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Abstract

In this thesis two different types of effective field theories (EFTs) have been consid-
ered to give an interpretation to effects of physics beyond the Standard Model. The
first type of EFT is a so-called Simplified Models, in which the Standard Model is
extended by new scalar degrees of freedom A (CP-odd) and S (CP-eve), which give
rise to interactions of the type t£S and tfA with subsequent decay of S/A — bb. We
study the phenomenology of these processes at the LHC and find that the produc-
tion of ttA is suppressed compared to that of t£S. Using the Weyl-van-der-Waerden
spinor formalism we analyse the helicity amplitudes in order to explain this phe-

nomenorn.

In the second part of this thesis, we focus on the dimension-six Standard Model
Effective Field Theory (SMEFT) to calculate the next-to-leading order (NLO) elec-
troweak corrections to the forward-backward asymmetry in the process ee™ — bb.
We find that the NLO EFT corrections can not be neglected compared to the LO
EFT contributions. We show that relevant numerical results have been obtained,
which can be used to constrain the Wilson Coefficients involved in this process. We
calculate the amplitude of the Z — bb process and renormalise it together with the
ete™ — bb process. We have also analysed the NLO EFT corrections to the cross-
section of the eTe™ — bb process, which can be used to set limits on the Wilson

coefficients with future collider experiments.
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Chapter 1

An introduction to the Standard

Model of particle physics

1.1 Gauge Symmetries and Lagrangian

The Standard Model of particle physics (SM) describes the fundamental fields and
forces in the framework of quantum field theory (QFT) [1-3]. In realistic field
theories, the laws of physics can be expressed in terms of a least-action principle.
The symmetry principle requires the action of a field to remain unchanged under
certain transformations. As a relativistic theory, the Lagrangian should be invariant
under Lorentz transformations. As a result, the laws of conservation of momentum
and energy can be obtained through Noether’s theorem [4].
For a free matter field (fermion) the Lagrangian include a mass and kinetic term.
It can be written as
Lo =1 (i — m) 1, (1.1.1)
where ¢ = v#0,. It can be easily verified that this Lagrangian is a scalar under
Lorentz transformations. The relativistic wave equation for all fermion fields, known
as the Dirac equation, can be deduced from the Euler-Lagrange equation directly.
If we impose an additional global symmetry U(1) on a Dirac field, the Lagrangian

should be invariant under a phase transformation

V(@) = = e (x), (1.1.2)
1



1.1. Gauge Symmetries and Lagrangian 2

where ¢ is a constant factor which can be different for different types of particles.
According to Noether’s theorem, associated with this global symmetry, there should
be a conserved current j* = q¢y*¢) and a corresponding constant charge Q =
[ @z 3°. In Quantum electrodynamics (QED), a gauge or local symmetry U (1) is
required. Similar to the global case, the transformation of a local U (1) symmetry
could be expressed as

V(@) = = (), (1.1.3)
where the phase #(x) is no longer a constant but a function of the space-time coor-
dinate. Under this local transformation, the Lagrangian [1.1.1]is no longer a scalar.
To keep the Lagrangian invariant locally, the derivative in the kinetic term has to

be replaced by a covariant derivative
0, — Dy = 0, + ieqA,, (1.1.4)

where a auxiliary gauge field A, () is introduced. Under this local symmetry, the

gauge field A, (z) transforms like
, 1

The introduction of the covariant derivative will give birth to a interaction term in
the Lagrangian:

Liny = —eqy"y Ay, (1.1.6)
in which e and ¢ is respectively the interaction coupling and the charge. The gauge
field A, (z) is thus deemed as the force carrier that mediates the interaction under
the local U (1) symmetry. A complete Lagrangian should include all possible terms
that obey the symmetry principle. In the local U (1) case, a gauge invariant kinetic
term of the gauge field should be included into the Lagrangian. The complete Dirac

Lagrangian with interactions reads:

- 1
Lo = 0 — m)w — ¥, F", (1.1.7)
where ) = v*D,, and the field strength tensor F,, = 9,4, — 0,A,.. Note that the

mass term of the gauge field is not included in as such a term will break the

U (1) local symmetry:

1 1 1 1 1
§M§AMA“ — §Mj(AM — @aue)(fw — e—qaﬂe) # §M3AMA“. (1.1.8)
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In the U (1) example, as shown above, the requirement of gauge symmetry brings
interactions to the theory. Actually, this feature holds for all gauge symmetries,
which explains why symmetry principles play a core role in QFT. The property
of gauge symmetries can be described by group theory concepts. A general gauge

symmetry group G is an N-dimensional compact Lie group:
weE G, we(f) =e @ 4 =12 ..N, (1.1.9)

in which, 6*(z) is a real number, and the hermitian quantity 7, is the generator of
the group. The number of generators in this Lie group is N? — 1. These generators
obey the Lie algebra

T, T3] = i T, (1.1.10)

where f,;. is named as the structure constant. If f,,. = 0, the group is abelian,
otherwise it is non-abelian. In a gauge field theory, every field must belong to a
certain representation of the gauge group. In QED, the Dirac field transforms in the
fundamental representation of U (1). In a general non-abelian SU(N) gauge theory,

corresponding to N generators, N auxiliary gauge fields need to be introduced to

a

us where

retain the gauge symmetry invariance. We denote each gauge field as A
a =1,2,...N. Neglecting the coupling and charge, the associated gauge covariant

derivative can be defined as

D, = 0,0 + igA, (1.1.11)

where A, = Aj,-T, and g is the coupling constant. Under the gauge transformation,

the covariant derivative transforms as
D¢ () = w(z)Dy (z), (1.1.12)
and A, has to transform homogeneously as
A Al Aw! E -t
p— A = wAw —z;w@uw (1.1.13)

to make sure that the covariant derivative transforms correctly. In the first term
of [1.1.13] we recognize that the gauge field transforms according to the adjoint

representation of SU(N).
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The non-abelian gauge theory is known as Yang-Mills theory [5]. The Lagrangian
including the covariant derivative is also called the Yang-Mills Lagrangian. We

denote a generic SU(N) gauge field as WZ, then the Lagrangian can be written as
Lyy = —< 5 4N, (1.1.14)
where the eld strength tensor 7], is given by
FS, = 0W — 0O,WS + gfacWWS. (1.1.15)
After the expansion, the Yang-Mills Lagrangian can be divided into three parts:
1 a a a,V 124 a
Lkin - _Z(aNWI/ - al/Wu)<8uW T a w 7M)a
1 v
Leupic = _§gfabc(auW5 - @VWIS)Wb’ch’ , (1116)
1
Lquartic = _ZQQfabefcdeWSWBWC’MWd’V,

where Leoypic and Lqyartic are self-interaction terms. Such terms do not exist in abelian
gauge theories.
Now we are ready to write down all symmetry groups in the Standard Model,

which are

U(l)y © SU(2), © SU(3)e, (1.1.17)

where the subscript Y represents the hyper charge, L refers to the left-handed chiral
component, and ¢ stands for color. The U(1)y is a an abelian group, while SU (2),
and SU (3), are non-abelian groups. It needs to be emphasized that the left-handed
and right-handed components of fermions are treated differently in the Standard
Model. For a fermion field v, chiral fields could be obtained through the projection
operators as

1—~5 1+7°
27@@, Yp = Py = 27

in which, ¢, is a doublet under SU (2), transformations with an isospin charge

Y =Py = ¥, (1.1.18)

I = %, while 9 is a singlet with [ = 1. Using the property of these projection

operators, it is easy to verify that

Urr = Yribr = 0. (1.1.19)
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The fermion mass term can then be expressed in the helicity states:

—mppp = —my (Y +9r) (Yo + ¥r) = —my (Yrir + Yr¥r) (1.1.20)

which are not invariant under the gauge transformation of SU(2),. As a conse-
quence, all fermions in the gauge field theory have to be massless, which is obvious-
ly not confirmed by experimental observation. However, the problem can be solved
through the Higgs Mechanism, which will be introduced in

Applying the knowledge of abelian and non-abelian gauge theories, we can write

down the Yang-Mills part of the Standard Model Lagrangian:
1 14 v
Lyauge = —7(0u By — 0,B,)(9"B" = 9" B")

1
— Z(@Wf — &,WS + ngabCijWﬁ)(@“W“’” — O"W*H + QQbeCWb’“WC”’)
(@Gjé - &,Gf} + gszBchGg)(aﬂGA’y — PG+ gszBCGB’“GB’V)7
(1.1.21)

1

4

where B,, Wi a = 1,2,3 and G/‘j‘ A = 1,2,...8 are respectively associated with
U 1)y, SU(2); and SU (3)..

Corresponding to the three SU (2) bosons, there are 3 generators 7% = "—;, where

the 2 x 2 matrices 0% are Pauli matrices that are defined as:

ol = o = — : (1.1.22)

And in the SU (3) case, T4 = %, where the 3 x 3 matrices o4 are Gell-Mann

matrices [6] that are defined as:

010 0 —i 0 1 0 0
AM=1100 N=14i 0 0 AM=10 -10
000 0 0 0 0 0 0
00 1 00 —i 000
M=[o00o0 AX=100 0 AN=1001 (1.1.23)
100 i 0 0 010
00 1 = 0 0
AN=100 —i M= o0 & o0
0 i 0 i 0 -%
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Recall that fermions live in the fundamental representation of the gauge symme-
tries. Specifically, all the left-handed fermions in the Standard Model, i.e. quarks
and leptons, are doublets under SU (2), transformations, and all the right-handed
fermions are singlets. In the SU (3), case, quarks are triplets while leptons do not
take part in strong interactions governed by the SU (3), symmetry. Accordingly, a

quark and lepton field transforming under SU (2); can be separately expressed as

Uy, vy
QL = s UR,dR LL = s ER. (1124)

dr €L
According to the Standard Model, there are three generations of fermions, each
generation contains two types of quarks and two types of leptons as shown in[1.1.24]

We write down the three generations fields as follows:

ur, Cr, tL
) UR, dR ) CR, SR ) tR7bR
dy, SL by,
(1.1.25)
vy vy vy
» €R y MR y TR
er 1299 TL

The electric charges are different for the two fermions in each generation, and
their masses can be different as well. The mass gap between fermions in different
generations is very large. Unfortunately, The Standard Model does neither provide
an answer to the existence of three chiral generations nor to the mass gap between
different generations.

Note that there is no v term that represents the right-handed neutrino in|1.1.25,
since in the Standard Model the right-handed neutrino does not exist. However, ac-
cording to neutrino oscillation experiments, the three neutrinos should have very
small masses. New methods like the so-called seesaw mechanism have been intro-
duced in order to solve this problem [7]. However, the details of such mechanisms
would not be introduced in this thesis, since they are not important to our work.

All gauge fields mentioned above are Lorentz invariant, which means one can not
a Lorentz gauge transformation on a gauge field can not affect the physical state of
the gauge field. For example, in QED we can take the gauge Lagrangian

1

, 1
Lgauge = _ZFMVFM - i (aMAM)Q (1126)
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According to the Lorentz gauge condition [8], 0,A* = 0. As a result, we can
choose the value of ¢ arbitrarily. Different choices of ¢ lead to different ”gauges”.
Specifically, £ = 0 refers to " Landau Gauge” and £ = 1 is called ”"Feynman Gauge”.
Another common choice £ — oo is known as ” Unitary Gauge”.

Until now we have introduced all the gauge symmetries in the Standard Model
and obtained the associated Lagrangian. In QFT, by computing the correlation
functions, one can translate the Lagrangian into Feynman rules that can be directly

used to calculate the probability amplitudes order by order in perturbation theory.

1.2 Spontaneous Symmetry Breaking and Elec-
troweak Theory

In the Standard Model, the U (1),, ® SU (2), gauge theory provides a unified de-
scription for the electromagnetic and weak interactions. However, these symmetries
must be broken through some physical mechanism to generate the masses of fermions
and gauge bosons. According to the Standard Model, such a mechanism is known
as Higgs mechanism [9]. As shown in , mass terms in the Yang-Mills Lagrangian
would break gauge symmetries. The solution provided by the Higgs mechanism is to
introduce a new complex scalar field which Lagrangian is U (1), ® SU (2), invari-
ant, but with a non-zero vacuum expectation value that is not invariant under the
gauge symmetry, so that the electroweak symmetry would be broken spontaneously.
The process is thus called spontaneous symmetry breaking. Obeying the symme-
try principle, under the SU (2), transformation, the complex scalar field must be a
doublet:

H = ¢ , (1.2.27)

"

where ¢t and ¢° are a charged and neutral goldstone boson respectively. And the

Higgs potential for this complex scalar field is
V(H)=—p?H'H + \(HH)?, (1.2.28)

where 1 and A are positive real numbers. Using the Euler-Lagrange equations, we

can obtain the Klein-Gordon equation for the free scalar field. It can be verified



1.2. Spontaneous Symmetry Breaking and Electroweak Theory 8

that the minimum of this potential is not at (H) = 0, but at the point (H) = 5=
L2

£5. Since this potential depends only on the product H*H, any global phase
transformation on H will not affect the physical result. Therefore, one can rotate
the direction of the Higgs doublet arbitrarily. For convenience, a special choice for
the direction is adopted, where the vacuum expectation value (vev) of the Higgs

doublet can be written as

1 0
0|H|0) = — : 1.2.29
(01H10) NAW ( )
¢T¢~ = 0 has been used to deduce[1.2.29 which means that in this direction choice,
the vev of the charged scaler is 0, while the neutral scalar ¢° obtains a non-zero vev.
Thereby the generic form of Higgs doublet can be expressed as
1 +
H=— ¢ , (1.2.30)
V2 \ htv+ig
in which ¢* and ¢° are known as goldstone fields. In [1.2.30] the vev is extracted
from the original neutral scalar ¢°, and ¢° is split into a real part and an imaginary
part, both of which has a zero vev. Due to the symmetry of the Higgs potential,
we can express the Higgs doublet as a simple form without including the goldstone

bosons in the unitary gauge:

1 0
H=— , (1.2.31)
V2 h+wv

where a special choice of direction has been made for the Higgs field, which violates
three global initial symmetries of the Lagrangian, leaving only one remaining.
Now we are ready to write down the Higgs Lagrangian, which should include a

kinetic term besides the potential term. The Lagrangian is
Litiges = (D, H)'D"H — V(H), (1.2.32)
where the covariant derivative D, is associated with the electroweak symmetry:

D, H = (8, + ig2T*Wy +igryyB,)H, a =,1,2,3, (1.2.33)
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in which the gauge boson W belongs to the SU (2), representation and B,,) belongs
to the U (1), representation, and y, = % in the convention we adopt. After the

expansion, we can express the kinetic term specifically as:

2
QQWl} — ZQQW3

2

(D, H) (DFH) =
8 3_

—92W; — g1 B, (1.2.34)

= S E OV W) + (00— 0B
Observing equation[I.2.34| more closely, we find that the kinetic term has been turned
into a mass term. Consequently, we obtain three physical gauge bosons which are
combinations of the original gauge bosons:

Wy = %(W; TiW2),
(1.2.35)

1
Zy = ————— (92W3 - ngu) ,
93 + g3 g

where VVMi are charged bosons, while Z2 is a neutral boson. Their masses can be

directly read off from [1.2.34] which are
gav

v
My = 5 My = 5\/9% + 93 (1.2.36)

As expected, in the broken phase three non-physical massless Goldstone fields each
with one degree of freedom disappear in the Lagrangian, while a real scalar Higgs
field h with only one degree of freedom survives. The 3 non-physical degrees of
freedom belonging to Goldstones are ”eaten” by three massive gauge bosons: the
W+* and the Z, so that the total degrees of freedom remain unchanged. Besides the
three massive bosons, there is still another physical massless boson, which is defined

as
1
(W2 + 92B,.). 1.2.37
g+g " g ( )

The relation between the physical bosons and the original bosons can be written in

Ay

a more compact way in the matrix language as follow:

wp cosf, sinf, Z,
_ , (1.2.38)
B

L —sinf, cosf, A,
where the rotation angle @ is known as the Weinberg angle [10] or the weak mixing

angle. It is defined as
92

% 1.2.39
Vi + 93 ( )

cos 6, =
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The Weinberg angle is very important in electroweak physics, many observables are
very sensitive to it, e.g., the forward-backward asymmetry that we will introduce in
the next section in this chapter. In particle physics we tend to express quantities in
terms of the observables that could be determined experimentally. In terms of the
masses of bosons, the cosine of the Weinberg angle is expressed as

