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Abstract

In this thesis two different types of effective field theories (EFTs) have been consid-

ered to give an interpretation to effects of physics beyond the Standard Model. The

first type of EFT is a so-called Simplified Models, in which the Standard Model is

extended by new scalar degrees of freedom A (CP-odd) and S (CP-eve), which give

rise to interactions of the type tt̄S and tt̄A with subsequent decay of S/A→ bb̄. We

study the phenomenology of these processes at the LHC and find that the produc-

tion of tt̄A is suppressed compared to that of tt̄S. Using the Weyl-van-der-Waerden

spinor formalism we analyse the helicity amplitudes in order to explain this phe-

nomenon.

In the second part of this thesis, we focus on the dimension-six Standard Model

Effective Field Theory (SMEFT) to calculate the next-to-leading order (NLO) elec-

troweak corrections to the forward-backward asymmetry in the process e+e− → bb̄.

We find that the NLO EFT corrections can not be neglected compared to the LO

EFT contributions. We show that relevant numerical results have been obtained,

which can be used to constrain the Wilson Coefficients involved in this process. We

calculate the amplitude of the Z → bb̄ process and renormalise it together with the

e+e− → bb̄ process. We have also analysed the NLO EFT corrections to the cross-

section of the e+e− → bb̄ process, which can be used to set limits on the Wilson

coefficients with future collider experiments.
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Chapter 1

An introduction to the Standard

Model of particle physics

1.1 Gauge Symmetries and Lagrangian

The Standard Model of particle physics (SM) describes the fundamental fields and

forces in the framework of quantum field theory (QFT) [1–3]. In realistic field

theories, the laws of physics can be expressed in terms of a least-action principle.

The symmetry principle requires the action of a field to remain unchanged under

certain transformations. As a relativistic theory, the Lagrangian should be invariant

under Lorentz transformations. As a result, the laws of conservation of momentum

and energy can be obtained through Noether’s theorem [4].

For a free matter field (fermion) the Lagrangian include a mass and kinetic term.

It can be written as

L0 = ψ̄
(
i/∂ −m

)
ψ, (1.1.1)

where /∂ = γµ∂µ. It can be easily verified that this Lagrangian is a scalar under

Lorentz transformations. The relativistic wave equation for all fermion fields, known

as the Dirac equation, can be deduced from the Euler-Lagrange equation directly.

If we impose an additional global symmetry U(1) on a Dirac field, the Lagrangian

should be invariant under a phase transformation

ψ(x)→ ψ′ = eiqθψ (x) , (1.1.2)

1



1.1. Gauge Symmetries and Lagrangian 2

where q is a constant factor which can be different for different types of particles.

According to Noether’s theorem, associated with this global symmetry, there should

be a conserved current jµ = qψ̄γµψ and a corresponding constant charge Q =∫
d3x j0. In Quantum electrodynamics (QED), a gauge or local symmetry U (1) is

required. Similar to the global case, the transformation of a local U (1) symmetry

could be expressed as

ψ(x)→ ψ′ = eiqθ(x)ψ (x) , (1.1.3)

where the phase θ(x) is no longer a constant but a function of the space-time coor-

dinate. Under this local transformation, the Lagrangian 1.1.1 is no longer a scalar.

To keep the Lagrangian invariant locally, the derivative in the kinetic term has to

be replaced by a covariant derivative

∂µ → Dµ = ∂µ + ieqAµ, (1.1.4)

where a auxiliary gauge field Aµ(x) is introduced. Under this local symmetry, the

gauge field Aµ(x) transforms like

Aµ (x)→ Aµ(x)′ = Aµ (x)− 1

eq
∂µθ (x) . (1.1.5)

The introduction of the covariant derivative will give birth to a interaction term in

the Lagrangian:

Lint = −eqψ̄γµψAµ, (1.1.6)

in which e and q is respectively the interaction coupling and the charge. The gauge

field Aµ(x) is thus deemed as the force carrier that mediates the interaction under

the local U (1) symmetry. A complete Lagrangian should include all possible terms

that obey the symmetry principle. In the local U (1) case, a gauge invariant kinetic

term of the gauge field should be included into the Lagrangian. The complete Dirac

Lagrangian with interactions reads:

L0 = ψ̄(i /D−m)ψ − 1

4
FµνF

µν , (1.1.7)

where /D = γµDµ and the field strength tensor Fµν = ∂µAν − ∂νAµ. Note that the

mass term of the gauge field is not included in 1.1.7, as such a term will break the

U (1) local symmetry:

1

2
M2

AAµA
µ → 1

2
M2

A(Aµ −
1

eq
∂µθ)(A

µ − 1

eq
∂µθ) 6= 1

2
M2

AAµA
µ. (1.1.8)
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In the U (1) example, as shown above, the requirement of gauge symmetry brings

interactions to the theory. Actually, this feature holds for all gauge symmetries,

which explains why symmetry principles play a core role in QFT. The property

of gauge symmetries can be described by group theory concepts. A general gauge

symmetry group G is an N-dimensional compact Lie group:

ω ∈ G, ωa(θ) = e−iTaθ
a(x), a = 1, 2, ...N, (1.1.9)

in which, θa(x) is a real number, and the hermitian quantity Ta is the generator of

the group. The number of generators in this Lie group is N2 − 1. These generators

obey the Lie algebra

[Ta, Tb] = ifabcTc, (1.1.10)

where fabc is named as the structure constant. If fabc = 0, the group is abelian,

otherwise it is non-abelian. In a gauge field theory, every field must belong to a

certain representation of the gauge group. In QED, the Dirac field transforms in the

fundamental representation of U (1). In a general non-abelian SU(N) gauge theory,

corresponding to N generators, N auxiliary gauge fields need to be introduced to

retain the gauge symmetry invariance. We denote each gauge field as Aa
µ, where

a = 1, 2, ...N . Neglecting the coupling and charge, the associated gauge covariant

derivative can be defined as

Dµψ = ∂µψ + igAµψ, (1.1.11)

where Aµ = Aa
µ ·Ta and g is the coupling constant. Under the gauge transformation,

the covariant derivative transforms as

Dµψ (x)→ ω(x)Dµψ (x) , (1.1.12)

and Aµ has to transform homogeneously as

Aµ → A′µ = ωAµω
−1 − i1

g
ω∂µω

−1 (1.1.13)

to make sure that the covariant derivative transforms correctly. In the first term

of 1.1.13, we recognize that the gauge field transforms according to the adjoint

representation of SU(N).
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The non-abelian gauge theory is known as Yang-Mills theory [5]. The Lagrangian

including the covariant derivative is also called the Yang-Mills Lagrangian. We

denote a generic SU(N) gauge field as W i
µ, then the Lagrangian can be written as

LYM = −1

4
F a
µνF

a,µν , (1.1.14)

where the eld strength tensor F a
µν is given by

F a
µν = ∂µW

a
ν − ∂νW a

µ + gfabcW
b
µW

c
ν . (1.1.15)

After the expansion, the Yang-Mills Lagrangian can be divided into three parts:

Lkin = −1

4
(∂µW

a
ν − ∂νW a

µ )(∂µW a,ν − ∂νW a,µ),

Lcubic = −1

2
gfabc(∂µW

a
ν − ∂νW a

µ )W b,µW c,ν ,

Lquartic = −1

4
g2fabefcdeW

a
µW

b
νW

c,µW d,ν ,

(1.1.16)

where Lcubic and Lquartic are self-interaction terms. Such terms do not exist in abelian

gauge theories.

Now we are ready to write down all symmetry groups in the Standard Model,

which are

U(1)Y ⊗ SU(2)L ⊗ SU(3)c, (1.1.17)

where the subscript Y represents the hyper charge, L refers to the left-handed chiral

component, and c stands for color. The U(1)Y is a an abelian group, while SU (2)L

and SU (3)c are non-abelian groups. It needs to be emphasized that the left-handed

and right-handed components of fermions are treated differently in the Standard

Model. For a fermion field ψ, chiral fields could be obtained through the projection

operators as

ψL = PLψ =
1− γ5

2
ψ, ψR = PRψ =

1 + γ5

2
ψ, (1.1.18)

in which, ψL is a doublet under SU (2)L transformations with an isospin charge

I = 1
2
, while ψR is a singlet with I = 1. Using the property of these projection

operators, it is easy to verify that

ψ̄LψL = ψ̄RψR = 0. (1.1.19)
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The fermion mass term can then be expressed in the helicity states:

−mf ψ̄ψ = −mf

(
ψ̄R + ψ̄L

)
(ψL + ψR) = −mf

(
ψ̄RψL + ψ̄LψR

)
, (1.1.20)

which are not invariant under the gauge transformation of SU(2)L. As a conse-

quence, all fermions in the gauge field theory have to be massless, which is obvious-

ly not confirmed by experimental observation. However, the problem can be solved

through the Higgs Mechanism, which will be introduced in 1.2.

Applying the knowledge of abelian and non-abelian gauge theories, we can write

down the Yang-Mills part of the Standard Model Lagrangian:

Lgauge = −1

4
(∂µBν − ∂νBµ)(∂µBν − ∂νBµ)

− 1

4
(∂µW

a
ν − ∂νW a

µ + g2fabcW
b
µW

c
ν )(∂µW a,ν − ∂νW a,µ + g2fabcW

b,µW c,ν)

− 1

4
(∂µG

A
ν − ∂νGA

µ + gsfABCG
B
µG

C
ν )(∂µGA,ν − ∂νGA,µ + gsfABCG

B,µGB,ν),

(1.1.21)

where Bµ, W a
µ a = 1, 2, 3 and GA

µ A = 1, 2, ...8 are respectively associated with

U (1)Y , SU (2)L and SU (3)c.

Corresponding to the three SU (2) bosons, there are 3 generators T a = σa

2
, where

the 2× 2 matrices σa are Pauli matrices that are defined as:

σ1 =

 0 1

1 0

 σ2 =

 0 −i
i 0

 σ3 =

 1 0

0 −1

 . (1.1.22)

And in the SU (3) case, TA = λA

2
, where the 3 × 3 matrices σA are Gell-Mann

matrices [6] that are defined as:

λ1 =


0 1 0

1 0 0

0 0 0

 λ2 =


0 −i 0

i 0 0

0 0 0

 λ3 =


1 0 0

0 −1 0

0 0 0



λ4 =


0 0 1

0 0 0

1 0 0

 λ5 =


0 0 −i
0 0 0

i 0 0

 λ6 =


0 0 0

0 0 1

0 1 0



λ7 =


0 0 1

0 0 −i
0 i 0

 λ8 =


1√
3

0 0

0 1√
3

0

i 0 − 2√
3

 .

(1.1.23)
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Recall that fermions live in the fundamental representation of the gauge symme-

tries. Specifically, all the left-handed fermions in the Standard Model, i.e. quarks

and leptons, are doublets under SU (2)L transformations, and all the right-handed

fermions are singlets. In the SU (3)c case, quarks are triplets while leptons do not

take part in strong interactions governed by the SU (3)c symmetry. Accordingly, a

quark and lepton field transforming under SU (2)L can be separately expressed as

QL =

 uL

dL

 , uR, dR LL =

 νL

eL

 , eR. (1.1.24)

According to the Standard Model, there are three generations of fermions, each

generation contains two types of quarks and two types of leptons as shown in 1.1.24.

We write down the three generations fields as follows: uL

dL

 , uR, dR

 cL

sL

 , cR, sR

 tL

bL

 , tR, bR νeL

eL

 , eR

 νµL

µL

 , µR

 ντL

τL

 , τR.

(1.1.25)

The electric charges are different for the two fermions in each generation, and

their masses can be different as well. The mass gap between fermions in different

generations is very large. Unfortunately, The Standard Model does neither provide

an answer to the existence of three chiral generations nor to the mass gap between

different generations.

Note that there is no νR term that represents the right-handed neutrino in 1.1.25,

since in the Standard Model the right-handed neutrino does not exist. However, ac-

cording to neutrino oscillation experiments, the three neutrinos should have very

small masses. New methods like the so-called seesaw mechanism have been intro-

duced in order to solve this problem [7]. However, the details of such mechanisms

would not be introduced in this thesis, since they are not important to our work.

All gauge fields mentioned above are Lorentz invariant, which means one can not

a Lorentz gauge transformation on a gauge field can not affect the physical state of

the gauge field. For example, in QED we can take the gauge Lagrangian

Lgauge = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2
(1.1.26)
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According to the Lorentz gauge condition [8], ∂µA
µ = 0. As a result, we can

choose the value of ξ arbitrarily. Different choices of ξ lead to different ”gauges”.

Specifically, ξ = 0 refers to ”Landau Gauge” and ξ = 1 is called ”Feynman Gauge”.

Another common choice ξ →∞ is known as ”Unitary Gauge”.

Until now we have introduced all the gauge symmetries in the Standard Model

and obtained the associated Lagrangian. In QFT, by computing the correlation

functions, one can translate the Lagrangian into Feynman rules that can be directly

used to calculate the probability amplitudes order by order in perturbation theory.

1.2 Spontaneous Symmetry Breaking and Elec-

troweak Theory

In the Standard Model, the U (1)Y ⊗ SU (2)L gauge theory provides a unified de-

scription for the electromagnetic and weak interactions. However, these symmetries

must be broken through some physical mechanism to generate the masses of fermions

and gauge bosons. According to the Standard Model, such a mechanism is known

as Higgs mechanism [9]. As shown in 1.1, mass terms in the Yang-Mills Lagrangian

would break gauge symmetries. The solution provided by the Higgs mechanism is to

introduce a new complex scalar field which Lagrangian is U (1)Y ⊗ SU (2)L invari-

ant, but with a non-zero vacuum expectation value that is not invariant under the

gauge symmetry, so that the electroweak symmetry would be broken spontaneously.

The process is thus called spontaneous symmetry breaking. Obeying the symme-

try principle, under the SU (2)L transformation, the complex scalar field must be a

doublet:

H =

 φ+

φ0

 , (1.2.27)

where φ+ and φ0 are a charged and neutral goldstone boson respectively. And the

Higgs potential for this complex scalar field is

V (H) = −µ2H†H + λ(H†H)2, (1.2.28)

where µ and λ are positive real numbers. Using the Euler-Lagrange equations, we

can obtain the Klein-Gordon equation for the free scalar field. It can be verified
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that the minimum of this potential is not at 〈H〉 = 0, but at the point 〈H〉 = v√
2

=√
µ2

2λ
. Since this potential depends only on the product H+H, any global phase

transformation on H will not affect the physical result. Therefore, one can rotate

the direction of the Higgs doublet arbitrarily. For convenience, a special choice for

the direction is adopted, where the vacuum expectation value (vev) of the Higgs

doublet can be written as

〈0|H|0〉 =
1√
2

 0

v

 . (1.2.29)

φ+φ− = 0 has been used to deduce 1.2.29, which means that in this direction choice,

the vev of the charged scaler is 0, while the neutral scalar φ0 obtains a non-zero vev.

Thereby the generic form of Higgs doublet can be expressed as

H =
1√
2

 φ+

h+ v + iφ0

 , (1.2.30)

in which φ± and φ0 are known as goldstone fields. In 1.2.30, the vev is extracted

from the original neutral scalar φ0, and φ0 is split into a real part and an imaginary

part, both of which has a zero vev. Due to the symmetry of the Higgs potential,

we can express the Higgs doublet as a simple form without including the goldstone

bosons in the unitary gauge:

H =
1√
2

 0

h+ v

 , (1.2.31)

where a special choice of direction has been made for the Higgs field, which violates

three global initial symmetries of the Lagrangian, leaving only one remaining.

Now we are ready to write down the Higgs Lagrangian, which should include a

kinetic term besides the potential term. The Lagrangian is

LHiggs = (DµH)†DµH − V (H), (1.2.32)

where the covariant derivative Dµ is associated with the electroweak symmetry:

DµH = (∂µ + ig2T
aW a

µ + ig1yψBµ)H, a =, 1, 2, 3, (1.2.33)
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in which the gauge boson W a
µ belongs to the SU (2)L representation and Bµ) belongs

to the U (1)Y representation, and yψ = 1
2

in the convention we adopt. After the

expansion, we can express the kinetic term specifically as:

(DµH)†(DµH) =
v2

8

∣∣∣∣∣∣
 g2W

1
µ − ig2W

2
ν

−g2W
3
µ − ig1Bν

∣∣∣∣∣∣
2

=
v2

8

[
g2

2

(
W 1,2
µ +W 2,2

µ

)
+ (g2W

3
µ − g1Bµ)2

]
.

(1.2.34)

Observing equation 1.2.34 more closely, we find that the kinetic term has been turned

into a mass term. Consequently, we obtain three physical gauge bosons which are

combinations of the original gauge bosons:

W±
µ ≡

1

2
(W 1

µ ∓ iW 2
µ),

Zµ ≡
1√

g2
1 + g2

2

(
g2W

3
µ − g1Bµ

)
,

(1.2.35)

where W±
µ are charged bosons, while Z0

µ is a neutral boson. Their masses can be

directly read off from 1.2.34, which are

MW =
g2v

2
, MZ =

v

2

√
g2

1 + g2
2. (1.2.36)

As expected, in the broken phase three non-physical massless Goldstone fields each

with one degree of freedom disappear in the Lagrangian, while a real scalar Higgs

field h with only one degree of freedom survives. The 3 non-physical degrees of

freedom belonging to Goldstones are ”eaten” by three massive gauge bosons: the

W± and the Z, so that the total degrees of freedom remain unchanged. Besides the

three massive bosons, there is still another physical massless boson, which is defined

as

Aµ ≡
1√

g2
1 + g2

2

(g1W
3
µ + g2Bµ). (1.2.37)

The relation between the physical bosons and the original bosons can be written in

a more compact way in the matrix language as follow: W 3
µ

Bµ

 =

 cos θw sin θw

− sin θw cos θw

 Zµ

Aµ

 , (1.2.38)

where the rotation angle θ is known as the Weinberg angle [10] or the weak mixing

angle. It is defined as

cos θw =
g2√
g2

1 + g2
2

. (1.2.39)
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The Weinberg angle is very important in electroweak physics, many observables are

very sensitive to it, e.g., the forward-backward asymmetry that we will introduce in

the next section in this chapter. In particle physics we tend to express quantities in

terms of the observables that could be determined experimentally. In terms of the

masses of bosons, the cosine of the Weinberg angle is expressed as

cos θw =
MW

MZ

. (1.2.40)

So far, through the Higgs mechanism, gauge bosons have obtained their masses

that are associated with the vacuum expectation value of Higgs field. If we check

the symmetries after the above operation, we will find that the original symmetries

are no longer obeyed strictly, while a new abelian symmetry U (1) appears. It will

be more clear if we write down the covariant derivative in terms of the new physical

fields that are the eigenstates of the masses:

Dµ = ∂µ + ig2 sin θw(T 3 + Y )Aµ − i
g2

cos θw

(
T 3 − g2(T 3 + Y ) sin2 θw

)
Zµ

− ig2

√
2(

1

2
(T 1 − iT 2)W+

µ +
1

2
(T 1 + iT 2)W−

µ ),

(1.2.41)

where Y is the Hyper charge, T 1, T 2 and T 3 is the first, second and third component

of the weak isospin respectively. For convenience, we define Qf ≡ T 3 + Y . In

equation 1.2.41 Qf plays exactly the role of a transformation phase factor of the

U (1) symmetry. To see that this U (1) is still valid in the broken phase, we consider

the following transformations

H → H ′ = eiαQfH. (1.2.42)

Note That

QfH = (T 3 + Y )H =

 1 0

0 0

 0

v + h

 = 0, (1.2.43)

we can conclude that after spontaneous symmetry breaking, the system still has an

abelian symmetry U (1). This U(1) symmetry turns out to be exactly the gauge

symmetry U (1) in QED, which governs the electromagnetic interactions. And the

electric charge e in QED is expressed as e = g sin θw in accordance with the elec-

troweak theory. Correspondingly, Qf is supposed to be the electric charge.
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As shown above, in the electroweak theory, the Higgs mechanism yields the

following symmetry breaking scheme:

U(1)Y ⊗ SU(2)L → U(1)EM. (1.2.44)

We now turn to investigate the behavior of fermions in the electroweak theory.

The interaction term in the Lagrangian of a gauge field theory is obtained by im-

posing the covariant derivative on fermions. Taking a quark field q for example, the

interaction term can be written as

g√
2

(J−,µW+
µ + J+,µW−

µ ) +
g

cos θw
(J3,µ − sin2 θwJ

EM,µ)Zµ + eJEM,µAµ, (1.2.45)

in which we have made the following definitions:

J±,µ ≡ ūLγ
µT±dL,

J3,µ ≡ q̄LT
3qL = ūLγ

µuL − d̄LγµdL,

JEM,µ ≡ q̄T 3q = q̄γµQfq.

(1.2.46)

Both J±,µ and J3,µ are weak currents that only include the left-handed sector of

q. J±,µ describes a charged weak interaction and J3,µ describes a neutral weak

interaction. The other current in 1.2.46 is the electromagnetic current JEM,µ that

includes both left-handed and right-handed fermions.

In 1.2.45 and 1.2.46, one finds that the left-handed and right-handed fermions are

treated differently in Zff̄ interactions, since J3 in this interaction only contains left-

handed fermions. As a consequence, the left-handed and the right-handed couplings

gL and gR are different as well. They are given as

gL =
T 3 −Qf sin2 θw
2 sin θw cos θw

gR =
−Qf sin2 θw

2 sin θw cos θw
.

(1.2.47)

We can express the Zff̄ couplings in terms of vector and axial-vector couplings gV

and gA. The relations between the two types of couplings are

gV = gL + gR,

gA = gL − gR.
(1.2.48)
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The asymmetry of chiral couplings will obviously affect Z-boson phenomenology.

The simplest example is a decay process Z → ff̄ . In this process, an asymmetry

named polarization asymmetry [11] arises, which is defined as

ALR =
ΓZ→fLf̄R − ΓZ→fRf̄L
ΓZ→fLf̄R + ΓZ→fRf̄L

. (1.2.49)

In the lowest order of perturbative theory, this asymmetry can be directly expressed

in terms of the chiral couplings:

ALO
LR =

g2
L − g2

R

g2
L + g2

R

. (1.2.50)

Another asymmetry named forward-backward asymmetry, arising from the same

origin, will be discussed in Sec. 1.3.

Up to now, the origin of the fermion masses is still not introduced. In order

to solve this problem, an interaction between the Higgs doublet H and a Dirac

field Ψ known as Yukawa interaction was introduced into Electroweak theory [12].

Following the symmetry principle, terms like Ψ̄LΨR that break the gauge symmetry

are forbidden in the Lagrangian. In general, the gauge invariant Yukawa Lagrangian

can be constructed as follows:

LYukawa = −λf
[
Ψ̄LHΨR + Ψ̄RH

†ΨL

]
, (1.2.51)

where λf is known the Yukawa coupling. Specifically, for leptons and quarks, the

Yukawa Lagrangian after spontaneous symmetry breaking can be expressed as:

− λd
(
ūLd̄L

) 1√
2

 0

v + h

 dR − λd
(
ūLd̄L

) 1√
2

 0

v + h

uR

− λl
(
ν̄LēL

) 1√
2

 0

v + h

 eR.

(1.2.52)

After reduction, this Lagrangian takes the form

LYukawa = − 1√
2

(v + h)
(
λdd̄LdR + λuūLuR + λl l̄LlR

)
, (1.2.53)

in which we can clearly see the mass terms for leptons and quarks. Through the

Yukawa couplings, every fermion f can obtain a mass

mf = λf
v√
2
, (1.2.54)
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where λf is the Yukawa coupling constant of f . While the right-handed neutrino is

an exception in the SM, its Yukawa-mass term is not forbidden by the electroweak

theory. If right handed neutrinos do exist, they can also acquire a mass through

Higgs-Yukawa couplings. It is worth to emphasize that besides mass terms, interac-

tion terms like −λdhd̄d can be found in 1.2.53 as well.

In 1.2.54, the mixing between the three generations of quarks, as observed ex-

perimentally [13], is not taken into consideration for simplicity’s sake. In fact, the

mass eigenstates of quarks are not equal to the weak eigenstates, but connected via

transformation matrix
d′

s′

b′

 =


V(ud) V(us) V(ub)

V(cd) V(cs) V(cb)

V(td) V(ts) V(tb)




d

s

b

 , (1.2.55)

which is known as Cabibbo-Kobayashi-Maskawa matrix, or CKM matrix in short.

The Yukawa couplings in this case are no longer numbers, but group into two 3× 3

matrices: Y ij
u and Y ij

d , where i, j = 1, 2, 3. The masses of quarks are then obtained

by diagonalising Y ij
u,d. And the weak charged current for quarks appearing in 1.2.46

can be accordingly written in terms of these mass eigenstates:

J±,µ = ūiLγ
µT±Vijd

j
L. (1.2.56)

This charged current couples to the W∓ in the Lagrangian. Physical processes

due to this interaction will obviously violate the flavor symmetry since the SU (2)L

doublets of quarks are no longer physical eigenstates. Similar mixing might exist in

the lepton case. Actually, a mixing matrix known as Pontecorvo-Maki-Nakagawa-

Sakata matrix for neutrinos had been introduced to explain neutrino oscillations [14].

1.3 Two Processes in Electroweak Physics

1.3.1 e+e− → bb̄

The first scattering process in this section we consider is e+e− → ff̄ whose dia-

gram are shown in Fig. 1.1, in which the photon-mediated reaction and Z-mediated

reaction are separately the basic process in QED and Electroweak Physics.
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e

e Z/γ

f

f

Figure 1.1 The tree-level diagram for e+e− → Z/γ → ff reactions

In the Z-mediated case, the Vertex on the right side of this diagram is exactly

the chiral coupling Zff̄ introduced in 1.1. In order to gain a deep understanding

of this process, we need to calculate its polarised cross-section. This first step is to

calculate the born amplitude for each reaction using the Feynman rules in helicity

states. The trivial amplitude for each reaction is written respectively as

AZ =

√
2GFMZ

s−M2
Z

[gfLf̄LγµfL + gfRf̄RγµfR][geLēLγµeL + geRēRγµeR],

Aγ =
e2

s
[f̄γµf ][ēγµe],

(1.3.57)

where the chiral coupling constants gL and gR are adopted, and the GF is the Fermi

coupling constant which will be introduced in 1.3.2. Then the differential cross-

sections can be obtained by calculating squared matrix elements. The result can be

expressed in a compact form as:

dσ

dΩ

(
e−Le

+
R → fLf̄R

)
=

α

4s
(1 + cosθ)2|1 + rgeLg

f
L|2,

dσ

dΩ

(
e−Le

+
R → fRf̄L

)
=

α

4s
(1− cosθ)2|1 + rgeLg

f
R|2,

dσ

dΩ

(
e−Re

+
L → fLf̄R

)
=

α

4s
(1− cosθ)2|1 + rgeRg

f
L|2,

dσ

dΩ

(
e−Re

+
L → fRf̄L

)
=

α

4s
(1 + cosθ)2|1 + rgeRg

f
R|2,

(1.3.58)

where r is the ratio of coefficients of AZ and Aγ, and σ is the scattering angle. Note

that the ratio r has an imaginary part on the MZ resonance due to the pole in the

Z propagator. Combining all four possible helicity amplitudes and simplifying the

formula, we have:

dσ

dΩ
(e−e+ → ff̄) =

α

4s
[(A0(1 + cosθ2) + A1cosθ], (1.3.59)
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in which α = e2/4π is the famous fine structure constant, and we have defined

A0 = 1 + 2 Re [r] g2
V + |r|2(g2

V + g2
A) A1 = 4 Re [r] g2

A + 8|r|2g2
Ag

2
V .

(1.3.60)

In order to obtain the total cross-section, one needs to perform an integration over

the scattering angle θ. Note that the cos θ term vanishes in the integration while the

cos θ term survives. As a consequence, the integration of the forward hemisphere

would not be equal to the backward-hemisphere one. This difference leads to an

asymmetry in collider detections, which is called as forward-backward asymmetry.

It is defined as:

Afb =

∫ 1

0
dσ
dΩ
dΩ−

∫ 0

−1
dσ
dΩ
dΩ∫ 1

0
dσ
dΩ
dΩ +

∫ 0

−1
dσ
dΩ
dΩ

. (1.3.61)

It is easy to verify that

Afb =
3A1

8A0

. (1.3.62)

At the low energy scale s�M2
Z , the ratio |r| � 1, where the photon diagram dom-

inates, the forward-backward asymmetry is small. However, near the Z resonance

s = M2
Z , where the Z diagram dominates, the asymmetry will be much bigger due

to the small denominator in the propagator and should reach its maximum at the

peak. The denominator gets smaller near the resonance, so the total amplitude gets

bigger. Actually, Afb was measured at The Large Electron-Positron Collider (LEP)

on the MZ resonance [15]. However, to calculate Afb on the resonance the pole needs

to be disposed, as is done in Breit-Wigner distribution formula [16].

Here we will introduce the Breit-Winger formula in a very physical way. For a

stable massive particle that oscillates with a frequency in its rest frame, the on-shell

time-depended wave function is

ψ(t) ∝ e−ipµx
µ

= e−iMt, (1.3.63)

where M is the mass of the particle. In this case, the probability to detect the

particle is always 1 in the whole space. But for an unstable particle with the same

mass, the probability of finding the particle will decrease exponentially according to

its decay width Γ

ψ(t) ∝ e−ipµx
µ

= e−iMte−iΓ
t
2 = e−i(M−i

Γ
2

)t,

P (ψ(t)) = |ψ(t)|2 ∝ e−Γt,
(1.3.64)
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In the equation 1.3.64, the unstable particle can been effectively deemed as having a

”complex mass” M − iΓ
2

, where the imaginary part is the decay width. In quantum

field theory, a free stable ”Z” boson propagator could be expressed in the momentum

space as:
gµν

k2 −M2
Z

, (1.3.65)

while the real Z boson is not stable, whose propagator can then be expressed as:

gµν

k2 − (MZ − iΓ
2
)2
≈ gµν
k2 −M2

Z − iΓMZ

. (1.3.66)

And the cross-section for a relating process is proportional to its value squared:

σ ∝ gµν
s−M2

Z − iΓMZ

(
gµν

s−M2
Z − iΓMZ

)∗
∝ 1

(s−M2
Z)2 − Γ2M2

Z

. (1.3.67)

Note that in the amplitude of e+e− → ff̄ , the propagator of Z boson is

1

s−M2
Z − iΓZMZ

, (1.3.68)

where ΓZ is the decay width of Z boson.

