /S bdr — | 35)

has k = (ky,, ky,) € {1, 4} x {1, |} labeling the four superselection sectors.
The sector weights py appearing in (26) can be calculated from the original path integral (33),
as made clear by their definition (25):

(k)
pe=Tipld = / [dple /oo LT, (36)

18 More precisely, we should also allow for constraints on links emanating from V. Such constraints would play a
role when computing, say, the entropy of the algebra gD p in €q. (9). They will also play a role when studying various
entropies of gauge theories. We will henceforth include this possibility when referring to boundary conditions at T = 0.
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Note that here the measure of the path integral is the same as in (31), meaning that when summed
over all k the integrals in the above equation yield unity. The two measures are related by

pi [delk = [do]. (37

These probabilities can also be obtained from the expectation values of central operators. Let
{O;}i=1....m be the generators of the center of Ay, chosen so that their eigenvalues ; are roots
of unity. A general operator in the basis of the central algebra has the form O™ = ]_[l"i L O
Its expectation is

< (m)> Zl’k kml mM = ZKmk Pi. (38)
k

Note that the tuple m is conjugate to k, and the matrix K is simply the kernel of an M -dimensional
Fourier transform.'® This ensures that K is always invertible, and we can write

pr = Z K (o“’”) (39)

This expression can also be written as px = ([T; Py, ), where Py, oc Y-, k" O is the projector
onto the k;-eigenstate of the central generator O;.
Finally, let

—I(k
pr=e'®, (40)
The sum over individual contributions of sectors to the entropy Sy can be written as

(k)

9 -
Sdist = Z prSy = —— Y e / [dg]! e~ Jovixm Ld7 | 41)
k

on

n=1

where (M x R)" denotes the n-replicated Euclidean spacetime, and [dgo]z =[de1]k - - [de, ]k is
the replicated measure for the path integral in sector k, normalized according to eq. (35). The
same boundary condition £ holds on each copy of the region V on the t = 0 slice. The sum
over boundary conditions (edge modes) does not depend on n and can be commuted past the
derivative %.

The full entropy associated to the algebra Ay, given by eq. (26), can be calculated by modi-
fying the edge mode contribution in (44) to get

k)

0 Ze—nl(k) /[dw]z e~ f(MxR)n Ldr ) 42)
k

Sy =——
v on

n=1

According to eq. (37), e/ ® [de]} = [dg]", so the full entropy can also be written as the path
integral with the original measure on each replica, in agreement with eq. (24):

19 For example, in a Z, system, the eigenvalues k; of each central generator are £1. They can be written as elki
for k; € {0, 1}, and the expectations become (Om)y = > el 2 Kimi pi - Note that m; = 0 corresponds to the identity
operator (OO = 1), which is always in the center. In subsection 7.2 we will show how this works for the case of a free
compact scalar.
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(k)

d > / [do]" e~ oy LAT | 43)
1 k

Sy =——
v on

n=

We also record the expression (41) for SQ}S‘ once eq. (37) is employed:

(k)
Zf[d(p]n e(nfl)l(k)ff(MXR)n Ldt ] (44)
=1 k

n=

a

SdiSt —-
v on

Let us clarify what these path integrals look like in an Abelian gauge theory. Conventionally,
path integrals are defined over variables A, on both spatial and temporal links. On spatial links,
elde are eigenvalues of Z,, whereas — as mentioned in footnote 17 — A, on temporal links are
Lagrange multipliers enforcing the gauge constraint. After imposing these constraints, we may
gauge-fix the variables on temporal links to A, = 0. We are left with time-independent gauge
transformations; let us set them aside for a moment. In the axial gauge fixed so far, electric field
eigenvalues are time derivatives d; A, of variables on spatial links. Eigenvalues of the electric
central generators E, (defined in eq. (19)) are Hbv,eev exp {id; A¢} for each v € 9V. In the

path integral (43) associated to the maximal gauge-invariant algebra, within each [ ® the fields
are thus constrained to have

el Lo tev & AT=0) ¢ 4 e HV, 45)

(The integral over temporal A,’s emanating from v € 3V makes sure that field configurations
on V end up having a matching flux k at 8V.) The conditions (45) are defined in axial gauge
but are invariant under time-independent gauge transformations. Thus we can fix the remaining
gauge freedom in any way we want, but we caution any prospective gauge-fixers that the replica
structure makes it extremely natural to fix separately inside V and outside of it.

In nonabelian theories, the same story as above plays out, with one significant difference. The
path integral (43) for the maximal Ay forces the gauge fields to have a definite representation
of the electric flux through 0V for each sector k. Unlike in the Abelian case, an eigenstate with
a definite flux representation is not invariant under time-indepenedent gauge transformations on
v € V. (Recall from section 4 that any state in 7—[5{, has one “dangling” index « at each edge
site, resulting in py having factors of dimR x dimR identity matrices.) We can choose whether
to fix the gauge on the edge; if we do not, these dangling degrees of freedom will get replicated
and will contribute to Sy. Gauge-fixing on 9V thus reduces Sy down to the “gauge-invariant”
part S%,'mv given by (30). We will discuss the physical nature of this gauge-fixing in section 8.

Equation (43) should be taken as the regularized definition of the replica trick path integral. It
gives a precise treatment of boundary conditions and distinguishes between entropies associated
to algebras with different centers. In general, the entropy associated to a general subalgebra Ay
can be calculated algorithmically by following these steps:

1. Determine the center of Ay .

2. Determine the set of degrees of freedom on which Ay acts nontrivially, and pick the basis of
the associated space Hy; so that the center generators are all diagonal. This sets the variables
to be used in the path integral.