Mw

0, = - 1.2.40
oS o, ( )

So far, through the Higgs mechanism, gauge bosons have obtained their masses
that are associated with the vacuum expectation value of Higgs field. If we check
the symmetries after the above operation, we will find that the original symmetries
are no longer obeyed strictly, while a new abelian symmetry U (1) appears. It will
be more clear if we write down the covariant derivative in terms of the new physical
fields that are the eigenstates of the masses:

J2 (T? = go(T* + Y) sin®0,,) Z,

. ) €08 Vi (1.2.41)
- iggx/ﬁ(g(Tl — i)W, + §(T1 +iT?)W,)),

D, =8, +igasind,(T® +Y)A, —i

where Y is the Hyper charge, T', T? and T? is the first, second and third component
of the weak isospin respectively. For convenience, we define Q; = 7° + Y. In
equation Q)5 plays exactly the role of a transformation phase factor of the
U (1) symmetry. To see that this U (1) is still valid in the broken phase, we consider

the following transformations

H— H' =¢°9rf, (1.2.42)
Note That
; 10 0
Q/H = (T*+Y)H = =0, (1.2.43)
00 v+ h

we can conclude that after spontaneous symmetry breaking, the system still has an
abelian symmetry U (1). This U(1) symmetry turns out to be exactly the gauge
symmetry U (1) in QED, which governs the electromagnetic interactions. And the
electric charge e in QED is expressed as e = ¢gsin#6,, in accordance with the elec-

troweak theory. Correspondingly, ) is supposed to be the electric charge.
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As shown above, in the electroweak theory, the Higgs mechanism yields the

following symmetry breaking scheme:

U(l)y @ SU(2), = U(Dgm. (1.2.44)

We now turn to investigate the behavior of fermions in the electroweak theory.
The interaction term in the Lagrangian of a gauge field theory is obtained by im-
posing the covariant derivative on fermions. Taking a quark field ¢ for example, the

interaction term can be written as

%(J"“WJ + T +

in which we have made the following definitions:

g
cos 6,

(J*H —sin® 0, J"™MM) Z, 4+ e J"MH A, (1.2.45)

JEH = aL’y”TidL,

T3 = T3 = iy ug, — dpytdy, (1.2.46)

TR = qT%q = 7" Qgq.
Both J*# and J># are weak currents that only include the left-handed sector of
q. JP* describes a charged weak interaction and J** describes a neutral weak
interaction. The other current in is the electromagnetic current J*M# that

includes both left-handed and right-handed fermions.
In(1.2.45and|1.2.46] one finds that the left-handed and right-handed fermions are

treated differently in Z f f interactions, since J? in this interaction only contains left-
handed fermions. As a consequence, the left-handed and the right-handed couplings
gr, and gg are different as well. They are given as
T3 — Qysin*0,,
2sin @, cos b,

. —Qf sin2 Gw
IR = Ssin 0., cos By,

gL =
(1.2.47)

We can express the Zf f couplings in terms of vector and axial-vector couplings gy

and g4. The relations between the two types of couplings are

9v = 9L + 9Rr;
(1.2.48)

ga = gL — 9Rr-
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The asymmetry of chiral couplings will obviously affect Z-boson phenomenology.
The simplest example is a decay process Z — ff. In this process, an asymmetry

named polarization asymmetry |11] arises, which is defined as

| R I
App = FZHfof FZﬁfRff. (1.2.49)
Z=fufr T 2ot

In the lowest order of perturbative theory, this asymmetry can be directly expressed

in terms of the chiral couplings:

2 2
Lo JL— Ik (1.2.50)
g+

Another asymmetry named forward-backward asymmetry, arising from the same
origin, will be discussed in Sec. [L.3]

Up to now, the origin of the fermion masses is still not introduced. In order
to solve this problem, an interaction between the Higgs doublet H and a Dirac
field ¥ known as Yukawa interaction was introduced into Electroweak theory [12].
Following the symmetry principle, terms like U W5 that break the gauge symmetry
are forbidden in the Lagrangian. In general, the gauge invariant Yukawa Lagrangian

can be constructed as follows:
LYukawa = _/\f [\IJLH‘IJR + ‘IJRHT\I/L} s (1251)

where \; is known the Yukawa coupling. Specifically, for leptons and quarks, the

Yukawa Lagrangian after spontaneous symmetry breaking can be expressed as:

/\<‘d_>1 0 dA(‘cZ>1 0
—Ad| u —= —Ad| u — u
NG o4 h R NG vt h R
(1.2.52)
1 0
— N\ prer ) = eR-

( LCL ) \/5 U+h

After reduction, this Lagrangian takes the form
1 - _
Lyuiawa = ——=(v + h) (Aadrdr + Ntizug + NlLlg) (1.2.53)

V2
in which we can clearly see the mass terms for leptons and quarks. Through the

Yukawa couplings, every fermion f can obtain a mass

mf:

Af%, (1.2.54)
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where A\; is the Yukawa coupling constant of f. While the right-handed neutrino is
an exception in the SM, its Yukawa-mass term is not forbidden by the electroweak
theory. If right handed neutrinos do exist, they can also acquire a mass through
Higgs-Yukawa couplings. It is worth to emphasize that besides mass terms, interac-
tion terms like —Aghdd can be found in as well.

In the mixing between the three generations of quarks, as observed ex-
perimentally [13], is not taken into consideration for simplicity’s sake. In fact, the
mass eigenstates of quarks are not equal to the weak eigenstates, but connected via

transformation matrix

d ‘/(ud) ‘/(us) ‘/(ub) d
s’ - V(Cd) V(CS) V(cb) S ) (1.2.55)
v Vieay Viesy Vi b

which is known as Cabibbo-Kobayashi-Maskawa matrix, or CKM matrix in short.
The Yukawa couplings in this case are no longer numbers, but group into two 3 x 3
matrices: Y,¥ and Ydij , where ¢, 7 = 1,2,3. The masses of quarks are then obtained
by diagonalising Yu”d And the weak charged current for quarks appearing in

can be accordingly written in terms of these mass eigenstates:
J:i:,p _ aiL’Y“Ti‘/z‘jdi- (1.2.56)

This charged current couples to the WT in the Lagrangian. Physical processes
due to this interaction will obviously violate the flavor symmetry since the SU (2),
doublets of quarks are no longer physical eigenstates. Similar mixing might exist in
the lepton case. Actually, a mixing matrix known as Pontecorvo-Maki-Nakagawa-

Sakata matrix for neutrinos had been introduced to explain neutrino oscillations [14].

1.3 Two Processes in Electroweak Physics

1.3.1 ete” — bb

The first scattering process in this section we consider is efe™ — ff whose dia-
gram are shown in Fig. [I.1] in which the photon-mediated reaction and Z-mediated

reaction are separately the basic process in QED and Electroweak Physics.
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Figure 1.1 The tree-level diagram for ete™ — Z/y — ff reactions

In the Z-mediated case, the Vertex on the right side of this diagram is exactly
the chiral coupling Zff introduced in . In order to gain a deep understanding
of this process, we need to calculate its polarised cross-section. This first step is to
calculate the born amplitude for each reaction using the Feynman rules in helicity
states. The trivial amplitude for each reaction is written respectively as
_ V2GrM;
s — M}

Ay = = fllrel,

Ay [gi]?L%qu + QIJ;JER’WJCR] lgreryrer + gneryrer),

(1.3.57)

where the chiral coupling constants g, and gr are adopted, and the G is the Fermi
coupling constant which will be introduced in [I.3.2] Then the differential cross-
sections can be obtained by calculating squared matrix elements. The result can be

expressed in a compact form as:

do - «Q .

a0 (eLeR — foR) = 4_3(1 + 0059)2|1 + T9L9£|27

do — «Q

0 (€Z€R — fRfL) =—(1- C059)2|1 + 7"9293|2,

s ks (1.3.58)
1 (erel = frfr) = (1= cosd)*|1 + rgigil*,

do , _ _ «Q .

1 (eRezr — fRfL) = E(l + 0086)2]1 + rgRgR\Q,

where 7 is the ratio of coefficients of A; and A,, and ¢ is the scattering angle. Note
that the ratio r has an imaginary part on the My resonance due to the pole in the
Z propagator. Combining all four possible helicity amplitudes and simplifying the

formula, we have:

Z—g(€€+ — ff) = %[(Ao(l + cosh?) + Aqcosd), (1.3.59)
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in which a = €?/4r is the famous fine structure constant, and we have defined

Ao =1+2Relr] g} +|r[* (g7 + g2) A1 = 4Re[r] g4 + 8lrPPghgt.
(1.3.60)
In order to obtain the total cross-section, one needs to perform an integration over
the scattering angle #. Note that the cos 6 term vanishes in the integration while the
cosf term survives. As a consequence, the integration of the forward hemisphere
would not be equal to the backward-hemisphere one. This difference leads to an
asymmetry in collider detections, which is called as forward-backward asymmetry.

It is defined as: 14 0 4
- fo ﬁdQ o ffl ﬁdﬂ

=T I (1.3.61)
Jo aqd2+ |7, 549
It is easy to verify that
3A,
A = —. 1.3.62
e (1.3.62)

At the low energy scale s < M%, the ratio |r| < 1, where the photon diagram dom-
inates, the forward-backward asymmetry is small. However, near the Z resonance
s = M2, where the Z diagram dominates, the asymmetry will be much bigger due
to the small denominator in the propagator and should reach its maximum at the
peak. The denominator gets smaller near the resonance, so the total amplitude gets
bigger. Actually, Ag was measured at The Large Electron-Positron Collider (LEP)
on the My resonance [15]. However, to calculate Ag, on the resonance the pole needs
to be disposed, as is done in Breit-Wigner distribution formula [16].

Here we will introduce the Breit-Winger formula in a very physical way. For a
stable massive particle that oscillates with a frequency in its rest frame, the on-shell

time-depended wave function is
Y(t) oc emPutt = miME (1.3.63)

where M is the mass of the particle. In this case, the probability to detect the
particle is always 1 in the whole space. But for an unstable particle with the same
mass, the probability of finding the particle will decrease exponentially according to
its decay width I

W(t) oc e~ = o iMt—ilg _ —i(M—if)t

9

(1.3.64)
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In the equation the unstable particle can been effectively deemed as having a
”complex mass” M — z% , where the imaginary part is the decay width. In quantum
field theory, a free stable ” Z” boson propagator could be expressed in the momentum
space as:

uv

m, (1.3.65)

while the real Z boson is not stable, whose propagator can then be expressed as:

Guv -~ Guv

k2 — (Mg —it)2 " k2 — M2 —iT My

(1.3.66)

And the cross-section for a relating process is proportional to its value squared:

Gy g i 1
) 1.3.67
7 ST ML — T M, <5—M§—¢FMZ) * (s — M2)?2 —D2M3 (1.3.67)
Note that in the amplitude of eTe™ — ff, the propagator of Z boson is
1
(1.3.68)

S—Mg—’irzMZ7

where ['; is the decay width of Z boson.
In the Standard model, using the Breit-Winger formula, the forward-backward
asymmetry at the Z peak can be written in terms of the polarization asymmetry in

the Z — ff process. It is
3

4
However, this feature does not hold in the Standard Model Effective Theory, which

Apy = SAS AL L. (1.3.69)

will be introduced in Chapter 2. The details of the next-to-leading order calculation
of the forward-backward asymmetry for ete~ — bb on the M, resonance in the
Standard Model will be given in Chapter 4. As one of the precision electroweak
measurements, the forward-backward asymmetry is a very important experiment

measurement that can test new physics beyond the Standard Model [17-19).

1.3.2 The Muon Decay

The other important reaction in this thesis are muon decay process u= — e~ +v,+7,
which are related to the charged weak couplings. Through this reaction, the muon

decay to the lightest massive lepton electron and two neutrinos. The decay of a muon
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is a purely leptonic process which is very clean experimentally and theoretically, and

thus can be measured very precisely. The tree-level diagram of this decay process

in given in Fig. 1.2

Figure 1.2 The tree level diagram for p decay process in the Standard Model

According to the Feynman rules, we can obtain the Born amplitude:

2
g — _g 174 — (= v
Ay = = (e (1 =7") ule)) — 7 (@@)y" (1-9°) uw(nh)) -
8 s — My,
(1.3.70)
In the low transverse momentum region s < M3,, obviously the matrix element can

be simplified as

Aw = =L (@) (1= )ule) L (alm) (=), (137)

in which case the whole process can be effectively viewed as a four-fermion interac-
tion with a coupling constant

2

g
Gp=—9 1.3.72
T4, ( )

Actually, G is famously known as the Fermi Coupling Constant, which value can
be determined very precisely by measuring the lifetime of the Muon, therefore the
Fermi Coupling constant is usually used as one of the input parameters in Particle
Physics. The four-fermion interaction appearing in [1.3.71] can not be renormalised
in the framework of the Standard Model, that is the reason why it is viewed as
an effective interaction. This effective interaction was firstly suggested by Fermi to

explain the nuclear beta decay before the discovery of W boson [20].
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1.4 Divergences and Renormalisation

1.4.1 Introduction

Historically, when people tried to calculate the one-loop Feynman diagrams in per-
turbative quantum field theory, divergent terms appeared. The divergences could
be divided into two categories: Infrared(IR) divergences and Ultraviolet(UV) di-
vergences. The IR divergence only appears when a particle is massless, e.g., the
exchange or emission of a photon in the low energy limit £ — 0, where £ is the
momentum transfer in the loop diagram. On the other hand, in measurements in-
volving charged particles, countless numbers of soft photons with arbitrary small
energy might exist in the final states that could escape detection. If we consid-
er diagrams for those processes, there is a divergence term too. According to the
Kinoshita-Lee-Nauenberg theorem [21}22], the IR divergences arising from virtual
correction can be exactly cancelled by the real soft photon emission processes. In
this thesis we mainly focus on the UV divergences arising at the high-energy scale.
The UV divergence is ubiquitous in the one-loop corrections. For example, in the
¢* theory, the one-loop transition amplitudes for the ¢; — ¢; process is
(—iN)? / d*k 1 1

2 (2m)2 k2 —m? + i€ (k — p)> —m2 + e

(1.4.73)

where p is the total incoming momentum, and £ is the loop momentum that should
be integrated over from 0 — co. In the large momentum transfer limit m? < k2,

the mass could be neglected and the integral behaves like

'k
N / i (1.4.74)

which is obviously divergent as k — +o0, known as UV divergence. The divergence
comes from the short distance scale that we lack knowledge of. When the UV
divergence was firstly discovered in QED), a lot of physicists believed that to eliminate
the divergences, fundamental principles of physics had to be modified. However, it
turns out there is a way out by the methods of regularization and renormalisation
[23,124].

Since the divergence comes from the high energy limit £ — +o00, we can make

a “cutoff” operation at the scale A, so that the ultraviolet divergences at short
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distances are sensitive to the "regulator” A, in which case the physical quantities go
to infinity when A — 4o00. There are many other regularization schemes, amongst
which the dimensional regularization scheme is the most widely used one, introduced
by Giambiagi and Bolling [25]. The dimensional regularization scheme parameterises
the UV divergence by a dimensional regulator ¢ = d — 4. However, the choice of
regularization schemes will not affect the non-trivial structure of loop diagrams. We
will use dimensional regularization in our work in Chapter 4.

In a renormalizable quantum field theories, analyses of the one-loop corrections
show that the divergent part of all of the diagrams always has the structure of a
polynomial of the momentum, just as the tree-level contribution in the Lagrangian.
So by redefining the original coupling constants by infinite shifts, we are able to
absorb the divergences that parameterized in terms of the regulator into redefinitions
of physical quantities. We can finally obtain physically reasonable finite results in
the calculation of higher-order Feynman diagrams.

For a long time, the physical meaning of renormalisation was a mystery until
K.G. Wilson and John B. Kogut published their profound paper in 1974 [26]. In
Wilson’s view, renormalisation is not only a technical tool to deal with the infinite
quantities, but also explains why the nature is described by renormalizable theories.
Through the renormalisation procedure, high energy effects can be parameterized
in a low energy theory that we have knowledge of, like we have seen in the Fermi
four-fermion example in[1.3] In this sense, the Standard Model itself can be viewed
as an effective field theory too, which is exactly the case in the Standard Model
Effective Field theory that will be introduced in Chapter 2.

