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Abstract

The Electron Ion Collider (EIC) Hadron Storage Ring
(HSR) will accelerate all species except protons through
transition to the desired storage energy. The effects at transi-
tion may cause unwanted emittance blowup beam loss due
to bunch area mismatch and negative mass instability. In
this paper, we will show the longitudinal dynamics of transi-
tion crossing in the HSR with current parameters using the
accelerator code Beam Longitudinal Dynamics (BLonD).

INTRODUCTION

The Electron Ion Collider will provide collisions of center-
of-mass energy above 130 GeV. Energetic nuclear collision
at HERA [1] proved the gluon dominance within the hadron
nucleus. The primary goal of the EIC is to answer fun-
damental questions of nucleon spin contribution, nucleon
mass, and dense systems of gluons [2]. The EIC will probe
with highly polarized electron beam, the polarized and un-
polarized nucleus of hadron beams to find understanding
in the correlations of the sea quarks and gluon contribution
to the nucleon spin [3]. In addition to understanding the
polarization of the atomic nucleus, the EIC will explore the
regime of gluon saturation in the quest to understand color
propagation through the nucleus using the electron/Proton
Ion Collider (ePIC) detector [4].

The polarized electrons will be provided by a polar-
ized electron gun similar to the Stanford Linear Collider
source [5]. The beam will be injected into a 200 MeV linear
accelerator (LINAC) through a transfer line containing a spin
rotator that places the spin direction of the electron vertically,
into a Rapid Cycling Synchrotron (RCS) booster. Ramping
to 3 GeV in the booster, the beam is injected into the RCS
and ramped to energy to matched the electron storage ring
energy which ranges from 5 GeV to 18 GeV.

For the hadron accelerator chain, the sources will be the
Optically Pumped Polarized Ion Source [6] and the extended
Electron Beam Ion Source (EBIS) [7]. From the OPPIS
the beam is accelerated to 200 MeV and injected into the
Alternating Gradient Synchrotron (AGS) booster. The EBIS
injects directly into the booster. The booster accelerates the
beam to magnetic rigidity of 17 Tm [8] then extracts into the
AGS. The AGS accelerates the beam to a maximum rigidity
of 82 Tm and extracts into the Hadron Storage Ring (HSR).

* Work supported by Brookhaven Science Associates, LLC under Contract
No. DE-SC0012704 with the U.S. Department of Energy.
T hlovelace3 @bnl.gov

TUPSO1
1622

Transition

Since 1949, transition crossing in closed geometry accel-
erators has been studied [9]. The first accelerator to cross
transition was the 10 MeV “electron analog” of the AGS [10]
located at Brookhaven National Laboratory. To reach high
energies, all species except for protons must cross transi-
tion energy in the HSR [11]. Transition is essentially the
reduction of the longitudinal motion at the energy where all
particles have the same period. At that energy, the motion
of the beam becomes unstable. The Lorentz factor, vy, of the
beam at transition is

yr = 1/vac (1

where,
AC/C

Op

Qe = % ds(nx/px) = 2
The momentum compaction, ., is a factor that is applied to
a given bending radius of a dipole, p or momentum spread,
0p, that describes the change in dispersion, 77, and circum-
ference change, AC/C, of the particle trajectory over the
entire ring, ds. The slippage, n;, is defined as

ns = as — /7 )

where it is clear to see that if iy < 0, the particles that have
higher momentum will have a higher revolution frequency,
and if n; > 0 the particles that have lower momentum will
have a lower revolution frequency therefore at transition
the revolution frequency of the particles is independent of
the particles energy. This effect, in turn, reduces the bunch
length increasing the peak current and space charge effects.
At transition, 7 = 0 and the bunch length is at a minimum.
The synchrotron tune begins to slow and the beam becomes
nonadiabatic as transition is approached. The adiabticity
condition,
dwy
dt

<1 4)

where is the angular frequency and ¢ is time [12]. In Equ. 4,
it is clear that there is no change in the action provided that
Q < 1 [13]. The time period in which the beam becomes
nonadiabatic is defined as [14]

AE B\
T T
Tc=| ———mmMmMmM X — X —— 5
¢ (ZeVIcos(¢S)| hy’ 47762) ®)

where A is the atomic weight, Z is the atomic number, Er
is the transition energy, e is the charge of the electron, V
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is the RF cavity voltage, yr is the transition vy, & is the har-
monic number, and vy’ = dy/dt. The “nonlinear momentum
compaction factor”, ; is defined as [15]

6L/L0=acé(l+a/16+...) (6)

where L is the circumference of the lattice. For all parti-
cles within a bunch to have the same yr, a;/a. = —1/2. If
a)/a. = =3/2, the particles within the bunch cross transi-
tion at the same time [16].