3. Calculate the full entropy Sy via eq. (43). In a nonabelian theory, the same equation can
be used to calculate the gauge-invariant entropy S%_mv. It is obtained by fixing the time-
dependent gauge transformations on 9V.
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This procedure can be applied to any quantum theory, assuming we know how to discretize it
such that we start off from a Hilbert space that factorizes.

7. Miscellaneous comments
7.1. Gauge vs. matter theories

As repeatedly stressed throughout this note, there is no procedural difference between calcu-
lating entropies in matter and in gauge theories. The principal difference between these theories
is that the latter always have central generators — the Gauss operators. Moreover, in a gauge
theory, the maximal gauge-invariant subalgebra supported on V always has additional central
generators in the form of edge electric flux operators E,, defined above eq. (20). In contrast, the
maximal subalgebra on a region V has no center for matter theories.

In entropy calculations, Gauss operators in the interior of a region V do not give rise to
any sums over superselection sectors. This is because all gauge-invariant states are in the same,
singlet sector in which G, = 1 holds as an operator equation. No other sectors are populated.
This means that any reduced density matrix in V can be represented as a density matrix of gauge-
invariant degrees of freedom times a projection to the singlet sector, eq. (20).

On the other hand, the existence of flux operators E, on v € 3V means that gauge theories
will naturally have nontrivial superselection sectors, and since these are supported on edges it is
reasonable to refer to them as edge modes. (Here we assume that the “natural” algebra associated
to a region is the maximal allowed algebra of operators on that region.) Using the “balanced
center” procedure of [14] it is possible to find a non-maximal gauge-invariant algebra that has
no edge modes. However, in a topological phase of a gauge theory this kind of algebra does not
give rise to the usual topological entanglement entropy. In general, it is not known how universal
data about the gauge theory are encoded in entropies of algebras with non-maximal centers.

7.2. The edge mode action

The general prescription in the previous section can be straightforwardly applied to d =1
systems. However, d > 1 might seem hopeless, as the size of the center grows exponentially
with |9 V|. Fortunately, there are several situations in higher dimensions when the superselection
sectors can be tamed. These are either free or infinitely gapped theories of various kinds, and
here we will enumerate some examples. To simplify the discussion, we will focus on Dirichlet
algebras for matter theories and on electric algebras for gauge theories. In both cases a sum over
sectors generically appears.

1. Product states: The sum over superselection sectors is trivial if only one sector has nonzero
weight. In such a case there is no “classical” entropy from the — >, pi log py term in (26).
In a matter theory, this happens in massive phases with product states, such as in the Ising
model at large external field. The ground state has all spins pointing in the same direction,
say Z, = 1. If the center of Ay is generated by Z’s at the edge, only one superselection
sector will be populated. Similarly, a lattice gauge theory at strong coupling will have a
ground state with X, = 1 on all links, and only one configuration of edge modes (electric
fields piercing dV) will appear in the reduced density matrix.
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2. Topological phases: All gauge theories with a finite gauge group have a topological phase
at weak coupling.”’ In this limit, central generators are the electric flux operators E,, and
topological states have the same py for each set k of eigenvalues of E,, modulo global
constraints (as discussed in section 3). A quick way to see this is to note that all electric
flux operators have zero expectation values, so py = ﬁ follows from eq. (39) (with M
denoting the number of sites at 0V, and Z g being the gauge group).

3. Symmetry protection: The previous two examples dealt with extreme weak and strong cou-
pling limits of simple theories. It is conceivable that with a sufficient amount of symmetry,
only a few superselection sectors will be populated in more complicated models, as well.
At the very least, we expect this to be the case in any symmetry-protected trivial (SPT) or
symmetry-enhanced topological (SET) phases. We will see in section 8 that Chern-Simons
theory naturally fits into this category, too. It would be interesting to discover other nontrivial
theories in which the superselection sectors are simple due to a symmetry.

4. Free theories: In a free field theory the expectation values that enter eq. (39) are nontriv-
ial, but they do factorize due to Wick’s theorem. Consider a compact scalar, with central
generators Z, = e'% for v € dV. The expectations of central elements can be written as

<eizv’”vd’v> ~ e~ Lo Gummu  Plygoing this back into (39), using k, = e*v and Kk_Wll ~

e 2y kumy , and summing over m,, we find sector probabilities py ~ e~ 2o ij“””“. This is
an elementary way to derive the Gaussian distribution of edge modes that has played an im-
portant role in understanding the entanglement entropy in d = 3 Maxwell theory [21,35,36].
Note that the edge mode action I (k) = —log pi is nonlocal. The action that appears in the
replica trick, eq. (44), is thus not equivalent to the naive restriction of the original action to
the subregion V, as would be the case for an algebra Ay without a center.

7.3. Lattice, continuum, and conformal boundary conditions

The discussion so far was centered on path integrals carried out over lattice fields. When such
integrals are dominated by configurations that vary over length scales much greater than the
lattice spacing, lattice boundary conditions can be replaced by continuum ones. If the field con-
figurations of interest vary slowly and the theory remains weakly coupled, the type of boundary
condition (open, Dirichlet, Neumann, electric, magnetic, etc) will be the same in the continuum
and on the lattice, although the edge mode action 7 (k) may be renormalized. For instance, in
a free theory we can approximate the sum over edge modes k with an integral over boundary
configurations ¢(x|) for x| € 3V, and these continuum edge modes will still have Gaussian
weights, with an effective action [¢] [13]. This naive approach will not be possible for theories
without an explicit Lagrangian description, for instance for strongly coupled theories defined as
the infrared limits of known theories, where boundary conditions are more abstractly determined
by bulk-to-boundary operator product expansions (see [37] for a modern take on this). It is not
known how to generalize our discussion to these cases, though of course if we were powerful
enough to compute path integrals directly in the UV, our analysis would apply.