1.4.2 Renormalisation in Electroweak Standard Model

In this part we will introduce the renormalisation procedure in the electroweak
Standard Model which we are interested in. As it is mentioned above, the first

step is to express the bare quantities in the Lagrangian in terms of renormalised
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constants. The related terms are defined as follows:
My, = My + §Myy,
MY = My + 06My,
My, = My + 6 My, (1.4.75)
M3 = My + My,
e’ = e + de,
where the bare quantities are denoted by an index 0, my is the generic fermion

mass. Besides, because the radiative corrections add an infinite contribution to the

normalization of the fields, the fields need to be renormalised as well:

W = Zy 2w

1/2 1/2
2\ _( 2 Zis Z
A° ZYy Zi} A
(1.4.76)
H° = 2Z,?
- “H

fH =z "

In the perturbative theory, the generic renormalised constant Z could be expanded
as:

Z=1462+(62). (1.4.77)

Since we only consider the leading order virtual corrections in this thesis, higher-
order corrections expressed by (6Z)% will be neglected. In this case, all the renor-
malised constants can be split into two parts. Consequently, the bare Lagrangian
can be divided into a renormalised Lagrangian and a counterterm Lagrangian as
follow:

L’ =L +6L, (1.4.78)

where the renormalised Lagrangian L has exactly the same form as L°, with the
physical quantities and fields replaced by the renormalised ones. The counterterm L
can be translated into Feynman diagrams that are known as counterterm diagrams,

which contribute to the virtual corrections too.
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The UV divergent field renormalisation constants and the mass renormalisation
constants can be determined by calculating the one-particle irreducible two-point
functions that represent quantum corrections to a propagator so that the UV di-
vergent terms in the two-point function can be cancelled by the counterterms. The
function X(p), as a polynomial in momentum, is known as the self-energy. Then
by choosing the renormalisation schemes, the finite part of the field renormalisation
constants and the mass renormalisation constants can be fixed. In QED, external
electrons and photons are on their mass shell, so it is natural to imposing the on-shell
condition to the external particles. But in other cases, like QCD, because of the
color confinement, there is no such natural choice. As a result, we are free to choose
a different renormalisation scheme. If we can calculate the perturbation theory up
to infinite order, different renormalisation schemes can give the same finite result for
any physical process in principle, though the definition of the renormalised constants
are different. However, since in practice we can only do the computation up to a
few loops, different physical predictions are produced from different renormalisation
schemes. In the electroweak Standard Model, the on-shell renormalisation scheme
turns out to be a very successful renormalisation scheme due to its impressive a-
greement with experiments [27]. In Chapter 4, as the energy scale we are interested
in is the electroweak scale, we will implement the on shell scheme as well.

In order to renormalise the qft, one needs to calculate the transition amplitudes
for the f; — f; process, where f; represents for any field, i.e. the one-particle
irreducible two-point functions. In Feynman Gauge, those two-point functions in

electroweak theory can be parameterised as follows |28]:

Ty (p) = —igu (P = Myy) —i <9W - %) Y (07) — S (p?).
L (p) = —igu (P* — M7) 0ap — i (g;w - p;f”) 90 (p?) — iLePryia (2

ny (p) =1 (p2 - M[%[) S +i20H (pQ) ,

UL () =i (p— M)+ p (PS] (%) + Pesh (7)) + My (Ph, (07) + Pedf ()]
(1.4.79)

where a,b = A, Z and M, = 0. Next we should impose the renormalisation condi-
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tions for the external physical fields [28]:

Rel'}, (p)e” (p) ly2—arz, = 0,

Re FﬁuZ (p) EV (p) |p2:M% = 07 Re Fff (p) 5” (p) |p2:M% = O,
L2 (p)e” (D) p2=0 = 0, L1 (p)e” (p) [pe=o = 0,

. 1 5 W v .
pgl_lﬁg mReFW ()" (p) = —iey,

: 1 zZZ v . : 1 AA v .
pzli%;]ﬁ——]\/[g Rel'}7 (p)e” (p) = —iey, plzlgoﬁ Rel',)" (p)e” (p) = —iey,

1

R FH = = 07 li — R FH - .7

e (p)|p2fM12{ p2—1>I]r\l412{p2 — M[2{ € (p) 5
Rel (p)  (p) |2z =0, Rett (p) T (p) |22 = 0,

: p_'_mf’vf . . 7/Nf/p+mf P

1 Rell = 1 Rel/ (p) -—2L = :
pQLrgﬁpg =) el'V (p) u(p) = iu(p) ng?n;“(p) el (p') - i (p')

(1.4.80)

where € (p) is the polarization vectors, and u(p) and @ (p’) are the spinors of the
external fermion fields. Re takes the real part of the loop integrals in the self energies
without including the quark mixing matrix elements. Thus the mass counterterms

in the on-shell scheme could be deduced as follows:

e
my = "I Re (24 (m3) + 24, (m3) + 34 (m3) + 24, (m3)).

SMy _ — S (M3 (1.4.81)
My 2MZ,
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And the counterterms from field renormalisation take the form [28]

62 = =Re (3] (m3) + =f (m?) - ¥4, (m3))
5 0
migs (51 (m3) + 5 (m3) + 54 (m) + 55 (m3)) o
§ZF = —Rex}, (m?)

- mfaaz (Ef (m3) + 34 (m}) + 3¢ (m]) + 34 (mf)) [p2=m2.

Xy (p*)
§Zw = —Re a—pglpz:mgv, (1.4.82)
077 (m%)
0277 = —Re a—pQ|p =m%>
aEAA 2
0Zan = —%bﬂm
EAZ (p2)
6 Zga =222 oy,
Mz ®
oxi (m?2)
5ZH = —Re%]p _mH

At last, the counterterms from the renormalisation of the electric charge in the

on-shell scheme can be formulated by the field renormalisation constants as:

§Z 4. (1.4.83)

As mentioned above, there are other renormalisation schemes that could be used.
As the only physical renormalisation scheme, the on-shell scheme has the advan-
tage that in all orders of perturbative expansion of Feynman diagrams, the basic
renormalised constants like m; and e corresponds to their measured value. But
calculations of the finite terms are very complicated in some cases. Thus, it is more
convenient to adopt other renormalisation scheme like the minimal subtraction (MS)
scheme [29], and modified minimal subtraction scheme, called MS scheme [30], espe-
cially for QCD, in which case the mass eigenstates of quarks could not be measured
directly. In the MS scheme proposed by 't Hooft, the renormalised constants are
chosen to be completely infinite to chop off the divergent poles % arising from the
dimensional regularization. Because the finite counterterms in MS is just zero, com-
pared to the on-shell scheme, the MS scheme is much simpler to calculate since its
finite parts of counterterms are just zero. People then find that the poles % are al-

ways a combination of two constants: vg and In47w. So in the modified MS scheme,
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we make the replacement:

_>

oA |

1 1
- =—+vg + Indnr. (1484)
€ €

Correspondingly, the finite terms in MS scheme have fixed finite parts. As a result,
in the MS and MS schemes, the renormalised masses for the external fields are no
longer equal to the physical mass, but depend on the renormalisation scale p, which

would be affected by high-orders radiative correction.

1.5 Outline of the Thesis

The main goal of this thesis is to probe the new physics beyond the SM using ef-
fective field theories. In the example of Fermi’s four-fermion effective interaction,
introduced in this chapter, it has been shown that non-SM effective Lagrangians
that encode the unknown high energy physics could be used to describe the low
energy interactions. The same approach can be used to explore the impact of new
physics. In the present situation, the data obtained from high-energy experiments
does not suffice to deduce the theory underlying the Standard Model of particle
physics, we are parametrising our ignorance using an effective field theory approach,
which allows to parameterise deviations from the Standard Model in a fairly model-
independent way. In Chapter 2, two kinds of effective field theories are introduced,
i.e. the dimension-six Standard Model effective field (SMEFT) theories and Sim-
plified Models with dark sectors. In the SMEFT part, a short review of the Higgs
and electroweak phenomenology in tree-level SMEFT is given which will be used in
Chapter 4. And in the Simplified Model part, a simple dark matter Simplified Model
is introduced. In Chapter 3, four simple effective operators are defined to introduce
interactions between a new (pseudo-)scalar particle and the SM top quark. Such
interactions are motivated by scalar mediators between the SM and a dark sector. In
this chapter, we study the ability of the LHC to probe the spin and parity quantum
numbers of a new light scalar resonance X which couples predominantly to the third
generation quarks in a variety of simplified models through the ¢¢X interaction. In
chapter 4, the NLO correction to the forward-backward asymmetry for ete™ — bb

process in the framework of dimension-six Standard Model Effective field theory
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(SMEFT). Numerical results are presented to show the influence of EFT corrections
on the phenomena. Finally, a conclusion is made in Chapter 5 by summing up the

main findings at the end of this thesis.
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Chapter 2

Effective Field Theories

The Standard Model has been found to be a very successful theory in explaining
all experimental results obtained at collider experiments and in predicting a wide
range of phenomena such as the existence of W boson and Z boson in electroweak
physics. After the discovery of the Higgs boson by ATLAS and CMS at the LHC
in 2012 [31,32], all particles predicted by the Standard Model have been found.
However, there are still phenomena, such as the matter/anti-matter asymmetry, the
Standard Model cannot fully explain. Yet, no new particles beyond the Standard
Model have been discovered so far.

The ultimate goal of modern physics is to describe all observed phenomena in
the framework of one theory that is valid up to arbitrary high energies, in which
different kinds of interactions can be unified as one. Such a theory can be called
a fundamental theory. Correspondingly, a theory that is only valid up to a finite
energy scale is called an effective field theory. Just as the name implies, an effective
field theory can only describe physics below some scale A. Specifically, these scales
are the masses of the heavy particles in the effective field theory. In the example of
Fermi’s four-fermion effective theory that has been introduced in Chapter 1, we know
that it will no longer be effective beyond the electroweak scale, and one has A = My, .
In fact, all field theories we have are effective theories. For the SM, the situation is
the same. Though we still don’t know the correct A for the SM, since new particles
beyond SM have not been found yet. Actually, it took a long time for physicists

to realise the SM is also an effective field theory. In effective field theories, like
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for example Fermi’s four-fermion theory, the effects at the scale A are suppressed
by a factor %, where FE is the characteristic energy of the process considered in
the effective theory. Due to this factor, physics at a very high energy scales or
regimes of very small distance will not be important for the phenomenology at low
energy scales. Consequently, the parameter space of the world could be divided into
different regions, in each region with a different energy scale. The physics at each
scale is relatively independent from each other so that we can explain the physical

phenomena at certain scales we are interested in without a real fundamental theory

that can explain the physics at all scales in principle.

2.1 Standard Model Effective Fields Theory

If we view the Standard Model as an effective field theory that can be decoupled from
the new physics scale, it is a reasonable choice to build higher dimensional effective
operators using the Standard Model fields assuming the same symmetry groups of
the SM. Such a theory is called Standard Model Effective Field Theory (SMEFT)
[33]. In SMEFT we assume that the SU (2); ® U (1), symmetry is spontaneously
broken to U (1), via the Higgs mechanism. To keep the Lagrangian dimensionless,
the operators in SMEFT should be multiplied by couplings with a negative mass
dimension, which are known as the Wilson Coefficients [34]. For a d dimension
operator, the corresponding Wilson Coefficient C; should have a dimension 4 — d.
We can also express the Wilson coupling as a dimensionless coupling divided by
the cut-off scale as C' = % These operators are the low-energy remnants of the
heavy new physics integrated out at the scale A, which appears then as the scale
suppressing the effects of these operators at lower scales.

A generic SMEFT Lagrangian can be written as following:

Loverr = Lou + »_Ls,  d=56,7,.. , (2.1.1)
d

where the d dimensional effective Lagrangian £; = C4Q¢. In the limit A — oo,
SMEFT can be reduced to the normal SM. The first EFT Lagrangian arises at
dimension five, denoted as L5, and contains only a lepton-number violating opera-

tor [35]. In the dimension-six SMEFT, all the operators obey the law of conservation
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of lepton number, however, there could be baryon-number violating operators [36].
In the dimension-five SMEFT, the left-handed neutrinos have Majorana masses [36],
which would be considerably suppressed by the small-neutrino-mass restriction from
Neutrino oscillation experiments. Thus, the suppression scale of the dimension-five
operator is usually deemed to be much larger than the scale A that suppresses the
dimension-six operators. Through the power counting in the SMEF T, higher dimen-
sion operators are suppressed more severely due to the A“* in the denominator so
that they have less impact on the low-energy scale. Therefore in our work in Chap-
ter 4, we will only consider the dimension-6 operators and assume the conservation
of baryon number.

Since no new gauge symmetries beyond the SM are imposed, we are free to
construct any operators that obey those symmetries. Though the amount of all pos-
sible operators is very large, the number can be reduced according to the Equations
of motion of the fields since these operators are not independent from each other.
Thus we can choose a basis in which operators are independent. Actually, there are
different basis schemes that are identical in physics. Among them, assuming the
baryon number conservation, an irreducible basis with 59 operators was proposed
in [36], known as ”Warsaw Basis”. These 59 operators are categorized into 8 classes,
which can be found in in the Appendix. In chapter 4, we choose to work in the

”Warsaw Basis” since it has been studied much better than any other basis.

2.1.1 Higgs and Electroweak Phenomenology in the Tree-
Level Dimension-six SMEFT

Since all the interactions in the SMEFT are built from the SM particles, a large
number of SM processes might be influenced by the EFT operators [33]. The S-
MEFT could be viewed as a perturbative theory. For example, the next-to-leading
order corrections in dimension-six SMEFT have the same power counting as the
dimension-eight SMEFT. In this section, we are mainly interested in the electroweak
phenomena that are related to the Dimension-six SMEFT. Only the basic tree-level
effects of the SMEFT will be introduced, which means that the O(%) effects are

neglected.
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To understand the spontaneous symmetry breaking process in the SMEFT, we
need to introduce the new Higgs potential. In the dimension-six SMEFT, it can be

written as

V(H) = Vey(H) — Cy(HTH)?
] (2.1.2)
= \NH'H — 502)2 — Cy(HTH)?,

which is altered by only one Wilson Coefficient C'y. The new vev could be obtained

by solving the minimum of the potential

2
vy = (1 n 3(’;’;%) i) (2.1.3)

where vy is the new vev and 07 is the original SM one. The 'hat’ symbol will be
used to characterise the SM quantities in what follows.

Furthermore, the Higgs doublet field receives corrections from the EFT kinetic
Wilson Coefficients C'yp and C'yg. Consequently, the Higgs doublet in dimension-six

SMEFT in the unitary gauge take the form

0
H = . (2.1.4)

(1 + (CHD — iCHD)U%)h + Ur
Using on [2.1.4] we can obtain the mass of the Higgs boson:

2 1
M2 =2\ <1 - 3021;” +2 (CHD - ZCHD) ’U%) 2. (2.1.5)

Then we move on to the operators that are connected with electroweak gauge terms.

The Class 4 operators in the Warsaw Basis contribute to the SU (2), ® U (1), gauge

kinetic terms and mass terms in the broken phase:

1
LEEZGW = _UTCHWWa Wor + UTCHBBWB“” + vTCHWBW3 B* (2.1.6)
and
mass, 1 2
g™ = 16YT v (W3 — 1 B,)" . (2.1.7)

Correspondingly, the gauge fields can be redefined as

Wi =Wi (1+ Cuwoy), Bl =B, (1+ Cupvy), (2.1.8)

2 2

and the related gauge coupling is shifted as

g2 = 92(1+ Cuwo?), g1 = g1 (1 + Cupvi). (2.1.9)
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So that we can express the electroweak gauge Lagrangian in terms of the mass

eigenstates:
1
w* 5(1/\/1 F sz)
ij cosf,, sinb, Z, (2.1.10)
B, —sinf, cosb, A, ’
in which the Weinberg angle is replaced by a effective one
= 2 - =2 =2
. g1 Ur929; — 91
sinf = — — 1—|——_—_ — CHWB) . (2111)
9 + 95 ( 2 191 + 91

The trigonometric function of Weinberg angle sin6,, and cos#,, has been replaced
with s, and ¢, respectively for convenience’s sake. From now on all the original
SM quantities will we be denoted as hatted symbols and the EFT quantities will be
denoted as barred symbols in this thesis.