In the Standard model, using the Breit-Winger formula, the forward-backward

asymmetry at the Z peak can be written in terms of the polarization asymmetry in

the Z → ff̄ process. It is

Afb =
3

4
AeLRA

f
LR. (1.3.69)

However, this feature does not hold in the Standard Model Effective Theory, which

will be introduced in Chapter 2. The details of the next-to-leading order calculation

of the forward-backward asymmetry for e+e− → bb̄ on the MZ resonance in the

Standard Model will be given in Chapter 4. As one of the precision electroweak

measurements, the forward-backward asymmetry is a very important experiment

measurement that can test new physics beyond the Standard Model [17–19].

1.3.2 The Muon Decay

The other important reaction in this thesis are muon decay process µ− → e−+νµ+ν̄e

which are related to the charged weak couplings. Through this reaction, the muon

decay to the lightest massive lepton electron and two neutrinos. The decay of a muon
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is a purely leptonic process which is very clean experimentally and theoretically, and

thus can be measured very precisely. The tree-level diagram of this decay process

in given in Fig. 1.2.

µ

νµ

e

ν̄e

Figure 1.2 The tree level diagram for µ decay process in the Standard Model

According to the Feynman rules, we can obtain the Born amplitude:

AW = −g
2

8

(
ū(νe)γ

µ
(
1− γ5

)
u(e+)

) −gµν
s−M2

W

(
ū(ν̄µ)γν

(
1− γ5

)
u(µ+)

)
.

(1.3.70)

In the low transverse momentum region s�M2
W , obviously the matrix element can

be simplified as

AW = −g
2

8

(
ū(νe)γ

µ(1− γ5)u(e+)
) gµν
M2

W

(
ū(ν̄µ)γν(1− γ5)u(µ+)

)
, (1.3.71)

in which case the whole process can be effectively viewed as a four-fermion interac-

tion with a coupling constant

GF =
g2

4
√

2M2
W

. (1.3.72)

Actually, GF is famously known as the Fermi Coupling Constant, which value can

be determined very precisely by measuring the lifetime of the Muon, therefore the

Fermi Coupling constant is usually used as one of the input parameters in Particle

Physics. The four-fermion interaction appearing in 1.3.71 can not be renormalised

in the framework of the Standard Model, that is the reason why it is viewed as

an effective interaction. This effective interaction was firstly suggested by Fermi to

explain the nuclear beta decay before the discovery of W boson [20].



1.4. Divergences and Renormalisation 18

1.4 Divergences and Renormalisation

1.4.1 Introduction

Historically, when people tried to calculate the one-loop Feynman diagrams in per-

turbative quantum field theory, divergent terms appeared. The divergences could

be divided into two categories: Infrared(IR) divergences and Ultraviolet(UV) di-

vergences. The IR divergence only appears when a particle is massless, e.g., the

exchange or emission of a photon in the low energy limit k → 0, where k is the

momentum transfer in the loop diagram. On the other hand, in measurements in-

volving charged particles, countless numbers of soft photons with arbitrary small

energy might exist in the final states that could escape detection. If we consid-

er diagrams for those processes, there is a divergence term too. According to the

Kinoshita-Lee-Nauenberg theorem [21, 22], the IR divergences arising from virtual

correction can be exactly cancelled by the real soft photon emission processes. In

this thesis we mainly focus on the UV divergences arising at the high-energy scale.

The UV divergence is ubiquitous in the one-loop corrections. For example, in the

φ4 theory, the one-loop transition amplitudes for the φi → φj process is

(−iλ)2

2

∫
d4k

(2π)2

i

k2 −m2 + iε

i

(k − p)2 −m2 + iε
, (1.4.73)

where p is the total incoming momentum, and k is the loop momentum that should

be integrated over from 0 → ∞. In the large momentum transfer limit m2 � k2,

the mass could be neglected and the integral behaves like

∼
∫
d4k

k4
, (1.4.74)

which is obviously divergent as k → +∞, known as UV divergence. The divergence

comes from the short distance scale that we lack knowledge of. When the UV

divergence was firstly discovered in QED, a lot of physicists believed that to eliminate

the divergences, fundamental principles of physics had to be modified. However, it

turns out there is a way out by the methods of regularization and renormalisation

[23,24].

Since the divergence comes from the high energy limit k → +∞, we can make

a ”cutoff” operation at the scale Λ, so that the ultraviolet divergences at short
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distances are sensitive to the ”regulator” Λ, in which case the physical quantities go

to infinity when Λ → +∞. There are many other regularization schemes, amongst

which the dimensional regularization scheme is the most widely used one, introduced

by Giambiagi and Bolling [25]. The dimensional regularization scheme parameterises

the UV divergence by a dimensional regulator ε = d − 4. However, the choice of

regularization schemes will not affect the non-trivial structure of loop diagrams. We

will use dimensional regularization in our work in Chapter 4.

In a renormalizable quantum field theories, analyses of the one-loop corrections

show that the divergent part of all of the diagrams always has the structure of a

polynomial of the momentum, just as the tree-level contribution in the Lagrangian.

So by redefining the original coupling constants by infinite shifts, we are able to

absorb the divergences that parameterized in terms of the regulator into redefinitions

of physical quantities. We can finally obtain physically reasonable finite results in

the calculation of higher-order Feynman diagrams.

For a long time, the physical meaning of renormalisation was a mystery until

K.G. Wilson and John B. Kogut published their profound paper in 1974 [26]. In

Wilson’s view, renormalisation is not only a technical tool to deal with the infinite

quantities, but also explains why the nature is described by renormalizable theories.

Through the renormalisation procedure, high energy effects can be parameterized

in a low energy theory that we have knowledge of, like we have seen in the Fermi

four-fermion example in 1.3. In this sense, the Standard Model itself can be viewed

as an effective field theory too, which is exactly the case in the Standard Model

Effective Field theory that will be introduced in Chapter 2.

1.4.2 Renormalisation in Electroweak Standard Model

In this part we will introduce the renormalisation procedure in the electroweak

Standard Model which we are interested in. As it is mentioned above, the first

step is to express the bare quantities in the Lagrangian in terms of renormalised
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constants. The related terms are defined as follows:

M0
W = MW + δMW ,

M0
Z = MZ + δMZ ,

M0
H = MH + δMH ,

M0
f = Mf + δMf ,

e0 = e+ δe,

(1.4.75)

where the bare quantities are denoted by an index 0, mf is the generic fermion

mass. Besides, because the radiative corrections add an infinite contribution to the

normalization of the fields, the fields need to be renormalised as well:

W±,0 = Z
1/2
W W± Z0

A0

 =

 Z
1/2
ZZ Z

1/2
ZA

Z
1/2
AZ Z

1/2
AA

 Z

A


H0 = Z

1/2
H

fL,0 = Z
1/2

fL
fL

fR,0 = Z
1/2

fR
fR.

(1.4.76)

In the perturbative theory, the generic renormalised constant Z could be expanded

as:

Z = 1 + δZ + (δZ)2. (1.4.77)

Since we only consider the leading order virtual corrections in this thesis, higher-

order corrections expressed by (δZ)2 will be neglected. In this case, all the renor-

malised constants can be split into two parts. Consequently, the bare Lagrangian

can be divided into a renormalised Lagrangian and a counterterm Lagrangian as

follow:

L0 = L+ δL, (1.4.78)

where the renormalised Lagrangian L has exactly the same form as L0, with the

physical quantities and fields replaced by the renormalised ones. The counterterm δL

can be translated into Feynman diagrams that are known as counterterm diagrams,

which contribute to the virtual corrections too.
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The UV divergent field renormalisation constants and the mass renormalisation

constants can be determined by calculating the one-particle irreducible two-point

functions that represent quantum corrections to a propagator so that the UV di-

vergent terms in the two-point function can be cancelled by the counterterms. The

function Σ(p), as a polynomial in momentum, is known as the self-energy. Then

by choosing the renormalisation schemes, the finite part of the field renormalisation

constants and the mass renormalisation constants can be fixed. In QED, external

electrons and photons are on their mass shell, so it is natural to imposing the on-shell

condition to the external particles. But in other cases, like QCD, because of the

color confinement, there is no such natural choice. As a result, we are free to choose

a different renormalisation scheme. If we can calculate the perturbation theory up

to infinite order, different renormalisation schemes can give the same finite result for

any physical process in principle, though the definition of the renormalised constants

are different. However, since in practice we can only do the computation up to a

few loops, different physical predictions are produced from different renormalisation

schemes. In the electroweak Standard Model, the on-shell renormalisation scheme

turns out to be a very successful renormalisation scheme due to its impressive a-

greement with experiments [27]. In Chapter 4, as the energy scale we are interested

in is the electroweak scale, we will implement the on shell scheme as well.

In order to renormalise the qft, one needs to calculate the transition amplitudes

for the fi → fj process, where fi represents for any field, i.e. the one-particle

irreducible two-point functions. In Feynman Gauge, those two-point functions in

electroweak theory can be parameterised as follows [28]:

ΓWµν (p) = −igµν
(
p2 −M2

W

)
− i
(
gµν −

pµpν
p2

)
ΣW
L

(
p2
)
− ipµpν

p2
ΣW
T

(
p2
)
,

Γabµν (p) = −igµν
(
p2 −M2

a

)
δab − i

(
gµν −

pµpν
p2

)
Σab
L

(
p2
)
− ipµpν

p2
Σab
T

(
p2
)
,

ΓHµν (p) = i
(
p2 −M2

H

)
δab + iΣH

(
p2
)
,

Γfµν (p) = i
(
/p−Mf

)
+ i
[
/p
(
PLΣf

L

(
p2
)

+ PRΣf
R

(
p2
))

+Mf

(
PLΣf

S∗
(
p2
)

+ PRΣf
R

(
p2
))]

,

(1.4.79)

where a, b = A,Z and MA = 0. Next we should impose the renormalisation condi-
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tions for the external physical fields [28]:

R̃eΓWµν (p) εν (p) |p2=M2
W

= 0,

Re ΓZZµν (p) εν (p) |p2=M2
Z

= 0, Re ΓZAµν (p) εν (p) |p2=M2
Z

= 0,

ΓAZµν (p)εν (p) |p2=0 = 0, ΓAAµν (p)εν (p) |p2=0 = 0,

lim
p2→M2

W

1

p2 −M2
W

R̃eΓWµν (p) εν (p) = −iεµ,

lim
p2→M2

Z

1

p2 −M2
Z

Re ΓZZµν (p) εν (p) = −iεµ, lim
p2→0

1

p2
Re ΓAAµν (p) εν (p) = −iεµ

Re ΓH(p)|p2=M2
H

= 0, lim
p2→M2

H

1

p2 −M2
H

ReΓH(p) = i,

R̃eΓf (p)u (p) |p2=m2
f

= 0, R̃eū (p′) Γf (p) |p′2=m2
f

= 0,

lim
p2→m2

f

/p+mf

p2 −m2
f

R̃eΓf (p)u (p) = iu (p) , lim
p2→m2

f

ū (p′) R̃eΓf (p′)
/p+mf

p′2 −m2
f

= iū (p′) ,

(1.4.80)

where εµ (p) is the polarization vectors, and u(p) and ū (p′) are the spinors of the

external fermion fields. R̃e takes the real part of the loop integrals in the self energies

without including the quark mixing matrix elements. Thus the mass counterterms

in the on-shell scheme could be deduced as follows:

δmf =
mf

2
R̃e
(

Σf
L

(
m2
f

)
+ Σf

R

(
m2
f

)
+ Σf

S

(
m2
f

)
+ Σf

S∗
(
m2
f

))
,

δMW

MW

= R̃e
ΣW
T (M2

W )

2M2
W

.
(1.4.81)
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And the counterterms from field renormalisation take the form [28]

δZL
f = −R̃e

(
Σf
L

(
m2
f

)
+ Σf

S

(
m2
f

)
− Σf

S∗
(
m2
f

))
−m2

f

∂

∂p2

(
Σf
L

(
m2
f

)
+ Σf

R

(
m2
f

)
+ Σf

S

(
m2
f

)
+ Σf

S∗
(
m2
f

))
|p2=m2

f
,

δZR
f = −R̃eΣf

R

(
m2
f

)
−m2

f

∂

∂p2

(
Σf
L

(
m2
f

)
+ Σf

R

(
m2
f

)
+ Σf

S

(
m2
f

)
+ Σf

S∗
(
m2
f

))
|p2=m2

f
,

δZW = −Re
∂ΣW

T (p2)

∂p2
|p2=m2

W
,

δZZZ = −Re
∂ΣZZ

T (m2
Z)

∂p2
|p2=m2

Z
,

δZAA = −∂ΣAA
T (p2)

∂p2
|p2=0,

δZZA = 2
ΣAZ
T (p2)

M2
Z

|p2=0,

δZH = −Re
∂ΣH

T (m2
H)

∂p2
|p2=m2

H
.

(1.4.82)

At last, the counterterms from the renormalisation of the electric charge in the

on-shell scheme can be formulated by the field renormalisation constants as:

δZe = −1

2
δZAA −

sin θw
2 cos θw

δZZA. (1.4.83)

As mentioned above, there are other renormalisation schemes that could be used.

As the only physical renormalisation scheme, the on-shell scheme has the advan-

tage that in all orders of perturbative expansion of Feynman diagrams, the basic

renormalised constants like mf and e corresponds to their measured value. But

calculations of the finite terms are very complicated in some cases. Thus, it is more

convenient to adopt other renormalisation scheme like the minimal subtraction (MS)

scheme [29], and modified minimal subtraction scheme, called MS scheme [30], espe-

cially for QCD, in which case the mass eigenstates of quarks could not be measured

directly. In the MS scheme proposed by ’t Hooft, the renormalised constants are

chosen to be completely infinite to chop off the divergent poles 1
ε

arising from the

dimensional regularization. Because the finite counterterms in MS is just zero, com-

pared to the on-shell scheme, the MS scheme is much simpler to calculate since its

finite parts of counterterms are just zero. People then find that the poles 1
ε

are al-

ways a combination of two constants: γE and ln 4π. So in the modified MS scheme,
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we make the replacement:

1

ε
→ 1

ε̄
=

1

ε
+ γE + ln 4π. (1.4.84)

Correspondingly, the finite terms in MS scheme have fixed finite parts. As a result,

in the MS and MS schemes, the renormalised masses for the external fields are no

longer equal to the physical mass, but depend on the renormalisation scale µ, which

would be affected by high-orders radiative correction.

1.5 Outline of the Thesis

The main goal of this thesis is to probe the new physics beyond the SM using ef-

fective field theories. In the example of Fermi’s four-fermion effective interaction,

introduced in this chapter, it has been shown that non-SM effective Lagrangians

that encode the unknown high energy physics could be used to describe the low

energy interactions. The same approach can be used to explore the impact of new

physics. In the present situation, the data obtained from high-energy experiments

does not suffice to deduce the theory underlying the Standard Model of particle

physics, we are parametrising our ignorance using an effective field theory approach,

which allows to parameterise deviations from the Standard Model in a fairly model-

independent way. In Chapter 2, two kinds of effective field theories are introduced,

i.e. the dimension-six Standard Model effective field (SMEFT) theories and Sim-

plified Models with dark sectors. In the SMEFT part, a short review of the Higgs

and electroweak phenomenology in tree-level SMEFT is given which will be used in

Chapter 4. And in the Simplified Model part, a simple dark matter Simplified Model

is introduced. In Chapter 3, four simple effective operators are defined to introduce

interactions between a new (pseudo-)scalar particle and the SM top quark. Such

interactions are motivated by scalar mediators between the SM and a dark sector. In

this chapter, we study the ability of the LHC to probe the spin and parity quantum

numbers of a new light scalar resonance X which couples predominantly to the third

generation quarks in a variety of simplified models through the tt̄X interaction. In

chapter 4, the NLO correction to the forward-backward asymmetry for e+e− → bb̄

process in the framework of dimension-six Standard Model Effective field theory
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(SMEFT). Numerical results are presented to show the influence of EFT corrections

on the phenomena. Finally, a conclusion is made in Chapter 5 by summing up the

main findings at the end of this thesis.
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Chapter 2

Effective Field Theories

The Standard Model has been found to be a very successful theory in explaining

all experimental results obtained at collider experiments and in predicting a wide

range of phenomena such as the existence of W boson and Z boson in electroweak

physics. After the discovery of the Higgs boson by ATLAS and CMS at the LHC

in 2012 [31, 32], all particles predicted by the Standard Model have been found.

However, there are still phenomena, such as the matter/anti-matter asymmetry, the

Standard Model cannot fully explain. Yet, no new particles beyond the Standard

Model have been discovered so far.

The ultimate goal of modern physics is to describe all observed phenomena in

the framework of one theory that is valid up to arbitrary high energies, in which

different kinds of interactions can be unified as one. Such a theory can be called

a fundamental theory. Correspondingly, a theory that is only valid up to a finite

energy scale is called an effective field theory. Just as the name implies, an effective

field theory can only describe physics below some scale Λ. Specifically, these scales

are the masses of the heavy particles in the effective field theory. In the example of

Fermi’s four-fermion effective theory that has been introduced in Chapter 1, we know

that it will no longer be effective beyond the electroweak scale, and one has Λ = MW .

In fact, all field theories we have are effective theories. For the SM, the situation is

the same. Though we still don’t know the correct Λ for the SM, since new particles

beyond SM have not been found yet. Actually, it took a long time for physicists

to realise the SM is also an effective field theory. In effective field theories, like

27
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for example Fermi’s four-fermion theory, the effects at the scale Λ are suppressed

by a factor E
Λ

, where E is the characteristic energy of the process considered in

the effective theory. Due to this factor, physics at a very high energy scales or

regimes of very small distance will not be important for the phenomenology at low

energy scales. Consequently, the parameter space of the world could be divided into

different regions, in each region with a different energy scale. The physics at each

scale is relatively independent from each other so that we can explain the physical

phenomena at certain scales we are interested in without a real fundamental theory

that can explain the physics at all scales in principle.

2.1 Standard Model Effective Fields Theory

If we view the Standard Model as an effective field theory that can be decoupled from

the new physics scale, it is a reasonable choice to build higher dimensional effective

operators using the Standard Model fields assuming the same symmetry groups of

the SM. Such a theory is called Standard Model Effective Field Theory (SMEFT)

[33]. In SMEFT we assume that the SU (2)L ⊗ U (1)Y symmetry is spontaneously

broken to U (1)EM via the Higgs mechanism. To keep the Lagrangian dimensionless,

the operators in SMEFT should be multiplied by couplings with a negative mass

dimension, which are known as the Wilson Coefficients [34]. For a d dimension

operator, the corresponding Wilson Coefficient Ci should have a dimension 4 − d.

We can also express the Wilson coupling as a dimensionless coupling divided by

the cut-off scale as C̃i = Ci

Λd−4 . These operators are the low-energy remnants of the

heavy new physics integrated out at the scale Λ, which appears then as the scale

suppressing the effects of these operators at lower scales.

A generic SMEFT Lagrangian can be written as following:

LSMEFT = LSM +
∑
d

Ld, d = 5, 6, 7, ... , (2.1.1)

where the d dimensional effective Lagrangian Ld = Cd
i Q

d
i . In the limit Λ → +∞,

SMEFT can be reduced to the normal SM. The first EFT Lagrangian arises at

dimension five, denoted as L5, and contains only a lepton-number violating opera-

tor [35]. In the dimension-six SMEFT, all the operators obey the law of conservation
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of lepton number, however, there could be baryon-number violating operators [36].

In the dimension-five SMEFT, the left-handed neutrinos have Majorana masses [36],

which would be considerably suppressed by the small-neutrino-mass restriction from

Neutrino oscillation experiments. Thus, the suppression scale of the dimension-five

operator is usually deemed to be much larger than the scale Λ that suppresses the

dimension-six operators. Through the power counting in the SMEFT, higher dimen-

sion operators are suppressed more severely due to the Λd−4 in the denominator so

that they have less impact on the low-energy scale. Therefore in our work in Chap-

ter 4, we will only consider the dimension-6 operators and assume the conservation

of baryon number.

Since no new gauge symmetries beyond the SM are imposed, we are free to

construct any operators that obey those symmetries. Though the amount of all pos-

sible operators is very large, the number can be reduced according to the Equations

of motion of the fields since these operators are not independent from each other.

Thus we can choose a basis in which operators are independent. Actually, there are

different basis schemes that are identical in physics. Among them, assuming the

baryon number conservation, an irreducible basis with 59 operators was proposed

in [36], known as ”Warsaw Basis”. These 59 operators are categorized into 8 classes,

which can be found in A.1 in the Appendix. In chapter 4, we choose to work in the

”Warsaw Basis” since it has been studied much better than any other basis.

2.1.1 Higgs and Electroweak Phenomenology in the Tree-

Level Dimension-six SMEFT

Since all the interactions in the SMEFT are built from the SM particles, a large

number of SM processes might be influenced by the EFT operators [33]. The S-

MEFT could be viewed as a perturbative theory. For example, the next-to-leading

order corrections in dimension-six SMEFT have the same power counting as the

dimension-eight SMEFT. In this section, we are mainly interested in the electroweak

phenomena that are related to the Dimension-six SMEFT. Only the basic tree-level

effects of the SMEFT will be introduced, which means that the O( 1
Λ4 ) effects are

neglected.
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To understand the spontaneous symmetry breaking process in the SMEFT, we

need to introduce the new Higgs potential. In the dimension-six SMEFT, it can be

written as

V (H) = VSM(H)− CH(H†H)3

= λ(H†H − 1

2
v2)2 − CH(H†H)3,

(2.1.2)

which is altered by only one Wilson Coefficient CH . The new vev could be obtained

by solving the minimum of the potential

vT =

(
1 +

3CHv
2
T

8λ

)
v̂T , (2.1.3)

where vT is the new vev and v̂T is the original SM one. The ’hat’ symbol will be

used to characterise the SM quantities in what follows.

Furthermore, the Higgs doublet field receives corrections from the EFT kinetic

Wilson Coefficients CHD and CH2. Consequently, the Higgs doublet in dimension-six

SMEFT in the unitary gauge take the form

H =

 0

(1 + (CH2 − 1
4
CHD)v2

T )h+ vT

 . (2.1.4)

Using 2.1.3 on 2.1.4, we can obtain the mass of the Higgs boson:

M2
H = 2λ

(
1− 3CHv

2

2λ
+ 2

(
CH2 −

1

4
CHD

)
v2
T

)
v2
T . (2.1.5)

Then we move on to the operators that are connected with electroweak gauge terms.

The Class 4 operators in the Warsaw Basis contribute to the SU (2)L⊗U (1)Y gauge

kinetic terms and mass terms in the broken phase:

L
(6)
EW =

1

2
v2
TCHWW

a
µνW

a,µν +
1

2
v2
TCHBBµνB

µν +
1

2
v2
TCHWBW

3
µνB

µν , (2.1.6)

and

L
mass,(6)
EW =

1

16
v4
T

(
g2W

3
µ − g1Bµ

)2
. (2.1.7)

Correspondingly, the gauge fields can be redefined as

W a
µ =Wa

µ

(
1 + CHWv

2
T

)
, Ba

µ = Bµ
(
1 + CHBv

2
T

)
, (2.1.8)

and the related gauge coupling is shifted as

ḡ2 = g2(1 + CHWv
2
T ), ḡ1 = g1(1 + CHBv

2
T ). (2.1.9)
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So that we can express the electroweak gauge Lagrangian in terms of the mass

eigenstates:

W± =
1

2
(W1

µ ∓ iW2
µ), W3

µ

Bµ

 =

 cos θ̄w sin θ̄w

− sin θ̄w cos θ̄w

 Zµ
Aµ

 ,
(2.1.10)

in which the Weinberg angle is replaced by a effective one

sin θ̄ =
ḡ1

ḡ2
1 + ḡ2

2

(
1 +

v2
T

2

ḡ2

ḡ1

ḡ2
2 − ḡ2

1

ḡ2
1 + ḡ2

1

CHWB

)
. (2.1.11)

The trigonometric function of Weinberg angle sin θw and cos θw has been replaced

with ŝw and ĉw respectively for convenience’s sake. From now on all the original

SM quantities will we be denoted as hatted symbols and the EFT quantities will be

denoted as barred symbols in this thesis.

In the dimension-six SMEFT, the covariant derivative can be written as

Dµ = ∂µ + i
ḡ2√

2

(
W+T+W−T−

)
+ igZ(ḡ2

2 + ḡ2
1)
[
T 3 − s̄2

w

]
Zµ + iēQfAµ,

(2.1.12)

where Q = T 3 + Y as in the SM. Accordingly, the electric coupling and the neutral

weak effective coupling need to be redefined as

ē =
ḡ1ḡ2√
ḡ2

1 + ḡ2
2

[
1− ḡ1ḡ2

ḡ2
1 + ḡ2

2

v2
TCHWB

]
ḡZ =

√
ḡ2

1 + ḡ2
2 +

ḡ1ḡ2√
ḡ2

1 + ḡ2
2

v2
TCHWB.

(2.1.13)

The masses of the electroweak bosons can be directly read off from the Lagrangian:

M2
W =

ḡ2
2v

2
T

2
,

M2
Z =

v2
T

4

(
ḡ2

2 + ḡ2
1

)
+
v4
T

8
CHD

(
ḡ2

2 + ḡ2
1

)
+
v4
T

2
ḡ2ḡ1CHWB.

(2.1.14)

As is shown above, the dimension-six SMEFT always refines the quantities by adding

some terms proportional to 1
Λ2 at tree level.

Finally, the fermion masses also need to be shifted to their EFT forms. In

dimension-six SMEFT, fermions acquire their masses through Yukawa couplings and

additional EFT terms that include three Higgs doublets, one left-handed fermion

doublet and one right-handed fermion:

CΨH(H†H)
(
Ψ̄LHΨR

)
+ h.c.. (2.1.15)
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In the broken phase this generates an interaction term that couples two fermions

with one Higgs boson. Together with the normal SM Yukawa terms, this leads to a

generic fermion mass matrix

M ij
Ψ =

vT√
2

(
Y ij

Ψ −
1

2
v2C∗ΨH

)
. (2.1.16)

Consequently, the Yukawa coupling YΨ obtains a correction due to the redefinition

of the Higgs doublet together with corrections from C∗ΨH :

Y ij
Ψ =

1√
2

(
Y ij

Ψ

(
1 + CH2 −

1

4
CHD

)
v2

)
− 3

2
v2C∗ijΨH (2.1.17)

Recall that in the SM the Fermi coupling constant GF is directly related to

a four-fermion interaction that is exactly a dimension-six operator. Now in the

SMEFT,

GF =
1√
2v2

t

+
1√
2

(
C ll
µeeµ

+ C ll
eµµe

)
− 1

2
√

2

(
C

(3)
Hl
ee

+ C
(3)
Hl
µµ

)
, (2.1.18)

in which the four fermion operators appear again. In 2.1.18, besides the four-fermion

operators, there is another operator C
(3)
Hl that influence the µ− → e−+νµ+ ν̄e decay

process by altering the electroweak charged current coupling.

2.2 Simplified Models

The LHC has been demonstrated to be a very powerful collider at detecting the

fundamental physics at the electroweak scale. Therefore physicists are now aiming

to discover new physics in the ongoing and upcoming runs of the LHC at higher

energy scales. Benefiting from its collision energy of
√
s = 14 TeV, the LHC has

the potential to detect new physics that might exist at O(TeV) scale. Furthermore,

there might be some unknown particles at the electroweak scale that escape the

detection of current experiments, e.g., a possible dark matter candidate with a mass

of a few hundreds GeV. To find the signals that might contain such kinds of new

physics beyond the Standard Model(BSM), we need a theory framework to deal with

the complex data gathered by the multi-purpose experiments. Many specific models

to extend the SM have been built, such as SUSY [37] or GUTs [38]. However, even if

a new signal is captured by the LHC, it is still not easy to identify the theory behind
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it, as the signal can be generated in many ways in different models [39, 40]. Thus,

the situation gets worse as the phenomenon might depend on a great number of free

parameters. Based on phenomenological considerations, it is useful to characterize

special BSM processes in terms of an effective Lagrangian as a starting point, as it

is done in Simplified Models.

Simplified models are also effective field theories, but with an extended particle

content and/or gauge group compared to the SM. A Simplified Model only contains

a few new particles and interactions rather than including all possible interactions.

The new interactions in Simplified Models are directly related to the physics observ-

ables in collider experiments. As a result, the new process appearing in the signal

only depends on a small number of parameters. Physicists are free to choose differ-

ent effective interaction operators according to their needs, and the results obtained

in the Simplified Models can be matched onto more specific models which can give

rise to the same topologies.

Different kinds of Simplified models can be applied for different purposes. In

this chapter I will focus on the simplified Dark Matter (DM) models which are

used to analyse the possible DM candidates and their influences on the Collider

experiments [41,42]. The center-of-mass energy at the LHC has successfully reached

13 TeV in 2015. This increases the sensitivity to detect DM directly and indirectly in

searches performed at the LHC, which might open a new window for us to improve

our understanding of the universe.

Three kinds of models could be used in the DM case. General models can afford

the task to provide different kinds of DM candidates, like the weakly interacting

massive particles (WIMP) in supersymmetry theories. However, the details of such

BSM theories are still unknown to us, this leads to a large number of free param-

eters in the general models. For example, in the analysis of DM in the framework

of Minimal Supersymmetric Standard Model (MSSM), more than 20 relevant free

parameters will cause too much uncertainties, and lead to varieties of DM version-

s [39]. As a result, from a finite amount of data that we might have in the foreseeable

future, a complete DM model is usually not a suitable choice due to too many un-

derlying unknown dynamics though in principle it can explain all questions about
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DM.

Effective field theories provide alternative frameworks on the simple assumption

that the DM candidate might be the only accessible state to our experiments. In

such a DM effective field theory, the interactions between the possible DM candidate

and the SM particles could be expressed as effective operators, suppressed by a high

energy cut off scale Λ. All phenomena caused by the heavy states of the dark sector

are thus now encoded in the relevant operator coefficients. In such a way, all possible

kinematically inaccessible particles could be disposed in the EFT framework in a

general way. Many related works had been done and it is shown that the LHC Run

I data provides strict restrictions on the BSM scale Λ [43–45].