In arbitrary d = 1 CFTs, information about boundary conditions can be captured in a different,
more efficient way. Conformal boundary conditions are classified by their transformations under

20 1f the gauge group is continuous, the topological phase may be inaccessible. Consider the case of U(1). We can
imagine regulating it with Z g for K >> 1; the topological phase is reached when the coupling is much smaller than 1/K
[32], which is not a limit one usually considers in U (1) theories.
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the conformal group (with the space of boundary conditions spanned by Ishibashi states). Linear
combinations of Ishibashi states, chosen in order to have nice modular properties, are called
Cardy states [38]. There is one Cardy state for each primary operator. In a study of the Ising CFT
[25], Cardy states at the entangling edges in the path integral construction were connected with
choices of algebras.”! In this reference it was also found that the leading universal term does not
depend on these choices, which appears to be a non-generic phenomenon: as we will review in
more detail below, the universal term depends on the choice of entropy in d = 3 free theories.

Specifically, for an interval V, consider the maximal subalgebra Ay of the Ising model H =
> i (XiXit1+ Z;) and the corresponding Dirichlet-type algebras A%D, A%,’O, and .A%D defined
by dropping Z generators from one or both of the edge sites. The algebra Ay corresponds to open
boundary conditions on the lattice. In terms of conformal boundary conditions, it corresponds to
the Cardy states |o) on both entangling cuts. An open boundary condition on one edge site
corresponds to the |o) state on that site in the CFT.

The Cardy states |1) and |e) are more interesting, and they arise when Dirichlet conditions
are imposed. The edge modes here are labeled by the pair k = (k1, k2), k; € {£1}, of eigenstates
of edge operators X,. When ki = kj, the Cardy state is |1, 1) or |e, €). (The two choices give the
same path integrals, and they calculate the individual sector entropies Sg( ).) When k; = —k», the
Cardy state is |1, &) (or |e, 1)). When one boundary condition is open and the other Dirichlet,
there are two superselection sectors labeled by, say, k1, and the Cardy states on the edges are
|1,0) or |e, o), depending on the choice of k.

This is the only known example of a connection between conformal boundary conditions and
algebras. It would be interesting to understand this link in more instances, and to check whether
the universal leading-order behavior in other d = 1 CFTs does not depend on the choice of
algebra, as was found to be the case in the Ising model.

7.4. Universal terms

In a CFT with a UV cutoff € and in d > 1 space dimensions, it is common to say that the
ground state entanglement entropy for a spherical region V of size R takes the form

Rd*l Rd73 _
{ v deven | e/R). (46)

SV:“d—léd—l +ad-3 cd—3 +...+Ca alog®, dodd

Here C,; is a theory-independent constant,”” and y and a are universal (regularization-
independent) and can often be interpreted as counting the number of degrees of freedom in
the CFT [9,39]. Which of the entropies defined so far should be understood when writing such
formulas?

This question is not trivial; different entropy choices lead to different values of y and a. Each
may have a counting interpretation and lead to c-theorems of interest [40,41]. To answer this
question, we note that for odd d, the quantity a can be connected to the trace anomaly of the

21 Ref. [25] focused on the Rényi entropies (1 —n)_1 log Trp%, in the limit n — oco. We here assume that the established
connection between subalgebras and this particular limit of Rényi entropies can also extend all the way to n = 1, where
the usual entanglement entropy is recovered.

22 Different authors have different conventions for this constant, and in section 8 we will simply absorb it into the
definition of @ and y.
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CFT [42].” Briefly, the trace anomaly is calculated by the one-point function of the trace of
the stress-energy tensor, 7,,*, on a curved manifold, with the stress-energy tensor defined as the
variation of the action under a Weyl rescaling of the metric.

Now, if an entropy is computed by a replica trick path integral whose only dependence on
the metric enters through the Lagrangian L and the normalization of [d¢]", then integrating over
a replicated spacetime will yield a universal contribution proportional to the integral of (T,ﬂ)
over the entanglement edge dV. The full entropy Sy from eq. (43) is computed this way, unlike
S%}St or any of the Sg,‘) ’s, which all have additional edge mode actions with nontrivial metric
dependence in the path integral. (Of course, in particular QFT states the edge mode action may
be metric-independent, as discussed in section 7.2, but we have no reason to believe this happens
in the ground state of any CFT.) On the other hand, the gauge-invariant entropy S%,'lnv differs
from Sy only by gauge-fixing at every point along the entanglement edge. Thus, at this stage,
we claim that only Sy and S%,_mv can be entropies whose universal terms can generically match
the trace anomaly.

We have also not specified which algebra we want to compute the full or gauge-invariant
entropy of. Based on calculations in free theories [21,35], we conjecture that in all theories the
trace anomaly matches the universal term in the entropy when Ay is the maximal algebra on
region V. Moreover, based on calculations in topological and confined phases of lattice theories
[14,32], we also conjecture that the quantity y (sometimes also denoted F') that is customarily
defined in even d also matches the universal piece of the entropy of a maximal algebra on V.

In the context of gauge theories, we will provide more plausibility arguments for this con-
jecture in section 8. In particular, we will note that the topological entanglement entropy y of
Chern-Simons theory is reproduced only if no gauge-fixing is assumed at 0V. Thus, we can
sharpen our conjecture and claim that it is always the full entropy Sy of the maximal Ay that
contains the conventionally defined universal terms. This claim was also made in section 5 of
ref. [18].

7.5. Holographic entanglement entropy

If a theory is holographic, the replica trick path integral can be calculated using a replicated
bulk geometry, and the entropy associated to this bulk partition function is approximated by the
area of the Ryu-Takayanagi surface in the classical limit [5,43]. An important aspect of this story
is that the Ryu-Takayanagi prescription does not involve a choice of subalgebra or of a type
of boundary condition. Which of the many entropies that can be associated to a region V does
holography compute?