In the dimension-six SMEFT, the covariant derivative can be written as
D, =0,+i WHTW™T™) +igz(g5 + ;) [T° — 5] 2, + ieQA,,

(2.1.12)

2

where Q = T3 +Y as in the SM. Accordingly, the electric coupling and the neutral
weak effective coupling need to be redefined as
_ 9192 { 9192
€= 1— v3.C
——— — ., 2 VrCHWB
Viite L it e (2.1.13)
=1/Gi + 35+ 9192 v7Crws.

The masses of the electroweak bosons can be dlrectly read off from the Lagrangian:

MW _ 92UT7
22 \ \ (2.1.14)
2 Up 2 | -2 Up_ _
M = e (92 + 91) + ?CHD (92 + 91) + 792910HWB'

As is shown above, the dimension-six SMEFT always refines the quantities by adding
some terms proportional to % at tree level.

Finally, the fermion masses also need to be shifted to their EFT forms. In
dimension-six SMEFT, fermions acquire their masses through Yukawa couplings and
additional EFT terms that include three Higgs doublets, one left-handed fermion

doublet and one right-handed fermion:
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In the broken phase this generates an interaction term that couples two fermions
with one Higgs boson. Together with the normal SM Yukawa terms, this leads to a
generic fermion mass matrix

M = % (Y\fjj - %UQC;H) . (2.1.16)
Consequently, the Yukawa coupling Yy obtains a correction due to the redefinition

of the Higgs doublet together with corrections from C3,;:
vy = L (Yg'j <1 + Cho — 1CHD) u““) — §v20$i;'{ (2.1.17)

V2 4 2

Recall that in the SM the Fermi coupling constant G is directly related to

a four-fermion interaction that is exactly a dimension-six operator. Now in the

SMEFT,

1 1 1 3) (3)
Gp = +—(C +C )——(d +0® ), 2.1.18
P V2 V2 \ Tt k) g g \THE T —

in which the four fermion operators appear again. In[2.1.18| besides the four-fermion
operators, there is another operator ng) that influence the = — e~ + v, + 7, decay

process by altering the electroweak charged current coupling.

2.2 Simplified Models

The LHC has been demonstrated to be a very powerful collider at detecting the
fundamental physics at the electroweak scale. Therefore physicists are now aiming
to discover new physics in the ongoing and upcoming runs of the LHC at higher
energy scales. Benefiting from its collision energy of /s = 14 TeV, the LHC has
the potential to detect new physics that might exist at O(TeV) scale. Furthermore,
there might be some unknown particles at the electroweak scale that escape the
detection of current experiments, e.g., a possible dark matter candidate with a mass
of a few hundreds GeV. To find the signals that might contain such kinds of new
physics beyond the Standard Model(BSM), we need a theory framework to deal with
the complex data gathered by the multi-purpose experiments. Many specific models
to extend the SM have been built, such as SUSY [37] or GUTs [38]. However, even if
a new signal is captured by the LHC, it is still not easy to identify the theory behind
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it, as the signal can be generated in many ways in different models [39,40]. Thus,
the situation gets worse as the phenomenon might depend on a great number of free
parameters. Based on phenomenological considerations, it is useful to characterize
special BSM processes in terms of an effective Lagrangian as a starting point, as it
is done in Simplified Models.

Simplified models are also effective field theories, but with an extended particle
content and/or gauge group compared to the SM. A Simplified Model only contains
a few new particles and interactions rather than including all possible interactions.
The new interactions in Simplified Models are directly related to the physics observ-
ables in collider experiments. As a result, the new process appearing in the signal
only depends on a small number of parameters. Physicists are free to choose differ-
ent effective interaction operators according to their needs, and the results obtained
in the Simplified Models can be matched onto more specific models which can give
rise to the same topologies.

Different kinds of Simplified models can be applied for different purposes. In
this chapter I will focus on the simplified Dark Matter (DM) models which are
used to analyse the possible DM candidates and their influences on the Collider
experiments [41,/42]. The center-of-mass energy at the LHC has successfully reached
13 TeV in 2015. This increases the sensitivity to detect DM directly and indirectly in
searches performed at the LHC, which might open a new window for us to improve
our understanding of the universe.

Three kinds of models could be used in the DM case. General models can afford
the task to provide different kinds of DM candidates, like the weakly interacting
massive particles (WIMP) in supersymmetry theories. However, the details of such
BSM theories are still unknown to us, this leads to a large number of free param-
eters in the general models. For example, in the analysis of DM in the framework
of Minimal Supersymmetric Standard Model (MSSM), more than 20 relevant free
parameters will cause too much uncertainties, and lead to varieties of DM version-
s [39]. As a result, from a finite amount of data that we might have in the foreseeable
future, a complete DM model is usually not a suitable choice due to too many un-

derlying unknown dynamics though in principle it can explain all questions about
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DM.

Effective field theories provide alternative frameworks on the simple assumption
that the DM candidate might be the only accessible state to our experiments. In
such a DM effective field theory, the interactions between the possible DM candidate
and the SM particles could be expressed as effective operators, suppressed by a high
energy cut off scale A. All phenomena caused by the heavy states of the dark sector
are thus now encoded in the relevant operator coefficients. In such a way, all possible
kinematically inaccessible particles could be disposed in the EFT framework in a
general way. Many related works had been done and it is shown that the LHC Run
I data provides strict restrictions on the BSM scale A [43-45].

As phenomenon oriented theories, Simplified Models provide us very good tools
to analyse the collider signals related to the dark sector. In Simplified Models we
are not limited to assume that the DM candidate might be the only accessible
state in our experiments. Alternatively, the most important mediators that couples
the DM particle with the SM particles are also introduced in Simplified Models,
together with the DM candidates themselves. The mediators could be SM particles
or BSM particles, since in Simplified Models the DM particles do not interact with
SM particles directly. The number of new parameters of the dark sector could be
more than one. However, this number is usually not as large as it is in the full
theory, therefore it does not cause too much trouble in the calculation. The results
obtained from the DM simplified Models could be compared with the LHC data to
learn the basic features of the DM sector.

To ensure that the results of a DM Simplified Models is meaningful, the model
should be simple enough so that it can be extended to a general model that can
explain the physical mechanism behind the effective operators. For example, the
light sectors in Simplified Models should only include the lightest DM fields that are
stable enough. Furthermore, to compare the data with the predictions of Simplified
Models, these models should be complete in explaining the relevant phenomena
at the energies that Colliders are able to probe. It is worth to emphasize that if
the mass of the mediator(s) is sufficiently heavy, then the relevant process will be

suppressed by the squared mass(es), and we return to the SMEFT case.
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Generally, the stable DM sectors in Simplified Models are responsible for ex-
plaining the DM, and the mediator(s) connecting DM sectors and SM sectors are
responsible to provide the expected SM particle excess at the LHC experiments.
Meanwhile, to satisfy all non high-pr constraints from the data, when building the
Lagrangians, one should follow some extra criteria. First, all gauge invariant and
gauge invariant terms should be included in the Lagrangian to ensure the complete-
ness of the model. Second, the interaction terms between DM sector and SM sector
should respect the exact and approximate accidental global symmetries of the SM.
Consequently, lepton number violating and baryon number violating terms are for-
bidden in the Lagrangian. Meanwhile, the custodial and flavor symmetries of the
SM should not be broken strongly. These criteria are discussed in detail in [42].

Now the problem is how to control the new Lagrangian terms so that it would
not break the custodial and flavor symmetries severely. New physics are required to
respect the exact symmetries but not the approximate global accidental symmetries
in full theories. Any accidental symmetries violating terms would be severely con-
strained by the electroweak data, since the experimental data in electroweak scale
fits the SM expectation very well. One smart way to solve the problem is to let
the new physics break the flavor symmetry as similar as the SM. A method called
Minimal Flavour Violation (MFV) [46-49] assumption is deliberately developed for
this purpose. In the SM, the non-diagonalizable CKM matrix leads to the fact that
the flavor eigenstates are not the mass Eigenstates. Correspondingly, in the MFV
scheme only two kinds of new interactions are permitted in the Lagrangians: those
which are invariant under the global SM flavor group G, = U(3), ® U(3), ® U(3)4
and those break the flavor symmetry that are associated with the quark Yukawa
couplings Y, and Y.

A simple example of Simplified Models is given in [42] to show how the MFV
requirement restricts the construction of Simplified Models. In this example, the
DM candidate is chosen to be a real scalar under gauge and flavor symmetry, de-
noted as y, and the mediator is set to be the SM-like higgs doublet under SU(2)
gauge symmetry, denoted as H'. The interaction between the DM and the mediator

opens a portal from the SM to the DM sector, which is simply given as x*|H’ \2.
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As in the SM case, we suppose that the new Higgs-like mediator interacts with
quarks in the SM. Now we pretend that we do not know the interaction between
the SM Higgs doublet and quarks, but following the instruction of MFV procedure
to construct the corresponding Lagrangian. The left-handed and the right-handed
quarks transforming under the flavour symmetry could be expressed as ¢, ~ (3,1, 1),
ug ~ (1,3,1) and dg ~ (1,1, 3) respectively. It is can be easily seen that G ug breaks
the U (3),® U (3),, and qrdg breaks U(3), ® U (3),, when they interact with Higgs
doublet, SU (2), symmetry can be obeyed. The other possible combination terms
that couple with Higgs doublet even break SU (2), gauge symmetry, which are defi-
nitely not allowed. So we have to connect the two flavour symmetry breaking terms

with the Yukawa couplings. Hence we have the following Lagrangian:

L=— Z (Yui’jquluj + Y;’j(fgabH,adj + hc) , (2_2_19)
0,3
where g4, with a,b = 1,2 is Levi-Civita symbol. We can find that this Lagrangian

is exactly the same as the Yukawa sector of quarks in the SM.



Chapter 3

Simplified Models in searches for

dark sectors

3.1 Motivation and Introduction

As it is mentioned in Chapter 2, physicists expect to make new discoveries of physics
beyond the Standard Model in future high-energy experiments. The main focus of
attention has been put on the heavy new particles at high energy scale. However,
some light resonances could have escaped notice through some unknown mechanism
from previous colliders such as LEP and the Tevatron, and may be discovered in
the large datasets which the LHC will accrue in coming years.

Astronomical Observations are important sources for testing the fundamental
particles physics models. With the help of the Fermi Large Area Telescope, an excess
of y-rays at energies of a few GeV was observed in the region around the Galactic
Center [50], which is called as GCE for short. The excess can not be explained by
the SM but might implicate the existence of dark matter [51]. This has been an
area of particular interest due to the Galactic Centre excess of diuse gamma-rays,
which may be explained by dark matter (DM) annihilating via a light mediator into
Standard Model (SM) particles [5, 7, 8] [52}-54]. Simplified Models are very suitable
for characterizing these data in a simple way with only a few parameters. In this
case, effective mediators can be considered to generate the dark matter particle.

According to some studies, the mediators in the annihilating process might be a

37
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scalar [b5], pseudoscalar [56], or a vector boson [57,|58]. The collider sensitivity
to these mediators have been explored in a series of papers under the assumption
that the mediator couples to the quarks and DM [59-65]. Since some analyses of
the GC excess suggest that DM annihilation into b quarks provides a particularly
good fit, some studies have assumed the mediator predominantly couples to the third
generation quarks. In that case an important collider signal is associated production
with a pair of top or bottom quarks [66-68], particularly for spin-1 mediators where
LHC production via gluon fusion is forbidden by the Landau-Yang theorem [69,70].
There has also been model building interest recently in top-philic Z’ bosons in the
context of a slight excess in tth searches for SM Higgs boson production [71]. Some
recent work has studied searches for ¢ resonances in the context of two Higgs doublet
models [72-74], and on searches for top-philic dark matter mediators [75]. However,
these works focus on the heavier resonances. It is therefore important to understand
the ability of the LHC to discover and measure the properties of light new resonances
with strong couplings to the third generation.

If such a new light (i.e. myx < 100 GeV) resonance X is discovered in Run 2
of the LHC, a first priority will be the characterisation of its quantum numbers. In
the context of resonances with strong coupling to top quarks studies have already
been made in X production [6876],77], focussing on the semi- and di-leptonic top
decay channels, where either one or both tops decay leptonically. In the case of di-
leptonic top decays, it is known (building upon older work on spin-polarisation in ¢t
production [78]) that the azimuthal angle between the leptons encodes much of the
relevant CP information. Related work has focussed on dijet angular correlations in
pp — jjX [79], as well as extending results to NLO accuracy [80481].

In this work we seek to extend these previous works in a number of ways. We
explore other angular variables which may be of use in pinning down the quan-
tum numbers of top-philic resonances at the LHC. Where most other works have
focussed on the di-leptonic final state (with some exceptions [68,82]) we perform a
detector-level analysis of the semi-leptonic final states. We find that although the S-
M backgrounds are challenging, this final state will indeed be useful in the discovery

and characterisation of new light resonances.
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We study the phenomenology of a variety of simplified models [83] with a new
neutral resonance which we assume to be an eigenstate of parity and charge con-
jugation. Its couplings are restricted to the third generation quarks (bottoms and
tops) only. For a scalar resonance S and a pseudoscalar resonance A, we assume the
following CP-conserving interaction Lagrangians:

‘CS = - Z gq_\/%lsq_cb

q=b,t

99Yq 4. 5-
Ly=— —=Aiv’qq,

(3.1.1)

where y, is the SM Yukawa couplings. We also study a vector resonance 7y, and an
axial vector resonance Z) with interaction Lagrangians given by
Lg=— Z gquZ(ﬁq_’V,uq’
q=b,t

Ly=— Z 94YaZ 4 VY79

q=b,t

(3.1.2)

In all these cases the decay width of the resonance is set to its natural width cal-
culated from the theory parameters at tree level. We do not include any interactions
between X and possible dark matter candidates, focussing on its interactions with
the SM (equivalently, there may be a coupling between X and dark matter, but we
study the parameter space where mx > 2mpy,). In the case that the resonance is
lighter than 2m, it must decay into a pair of b quarks with a branching ratio equal
to one (neglecting three-body decays). While these Lagrangians will also lead to
dimension-five interactions with gluons for the scalar and pseudoscalar (whose CP
properties can be probed in di-jet angular correlations for instance [84]), in this
work we exclusively focus on what can be gleaned from associated production with
tops.

We have implemented these models in FeynRules [85] which allows us to generate

simulated events at the LHC using MadGraph [86] via the UFQ [87] format.
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LHC, s = 14 TeV, ttX production
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Figure 3.1 This figure shows the tt X +jets (X = S, A, Z},, orZ/;) production cross

sections as functions of mx at the 14 TeV LHC for the four simplified models.

In |3.1f we show the behaviour of the cross-sections for the four simplified models
as functions of the resonance mass mx. As has been demonstrated before |68], for
low masses (below around GeV) the ttA production cross section is quite suppressed
relative to that of t£.5, and is smaller by over an order of magnitude below 40 GeV.
We also observe similar behaviour (although not as extreme) in the ##Z{# versus
ttZ'}' cross sections. The differences between the cross sections become smaller as
myx increases, and are all within a factor of two at mx = 200 GeV. To attempt to
understand this, in the next section we will calculate the helicity amplitudes for ttA
and ttS production, using the Weyl-van-der-Waerden spinor formalism for the case

of massive particles.

3.2 The Amplitudes in the WvdW Formalism

All diagrams contributing to the gg — tHt due to the scalar operator at tree-level
are given in [3.2] and diagrams due to the pseudoscalar operator have exactly the

same topologies as the scalar case, which could be easily seen from their Lagrange
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Figure 3.2 LO ggtHt diagrams

terms. Therefore these diagrams will not be listed here anymore.
For convenience, in the following calculation in this section, we set —%% = 1,
which would not affect the comparison between the amplitudes in the scalar and

pseudoscalar case.