As phenomenon oriented theories, Simplified Models provide us very good tools

to analyse the collider signals related to the dark sector. In Simplified Models we

are not limited to assume that the DM candidate might be the only accessible

state in our experiments. Alternatively, the most important mediators that couples

the DM particle with the SM particles are also introduced in Simplified Models,

together with the DM candidates themselves. The mediators could be SM particles

or BSM particles, since in Simplified Models the DM particles do not interact with

SM particles directly. The number of new parameters of the dark sector could be

more than one. However, this number is usually not as large as it is in the full

theory, therefore it does not cause too much trouble in the calculation. The results

obtained from the DM simplified Models could be compared with the LHC data to

learn the basic features of the DM sector.

To ensure that the results of a DM Simplified Models is meaningful, the model

should be simple enough so that it can be extended to a general model that can

explain the physical mechanism behind the effective operators. For example, the

light sectors in Simplified Models should only include the lightest DM fields that are

stable enough. Furthermore, to compare the data with the predictions of Simplified

Models, these models should be complete in explaining the relevant phenomena

at the energies that Colliders are able to probe. It is worth to emphasize that if

the mass of the mediator(s) is sufficiently heavy, then the relevant process will be

suppressed by the squared mass(es), and we return to the SMEFT case.
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Generally, the stable DM sectors in Simplified Models are responsible for ex-

plaining the DM, and the mediator(s) connecting DM sectors and SM sectors are

responsible to provide the expected SM particle excess at the LHC experiments.

Meanwhile, to satisfy all non high-pT constraints from the data, when building the

Lagrangians, one should follow some extra criteria. First, all gauge invariant and

gauge invariant terms should be included in the Lagrangian to ensure the complete-

ness of the model. Second, the interaction terms between DM sector and SM sector

should respect the exact and approximate accidental global symmetries of the SM.

Consequently, lepton number violating and baryon number violating terms are for-

bidden in the Lagrangian. Meanwhile, the custodial and flavor symmetries of the

SM should not be broken strongly. These criteria are discussed in detail in [42].

Now the problem is how to control the new Lagrangian terms so that it would

not break the custodial and flavor symmetries severely. New physics are required to

respect the exact symmetries but not the approximate global accidental symmetries

in full theories. Any accidental symmetries violating terms would be severely con-

strained by the electroweak data, since the experimental data in electroweak scale

fits the SM expectation very well. One smart way to solve the problem is to let

the new physics break the flavor symmetry as similar as the SM. A method called

Minimal Flavour Violation (MFV) [46–49] assumption is deliberately developed for

this purpose. In the SM, the non-diagonalizable CKM matrix leads to the fact that

the flavor eigenstates are not the mass Eigenstates. Correspondingly, in the MFV

scheme only two kinds of new interactions are permitted in the Lagrangians: those

which are invariant under the global SM flavor group Gq = U(3)q ⊗ U(3)u ⊗ U(3)d

and those break the flavor symmetry that are associated with the quark Yukawa

couplings Yu and Yd.

A simple example of Simplified Models is given in [42] to show how the MFV

requirement restricts the construction of Simplified Models. In this example, the

DM candidate is chosen to be a real scalar under gauge and flavor symmetry, de-

noted as χ, and the mediator is set to be the SM-like higgs doublet under SU(2)

gauge symmetry, denoted as H ′. The interaction between the DM and the mediator

opens a portal from the SM to the DM sector, which is simply given as χ2 |H ′|2.
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As in the SM case, we suppose that the new Higgs-like mediator interacts with

quarks in the SM. Now we pretend that we do not know the interaction between

the SM Higgs doublet and quarks, but following the instruction of MFV procedure

to construct the corresponding Lagrangian. The left-handed and the right-handed

quarks transforming under the flavour symmetry could be expressed as qL ∼ (3, 1, 1),

uR ∼ (1, 3, 1) and dR ∼ (1, 1, 3) respectively. It is can be easily seen that q̄LuR breaks

the U (3)q ⊗U (3)u, and q̄LdR breaks U(3)q ⊗U (3)d, when they interact with Higgs

doublet, SU (2)L symmetry can be obeyed. The other possible combination terms

that couple with Higgs doublet even break SU (2)L gauge symmetry, which are defi-

nitely not allowed. So we have to connect the two flavour symmetry breaking terms

with the Yukawa couplings. Hence we have the following Lagrangian:

L = −
∑
i,j

(
Y i,j
u q̄iH ′uj + Y i,j

d q̄iεabH
′adj + h.c.

)
, (2.2.19)

where εab with a, b = 1, 2 is Levi-Civita symbol. We can find that this Lagrangian

is exactly the same as the Yukawa sector of quarks in the SM.



Chapter 3

Simplified Models in searches for

dark sectors

3.1 Motivation and Introduction

As it is mentioned in Chapter 2, physicists expect to make new discoveries of physics

beyond the Standard Model in future high-energy experiments. The main focus of

attention has been put on the heavy new particles at high energy scale. However,

some light resonances could have escaped notice through some unknown mechanism

from previous colliders such as LEP and the Tevatron, and may be discovered in

the large datasets which the LHC will accrue in coming years.

Astronomical Observations are important sources for testing the fundamental

particles physics models. With the help of the Fermi Large Area Telescope, an excess

of γ-rays at energies of a few GeV was observed in the region around the Galactic

Center [50], which is called as GCE for short. The excess can not be explained by

the SM but might implicate the existence of dark matter [51]. This has been an

area of particular interest due to the Galactic Centre excess of diuse gamma-rays,

which may be explained by dark matter (DM) annihilating via a light mediator into

Standard Model (SM) particles [5, 7, 8] [52–54]. Simplified Models are very suitable

for characterizing these data in a simple way with only a few parameters. In this

case, effective mediators can be considered to generate the dark matter particle.

According to some studies, the mediators in the annihilating process might be a

37
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scalar [55], pseudoscalar [56], or a vector boson [57, 58]. The collider sensitivity

to these mediators have been explored in a series of papers under the assumption

that the mediator couples to the quarks and DM [59–65]. Since some analyses of

the GC excess suggest that DM annihilation into b quarks provides a particularly

good fit, some studies have assumed the mediator predominantly couples to the third

generation quarks. In that case an important collider signal is associated production

with a pair of top or bottom quarks [66–68], particularly for spin-1 mediators where

LHC production via gluon fusion is forbidden by the Landau-Yang theorem [69,70].

There has also been model building interest recently in top-philic Z ′ bosons in the

context of a slight excess in tt̄h searches for SM Higgs boson production [71]. Some

recent work has studied searches for tt̄ resonances in the context of two Higgs doublet

models [72–74], and on searches for top-philic dark matter mediators [75]. However,

these works focus on the heavier resonances. It is therefore important to understand

the ability of the LHC to discover and measure the properties of light new resonances

with strong couplings to the third generation.

If such a new light (i.e. mX . 100 GeV) resonance X is discovered in Run 2

of the LHC, a first priority will be the characterisation of its quantum numbers. In

the context of resonances with strong coupling to top quarks studies have already

been made in tt̄X production [68,76,77], focussing on the semi- and di-leptonic top

decay channels, where either one or both tops decay leptonically. In the case of di-

leptonic top decays, it is known (building upon older work on spin-polarisation in tt̄

production [78]) that the azimuthal angle between the leptons encodes much of the

relevant CP information. Related work has focussed on dijet angular correlations in

pp→ jjX [79], as well as extending results to NLO accuracy [80,81].

In this work we seek to extend these previous works in a number of ways. We

explore other angular variables which may be of use in pinning down the quan-

tum numbers of top-philic resonances at the LHC. Where most other works have

focussed on the di-leptonic final state (with some exceptions [68, 82]) we perform a

detector-level analysis of the semi-leptonic final states. We find that although the S-

M backgrounds are challenging, this final state will indeed be useful in the discovery

and characterisation of new light resonances.
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We study the phenomenology of a variety of simplified models [83] with a new

neutral resonance which we assume to be an eigenstate of parity and charge con-

jugation. Its couplings are restricted to the third generation quarks (bottoms and

tops) only. For a scalar resonance S and a pseudoscalar resonance A, we assume the

following CP-conserving interaction Lagrangians:

LS = −
∑
q=b,t

gqyq√
2
Sq̄q,

LA = −
∑
q=b,t

gqyq√
2
Aiγ5q̄q,

(3.1.1)

where yq is the SM Yukawa couplings. We also study a vector resonance Z ′V and an

axial vector resonance Z ′A with interaction Lagrangians given by

LS = −
∑
q=b,t

gqyqZ
′µ
V q̄γµq,

LA = −
∑
q=b,t

gqyqZ
′µ
A q̄γµγ

5q̄q.
(3.1.2)

In all these cases the decay width of the resonance is set to its natural width cal-

culated from the theory parameters at tree level. We do not include any interactions

between X and possible dark matter candidates, focussing on its interactions with

the SM (equivalently, there may be a coupling between X and dark matter, but we

study the parameter space where mX > 2mDM). In the case that the resonance is

lighter than 2mt it must decay into a pair of b quarks with a branching ratio equal

to one (neglecting three-body decays). While these Lagrangians will also lead to

dimension-five interactions with gluons for the scalar and pseudoscalar (whose CP

properties can be probed in di-jet angular correlations for instance [84]), in this

work we exclusively focus on what can be gleaned from associated production with

tops.

We have implemented these models in FeynRules [85] which allows us to generate

simulated events at the LHC using MadGraph [86] via the UFO [87] format.
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Figure 3.1 This figure shows the tt̄X+jets (X = S,A, Z ′V , orZ
′
A) production cross

sections as functions of mX at the 14 TeV LHC for the four simplified models.

In 3.1 we show the behaviour of the cross-sections for the four simplified models

as functions of the resonance mass mX . As has been demonstrated before [68], for

low masses (below around GeV) the tt̄A production cross section is quite suppressed

relative to that of tt̄S, and is smaller by over an order of magnitude below 40 GeV.

We also observe similar behaviour (although not as extreme) in the tt̄Z ′µV versus

tt̄Z ′µA cross sections. The differences between the cross sections become smaller as

mX increases, and are all within a factor of two at mX = 200 GeV. To attempt to

understand this, in the next section we will calculate the helicity amplitudes for tt̄A

and tt̄S production, using the Weyl-van-der-Waerden spinor formalism for the case

of massive particles.

3.2 The Amplitudes in the WvdW Formalism

All diagrams contributing to the gg → tHt̄ due to the scalar operator at tree-level

are given in 3.2, and diagrams due to the pseudoscalar operator have exactly the

same topologies as the scalar case, which could be easily seen from their Lagrange
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Figure 3.2 LO ggtHt diagrams

terms. Therefore these diagrams will not be listed here anymore.

For convenience, in the following calculation in this section, we set −gqyq√
2

= 1,

which would not affect the comparison between the amplitudes in the scalar and

pseudoscalar case.

3.2.1 A Brief Introduction to the Weyl-van-der-Waerden

Spinor Technique

In perturbative quantum field theory, the probability amplitude is directly connected

with the cross-section that can be measured in the experiment. Hence a important

step from theories to observables is the calculation of the cross-section at the low-

est order. For the 1 → 2 decay process and 2 → 2 scattering process, tree-level

results are easy to compute. However, when the number of final states increases

to 3 or more, the situation will become very complicated due to the uncontrolled

increment of the amount of involved Feynman diagrams. The traditional method

of calculating the cross-section is squaring the total scattering amplitude of all the

relevant diagrams followed by summing over the spins. However, these amplitudes

interfere with each other. Therefore for N diagrams, the number of squared ele-

ments is N2. One of the solutions is to employ the helicity amplitude technique.

In the helicity eigenstates, polarized scattering amplitudes could be decoupled with

each other. Accordingly, the scattering amplitudes could be decoupled into helicity
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components that are independent from each other. Consequently, if each amplitude

has m helicity components, the number of total squared elements would be equal

to mN rather than N2. In the large N case, the advantage of helicity amplitude

technique is very clear.

A variety of spinor techniques has been developed in the past years. At first, on-

ly the spin-1 massless fields like photons and gluons are transversely polarized [88],

which cause many cancellations in the calculation but leave the Dirac spinor un-

changed. Since the light-like Dirac fields are naturally the helicity states, a more

general spinor technique was then formulated to include both polarization vectors,

and massless Dirac spinors [89, 90], in which the Dirac spinors are split into two

two-component Weyl-van-der-Waerden (WvdW) spinors [91]. The WvdW spinor

technique was then extended to be compatible with massive Dirac fields. Further-

more, the Weyl-van der Waerden spinor technique for spin-3/2 fermions was pro-

posed in [92]. In this section, the WvdW spinor technique including the massive

polarized spin-1/2 fermions will be adopted.

As a starting point, we should introduce the basic elements, which include

Minkowski 4-vector momentum, massless spin-1 boson vector, and the massive spin-

1/2 Dirac field in terms of WvdW spinors. According to the WvdW formalism, ψA

and ψȦ are introduced to represent WvdW covariant and contravariant spinors re-

spectively. Complex conjugation is consistently indicated by dotting (undotting)

indices, i.e.

ψȦ = (ψA)∗ , ψȦ =
(
ψA
)∗
. (3.2.3)

And we have the relation

ψA = εABψB, ψ
Ȧ = εȦḂψḂ,

ψA = ψBεBA, ψȦ = ψḂε
ḂȦ,

(3.2.4)

in which,

εAB = εȦḂ = εAB = εȦḂ =

 0 +1

−1 0

 . (3.2.5)

Any terms in the Lagrangian should be Lorentz-invariant. The Lorentz-invariant
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spinor products could be built as

〈φψ〉 = φAψ
A = φ1ψ2 − ψ2φ1,

〈φψ〉∗ = φȦψ
Ȧ = (φ1ψ2 − ψ2φ1)∗.

(3.2.6)

For a Minkowski 4-vector kµ, after projecting into the spinor basis, it is related to

a 2× 2 matrix

KȦB = kµσȦB =

 k0 + k3 k1 + ik2

k1 − ik2 k0 − k3

 , (3.2.7)

which can be factorized into a product of two spinors

KȦB = kµσȦB = kȦkB, kA =
√

2k0

 e−iφ cos θ
2

sin θ
2

 . (3.2.8)

The Lorentz-invariant spinor products including Minkowski 4-vector can be built

similarly, e.g.,

〈φKψ〉 =
〈
φAk

ȦkBψḂ

〉
. (3.2.9)

Dirac spinors belong to the representation D(1
2
, 0) ⊕ D(0, 1

2
) and could be written

into WvdW spinors as

Ψ =

 φA

ψȦ

 . (3.2.10)

To be more specific, for the Dirac spinor of the outgoing fermion with helicity σ,

Ψ̄
(+)
p,i =

(
ψA, φ

Ȧ
)

(3.2.11)

with  (κ1,−κ2) i = 1 (σ = +)

(κ2, κ1) i = 2 (σ = −)

 , (3.2.12)

in which,

κ1 =
√
p0 + |p|

 e−iφ cos θ
2

sin θ
2


κ2 =

√
p0 − |p|

 sin θ
2

−e−iφ cos θ
2

 .

(3.2.13)

And for massless spin-1 particles, the polarization vectors could be expressed as:

ε+,ȦB(k) =

√
2g+,ȦkB

〈g+k〉∗
, ε−,ȦB(k) =

√
2kȦg−,B
〈g−k〉

,

ε+,ȦB(k)∗ =

√
2kȦg+,B

〈g+k〉
, ε∗−,ȦB(k) =

√
2g−,ȦkB

〈g−k〉∗
,

(3.2.14)
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where g±,Ȧ are gauge spinors which can be chosen arbitrarily. In the following

calculation in this section, the gauge spinors are deliberately chosen to simplify the

algebraic expression.

3.2.2 The T-channels and U-channels Amplitudes

We consider the SM-like diagrams with scalar first. In 3.2, diagrams a−f belong to

T-channel or U-channel, and diagrams g − h belong to S-channel. Diagram 3.2(a)

and diagram 3.2(b) can be grouped together, since they can be transformed into

each other by interchanging the two incoming particles. For the T-channel diagram

3.2(a), in the WvdW Formalism, four independent polarized helicity components of

the amplitude can be obtained, which are given as

Ma (+,+, σ, σ′) =
Qte√

2p1 · k1

〈k1ψ〉
(
kE1 , 0

)
×

[
− −Qte

2
√

2 (p1 · k2) (−p2 · k2)
〈k2φ

′〉P İ
2,EP1,İX

 kX2

0


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
〈k2φ

′〉 2 (p1 · k2)

 k2,E

0


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
mf 〈ψ′P1k2〉

 k2,E

0

]

=
Qt

2e2

4 (p1 · k1) (p1 · k2) (p2 · k2)
(〈k1ψ〉 〈k2φ

′〉 〈k1P2P1k2〉∗

− (2p1 · k2) 〈k1ψ〉 〈k2φ
′〉 〈k1k2〉

−mf 〈k1ψ〉 〈ψ′P1k2〉 〈k1k2〉) ,

(3.2.15)
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Ma (−,−, σ, σ′) =
Qte√

2p1 · k1

〈k1φ〉∗
(
0, k1,Ė

)
×

[
− −Qte

2
√

2 (p1 · k2) (−p2 · k2)
〈k2ψ

′〉P ĖJ
2 P1,JẊ

 0

kẊ2


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
〈k2ψ

′〉∗ 2 (p1 · k2)

 0

kĖ2


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
(−mf ) 〈φ′P1k2〉∗

 0

kĖ2

]

=
Qt

2e2

4 (p1 · k1) (p1 · k2) (p2 · k2)

(
−〈k1φ〉∗ 〈k2ψ

′〉∗ 〈k1P2P1k2〉

+ (2p1 · k2) 〈k1φ〉∗ 〈k2ψ
′〉∗ 〈k1k2〉∗

−mf 〈k1φ〉∗ 〈φ′P1k2〉 〈k1k2〉∗) ,

(3.2.16)

iMa (+,−, σ, σ′) =
Qte√

2p1 · k1

〈k1ψ〉
(
kE1 , 0

)
×

[ −Qte

2
√

2 (p1 · k1) (−p2 · k2)
(−1) 〈φ′P1k2〉∗ P İ

2,E

 k2,İ

0


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
mf 〈k2ψ

′〉P1,EẊ

 k2,Ẋ

0

]

=
Qt

2e2

4(p1 · k1) (p1 · k2) (p2 · k2)

(
(−1) 〈k1ψ〉 〈φ′P1k2〉∗ 〈k1P2k2〉∗

+mf 〈k1ψ〉 〈k2ψ
′〉∗ 〈k1P1k2〉∗

)
,

(3.2.17)

Ma (−,+, σ, σ′) =
Qte√

2p1 · k1

〈k1φ〉∗
(
0, k1,Ė

)
×

[ −Qte

2
√

2 (p1 · k2) (−p2 · k2)
(−1) 〈ψ′P1k2〉P ĖJ

2

 0

k2,J


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
(−1)mf 〈k2φ

′〉P1,ĖX

 0

kX2

]

=
Qt

2e2

4 (p1 · k1) (p1 · k2) (p2 · k2)
((−1) 〈k1φ〉∗ 〈ψ′P1k2〉 〈k1P2k2〉

−mf 〈k1φ〉∗ 〈k2φ
′〉 〈k1P1k2〉).

(3.2.18)
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For the U-channel diagram 3.2(b), the helicity amplitudes can be obtained by

interchanging the incoming gluons in 3.2(a), we have

Mb (+,+, σ, σ′) =
Qte√

2p1 · k2

〈k2ψ〉
(
kE2 , 0

)
×

[ −Qte

2
√

2 (p1 · k1) (−p2 · k1)
(−1) 〈k1φ

′〉P İ
2,EP1,İX

 kX1

0


+

−Qte

2
√

2 (p1 · k1) (−p2 · k1)
〈k1φ

′〉 2 (p1 · k1)

 k1,E

0


+

−Qte

2
√

2 (p1 · k1) (−p2 · k1)
mf 〈ψ′P1k1〉

 k1,E

0

]

=
Qt

2e2

4 (p1 · k2) (p1 · k1) (p2 · k1)
(〈k2ψ〉 〈k1φ

′〉 〈k2P2P1k1〉∗

+ (2p1 · k1) 〈k2ψ〉 〈k1φ
′〉 〈k1k2〉

−mf 〈k2ψ〉 〈ψ′P1k1〉 〈k1k2〉) ,

(3.2.19)

Mb (−,−, σ, σ′) =
Qte√

2p1 · k2

〈k2φ〉∗
(
0, k2,Ė

)
×

[ −Qte

2
√

2 (p1 · k1) (−p2 · k1)
(−1) 〈k1ψ

′〉∗ P ĖJ
2 P1,JẊ

 0

kẊ1


+

−Qte

2
√

2 (p1 · k1) (−p2 · k1)
〈k1ψ

′〉∗ 2 (p1 · k1)

 0

kĖ1


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
(−1)mf 〈φ′P1k1〉∗

 0

kĖ2

]

=
Qt

2e2

4 (p1 · k2) (p1 · k1) (p2 · k1)

(
(−1) 〈k2φ〉∗ 〈k1ψ

′〉∗ 〈k2P2P1k1〉

+ (2p1 · k1) 〈k2φ〉∗ 〈k1ψ
′〉∗ 〈k2k1〉∗

−mf 〈k2φ〉∗ 〈φ′P1k1〉 〈k2k1〉∗) ,

(3.2.20)
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Mb (−,+, σ, σ′) =
Qte√

2p1 · k2

〈k2ψ〉
(
kE2 , 0

)
×

[ −Qte

2
√

2(p1 · k1)(−p2 · k1)
(−1) < φ′P1k1 >

∗ P İ
2,E

 k1,İ

0


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
mf 〈k2ψ

′〉P1,EẊ

 kẊ1

0

]

=
Qt

2e2

4 (p1 · k2) (p1 · k1) (p2 · k1)

(
(−1) 〈k2ψ〉 〈φ′P1k1〉∗ 〈k2P2k1〉∗

+mf 〈k2ψ〉 〈k1ψ
′〉∗ 〈k2P1k1〉∗

)
,

(3.2.21)

Mb (+,−, σ, σ′) =
Qte√

2p1 · k2

〈k2φ〉∗
(
0, k2,Ė

)
×

[ −Qte

2
√

2 (p1 · k1) (−p2 · k1)
(−1) 〈ψ′P1k1〉P ĖJ

2

 0

k1,J


+

−Qte

2
√

2 (p1 · k1) (−p2 · k1)
(−1)mf 〈k1φ

′〉P1,ĖX

 0

kX1

]

=
Qt

2e2

4 (p1 · k2) (p1 · k1) (p2 · k1)
((−1) 〈k2φ〉∗ 〈ψ′P1k1〉 〈k2P2k1〉

−mf 〈k1φ〉∗ 〈k2φ
′〉 〈k2P1k1〉) .

(3.2.22)

Comparing the amplitudes of diagram 3.2(b) and diagram 3.2(a),we find

Mb (+,+, σ, σ′) = Ma
k1↔k2

(+,+, σ, σ′) ,

Mb (−,−, σ, σ′) = Ma
k1↔k2

(−,−, σ, σ′) ,

Mb (+,−, σ, σ′) = Ma
k1↔k2

(−,+, σ, σ′) ,

Mb (−,+, σ, σ′) = Ma
k1↔k2

(+,−, σ, σ′) ,

(3.2.23)

which are the relations between the amplitudes of T-channel and U-channel for the

same process due to the crossing symmetry in the WvdW Formalism. Due to this

crossing symmetry, one can directly obtain the U-channel contribution from the

corresponding T-channel result. Specifically, for the U-channel diagrams 3.2(d) and
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3.2(f), we have

Md (−,−, σ, σ′) = Mc
k1↔k2

(−,−, σ, σ′) ,

Md (+,−, σ, σ′) = Mc
k1↔k2

(−,+, σ, σ′) ,

Md (−,+, σ, σ′) = Mc
k1↔k2

(+,−, σ, σ′) ,

Mf (+,+, σ, σ′) = Me
k1↔k2

(+,+, σ, σ′) ,

Mf (−,−, σ, σ′) = Me
k1↔k2

(−,−, σ, σ′) ,

Mf (+,−, σ, σ′) = Me
k1↔k2

(−,+, σ, σ′) ,

Mf (−,+, σ, σ′) = Me
k1↔k2

(+,−, σ, σ′) .

(3.2.24)

And we only need to calculate the amplitudes for 3.2(c) and 3.2(e). The four inde-

pendent polarized amplitudes for the Diagram 3.2(c) are listed below:

Mc (+,+, σ, σ′) =
Qte√

2p1 · k1

〈k1ψ〉
(
kE1 , 0

)
×

[ −Qte√
2 (p1 · k2)

(
m2
f + 2p1 · p3

) (−1) 〈φ′P2P1k2〉

 k2,E

0


+

−Qte√
2 (p1 · k2)

(
m2
f + 2p1 · p3

) (−1) 〈φ′P3P1k2〉

 k2,E

0


+

−Qte√
2 (p1 · k2)

(
m2
f + 2p1 · p3

) 〈φk2〉mf 〈ψ′P1k2〉

 k2,E

0

]

=
Qt

2e2

2(p1 · k1) (p1 · k2)
(
m2
f + 2p1 · p3

) (〈k1ψ〉 〈φ′P2P1k2〉∗ 〈k1k2〉

+ 〈k1ψ〉 〈φ′P3P1k2〉∗ 〈k1k2〉

−mf 〈k2ψ〉 〈k1ψ〉 〈ψ′P1k2〉 〈k1k2〉) ,

(3.2.25)
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Mc (−,−, σ, σ′) =
Qte√

2p1 · k1

〈k1φ〉∗
(
0, k1,Ė

)
×

[ −Qte√
2 (p1 · k2)

(
m2
f + 2p1 · p3

) 〈ψ′P2P1k2〉∗
 kĖ2

0


+

−Qte√
2 (p1 · k2)

(
m2
f + 2p1 · p3

) 〈ψ′P3P1k2〉∗
 kĖ2

0


+

−Qte

2
√

2 (p1 · k2)
(
m2
f + 2p1 · p3

) 〈φk2〉mf 〈φ′P1k2〉 ∗

 k2,E

0

]

=
Qt

2e2

2 (p1 · k1) (p1 · k2)
(
m2
f + 2p1 · p3

) (〈k1φ〉∗ 〈ψ′P2P1k2〉 〈k1k2〉∗

+ 〈k1φ〉∗ 〈ψ′P3P1k2〉 〈k1k2〉∗

−mf 〈φ′P1k2〉∗ 〈k1k2〉∗
)
,

(3.2.26)

Mc (+,−, σ, σ′) =
Qte√

2p1 · k1

〈k1ψ〉
(
kE1 , 0

)
×

[ −Qte√
2 (p1 · k2)

(
m2
f + 2p1 · p3

) 〈k2P2φ
′〉P1,EẊ

 kẊ2

0


+

−Qte√
2 (p1 · k2)

(
m2
f + 2p1 · p3

) 〈k2P3φ
′〉P1,EẊ

 kẊ2

0


+

−Qte√
2 (p1 · k2)

(
m2
f + 2p1 · p3

) 〈k2ψ
′〉∗mfP1,EẊ

 kẊ2

0

]

=
Qt

2e2

2 (p1 · k1) (p1 · p2)
(
m2
f + 2p1 · p3

) ((−1) 〈k1ψ〉 〈k2P2φ
′〉 〈k1P1k2〉∗

−〈k1ψ〉 〈k2P3φ
′〉 〈k1P1k2〉∗

−mf < k1ψ >< k2ψ
′ >∗< k1P1k2 >

∗) ,

(3.2.27)
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Mc (−,+, σ, σ′) =
Qte√

2p1 · k1

〈k1φ〉∗
(
0, k1,Ė

)
×

[ −Qte√
2 (p1 · k2)

(
m2
f + 2p1 · p3

) (−1) 〈k2P1ψ
′〉∗ P1,ĖX

 kX2

0


+

−Qte√
2 (p1 · k2)

(
m2
f + 2p1 · p3

) (−1) 〈k2P3ψ
′〉∗ P1,ĖX

 kX2

0


+

−Qte

2
√

2 (p1 · k2)
(
m2
f + 2p1 · p3

) 〈φk2〉 (−1)mf 〈k2φ
′〉P1,ĖX

 0

kX2

]

=
Qt

2e2

2 (p1 · k1) (p1 · k2)
(
m2
f + 2p1 · p3

) (〈k1φ〉∗ 〈k2P1ψ
′〉∗ 〈k1P1k2〉

+ 〈k1φ〉∗ 〈k2P1ψ
′〉∗ 〈k1P1k2〉

+mf 〈k1φ〉∗ 〈k2φ
′〉 〈k1P1k2〉) .

(3.2.28)

For the last T-channel diagram 3.2(e), one has:

Me (+,+, σ, σ′) =
Qte

2
√

2p1 · k1p1 · p3

〈ψP3P1k1〉
(
kF1 , 0

)
×

[ −Qte

2
√

2 (p1 · k2) (−p2 · k2)
〈k2φ

′〉 (−1) 〈p2P1k2〉

 k2,F

0


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
mf 〈ψ′P1k2〉

 k2,F

0

]

=
Qt

2e2

8 (p1 · k1) (p1 · p3) (p1 · k2) (p2 · k2)

+ (〈ψP3P1k1〉∗ 〈p2P1k2〉 〈k2φ
′〉 〈k2k1〉

−mf 〈ψP3P1k1〉∗ 〈ψ′P1k2〉 〈k2k1〉) ,

(3.2.29)
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Me (−,−, σ, σ′) =
Qte

2
√

2p1 · k1p1 · p3

〈φP3P1k1〉∗
(
0, k1,Ḟ

)
×

[ −Qte

2
√

2(p1 · k2) (−p2 · k2)
(−1) 〈k2ψ

′〉∗ 〈p2P1k2〉∗
 pḞ2

0


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
(−mf ) 〈φ′P1k2〉∗

 kḞ2

0

]

=
Qt

2e2

8 (p1 · k1) (p1 · p3) (p1 · k2) (p2 · k2)

−
(
〈φP3P1k1〉 〈p2P1k2〉∗ 〈k2ψ

′〉∗ 〈k1p2〉∗

−mf 〈φP3P1k1〉 〈φ′P1k2〉∗ 〈k1k2〉∗
)
,

(3.2.30)

Me (+,−, σ, σ′) =
Qte

2
√

2p1 · k1p1 · p3

〈ψP3P1k1〉
(
kF1 , 0

)
×

[ −Qte

2
√

2(p1 · k2) (−p2 · k2)
(−1) 〈φ′P1k2〉∗ P İ

2,F

 k2,İ

0


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
mf 〈k2ψ

′〉P1,F Ẋ

 kẊ2

0

]

=
Qt

2e2

8 (p1 · k1) (p1 · p3) (p1 · k2) (p2 · k2)

−
(
〈ψP3P1k1〉∗ 〈φ′P1k2〉∗ 〈k1P2k2〉∗

+mf 〈ψP3P1k1〉∗ 〈k2ψ
′〉∗ 〈k1P1k2〉∗

)
,

(3.2.31)

Me (−,+, σ, σ′) =
Qte

2
√

2p1 · k1p1 · p3

〈φP3P1k1〉∗
(
0, k1,Ḟ

)
×

[ −Qte

2
√

2 (p1 · k2) (−p2 · k2)
(−1) 〈ψ′P1k2〉P Ḟ J

2

 0

kJ2


+

−Qte

2
√

2 (p1 · k2) (−p2 · k2)
(−mf ) 〈k2φ〉P1,ḞX

 0

kX2

]

=
Qt

2e2

8 (p1 · k1)2 (p1 · p2) (p1 · k2) (p2 · k2)

(−1 〈φP3P1k1〉 〈ψ′P1k2〉 〈k1P2k2〉

−mf 〈φP3P1k1〉 〈k2φ〉 〈k1P1k2〉) .