This question reduces to the one discussed in the previous subsection. The holographic en-
tropy is known to reproduce the correct trace anomaly (or the y quantity that features in contact
terms) in its universal terms when the bulk contains Einstein gravity [39,44]. Moreover, in higher
derivative theories of gravity, the Ryu-Takayanagi prescription is modified so that the holographic
entanglement entropy still computes the correct trace anomalies [45]. Building on the conjec-
tures from the previous subsection, we propose that, in all dimensions, it is the full entropy of the
maximal algebra on V that is computed by the holographic entanglement entropy, defined via

23 For even d, the trace anomaly vanishes and we do not have an analogous argument. However, the quantity y can be
connected to contact terms in correlation functions that play roles similar to perturbative anomalies in odd d.
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Ryu-Takayanagi or its generalizations. It is not known what gravity constructions would calculate
any of the other entropies that can be associated to V.

We emphasize that the arguments used to buttress our conjectures all relied on universal terms
in entanglement entropies, in both odd and even dimensions. It may sound surprising that univer-
sal terms can be influenced by pglogdimR terms in the full entropy, eq. (29), because in the path
integral language these terms arise from a local gauge-fixing on each point at the entanglement
edge. The situation is most clearly assessed by recalling the expressions for py in a free theory,
derived in subsection 7.2; the probabilities pg are functions of p; and hence they are generically
nonlocal, too. In other words, the degrees of freedom at the edge that we exclude by gauge-fixing
will generically exhibit nonlocal correlations that contain universal information. A very concrete
example of this is the fact that in a gauge theory there must exist an overall constraint on all the
fluxes piercing the entanglement edge, due to the Gauss law. This constraint must be felt by both
pi log pr and pglogdimR terms. In d = 2, it is precisely this overall constraint that induces
the topological entanglement entropy in a lattice gauge theory (albeit there it comes from the
prlog pir term). In a nonabelian Chern-Simons theory, however, the topological entanglement
entropy instead arises from the pg logdimR term, as we will review in the next section.

8. Local extensions of the Hilbert space in gauge theories

In this section, we discuss the second universality class of approaches to define the entangle-
ment entropy of a lattice gauge theory. In contrast to the previous sections, here we will take the
perspective that the Hilbert space of the gauge theory contains only the gauge-invariant states
that faithfully represent the gauge-invariant operator algebra. We then locally extend this Hilbert
space along the entangling cut by adding the minimal number of degrees of freedom at the cut so
that it splits into tensor factors, and so that the time-independent gauge symmetry at the boundary
is promoted to be a faithfully acting global symmetry.”* Although this operation may seem quite
arbitrary, the two main points in this section are that (i) it is a physically meaningful procedure
when the gauge theory emerges as an effective low-energy description of the physics, and (ii) it
coincides with an especially natural set of boundary conditions in the replica trick, that roughly
amount to smoothing out the conical singularity. (In section 7.4 we arrived at an analogous re-
quirement: that the replicated path integral depends on the metric only through the action and
the usual measure.) Much of this section serves as a review of a cross-section of the literature on
entanglement entropy in gauge theories in which these points were crystalized.

In cases where we can put the gauge theory on a lattice, the results obtained in this section
coincide with the full entanglement entropy of the maximal algebra, (29), in the conventions of
the previous sections. This is because previously, we were already using the convention that the
algebraic entanglement entropy for lattice gauge theories was defined w.r.t. a (globally) extended
Hilbert space, as described in footnote 6 (and the extension of the Hilbert space away from the
entangling surface does not affect the partial trace calculation).”

Organizationally, we will start by introducing the extended Hilbert space approach both on the
lattice and in the continuum. We first do this at a formal level, then provide a physical justification

24 Without this last requirement, the minimal extension of the Hilbert space would not have any degrees of freedom
directly on the edge; this is tantamount to removing the log dimR terms by gauge-fixing all the edge degrees of freedom.
5 In particular, earlier references to the “full entropy of the maximal algebra” in a gauge theory include both the
Shannon and logdimR edge terms in the notation below.
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for it. We then discuss the replica trick boundary conditions, and finally conclude with assorted
comments.

8.1. Definition

8.1.1. On the lattice

The extended Hilbert space definition on the lattice is easiest to introduce by example. Con-
sider Yang-Mills theory on a d = 1 spatial lattice with two sites connected by two links, and
suppose that we want to assign a reduced density matrix to one of the links. This is the problem
of computing the entanglement across an interval in d = 1 Yang-Mills theory on a spatial circle
[16].

Yang-Mills in two spacetime dimensions is solvable, see e.g. [46]. It’s known for instance
that the Hilbert space on the circle is the space of square-integrable class functions on the gauge
group G (L>-functions on the group manifold s.t. ¥ (gug™') = v (u) for all g € G), for which a
convenient basis is furnished by the characters,

Hphys = class functions in L?(G) = span{|R)}. 47)

The gauge-invariant operators in the theory are the Casimirs built out of the electric fields, which
are diagonal in the representation basis, and the Wilson loop operators in all the representations
of G. The Hilbert space (47) doesn’t refer to the underlying spatial manifold and so clearly
doesn’t factorize. In the extended Hilbert space prescription, we’re instructed to embed it into
the minimal larger one that does.