3.2.1 A Brief Introduction to the Weyl-van-der-Waerden

Spinor Technique

In perturbative quantum field theory, the probability amplitude is directly connected
with the cross-section that can be measured in the experiment. Hence a important
step from theories to observables is the calculation of the cross-section at the low-
est order. For the 1 — 2 decay process and 2 — 2 scattering process, tree-level
results are easy to compute. However, when the number of final states increases
to 3 or more, the situation will become very complicated due to the uncontrolled
increment of the amount of involved Feynman diagrams. The traditional method
of calculating the cross-section is squaring the total scattering amplitude of all the
relevant diagrams followed by summing over the spins. However, these amplitudes
interfere with each other. Therefore for N diagrams, the number of squared ele-
ments is N2. One of the solutions is to employ the helicity amplitude technique.
In the helicity eigenstates, polarized scattering amplitudes could be decoupled with

each other. Accordingly, the scattering amplitudes could be decoupled into helicity
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components that are independent from each other. Consequently, if each amplitude
has m helicity components, the number of total squared elements would be equal
to mN rather than N2. In the large N case, the advantage of helicity amplitude
technique is very clear.

A variety of spinor techniques has been developed in the past years. At first, on-
ly the spin-1 massless fields like photons and gluons are transversely polarized [8§],
which cause many cancellations in the calculation but leave the Dirac spinor un-
changed. Since the light-like Dirac fields are naturally the helicity states, a more
general spinor technique was then formulated to include both polarization vectors,
and massless Dirac spinors [89,/90], in which the Dirac spinors are split into two
two-component Weyl-van-der-Waerden (WvdW) spinors [91]. The WvdW spinor
technique was then extended to be compatible with massive Dirac fields. Further-
more, the Weyl-van der Waerden spinor technique for spin-3/2 fermions was pro-
posed in [92]. In this section, the WvdW spinor technique including the massive
polarized spin-1/2 fermions will be adopted.

As a starting point, we should introduce the basic elements, which include
Minkowski 4-vector momentum, massless spin-1 boson vector, and the massive spin-
1/2 Dirac field in terms of WvdW spinors. According to the WvdW formalism, 1) 4
and @Z)A are introduced to represent WvdW covariant and contravariant spinors re-
spectively. Complex conjugation is consistently indicated by dotting (undotting)
indices, i.e.

Yi=a)", v = (). (3.2.3)

And we have the relation
¢A = 6AB¢B> ¢A = EABwBa

5 (3.2.4)
Va = Pepa, i =Pl

in which,

y 0 +1
M= = p=eip= . (3.2.5)

-1 0

Any terms in the Lagrangian should be Lorentz-invariant. The Lorentz-invariant
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spinor products could be built as
(P0) = patp® = Pr1bs — oy,
<¢¢>* = ¢A¢A = (¢1¢2 - ¢2¢1)*-

For a Minkowski 4-vector k*, after projecting into the spinor basis, it is related to

(3.2.6)

a 2 X 2 matrix
i L KO+ k3 kY 4ik? (3.2.7)
ABp = N 0jip = ) 4
Kt —ik? kO — k3
which can be factorized into a product of two spinors

e~ cos g
Kjp = k'oip =kikp, ka= V2k0 . (3.2.8)
sin g
The Lorentz-invariant spinor products including Minkowski 4-vector can be built
similarly, e.g.,

(OKV) = (6ak K 5) (3.2.9)

Dirac spinors belong to the representation D(3,0) @ D(0, 3) and could be written
into WvdW spinors as

wo [ ) (3.2.10)
wA
To be more specific, for the Dirac spinor of the outgoing fermion with helicity o,
o) = @A, ¢A> (3.2.11)
with
K1, —kK 1=1(c =+
(K2, K1) i=2(c=-)
in which,
e~ cos &
k1 =/’ + |p|
sin g
(3.2.13)
sin g
Ko = /P’ — |p| ) 0
—e~ cos 5

And for massless spin-1 particles, the polarization vectors could be expressed as:

\/§g+74k3 V2k g5

e, aplk) = W’ e_iplk) = W,
" - (3.2.14)

C V2kugin V29 ks

€+,AB(k>* - <g+]€> ) 8_7,[13( )_ <g,/<:>* )
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where g, 4 are gauge spinors which can be chosen arbitrarily. In the following
calculation in this section, the gauge spinors are deliberately chosen to simplify the

algebraic expression.

3.2.2 The T-channels and U-channels Amplitudes

We consider the SM-like diagrams with scalar first. In[3.2] diagrams a — f belong to
T-channel or U-channel, and diagrams g — h belong to S-channel. Diagram
and diagram can be grouped together, since they can be transformed into
each other by interchanging the two incoming particles. For the T-channel diagram
, in the WvdW Formalism, four independent polarized helicity components of

the amplitude can be obtained, which are given as

Qe

no__ E
M, (+,+,0,0") = —\/§p1 T (k1) (k1 70) X
_Qte / I kg(
_ ks') PL P,
2v2 (p1 - ka) (—p2 - k2) et} PapPix
—Qe / k2’E
k 2 -k
" 2v2 (p1 - ka) (—p2 - k2) )2 () 0
(3.2.15)
_Qte / kaE
Pk
" 2v2 (p1 - k2) (—p2 - k2)mf W) 0
Qt262

" 4(pr- k) (o1 - o) (9o - o) (k1)) (ko) (ky PoPriks)”

— (2p1 - k) (k1) (Kot (Rika)
—my (k1) (W' Pika) (krks))
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Qe

M, (=, —,0,0") = N (k10)" (0, &y ) %
C2V2(pr sz)t(;—pz +k2) hat) P P ( kZX )
—Que . 0
! 2V2 (p1 - k2) (=p2 - k) (a2 ) ( kL )
o 7 (3.2.16)
! 2V2 (1 - ko) (=p2 - ko) (=ms) 9 il ( kY )]
0,2

= T B o ) (e k) O BT R PR
+ (2p1 - ko) (k19)" (kat)” (Knka)”
—my <k1¢>* <¢/P1/f2> <k1k2>*) )

M, <+> -0, OJ) - \/;jfe ky </€1¢> (k1E7 O) X

—Qe ’ * k21'

-1 Pks) P, ’
2v2 (p1 - k1) (—pa - k) (FD k) Pop

—Qqe , Ey v\ (3.2.17)
ko) Py |2
- 2v/2 (py - ka) (—pa - kz)mf< W) Pex ( 0 )
Qt262

" 4(pr- k) (01 - ko) (02 - ko) ((—1) (B19) (&' Pika)” (k1 Poka)”

+my (k1) (kat)")” <k’1P1k‘2>*) ;

N o Qte * .

Ma (_7_’_’070-) - \/5])1 ] /{Zl <k1¢> (07k1,E> X
—Qse / EJ 0
—1) (/ Pik») P,
2V2 (p1 - ko) (—p2 - k2)< J / ( ko g )
Qe , 0 } (3.2.18)
—1)m ]{72 PIE

+2\/§(p1-k2)(—p2~k2)< 7 (k) X(kg()

Qt2€2

= T T or ) o Ty (1) (1) (0 Pika) (kP

—my (k19)" (ko) (k1 Piks)).
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For the U-channel diagram [3.2(b)} the helicity amplitudes can be obtained by
interchanging the incoming gluons in |3.2(a)|, we have

My (+,+,0,0') = fjfe o (k) (KZ,0) x

(1) ) Pl |
2\/§ (p1 : kl) (—pz : kl) ' BB LIX 0

TS e (TIEIITRV Y (i
2v2 (p1 - k1) (=p2 - k1) : e 0

) (3.2.19)
—Qqe , 1,E
" 2v/2 (p1 - k1) (—pa - k’l)mf Wk ( 0 >}

— Qt262 , .
~A(pr-ka) (pr- k) (p2 - Ka) ((kat)) (e} (haPoPib)
+ (2p1 - k1) (ko) (k1) (kiks)

—my (kotb) (V' Piky) (kika)),

My(—,—,0,0) = (e <k2¢> (O, k2,E’) X

\/_pl
—Qqe n* pk . 0

2v2 (p1 - k1) (—p2 - k1) D) PP ( B )
s 0 ey ok |

22 (prhn) (—pa k) TP e

(3.2.20)

+ il (~V)ymy @ P) | ]

2v2 (p1 - k2) (—pa - ko) ! kY

_ Qe _ . s
 A(p k) (1 Ea) (p2 - Fa) ((=1) $hag)” ()" (o Po k)

+ (2p1 - ky) (kaop)™ (Rat)")” (kokn)”
—my <k2¢>* <¢/P1k1> </€2/€1>*) )
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Qte E
My (—,+,0,0) = ———(k ky',0) x
b ( ) ﬁpl_k2<zw><2 )
_Qte / I kl[
(=1) < ¢/ Piky >* P )
2V2(p1 - k1) (—p2 - k) B W
Qe kX (3.2.21)

ko)) Py 1y
" 2v/2 (py - ka) (—pa - k’z)mf< V) Py

= Lo ) o1 ) (o gy (1) (et (6 Pakn)” o k)

+my (ko) (k1) (ke Prkn)”)

My (+,—0,0") = — 2 ()" (0.ky ) x

- \/§p1 - ko
(1) (0 Pik) P
22 (1) (-2 by o
Qe 0 (3.2.22)

" 2v2 (p1 - k1) (—p2 - k1) (FLmy ) P

_ Qt2€2 _ .
= T Fo) (or - T) (o Ty (T (a0 (PR (ko Pl

—my (k19)" (ko) (ko Prk1)) .

kit

Comparing the amplitudes of diagram |3.2(b)| and diagram [3.2(a),we find

Mb (+) +a g, OJ) = Ma (+7 +7 g, OJ) )

k1+ko

Mb (_a_7070/): Ma (_7_7070/)a

k‘1 <—>k‘2

Mb(—i-,—,O',O'/): Ma (_7+7U70/>7

kl <—>k2

Mb(_7+7070/): Ma <+7_7U7U/>7

k:1<—>k;2

(3.2.23)

which are the relations between the amplitudes of T-channel and U-channel for the
same process due to the crossing symmetry in the WvdW Formalism. Due to this
crossing symmetry, one can directly obtain the U-channel contribution from the

corresponding T-channel result. Specifically, for the U-channel diagrams |3.2(d)| and
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3.2(f), we have
My(—,—,0,0)= M, (—,—,0,0),
k‘1<—>k:2
Md <+7 - 0, OJ) = MC (_a +7 g, OJ) )
ki1+ko
Md (_> +7 g, OJ) = MC (_l_? - 0, OJ) )
k‘1<—>]€2
M; (+,4,0,0") = M, (+,+,0,0"), (3.2.24)
k1<—>k2
My (—,—,0,0")= M, (—,—,0,0"),
k‘1<—)k‘2
Mf (+7 - 0, OJ) - Me (_7 +) g, 0/) )
k)1<—)k22
Mf (_v +,0, 0/) = M. (+a - 0, OJ) .
k‘1<—)k‘2

And we only need to calculate the amplitudes for [3.2(c) and [3.2(e)l The four inde-

pendent polarized amplitudes for the Diagram are listed below:
Qe

M, (+,+,0,0') = Toor (k1) (k7. 0) x
V2 (p1 - k2>_(%§+ oy ) D PR kj)E
+\/§(p1_k2)_(§;;+2p1.p3) (—1) (¢/ Py Py ») sz
e e A
e?

" 2(py - k1) (pr - o) (m2 + 2p1 - ps) (k1)) (¢ PaPrks)” (krks)

+ (k1)) (¢' PsPrka)” (k1ks)
—my (kat)) (k19) (¢ Pika) (kiks))

(3.2.25)
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n o Qte * .
Mc <_7 _7070) - \/§p1 ] kl <k1¢> (07 kl,E) X

Qe (' PyPiks)” kg
V2(p1 - ko) (m?+2p1'P3) e 0

+ —Ce (4 PyPiy)* k¥
\/i(pl'kQ) (mfc+2p1-p3) i 0

(3.2.26)
+ il (Qka) my (¢ Piky) * fa.e }
2V2 (p1 - ka) (m5 + 2p1 - ps) g 0

Qe . .
- k ko) (k1k
2(p1 - k1) (p1 - ka2) (m? +2py 'Pg) (16} (W PLky) (k)
+ (k19)" (' P3Piky) (kiks)®

—my (¢'Prka)” (kiks)") ,

Mc (+7 -0, OJ) = ﬁcjfe kl <k1w> (k1E7 O) X

_Qte <k P ¢/> p . /{35(
V2 (p1 - k) (mfc + 2p1 -pg) 2172 1,EX .
_Qte , ké{
koPaddN P, e
+\/§(p1-k2)(m?+2p1.p3)<2 ) LEX( 0 )

+ il (kat')" P s & }
V2 (p1 - ko) (m? + 2m -pg) 2 H1ex 0

_ Qt2€2 B ) .
" 2(p1 - 1) (pr - p2) (2 + 201 - ps) ((—=1) (k19)) (ko Pag') (ky Pyky)

— (k1tp) (ko Ps@') (k1 Piks)”

—my < k1¢ > k?gwl >*< k’lplkg >*>,

(3.2.27)
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Me(o0.0%) = 2 )" (0 )

e ) Py P |
\/§(p1 - k) (m? + 2py -pg) 2471 1L,EX 0

+ e (=1) (ka Py)')" P, &
V2 (p1 - k) (m% + 2p1 - ps) L

(3.2.28)
' e 6k (=) ) Pr ]
2v2(p1 - ka) (m3 + 2p1 - ps) ' R

Qt262 * I\ *
= k k k1 Pk
2 (p1 - k1) (p1 - ko) (M3 + 2p1 - p3) (thd)” k2P (haPik)
+ (k1@)* (ko Pr))" (K Prks)

+my (k19)" (ko) (k1 Prksa)) .

For the last T-channel diagram [3.2(e), one has:

Qte
2v/2py - kipy - ps

Qe (ko) (—1) (paPrks) ( far )

M, (+,+,0,0") = (Y PsPriky) (ki,0) X

2v2 (p1 - ka) (—pa - ko) 0

+ —Qie my (' Piks) ar ] (3.2.29)
2v2 (p1 - ko) (—pa - ko) ! 0 o

_ Qt2€2
8 (pl : kl) (pl 'p3) (pl : k2) (p2 : k2)

+ ((WP3Piky)” (paPiks) (koo') (koky)
—my (Y Py Piky)” (' Piks) (kaky))
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Qte *
M, (=, —,0,0") = (¢P3Piky)* (0, ky ) x
2v/2p1 - kip1 - p3 ( I’F)

—(Qe e ) pg
2\/§(p1 : k’g) (—p2 . kZ) <_1) <k2¢ > <p2P1k2> ( 0 )

+ Qe (=) (¢ Prka)” o ] (3.2.30)
W2(pr ko) (p2-ka) 0 2.

_ Qt2€2
8(p1- k1) (pl 'ps) (p1 - k2) (p2 : k’z)
— ((PsPrkr) (paPrks)” (kot')" (krpa)”

—my (pP3Piky) (¢ Piky)" (k1ka)")

Qte F
Me (+,—,O',O',) = <wP3P1]€1> k ,0 X
2v/2py - kip1 - ps ( ! )

_Qte (_1) <¢/P L >* Pf kQ,j
2v2(p1 - ko) (—p2 - ko) Tl e 0

- —Cie my (ko) Py py o ] (3.2.31)
2V2(p1 k) (—p2ke) R 2.

_ Qt2€2
8 (p1 : k1) (pl 'P3) (p1 : k2) (Pz : k2)
— ((0PsPiky)" (¢ Piks)” (k1 Poks)”

+my (YPyPiky)" (kot')™ (k1 Piks)")

Qte *
M, (_7+7O-’ 0/) = <¢P3P1k71> O,k‘ 2 ) X
2v/2p1 - kap1 - ps ( I’F)

—Qqe (—1) (W' Pik >PFJ 0
22 (91 Fa) (—pa - ko) ™

+ e () 26) Prps | }
22 (p1 - ka) (—pa - ka) F)\R20) By px 1X (3.2.32)

Qt2€2
8 (Pl : k1)2 (pl 'pz) (pl : kz) (p2 : kz)
(=1 (pP3Pik1) (V' Piky) (k1 Paks)
—my (pP3Prky) (ko) (k1 Piks)) -

Then we consider the non-SM-like diagrams with pseudoscalars. Note that the
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pseudoscalar operator only differ from the scalar operator by a ~° factor. Conse-

quently, we find that the amplitudes including pseudoscalars can actually be ex-

pressed in terms of the SM-like amplitudes with scalars.