(3.2.32)

Then we consider the non-SM-like diagrams with pseudoscalars. Note that the
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pseudoscalar operator only differ from the scalar operator by a γ5 factor. Conse-

quently, we find that the amplitudes including pseudoscalars can actually be ex-

pressed in terms of the SM-like amplitudes with scalars.

M ′
a (+,+, σ, σ′) = Ma (+,+, σ, σ′) , M ′

a (−,−, σ, σ′) = −Ma (−,−, σ, σ′)

M ′
a (+,−, σ, σ′) = Ma (+,−, σ, σ′) , M ′

a (−,+, σ, σ′) = −Ma (−,+, σ, σ′)

M ′
b (+,+, σ, σ′) = Mb (+,+, σ, σ′) , M ′

b (−,−, σ, σ′) = −Mb (−,−, σ, σ′)

M ′
b (+,−, σ, σ′) = −Mb (+,−, σ, σ′) , M ′

b (−,+, σ, σ′) = Mb (−,+, σ, σ′)

M ′
c (+,+, σ, σ′) = Mc (+,+, σ, σ′) , M ′

c (−,−, σ, σ′) = −Mc (−,−, σ, σ′)

M ′
c (+,−, σ, σ′) = Mc (+,−, σ, σ′) , M ′

c (−,+, σ, σ′) = −Mc (−,+, σ, σ′)

M ′
d (+,+, σ, σ′) = Md (+,+, σ, σ′) , M ′

d (−,−, σ, σ′) = −Md (−,−, σ, σ′)

M ′
d (+,−, σ, σ′) = −Md (+,−, σ, σ′) , M ′

d (−,+, σ, σ′) = Md (−,+, σ, σ′)

M ′
e (+,+, σ, σ′) = Me (+,+, σ, σ′) , M ′

e (−,−, σ, σ′) = −Me (−,−, σ, σ′)

M ′
e (+,−, σ, σ′) = Me (+,−, σ, σ′) , M ′

e (−,+, σ, σ′) = −Me (−,+, σ, σ′)

M ′
f (+,+, σ, σ′) = Mf (+,+, σ, σ′) , M ′

f (−,−, σ, σ′) = −Mf (−,−, σ, σ′)

M ′
f (+,−, σ, σ′) = −Mf (+,−, σ, σ′) M ′

f (−,+, σ, σ′) = Mf (−,+, σ, σ′) .
(3.2.33)

3.2.3 The S-channel Amplitudes

In this part we consider the S-channel diagrams, which include the SM-like diagrams

3.2(g) and 3.2(h), and their corresponding non-SM-like pseudoscalar diagrams. A-

gain, for the diagram 3.2(g), we can obtain an amplitude including four independent

components, in which a general helicity amplitude can be expressed as

Mg (λ1, λ2, σ, σ
′) =

1

(p1 + p3)2 −m2
f

(
ψK , φK̇

)
δJK 0

0 δK̇
J̇

 mfδ
I
J (P1 + P3)Jİ

(P1 + P3)J̇I mfδ
J̇
İ

 0 δĠ
L̇
δJI

εİĠεLH 0

 φ′L

ψ′L̇


−2εĖĠεFH

2k1 · k2

e

4

(
εȦĊεBD (K1 −K2)ĖF + εĊĖεDF (K2 −K3)ȦB

+εȦĖεBF (K3 −K1)ĊD
)
ε1,ȦBε2,ĊD,

(3.2.34)
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where λ1, λ2, σ and σ′ has not been specified. In order to simplify the analysis, we

define:

C1 =
1

2 (p1 + p3)2 −m2
f

(
ψJ (P1 + P3)ĠJ φ

′H

+mfψ
Hψ′Ġ + φJ̇ (P1 + P3)JĠ ψ′Ġ +mfφ

Ġφ′H
)

= C ′1 + C ′2,

(3.2.35)

where

C ′1 =
1

(p1 + p3)2 −m2
f

(
ψJ (P1 + P3)ĠJ φ

′H +mfψ
Hψ′Ġ

)
,

C ′2 =
1

(p1 + p3)2 −m2
f

(
φJ̇ (P1 + P3)JĠ ψ′Ġ +mfφ

Ġ
)
φ′H ,

(3.2.36)

and

C2 =
−e

4k1 · k2

(
εȦĊεBD (K1 −K2)ĠH

+ε Ċ
Ġ
ε D
H (K2 −K3)ȦB + ε Ȧ

Ġ
ε B
H (K3 −K1)ĊD

)
ε1,ȦBε2,ĊD.

(3.2.37)

As a result, we can express Mg (λ1, λ2, σ, σ
′) in terms of two divided parts as

M (1)
g (λ1, λ2, σ, σ

′) = C1
′ · C2,

M (2)
g (λ1, λ2, σ, σ

′) = C2
′ · C2.

(3.2.38)

For the SM-like diagram 3.2(h), the general helicity amplitude takes the form

Mh (λ1, λ2, σ, σ
′) =

1

(p2 + p3)2 −m2
f

(
ψI , φİ

)
 0 δĠ

J̇
δHI

εİĠεJH 0

 mfδ
K
J (P2 + P3)JK̇

(P2 + P3)J̇K mfδ
J̇
K̇

δLK 0

0 δK̇
L̇

 φ′L

ψ′L̇


−2εĖĠεFH

2k1 · k2

e

4

(
εȦĊεBD (K1 −K2)ĖF

+εĊĖεDF (K2 −K3)ȦB + εȦĖεBF (K3 −K1)ĊD
)
ε1,ȦBε2,ĊD.

(3.2.39)

If we define

C3 =
1

(p2 + p3)2 −m2
f

(
ψH (P2 + P3)ĠK φ′K +mfφ

Ġφ′H

+ (P2 + P3)HK̇ ψ
′K̇φĠ +mfψ

Hφ′Ġ
)

= C3
′ + C4

′,

(3.2.40)
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where

C ′3 =
1

(p2 + p3)2 −m2
f

(
ψH (P2 + P3)ĠK φ′K +mfφ

Ġφ′H
)
,

C ′4 =
1

(p2 + p3)2 −m2
f

(
(P2 + P3)HK̇ ψ

′K̇φĠ +mfψ
Hφ′Ġ

)
.

(3.2.41)

Similar to the former case, we find that this T-channel amplitude could be divided

into two parts as

M
(1)
h (λ1, λ2, σ, σ

′) = C3
′ · C2

M
(2)
h (λ1, λ2, σ, σ

′) = C4
′ · C2

(3.2.42)

Next we will consider those non-SM-like pseudoscalar diagrams with the same

topology as 3.2(g) and 3.2(h). The general amplitude of the first diagram could be

written as

M ′
g (λ1, λ2, σ, σ

′) =
1

(p1 + p3)2 −m2
f

(
ψK , φK̇

)
δJK 0

0 −δK̇
J̇

 mfδ
I
J (P1 + P3)Jİ

(P1 + P3)J̇I mfδ
J̇
İ

 0 δĠ
L̇
δJI

εİĠεLH 0

 φ′L

ψ′L̇


−2εĖĠεFH

2k1 · k2

e

4

(
εȦĊεBD (K1 −K2)ĖF

+εĊĖεDF (K2 −K3)ȦB + εȦĖεBF (K3 −K1)ĊD
)
ε1,ȦBε2,ĊD.

(3.2.43)

If we define

C5 =
1

(p1 + p3)2 −m2
f

(
ψJ (P1 + P3)ĠJ φ

′H +mfψ
Hψ′Ġ

−φJ̇ (P1 + P3)JĠ ψ′Ġ −mfφ
Ġφ′H

)
,

(3.2.44)

and it is easy to verify that

C5 = C1
′ − C2

′. (3.2.45)

Using the relation in 3.2.44, we find that one can divide M ′
g (λ1, λ2, σ, σ

′) into two

parts that could be expressed by the SM-like amplitudes:

M ′(1)
g (λ1, λ2, σ, σ

′) = C ′1 · C2 = M (1)
g (λ1, λ2, σ, σ

′)

M ′(2)
g (λ1, λ2, σ, σ

′) = −C ′2 · C2 = −M (2)
g (λ1, λ2, σ, σ

′)
(3.2.46)

The general helicity amplitude of the second non-SM-like diagram in WvdW

Formalism is
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M ′
h (λ1, λ2, σ, σ

′) =
1

(p2 + p3)2 −m2
f

(
ψI , φİ

)
 0 δĠ

J̇
δHI

εİĠεJH 0

 mfδ
K
J (P2 + P3)JK̇

(P2 + P3)J̇K mfδ
J̇
K̇

δLK 0

0 −δK̇
L̇

 φ′L

ψ′L̇


−2εĖĠεFH

2k1 · k2

e

4

(
εȦĊεBD (K1 −K2)ĖF

+εĊĖεDF (K2 −K3)ȦB + εȦĖεBF (K3 −K1)ĊD
)
ε1,ȦBε2,ĊD.

(3.2.47)

If we define

C7 =
1

(p2 + p3)2 −m2
f

(
ψH (P2 + P3)ĠK φ′K +mfφ

Ġφ′H

− (P2 + P3)HK̇ ψ
′K̇φĠ −mfψ

Hφ′Ġ
)
,

(3.2.48)

one can find

C7 = C3
′ − C4

′. (3.2.49)

Then it turns out that M ′
h(λ1, λ2, σ, σ

′) t could be split into two parts that can be

expressed by SM-like amplitudes as well:

M
′(1)
h (λ1, λ2, σ, σ

′) = C3
′ · C2 = M

(1)
h (λ1, λ2, σ, σ

′)

M
′(2)
h (λ1, λ2, σ, σ

′) = −C4
′ · C2 = −M (2)

h (λ1, λ2, σ, σ
′) .

(3.2.50)

In the S-channel case, the relations between SM-like amplitudes and non-SM-like

amplitudes as listed as below:

M ′(1)
g (λ1, λ2, σ, σ

′) = M (1)
g (λ1, λ2, σ, σ

′)

M ′(2)
g (λ1, λ2, σ, σ

′) = −M (2)
g (λ1, λ2, σ, σ

′)

M
′(1)
h (λ1, λ2, σ, σ

′) = M
(1)
h (λ1, λ2, σ, σ

′)

M
′(2)
h (λ1, λ2, σ, σ

′) = −M (2)
h (λ1, λ2, σ, σ

′) .

(3.2.51)

From the above calculations above, we find many non-SM-like helicity amplitudes

which differ from the corresponding SM-like amplitudes by opposite signs both,

together they are

M ′
a,c,e (−,−, σ, σ′) , M ′

a,c,e (−,+, σ, σ′) ,

M ′
b,d,f (−,−, σ, σ′) , M ′

b,d,f (+,−, σ, σ′) ,

M ′(2)
g (λ1, λ2, σ, σ

′) , M
′(2)
h (λ1, λ2, σ, σ

′) .

(3.2.52)
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These helicity amplitudes are responsible for the differences between the cross sec-

tions in scalar and pseudoscalar case. However, due to the complicated 3-body phase

space for the processes we study it is difficult to leverage these analytic results into

an analytic understanding of the origin of the different cross-section values. As one

might expect, the presence of the γ5 appears to be responsible: comparing the s-

calar and pseudoscalar cases the γ5 leads to sign change for a number of the helicity

amplitudes, suggesting destructive interference in the pseudoscalar scenario.

3.3 Spin and Parity Discriminating Variables

We now turn to the information available in the kinematic distributions which can

be formed from the tt̄X final state (X = S, A, Z ′V, Z ′A), focussing on those which

have particular sensitivity to the CP and spin properties. For clarity, we present our

results in this section at parton level, before providing a full detector-level analysis

in Section 3.4.

We show in Figs. 3.3(a) and 3.3(b) the distributions of the di-top invariant mass

mtt̄ and the transverse momentum of the resonance pT,X , for the four simplified

models introduced above with the benchmark mass of mX = 50 GeV. The distri-

butions are normalised and hence independent of the coupling gt, because we are

primarily interested in the shape of the distributions rather than the precise values

of the production cross sections. Both mtt̄ and pT,X (which are correlated) have

previously been suggested as variables which may help distinguish between tt̄S and

tt̄A production [76,77,82]; here we see that these variables are also sensitive to tt̄Z ′V

and tt̄Z ′A production. The distributions are generally quite similar in shape. How-

ever, we notice that tt̄A leads to the hardest distributions, with a shift in the peak

and a longer tail at large mtt̄ and pT,X compared to tt̄S. tt̄Z ′V and tt̄Z ′A interpolate

between these two behaviours: they lead to spectra which are harder than tt̄S, but

not so much as tt̄A.

It is known that the azimuthal angle distribution between the two top quarks

incorporates much information about the quantum numbers of the resonance X. Ac-

cessing this information is non-trivial however: the only case where both tops could
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(d) Normalised ΘCM distributions

Figure 3.3 This figure shows the normalised distributions of mtt̄ (a), pT,X (b),

θCM
t (c) and ΘCM (d) for parton-level tt̄X production with

√
s = 14 TeV and mX =

50 GeV. Here X = S, A, Z ′V, or Z ′A. The angular variables θCM
t and ΘCM are

defined in the CM frame of the tt̄X system. As shown in Fig. 3.4, θCM
t is the angle

between t and the beamline, while ΘCM is the angle between the normal vector to

the tt̄X system and the beamline.

in principle be fully reconstructed without missing energy is the fully-hadronic s-

cenario, which for any realistic analysis will be plagued by insurmountable QCD

backgrounds. This has led Refs. [76, 77] (based on previous work on tt̄ spin corre-

lations [78, 93]) to explore the fully leptonic case, substituting the azimuthal angle

between the leptons for the top quarks, an idea which was met with some success

even when X decays to dark matter [77]. They have shown that constraints can be
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tt̄X CM frame

Beamline

t̄

X

t
θCM
t

Normal

ΘCM

Figure 3.4 This figure shows the definitions of θCM
t and ΘCM in the CM frame of

the tt̄X system. θCM
t is the angle between the t-quark and the beamline and ΘCM

is the angle between the normal vector to the tt̄X system and the beamline.

set on the top-quark Yukawa coupling in associated production towards the end of

LHC Run 2 using these techniques.

We therefore consider other angular variables, derived from boosting to the

centre-of-mass (CM) frame of the reconstructed tt̄X system. We have investigated

a variety of different constructions, and present results for two of the most sensi-

tive that we have found. As illustrated in Fig. 3.4, θCM
t is the angle between t and

the beamline in the CM frame. The normalised θCM
t distributions are shown in

Fig. 3.3(c). We find that this variable is particularly sensitive to tt̄S production,

which exhibits a broad plateau at π/2. The other processes all have a double-peak

structure, with tt̄A being the sharpest defined, and tt̄Z ′V and tt̄Z ′A (similar to mtt̄

and pT above) interpolating between tt̄S and tt̄A.

The other angular variable ΘCM utilises the fact that in the CM frame the tt̄X

system forms a plane. We consider the normal vector to this plane, and ΘCM is

angle between the normal and the beamline, as explained in Fig. 3.4. Fig. 3.3(d)

shows the normalised ΘCM distributions. The shape differences between the scalar

and other resonances are not as great in this case, with the distributions for all the

simplified models peaking at π/2. The tt̄S distribution is notable only in that it has

the broadest distribution among them. While these variables show good sensitivity
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Figure 3.5 This figure shows the normalised mbb distributions after applying all

the selection cuts except the cut on mbb. For all the signals we take mX = 50 GeV.

to the properties of the resonance X, a more realistic assessment of their utility

requires a full analysis to be performed, which we now turn to.

3.4 Detector-Level Analysis

Previous work has demonstrated that the dominant background in tt̄X final states

for low resonance masses comes from tt̄bb̄ production [68,94]. While the tt̄+light jets

rate is significant it is a subdominant background after b-tagging, but with sim-

ilar kinematics to tt̄bb̄ and so will be suppressed by the same analysis cuts. We

also include tt̄Z which is more subdominant, but important for a possible data-

driven background estimation. We generate background and signal samples with

MadGraph 5.2 [86] before showering them with PYTHIA 6 [95] and passing them

through the Delphes 3 [96] detector simulation using the default ATLAS detector

card. Thus, for jet pT = 100 GeV, the b-tagging efficiency is assumed to be 73%,

with the misidentification rates of c-jets and other light jets being 14% and 0.27%,

respectively. Jets are clustered using the anti-kT algorithm [97] with an angular

distance parameter R = 0.4.

Selection cuts are adopted as follows. Firstly we require the selected events
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to contain exactly one charged lepton ` (electron or muon), exactly four b-tagged

jets and at least two light jets. The lepton must be isolated from any jet via the

condition ∆R > 0.4. Moreover, the lepton and the jets should have pT > 25 Ge V

and |η| < 2.5.

To reconstruct the hadronically decaying top we iterate through the reconstruct-

ed light jets and b-jets and find the combination which minimises

χ2 =
(mjj −mW )2

m2
W

+
(mt,had −mt)

2

m2
t

, (3.4.53)

where mjj is the invariant mass of two light jets j1 and j2, and mt,had is the invariant

mass of j1, j2, and a b-jet b1. After that, to reconstruct the leptonically decaying

top we iterate through the remaining b-jets and find the one b2 which minimises

χ2 =
(mt,lep −mt)

2

m2
t

, (3.4.54)

where mt,lep is the invariant mass constructed by b2, the lepton, and the missing

transverse momentum /pT
. The remaining b-jets b3 and b4 are used to search for

the resonance X. We denote their invariant mass as mbb and show the normalised

distributions in Fig. 3.5 for our benchmark point with mX = 50 GeV. There is a

clear peak at the signal resonance position, and the tt̄bb̄ background is flat in the

vicinity of the signal. As a reference for calibration, we also show the distribution

of the tt̄Z background, which exhibits a clear Z peak. We observe that all signals

exhibit long tails in the bb̄ invariant mass, due to misattribution of the b’s from the

tops and the b’s from the resonance. Based on experience with the SM Higgs, the

use of boosted techniques should ameliorate this.

To further isolate the signal we impose the selection cuts 60 GeV < mjj <

100 GeV, 120 GeV < mt,had < 200 GeV, 120 GeV < mt,lep < 220 GeV, and

35 GeV < mbb < 65 GeV. The expected yields per inverse femtobarn for the

tt̄bb̄ background and the signals after each steps of selection cuts are presented in

Table 3.1. These cuts suppress the tt̄bb̄ background by a factor of ∼ 5× 103. The

tt̄Z background is lower than tt̄bb̄ by two orders of magnitude.

To estimate the expected exclusion on the signals we carry out a CLs hypothesis

test [98] based on the mbb distributions from 15 GeV to 200 GeV shown in Fig. 3.5.

We scale up the tt̄bb̄ background by a factor of 1.2 in order to take into account
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Table 3.1 Expected background and signal events per fb−1 after each step of the

selection cuts for mX = 50 GeV. We take gq = 1 tt̄S and tt̄A signals, and gq = 0.2

is assumed for the tt̄Z ′V and tt̄Z ′A signals.

tt̄bb̄ tt̄S tt̄A tt̄Z ′V tt̄Z ′A

No cut 24375 4211 428 714 241

1 lepton 4612 744 80.0 132 44.4

4 b-tags 106 33.9 5.15 7.12 27.5

≥ 2 light jets 72.9 22.1 3.51 4.86 18.7

mjj ∈ (60, 100) GeV 42.0 12.6 2.05 2.82 10.9

mt,had ∈ (120, 200) GeV 39.1 11.9 1.92 2.64 10.2

mt,lep ∈ (120, 220) GeV 30.2 9.87 1.52 2.09 8.07

mbb ∈ (35, 65) GeV 4.35 2.33 0.333 0.450 1.78

the remaining backgrounds discussed earlier and assume a flat 10% systematic un-

certainty on the total background. The expected 95% CL exclusion limits on the

signal strength σ(pp→ tt̄X) ·BR(X → bb̄) as functions of the integrated luminosity

are shown in in Fig. 3.6. These limits are comparable for the four simplified models

due to the similarities in their production kinematics, and with the high-luminosity

LHC it should be possible to bound the cross sections to the level of a few hundred

femtobarns. For the pseudoscalar this corresponds to gt just under 1 (i.e. essentially

no suppression with respect to the SM Yukawa) while for the axial vector we can

constrain gt down to 0.08.

3.4.1 Expected Sensitivity for Discrimination among Sim-

plified Models

Through the above reconstruction procedure, we can construct the 4-momenta of

the hadronically decaying top, the leptonically decaying top, and the resonance X
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Figure 3.6 This figure shows the expected 95% CL exclusion limits on the signal

strength σ(pp → tt̄X) · BR(X → bb̄) with mX = 50 GeV as functions of the

integrated luminosity at the 14 TeV LHC for tt̄S (a), tt̄A (b), tt̄Z ′V (c), and tt̄Z ′A

(d) production. The dot-dashed lines denote the signal strengths for the gt values

labelled and BR(X → bb̄) = 100%.

from the identified jets and lepton:

pt,had = pb1 + pj1 + pj2 , (3.4.55)

pt,lep = pb2 + p` + /pT
, (3.4.56)

pX = pb3 + pb4 . (3.4.57)

The missing momentum /pT
only contains transverse components and hence the

reconstructed pt,lep is not as accurate as pt,had. We can find a CM frame where
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(d) Normalised ΘCM distributions

Figure 3.7 This figure shows the normalised distributions of mtt (a), pT,X (b),

θCM
t,had (c), and ΘCM (d) at detector level for the 14 TeV LHC and mX = 50 GeV.

pt,had + pt,lep + pX = 0. Therefore, these 4-momenta allow us to construct discrim-

inating variables mtt, pT,X , θCM
t,had, and ΘCM that are equivalent to the parton-level

variables discussed in Sec. 3.3. The normalised distributions for the signals and

the tt̄bb̄ background with all the selection cuts applied are shown in Fig. 3.7. As

expected, these detector-level variables catch the basic features of their parton-level

counterparts demonstrated in Fig. 3.3. Note that mtt = (pt,had + pt,lep)2 and θCM
t,had

corresponds to the hadronically decaying top. An analogous variable θCM
t,lep can also

be constructed from pt,lep, but it is less powerful than θCM
t,had for discrimination among

simplified models.

We perform a CLs hypothesis test to investigate the discriminating power of
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each variable. Analogous to those in the ATLAS [99] and CMS [100] analyses for

determining the spin and parity of the SM Higgs, the test statistic is defined as

Q = −2 ln
L(s2 + b)

L(s1 + b)
, (3.4.58)

where L(s+ b) denotes the likelihood for the background b plus a signal hypothesis

s. Thus, Q is used to discriminate between signal hypotheses s1 and s2. For an

observed value Qobs, the exclusion of the hypothesis s2 in favour of the hypothesis

s1 (denoted as “s1 vs s2” below) is evaluated in terms of the modified confidence

level

CLs =
P (Q ≥ Qobs|s2 + b)

P (Q ≥ Qobs|s1 + b)
, (3.4.59)

where P (Q ≥ Qobs|s+ b) is the probability for Q ≥ Qobs under a hypothesis s.

Fig. 3.8 shows the expected 95% CL exclusion limits on the visible cross section

σvis as functions of the integrated luminosity based on the discriminating variables,

assuming 10% systematic uncertainty on the background. Here σvis is defined as

the cross section taking into account the cut acceptance and efficiency. We assume

each pair of signal hypotheses yield the same σvis, and evaluate the exclusion limit

of one hypothesis in favour of the other one. In this way, the differences among

these limits only come from the different behaviours of the signal hypotheses in the

distributions shown in Fig. 3.7. Overall, the pT,X variable seems to be the most

powerful one, except for the “A vs Z ′A” case, where the θCM
t,had variable is better than

pT,X for a high integrated luminosity of ∼ 1 ab−1. The tt̄S production is the easiest

to be distinguished from the rest, because its distributions of all the discriminating

variables behave most differently from others. The worst case is the discrimination

between A and Z ′A, which yield similar shapes for every variable.
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Figure 3.8 This figure shows the expected 95% CL exclusion limits on the visible

cross section σvis as functions of the integrated luminosity at the 14 TeV LHC based

on the variables mtt (a), pT,X (b), θCM
t,had (c), and ΘCM (d). The lines denote the

median value of the limit, while the coloured bands denote the ±1σ range. “s1 vs

s2” corresponds to the exclusion of the signal hypothesis s2 in favour of the signal

hypothesis s1, assuming both hypotheses yield the same visible cross section.
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Chapter 4

Forward-Backward Asymmetry in

NLO SMEFT

In the exploration of the physics at high energy scales, both hadron colliders and

electron-positron collider are of great importance. One advantage of the LHC is its

role in discovering heavy new particles beyond the SM. The existence of the Higgs

boson with a non-zero vev has been confirmed by the LHC. However, the physical

mechanism behind this non-zero vev is still mysterious. And therefore we need fur-

ther experiments to explore the Higgs boson in great detail. Since the momentum

of quarks at hadron colliders are described by parton distribution functions that

can not be determined accurately, the LHC can not perform a measurement at an

exact energy around the Higgs resonance. However, electron-positron colliders can

perform such a measurement as the energy contributing to the hard process of the

event is very precisely determined. Moreover, precision electroweak measurements

performed at electron-positron colliders can set stringent limits on new physics.

Several possible future colliders, i.e., ILC in Japan, FCC-ee in Europe, and CEPC

in China, are expected to allow for measurements at higher center-of-mass energies

compared to LEP, in an equally clean environment, thereby improving on the preci-

sion currently and previously achieved. Thus the precision electroweak observables,

such as the effective Weinberg angle and the mass of W boson, could be measured

more accurately in the future. As a result, constraints from such measurements can

provide more information on possible extensions of the Standard Model. In Chapter

67
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2, we have discussed the potential of the SMEFT in describing new physics at the

high energy scale without knowing the fundamental theory behind the phenomena.

In this chapter, we will study new physics in two processes, i.e., the Z → bb̄ decay

and e+e− → bb̄ in the framework of dimension-six SMEFT up to one-loop.

The goal of this work is to calculate the forward-backward asymmetry for b-

quarks in the e+e− → bb̄ process in the Dimension-six SMEFT. In the SM, the

forward-backward asymmetry is very sensitive to higher order corrections, which

will be illustrated in 4.8 for the e+e− → bb̄ case. We expect that this feature can

be retained in the SMEFT framework. Moreover, we also calculate the one-loop

amplitudes for Z → bb̄ process, whose diagrams are subsets of the former ones.

The Warsaw Basis will be adopted as the basis for the operators in our work.

For the 59 baryon number conserving dimension-six operators in the Warsaw basis,

parts of the one-loop anomalous dimension matrix has been calculated in [101–

103], then a full calculation was performed for all the baryon number conserving

dimension-six operators in [104–106], and further calculation for baryon number

violating dimension-six operators can be found in [107].

The large-mt limit will be adopted in the renormalisation procedure. In the

large-mt limit we assume mt � MH , and all the fermion masses except the t-

quark mass can be neglected in the one-loop calculation to identify the leading-mt

corrections. However, the full mass dependence in the UV singular contributions

will be kept. In the calculation of the NLO corrections of the four-fermion operators

in the Warsaw Basis, we choose to keep the both the t-quark mass and b-quark mass

in the amplitudes to check the cancellation of the UV divergences, though in the

numerical calculation the mass of b-quark mass is neglected. The vanishing gauge

couplings limit [108] is adopted as well, in which all the QCD one-loop corrections

are ignored, and all the terms in the one-loop corrections that are proportional to

the positive powers of M2
W,Z are also set to be zero, e.g., the counterterms which

are proportional to M2
Z should be neglected in the vanishing gauge couplings limit.

However, in the numerical calculation, we choose to work in the vanishing-mb limit,

in which all the terms including MW,Z will be preserved so that the results could be

more accurate. Accordingly we will also check the cancellation of the UV divergences
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which are proportional to M2
Z and M2

W . A detailed introduction to the large-mt limit

and the vanishing-mb limit can be found in A.2.

We will express all the amplitudes in the helicity form, where one diagram of the

e−e+ → bb̄ process leads to four helicity amplitudes due to the four external fermions,

while in the Z → bb̄ case, one diagram only generates two helicity amplitudes. In

order to demonstrate the cancellation of UV divergence in detail, the Zbb̄ case can

be taken as a good example for simplicity’s sake, since in the large-mt limit, the

renormalisation of the vertex Ze+e− is not be important, only the renormalisation

of the vertex Zbb̄ is considered in the renormalisation procedure.

As is shown in Chapter 2, the relations between different parameters in the

SMEFT are very different from the SM case at tree-level, the NLO corrections

depend on the input parameters as well. Before any calculation, a set of independent

input parameters must be chosen. These parameters should all be physical quantities

that can be measured directly by experiments. In our work, we choose the following

input parameters set:

ē,MZ ,MW ,MH ,mf , Ci (4.0.1)

4.1 Tree-Level Matrix Element

Since we set the electron mass to zero, the neutral Goldstone boson contribution van-

ishes in the SM. Therefore, the SMEFT contributions which generate this structure

(scalar contributions) do not interfere with the SM and therefore arise at O(1/Λ2)

and are thus neglected.