Intuitively, the presence of extended operators that cannot be split into local constituents (i.e.
the Wilson loops) is what prevents the Hilbert space that faithfully represents the operator algebra
from factorizing. We can get around this by adding pairs of non-dynamical (infinitely massive)
surface charges in all the representations of the gauge group at the ends of our entangling interval,
which allow us to cut the Wilson loops into Wilson lines. This is tantamount to lifting the Gauss
constraint at the lattice sites, so the extended Hilbert space is the tensor product of two link
Hilbert spaces, which are spanned by the matrix elements of the group representations:

Hext. = Hiett ® Hright»  Hietright = L2(G) = span{| Ryp )ef/right} - (48)

(See section 3.4 for more details.) Under a gauge transformation A € G on the first site, these
states transform as

| Rag)iett > Y Ry (M) | Rarphicts | Rag)right > ) Raar (A)| Rayp)sights (49)

o o

and under a gauge transformation on the second site they transform as

| Rap)lett Z Rgp (M) |Rap)teft, | Rop)right = Z Rgﬂl’(AﬂRaﬁ’)right- (50)
B 5
The physical Hilbert space Hphys is embedded into Hex;. as
1
R) > —— > | Rapiere ® | Rprigh- 651)
a, Bel, ..., dimR

It is easy to see that the state above is indeed gauge-invariant. The physical picture is that, with
the matrix indices labeling the infinitely massive surface charges, we want pairs of charges across
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the entangling cut to transform oppositely under gauge transformations in order to make a gauge-
invariant state, so we assign them the same index.
We can now take the most general state W) = Y, ¥r|R) € Hpnys, embed it in the extended

Hilbert space as Y Rap d;”ﬁ [Rap)iett ® | Rpa)right, and compute the reduced density matrix by
tracing out, say, the right tensor factor in the extended Hilbert space. Its von Neumann entropy is

Sleft = — Z prlogpr +2 Z prlogdimR (52)
R R

where pr = |V¥r |2. The first term is a probability distribution over the states; we’ll call this the
Shannon entropy. The second, “logdimR” term, comes from the statistics of fusing the non-
dynamical surface charges to make a singlet. (The factor of 2 comes from the entangling interval
having two ends.) This concludes our review of the d =2 example.

In higher-dimensional lattice gauge theories, the extended Hilbert space idea was discussed
in refs. [12,13,17].2° There we find the same types of edge terms as in (52) when we promote
the R’s that label the edge states {|R)} to instead label superselection sectors specified by the
eigenvalues of the Casimirs at all the boundary lattice sites (as mentioned in section 4, where
these were included in the general sector labels k). Then the entropy associated to a region V is

Sy=—) prlogpr+ Y _ prlogdimR — Y prTr(prlogpr). (53)
R R R
pr being the normalized density matrix in the superselection sector R (see eq. (27)). The first
two terms are the edge terms from each lattice site along the boundary, and the third captures
the distillable [17] entanglement of interior degrees of freedom, that the d =2 example was too
simple to support.

In short, we see that the extended Hilbert space prescription on the lattice agrees with the
full entanglement entropy, (29), w.r.t. the globally extended conventions of the previous sections.
This was first pointed out in [17].

It’s interesting to compare this result to the entropy S%,'mv of the maximal gauge-invariant sub-
algebra/electric algebra with respect to the gauge-invariant Hilbert space. As discussed around
(29), (30),

Sy =55 + ) prlogdimR; (54)
R
the entropy of the maximal gauge-invariant subalgebra in the region V contains the Shannon
edge term and distillable entanglement in (53), but not the logdim R edge term. From the point
of view of the infinitely massive charges that we introduced in this section, this isn’t surprising.
The edge term basically measures the correlations of the charges, that aren’t part of our gauge-
invariant operator algebra.
Note that the expression “logdimR” is the expectation value of an IR operator which is a func-
tion of the gauge group Casimirs. Hence, the result from the extended Hilbert space prescription
is gauge-invariant despite that we got it from carrying around gauge-variant data.

26 The conventions in these references differ by some cosmetic details. In [13], the entangling cut intersects a collection
of boundary links instead of boundary sites, and one extends the Hilbert space by adding a new lattice site at each such
intersection where one doesn’t impose the Gauss law. In [17], the extended Hilbert space on the lattice is taken to be
the “globally extended” one, Hy = ®Hy, instead of just lifting the Gauss law at the boundary sites. But as explained
in section 4, an extension of the Hilbert space away from the entangling cut doesn’t affect the entanglement entropy of
states in the gauge-invariant subspace.
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8.1.2. In the continuum

As mentioned above, one way to define the extended Hilbert space on the lattice is to lift
the Gauss constraint at boundary lattice sites. The naively analogous operation in the continuum
would be to quantize the phase space after partial gauge-fixing in the time direction (i.e. Ag = 0),
but without then imposing the residual gauge symmetry at the entangling surface 9V, instead
promoting the time-independent gauge symmetry to a global symmetry along the entangling
surface. (See the discussion below eq. (44).) The embedding Hphys C Hexe. is then fixed by
demanding that the states in Hppys are singlets w.r.t. this new global symmetry.

We will say more about the formal justification for this operation below, but for now let us put
it to use in an example. By following these steps we can recover the topological entanglement
entropy (TEE) in Chern-Simons (CS) theory in d = 2, as recently discussed in [47,48]. Consider
the CS theory on a spacetime M x R. Its action is

k 2
Scs = — / Tr{AAdA+-AANAANA]). (55)
4 3

MxR

On a compact M, its Hilbert space is the space of conformal blocks of the chiral WZW model on
M with gauge group G and level k [49,50]. In particular, the Hilbert space of the CS theory on
M = S? is one-dimensional and can’t be meaningfully partitioned. On the other hand, the TEE
of the Abelian CS theory across a disk V C M is [4]

1
Ves = Elogk. (56)

This is the universal piece of the entanglement entropy Sy (see eq. (46)), which is clearly nonzero
for k > 1. This raises the question of what it is that we are counting.