M, (+,+,0,0") = M, (+,+,0,0'),
M. (+,—,0,0")= M, (+,—,0,0),
M, (+,+,0,0") = My (+,+,0,0"),
M (+,—,0,0) = —My(+,—,0,0),
M. (+,+,0,0") = M. (+,+,0,0'),

3.2.3 The S-channel Amplitudes

In this part we consider the S-channel diagrams, which include the SM-like diagrams

13.2(g)| and [3.2(h), and their corresponding non-SM-like pseudoscalar diagrams. A-

gain, for the diagram [3.2(g)| we can obtain an amplitude including four independent

components, in which a general helicity amplitude can be expressed as

1
(p1+ps)° — my

Mg ()\1, )\2,0', O'/) =

540
K
0 o

mydy

JI j

(P1+ Ps3)

> (", 0k)

0 555{ o,

Gl e (3.2.34)

B L (ACEBD (16, — 1G)PT 4 CEPT (1 — Iy Y

2ky - ky 4

AE _BF CD
+ee”" (K3 — Ky) >51,AB52,C’D7
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where A1, Ay, 0 and ¢’ has not been specified. In order to simplify the analysis, we

define:

1 e
C = v (P + B3); ¢
2(p1—|—p3)2—m? < g
_'_mwale + ¢J (Pl + Pg)JG w/G + mf¢G¢/H> (3235)
=01+ Gy
where
1 . .
G = ot (0 (P P 6 mp'f€).
1+Dp3) —
| d o o (3.2.36)
Cy = (1 + ps) — 2 <¢J’(P1+P3) V' +myd >¢' :
1+ p3) —my
and
s .
Co = gy (46 (= Ky
1R . _ . (3.2.37)
+6GCEHD (K — Kg)AB + 6G~A€HB (K3 — K1)0D> €1.iBS2.0D

As a result, we can express M, (A1, A2, 0,0’) in terms of two divided parts as

Mg(l) (Ah AQ? g, OJ) = Cll : 027
(3.2.38)
M(2) (/\1, )\2, g, O'I) = Cgl . CQ.

g

For the SM-like diagram [3.2(h)| the general helicity amplitude takes the form

1
Mh ()\17)\270a OJ) - ¢I7¢'
<p2 +p3)2 . m?c ( [)
0 o%of ms%  (Py+ P3) i\ [0k 0 &,
G0 (Py+ Py)"™ mydl, 0 oF) \ 't | (3.2.39)

—2€pu€rm € < AC _BD EF
—Zepetrn ¢ K - K
ok A\C (B I)

+eCPEPE (Ky — K3) P + AEBF (K — Kl)CD) €1,4BS2,¢D-

If we define
1 ; / oY)
Cs = 2 2 <wH (P2+P3)GK¢K+mf¢G¢H
(p2 +p3)” — my
+(Py+ Py 06 myut o) (3:240)

=05+ CY,
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where
’r 1 H GK 1 G 1 H
Cy = — (0" (P + P)* gl +myaCe™)
(p2 + p3)” —m7
| o _ (3.241)
C/ — P =+ P H IK G +m H 1G )
/ @b+mf_n@(<z )" 06+ mpt )

Similar to the former case, we find that this T-channel amplitude could be divided

into two parts as

MY (A, Ay, 0,0) =C5' - C
p nde0,0) =G G (3.2.42)
M}(L2) ()\17 )\27 g, OJ> = 04, : 02

Next we will consider those non-SM-like pseudoscalar diagrams with the same

topology as|3.2(g)| and |3.2(h)l The general amplitude of the first diagram could be

written as
1
M, (>\17>\27U70/>: ¢K7¢
g (p1+p3)2—m?c ( K)
0% 0 ey (Pr+ Ps)y; 0 8%/ oy,
0 =%\ +pr)"  myo! Gt Wb (3.2.43)

—2€54€FH € < AC _BD EF
B i K —K
oy ky A\ )

_|_€CE€DF (Ky — KS)AB + EAEEBF (K3 — Kl)CD> €1,ABS2.0D-

If we define
1 J G IH H 1
Cs = s (7 (P + PG &+ mpyy
(p1 + pg) LY (3_2_44)

—¢; (P + Py)"C g/ — mfébéﬁb/H) 7

and it is easy to verify that
Cs=0Cy —Cy. (3.2.45)
Using the relation in 3.2.44] we find that one can divide M; (A1, Az, 0,0") into two

parts that could be expressed by the SM-like amplitudes:

Mé(l) ()\17 )‘27 a, OJ) = Ci ’ CQ = Mg(l) ()‘17 )‘27 g, OJ) (3 9 46)
M (M, Mo, 0,0") = —=Ch - Cy = —MP) (M, Ag, 0, 0)
The general helicity amplitude of the second non-SM-like diagram in WvdW

Formalism 1is
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1
M ()\1,)\2,0',0'/): wlad)‘
h (p2 +p3)2 . m?c ( I)
0 §%or mps%  (Pa+Ps) i\ [0k 0 o,
Jdaam g (P+ P’ mys] 0 -0k Wl | (3.2.47)

—2€pcErn € ( AC BD EF
_BGTFH - K, - K
ey -y AN\ € (K = )

_|_€CE€DF (K5 — K3)AB + EAEGBF (K3 — Kl)CD> €1,ABS2,0D-

If we define

Cr = ! 2 2 (QpH (P + P3)GK P + mf¢G¢,H
(p2 +ps)” —mj (3.2.48)

one can find
C7 - Cgl - 04,. (3249)

Then it turns out that M; (A;, A2, 0,0”) t could be split into two parts that can be

expressed by SM-like amplitudes as well:

M;L(l) (/\1,/\2,0',0'/) 203/‘02 :M}(Ll) ()\1,)\2,0',0',) ( )
3.2.50
M},L(Q) (A1, Ag,0,0") = =Cy' - Cy = _MiEQ) (A1, Az, 0,07).
In the S-channel case, the relations between SM-like amplitudes and non-SM-like

amplitudes as listed as below:

/

)\17/\2)0-70- Mg(l) (A17A270-7 0/)

_Mg(2) ()\17 )\27 g, OJ)
(3.2.51)

/

)\17)\270a0 M}(Ll) ()\17)\2707 0/>

/

1
M;( ) ( )
M;(2) ()\17 /\27 o, OJ)
M )
M ( )

—M}EQ) ()\1,)\2,0', O'/) .

A, Ao, 0,0

From the above calculations above, we find many non-SM-like helicity amplitudes
which differ from the corresponding SM-like amplitudes by opposite signs both,
together they are

Mz;,c,e (_7 ) UI) ) Mclz,c,e (_7 +,0, 0/) )

Mg (= — 0,0, My (+,—, 0,0, (3.2.52)

M;(2) (Aly AQ? o, OJ) ) M},L(Q) ()\la )‘Qa g, OJ) .
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These helicity amplitudes are responsible for the differences between the cross sec-
tions in scalar and pseudoscalar case. However, due to the complicated 3-body phase
space for the processes we study it is difficult to leverage these analytic results into
an analytic understanding of the origin of the different cross-section values. As one
might expect, the presence of the v° appears to be responsible: comparing the s-
calar and pseudoscalar cases the 4° leads to sign change for a number of the helicity

amplitudes, suggesting destructive interference in the pseudoscalar scenario.

3.3 Spin and Parity Discriminating Variables

We now turn to the information available in the kinematic distributions which can
be formed from the ¢¢X final state (X = S, A, Z{,, Z), focussing on those which
have particular sensitivity to the CP and spin properties. For clarity, we present our
results in this section at parton level, before providing a full detector-level analysis
in Section 3.4

We show in Figs. [3.3(a)| and [3.3(b)| the distributions of the di-top invariant mass

my; and the transverse momentum of the resonance pr x, for the four simplified
models introduced above with the benchmark mass of mx = 50 GeV. The distri-
butions are normalised and hence independent of the coupling ¢g;, because we are
primarily interested in the shape of the distributions rather than the precise values
of the production cross sections. Both my and pr x (which are correlated) have
previously been suggested as variables which may help distinguish between ¢S and
tt A production [76,,77,82]; here we see that these variables are also sensitive to ttZy,
and ttZ), production. The distributions are generally quite similar in shape. How-
ever, we notice that ttA leads to the hardest distributions, with a shift in the peak
and a longer tail at large m;; and pr x compared to t£S. ttZy, and ttZ} interpolate
between these two behaviours: they lead to spectra which are harder than t£S, but
not so much as ttA.

It is known that the azimuthal angle distribution between the two top quarks
incorporates much information about the quantum numbers of the resonance X. Ac-

cessing this information is non-trivial however: the only case where both tops could
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Figure 3.3 This figure shows the normalised distributions of m (a), prx (b),
oM (c) and ©°M (d) for parton-level X production with /s = 14 TeV and myx =
50 GeV. Here X = S, A, Z{, or Z). The angular variables 6™ and ©°M are
defined in the CM frame of the X system. As shown in Fig. m, oM is the angle
between ¢ and the beamline, while ©“M is the angle between the normal vector to

the ttX system and the beamline.

in principle be fully reconstructed without missing energy is the fully-hadronic s-
cenario, which for any realistic analysis will be plagued by insurmountable QCD
backgrounds. This has led Refs. [76,[77] (based on previous work on ¢t spin corre-
lations [78,93]) to explore the fully leptonic case, substituting the azimuthal angle
between the leptons for the top quarks, an idea which was met with some success

even when X decays to dark matter [77]. They have shown that constraints can be
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Normal

Beamline

ttX CM frame

Figure 3.4 This figure shows the definitions of 6™ and ©“™ in the CM frame of
the t£X system. 0°M is the angle between the t-quark and the beamline and @M

is the angle between the normal vector to the t¢X system and the beamline.

set on the top-quark Yukawa coupling in associated production towards the end of
LHC Run 2 using these techniques.

We therefore consider other angular variables, derived from boosting to the
centre-of-mass (CM) frame of the reconstructed ¢tX system. We have investigated
a variety of different constructions, and present results for two of the most sensi-
tive that we have found. As illustrated in Fig. OM is the angle between t and
the beamline in the CM frame. The normalised ™ distributions are shown in
Fig. We find that this variable is particularly sensitive to ¢tS production,
which exhibits a broad plateau at 7/2. The other processes all have a double-peak
structure, with ¢¢A being the sharpest defined, and ¢tZ{, and ttZ), (similar to my;
and pr above) interpolating between t£S and ttA.

The other angular variable ©“™ utilises the fact that in the CM frame the t£X
system forms a plane. We consider the normal vector to this plane, and O“M is
angle between the normal and the beamline, as explained in Fig. 3.4. Fig. [3.3(d)|
shows the normalised ©“M distributions. The shape differences between the scalar
and other resonances are not as great in this case, with the distributions for all the
simplified models peaking at w/2. The ¢£S distribution is notable only in that it has

the broadest distribution among them. While these variables show good sensitivity
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LHC, s = 14 TeV, ttX production, my = 50 GeV
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Figure 3.5 This figure shows the normalised my, distributions after applying all

the selection cuts except the cut on my,. For all the signals we take myxy = 50 GeV.

to the properties of the resonance X, a more realistic assessment of their utility

requires a full analysis to be performed, which we now turn to.

3.4 Detector-Level Analysis

Previous work has demonstrated that the dominant background in ¢¢X final states
for low resonance masses comes from t£bb production [68,94]. While the t£-+light jets
rate is significant it is a subdominant background after b-tagging, but with sim-
ilar kinematics to ttbb and so will be suppressed by the same analysis cuts. We
also include t¢Z which is more subdominant, but important for a possible data-
driven background estimation. We generate background and signal samples with
MadGraph 5.2 [86] before showering them with PYTHIA 6 [95] and passing them
through the Delphes 3 [96] detector simulation using the default ATLAS detector
card. Thus, for jet pr = 100 GeV, the b-tagging efficiency is assumed to be 73%,
with the misidentification rates of c-jets and other light jets being 14% and 0.27%,
respectively. Jets are clustered using the anti-kr algorithm [97] with an angular
distance parameter R = 0.4.

Selection cuts are adopted as follows. Firstly we require the selected events
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to contain exactly one charged lepton ¢ (electron or muon), exactly four b-tagged
jets and at least two light jets. The lepton must be isolated from any jet via the
condition AR > 0.4. Moreover, the lepton and the jets should have pr > 25 GeV
and |n| < 2.5.

To reconstruct the hadronically decaying top we iterate through the reconstruct-

ed light jets and b-jets and find the combination which minimises

2 _ (my; — mw)? 4 (Mt had — 1)
miy my

X , (3.4.53)

where m;; is the invariant mass of two light jets j; and ja, and my paq is the invariant
mass of ji, jo, and a b-jet by. After that, to reconstruct the leptonically decaying

top we iterate through the remaining b-jets and find the one by which minimises

. 2
2 = tep =) - )~ (3.4.54)
my

where myep is the invariant mass constructed by bs, the lepton, and the missing
transverse momentum p,.. The remaining b-jets by and by are used to search for
the resonance X. We denote their invariant mass as my, and show the normalised
distributions in Fig. for our benchmark point with mx = 50 GeV. There is a
clear peak at the signal resonance position, and the ¢tbb background is flat in the
vicinity of the signal. As a reference for calibration, we also show the distribution
of the ttZ background, which exhibits a clear Z peak. We observe that all signals
exhibit long tails in the bb invariant mass, due to misattribution of the b’s from the
tops and the b’s from the resonance. Based on experience with the SM Higgs, the
use of boosted techniques should ameliorate this.

To further isolate the signal we impose the selection cuts 60 GeV < m;; <
100 GeV, 120 GeV < mypaa < 200 GeV, 120 GeV < myjep < 220 GeV, and
35 GeV < my, < 65 GeV. The expected yields per inverse femtobarn for the
ttbb background and the signals after each steps of selection cuts are presented in
Table . These cuts suppress the tfbb background by a factor of ~ 5 x 103. The
ttZ background is lower than t£bb by two orders of magnitude.

To estimate the expected exclusion on the signals we carry out a CLg hypothesis
test [98] based on the my, distributions from 15 GeV to 200 GeV shown in Fig. |3.5]
We scale up the ttbb background by a factor of 1.2 in order to take into account
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Table 3.1 Expected background and signal events per fb~! after each step of the
selection cuts for mx = 50 GeV. We take g, = 1 t£S and ¢t A signals, and g, = 0.2

is assumed for the t¢Z{, and ttZ), signals.

ttbb  ttS A tHZ ttZ)

No cut 24375 4211 428 714 241
1 lepton 4612 744 80.0 132 444
4 b-tags 106 339 5.15 7.12 27.5
> 2 light jets 729 221 351 4.86 18.7

mj; € (60,100) GeV 420 126 2.05 282 10.9
Mynad € (120,200) GeV 39.1 119 1.92 264 10.2
muep € (120,220) GeV 302 987 1.52 2.09 8.07

mp € (35,65) GeV 435 233 0.333 0450 1.78

the remaining backgrounds discussed earlier and assume a flat 10% systematic un-
certainty on the total background. The expected 95% CL exclusion limits on the
signal strength o(pp — ttX) - BR(X — bb) as functions of the integrated luminosity
are shown in in Fig. [3.6] These limits are comparable for the four simplified models
due to the similarities in their production kinematics, and with the high-luminosity
LHC it should be possible to bound the cross sections to the level of a few hundred
femtobarns. For the pseudoscalar this corresponds to g; just under 1 (i.e. essentially
no suppression with respect to the SM Yukawa) while for the axial vector we can

constrain g; down to 0.08.

3.4.1 Expected Sensitivity for Discrimination among Sim-

plified Models

Through the above reconstruction procedure, we can construct the 4-momenta of

the hadronically decaying top, the leptonically decaying top, and the resonance X
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Figure 3.6 This figure shows the expected 95% CL exclusion limits on the signal

strength o(pp — tX) - BR(X — bb) with mx = 50 GeV as functions of the
integrated luminosity at the 14 TeV LHC for &S (a), ttA (b), ttZy, (c), and ttZ}

(d) production. The dot-dashed lines denote the signal strengths for the g; values
labelled and BR(X — bb) = 100%.

from the identified jets and lepton:

DPthad =

Ptlep =

bx

Doy + Pji + Dja>
Doy + P+ P

Do + DPoy-

(3.4.55)
(3.4.56)
(3.4.57)

The missing momentum p . only contains transverse components and hence the

reconstructed p;jep 1S Not as accurate as pip.a. We can find a CM frame where
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LHC, s = 14 TeV, ttX production, my = 50 GeV LHC, s = 14 TeV, ttX production, my =50 GeV
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Figure 3.7 This figure shows the normalised distributions of my (a), prx (b),
Ohaq (c), and @M (d) at detector level for the 14 TeV LHC and mx = 50 GeV.