In general the tree-level matrix elements for Z → bb̂ can be written as

iM (6),0(Z → bb̄) = −i
∑
i=L,R

ēḡbi
〈
b̄iγ

µbi
〉
, (4.1.1)

in which we have denoted the Dirac structure in the amplitude with
〈
b̄iγ

µbi
〉
, which

will be adopted in what follows. Specifically,

〈
b̄iγ

µbi
〉

= ū(p1)γµPiv(p2), (4.1.2)
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where ū(p1) and v(p2) are the Dirac spinors. For e−e+ → bb̄, besides the interaction

with bosons exchanging, there are also tree level contributions from Class 8 operators

that is straight forward to read off:

(
C

(1)
lq + C

(3)
lq

)
〈ēLγµeL〉

〈
b̄Lγ

µbL
〉
,

+ Ceb 〈ēRγµeR〉
〈
b̄Rγ

µbR
〉
,

+ Clb 〈ēLγµeL〉
〈
b̄Rγ

µbR
〉
,

+ Cqe 〈ēRγµeR〉
〈
b̄Lγ

µbL
〉
.

(4.1.3)

Below are the tree-level matrix elements:

iM
(6),0

e+e−→γ→bb̄ = i
∑

i,j=L,R

ē2QbQe

ŝ
〈ēiγµei〉 〈ējγµbj〉 ,

iM
(6),0

e+e−→Z→bb̄ = i
∑

i,j=L,R

ē2ḡei ḡ
b
j

ŝ−M2
Z

〈ēiγµei〉
〈
b̄jγ

µbj
〉
,

iM
(6),0

e+e−→bb̄ = i
∑

i,j=L,R

Ciijj 〈ēiγµei〉
〈
b̄jγ

µbj
〉
.

(4.1.4)

The couplings appearing in the above expressions are those which appear as effective

couplings for the Z boson and photon couplings to fermions in the SMEFT. In

addition, there are also contributions from four-fermion operators (denoted as Ciijj)

which are not present in the SM.

The electromagnetic coupling ᾱ = ē2/4π appearing in the above expressions will

eventually be included as input parameter. The electroweak couplings ḡe,bi,j appearing

in the above expressions are modified by Wilson coefficients which directly alter

Zff̄ couplings, and in addition through the Wilson coefficients which appear as a

result of expressing observables in the broken phase of the theory with respect to

a particular input parameter set. It is worth noting that the tree-level amplitudes

appearing in 4.1.4 are correct when the electron mass is neglected. In this case, only

these four Dirac structures are present in the SM. Consequently, we only consider

SMEFT contributions which also generate these Dirac structures which result in non-

vanishing interference contributions with the SM. The self interference of amplitudes

with different Dirac structures, such as those generated by the Class 6 and scalar

Class 8 operators, contribute to observables at O(1/Λ2) and are therefore neglected.
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In [109], the electroweak couplings have been deduced in terms of barred quanti-

ties. However, we will do the renormalisation in the on-shell scheme which is suitable

for the electroweak scale. As we can see, the renormalisation of the electroweak cou-

plings ḡL,R is directly connected to the renormalisation of the trigonometric function

of the Weinberg angle. In the SM, ŝ2
w = 1−M2

W/M
2
Z , and the renormalisation con-

stants are derived from this. In the SMEFT, the approach was the same which was

why the quantity ŝw is introduced, as this is derived from 1−M2
W/M

2
Z in SMEFT.

Hence the renormalisation of ŝ2
w follows from the renormalisation of M2

W and M2
Z

in the SMEFT. Actually, there is a shift between ŝ2
w and s̄2

w since they are defined

slightly differently. The shift can be found in [108] as

s̄2
w = ŝ2

w −
ĉ2
wv̂

2
T

2

(
CHD + 2

ŝw
ĉw
CHWB

)
. (4.1.5)

After solving this equation, and neglecting the O( 1
Λ4 ) terms, the barred sine of the

Weinberg angle can be obtained:

s̄w =
ḡ1√
ḡ2

1 + ḡ2
2

+
ḡ2 (ḡ2

2 − ḡ2
1)

(ḡ2
1 + ḡ2

2)
3
2

v̂2
TCHWB. (4.1.6)

However, this expression is given in terms of barred quantities ḡ1 and ḡ2. In our

notations, ḡ2 can be directly written in terms of MW and v̂T by using the first

equation of 2.1.14, both of which are renormalised in the on-shell scheme. As for ḡ′,

we need to solve the second equation of 2.1.14 as a function of ḡ1 and neglect the

O( 1
Λ4 ) terms again. Thus we have the following expression of ḡ1 and ḡ2 in terms of

input parameters

ḡ1 =
2
√
M2

Z −M2
W

v̂T
− 2MW v̂TCHWB −

M2
Z v̂T

2
√
M2

Z −M2
W

CHD

ḡ2 =
2MW

v̂T
.

(4.1.7)

We insert the first equation of 2.1.14 and 4.1.7 into 4.1.6, the trigonometric function

of the Weinberg angle can also be written in terms of the hatted quantities

s̄w = ŝw −
ĉ2
wv̂

2
T

4ĉw
CHD −

1

2ĉw
CHWB. (4.1.8)

The final expression of ḡL,R due to the redefinition of weak couplings could be

deduced from 2.1.12, by which the neutral weak current could be written as

gZ(T 3 −Qf ) =
√
ḡ2

1 + ḡ2
2

(
T 3 −Qf s̄w

)
+

ḡ1ḡ2√
ḡ2

1 + ḡ2
2

v2
TCHWB

(
T 3 −Qf

)
. (4.1.9)
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The second part of 4.1.8 is straightforward to calculate, as CHWB ∝ 1
Λ2 , the other

EFT shifts could be neglected, and the barred quantities could be directly written

as hatted quantities. As for the first part, we just need to insert 4.1.8 and 4.1.7 into

the equation and combine it with the second part to get the final result. It turns out

only CHWB and CHD are involved in, which contribute to the neutral weak coupling

through the general form

∆gfL =
T 3v̂T

2 (1− 2ŝw)

4ĉw
CHD +

I3v̂T
2ĉw

ŝw
CHWB

∆gfR =
Qf v̂T

2

4ĉwŝw
,

(4.1.10)

which is a very simple form compared to the original expression. The expression

for each fermion could be obtained by inserting their quantum numbers. The other

shifts of the neutral weak coupling in SMEFT could be read off directly from [109],

since they are expressed in terms of hatted quantity. As the set of input parameters

is different, we need to replace some hatted quantities in their result with ours.

At last, in agreement with the results presented in [109], we find the following

general expressions for the effective left-handed and right-handed Z boson couplings

to fermions with T 3 = −1
2
:

ḡfR = − ŝw
ĉw
Qf +

v̂2
T

2ŝwĉw

(
Qf

2
CHD + CHf

)
,

ḡfL = ḡfR −
I3
W,f

ŝwĉw
+

v̂2
T

2ŝwĉw

(
I3
W,f

2

((
1

s̄2
w

− 2

)
CHD −

4ĉw
ŝw

CHWB

)
+ C

(1)
HL + C

(3)
HL

)
.

(4.1.11)

The general expressions for the effective left-handed and right-handed Z boson cou-

plings to fermions with T 3 = 1
2

can be obtained similarly:

ḡfR = − ŝw
ĉw
Qf +

v̂2
T

2ŝwĉw

(
Qf

2
CHD + CHf

)
,

ḡfL = ḡfR −
I3
W,f

ŝwĉw
+

v̂2
T

2ŝwĉw

(
I3
W,f

2

((
1

s̄2
w

− 2

)
CHD +

4ĉw
ŝw

CHWB

)
+ C

(1)
HL − C

(3)
HL

)
.

(4.1.12)

In the last line, the notation C
(1,3)
HL has been introduced for the Class 7 operators

where L should be understood to refer to either the quark (q) or lepton (l) SU (2)L

doublets. Explicitly, 4.1.11 and 4.1.12 lead to the following couplings for electrons,
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b-quarks and t-quarks

ḡeR =
ŝw
ĉw

+
v̂2
T

2ŝwĉw

(
−1

2
CHD + CHe

)
,

ḡeL =
−1 + 2ŝ2

w

2ŝwĉw
+

v̂2
T

2ŝwĉw

(
− 1

4ŝ2
w

CHD −
ĉw
ŝw
CHWB + C

(1)
Hl + C

(3)
Hl

)
,

ḡbR =
1

3

ŝw
ĉw

+
v̂2
T

2ŝwĉw

(
−1

6
CHD + CHb

)
,

ḡbL =
−1 + 2

3
ŝ2
w

2ŝwĉw
+

v̂2
T

2ŝwĉw

((
1

3
− 1

4ŝ2
w

)
CHD −

ĉw
ŝw
CHWB + C

(1)
Hq + C

(3)
Hq

)
,

ḡtR =
1

3

ŝw
ĉw

+
v̂2
T

2ŝwĉw

(
1

3
CHD + CHu

)
,

ḡtL =
−1 + 2

3
ŝ2
w

2ŝwĉw
+

v̂2
T

2ŝwĉw

((
−1

6
+

1

4ŝ2
w

)
CHD +

ĉw
ŝw
CHWB + C

(1)
Hq − C

(3)
Hq

)
.

(4.1.13)

4.2 Renormalisation Procedure

In this section we cover the issue of renormalisation in the SMEFT framework. The

on-shell scheme is adopted for mass, parameter, and wavefunction renormalisation

which basically proceeds in the same way as in the SM. In addition, we choose to

renormalise the Wilson coefficients in the MS scheme, a choice which is standard for

EFT calculations.

Va Va Va

Figure 4.1 Examples of Counterterm diagrams for the e+e− → bb̄ process

The details of the on-shell renormalisation relevant for the current work have

been previously been provided in [28, 110], and with the exception of the operator

renormalisation, we follow the procedure outlined in this work. Essentially, one

computes a set of two-point functions in the broken phase of the theory, and uses

these results to renormalise a set of mass, parameters and external fields relevant for

the process in question. In addition, the operator renormalisation is obtained from
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the anomalous dimension matrix of the complete dimension-6 SMEFT operators in

the unbroken phase [104–106]. These two ingredients allow to construct the tree-

level UV counterterm amplitudes which are necessary to render the bare one-loop

amplitudes finite. For the calculation of the process e+e− → bb̄, it is necessary to

construct the counterterm amplitudes as depicted in 4.1. In the on-shell scheme,

the counterterms associated to the external fields are cancelled by the insertion of

the 1PI diagrams onto these legs. Note that as in the case of the LO calculation

presented in the previous section, the electron mass is neglected throughout the one-

loop calculation and consequently it is not necessary to consider the CT amplitudes

which contain the exchange of a scalar (either the Higgs or neutral Goldstone boson).

In fact, this simplifies the calculation somewhat, since in the end only the interference

of vector-like Dirac structures contribute to the cross section. To construct these

counterterm amplitudes it is necessary to renormalise electron and b-quark fields,

electric charge, the left and right handed couplings of the Z boson with electrons

and b-quarks, as well as the Z boson mass. In principle, the Feynman rules for the

vertex and mass counterterms appearing in diagrams (1−3) of 4.1 should individually

contain renormalisation constants associated to the Z and A fields. However, these

constants vanish when the diagrams are summed, as they do not appear as external

fields, and it is therefore not necessary to consider wavefunction renormalisation of

A and Z fields in the context of this work. Defining the renormalised fields and

parameters in terms of the bare ones, which are indicated with the superscript 0,

we have

f 0
L =

√
Zf
LfL = (1 + δZf

L)fL,

f 0
R =

√
Zf
RfR = (1 + δZf

R)fR,

M0 = M + δM,

ē0 = Zēē = ē+ δē.

(4.2.14)

In the on-shell scheme, the renormalisation constants for the Z boson couplings

to fermions are obtained from electric charge renormalisation constants as well as

those associated to the sine of the weak mixing angle. It is therefore convenient to
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also define counterterms associated to the weak mixing angle as

ĉ0
w = ĉw + δĉw, ŝ

0
w = ŝw + δŝw,

ĝf,0L = ĝfL + δĝfL, ĝ
f,0
R = ĝfR + δĝfR.

(4.2.15)

Note that the bare couplings ḡf,0L,R were previously defined in 4.1.13. Finally, we

choose to renormalise the dimension-6 contributions by introducing counterterms

for the Wilson coefficients as

C
(0)
i = Ci(µ) + δCi(µ). (4.2.16)

Up to one-loop, we have

C0
i = Ci(µ) +

δCi(µ)

16π2
= Ci(µ) +

1

2ε̂

δCi(µ)

16π2
. (4.2.17)

With these definitions, it is possible to obtain the necessary UV counterterm

amplitudes by writing the bare tree-level amplitude 4.1.4 in terms of the renormalised

fields and the UV renormalisation constants. Expanding this expression to first order

in power of UV renormalisation constants, we find the following expression

MCT
e+e−→bb̄ = −i

∑
i,/j=L,R

(
MLO

(
e+
i e
−
i → γ → bj b̄j

)(1

2

(
δZi

e + δZj
b + h.c.

)
+
ē

e

)
,

+MLO(e+
i e
−
i → Z → bj b̄j)

(
1

2

(
δZi

e + δZj
b + h.c.

)
+
ē

e
+
ḡei
gei

+
ḡbj
gbj

+
δM2

Z

s−M2
Z

)

+MLO(e+
i e
−
i → bj b̄j)

(
1

2

(
δZi

e + δZj
b + h.c.

)
+
δCiijj
Ciijj

))
.

(4.2.18)

Therefore, the full UV counterterm for dimension-4 and dimension-six contributions

is computed as follows. The SM contribution is

M
CT,(4)

e+e−→bb̄ = −i
∑

i,j=L,R

M (4),0
(
e+
i e
−
i → γ → bj b̄j

)(1

2
(δZi,(4)

e + δZ
j,(4)
b + h.c.) +

ē(4)

e

)
,

+M (4),0(e+
i e
−
i → Z → bj b̄j)

(
1

2

(
δZi,(4)

e + δZ
j,(4)
b + h.c.

)
+
ē

e
+
ḡ
e,(4)
i

gei
+
ḡ
b,(4)
j

gbj
+
δM

2,(4)
Z

s−M2
Z

)
.

(4.2.19)

For the dimension-six contributions, in keeping with the expansion in 1/Λ2 one

must include both the dimension-6 tree-level amplitudes multiplied by the SM renor-

malisation constants as well as SM tree-level amplitudes multiplied by dimension-6
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renormalisation constants. This leads to the following general expression for the full

dimension-six counterterm.

M
CT,(6)

e+e−→bb̄ = −i
∑

i,j=L,R

M
(4),0

e+i e
−
i →γ→bj b̄j

(
1

2

(
δZi,(6)

e + δZ
j,(6)
b + h.c.

)
+
ē(6)

e

)
,

+M4,0

e+i e
−
i →Z→bj b̄j

(
1

2

(
δZi,(6)

e + δZ
j,(6)
b + h.c.

)
+
ē(6)

e
+
ḡ
e,(6)
i

gei
+
ḡ
b,(6)
j

gbj
+
δM

2,(6)
Z

s−M2
Z

)
,

+M
(6),0

e+i e
−
i →γ→bj b̄j

(
1

2

(
δZi,(4)

e + δZ
j,(4)
b + h.c.

)
+
ē(4)

e
),

+M
(6),0

e+i e
−
i →Z→bj b̄j

(
1

2

(
δZi,(4)

e + δZ
j,(4)
b + h.c.

)
+
ē(4)

e
+
ḡ
e,(4)
i

gei
+
ḡ
b,(4)
j

gbj
+
δM

2,(4)
Z

s−M2
Z

)
,

+M
(6),0

e+i e
−
i →bj b̄j

(
1

2

(
δZi,(4)

e + δZ
j,(4)
b + h.c.

)
+
δCiijj
Ciijj

)
.

(4.2.20)

Similarly to the e+e− → bb̄ case, The dimension-four SM contribution for the

UV counterterm in the Z → bb̄ decay take a much simple form

M
CT,(4)

Z→bb̄ = M
(4),0

Z→bj b̄j

(
1

2

(
δZi,(4)

e + δZ
j,(4)
b + h.c.

)
+
ḡ
e,(4)
i

gei
+
ḡ
b,(4)
j

gbj

)
. (4.2.21)

And the dimension-6 counterterm could be expressed as

M
CT,(6)

Z→bb̄ = −i
∑

i,j=L,R

M
(4),0

Z→bb̄

(
1

2

(
δZi,(6)

e + δZ
j,(6)
b + h.c.

)
+
ē(6)

e

)
,

+M
(4),0

Z→bj b̄j

(
1

2

(
δZi,(6)

e + δZ
j,(6)
b + h.c.

)
+
ḡ
e,(6)
i

gei
+
ḡ
b,(6)
j

gbj

)
.

(4.2.22)

Below we provide the wavefunction and mass renormalisation constants which are

derived from two-point functions in the broken phase of the theory. In accordance

with the approach in [108], we provide these results in t Hooft-Feynman gauge. They
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read

δZ
(4),L
b =

Cε
v2
T

[
2

ε
(−m2

b −m2
t )−

3

2
m2
t

]
,

δZ
(4),R
b =

Cε
v2
T

2m2
b

ε
,

δZ
(6),L
b = Cε

[
1

ε

(
−m2

b

CH,kin
v2
T

+
1

4
m2
bCHD +

vT√
2mbCbH

+m2
bCHb+ 2(m2

t −m2
b)C

(3)
Hq +mbmtCHtb

)
−m2

tC
(3)
Hq

]
,

δZ
(6),R
b =

Cε
ε

[
−m2

b

CH,kin
v2
T

+
1

4
m2
bCHD +

vT√
2mbCbH

−2m2
b(C

(1)
Hq + C

(3)
Hq)
]
,

δZ(4),L
e = δZ(4),R

e = δZ(6),L
e = δZ(6),R

e = 0,

δM
(4)
W

MW

=
Cε
v2
T

[
−1

ε

(
Nc(m

2
b +m2

t ) +m2
tau

)
− 1

2
Ncm

2
t

]
,

δM
(6)
W

MW

= Cε

[
−2

ε

(
NcmbmtCHtb −Nc(m

2
b +m2

t )C
(3)
Hq

)
−Ncm

2
tC

(3)
Hq

]
,

δM
(4)
Z

MZ

=
Cε
v2
T

1

ε

(
Nc(m

2
b +m2

t ) +m2
τ

)
,

δM
(6)
Z

MZ

=
Cε
ε

[
1

4

(
2Nc(m

2
b +m2

t ) + 2m2
τ + 3M2

H

)
CHD +m2

H ŝwĉwCHWB

+2Nc

(
m2
bCHb −m2

tCHt − (m2
b −m2

t )C
(1)
Hq − (m2

b +m2
t )C

(3)
Hq

)]
,

δē(4)

ē
= 0,

δē(6)

ē
= −Cε

ε
M2

H ŝwĉwCHWB.

(4.2.23)

From these results, and in addition the results for the anomalous dimension con-

verted into the broken phase of the theory, it is possible to calculate all the remaining

renormalisation constants require to construct the complete UV counterterm ampli-

tudes valid in the large-mt limit.

As can be seen from the counterterm amplitudes defined in 4.2.19 and 4.2.20, in

addition to the renormalisation constants defined above, it is necessary to calculate

those associated to the effective Z boson couplings. These can be calculated by

expanding the couplings defined in 4.1.13 which were conveniently written in terms

of hatted quantities. The renormalisation constants for these quantities are obtained

from the W and Z boson mass renormalisation as
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δĉw
ĉw
≡ δMW

MW

− δMZ

MZ

,
δŝw
ŝw
≡ − ŝ

2
w

ŝ2
w

δĉw
ĉw

,

v̂T
v̂T
≡ δMW

MW

+
δŝw
ŝw
− δē

ē
.

(4.2.24)

However, the quantities appear in the counters are sw and vT . Using the relation

in [106], one can obtain

δvT
vT

=
δMW

MW

+
δs̄w
s̄w
− δē

ē
− v̂2

T ĉw
2ŝw

δCHWB

− v̂2
T ĉw
2ŝw

(
δĉw
ĉw
− δŝw

ŝw
+ 2

δv̂T
v̂T

)
CHWB,

δs̄w
s̄w

=
δŝw
ŝw
− v̂2

T ĉ
2
w

2ŝ2
w

(
δĉw
ĉw
− δŝw

ŝw
+ 2

δv̂T
v̂T

)
CHD −

v̂2
T ĉ

2
w

4ŝ2
w

δCHD

− v̂2
T ĉw
2ŝw

(
δĉw
ĉw
− δŝw

ŝw
+ 2

δv̂T
v̂T

)
CHWB −

v̂2
T ĉw
2ŝw

δCHWB.

(4.2.25)

The renormalisation constants for the left and right handed Z boson couplings

defined in 4.2.15 can be found using these expressions. The SM expressions are

δḡ
(4),f
L ≡ δg

(4),f
R + I3

W,f

Ncm
2
t (1− 2ŝ2

w)

2v̂2
T ŝwĉw

,

δḡ
(4),f
R ≡ Qf Ncm

2
t

2v̂2
T ŝwĉw

.

(4.2.26)

The expressions for the dimension-6 counterterms are substantially longer, and we

therefore choose to provide a more compact general expression

δḡ
(6),f
R = −Qf ŝw

ĉ3
w

ŝ
(6)
w

ŝw
+

v̂2
T

2ŝwĉw
(
Qf

2
δCHD + δCHf )

+
v̂2
T

2ŝwĉw
(2
δv̂

(4)
T

v̂T
+ (−1 +

ŝ2
w

ĉ2
w

)
δŝ

(4)
w

ŝw
)(
Qf

2
CHD + CHf ),

δḡ
(6),f
L = δḡ

(6),f
R +

I3
W,f

ŝwĉw
(−1 +

ŝ2
w

ĉ2
w

)
ŝ

(6)
w

ŝw

+
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T

2ŝwĉw

(
−δCHf + δC

(1)
Hl + δC

(3)
Hl + T 3

W,f

(
δCHD
2ŝ2

w

+
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ŝw

δCHWB
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+
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T

2ŝwĉw
(2
δv̂

(4)
T

v̂T
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ŝ2
w

ĉ2
w

)
δŝ

(4)
w

ŝw
)
(
−CHf + C

(1)
Hl + C

(3)
Hl

)
,

− T 3
W,f
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T

ŝ2
w

(
δv̂

(4)
T

v̂T
− δŝ

(4)
w

ŝ
(4)
w

)
CHWB

+ T 3
W,f

v̂2
T

2ŝwĉw

((
−1 +

ĉ2
w

ŝ2
w

)
δv̂

(4)
T

v̂T
−
(

3

2

ĉ2
w

ŝ2
w

+
1

2

ŝ2
w

ĉ2
w

)
δŝ

(4)
w

ŝ
(4)
w

)
CHD.

(4.2.27)
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We note that the SM results agree with those quoted in [111]. In the above equations

we have defined the quantity

Cε =

(
µ2

m2
t

)ε
= 1− ε ln

[
m2
t

µ2

]
. (4.2.28)

4.3 The One-loop SM Counterterms

In the pure SM case, we will avoid giving the pure SM one-loop diagrams as well

as the relevant amplitudes, since they are trivial. However, we will show how the

counterterms are built from the renormalisation constants as an example. In what

follows the symbol iijj will be adopt to mark helicity amplitudes that contribute to

the 〈ēiγµei〉
〈
b̄jγ

µbj
〉

dirac structure, where i, j = L,R.

Thus we can express the specific tree level amplitudes for e+e− → bb̄ process

with a photon propagator as

iM
(4),0

e+e−→γ→bb̄ (LLLL) = i
ē2,(4)QbQe

s
〈ēLγµeL〉

〈
b̄Lγ

µbL
〉
,

iM
(4),0

e+e−→γ→bb̄ (LLRR) = i
ē2,(4)QbQe

s
〈ēLγµeL〉

〈
b̄Rγ

µbR
〉
,

iM
(4),0

e+e−→γ→bb̄ (RRLL) = i
ē2,(4)QbQe

s
〈ēRγµeR〉

〈
b̄Lγ

µbL
〉
,

iM
(4),0

e+e−→γ→bb̄ (RRRR) = i
ē2,(4)QbQe

s
〈ēRγµeR〉

〈
b̄Rγ

µbR
〉
.

(4.3.29)

And the tree level amplitudes for e+e− → bb̄ process with a Z propagator can be

written as

iM
(4),0

e+e−→Z→bb̄ (LLLL) = i
ē2,(4)gbLg

e
L

s−M2
Z

〈ēLγµeL〉
〈
b̄Lγ

µbL
〉

iM
(4),0

e+e−→Z→bb̄ (LLRR) = i
ē2,(4)gbRg

e
L

s−M2
Z

〈ēLγµeL〉
〈
b̄Rγ

µbR
〉

iM
(4),0

e+e−→Z→bb̄ (RRLL) = i
ē2,(4)gbLg

e
R

s−M2
Z

〈ēRγµeR〉
〈
b̄Lγ

µbL
〉

iM
(4),0

e+e−→Z→bb̄ (RRRR) = i
ē2,(4)gbLg

e
L

s−M2
Z

〈ēRγµeR〉
〈
b̄Rγ

µbR
〉
.

(4.3.30)

Now we build the Z counterterms. Note that δM2
Z = 2M2

Z ·
δM

(4)
Z

MZ
can be neglected

in the vanishing gauge couplings limit. So for the e+e− → Z → bb̄ process, in terms
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of helicity states, the counterterms can be written as

M
CT,(4)

e+e−→Z→bb̄ (LLLL) = M
(4),0

e+e−→Z→bb̄ (LLLL)(
δgbR
gbR

+
δgeR
geR

+
1

2
(2δZb

R) + 0 · δM (4)
Z · 2M2

Z

1

s−M2
Z

)
M

CT,(4)

e+e−→Z→bb̄ (RRLL) = M
(4),0

e+e−→Z→bb̄ (RRLL)(
δgbL
gbL

+
δgeR
geR

+
1

2
(2δZb

L) + 0 · δM (4)
Z · 2M2

Z

1

s−M2
Z

)
M

CT,(4)

e+e−→Z→bb̄ (LLRR) = M
(4),0

e+e−→Z→bb̄ (LLRR)(
δgbR
gbR

+
δgeL
geL

+
1

2
(2δZb

R) + 0 · δM (4)
Z · 2M2

Z

1

s−M2
Z

)
M

CT,(4)

e+e−→Z→bb̄ (RRRR) = M
(4),0

e+e−→Z→bb̄ (RRRR)(
δgbL
gbL

+
δgeL
geL

+
1

2
(2δZb

R) + 0 · δM (4)
Z · 2M2

Z

1

s−M2
Z

)
.

(4.3.31)

And for the e+e− → γ → bb̄ process, we have

M
CT(4)

e+e−→γ→bb̄ (RRRR) = M
(4),0

e+e−→γ→bb̄ (RRRR)
1

2
(2δZb

R),

M
CT(4)

e+e−→γ→bb̄ (RRLL) = M
(4),0

e+e−→γ→bb̄ (RRLL)
1

2
(2δZb

L),

M
CT(4)

e+e−→γ→bb̄ (LLRR) = M
(4),0

e+e−→γ→bb̄ (LLRR)
1

2
(2δZb

R),

M
CT(4)

e+e−→γ→bb̄ (LLLL) = M
(4),0

e+e−→γ→bb̄ (LLLL)
1

2
(2δZb

L).

(4.3.32)

4.4 The Class 8 Matrix Element

4.4.1 Bare matrix element

To calculate the matrix elements automatically, we need some Mathematica pack-

ages, including FeynRules 2.0 [85], FeynArts 3.9 [112], and FormCalc 9.4 [113].

FeynRules is used to build the dimension-six SMEFT model file which includes all

the information of the model. Then we can use FeynArts to read the model and to

generate the amplitudes of different processes. Finally, FormCalc will be quoted to

calculate the squared matrix elements.

In general, since only the third generation fermions are considered in the NLO

corrections, all flavour indices will be dropped in what follows.



4.4. The Class 8 Matrix Element 81
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Figure 4.2 One-loop diagrams for Z → bb̄ and e+e− → bb̄ processes involving

Class 8 operators

In the following calculation of one-loop integrals, the Passarino-Veltmann reduc-

tion scheme [114] is employed so that the bare matrix element can be expressed in

terms of standard one-loop scalar integrals. It turns out there are only two scalar

integrals involved in the Class 8 case, which can be divided into divergent parts and

finite part as

A0

[
m2
]

=
m2

ε
+ Â0

[
m2
]

B0

[
s,m2

1,m
2
2

]
=

1

ε
+ B̂0

[
s,m2

1,m
2
]
,

(4.4.33)

in which the finite part can be given with scale-dependence as:

Â0

[
m2
]

= m2 −m2 ln

(
m2

µ2

)
,

B̂0

[
s,m2

1,m
2
2

]
= 2− ln

(
s

µ2

)
+

1,2∑
i

(
λi ln(

λi − 1

λ
)− ln(λi − 1)

)
,

(4.4.34)

where

λi =
s−m2

2 +m2
1 ±

√
(s−m2

2 +m2
1)− 4sm2

1

2s
. (4.4.35)

According to the chiral feature, these amplitudes can be classified into 5 cate-

gories, they are (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), (L̄R)(L̄R), and (L̄R)(R̄L). How-

ever, it turns out that only the first three categories will contribute. In the one-loop

calculation, only t-quarks and b-quarks in the loops are kept, while the other quarks

and leptons are neglected. The loops in Z → bb̄ and e+e− → bb̄ are exactly the same,

so the operators involved in these two processes are the same as well. The num-

ber of the operators that might take part in is limited to 11. These operators are

Q
(1)
qq ,Q

(3)
qq ,Qdd,Q

(1)
ud ,Q

(8)
ud ,Q

(1)
qu ,Q

(8)
qu ,Q

(1)
qd ,Q

(8)
qd ,Q

(1)
quqd and Q

(8)
quqd. Some amplitudes just

vanish, e.g., the trace of the SU (3) generator Tr
(
TA
)

= 0 will lead to their absence

in the Q
(8)
qu case. Besides, some operators only contribute to diagrams with scalar
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Dirac structures, which can be neglected as well. At last, only six four-fermion oper-

ators contribute to non-scalar Dirac structures, which are Q
(1)
qq , Q

(3)
qq , Qdd, Q

(1)
ud , Q

(1)
qu

and Q
(1)
qd . Actually, since the contribution from t-quark loops would be much bigger

than that from the b-quark loops, we can neglect the b-quark loops for the purpose

of simplification. But in the Class 8 case we will keep the b-quark loop diagrams

and just set the mass of b-quarks to zero in the numerical calculation.