We can answer this by looking at the canonical quantization of CS theory on a disk, M = D?
[50]. Let us briefly review the steps in that paper. We first chose the gauge Ag = 0, so that the
action becomes

k - -
Ses = / Tr(A8,4), 57)
4
MxR

where the tilde means that we are restricting to the space components. We should also keep track
of the Gauss law Fjp = 0 and the residual time-independent gauge symmetry. The Gauss law
can be solved on the disk with A = dUU —1 for d the spatial exterior derivative, and U € G.
Plugging this into (57), we find

k k
Scs = Swzw = — / Tr(U '8, UU"9,U)dg dr + —/Tr(U_ldU)3, (58)
4 127
oM M

where ¢ is the angular coordinate on dM. This is the chiral WZW action. At this point, the
authors of [50] conclude that the CS Hilbert space on the disk is the Hilbert space of the WZW
theory on the boundary.

According to the bookkeeping so far, we seem to have decided by fiat to forget about the
residual time-independent gauge symmetry at the boundary of the disk, promoting it to be
a global symmetry instead. Historically, the argument was that the action (55) is not gauge-
invariant in the presence of a boundary, and indeed it was observed early on that this choice
is needed to consistently glue Euclidean path integrals along open cuts (i.e. to get Zy =
f[dt/f]Z(Ml,g)[w]ZMz,z[w] when we cut a closed manifold M into M, M, along ¥) [51]. In
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our present context though, this construction of Hyy allows us to utilize the extended Hilbert
space prescription, with

Hex[, = HDZ ® HDZ . (59)

To finish computing the entanglement entropy of the disk V, all that remains is for us to decide
how the unique state on S? is embedded in the Hilbert space of the two disks. The defining
property is that it should transform oppositely under the global symmetries of the two WZW
CFT’s in order to form a singlet, as the continuum analog of pairing up the matrix indices in
(51). This uniquely specifies the embedding of the state on S? in Hex, to be

|1)=Z|]1,ﬁ)®|]1,n), (60)

where the sum runs over the (infinitely many) descendant states in the conformal module of the
primary field associated with the identity representation of G.

Finally, tracing out one of the tensor factors in (60) with a thermal regulator e “H [52,53], we
find

1
Scs = (non-universal terms) — 3 logk. 61)

In this way we see that the prescription described above is able to correctly compute the TEE.?

The origin of the continuum extended Hilbert space prescription can be understood more
rigorously as follows.”® For a gauge theory on a space with a boundary, requiring the boundary
part of the variation of the action to vanish usually leads to a set of allowed types of boundary
conditions that we can pick from to define the theory on that space. .

For instance, consider the generator of time-independent gauge transformations Q = fM E -
V) in a Maxwell theory, with A the gauge parameter. (The generator for time-dependent gauge
transformations doesn’t have a boundary term on a manifold with spatial boundaries.) Integrating
by parts, we see that on a closed manifold this operator vanishes by the Gauss law, but in the
presence of a boundary,

Q:/AEL (62)
oM

where E is the component of the electric field perpendicular to dM. As long as Q isn’t set
to zero by the choice of boundary conditions, it will act nontrivially on the states satisfying the
Gauss law, and can be seen as the generator of a large gauge transformation, i.e., a global sym-
metry that acts on the boundary. (More precisely, in this case the boundary gauge transformations
are not zero modes of the symplectic form [54].) In the Maxwell theory, we can set Q = 0 by
choosing the electric conditions E| =0.

27 One somewhat unsatisfactory aspect of this calculation is that the factor of k was buried in the thermal regulator, so
although we are counting edge modes of the topological medium, we can’t point to “+/k microscopic entangled degrees
of freedom”. A related situation where we can be somewhat more precise if we quantize Chern-Simons theory on s?
with a Wilson line ending on static non-dynamical charges. In this case, repeating the above steps, we would find eq.
(60) for the analogous state corresponding to the representation assigned to the Wilson line, and a TEE differing from
the identity representation by log dimR. This is the logdimR type edge term of the Wilson line, quantifying the maximal
entanglement of the static charges.

28 We thank Ronak Soni for discussions on these points.



J. Lin, . Radicevi¢ / Nuclear Physics B 958 (2020) 115118 31

In Chern-Simons theory, like in any other theory with symmetry-protected edge states, there
is no choice of boundary conditions which can kill off its version of Q. A straightforward way
to see this is to consider the gauge variation of the Abelian Chern-Simons action in the presence
of the boundary,

k
Scs — Scs + — / AE). (63)
4
IM xR

If the gauge constraint isn’t relaxed at the boundary, the electric fields along it will have to vanish
to make Q = 0, but this is impossible because the CS action requires there to be no magnetic
flux, even right by the boundary, and it is impossible to enforce both £ =0 and B =0 at 9M,
as these variables don’t commute.

This analysis shows that both Chern-Simons and Maxwell theory admit consistent boundary
conditions in which Ag|3png = O is fixed using time-dependent gauge transformations, no addi-
tional constraint is imposed on the gauge-invariant fields at T = 0,”” and the appropriate generator
Q of time-independent gauge transformations is nonvanishing on the boundary. Choosing these
boundary conditions on dM and its complement allows us to construct the continuum extended
Hilbert space with Q having a nontrivial action on the edge modes.

8.2. Path integral boundary conditions

In section 6, we explained how the entanglement calculation for different choices of gauge-
invariant subalgebras on the lattice lead to different boundary conditions in the replica trick path
integral. Which path integral boundary conditions does the extended Hilbert space prescription
correspond to, even when applied to theories with no known lattice regulator? This question turns
out to have the following nice answer in a wide range of compact gauge theories: the extended
Hilbert space prescription corresponds to open boundary conditions in the replica trick.