Pthad + Ptlep + Px = 0. Therefore, these 4-momenta allow us to construct discrim-
inating variables my, pr x, HSﬁgd, and O™ that are equivalent to the parton-level
variables discussed in Sec. [3.3] The normalised distributions for the signals and
the ttbb background with all the selection cuts applied are shown in Fig. . As
expected, these detector-level variables catch the basic features of their parton-level
counterparts demonstrated in Fig. . Note that my = (Prhaa + Priep)” and Hgfl\gd
corresponds to the hadronically decaying top. An analogous variable 9&1‘\3@ can also
be constructed from py e, but it is less powerful than HSfl\gd for discrimination among
simplified models.

We perform a CLg hypothesis test to investigate the discriminating power of
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each variable. Analogous to those in the ATLAS [99] and CMS [100] analyses for
determining the spin and parity of the SM Higgs, the test statistic is defined as

£(32 + b)

@ B L(s+b)

(3.4.58)

where L(s + b) denotes the likelihood for the background b plus a signal hypothesis
s. Thus, @ is used to discriminate between signal hypotheses s; and s;. For an
observed value QQgps, the exclusion of the hypothesis s, in favour of the hypothesis
s1 (denoted as “s; vs sy” below) is evaluated in terms of the modified confidence

level

(Q Z Qobs|52 + b)
(Q Z Qobs|51 + b>7
where P(Q) > Qops|s + ) is the probability for @) > Q.ps under a hypothesis s.

(3.4.59)

P
CLs =
P

Fig. shows the expected 95% CL exclusion limits on the visible cross section
oyis as functions of the integrated luminosity based on the discriminating variables,
assuming 10% systematic uncertainty on the background. Here o is defined as
the cross section taking into account the cut acceptance and efficiency. We assume
each pair of signal hypotheses yield the same o, and evaluate the exclusion limit
of one hypothesis in favour of the other one. In this way, the differences among
these limits only come from the different behaviours of the signal hypotheses in the
distributions shown in Fig. . Overall, the pr x variable seems to be the most
powerful one, except for the “A vs Z” case, where the Qgﬁgd variable is better than
pr.x for a high integrated luminosity of ~ 1 ab™!. The t£S production is the easiest
to be distinguished from the rest, because its distributions of all the discriminating

variables behave most differently from others. The worst case is the discrimination

between A and 7', which yield similar shapes for every variable.
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Figure 3.8 This figure shows the expected 95% CL exclusion limits on the visible

cross section o5 as functions of the integrated luminosity at the 14 TeV LHC based

on the variables my (a), pr.x (b), fpag (c), and ©M (d). The lines denote the

median value of the limit, while the coloured bands denote the +1¢ range. “s; vs

s9” corresponds to the exclusion of the signal hypothesis sy in favour of the signal

hypothesis s, assuming both hypotheses yield the same visible cross section.



3.4. Detector-Level Analysis

66




Chapter 4

Forward-Backward Asymmetry in

NLO SMEFT

In the exploration of the physics at high energy scales, both hadron colliders and
electron-positron collider are of great importance. One advantage of the LHC is its
role in discovering heavy new particles beyond the SM. The existence of the Higgs
boson with a non-zero vev has been confirmed by the LHC. However, the physical
mechanism behind this non-zero vev is still mysterious. And therefore we need fur-
ther experiments to explore the Higgs boson in great detail. Since the momentum
of quarks at hadron colliders are described by parton distribution functions that
can not be determined accurately, the LHC can not perform a measurement at an
exact energy around the Higgs resonance. However, electron-positron colliders can
perform such a measurement as the energy contributing to the hard process of the
event is very precisely determined. Moreover, precision electroweak measurements
performed at electron-positron colliders can set stringent limits on new physics.
Several possible future colliders, i.e., ILC in Japan, FCC-ee in Europe, and CEPC
in China, are expected to allow for measurements at higher center-of-mass energies
compared to LEP, in an equally clean environment, thereby improving on the preci-
sion currently and previously achieved. Thus the precision electroweak observables,
such as the effective Weinberg angle and the mass of W boson, could be measured
more accurately in the future. As a result, constraints from such measurements can

provide more information on possible extensions of the Standard Model. In Chapter

67
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2, we have discussed the potential of the SMEFT in describing new physics at the
high energy scale without knowing the fundamental theory behind the phenomena.
In this chapter, we will study new physics in two processes, i.e., the Z — bb decay
and ete™ — bb in the framework of dimension-six SMEFT up to one-loop.

The goal of this work is to calculate the forward-backward asymmetry for b-
quarks in the ete™ — bb process in the Dimension-six SMEFT. In the SM, the
forward-backward asymmetry is very sensitive to higher order corrections, which
will be illustrated in for the ete™ — bb case. We expect that this feature can
be retained in the SMEFT framework. Moreover, we also calculate the one-loop
amplitudes for Z — bb process, whose diagrams are subsets of the former ones.

The Warsaw Basis will be adopted as the basis for the operators in our work.
For the 59 baryon number conserving dimension-six operators in the Warsaw basis,
parts of the one-loop anomalous dimension matrix has been calculated in [101}-
103], then a full calculation was performed for all the baryon number conserving
dimension-six operators in [104-106], and further calculation for baryon number
violating dimension-six operators can be found in [107].

The large-m, limit will be adopted in the renormalisation procedure. In the
large-m; limit we assume m; < My, and all the fermion masses except the t-
quark mass can be neglected in the one-loop calculation to identify the leading-m;
corrections. However, the full mass dependence in the UV singular contributions
will be kept. In the calculation of the NLO corrections of the four-fermion operators
in the Warsaw Basis, we choose to keep the both the t-quark mass and b-quark mass
in the amplitudes to check the cancellation of the UV divergences, though in the
numerical calculation the mass of b-quark mass is neglected. The vanishing gauge
couplings limit [108] is adopted as well, in which all the QCD one-loop corrections
are ignored, and all the terms in the one-loop corrections that are proportional to
the positive powers of M%, , are also set to be zero, e.g., the counterterms which
are proportional to M2 should be neglected in the vanishing gauge couplings limit.
However, in the numerical calculation, we choose to work in the vanishing-m,, limit,
in which all the terms including My, will be preserved so that the results could be

more accurate. Accordingly we will also check the cancellation of the UV divergences
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which are proportional to M2 and M3,. A detailed introduction to the large-m; limit
and the vanishing-m;, limit can be found in

We will express all the amplitudes in the helicity form, where one diagram of the
e~et — bb process leads to four helicity amplitudes due to the four external fermions,
while in the Z — bb case, one diagram only generates two helicity amplitudes. In
order to demonstrate the cancellation of UV divergence in detail, the Zbb case can
be taken as a good example for simplicity’s sake, since in the large-m; limit, the
renormalisation of the vertex Zete™ is not be important, only the renormalisation
of the vertex Zbb is considered in the renormalisation procedure.

As is shown in Chapter 2, the relations between different parameters in the
SMEFT are very different from the SM case at tree-level, the NLO corrections
depend on the input parameters as well. Before any calculation, a set of independent
input parameters must be chosen. These parameters should all be physical quantities
that can be measured directly by experiments. In our work, we choose the following

input parameters set:

€, MZvMW7MH7mf7Ci (401)

4.1 Tree-Level Matrix Element

Since we set the electron mass to zero, the neutral Goldstone boson contribution van-
ishes in the SM. Therefore, the SMEFT contributions which generate this structure
(scalar contributions) do not interfere with the SM and therefore arise at O(1/A?)
and are thus neglected.

In general the tree-level matrix elements for Z — bb can be written as

iIMOO(Z — bb) = —i Y egl (bin"b;), (4.1.1)
i=L,R

in which we have denoted the Dirac structure in the amplitude with <I_)m“b,;>, which

will be adopted in what follows. Specifically,

(bir"b;) = a(p1)y" Pro(pe), (4.1.2)
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where @(p;) and v(p;) are the Dirac spinors. For e"e* — bb, besides the interaction
with bosons exchanging, there are also tree level contributions from Class 8 operators

that is straight forward to read off:

<Cl(ql) + Cl(;)> (eryuer) (bry"br) .
+Cq (e brY"bR) ,

b (ERVuCR) <_ RY R> (4.1.3)
+ Ci (ervuer) (bry"br)

+ qu <éR’VueR> <l_)L’}/‘LLbL> .

Below are the tree-level matrix elements:

=2Mb e
.2 7(6),0 . e’ Qc _
ZM(a(+)e—~>'y~>bl_) =1 § <€i’)/uei> <€Jﬁyub]> )
i,j=L,R
2 -e=b
.1 7(6),0 . €9;9; _ =
MES Lz =1 D sz (Ee) ("), (4.1.4)
i,j=L,R

z’Me(f)e’LbB =9 Z Cz’ijj <éi'7,u€i> <Bj7#bj> .

i,j=L,R

The couplings appearing in the above expressions are those which appear as effective
couplings for the Z boson and photon couplings to fermions in the SMEFT. In
addition, there are also contributions from four-fermion operators (denoted as Cj;;;)
which are not present in the SM.

The electromagnetic coupling @ = &2 /47 appearing in the above expressions will
eventually be included as input parameter. The electroweak couplings gj ’]l-’ appearing
in the above expressions are modified by Wilson coefficients which directly alter
Zff couplings, and in addition through the Wilson coefficients which appear as a
result of expressing observables in the broken phase of the theory with respect to
a particular input parameter set. It is worth noting that the tree-level amplitudes
appearing in are correct when the electron mass is neglected. In this case, only
these four Dirac structures are present in the SM. Consequently, we only consider
SMEFT contributions which also generate these Dirac structures which result in non-
vanishing interference contributions with the SM. The self interference of amplitudes
with different Dirac structures, such as those generated by the Class 6 and scalar

Class 8 operators, contribute to observables at O(1/A?) and are therefore neglected.
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In [109], the electroweak couplings have been deduced in terms of barred quanti-
ties. However, we will do the renormalisation in the on-shell scheme which is suitable
for the electroweak scale. As we can see, the renormalisation of the electroweak cou-
plings g, g is directly connected to the renormalisation of the trigonometric function
of the Weinberg angle. In the SM, §2 = 1 — M7, /M%, and the renormalisation con-
stants are derived from this. In the SMEFT, the approach was the same which was
why the quantity §,, is introduced, as this is derived from 1 — M3, /M2 in SMEFT.
Hence the renormalisation of §2 follows from the renormalisation of M3, and M%
in the SMEFT. Actually, there is a shift between §2 and 52 since they are defined
slightly differently. The shift can be found in [108] as

/\2 /\2 ~
5120 = §3U . CU;QUT <CHD + QZ_wCHWB) . (415)

After solving this equation, and neglecting the O(3;) terms, the barred sine of the

Weinberg angle can be obtained:

~ S (=2 =2
§w = _291 = + 92(292 2.9%3) @%CHWB (416)
Vi +a (g1 +52)
However, this expression is given in terms of barred quantities g; and gs. In our
notations, g» can be directly written in terms of My and 07 by using the first
equation of 2.1.14] both of which are renormalised in the on-shell scheme. As for g/,
we need to solve the second equation of [2.1.14] as a function of g; and neglect the

O(ﬁ) terms again. Thus we have the following expression of g; and g in terms of

input parameters

2/ M2 — M3, . MZor
g1 = - - 2MwirCawp — —————=Cpp
or 2¢/ M7 — My, (4.1.7)
_ 2My
g2 = —.
Ut

We insert the first equation of [2.1.14]and |4.1.7]into [4.1.6] the trigonometric function

of the Weinberg angle can also be written in terms of the hatted quantities

2 52 1
Sw = Sy — CwAUTCHD — —Cuws. (4.1.8)
4¢y 2Cy,

The final expression of g r due to the redefinition of weak couplings could be

deduced from [2.1.12, by which the neutral weak current could be written as

gZ(T3 —Qy) = \/G3 + g3 (T3 — Qfgw) + \/%U%CHWB (T3 — Qf) - (4.1.9)
1 2
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The second part of is straightforward to calculate, as Cywp x 5z, the other

EFT shifts could be neglected, and the barred quantities could be directly written
as hatted quantities. As for the first part, we just need to insert [4.1.8 and [4.1.7|into

the equation and combine it with the second part to get the final result. It turns out
only Cywp and Cyp are involved in, which contribute to the neutral weak coupling

through the general form

T3p2 (1 — 23, I3ip2e,
A9£ = d éié >CHD + §T Cuwn
A w (4.1.10)
Agl = Q0T
R 4¢,5,

which is a very simple form compared to the original expression. The expression
for each fermion could be obtained by inserting their quantum numbers. The other
shifts of the neutral weak coupling in SMEFT could be read off directly from [109],
since they are expressed in terms of hatted quantity. As the set of input parameters
is different, we need to replace some hatted quantities in their result with ours.

At last, in agreement with the results presented in [109], we find the following
general expressions for the effective left-handed and right-handed Z boson couplings

to fermions with T° = —%:

_ S 7. (Q
ngzz—é—Qf‘i‘ z (TfCHD‘f'OHf)u

284 Cy
=

IE ok (T 1 4¢
_=f _ WS T W.f — 2\ COyp — C(l) 0(3)
91 = 9r szuczu+2§wéw( 2 (<sgv ) HD = " HWB)+ ne G ) -
(4.1.11)

The general expressions for the effective left-handed and right-handed Z boson cou-

plings to fermions with 7% = % can be obtained similarly:

284 Cy

IE 02 IE 1 4¢
=f _=f _ WS T W, f —92) ¢ ¥} 0(1) _0(3)
Ip= 9r szuczu+2§waw( 2 ((ﬁv ) HD + " HWB>+ HL = “HL
(4.1.12)

_ Sw 07 Q
Jh= _é_Qf + = (TfOHD + OHf> :

In the last line, the notation CS’L?’) has been introduced for the Class 7 operators

where L should be understood to refer to either the quark (¢) or lepton (1) SU (2),

doublets. Explicitly, [4.1.11] and |4.1.12] lead to the following couplings for electrons,
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b-quarks and t-quarks

B Sw 02 1
Jp = —+ L <__CHD + CHe> )
Co  28wCw
—1 4 252 U% 1 Cuw (1) (3)
—€ — _ . w _"_ . _ O _ A ,
I 25,CW 250 Co 452 aD Sw Hl Hl
o, Ls, 0%

3 Cw  28uCy

—1+282 o2 11 G
b 3°w T = Corm — 220 C(l) 0(3)
91 25,,CWw +25wcw <(3 ) HD ™ o HwB + g T Chg |
)

32
_t 1 sw U
Jr = + —— CHD + Cry

1
(__CHD + CHb) ;

3 Cw  28uCw

—1+ 282 03
=t 37w T _ =
I 28, CW + 280 C << 6 +

) Cp + = CHWB + C}}ZI - CS’;)

(4.1.13)

32
w w

4.2 Renormalisation Procedure

In this section we cover the issue of renormalisation in the SMEFT framework. The
on-shell scheme is adopted for mass, parameter, and wavefunction renormalisation
which basically proceeds in the same way as in the SM. In addition, we choose to
renormalise the Wilson coefficients in the MS scheme, a choice which is standard for

EFT calculations.