To start with, I will list the bare amplitude for each four-fermion operator and

explain how they are generated. The amplitudes will be expressed in the helicity

form, which will be very convenient for the following calculation. In the calculation

below, according to the Wick’s theorem, all possible contractions in the operators

have to be included. Note that there are γ matrices in the four fermion operators,

e.g., Q
(1)
qq = (q̄γµq)(q̄γµq), in which I have omitted the flavor indices since we only

consider the quarks in the third generation. The contraction operation will affect

the position of the γ matrix in the amplitudes, which will lead to different Dirac

structures. According to our calculation, there are two different kinds of Dirac

structures, which are simply marked as structure (1) and structure (2), which will

be explained in detail later.

In the calculation, we can use FeynArts to generate these diagram’s amplitudes,

but FormCalc is not able to handle the four-fermion vertexes generated by FeynArts.

To solve this problem, a trick is needed. The idea is simple: for the first diagram

of 4.2 with t-quarks in the loop, the relevant operators are those operators with

two t-quarks and two b-quarks, e.g., (ūpγµur)(b̄sγ
µbt). Since the final states are

two b-quarks, the t-quarks must annihilate, which means each top quark must be

contracted with a bottom quark. This leads to only one contraction structure, we

denote it as structure (1). Now consider an auxiliary SM diagram 4.3(a) that can

be dealt with in FormCalc. The only difference between this auxiliary diagram and

the first diagram in 4.2 is that this diagram includes an extra Z boson propagator.

Therefore, to obtain the expected EFT amplitude, we can use FeynArts to generate

this SM amplitude and delete the Z propagator to get the EFT diagram. For the

second diagram in 4.2 with b-quarks in the loop, the situation is more complex. The

second diagram comes from operators with four b-quarks such as (b̄pγµbr)(b̄sγ
µbt).
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Figure 4.3 Two SM auxiliary diagrams that FormCalc can deal with for the Z →
bb̄ process

Since all particles in these operators are b-quarks, these operators could have two

contraction structures. One structure is the same as that in the (t̄pγµtr)(b̄sγ
µbt)

case, which corresponds to the auxiliary diagram 4.3(a). While there is another

contraction structure, marked as structure (2), corresponds to another pure SM

auxiliary diagram 4.3(b). Note that the fermions in the loop of this SM diagram are

t-quarks, in order to get the expected EFT amplitude, one should delete the extra

W boson propagator and replace the t-quarks in the loop with b-quarks. Through

these two auxiliary diagrams, FormCalc will be able to calculate the EFT amplitudes

automatically.

We must stress that the relationship between each four-fermion operator and each

diagram is not one-to-one, since these operators are not written in terms of particle

states. Rather than using the original operators, we need to expand these opera-

tors into polynomials in terms of their third-generation particle states. Taking the

L̄LR̄R type operator Q
(1)
qq = (q̄pγµqr) (q̄sγ

µqt) for example, The corresponding poly-

nomial is (t̄γµt)
(
b̄γµb

)
+
(
b̄γµb

) (
b̄γµb

)
+
(
b̄γµb

) (
b̄γµb

)
. Notice that (t̄γµt)

(
b̄γµb

)
and(

b̄γµb
)

(t̄γµt) only have one contraction way to generate bb̄ final states, both of them

belongs to structure (1). Together we can mark them as 2 (t̄pγµtr)
(
b̄sγ

µbt
)

(1), where

(1) means they belong to structure (1). While
(
b̄γµb

) (
b̄γµb

)
has both contraction

structures and each structure has one contraction way respectively. We can write

down the corresponding polynomial as 2
(
b̄γµb

) (
b̄γµb

)
(1)+2

(
b̄γµb

) (
b̄γµb

)
(2), these

terms could be connected with the diagrams directly. For R̄RR̄R operators, taking

Q
(1)
ud for example, the corresponding polynomial term should be (t̄γµt)

(
b̄γµb

)
(1). For
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L̄LR̄R operators, taking Q
(1)
qd = (q̄pγµqr)

(
b̄sγ

µbt
)

for example. The corresponding

polynomial is (t̄γµt)
(
b̄γµb

)
+
(
b̄γµb

) (
b̄γµb

)
. The term (t̄γµt)

(
b̄γµb

)
only have one

contraction way, while the term
(
b̄γµb

) (
b̄γµb

)
has two possible contraction ways.

Note that the b̄b pairs in the left part of the operators are left-handed while the

b̄b pairs in the right are right-handed, we have to distinguish diagrams with left-

handed bottom quarks in the final states and diagrams with right-handed quarks in

the final states. If these diagram belongs to structure (1), we mark diagrams with

left handed fermions in the final states with (1L) and diagrams with right-handed

fermions in the final states with (1R). Then we can write the polynomial of Q
(1)
qd

as (t̄γµt)
(
b̄γµb

)
(1) +

(
b̄γµb

) (
b̄γµb

)
(1R) +

(
b̄γµb

) (
b̄γµb

)
(1L) +

(
b̄γµb

) (
b̄γµb

)
(2R) +(

b̄γµb
) (
b̄γµb

)
(2L).

We summarize all the expansions in a table below in Table 4.1.

Q
(1)
qq

2 (t̄γµt)
(
b̄γµb

)
(1) + 2

(
b̄γµb

) (
b̄γµb

)
(1)

+2
(
b̄γµb

) (
b̄γµb

)
(2)

Q
(3)
qq

4 (t̄γµt)
(
b̄γµb

)
(2)− 2 (t̄γµt)

(
b̄γµb

)
(1)

+2
(
b̄γµb

) (
b̄γµb

)
(1) + 2

(
b̄γµb

) (
b̄γµb

)
(2)

Q
(1)
ud (t̄γµt)

(
b̄γµb

)
(1)

Q
(8)
ud

(
t̄γµT

At
) (
b̄γµTAb

)
(1)

Qdd 2
(
b̄γµb

) (
b̄γµb

)
(1) + 2

(
b̄γµb

) (
b̄γµb

)
(2)

Q
(1)
qu (t̄γµt)

(
b̄γµb

)
(1L)

Q
(8)
qu

(
t̄γµT

At
) (
b̄γµTAb

)
(1L)

Q
(1)
qd

(t̄γµt)
(
b̄γµb

)
(1R)

+
(
b̄γµb

) (
b̄γµb

)
(1R) +

(
b̄γµb

) (
b̄γµb

)
(1L)

+
(
b̄γµb

) (
b̄γµb

)
(2R) +

(
b̄γµb

) (
b̄γµb

)
(2L)

Q
(8)
qd

(
t̄γµT

At
) (
b̄γµTAb

)
(1L) +(

b̄γµT
Ab
) (
b̄γµTAb

)
(1R) +

(
b̄γµT

Ab
) (
b̄γµTAb

)
(1L)

+(b̄γµT
Ab)
(
b̄γµTAb

)
(2R) +

(
b̄γµT

Ab
) (
b̄γµTAb

)
(2L)

.

Table 4.1 In the table, we expand the those Class 8 operators that contribute

to NLO corrections for Z → bb̄ and e+e− → bb̄ processes in terms of the third-

generation particle states.



4.4. The Class 8 Matrix Element 85

I will organize this section as follows. First, the bare amplitudes of Z → bb̄

process will be given in a very detailed way, so that many subtleties can be mani-

fested. And then the amplitudes of e+e− → bb̄ diagrams will be written into a more

compact form.

In the Z → bb̄ process, for the
(
L̄L
) (
L̄L
)

type operator Q
(1)
qq , the diagram with

a t-quark loop only contributes to structure (1), the bare amplitude is

iM
Q

(1)
qq ,1

Z→bb̄ = −i2NcēC
(1)
qq ε

µ
Z

36π2

〈
b̄LγµbL

〉 (
gtL
(
M2

Z − 6m2
t

)
+ 6gtLÂ0

[
m2
t

]
+3
(
gtLm

2
t − 3gtRm

2
t − gtLM2

Z

)
B̂0

[
M2

Z ,m
2
t ,m

2
t

])
− i1

ε

2NcēC
(1)
qq ε

µ
Z

12π2

〈
b̄LγµbL

〉 ((
3gtL − 3gtR

)
m2
t − gtLM2

Z

)
,

(4.4.36)

where gtL and gtR are the SM weak chiral couplings, the general form of SM weak

chiral couplings are given in 1.2.47. And diagrams with b-quark loops include a

structure (1) part and a structure (2) part, together they contribute

iM
Q

(1)
qq ,2

Z→bb̄ = −i2NcēC
(1)
qq ε

µ
Z

36π2

〈
b̄LγµbL

〉
εµ
(
gbL
(
M2

Z − 6m2
b

)
+ 6gbLÂ0

[
m2
b

]
+3
(
gbLm

2
b − 3gtRm

2
b − gbLM2

Z

)
B̂0

[
M2

Z ,m
2
b ,m

2
b

])
− i1

ε

2NcēC
(1)
qq ε

µ
Z

12π2

〈
b̄LγµbL

〉 (
(3gbL − 3gbR)m2

b − gtbM2
Z

)
− i2ēC

(1)
qq ε

µ
Z

72π2
b̄LγµbLε

µ
(
−15gbLm

2
b + 9gbLm

2
b + 4gbRM

2
Z

+6gbLÂ0

[
m2
b

]
+ 3

(
gtLm

2
t − 3gtRm

2
t − gtLM2

Z

)
B̂0

[
M2

Z ,m
2
t ,m

2
t

])
− i1

ε

2ēC
(1)
qq ε

µ
Z

12π2

〈
b̄LγµbL

〉 (
(3gbL − 3gbR)m2

b − gbLM2
Z

)
.

(4.4.37)

Note that for
(
L̄L
) (
L̄L
)

type operators, the b-quarks in the final states must be

left-handed.

From now on, we will avoid writing down the operators into the particle states

for simplicity’s sake. Similar to Q
(1)
qq , Q

(3)
qq belongs to the (L̄L)(L̄L) type operators

as well. We sum up the all amplitudes of Q
(3)
qq with two kinds contraction structures
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as below:

iM
Q

(3)
qq

Z→bb̄ = −i−2NcēC
(3)
qq ε

µ
Z

72π2

〈
b̄LγµbL

〉
εµ
(
gtL
(
M2

Z − 6m2
t

)
+ 6gtLÂ0(m2

t )

+3
(
gtLm

2
t − 3gtRm

2
t − gtLM2

Z

)
B̂0

[
M2

Z ,m
2
t ,m

2
t

])
− i1

ε

−2NcēC
(3)
qq ε

µ
Z

12π2

〈
b̄LγµbL

〉 ((
3gbL − 3gbR

)
m2
t − gtLM2

Z

)
− i4ēC

(3)
qq ε

µ
Z

72π2
< b̄LγµbL > εµ

(
−15gtLm

2
t + 9gtLm

2
t + 4gtRM

2
Z + 6gtLÂ0

[
m2
t

]
+3(gtLm

2
t − 3gtRm

2
t − gtLM2

Z)B̂0

[
M2

Z ,m
2
t ,m

2
t

])
− i1

ε

4ēC
(3)
qq ε

µ
Z

24π2

〈
b̄LγµbL

〉 ((
3gbL − 3gbR

)
m2
b − gbLM2

Z

)
− i2NcēC

(3)
qq ε

µ
Z

72π2

〈
b̄LγµbL

〉
εµ
(
−15gbLm

2
b + 9gbLm

2
b + 4gbRM

2
Z + 6gtLÂ0

[
m2
b

]
+3
(
gbLm

2
b − 3gbRm

2
b − gbLM2

Z

)
B̂0

[
M2

Z ,m
2
b ,m

2
b

])
− i1

ε

2NcēC
(3)
qq ε

µ
Z

12π2

〈
b̄LγµbL

〉 ((
3gbL − 3gbR

)
m2
b − gbLM2

Z

)
− i2ēC

(3)
qq ε

µ
Z

72π2
< b̄LγµbL > εµ

(
−15gbLm

2
b + 9gbLm

2
b + 4gbRM

2
Z + 6gbLÂ0

[
m2
b

]
+3
(
gbLm

2
b − 3gbRm

2
b − gbLM2

Z

)
B̂0

[
M2

Z ,m
2
b ,m

2
b

])
− i1

ε

2ēC
(3)
qq ε

µ
Z

12π2

〈
b̄LγµbL

〉 ((
3gbL − 3gbR

)
m2
b − gbLM2

Z

)
.

(4.4.38)

Next we consider the
(
R̄R
) (
R̄R
)

type operators, which only contribute to the

diagrams with right-handed b-quarks in final states. For Q
(1)
ud , only a t-quark loop

diagram with structure (1) can contribute:

iM
Q

(1)
ud

Z→bb̄ = −iNcēC
(1)
ud ε

µ
Z

72π2

〈
b̄RγµbR

〉
εµgtR

((
M2

Z − 6m2
t

)
+ 6gtRÂ0

[
m2
t

]
+3
(
gtRm

2
t − 3gtLm

2
t − gtRM2

Z

)
B̂0

[
M2

Z ,m
2
t ,m

2
t

])
− i1

ε

2NcēC
(1)
ud ε

µ
Z

24π2

〈
b̄RγµbR

〉 ((
3gbR − 3gbL

)
m2
t − gtRM2

Z

)
.

(4.4.39)

For Qdd, there are b-quark loops with structure (1) and structure (2), they contribute
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as

iMQdd
Z→bb̄ = −i2NcēCddε

µ
Z

72π2

〈
b̄RγµbR

〉
εµ
(
gbR
(
M2

Z − 6m2
b

)
+ 6gbRÂ0

[
m2
b

]
+3
(
gbRm

2
b − 3gbLm

2
b − gbRM2

Z

)
B̂0

[
M2

Z ,m
2
b ,m

2
b

])
− i1

ε

2NcēC
(1)
dd ε

µ
Z

24π2

〈
b̄RγµbR

〉 ((
3gbR − 3gbL

)
m2
b − gbRM2

Z

)
− i2ēCddε

µ
Z

72π2

〈
b̄RγµbR

〉 (
− 15gbRm

2
b + 9gbRm

2
b + 4gbRM

2
Z + 6gbLÂ0

[
m2
b

]
+ 3

(
gtRm

2
b − 3gbRm

2
b − gbRM2

Z

)
B̂0

[
M2

Z ,m
2
b ,m

2
b

] )
− i1

ε

2ēC
(1)
dd ε

µ
Z

24π2

〈
b̄RγµbR

〉 ((
3gbR − 3gbL

)
m2
b − gbRM2

Z

)
.

(4.4.40)

For the
(
L̄L
) (
R̄R
)

type operators, the b-quarks in the final states could be

left-handed or right-handed. For Q
(1)
qu , a t-quark loop with structure (1L) lead to a

amplitude with left-handed b-quarks in the final states:

iM
Q

(1)
qu

Z→bb̄ = −iNcēC
(1)
qu ε

µ
Z

72π2

〈
b̄LγµbL

〉
εµ
(
gtR
(
M2

Z − 6m2
t

)
+ 6gtRÂ0

[
m2
t

]
+3
(
gtRm

2
t − 3gtLm

2
t − gtRM2

Z

)
B̂0

[
M2

Z ,m
2
t ,m

2
t

])
− i1

ε

NcēC
(1)
qu ε

µ
Z

24π2

〈
b̄LγµbL

〉 ((
3gbR − 3gbL

)
m2
t − gtRM2

Z

)
.

(4.4.41)

For the Q
(1)
qd case, it turns out that only the structure (1) diagrams are non-vanishing.

The corresponding amplitudes are

iM
Q

(1)
qd

Z→bb̄ = −i
NcēC

(1)
qd ε

µ
Z

72π2

〈
b̄RγµbR

〉
εµ
(
gtL
(
M2

Z − 6m2
t

)
+ 6gtLÂ0

[
m2
t

]
+3
(
gtLm

2
t − 3gtRm

2
t − gtLM2

Z

)
B̂0

[
M2

Z ,m
2
t ,m

2
t

])
− i1

ε

NcēC
(1)
qd ε

µ
Z

24π2

〈
b̄RγµbR

〉 ((
3gtL − 3gtR

)
m2
t − gtLM2

Z

)
− i

NcēC
(1)
qd ε

µ
Z

72π2

〈
b̄RγµbR

〉
εµ
(
gbL
(
M2

Z − 6m2
b

)
+ 6gbLÂ0

[
m2
t

]
+3
(
gbLm

2
t − 3gbRm

2
t − gbLM2

Z

)
B̂0

[
M2

Z ,m
2
b ,m

2
b

])
− i1

ε

NcēC
(1)
qd ε

µ
Z

24π2

〈
b̄RγµbR

〉 ((
3gtL − 3gtR

)
m2
t − gtLM2

Z

)
− iNcēCqdε

µ
Z

72π2

〈
b̄LγµbL

〉
εµ
(
gbR
(
M2

Z − 6m2
b

)
+ 6gbRÂ0

[
m2
b

]
+3
(
gbRm

2
b − 3gbLm

2
b − gbRM2

Z

)
B̂0

[
M2

Z ,m
2
b ,m

2
b

])
− i1

ε

NcēC
(1)
qd ε

µ
Z

24π2

〈
b̄LγµbL

〉 ((
3gbR − 3gbL

)
m2
b − gbRM2

Z

)
,

(4.4.42)
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In the case of e+e− → bb̄, the amplitudes are very similar to the amplitudes

in Z → bb̄. Instead of writing down the amplitude for each diagram, we prefer

to express them in a compact form. For this purpose, some notations need to be

defined:

I1,i
a = gia

(
−6m2

i + s
)

+ 6giaÂ0[m2
i ],

I2,i
a = 3

(
giam

2
i − 3gibm

2
i − gias

)
B̂0[s,m2

i ,m
2
i ],

I3,i
a = −15giam

2
i + 9gibm

2
i + 4gias+ 6giaÂ0

[
m2
i

]
,

I4,i
a = 3

(
3giam

2
i − 3gibm

2
i − gias

)
,

(4.4.43)

where a, b = L,R with b 6= a, and i = t, b. gt,bL,R are the chiral neutral weak coupling

constants. Using 4.4.43, the bare matrix element of e+e− → bb̄ in Class 8 can be

written down in a simple way. Due to the different dirac structures, the bare matrix
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element can be divided into 4 parts, in which the finite terms are

iMfin
e+e−→bb̄ (LLLL) = −i 〈ēLγµeL〉

〈
b̄Lγ

µbL
〉 geLē2

72π2

1

s−M2
Z(

2
((
I2,b
L + I2,b

L

)
C(1)
qq +

(
I2,b
L + I3,b

L + 2
(
I2,t
L + I3,t

L

))
C(3)
qq

)
+Nc

((
I1,b
R + I2,b

R

)
C

(1)
qd + 2

(
I1,b
L + I2,b

L + I1,t
L + I2,t

L

)
C(1)
qq

+2(I1,b
L + I2,b

L − I1,t
L − I2,t

L )C(3)
qq +

(
I1,t
R + I2,t

R

)
C(1)
qu

))
,

iMfin
e+e−→bb̄ (RRLL) = −i 〈ēRγµeR〉

〈
b̄Lγ

µbL
〉 geRē2

72π2

1

s−M2
Z(

2
((
I2,b
L + I2,3

L

)
C(1)
qq +

(
I2,b
L + I3,b

L + 2
(
I2,t
L + I3,t

L

))
C(3)
qq

)
+Nc

((
I1,B
R + I2,b

R

)
C

(1)
qd + 2

(
I1,b
L + I2,b

L + I1,t
L + I2,t

L

)
C(1)
qq

+2
(
I1,b
L + I2,b

L − I1,t
L − I2,t

L

)
C(3)
qq +

(
I1,t
R + I2,t

R

)
C(1)
qu

))
,

iMfin
e+e−→bb̄ (LLRR) = −i 〈ēLγµeL〉

〈
b̄Rγ

µbR
〉 geLē2

72π2

1

s−M2
Z(

2
(
I2,b
R + I3,b

R +
(
I1,b
R + I2,b

R

)
Nc

)
Cdd

+Nc

((
I1,b
L + I2,b

L + I1,t
L + I2,t

L

)
C

(1)
qd +

(
I1,t
R + I2,t

R

)
C

(1)
ud

))
,

iMfin
e+e−→bb̄ (RRRR) = −i 〈ēRγµeR〉

〈
b̄Rγ

µbR
〉 geRē2

72π2

1

s−M2
Z(

4
(
I2,b
R + I3,b

R

)
Cdd +Nc

((
I1,b
L + I2,b

L + I1,t
L + I2,t

L

)
C

(1)
qd +

(
I1,t
R + I2,t

R

)
C

(1)
ud

))
,

(4.4.44)
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and the UV divergent terms are

iMdiv
e+e−→bb̄ (LLLL) = −i 〈ēLγµeL〉

〈
b̄Lγ

µbL
〉 geLē2

72π2

1

s−M2
Z(

2
(
I4,b
L C(1)

qq +
(
I4,b
L + 2I4,t

L

)
C(3)
qq

)
+Nc

(
I4,b
R C

(1)
qd + 2

(
I4,b
L + I4,t

L

)
C(1)
qq + 2

(
I4,b
L − I4,t

L

)
C(3)
qq + I4,t

R C(1)
qu

))
iMdiv

e+e−→bb̄ (RRLL) = −i 〈ēRγµeR〉
〈
b̄Lγ

µbL
〉 geRē2

72π2

1

s−M2
Z(

2
(
I4,b
L C(1)

qq +
(
I4,b
L + 2I4,t

L

)
C(3)
qq

)
+Nc

(
I4,b
R C

(1)
qd + 2

(
I4,b
L + I4,t

L

)
C(1)
qq + 2

(
I4,b
L − I4,t

L

)
C(3)
qq + I4,t

R C(1)
qu

))
iMdiv

e+e−→bb̄ (LLRR) = −i 〈ēLγµeL〉
〈
b̄Rγ

µbR
〉 geLē2

72π2

1

s−M2
Z(

2I4,b
R (1 +Nc)C

(1)
dd +Nc

((
I4,b
L + I4,t

L

)
C

(1)
qd + I4,t

R C
(1)
ud

))
,

iMdiv
e+e−→bb̄ (RRRR) = −i 〈ēRγµeR〉

〈
b̄Rγ

µbR
〉 geRē2

72π2

1

s−M2
Z(

2I4,b
R (1 +Nc)C

(1)
dd +Nc

((
I4,b
L + I4,t

L

)
C

(1)
qd + I4,t

R C
(1)
ud

))
.

(4.4.45)

4.4.2 Class 8 Counterterms and Renormalised Amplitudes

As is outlined in 1.4, UV poles need to be cancelled by the counterterms building

through 4.2.22 and 4.2.20 respectively for Z → bb̄ and e+e− → bb̄ processes. Since

we are not interested in corrections with leptons in the loop, the renormalisation

of the couplings geL,R will not be considered here. Other counterterms could be

calculated according to 4.2.23. However, the wavefunction renormalisation for the

b-quark due to the Class 8 is not given in 4.2.23, which is needed in the counterterm.

t

b b

G

b b

Figure 4.4 The self energy diagrams for b-quarks involving Class 8 operators and

QCD contribution

The wavefunction renormalisation for the b-quark together with the mass renor-
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malisation can be found in [108], these renormalisation constants are

δm
(6)
b =

1

ε

[
m3
t

2

(
(2Nc + 1)

(
C

(1)
qtqb + C

(1)∗
qtqb

)
+ cF,3

(
C

(8)
qtqb + C

(8)∗
qtqb

))
−4m3

b

(
C

(1)
qb + cF,3C

(8)
qb

)]
+ δmfin

b (µ),

δmfin
b (µ) =

mt

2
Â0(m2

t )
(

(2Nc + 1)
(
C

(1)
qtqb + C

(1)∗
qtqb

)
+ cF,3

(
C

(8)
qtqb + C

(8)∗
qtqb

))
+ 2mb

(
m2
b − 2Â0(m2

b)
)(

C
(1)
qb + cF,3C

(8)
qb

)
,

δZ
L(6)
b =

1

ε

[
−m

3
t

mb

(
(2Nc + 1)

(
C

(1)
qtqb + C

(1)∗
qtqb

)
+ cF,3

(
C

(8)
qtqb + C

(8)∗
qtqb

))]
+ δZL,fin

b ,

δmfin
b (µ) = −mt

mb

Â0(m2
t )
(

(2Nc + 1)
(
C

(1)
qtqb + C

(1)∗
qtqb

)
+ cF,3

(
C

(8)
qtqb + C

(8)∗
qtqb

))
δZ

R(6)
b = 0,

(4.4.46)

in which we have omitted the lepton masses. The renormalisation constant of b-

quark mass is also listed in 4.4.46, as it will be needed in the transformation pro-

cedure from on-shell scheme matrix element to the MS scheme one. And the wave-

function and mass renormalisation for the electron can be obtained by calculating

the two-point function similarly as

δm(6)
e =

1

ε

(
−4m3

eCle +Ncm
3
b

(
Clebq + C∗lebq

)
+Ncm

2
t

(
C

(1)
leqt + C∗letq

))
+ δmfin

b (e),

δmfin
e (e) = 2m2

e

(
m2
e − Â0

[
m2
e

])
Cle +NcmbÂ0

[
m2
b

] (
Clebq + C∗lebq

)
−NcmtÂ0(m2

t )
(
Cleqt + C∗leqt

)
δZL(6)

e = 2Nc
1

ε

(
m3
t

me

(
Cleqt − C∗leqt

)
− m3

b

me

(
Clebq − C∗lebq

))
+ δZL,fin

e ,

δmfin
e (µ) = 2Nc

(
−mt

me

Â0

[
m2
t

] (
Cleqt − C∗leqt

)
− mb

me

Â0

[
m2
b

] (
Clebq − C∗lebq

))
δZR(6)

e = 0,

(4.4.47)

in which the electron mass me can not set to zero since it appears in the denomina-

tors.

Observe 4.4.46 and 4.4.47, we can find that the real parts of the four-fermion

Wilson coefficients only contribute to the mass renormalisation, while the imagi-

nary parts only contribute to the fields wavefunction renormalisation. Since in our
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assumption, the Wilson coefficients are real, the wavefunction renormalisation con-

stants just vanish. Furthermore, the tree-level amplitudes of Z → bb̄ and e+e− → bb̄

processes have no mass terms, so we can conclude that there are no terms due to

the mass renormalisation in the counterterm. It needs to be stressed that the wave-

function and mass renormalisation also occur in the SM, through a QCD interaction

in the self-energy diagram as shown in 4.4. But it can be neglected in the vanish-

ing gauge couplings limit. As a result, the wavefunction renormalisation and mass

renormalisation of b-quark will not contribute to the counterterm at all.

Through 4.2.23, we know that the renormalisation of the electron charge does

not contribute as well. The only source of the counterterm in Class 8 case is the

renormalisation of the Wilson coefficients, which only contributes to the divergences.

Therefore, we can conclude that the finite NLO corrections related to four-fermion

EFT operators only come from the one-loop diagrams. Those UV divergent terms

due to the one-loop diagrams are directly canceled by the counterterms arising from

the Wilson coefficients renormalisation in Class 7 category. Extracting the pieces

involving only four-fermion contributions in the vanishing gauge couplings limit to

Ċ
(1)
Hq, Ċ

(3)
Hq and ĊHd gives

Ċ1
Hq = 2

m2
t −m2

b

v̂2
t

(
2 (2Nc + 1)C(1)

qq + 6C(3)
qq

)
− 2

m2
t

v̂2
t

2NcC
(1)
qu + 2

m2
t

v̂2
t

2NcC
(1)
qd ,

Ċ3
Hq = −2

m2
t +m2

b

v̂2
t

(
2(2Nc − 1)C(3)

qq + 2C(1)
qq

)
− 2

m2
t

v̂2
t

2NcC
(1)
qu + 2

m2
t

v̂2
t

2NcC
(1)
qd ,

ĊHd = 2
m2
b

v̂2
t

4 (Nc + 1)Cdd − 2
m2
t

v̂2
t

2NcC
(1)
ud + 2

m2
t −m2

b

2
NcC

(1)
qu ,

(4.4.48)

in which all the flavour indices have been removed. In the Class 8 case, we also check

the cancellation of UV divergent terms which are proportional to M2
Z . Therefore we

also list the gauge parts of these dotted Wilson Coefficients:

Ċ1
Hq =

8

3
(2Nc + 1) g2

1NcyHyqC
(1)
qq + 8g2

1yHyqC
(3)
qq

+
4

3
Ncg

2
1NcyHyuC

(1)
qu +

4

3
Ncg

2
1NcyHydC

(1)
qd ,

Ċ3
Hq =

2

3
g2

2C
(1)
qq +

2

3
(2Nc − 1)g2

2C
(3)
qq ,

ĊHd =
8

3
(Nc + 1) g2

1NcyHydCdd + +
8

3
Ncg

2
1NcyHyqC

(1)
qd +

4

3
Ncg

2
1NcyHyuC

(1)
ud .

(4.4.49)
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The details of the cancellation of UV divergence in the Z → bb̄ case can be found

in A.3 in the Appendix. Cancellation of UV divergence in the e+e− → bb̄ case is

very similar to former one, which will not be given in detail any more.

In order to convert the on-shell-scheme matrix element to the MS-scheme one,

we need to recover the µ-dependence of the one-loop matrix element, which could

be done by shifting the scalar integrals by a µ-dependence logarithm. In the class 8

case, the one-point scalar integral and the two-point integral shift as

Â0

[
m2
i

]
→ Â0

[
m2
i

]
−m2

i ln

[
m2
t

µ2

]
B̂0

[
s,m2

i ,m
2
j

]
→ B̂0

[
s,m2

i ,m
2
j

]
− ln

[
m2
t

µ2

]
.

(4.4.50)

Furthermore, though the mass of electron is neglected in our assumption, the b-

quark mass in the bare matrix element is the physical mass which is valid in the

on-shell scheme but not the MS scheme. However, it is straightforward to derive the

MS mass from the physical mass with the mass renormalisation of b-quark in hand.

The relation between the MS mass and the physical mass for b-quarks are given as

m̄b(µ) = mb + δmfin
b (µ). (4.4.51)

Since δmfin
b in 4.4.46 is also a function of the scalar integrals, the operation in 4.4.50

can also be used to recover the µ-dependence factor in the MS scheme. We need

stress that the b-quark mass shift due to the MS scheme will not affect our results

at all, as there is no counterterm due to the renormalisation of the mass of b-quark.

If one just directly replaces mb with m̄b(µ) in the one-loop amplitude, the δmfin
b (µ)

term will contribute to the 1
Λ4 order in the power counting of SMEFT, which can

be neglected.