For theories that we can discretize, this fact can be understood from the perspective of the
earlier sections as follows. On the lattice, the extended Hilbert space definition equals the entropy
of an extended, gauge-variant operator algebra that includes all the open Wilson lines ending on
the entangling surface (see [17,21] for a related discussion). This larger algebra has no center
(discounting the Gauss operators in the interior), so the path integral should have no constraints.

Several instances of this general claim (including also in Chern-Simons theories that we don’t
know how to discretize), were discussed piecewise in the literature. We finish this section by
listing them here.

8.2.1. The replica trick in solvable gauge theories

In the Hartle-Hawking states of d = 1 Yang-Mills theory [16,56] and d = 2 CS theory [57]
that are set up by a Euclidean path integral on a half-sphere, for any choice of entangling region,
suppose we assume that the conical defect in the n-replicated manifold can be smoothed out
without changing the topology of the manifold. E.g. for CS theory on a spatial S, suppose that
the n-replicated manifold for the entanglement entropy of a region V with disk topology has the

2 Technically, this is true if we take the subregion to be a causal diamond instead of V x R. E.g. for Maxwell theory,
the boundary conditions that lead to nontrivial large gauge transformations are Ag|yng =0and By =0on V x R. The
latter constrains a gauge-invariant operator so these BC’s do not implement the extended Hilbert space prescription. But
on a causal diamond, the second BC becomes p B for p the local Rindler radius, that vanishes on aV [55].
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topology of a smooth S°. Then the replica trick becomes quite straightforward to implement. E.g.
for the CS theory,

Zn Z(S3) 0\ 1— Zn 0
— = =(S)H' ™" = Sy=—d —| =logSg, 64
VARVACD L (%0) VA 080 ©4)

n=1
where we made use of formulas relating the CS partition function on three-manifolds to matrix
elements of the modular S-matrix [58], e.g., Z (S3) = Sg 30

A natural question is which Lorentzian prescription this “naive replica trick” corresponds
to. In the examples that were studied in the literature, the answer is the extended Hilbert space
prescription. The CS calculation (64) is one example, since both the “naive replica trick” and
the extended Hilbert space prescription correctly reproduce the TEE. Also in d = 1 Yang-Mills
theory, the “naive replica trick” includes the logdim R-type edge term, (52), as an empirical
fact (see ref. [16] for the calculation). In cases where the gauge theory can be put on a lattice
(which is clear for Yang-Mills but not necessarily Chern-Simons theory), this result is merely
a manifestation of our general statement above, where the extended Hilbert space corresponds
to open boundary conditions at the entangling cut that then can be contracted to a point in the
continuum limit. See [61-63] for related comments.

8.2.2. Conformal anomaly for a U (1) gauge theory

In a continuum QFT, the entanglement entropy is dominated by UV-sensitive divergent terms.
However, in even (odd) spacetime dimensions, the coefficient of the log-divergent (constant) term
in an expansion in powers of the UV cutoff is expected to be universal, (46).

For a Maxwell theory in d = 3, the computation of the log coefficient in the entanglement
entropy of a ball-shaped region was historically the subject of some dispute. This theory is con-
formal. In CFTs, the log coefficient of the entanglement entropy of a ball-shaped region is a
(known) function of the central charges and the extrinsic curvature of the entangling boundary
on symmetry grounds. In a d = 3 CFT, this universal term is proportional to the a-anomaly [39],
and equals % log(R/€) (with R a length scale associated to the entangling region and € the UV
cutoff) for the U (1) theory in particular.

However, a different answer was found in the literature [64] using what is now called the CHM
map [65]. A general method to compute the entropy a ball-shaped region of a CFT, that relies
on just the conformal symmetry, is to map the domain of dependence of the ball-shaped region
to a hyperbolic or de Sitter spacetime, and the entanglement entropy to the thermal entropy on
this space [65]. One can then find the thermal entropy by integrating the energy density with
dE = TdS, or by finding the partition function on the dS/hyperbolic space with a periodic time
B, and using the geometric entropy formula®'

§=(-papg)log Z(B)|p=2r - (65)

From the dS energy density, Dowker [64] found a different answer, acef = 16/45 (see also
ref. [67]).

30 See [59], [60] for replica trick calculations in the dual WZW theories.

31 Note that in the CHM map to hyperbolic space, Z(f) refers to the partition function on H?~1 x 8. which is a smooth
space without a conical singularity for all 8. On the other hand, if we are doing the replica trick on a space where we
use the geometry to provide the analytic continuation [66], as e.g. when computing the entropy in the Rindler wedge
(section 8.2.3), Z(p) refers to the partition function on a manifold which is singular for g # 2.
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The hyperbolic analog of this discrepancy was clearly explained in [68] (see also refs. [69]
for the analogous explanation in dS space, which requires treating a conical singularity and is
similar to section 8.2.3 below, as well as [21], which showed by directly analyzing the entan-
glement entropy of U (1) gauge theory on the lattice that the Shannon edge term contributes the
difference of 1/3). The upshot is that the CHM prescription by itself is incomplete: in the ther-
mal entropy problem, one also has to pick boundary conditions as the analog of the boundary
conditions at the entangling surface, and different choices give different answers. In particular,
if we replace the entanglement entropy problem with the problem of computing the partition
function of a U (1) gauge theory in hyperbolic space, we have to pick boundary conditions at the
asymptotic boundary. Computing the thermal entropy with implicitly fixed asymptotic boundary
conditions in a heat kernel approach [68], one finds a.ff = 16/45. However, one can account for
the discrepancy by adding to the heat kernel calculation the partition function of a free scalar on
S2, which is the amount of residual gauge symmetry on the asymptotic boundary after we fixed
the time-dependent gauge symmetry. Hence, the extended Hilbert space prescription gives the
correct conformal anomaly, and the difference of 1/3 comes from the Shannon edge term.