Transition Crossing in HSR

Using the accelerator code Beam Longitudinal Dynamic
(BLonD) [17], the HSR transition crossing was modeled
with the parameters shown in Table 1. The HSR will use the
existing 28 MHz cavities of the RHIC [18] detuned to the
315 harmonic. The change in harmonics is due to the change
in the number of bunches injected into the HSR (290) com-
pared to RHIC (110) and the reuse of the 197 MHz normal
conducting storage cavities. The HSR will also utilize the
First Order Matched [15] transition jump scheme which was
first implemented in RHIC. For the synchronous phase, ¢,
matching pre- and post-transition,

AE
¢s =sin”! ©)
ZeVrf

where as the energy gain per turn, AE. A phase jump of
180 — ¢5 necessary at transition for bunch area matching
after transition. Figures 1 (pre-transition), 2 (transition), and
3 (post-transition), are plots of the longitudinal phase space.
Notice the tilt to the phase space ellipse that is present at
transition.

Table 1: Transition Parameter Table

Parameter Value
Species Au”
YT 23.08
Ramp rate, y* (s~ 1) 0.4
Voltage, V (kV) 200
Harmonic (#) 315
Synchronous Phase, ¢4 (rad) 0.06
Characteristic Time, T, (ms) 69.85
Nonlinearity parameter, a; (x107™%)  -4.21

The separatrix from the RF can written as

AE,.1 = AE, + eV (sin ¢,, — sin ¢g)
2nhn 3)
On+1 = Pn + BZ_EAEVHI
The RMS longitudinal emittance (eVs) and longitudinal
beta-function, 8, is

€; =nogo; RMS emittance

C Inl )
B:=———+
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Figure 1: Pre-transition bunch and accelerating RF-bucket
below transition. The red curve is the RF bucket and the
points are the macroparticles. The horizontal and vertical
axes are ¢, the synchronous phase angle of the particle and
AE, energy spread of the bunch. The beam profile of the
phase (top) and the energy (right) amplitudes are in arbitrary
units.
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Figure 2: At transition, excluding the effects of the nonlin-
earities, the bunch is stretches and tilts. After transition, if
well matched, the bunch returns to the pre-transition orien-
tation. The points are the macroparticles with the axes ¢
the synchronous phase angle horizontal, and AE the energy
spread vertical. The beam profile of the phase (top) and the
energy (right) amplitudes are in arbitrary units.

RESULTS

Figure 4 shows the effect of varying the 7y’ through transi-
tion from Ay = yr + 0.5. It clear that by ramping quickly
through transition, the effects of transition on the bunch
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Figure 3: Post-transition bunch and accelerating RF-bucket
below transition. The red curve is the RF bucket and the
points are the macroparticles. The horizontal and vertical
axes are ¢, the synchronous phase angle of the particle and
AE, energy spread of the bunch. The beam profile of the
phase (top) and the energy (right) amplitudes are in arbitrary
units.
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Figure 4: Bunch length vs time of transition crossing with

various ramp rates (y = dy/dt). The revolution frequency

is 78 kHz. The vertical line indicates transition crossing.

length is mitigated. The ramp rate of the HSR will be simi-
lar to RHIC, where the expected value of y° = 0.4s~! which
gives the a minimal bunch length of 1.765 ns whichis 0.53 m.
Figure 5 shows the effect of transition on the energy spread
and bunch length with the standard RHIC ramp rate. At
transition, the energy spread is at a maximum. The verti-
cal purple lines of Fig. 5 indicate the beginning and end
of the nonadiabatic region of the ramp. The emittance in
Fig. 6, increases during this time period and returns to the
pre-transition value after [12]. This growth is correlates to
the tilt of the ellipse seen in Fig. 2.
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Figure 5: A plot of o vs turn. The black vertical line
indicates transition crossing. The purple lines mark the
beginning and end of the nonadiabatic region.
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Figure 6: A plot of €, vs turn. The black vertical line indi-
cates transition crossing. The purple lines mark the begin-
ning and end of the nonadiabatic region.

CONCLUSION

The current ramp rate of the 0.4 s~ seems to be sufficient
in crossing transition with a 30% variation within the ramp
rate from 0.3 57! to 1.0s™!. The bunch length minimum dur-
ing transition in the absence of impedance is 1.9ns. The
nonadiabtic time for a ramp of 0.4 s™! is 69.85 ms. To fully
model the effect of transition, an impedance model is needed
to give an accurate account bunch area matching pre- and
post-transition. A full 6D model will also provide transi-
tional effect longitudinally in concert with the transverse
optical manipulation of yr.
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