4.5 The Class 7 Matrix Element

As is shown above in 4.1, the operators in class 7 which contribute to the tree level

correction of forward-backward asymmetry are C
(1)
Hl , C

(3)
Hl , CHe, C

(1)
Hq,C

(3)
Hq. A subset

of Class 7 operators also contributes to the Z → bb̄ process through the diagrams

shown in Fig. 4.5. Unlike the Class 8 case, we only keep the diagrams that contribute
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Figure 4.5 Class 7 one-loop diagrams for the Z → bb̄ process

to the m2
t terms, since they are dominating in the results. In this approximation,

Only the operators C
(1)
Hq, C

(3)
Hq and CHt in Class 7 will be involved. It turns out only

the left-handed helicity amplitudes survive to contribute, therefore only ḡL needs

to be considered. For the first diagram 4.5(a), the SMEFT operators alter the Ztt̄

coupling according to ḡt(L,R) in 4.1.13. The bare amplitude is

iMa
Z→bb̄ = −i m2

t ēε
µ
Z

32π2ĉwŝwM2
Z

〈
b̄LγµbL

〉(
CHt

(
M2

Z + 2
(
m2
t −M2

W

)
B̂0

[
m2
b ,m

2
t ,M

2
W

]
−
(
2m2

t − 2M2
W +M2

Z

)
B̂0

[
M2

Z ,m
2
t ,m

2
t

])
+ 2

(
CHt

(
m2
t −M2

W

)2

+
(
C

(1)
Hq − C

(3)
Hq

)
m2
tM

2
Z

)
Ĉ0

[
M2

Z ,m
2
b ,m

2
b ,m

2
t ,m

2
t ,M

2
W

]
−M2

Z

1

ε
CHt

)
.

(4.5.52)

It can be seen in the above amplitude that only CHt contributes to the UV di-

vergence, while all the other three operators only contribute to the finite part. CHt

does not appear in the born matrix element, it only contribute at the one-loop order.

Note that C
(1)
Hq and C

(1)
Hq have opposite signs in 4.5.52, as in the ḡtL.

In the cases of diagrams 4.5(b) 4.5(c), the EFT operators change the coupling
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of the goldstone boson to two fermions. Together, these two diagrams contribute as

iM b,c

Z→bb̄ = −2i
m2
t ēC

(3)
Hqε

µ
Z

48π2ĉwŝwM2
Z

〈
b̄LγµbL

〉( (
−3ĉ2

wM
2
Z

+
(
4m2

t − 4M2
W +M2

Z

)
ĉ2
w

)
B̂0[m2

b ,m
2
t ,M

2
W ]

+ ŝ2
w

(
M2

Z −
(
2m2

t − 2M2
W +M2

Z

)
B̂0[M2

Z ,m
2
t2,m

2
t ]
)

+
(

4
(
m2
t −M2

W

)2
ŝ2
w +m2

tM
2
Z

(
−3ĉ2

w + ŝ2
w

))
Ĉ0[M2

Z ,m
2
b ,m

2
b ,m

2
t ,m

2
t ,M

2
W ]

− 1

ε
M2

Z

(
3ĉ2
w + ŝ2

w

))
.

(4.5.53)

The bare matrix element for the diagrams 4.5(d) and 4.5(e) is

iMd,e

Z→bb̄ = 2i
m2
t ēC

(3)
Hqε

µ
Z

32π2ĉwŝwM2
Z

〈
b̄LγµbL

〉 (
ĉ2
w − ŝ2

w

)
((

M2
Z − 2

(
m2
t −M2

W

)
B̂0
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m2
b ,m

2
t ,M

2
W

]
+
(
2m2

t − 2M2
W +M2

Z

)
B̂0[M2

Z ,M
2
W ,M

2
W ]

+2
(
m4
t +M4

W +m2
t

(
−2M2

W +M2
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))
Ĉ0
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b ,M
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Z ,m

2
b ,m

2
t ,M

2
W ,M

2
W
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+

1

ε
M2

Z

)
.

(4.5.54)

And the last two diagrams 4.5(f) and 4.5(g) contribute as

iM f,g

Z→bb̄ = 2i
m2
t ēŝwC

(3)
Hqε

µ
Z

8π2ĉwM2
Z

〈
b̄LγµbL

〉(
B̂0

[
m2
b ,m

2
t ,M

2
W

]
+

1

ε
M2

Z

)
. (4.5.55)

Summing up all divergences above in the Z → bb̄ reaction, we have

i
ēm2

t ε
µ
Z

16π2ĉwŝw

(
CHt +

(
6 +

4

3
ŝ2
w

)
C

(3)
Hq

)〈
b̄LγµbL

〉
. (4.5.56)

The e+e− → bb̄ case is very similar to the Z → bb̄ one. We just simply write

down the four corresponding bare amplitudes in the e+e− → bb̄ reaction, they are

iMa
e+e−→bb̄ = −i ᾱm2

t

16πsŝ2
wĉ

2
w

1

s−M2
Z(

CHt

(
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W
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〉
−
(
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〈
b̄Lγ
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〉)
,

(4.5.57)
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wĉ
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(4.5.58)

iMd,e
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w 〈ēLγµeL〉
〈
b̄Lγ

µbL
〉
−
(
ĉ2
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(4.5.59)

and

iM f,g

e+e−→bb̄ = 2i
ᾱm2
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(4.5.60)

As in the Class 8 case, the renormalisation of the Wilson coefficients only con-

tributes to the divergent counterterm. Extracting the pieces involving only Class 7

contributions in the vanishing gauge coupling to Ċ
(1)
Hq, Ċ

(3)
Hq and ĊHd gives

Ċ1
Hq =

2m2
t

v2
T

(
−CHt4

(
Nc

2
+ 1

)
C

(1)
Hq − 9C

(3)
Hq

)
Ċ3
Hq = −3

2m2
t

v2
T

C
(1)
Hq + 2

2m2
t

v2
T

(Nc + 1)C
(3)
Hq

ĊHd = 0,

(4.5.61)

which could generate the following divergent counterterms:

i
1

ε

ēm2
t ε
µ
Z

16π2ĉwŝw

(
CHt + (7− 2Nc)C

(3)
Hq − (1 + 2Nc)C

(1)
Hq

) 〈
b̄LγµbL

〉
. (4.5.62)

Following the renormalisation procedure in 4.2, there are still counterterms due to
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δv̂
(4)
T

v̂T
, δZ

(4),L
b and δZ

(6),L
b , which are

i
v̂

(4),div
T

v̂T
=

1

ε

−Ncm
2
t

2v̂2
T

δZ
(4),L,div
b =

1

ε

−m2
t

v̂2
T

δZ
(6),L,div
b =

1

ε
2m2

tC
(3)
Hq.

(4.5.63)

It is easy to check that the counterterms with Nc due to δ
v̂

(4),div
T

v̂T
are responsible for

cancelling the counterterms including Nc in 4.5.62. All other divergent counterterms

directly cancel the divergences in the one-loop amplitude.

4.6 The Class 4 Matrix Element

In the large-mt limit, there is only one operator CHWB in Class 4 that can contribute

to the NLO correction in both Z → bb̄ and e+e− → bb̄ processes. These one-loop

diagrams in the Z → bb̄ case are shown in Fig. 4.6.
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Figure 4.6 Class 4 one-loop diagrams for the Z → bb̄ process

For the first diagram 4.6(a), the bare amplitude takes the form

iMa
Z→bb̄ = −im

4
t ēCHWBε

µ
Z

16π2ŝ2
w

ĉwm
4
t Ĉ0

[
M2

Z ,m
2
b ,m

2
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2
t ,m

2
t ,M

2
W

] 〈
b̄LγµbL

〉
.

(4.6.64)
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For the second diagram 4.6(b), we have

iM b
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t ēCHWBε

µ
Z

32π2M2
Z ŝ
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(4.6.65)

The third and forth diagram will lead to a same amplitude, together they contribute

as

iM c,d

Z→bb̄ = −2i
m2
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Z ēCHWBε

µ
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ĉwĉwĈ0
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〉
.

(4.6.66)

For the e+e− → bb̄ case which is similar to the Z → bb̄ case, we just show the

corresponding amplitudes as follows:

iMa
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32πĉwŝ3
w

1

s−M2
Z

Ĉ0
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(4.6.67)
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t ᾱCHWB

16πĉwŝ3
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〉
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(4.6.68)

iM c,d

e+e−→bb̄ = −2i
ᾱsCHWB

16πĉwŝw

1

s−M2
Z

Ĉ0

[
m2
b , s,m

2
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2
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2
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(
2ŝ2
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〉
+
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〉)
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(4.6.69)

Only one diagram contributes to the divergent term in the Z → bb̄ process as well

as in the e+e− → bb̄ process. The one-loop UV divergencies for those two process

can be directly read off from 4.6.65 and 4.6.68.

As usual, one source of divergent counterterms is the renormalisation of Wilson
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coefficients. In the Class 4 case, only δCHWB is involved:

ĊHWB = 2
2m2

t

v2
T

NcCHWB. (4.6.70)

Similar to the Class 7 case, the other divergent counterterms also arise from
v̂

(4)
T

v̂T
,

δZ
(4),L
b and δZ

(6),L
b . The normal SM renormalisation constants

v̂
(4)
T

v̂T
and δZ

(4),L
b are

the same for Class 4 and Class 7 cases, while the EFT renormalisation constant

δZ
(6),L
b does not include any Class 4 Wilson Coefficient. We have

δZ
(6),div
b = 0. (4.6.71)

Since the divergent structure in the Class 4 case is simple for both processes, it is easy

to check that the divergent counterterms due to
δv̂

(4)
T

v̂T
directly cancel the divergent

counterterms due to ĊHWB, and the one-loop UV divergencies are cancelled by the

counterterms due to δZ
(4),L
b .

4.7 GF as an Input Parameter

In the above calculation, we express our calculations in terms of vT that is deduced

from the input parameter MW . However, the measurement precision of MW is not

as good as GF in the experiments. Consequently, it is better to replace MW with GF

in the set of input parameters in the numeric calculation. To be more specific, we

need to express the vacuum expectation value vT in terms of GF . Correspondingly,

the tree-level relation 2.1.18 has to be extended to its one-loop form. In [108], such

a relation is given as
1√
2

1

v2
T

(1 + ∆r) = GF +R(6), (4.7.72)

where ∆r represents for the finite non-QED radiative corrections to muon decay in

terms of two-point functions [115]. In the vanishing gauge couplings limit,

∆r = 2

(
δMW

MW

− δvT
vT

)
. (4.7.73)

By using the relations in 4.2.23 one can obtain ∆r at the one-loop order, the specific

expression of ∆r can be found in [108]. And R(6) is the finite correction arising from
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the SMEFT contribution, including a tree-level part and a one-loop part. The tree

level part could be deduced from 2.1.18, which is

∆R(6,0) = −
√

2C
(3)
Hl +

√
2

2
Cll, (4.7.74)

in which the favour indices are dropped. The one-loop part can be found in the

large-mt limit in [108]. Dropping the redundant flavour indices, it can be written as

∆R(6,1) =

√
2Ncm

2
t

v2
T

C
(3)
lq −

1√
2

(
Ċ

(3)
Hl − Ċ

(3)
ll

)
ln

(
m2
t

µ2

)
, (4.7.75)

where the µ dependence has been restored by the RG equations. For convenience’s

sake, we can divide a general amplitude in dimension-six SMEFT into four parts as

M
(6)

(e+e−→bb̄) = v̄(pe)γ
µu(pē)ū(pb)γµv(pb̄)

(
A(4,0) + A(6,0) + A(4,1) + A(6,1)

)
,

(4.7.76)

where A(4,0) is the tree-level pure SM part, A(4,1) is the one-loop SM part, A(6,0) is

the tree-level EFT part and A(6,1) is the one-loop EFT part. For each SM diagram,

each vertex will contribute to a v−1
T , which is equal to G

1/2
F . Accordingly, A(6,0) and

A(6,1) will receive shifts as follows:

A(6,0) → A(6,0) + δA
(6,0)
GF

A(6,1) → A(6,1) + δA
(6,1)
GF

,
(4.7.77)

in which the shifts could be computed as

δA
(6,0)
GF

= A(4,0) ∆R(6,0)

GF

δA
(6,1)
GF

= A(4,0) ∆R(6,1)

GF

+ A(4,1) 2∆R(6,0)

GF

.

(4.7.78)

4.8 Phenomenology and Numerical Results

In this section we focus on the e+e− → bb̄ process. In the following numerical

calculations, input parameters are chosen as α = 1/127.91 mt = 173.3 GeV, mZ =

91.1875 GeV mH = 125.0 GeV, GF = 1.16638 · 10−5 GeV−2, ΓZ = 2.4952 GeV [13],

and the physical scale is chosen as µ = µt ∼ mt, in which case the large logarithms

arising from the one-loop matrix elements are absorbed into the Wilson coefficients



4.8. Phenomenology and Numerical Results 101

Ci(µt). According to the RG equations, one can obtain the following relation of

Wilson Coefficients for different energy scales:

Ci(µt) = Ci(Λ) +
1

2

1

16π2
Ċi(Λ) ln

[
µ2
t

Λ2

]
, (4.8.79)

through which the numerical results obtained at the scale µt could be transformed

to the result at the new physics scale Λ on the assumption that Λ does not exceed

µt by several orders of magnitude. The specific form of each Ċi at one loop has been

given in [104–106]. Benefiting from this approach, our following numerical result

could be used to test new physics models at the scale Λ.

The following calculation is up to one loop and 1/Λ2, which means the self-

interference of the pure EFT terms that are proportional to 1/Λ4 are neglected.

In order to constrain the values of the Wilson coefficients, one should compute the

predictions for specific observables. To began with, the squared Matrix elements

of e+e− → bb̄ process should be calculated. In the SMEFT, the squared matrix

elements could be decomposed into SM part and EFT part, in which the SM part

can be written as

∣∣M (4)
∣∣2 = M (4,0),∗ ·M (4,0) + 2M (4,0),∗ ·M (4,1), (4.8.80)

and similarly the EFT part can be written as

∣∣M (6)
∣∣2 = 2M (4,0),∗ ·M (6,0) + 2M (4,1),∗ ·M (6,0) + 2M (4,0),∗ ·M (6,1). (4.8.81)

The total squared matrix elements should be the sum of these two parts:

∣∣MSMEFT
∣∣2 = |M (4)|2 + |M (6)|2. (4.8.82)

For the e+e− → bb̄ process, neglecting the mass of electron, the general differential

cross-section can be expressed as

dσ =

√
1− 4m2

b

s
|M |2d cos θ

8πs
(4.8.83)

To make the suppression of dimension-6 contributions more explicit, we define the

dimensionless Wilson Coefficient as

Ci (µt) ≡
C̃i (µt)

Λ2
. (4.8.84)
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In terms of the dimensionless Wilson Coefficients, the tree-level general differen-

tial cross section dσ/dcθ
(
e+e− → bb̄

)
which is the massive version of equation 4.2
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of [109] can be expressed as:

1

Nc

dσ

dcθ
=

(ē4Q2
bQ

2
eβ (2 + (−1 + c2

θ) β
2))

32πs
+
ē2NcQbQeβ

64πΛ2[
2
(
C̃eb + C̃lb + C̃qe

)
+ 2cθβ

(
C̃eb − C̃lb − C̃qe

)
−
(
C̃eb + C̃lb + C̃qe

)
β2(1− c2

θ)

+
(
C̃

(1)
lq + C̃

(3)
lq

)
(2 + 2cθβ − β2 + c2

θβ
2)

]
+
ē4QbQeβχ̄ (s)

128π

[
ḡbL
(
ḡeR
(
2− 2cθβ − β2 + c2

θβ
2
)

+ ḡeL
(
2 + 2cθβ − β2 + c2

θβ
2
))

+ ḡbR
(
ḡeL
(
2− 2cθβ − β2 + c2

θβ
2
)

+ ḡeR
(
2 + 2cθβ − β2 + c2

θβ
2
)) ]

+
sβ

128πΛ4

[
C̃2
eb + C̃2

lb + 2C̃ebC̃qe + C̃2
qe + 2cθC̃

2
ebβ − 2cθC̃

2
lbβ − 2cθC̃

2
qeβ + c2

θC̃
2
ebβ

2

+ c2
θC̃

2
lbβ

2 − 2C̃ebC̃qeβ
2 + c2

θC̃
2
qeβ

2 +
(
C̃

(1)
lq + cθC̃

(1)
lq β

)2

+
(
C̃

(3)
lq + cθC̃

(3)
lq β

)2

− 2C̃
(3)
lq C̃lb(−1 + β2) + 2C̃

(1)
lq

(
C̃lb − C̃lbβ2 + C̃

(3)
lq (1 + cθβ)2

)]
+
ē2sχ̄ (s)

128πΛ2
β

[
ḡbL

(
ḡeR

(
C̃eb − C̃ebβ2 + C̃qe (−1 + cθβ)2

)
+ḡeL

(
C̃lb − C̃lbβ2 + C̃

(1)
lq (1 + cθβ)2 + C̃

(3)
lq (1 + cθβ)2

))
+ ḡbR

(
ḡeL

(
C̃

(1)
lq + C̃

(3)
lq − C̃

(1)
lq β

2 − C(3)
lq β

2 + C̃lb (−1 + cθβ)2
)

+ḡeR

(
C̃qe − C̃qeβ2 + C̃eb (1 + cθβ)2

))]
+
ē4QbQeβχ (s)

128π

[
ḡeLḡ

b
R (−1 + cθβ)2 + ḡbLḡ

e
R (−1 + cθβ)2 + ḡbLḡ

e
L

(1 + cθβ)2 + ḡbRḡ
e
R (1 + cθβ)2 − ḡbLḡeL

(
−1 + β2

)
− ḡeLḡbR

(
−1 + β2

)
− ḡbLḡeR

(
−1 + β2

)
− ḡbRḡeR

(
−1 + β2

) ]
+
ē2βsχ (s)

128πΛ2

[
C̃lbḡ

b
Lḡ

e
L + C̃lbḡ

e
Lḡ

b
R + C̃ebḡ

b
Lḡ

e
R + C̃qeḡ

b
Lḡ

e
R + C̃ebḡ

b
Rḡ

e
R + C̃qeḡ

b
Rḡ

e
R

− 2cθC̃lbḡ
e
Lḡ

b
Rβ − 2cC̃qeḡ

b
Lḡ

e
Rβ + 2cθC̃ebḡ

b
Rḡ

e
Rβ − C̃lbḡbLḡeLβ2 + c2

θC̃lbḡ
e
Lḡ

b
Rβ

2

− C̃ebḡbLḡeRβ2 + c2
θC̃qeḡ

b
Lḡ

e
Rβ

2 + c2
θC̃ebḡ

b
Rḡ

e
Rβ

2 − C̃qeḡbRḡeRβ2

+ C̃
(1)
lq ḡ

e
L

(
ḡbR − ḡbRβ2 + ḡbL (1 + cθβ)2)+ C

(3)
lq ḡ

e
L

(
ḡbR − ḡbRβ2 + ḡbL(1 + cθβ)2

) ]
+
ē4βχ (s) χ̄ (s)

128π

[
− 2ḡbLḡ

b
R

(
ḡe,2L + ḡe,2R

) (
−1 + β2

)
+ ḡb,2L

(
ḡe,2R (−1 + cθβ)2

+ (ḡeL + cθḡ
e
Lβ)2)+ ḡb,2R (ḡe,2L (−1 + cθβ)2 + (ḡeR + cθḡ

e
Rβ)2)

]
,

(4.8.85)
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where β =

√
1− m2

b

s
, cθ is the scattering angle we have encountered in 1.3 and

χ (s) =
s

s−M2
Z + ω (s)2 (4.8.86)

is the propagator at the Z peak obtained by using the Breit-Wigner formula, in

which the Breit-Wigner distribution is denoted as ω (s). Note that in 4.8.85, terms

proportional to 1
Λ4 are kept, which will be dropped in the following numerical cal-

culations.

4.8.1 The Forward-Backward Asymmetry at Z peak

The complete forward-backward asymmetry at Z peak in dimension-six SMEFT

includes the pure SM contribution and the EFT contribution. The SM result could

be directly computed by evaluating 1.3.61. In order to compare the contribution

from LO and NLO diagrams, we need to calculate the ratio of the NLO SM cross-

section and the LO SM cross-section, it is

dσ(4,1)

dσ(4,0)
= −0.0627827, (4.8.87)

and the ratio of NLO SM forward-backward asymmetry and LO SM forward-backward

asymmetry can be obtained similarly as

A
(4,1)
fb

A
(4,0)
fb

= −0.297382. (4.8.88)

It can be seen from 4.8.87 that the NLO corrections only alter the LO cross-section by

a few percents, but alter the LO forward-backward asymmetry by dozens of percents.

Therefore we can conclude that in the SM, the NLO order contribution plays a very

important role in the determination of the forward-backward asymmetry.
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Figure 4.7 The cross section in the large-mt limit at LO and EW NLO for the

e+e− → bb̄ process
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Figure 4.8 The forward-backward Asymmetry in the large-mt limit in the SM for

the e+e− → bb̄ process

From Fig. 4.8 we can see that the NLO SM value of the forward-backward asym-

metry at Z peak in the large-mt limit is very close to the SM prediction, which

means the physical scale µt is a reasonable scale in predicting the forward-backward

asymmetry at the electroweak scale. The shift of forward-backward asymmetry due

to the SMEFT operators could be generally expressed as

δA
(6)
fb =

σ
(4)
Asym

σ
(4)
Sym

(
−
σ

(6)
Sym

σ
(4)
Sym

)
+
σ

(6)
Asym

σ
(4)
Sym

, (4.8.89)
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in which we have defined

σ
(d)
Asym =

∫ 1

0

dσ(d)

dΩ
dΩ−

∫ 0

−1

dσ(d)

dΩ
, σ

(d)
Sym =

∫ 1

0

dσ(d)

dΩ
dΩ +

∫ 0

−1

dσ(d)

dΩ
, (4.8.90)

where d = 4, 6.

Inserting the values of input parameters, we can obtain the numerical result of

the LO EFT correction to the cross-section at Z peak in dimension-six SMEFT:

δσ(6,0) =
1

Λ2

(
2.17337 · 106C̃Hb + 1.00681 · 106C̃He − 1.25168 · 106C̃

(1)
Hl

−1.17991 · 106C̃
(3)
Hl − 1.30399 · 106C̃

(1)
Hq − 1.30399 · 106C̃

(3)
Hq + 511.365C

(1)
lq

+511.365C̃
(3)
lq + 5.11365 · 102C̃eb + 5.11365 · 102C̃lb − 3.58804 · 104C̃ll

+5.11365 · 102C̃qe + 1.89214 · 106C̃HD + 4.77194 · 106C̃HWB

)
.

(4.8.91)

And the NLO numerical EFT corrections are

δσ(6,1) =
1

Λ2

(
1.33936 · 104C̃Hb + 2.68963 · 104C̃He + 2.46264 · 104C̃

(1)
Hl

+1.68147 · 105C̃
(3)
Hl − 1.88730 · 104C̃

(1)
Hq − 6.04193 · 104C̃

(3)
Hq + 7.98682 · 102C̃

(1)
lq

+3.39398 · 106C̃
(3)
lq + 2.38262C̃eb + 2.38262C̃lb − 7.17605 · 104C̃ll

+79.8682C̃qe − 2.6339 · 104C̃HD + 1.87414 · 102C̃Ht + 1.04460 · 105C̃HWB

1.60261 · 104C̃(1)
qq − 1.74154 · 104C̃(3)

qq + 4.23562 · 102C̃
(1)
dd + 1.92525 · 102C̃

(1)
ud

−1.10309 · 103C̃(1)
qu − 2.17381 · 103C̃

(1)
qd

)
.

(4.8.92)

Through 4.8.91 and 4.8.92, we find that as in the SM case, roughly speaking, the

cross-section due to the NLO calculation changes the tree-level EFT correction only

by a few percents except for the C
(3)
lq term, which receive a shift due to ∆R(6,1),

which is a reasonable result that could be directly seen from 4.1.4.

According to the order in perturbative theory and power order in EFT, the

complete forward-backward asymmetry in the dimension-six SMEFT can be divided

into four parts:

δASMEFT
fb = A

(4,0)
fb + A

(4,1)
fb + δA

(6,0)
fb + δA

(6,1)
fb , (4.8.93)
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in which the tree-level EFT numerical correction is

δA
(6,0)
fb =

1

Λ2

(
−6.72941 · 103C̃Hb − 9.22652 · 104C̃He − 8.46914 · 104C̃

(1)
Hl

−9.62913 · 104C̃
(3)
Hl − 7.99348 · 103C̃

(1)
Hq − 7.99348 · 103C̃

(3)
Hq + 36.6943C̃

(1)
lq

+1.72582 · 104C̃
(3)
lq + 36.6943C̃eb − 48.9561C̃lb + 5.79993 · 103C̃ll

−48.9561C̃qe + 1.40548 · 105C̃HD + 1.73060 · 105C̃HWB

)
.

(4.8.94)

Using the result in 4.8.81, we find the total EFT numerical correction up to NLO

for Afb is

δA
(6)
fb = δA

(6,0)
fb + δA

(6,1)
fb

=
1

Λ2

(
−6.70038 · 103C̃Hb − 9.16456 · 104C̃He − 7.99811 · 104C̃

(1)
Hl

−6.75213 · 104C̃
(3)
Hl − 5.37357 · 103C̃

(1)
Hq − 5.67248 · 103C̃

(3)
Hq + 37.1437C̃

(1)
lq

+1.72587 · 104C̃
(3)
lq + 36.6659C̃eb + 1.40547 · 105C̃HD + 1.1627C̃Ht

+1.60080 · 105C̃HWB − 48.9847C̃lb − 6.22994 · 103C̃ll − 49.6197C̃qe

99.4018C̃(1)
qq − 1.08018 · 102C̃(3)

qq − 12.7867C̃
(1)
dd − 5.81193C̃

(1)
ud

−6.84184C̃(1)
qu + 29.4381C̃

(1)
qd

)
.

(4.8.95)

To show the impacts of Wilson coefficients on the forward-backward asymmetry

in the SMEFT, we perform a chi-squared analysis. According to our numerical

results, the contributions from different Wilson coefficients have huge gaps from

each other, so a global fit will be not appropriate. Alternatively, we analyse each

Wilson coefficient respectively. According to [13], the SM fit value of Afb is 0.1038,

and the measurement value of Afb is 0.0992± 0.0016. Accordingly, the chi-squared

of A
(6)
fb can be defined as

A
(6)
fb = δA

(6)
fb + 0.1038,

∆X2

A
(6)
fb

=

(
A

(6)
fb − 0.0992

)2

(0.0016)2 .

(4.8.96)

All the plots according to the chi-squared analysis are given as what follows.
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Figure 4.9 The chi-squared of Afb for four-fermion Wilson coefficients
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Figure 4.10 The chi-squared of Afb for Cll
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Figure 4.11 The chi-squared of Afb for C
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Figure 4.12 The chi-squared of Afb for C
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Hl
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Figure 4.13 The chi-squared of Afb for C
(3)
Hl
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Figure 4.14 The chi-squared of Afb for C
(1)
Hq
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Figure 4.15 The chi-squared of Afb for C
(3)
Hq
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Figure 4.16 The chi-squared of Afb for C
(1)
He



4.8. Phenomenology and Numerical Results 113

-1.0 -0.5 0.0 0.5 1.0
CHb

(1)

5

10

15

20

25

Δχ2

CHb
(1)

σ

2σ

3σ

4σ

5σ

(a) Λ = 500 GeV

-1.0 -0.5 0.0 0.5 1.0
CHb

(1)

5

10

15

20

25

Δχ2

CHb
(1)

σ

2σ

3σ

4σ

5σ

(b) Λ = 1.0 TeV

-1.0 -0.5 0.0 0.5 1.0
CHb

(1)

5

10

15

20

25

Δχ2

CHb
(1)

σ

2σ

3σ

4σ

5σ

(c) Λ = 1.5 TeV

-1.0 -0.5 0.0 0.5 1.0
CHb

(1)

5

10

15

20

25

Δχ2

CHb
(1)

σ

2σ

3σ

4σ

5σ

(d) Λ = 2.0 TeV

Figure 4.17 The chi-squared of Afb for C
(1)
Hb
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-1.0 -0.5 0.0 0.5 1.0

CHD

5

10

15

20

25

Δχ2

CHD

σ

2σ

3σ

4σ

5σ

(d) Λ = 2.0 TeV

Figure 4.18 The chi-squared of Afb for CHD
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Figure 4.19 The chi-squared of Afb for CHWB

In these plots we choose to vary each Wilson Coefficient from −1 → 1 for four

fixed values of Λ, in which see how each Wilson Coefficient affects the Afb . Generally

speaking, the EFT corrections due the Class 8 operators are much smaller compared

to the Class 7 and Class 4 contributions, however, Cll and C
(3)
lq are exceptions, since

their influences on Afb receive extra tone-up due to their influences on the input

parameter GF . Therefore in the plots of Fig. 4.9 for the four-fermion Operators

except Cll and C
(3)
lq , only the Λ = 500 GeV case is given, since in the other three

cases the influences of these Class 8 Wilson coefficients are very small. Moreover,

the influence of the Class 7 Wilson coefficient CHt which only contributes at the

NLO is too small so that it is even not obvious in the Λ = 500 GeV case, therefore

the plots of CHt are absent. For all the other Wilson coefficients, the corrections

could be clearly seen even in the Λ = 2.0 TeV case.