Incidentally, this discussion is an explicit example of the principle that the choice of prescrip-
tion for computing the entropy affects its universal term; see section 6.

8.2.3. Kabat contact term in the geometric entropy

For d = 3 Maxwell theory, another longstanding and closely related puzzle in the literature
was the following. Consider the entanglement entropy of the half-space (Rindler wedge) V in
the vacuum of the Maxwell theory. If we apply the geometric entropy formula (65) to compute
the entanglement entropy, where Z(f) is the partition function on a manifold with a conical
singularity at the origin for 8 # 2, the entropy will acquire a contact term with the conical
singularity [71], basically because the spin-1 Laplacian is [15,,, + R,,. For twenty years it was
an open problem if this “Kabat contact term” had a state-counting interpretation.

This was recently answered in the affirmative by Donnelly and Wall [35,36] who explicitly
showed the following: Kabat’s Z(f) is equal to the partition function Zp,x on the replicated
space with a tubular region removed around the conical defect at 9V and the boundary condition
E | =0 placed there, multiplied by

Zodge = / [dE e/ ED, 66)

where I (E 1) is the on-shell Euclidean action of the edge modes (the continuum version of 7 (k)
from eq. (40)), and the measure is obtained by taking the continuum limit of the discrete lattice
measure. In short, we impose open boundary conditions around the defect. Here we note that we
can use £ =0 to compute the entropy in each superselection sector; the distillable entropy is
independent of E | , since the theory is free. Thus the path integral factorizes into Z = Zpyk Zedge -
Hence, the statistical interpretation of the Kabat contact term is that it counts the Shannon edge
modes of the U (1) gauge theory.

32 Relatedly, in case the Maxwell theory emerges from massive but dynamical charges, one finds a third value for the

log coefficient, aeff = }Tg + 1 [24], [70]. In this case, the dynamical charges are screened with a thermal entropy in a

—1

layer of size m™ " around the entangling boundary.
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8.3. Short remarks

8.3.1. Emergence

Until now, our discussion of the extended Hilbert space was formal, and perhaps in poor taste
from the usual point of view that gauge symmetries are fictional. A physical justification for it is
that if we replace the extended Hilbert space with a local UV Hilbert space in an emergent gauge
theory, then (53) will hold up to a constant that is independent of the state in the IR. One situation
where this is trivially true is the toric code and “globally extended Hilbert space” of section 4.

Ref. [72] argued that it is true more generally. The argument is the following. On the one
hand, in a low-energy emergent gauge theory, the UV reconstructions of IR Wilson loops as
composite operators are able to factorize along 0V by assumption. On the other hand, if we
think of the entanglement entropy as an entropy of the maximal UV operator algebra on the
region, the explicit expansion of the density matrix, eq. (5), has zero support on UV operators
that are not either the UV analogs of gauge-invariant operators or of Wilson lines ending on
aV. So the UV-exact entanglement entropy can only differ from the entropy of the “IR gauge-
invariant algebra” by a constant related to the relative sizes of the Hilbert spaces in the UV and
the IR.**

8.3.2. Duality

An open question is how the edge terms map under duality. Euclidean replica trick results for
(Seiberg-)dual nonabelian gauge theories appear to agree [73]. This result can be decomposed
into the sum of distillable entropy and the entropy coming from edge terms. Given an exact

duality map for all operators and states, the algebraically defined entropies S%,'mv of dual algebras
must trivially agree, but the “logdimR” edge terms are more mysterious, since they seem to
depend explicitly on the gauge group. Do the “logdimR”-type edge terms dualize to edge terms
nonetheless? Preliminary evidence suggests yes [74], but it would be nice to clarify this in an
analysis along the lines of ref. [75] for Abelian gauge theories.

9. Conclusion

We have given precise path integral prescriptions for calculating various entropies associated
to a given subalgebra Ay. Our approach is elementary and applies to a wide array of theories,
and we have shown how to connect it to various other recipes for calculating entropy in QFTs.
While the results of this paper do not facilitate the computation of particular replica trick path
integrals, they do show how they should be understood in any formal proof concerning properties
of entanglement entropy. Several interesting questions remain open, however.

As emphasized in section 5, several different yet natural types of entanglement entropy exist
for each choice of algebra on a given region. We have seen that certain special prescriptions
for calculating entropy (holography and CHM-like maps in conformal theories with appropriate
boundary conditions) correspond to the full entropy of the maximal algebra Ay on V in a small
set of theories (holographic theories with Einstein gravity duals, the Ising CFT, free theories).
An immediate goal is to fill in the blanks as much as possible. For instance, what bulk quantities
calculate the full entropy of a non-maximal algebra? Answers to such questions may teach us
more about the bulk reconstruction of operators.

33 This constant arises from the different definitions of the trace used in calculating the von Neumann entropy, as
discussed around eq. (54).
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Another set of notions that we have not studied involves extending our discussion to other
measures of entanglement, such as mutual information, entanglement negativity, covariant entan-
glement entropies, etc. In particular, it would be interesting to find the analogues of the various
choices directly in the Tomita-Takesaki framework for continuum QFTs [11]. An important in-
gredient in any analysis of the monotonicity of entropic measures will be a careful definition of
which representation of Ay is appropriate for a given type of center.

Finally, we remark that it may be possible to associate entropies (or other measures of en-
tanglement) to sets of operators that are not necessarily algebras [76]. This provides yet another
direction in which our analysis of centers and boundary conditions could be generalized.
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