4.8.2 The EFT Effects on The e+e− → bb̄ Cross-Section

In this section, we focus on the EFT corrections of the cross-section of the e+e− →
bb̄ process for different energy scales up to one-loop. As in 4.8.1, we perform a

full analysis for each Wilson Coefficient respectively. However, there are several
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hundreds of plots all together, so we decide to only choose several interesting typical

plots in the case Λ = 1.0 TeV. Generally, the Wilson Coefficients involved can be

divided into three categories. The first category includes the Wilson Coefficients that

contribute both at LO and NLO. Accordingly, CHb, CHe, C
(1)
Hl , C

(3)
Hl , C

(1)
Hq and C

(3)
Hq

belong to this category. CHt that only takes part in the one-loop contribution and

Cll can also be grouped into this category, the reason of which will be explained later

soon. The second category includes the four-fermion Wilson coefficients which only

contribute at the tree-level, i.e. Clb, Ceb, Cqe, C
(1)
lq and C

(3)
lq . And the four-fermion

Wilson coefficients which only contribute at one-loop belongs to the third category,

which include C
(1)
qq , C

(3)
qq , Cdd, C

(1)
ud , C

(1)
qu and C

(1)
qd . We choose only one typical Wilson

Coefficient in each category, they are C
(1)
qq , Ceb and C

(1)
Hq respectively. In the following

plots, four typical values of
√
s are selected for each Wilson Coefficient, they are

500 GeV, 1.0 TeV, 1.5 TeV and 2.0 TeV.
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Figure 4.20 The cross-sections for C
(1)
Hq for four different

√
s when Λ = 1.0 TeV

for the e+e− → bb̄ process
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Figure 4.21 The cross-sections for Ceb for four different
√
s when Λ = 1.0 TeV

for the e+e− → bb̄ process
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Figure 4.22 The cross-sections for C
(1)
qq for four different

√
s when Λ = 1.0 TeV

for the e+e− → bb̄ process

In Fig. 4.20, we can see that for C
(1)
Hq the ratio of EFT shift and the SM prediction

is roughly kept unchanged for different
√
s. The other Wilson Coefficients in this

category generate similar plots. In these plots, the EFT corrections are always
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smaller than the SM values. Note that the topologies of relevant diagrams are the

exactly the same as some of the SM diagrams both at LO and one-loop NLO. As

a result, with the increment of
√
s, the decrease of the cross-section due to these

Wilson Coefficients will be similar to the SM case as well. Recall that the one-loop

diagram of CHt also has the same topology as the one of the SM one-loop diagram,

and the δA
(6,0)
GF

and δA
(6,1)
GF

are directly built from the SM amplitudes, both CHt

and Cll can be grouped into this category. Moreover, the cross-section for C
(1)
Hq also

receives a shift from δA
(6,1)
GF

, but that does not change the basic feature mentioned

above.

In Fig. 4.21, we find that as the energy increases, the ratio of EFT shift and the

SM prediction gets larger too. This is not hard to understand since the scattering

amplitudes due to these four-fermion Wilson Coefficients are not suppressed by 1/s

or 1/(s−M2
Z). In this category, the cross-section for C

(1)
lq also receives a shift due to

δA
(6,1)
GF

which behaves similarly like the tree level SM cross-section. However, when
√
s is large enough, the contribution from the tree level four-fermion interaction will

be dominating since it is not suppressed by 1/s or 1/(s−M2
Z).

In Fig. 4.22, one can observe similar curves as in Fig. 4.21, though the magnitude

of the ratio is not as large as the former one. Generally speaking, the NLO cross-

section corrections due to these four-fermion Wilson Coefficients in this category

are much smaller than the corrections due to those four-fermion Wilson Coefficients

that contribute at tree-level. All the diagrams due to these Wilson Coefficients share

the same topology that does not appears in the SM case. As a result, the plots are

similar for different Wilson Coefficients in this category. It is worth to emphasize

that the correction due to C
(3)
qq will change the sign when

√
s increases to a certain

value. This behaviour originates from the minus sigh appearing in the expansion

of the operator Q
(3)
qq which can be found in Table 4.1. The correction due to C

(3)
qq

includes contributions from both structure (1) and structure (2). Actually, we find

that the amplitudes due to these two different structures behave differently when
√
s changes.
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Chapter 5

Conclusions

In this thesis, we mainly investigate the applications of two kinds of Effective Field

Theories, namely a Simplified Model for tt̄X interactions and the dimension-six

Standard Model Effective Field theory. To start with, a brief review of the Standard

Model is given in Chapter 1, including an introduction to two processes in SM which

are inextricably linked with the research in Chapter 4. In chapter 2, a general

introduction to effective field theories is given followed by the detailed introduction

of these two effective field theories mentioned above.

In Chapter 3, a simplified model is adopted to investigate the searches for tt̄X

production at the LHC are sensitive to a new resonance X coupled to the third

generation quarks. If X is discovered, a further measurement of its parity and spin

will be essential for revealing the underlying new physics scenario. In this work we

assumed a class of simplified models to describe the couplings between X and the

third generation quarks, with X being a scalar, pseudoscalar, vector, or axial vector.

Then we sought kinematic variables that are helpful for determining parity and spin

quantum numbers and investigated the expected sensitivity through detailed simu-

lations. We have proposed four parton-level variables which exhibit different shapes

for different models. Two of them are defined in the tt̄X CM frame. Therefore, using

them requires a nearly full reconstruction of two tops and the resonance X, which

can be achieved in the semi-leptonic channel. We have carried out the reconstruction

procedure based on simulations in this channel and estimated the LHC sensitivity

for discovery. We constructed the detector-level counterparts of the parton-level

119
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variables and observed that their distributions preserve the important features for

discrimination between the different simplified models. A CLs hypothesis test has

been performed to evaluate the sensitivity of discrimination separately based on

each variables. We found that the scalar is the easiest one to be distinguished from

others while the hardest case is to discriminate between the pseudoscalar and the

axial vector. Further improvements to our analysis could be made by utilising jet

substructure techniques to suppress the background more, and to allow a more ac-

curate attribution of the b-jets used in the top and X reconstruction. It would also

be interesting to perform a combined analysis of leptonic and semi-leptonic final

states to see the ultimate sensitivity of the LHC. We leave this for future work.

In chapter 4, we mainly investigate the e+e− → bb̄ process up to NLO in the

framework dimension-six SMEFT. Numerical analysis is provided for the forward-

backward asymmetry and the cross-section, we explored the Z → bb̄ process as

well without the numerical results. Firstly, we calculate the LO amplitudes for the

two processes. In the LO calculation, we expressed the effective left-handed and

right-handed Z boson couplings to fermions in terms of the bare quantities in the

SM. In order to compute the EFT corrections up to NLO, we choose to perform

the wavefunction, mass, and electric charge renormalisation in the on-shell scheme,

while the operator renormalisation was done in the MS scheme. Following the

renormalisation procedure in the SM, we found the way to build the counterterms

for the two processes in the SMEFT. The one-loop renormalised matrix elements

for Class 8, Class 7, and Class 4 were then obtained, in which step, we have shown

how the cancellations of UV divergences occur. The cancellation of UV divergences

was illustrated in a detailed way for the Z → bb̄ process, which could be extended

to the e+e− → bb̄ process straightforwardly. In the NLO Class 8 case, only the

operators altering the Z boson couplings to fermions were calculated up to NLO,

since their contributions will dominate on the Z resonance. Finally, the numerical

results of the forward-backward asymmetry and the cross-section of the e+e− → bb̄

process were obtained. We computed the forward-backward asymmetry at Z peak

in the SMEFT for Wilson coefficients defined at the scale µ = mt, which is a

reasonable choice for observables measured at the electroweak scale. Then the cross-
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sections for different Wilson Coefficients defined at the same scale were calculated,

whose numerical results can be translated by RG equations into their high-energy

forms at µ = ΛNP , where ΛNP is the scale for the new physics. According to

the numerical results, the corrections to cross-section due to the NLO contribution

are not obvious on the Z resonance, which could be neglected compared to the

LO’s contribution within the current experimental precision. However, the NLO

corrections to the forward-backward asymmetry in the SMEFT are important and

can not be neglected, especially for the Class 7 operators. The forward- backward

asymmetry is mostly sensitive to the Class 7 operators, Cll, C
(3)
lq , CHWB and CHD.

And the cross-section is mostly sensitive to those four-fermion Wilson coefficients

which contribute at tree-level. Extending SMEFT calculations to NLO will improve

the accuracy of the theoretical predictions, which will become increasingly important

in the future.
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Appendix A

Basic and Auxiliary Results

A.1 Independent Dimension-six Operators in the

Warsaw Basis

The 59 baryon number conserving operators in the Warsaw Basis [36] of dimension-

six operators are listed in this section.
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Class 1: X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW εIKJW Iν
µ WKρ

ν W Jµ
ρ

QW̃ εABCW̃ Iν
µ WKρ

ν W Jµ
ρ

Class 2: H6

QH (H†H)3

Class 3: H4D2

QH2 (H†H)2(H†H)

QHD (H†DµH)(H†DµH)

Class 4: X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†HG̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

QHW̃ H†HW̃ I
µνW

Iµν

QHB H†HWµνW
µν

QHB̃ H†HB̃µνB
µν

QHWB H†τ IHW I
µνB

µν

QHW̃B H†τ IHW̃ I
µνB

µν

Class 5: φ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QeH (H†H)(q̄pdrH)

Class 6: φ2XH + h.c.

QeW (l̄pσ
µνer)τ

IHW I
µν

QeB (l̄pσ
µνer)HBµν

QuG (q̄pσ
µνTAur)H̃G

A
µν

QuW (q̄pσ
µνur)τ

IH̃W I
µν

QuB (q̄pσ
µνur)H̃Bµν

QdG (q̄pσ
µνTAdr)HG

A
µν

QdW (q̄pσ
µνdr)τ

IHW I
µν

QdB (q̄pσ
µνdr)HBµν

Class 7: φ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγ

µlr)

Q
(3)
Hl (H†i

←→
D µH)(l̄pτ

Iγµlr)

QHe (H†i
←→
D µH)(ēpγ

µer)

Q
(1)
Hq (H†i

←→
D µH)(q̄pγ

µqr)

Q
(3)
Hq (H†i

←→
D µH)(q̄pτ

Iγµqr)

QHu (H†i
←→
D µH)(ūpγ

µur)

QHd (H†i
←→
D µH)(d̄pγ

µdr)

QHud i(H̃†
←→
D µH)(ūpγ

µdr)
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Class 8: (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγ
µlt)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt)

Class 8: (R̄R)(R̄R)

Qee (ēpγµer)(ēsγ
µet)

Quu (ūpγµur)(ūsγ
µut)

Qdd (d̄pγµdr)(d̄sγ
µdt)

Q
(1)
eu (ēpγµer)(ūsγ

µut)

Qed (ēpγµer)(d̄sγ
µdt)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt)

Class 8: (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγ
µet)

Qlu (l̄pγµlr)(ūsγ
µut)

Qld (l̄pγµlr)(d̄sγ
µdt)

Q
(1)
qe (qpγµqr)(ūsγ

µut)

Q
(1)
qu (qpγµqr)(ūsγ

µut)

Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

Class 8: (L̄R)(L̄R)

Q
(1)
quqd (q̄jpur)εjk(q̄

k
sdt)

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄
k
sT

Aut)

Q
(1)
lequ (l̄jper)εjk(q̄

k
sut)

Q
(8)
lequ (l̄jpT

Aer)εjk(q̄
k
sT

Aut)

Class 8: (L̄R)(R̄L)

Qledq (l̄jper)(d̄sqtj)
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A.2 Large-mt Limit and Vanishing-mb Limit

The large-mt procedure can be found in [108]. I will also give a introduction here

according to our calculations. In order to determine the large-mt corrections in

the one-loop diagrams, all fermion masses but the masses of top quark have to

be neglected in the integrals appearing in the one-loop scattering amplitudes. The

details of taking large-mt procedure could be illustrated by explaining the calculation

of following one-loop SMEFT diagram in the Z → bb̄ reaction, in which process the

SM contribution the will be neglected. Three Class 7 operators are involved, in

which C
(1)
Hq and C

(1)
Hq alter the left-handed coupling and CHt alter the right-handed

coupling. The coupling of the quarks to the Goldstone bosons is also affected by the

Class 7 operators, but they are not considered here for simplification. In the flavour

symmetry limit, the amplitude of the above diagrams in the Feynman gauge can be

expressed as:

iA = i
2e

v2
T

∫
ddl

2πd
ū(pb)

(
(mbPL −mtPR)

1

(l − pb)2 −M2
W

/l +mt

l2 −m2
t

v2
T

2

((
C

(1)
Hq − C

(3)
Hq

)
PL + CHtPR

)
(
/l − /pb − /pb̄

)
+mt

(l − pb − pb̄)2 −m2
t

(mtPL −mbPR)

 v(pb̄)ε
µ
Z ,

(A.2.1)

where we have replaced the bare vev v̂t with vT , since the difference only arise at

the order Λ4, thus can be neglected. Again, all the couplings are written in the

broken phase. In the following calculations, we set mb → 0 in the large-mt limit.

For convenience, the amplitude can be split into finite part and divergent part as

iA = i
e

16π2v2
T

ū(pb)v(pb̄)ε
µ
Z

(
Afin + Adiv

)
. (A.2.2)

The amplitude has been given in 4.5.52, it turns out that the left-handed coupling

vanishes in the divergent part, only CHt is left in the divergent part:

iAdiv =
1

ε
M2

Zm
2
tCHt. (A.2.3)



A.2. Large-mt Limit and Vanishing-mb Limit 127

And the finite amplitude can be reduced by using the scalar integrals:

iAfin = −
(
CHt

(
M2

Z + 2
(
m2
t −M2

W

)
B̂0

[
m2
b ,m

2
t ,M

2
W

]
−
(
2m2

t − 2M2
W +M2

Z

)
B̂0

[
M2

Z ,m
2
t ,m

2
t

])
+ 2

(
CHt

(
m2
t −M2

W

)2

+
(
C

(1)
Hq + C

(3)
Hq

)
m2
tM

2
Z

)
Ĉ0[M2

Z ,m
2
b ,m

2
b ,m

2
t ,m

2
t ,M

2
W ]

)
,

(A.2.4)

where only the finite parts of these integrals are reserved, which are marked as

”hatted” symbols. There are two kinds of scalar integrals apearing in the above

expression: scalar two-point integral and three-point integral. Actually, scalar one-

point integral will also be needed to calculate Class 8 one-loop corrections, which is

denoted as A [m2
i ], usually with i = t, b in our case. The scalar one-point integral is

very simple:

A0 =
m2
i

ε
+ Â0m

2
i =

m2
i

ε
+m2

i

(
1 + ln

[
m2
i

µ2

])
. (A.2.5)

In the large-mt limit, we can simply have Â09m2
i 0 = 0. For the other scalar integrals,

the general result of these integrals should be expanded into a series of 1/mt and

taking the limit mt →∞. According the parameters apearing in the integral, there

are two general cases for the scalar two-point integral:

lim
mt→∞

B̂0

[
m2

1,m
2
t ,m

2
2

]
= 1 +

1

m2
t

(
m2

1

2
+m2

2 ln

[
m2

2

m2
t

])
− ln

[
m2
t

µ2

]
lim

mt→∞
B̂0

[
m2

1,m
2
t ,m

2
t

]
=

m2
1

6m2
t

− ln

[
m2
t

µ2

]
.

(A.2.6)

Furthermore, there are usually gauge boson mass terms like MW and MZ appearing

in the integral. In the vanishing gauge couplings limit, the positive powers of gauge

boson masses could also be neglected together with the fermion masses with excep-

tion of the top-quark mass. In such a way, the two-point integral could be simplified

a lot. Now we write down the two two-point integrals in A.2.4:

lim
mt→∞

B̂0

[
m2
b ,m

2
t ,M

2
W

]
= 1− ln

[
m2
t

µ2

]
, lim

mt→∞
B̂0

[
M2

Z ,m
2
t ,m

2
t

]
= 0− ln

[
m2
t

µ2

]
(A.2.7)

. For the three-point integral that are related to the triangle one-loop diagrams, the

large-mt reduction could be done in a similar way. Now we consider the integral in

A.2.4:

lim
mt→∞

Ĉ0[M2
Z ,m

2
b ,m

2
b ,m

2
t ,m

2
t ,M

2
W ]→ lim

mt→∞
Ĉ0

[
0, 0, 0,m2

t ,m
2
t , 0
]

(A.2.8)
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. Then we find that the finite part of the amplitude that we consider here can take

a very simple form:

Afin =

(
−2
(
C

(1)
Hq + C

(3)
Hq

)
+ CHt

(
1 + ln

[
m2
t

µ2

]))
v2
T (A.2.9)

.

For convenience, we sum up those integrals we might encounter in the calculation

of one-loop amplitudes in the e+e− → bb̄:

B̂0

[
b,m2

b ,m
2
t

]
= 1− ln

[
m2
t

µ2

]
+

(
b

2
− m2

b

m2
t

ln

[
m2
t

µ2

])
,

B̂0

[
s,m2

t ,m
2
t

]
=

b

6m2
t

− ln

[
m2
t

µ2

]
,

B̂0

[
M2

W ,m
2
b ,m

2
t

]
= 1− m2

b

m2
t

ln

[
m2
t

m2
b

]
− ln

[
m2
t

µ2

]
+

1

2

M2
W

m2
t

,

B̂0

[
m2
b ,m

2
t , a

2b
]

= 1 +
1

m2
t

(
m2
b

2
+ b ln

[
1

m2
t

])
− ln

[
m2
t

µ2

]
,

˙̂
B0

[
m2
b ,m

2
t , b
]

= 1 +

(
m2
b + 0

(
b ln [b] +

b

m2
t

ln

[
1

m2
t

]))
− ln

[
m2
t

µ2

]
,

˙̂
B0

[
m2
b ,m

2
t , b
]

=
1

2m2
t

,

˙̂
B0

[
m2
b ,m

2
t , a

2b
]

=
1

2m2
t

,

B̂0

[
a2b,m2

b ,m
2
t

]
= 1− ln

[
m2
t

µ2

]
+

(
b

2
− m2

b

m2
t

ln

[
m2
t

m2
b

])
,

B̂0

[
b,m2

t ,m
2
t

]
=

b

6m2
t

− ln

[
m2
t

µ2

]
,

B̂0

[
m2
H , a

2M2
W , a

2M2
W

]
= B̂0[m2

H ,M
2
W ,M

2
W ]− ln

[
m2
H

µ2

]
,

˙̂
B0

[
m2
H ,m

2
t ,m

2
t

]
=

1

6m2
t

C0

[
s,m2

b ,m
2
b ,m

2
t ,m

2
t ,m

2
W

]
= − 1

m2
t

− 1

12

s

m2
t

,

C0

[
m2
b , s,m

2
b ,m

2
b ,M

2
W ,M

2
W

]
= − 1

m2
t

(
1 + iπ + ln

[
m2
t

s

])
,

(A.2.10)

However, in the numerical calculation, we would choose the vanishing-mb limit

rather than the large-mt limit. In such a case, we set the mass of bottom-quark as

zero together with the other non-t-quark masses, but keeping the masses of gauge

bosons. The scalar integrals in the calculation of one-loop diagrams in the e+e− → bb̄
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process in the vanishing-mb limit are listed below:

lim
mb→0

B̂0

[
m2
b ,m

2
t ,M

2
W

]
= 1 +

(
M2

W

(
m2
t +M2

W

)
ln

[
m2
t

µ2

])
− ln

[
m2
t

mu2

]
,

lim
mb→0

B̂0

[
s,m2

t ,m
2
t

]
=

s

6m2
t

− ln

[
m2
t

µ2

]
,

lim
mb→0

Ĉ0

[
s,m2

b ,m
2
b ,m

2
t ,m

,
2M

2
W

]
= − 1

m4
t

(12m2
t + 12M2

W + s+ 12M2
W ln

[
M2

W

m2
t

]
),

lim
mb→0

B̂0

[
s,M2

W ,M
2
W

]
= 2− m2

t

µ2
+
m2
t

s
− ln

[
1 + z2

4

]
+ izln

[
i+ z

−i+ z

]
,

lim
mb→0

Ĉ0

[
m2
b , s,m

2
b ,m

,
2M

2
W ,M

2
W

]
=

1

m2
t

(
−1 +

M2
W

m2
t

+ iz ln

[
−−2M2

W + s+ izs

2M2
W

])
,

(A.2.11)

in which z =

√
4M2

W

s
− 1.

A.3 Cancellation of UV Divergence for Class 8

Operators in the Z → bb̄ Process

In the following I will show how to build the counterterms and how they cancel

the UV divergence for the Z → bb̄ process. All the One-loop UV divergent terms

and Counterterms for each Wilson Coefficient could be obtained from 4.4. For

simplicity’s sake, I just show the original form of the one-loop UV divergent terms

and the corresponding counterterms. For convenience, we denote the Hyper charge

as yi and the Yukawa coupling as Yi for a particle i in this section, where the Hyper

charge of Higgs is yH = 1/2.

Secondly we consider the L̄LL̄L operators. For Q
(1)
qq , three kinds of diagrams are

included, we will list their UV divergent terms respectively. According to 4.4, the

UV divergent term of 2(t̄γµ)(b̄γµb)(1) is

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNc

[
2 (gtL − gtR)m2

t − 2
3
gtLM

2
Z

]
16π22ŝwĉw

C(1)
qq

= −2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ē2Ncm

2
t

16π22ŝwĉw
C(1)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNc(

−1
3

)M2
Z + ēNc(

4
9
)s2M2

Z

16π22ŝwĉw
C(1)
qq .

(A.3.12)
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For 2(b̄γµb)(b̄γ
µb)(1), the UV divergent term is

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNc

[
2
(
gbL − gbR

)
m2
b − 2

3
gbLM

2
Z

]
16π22ŝwĉw

C(1)
qq

= −2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ē2Ncm

2
b

16π22ŝwĉw
C(1)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNcM

2
Z + ēNc(

−2
9

)s2M2
Z

16π22ŝwĉw
C(1)
qq .

(A.3.13)

For 2(b̄γµb)(b̄γ
µb)(2), the UV divergent term is

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ē [2(gbL − gbR)m2

b − 2
3
gbLM

2
Z

]
16π22ŝwĉw

C(1)
qq

= −2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ē2m2

b

16π22ŝwĉw
C(1)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēM2

Z + ē(−2
9

)s2M2
Z

16π22ŝwĉw
C(1)
qq .

(A.3.14)

Summing the above divergent terms up, we have

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ē2Ncm

2
t

16π22ŝwĉw
C(1)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ē2Ncm

2
b

16π22ŝwĉw
C(1)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ē2m2

b

16π22ŝwĉw
C(1)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNc(

2
9
)ŝ2
wM

2
Z

16π22ŝwĉw
C(1)
qq

− 2i
1

ε

〈
b̄Lγ

µbL
〉 ēM2

Z + ē(−2
9

)ŝ2
wM

2
Z

8π22ŝwĉw
C(1)
qq .

(A.3.15)

Following the renormalisation procedure in 4.2, we can obtain the counterterms for

Q
(1)
qq , they are

iδ = i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēv2

T (4NcY
2
t )

16π22ŝwĉw
C(1)
qq

+ i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēv2

T (−4NcY
2
b )

16π22ŝwĉw
C(1)
qq

+ i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēv2

T (−4Y 2
b )

16π22ŝwĉw
C(1)
qq

+ i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēv2

T
16
3
Ncg

2
1yHyq

16π22ŝwĉw
C(1)
qq

+ i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 ev2

T
8
3
g2

1yHyq

16π22ŝwĉw
C(1)
qq

+ i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēv2

T
2
3
g2

2

16π22ŝwĉw
C(1)
qq .

(A.3.16)
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For the Q
(3)
qq operator, four types one loop diagrams are included. We simply list

the UV Divergent parts of the amplitudes and the relevant counterterms. The UV

divergent term arising from 4(t̄γµt)(b̄γ
µb)(2) is

− 4i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ē [2 (gtL − gtR)m2

t − 2
3
gtLM

2
Z

]
16π22ŝwĉw

C(3)
qq

− 4i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ē2m2

t

16π22ŝwĉw
C(3)
qq

− 4i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 e(−1

3
)M2

Z + ē
(

4
9

)
ŝ2
wM

2
Z

16π22ŝwĉw
C(3)
qq .

(A.3.17)

in which the UV divergent part due to −2(t̄γµt)(b̄γ
µb)(1) is

2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNc

[
2 (gtL − gtR)m2

t − 2
3
gtLM

2
Z

]
16π22ŝwĉw

C(3)
qq

= 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ē2Ncm

2
t

16π22ŝwĉw
C(3)
qq

+ 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNc(

−1
3

)M2
Z + ēNc(

4
9
)ŝ2
wM

2
Z

16π22ŝwĉw
C(3)
qq ,

(A.3.18)

the UV divergent part due to 2(b̄γµb)(b̄γ
µb)(1) is

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNc

[
2
(
gbL − gbR

)
m2
b − 2

3
gbLM

2
Z

]
16π22ŝwĉw

C(3)
qq

= −2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ē2Ncm

2
b

16π22ŝwĉw
C(3)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNcM

2
Z + ēNc

(−2
9

)
ŝ2
wM

2
Z

16π22ŝwĉw
C(3)
qq ,

(A.3.19)

and the UV divergent part due to 2(b̄pγµb)(b̄sγ
µb)(2) is

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ē [2 (gbL − gbR)m2

b − 2
3
gbLM

2
Z

]
16π22ŝwĉw

C(3)
qq

= −2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ē2m2

b

16π22ŝwĉw
C(3)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēM2

Z + ēNc

(−2
9

)
ŝ2
wM

2
Z

16π22ŝwĉw
C(3)
qq .

(A.3.20)

Adding all these UV divergent parts up, we can obtain the total UV divergent terms



A.3. Cancellation of UV Divergence for Class 8 Operators in the Z → bb̄
Process 132

for Q
(3)
qq , they are

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ē2Ncm

2
t

16π22ŝwĉw
C(3)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ē2Ncm

2
b

16π22ŝwĉw
C(3)
qq

− 4i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ē2m2

t

16π22ŝwĉw
C(3)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ē2m2

b

16π22ŝwĉw
C(3)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNc(

2
3
M2

Z) + ēNc(
−2
3

)ŝ2
wM

2
Z

16π22ŝwĉw
C(3)
qq

− 2i
1

ε
εµZ
〈
b̄Lγ

µbL
〉 ē(−1

3
M2

Z) + ēNc(
2
3
)ŝ2
wM

2
Z

16π22ŝwĉw
C(3)
qq .

(A.3.21)

The corresponding counterterms for Q
(3)
qq are

iδ = −i1
2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ēv2

T (−4NcY
2
t )

16π22ŝwĉw
C(3)
qq

+ i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēv2

T (8Y 2
t )

16π22ŝwĉw
C(3)
qq

+ i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ēv2

T (4NcY
2
b )

16π22ŝwĉw
C(3)
qq

+ i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 −ēv2

T (4Y 2
b )

16π22ŝwĉw
C(3)
qq

+ i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēv2

T8Ncg
2
1yHyq

16π22ŝwĉw
C(3)
qq

+ i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēNcv

2
T

4
3
g2

2

16π22ŝwĉw
C(3)
qq

i
1

2

1

ε
εµZ
〈
b̄Lγ

µbL
〉 ēv2

T
−2
3
g2

2

16π22ŝwĉw
C(3)
qq ,

(A.3.22)

which exactly cancel the UV terms.

Secondly we consider the R̄RR̄R operators. For Q
(1)
ud , there is only one diagram

involved, which corresponds to (t̄γµt)(b̄γ
µb)(1). The UV divergent amplitudes of

this diagram are

− i1
ε
εµZ
〈
b̄Rγ

µbR
〉 ēNc

[
2 (gtR − gtL)m2

t − 2
3
gtRM

2
Z

]
16π22ŝwĉw

C
(1)
ud

= −i1
ε
εµZ
〈
b̄Rγ

µbR
〉 −ē2Ncm

2
t

16π22ŝwĉw
C

(1)
ud

− i1
ε
εµZ
〈
b̄Rγ

µbR
〉 ēNc(

4
9
ŝ2
wM

2
Z)

16π22ŝwĉw
C

(1)
ud ,

(A.3.23)
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and the corresponding counterterms are

i(
1

2
)
1

ε
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〈
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2
t )

16π22ŝwĉw
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ud

i(
1

2
)
1

ε
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〈
b̄Rγ
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T
4
3
Ncg

2
1yHyt

16π22ŝwĉw
C

(1)
ud .

(A.3.24)

For Qdd, there are two diagrams involved, which correspond 2(b̄γµb)(b̄sγ
µb)(1) and

2(b̄γµb)(b̄γ
µb)(1). The one-loop UV part for 2(b̄γµb)(b̄γ

µb)(1) is

− 2i
1

ε
εµZ
〈
b̄Rγ

µbR
〉 ēNc

[
2
(
gbR − gbL

)
m2
b − 2

3
gbRM

2
Z

]
16π22ŝwĉw

Cdd

= −2i
1

ε
εµZ
〈
b̄Rγ

µbR
〉 −ē2Ncm

2
b

16π22ŝwĉw
Cdd

− 2i
1

ε
εµZ
〈
b̄Rγ

µbR
〉 −ēNc

(
4
9
ŝ2
wM

2
Z

)
16π22ŝwĉw

Cdd,

(A.3.25)

whose corresponding counterterms are

i
1

2

1

ε
εµZ
〈
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2
b )
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+ i
1

2

1

ε
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〈
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T
8
3
Ncg

2
1yHyb

16π22ŝwĉw
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(A.3.26)

And the UV part for 2(b̄γµb)(b̄γ
µb)(2) is

− 2i
1

ε
εµZ
〈
b̄Rγ
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〉 ē [2 (gbL − gbL)m2
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3
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〉 ē(4

9
ŝ2
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(A.3.27)

whose corresponding counterterms are

i
1

2

1

ε
εµZ
〈
b̄Rγ

µbR
〉 ēv2
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(A.3.28)

At last we consider the (L̄L)(R̄R). For the operator Q
(1L)
qu , only one type of

diagram are included. For its expanded operator (t̄γµt)(b̄γ
µb)(1), the UV divergent

term is

− i1
ε
εµZ
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(A.3.29)
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and the corresponding counterterms are
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(A.3.30)

For the operator Q
(1)
qd , five types of diagrams are included. According to the

calculation, the amplitudes of two diagrams with structure (2) are zero. So on-

ly these types of operators are left to deal with, their expanded operators are

(t̄γµt)(b̄γ
µb)(1) + (b̄γµb)(b̄γ

µb)(1L) + (bγµb)(bγ
µb)(1R). For (t̄γµt)(b̄γ

µb)(1), the one-

loop UV divergent amplitude is
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ε
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〈
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C

(1)
qd

− i1
ε

〈
b̄Rγ

µbR
〉 ēNc(
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(A.3.31)

For (b̄γµb)(b̄γ
µb)(1R), the one-loop UV divergent amplitude is
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(A.3.32)

The diagrams for A.3.31 and A.3.32 both include right-handed b-quarks in the loop.

The sum of these two UV terms is
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(A.3.33)

which will be cancelled by the following counterterms:
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For (b̄γµb)(b̄γ
µb)(1L), the one-loop UV divergent amplitudes is
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(A.3.35)

whose corresponding diagram include left-handed b-quarks in the loop, will be can-

celled by the following counterterms
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