S el e X

Figure 4.1 Examples of Counterterm diagrams for the e¥e™ — bb process

The details of the on-shell renormalisation relevant for the current work have
been previously been provided in [28,|110], and with the exception of the operator
renormalisation, we follow the procedure outlined in this work. Essentially, one
computes a set of two-point functions in the broken phase of the theory, and uses
these results to renormalise a set of mass, parameters and external fields relevant for

the process in question. In addition, the operator renormalisation is obtained from
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the anomalous dimension matrix of the complete dimension-6 SMEFT operators in
the unbroken phase [104106]. These two ingredients allow to construct the tree-
level UV counterterm amplitudes which are necessary to render the bare one-loop
amplitudes finite. For the calculation of the process eTe™ — bb, it is necessary to
construct the counterterm amplitudes as depicted in 4.1 In the on-shell scheme,
the counterterms associated to the external fields are cancelled by the insertion of
the 1PI diagrams onto these legs. Note that as in the case of the LO calculation
presented in the previous section, the electron mass is neglected throughout the one-
loop calculation and consequently it is not necessary to consider the CT amplitudes
which contain the exchange of a scalar (either the Higgs or neutral Goldstone boson).
In fact, this simplifies the calculation somewhat, since in the end only the interference
of vector-like Dirac structures contribute to the cross section. To construct these
counterterm amplitudes it is necessary to renormalise electron and b-quark fields,
electric charge, the left and right handed couplings of the Z boson with electrons
and b-quarks, as well as the Z boson mass. In principle, the Feynman rules for the
vertex and mass counterterms appearing in diagrams (1—3) of|4.1|should individually
contain renormalisation constants associated to the Z and A fields. However, these
constants vanish when the diagrams are summed, as they do not appear as external
fields, and it is therefore not necessary to consider wavefunction renormalisation of
A and Z fields in the context of this work. Defining the renormalised fields and
parameters in terms of the bare ones, which are indicated with the superscript 0,

we have

1=\l = 1+ 62D fu,

o=\ Zlfr=(1+62}) fr,
M® = M + 6M,

(4.2.14)

e’ = Z.e=e+ de.
In the on-shell scheme, the renormalisation constants for the Z boson couplings
to fermions are obtained from electric charge renormalisation constants as well as

those associated to the sine of the weak mixing angle. It is therefore convenient to
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also define counterterms associated to the weak mixing angle as

& = &y 4 620,80 = By + 0du,

(4.2.15)
A0 . Af Af0 A N
gl =gl + 641 950 = 4l + 691,

Note that the bare couplings g}:’% were previously defined in 4.1.13] Finally, we

choose to renormalise the dimension-6 contributions by introducing counterterms

for the Wilson coeflicients as

' = Ci(n) + 6Ci (). (4.2.16)
Up to one-loop, we have
0C; () 1 6Ci(p)
0=, = C; — 4.2.17

With these definitions, it is possible to obtain the necessary UV counterterm
amplitudes by writing the bare tree-level amplitude in terms of the renormalised
fields and the UV renormalisation constants. Expanding this expression to first order
in power of UV renormalisation constants, we find the following expression

Mg =—1 (MLO (efer — v — b;by) (% (628 +6Z) + h.c) + S) ,
i,/j=L,R

- 1 . . : ¢ SM2
+MLO(€2_€; —>Z—)b]b]) (- (5Zé+6Zg+hc)+E+g_z+g_]+ Z )

- 1 ‘ ; 0C;i54
+MLO<€1~+€; — bjbj) (5 (5Zé + (SZZ + hC) + C jj)) .
iijj
(4.2.18)
Therefore, the full UV counterterm for dimension-4 and dimension-six contributions

is computed as follows. The SM contribution is

_ 1 , , 5(4)
Mecfe’,(ibg = — Z M®0 (e;rei_ — v — bjbj) (5(522’(4) + 5ZZ’(4) + h.c.) + 6—) ,
ij=L,R €
_ 1 , .

+ MDOerer — Z — bjb;) (5 (5zg<4> +0z) W 4 h.c.)

é gf’(4) g;)’(4) 5M§7(4)
-t =+ + 5 | -

e 9 9; s — M7

(4.2.19)

For the dimension-six contributions, in keeping with the expansion in 1/A? one
must include both the dimension-6 tree-level amplitudes multiplied by the SM renor-

malisation constants as well as SM tree-level amplitudes multiplied by dimension-6
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renormalisation constants. This leads to the following general expression for the full

dimension-six counterterm.

| 26
CT1(6) — _ (4)70 l 27(6) ]7(6) €
MO =i S M (2 (6209 +620® + he) + =]

e i €
i,j=L,R
1 ) )
4,0 L i,(6) 3,(6)
M (2 (6269 + 620 + h.c.)
2(6) gfu(ﬁ) gé?’((j) 5M§’(6)
+—+t—+ =+ 5 |
e g5 q; s — M
1 . , e
6),0 i (4
* Me(f)efﬁvﬁbﬁjg (5Ze7(4) +02,% + h.c.> * 7)’

1 . ‘
+ MO0 (5 (6220 + 620 + h.c.)

€; e;—>Z—>bij

g oW W s M;(A:))

4 +
e 9¢ 9 s—Mj

1 A : 5C.

(6)70 _ Z,(4) ]7(4) ]3]
(4.2.20)
Similarly to the ete™ — bb case, The dimension-four SM contribution for the

UV counterterm in the Z — bb decay take a much simple form

Z—sbb Z—>bj bj b

1 ' ‘ ce,(4) o)
MET@W _ @0 (5 (52;44) +820® 4 hc.) + gz_e 49 , (4.2.21)
9; 9;

And the dimension-6 counterterm could be expressed as

. =(6)

CT,(6) _ . @o (1 06 5,(6) e
M, w = —t E M," (5 (526( P02+ h'c‘> + 7) ’
s (4.2.22)

@o (1 (6) i g

; i,(6 Js i J

+ MZ%bjl_;j 5 <5Ze( ) —+ 6Zb + hc) + ? + gb .
i J

Below we provide the wavefunction and mass renormalisation constants which are

derived from two-point functions in the broken phase of the theory. In accordance

with the approach in [108], we provide these results in t Hooft-Feynman gauge. They
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read

C. |2 3
4),L €
o2 = S 2t =ty = St

€
C. 2m?
(52154)’]% - —Z—mb
vy €
1 CH ki 1 Ur
57" = ¢, {— —mp = 2 Cyp A —————
b e( b V2 4 o V2m,Cy H

+mECub +2(m} — m})Ch) + mymCri) — m?(fﬁ?i} :

C CHk 1 Ur
57O = e {—mQ T+ —miCOyp + —————
b € b V3 TR V2myCy H

1 3
—2m(Clh + O]

0ZWt = 57 = 570 = 57O =,

s o1 ] (4.2.23)
M::// = g |:—E (Nc(mg + m?) + m?au) - 5 cm?:| )
s MY 2
MW = CE [_E (NcmbmtOth - Nc(mi + m?)cl(ﬁi)z) - Ncmfol(t?;} )
w
sMYY  C.1
T = ¢ (Nelmi 4 mi) ),
sM o1 -
MZ == [Z (2Ne(mp +m) + 2m2 + 3M}) Crup + My 8ucwCrwp
Z

+2N, <m§CHb — m?CHt - (mg - th)Cg; - (mg + m%)CSD] )
e

— )

€
~(6

66()_ C. 2 oo
= ——? HSwCwCHWB-

From these results, and in addition the results for the anomalous dimension con-
verted into the broken phase of the theory, it is possible to calculate all the remaining
renormalisation constants require to construct the complete UV counterterm ampli-

tudes valid in the large-m; limit.

As can be seen from the counterterm amplitudes defined in [4.2.19 and [4.2.20] in

addition to the renormalisation constants defined above, it is necessary to calculate
those associated to the effective Z boson couplings. These can be calculated by
expanding the couplings defined in which were conveniently written in terms
of hatted quantities. The renormalisation constants for these quantities are obtained

from the W and Z boson mass renormalisation as
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0Cy _ OMy  O0Myz 03, 52 8¢,

tw My My s, 8 &y
w 4.2.24
br _ OMy 63, Oc ( )

or My S e

However, the quantities appear in the counters are s, and vy. Using the relation

in |106], one can obtain

(S’UT (SMW i (Sgw 0e @Téw

= — — — — —0Chwsn
v My, Sw e 25,
/\2 A A ~ A
v5¢ [ OC 08 OV
T w w T
- = — +2— ) Cywa,
25, Cuw Sw U
55 55 A9 A2 5é 55 50 A9 A2 (4225)
— = — S\ +2— | Cup — —5"0Cup
Sw Sw 2sw Cuw Sw U 452
/\2 A~ A ~ A~ /\2 A~
_07¢, oc 0§ 00 V5C
UTCy w w T T
- — +2— Cuwp — ——20Cuwn
25w Cuw Sw O 25,

The renormalisation constants for the left and right handed Z boson couplings

defined in can be found using these expressions. The SM expressions are

N.m?(1 —252%)

2UT SwCuw

g _59R)f+IWf

4.2.26
N2 (4.2.26)

Q’UT 5wCw

f_Qf

The expressions for the dimension-6 counterterms are substantially longer, and we

therefore choose to provide a more compact general expression

A O) ~2 Qf
sg®f = —qrint (o s
IR Va5 5, 00D +0Cuy)

~2 (4) 52 55

oy, 00y 05w
——(2— 1

* 2§wéw( Op = + 2);

)(%CHD + Chuy),

o A(6)

swcw 02 Sw

6CHD QCw
( 0Cus + 502[ + 5CH1 + Ty ( 282 - 3 >> (4.2.27)

w

82 5ol 82 55
L@+ (—1+ 22 (~Cuy + O + CR))

Cy w
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We note that the SM results agree with those quoted in [111]. In the above equations
we have defined the quantity

C. = (“—Z) =1—¢ln {ﬁ?} . (4.2.28)

2
my K

4.3 The One-loop SM Counterterms

In the pure SM case, we will avoid giving the pure SM one-loop diagrams as well
as the relevant amplitudes, since they are trivial. However, we will show how the
counterterms are built from the renormalisation constants as an example. In what
follows the symbol iijj will be adopt to mark helicity amplitudes that contribute to
the (€e;7,¢e;) <Bj’y”bj> dirac structure, where 7,7 = L, R.

Thus we can express the specific tree level amplitudes for ete™ — bb process

with a photon propagator as

. '62’(4) e _
ZMe(i)e?—w—wE (LLLL) = Z# (€ryuer) <bL7“bL> ,
. -627(4)Qer _ T
M0 (LLRR) = i (eryen) (Bryba)
o (4.3.29)
M0 RRLL) = i @%@ 1 bAMb
t e*e*—>7—>b5( ) = Zf (ErVuCR) < LY L>7
. WQQ. _
iM" 5 (RRRR) = i——="5 (eper) (bny"br)

And the tree level amplitudes for ete™ — bb process with a Z propagator can be

written as
>2,(4) b e
2 r(4),0 €7 grgL - 7
ZMsa(+)e*—>Z—>bl§ <LLLL> - Zs——]\ZQL <€L%‘6L> <ery“bL>
Z
>2,(4) b €
2 r(4),0 €7 VGRIL /- 7
ZMe(+)e*—>Z—>bl3 <LLRR> - Zs——]\ZQL <€L7“6L> <bR7#bR>
() b Ze (4.3.30)
2 r(4),0 €7 GL9R /- 7
iMP" 5 (RRLL) = i——=558 (epyuen) (byb)
Z
>2,(4) ,b e
2 r(4),0 €7 9L9L 7
ZM6(+)67—>Z_>55 (RRRR) = Z—S _ ]\Z%L (ERVuER) <bR7“ bR> :

sM) |
7~ can be neglected

Now we build the Z counterterms. Note that dM% = 2M% -

in the vanishing gauge couplings limit. So for the ete™ — Z — bb process, in terms
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of helicity states, the counterterms can be written as

MW o (LLLL) = M0 (LLLL)
(5;]5 6;/: %@52%) +0- oM - 203 1M2
MG (RRLL) = MO (RRLL)
(59L %9k | L5y + 0. oM. 2Mj— )
9 9% 2 (4331)
MW C(LLRR) = MY° - (LLRR)
(% + (SggzL %(2526) +0- oM (2MG— )
M, eCiTengﬁbl_; (RRRR) = +)éo —Z—bb (RRRR)
(% + 5;; %(zazR) +0- MY - 202 _M2>
And for the ete™ — v — bb process, we have
MENY s (RRRR) = MU (RRRR) L (257})
MeCiTe(le'y%bl_) (RRLL) = Me(i)eg*)’y—)bl_) (RRLL) %(2522), L5
MTY | (LLRR) =M (LLRR) 5(262) o

1
M (LLLL) = M®0 (LLLL) 5(202}).

ete—y—bb ete—y—bb

4.4 The Class 8 Matrix Element

4.4.1 Bare matrix element

To calculate the matrix elements automatically, we need some Mathematica pack-
ages, including FeynRules 2.0 [85], FeynArts 3.9 [112], and FormCalc 9.4 [113].
FeynRules is used to build the dimension-six SMEFT model file which includes all
the information of the model. Then we can use FeynArts to read the model and to
generate the amplitudes of different processes. Finally, FormCalc will be quoted to
calculate the squared matrix elements.

In general, since only the third generation fermions are considered in the NLO

corrections, all flavour indices will be dropped in what follows.
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t,b

Figure 4.2 One-loop diagrams for Z — bb and ete™ — bb processes involving

Class 8 operators

In the following calculation of one-loop integrals, the Passarino-Veltmann reduc-
tion scheme [114] is employed so that the bare matrix element can be expressed in
terms of standard one-loop scalar integrals. It turns out there are only two scalar
integrals involved in the Class 8 case, which can be divided into divergent parts and

finite part as
2

Ag [m?] = == + Ag [m?]

! (4.4.33)
By [s,mf,mg} =-+4+ DBy [s,mf,mﬂ ,
€
in which the finite part can be given with scale-dependence as:
~ m2
Ao [m?] =m? —m*In <_2) ’
1
(4.4.34)
Bo[s mi,m3] =2 — ( )—I—Z()\ In( )—ln()\i—l)),
where
)\.:s—m%—l—m%:l:\/(s—m%—i-m%)—llsm% (4.4.35)
’ 2s '

According to the chiral feature, these amplitudes can be classified into 5 cate-
gories, they are (LL)(LL), (RR)(RR), (LL)(RR), (LR)(LR), and (LR)(RL). How-
ever, it turns out that only the first three categories will contribute. In the one-loop
calculation, only t-quarks and b-quarks in the loops are kept, while the other quarks
and leptons are neglected. The loops in Z — bb and e*e™ — bb are exactly the same,
so the operators involved in these two processes are the same as well. The num-
ber of the operators that might take part in is limited to 11. These operators are
Qqq ,Qqq ,Qad, Qfg,@ud,qu), E,?},di),qu 7Q<(;Bqd and Qquqd Some amplitudes just
vanish, e.g., the trace of the SU (3) generator T'r (TA) = 0 will lead to their absence

in the Qgi) case. Besides, some operators only contribute to diagrams with scalar
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Dirac structures, which can be neglected as well. At last, only six four-fermion oper-
ators contribute to non-scalar Dirac structures, which are QE]}), g}), Qad, Qild), Qé})
and Qf;i). Actually, since the contribution from t-quark loops would be much bigger
than that from the b-quark loops, we can neglect the b-quark loops for the purpose
of simplification. But in the Class 8 case we will keep the b-quark loop diagrams
and just set the mass of b-quarks to zero in the numerical calculation.

To start with, I will list the bare amplitude for each four-fermion operator and
explain how they are generated. The amplitudes will be expressed in the helicity
form, which will be very convenient for the following calculation. In the calculation
below, according to the Wick’s theorem, all possible contractions in the operators
have to be included. Note that there are v matrices in the four fermion operators,
e.g., Qg}]) = (¢7*q)(@v,q), in which I have omitted the flavor indices since we only
consider the quarks in the third generation. The contraction operation will affect
the position of the v matrix in the amplitudes, which will lead to different Dirac
structures. According to our calculation, there are two different kinds of Dirac
structures, which are simply marked as structure (1) and structure (2), which will
be explained in detail later.

In the calculation, we can use FeynArts to generate these diagram’s amplitudes,
but FormCalc is not able to handle the four-fermion vertexes generated by FeynArts.
To solve this problem, a trick is needed. The idea is simple: for the first diagram
of with t-quarks in the loop, the relevant operators are those operators with
two t-quarks and two b-quarks, e.g., (@,y,u,)(bs7"b;). Since the final states are
two b-quarks, the t-quarks must annihilate, which means each top quark must be
contracted with a bottom quark. This leads to only one contraction structure, we
denote it as structure (1). Now consider an auxiliary SM diagram that can
be dealt with in FormCalc. The only difference between this auxiliary diagram and
the first diagram in is that this diagram includes an extra Z boson propagator.
Therefore, to obtain the expected EFT amplitude, we can use FeynArts to generate
this SM amplitude and delete the Z propagator to get the EFT diagram. For the
second diagram in with b-quarks in the loop, the situation is more complex. The

second diagram comes from operators with four b-quarks such as (b,7,b,)(bs7"b;).
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Figure 4.3 Two SM auxiliary diagrams that FormCalc can deal with for the Z —

bb process

Since all particles in these operators are b-quarks, these operators could have two
contraction structures. One structure is the same as that in the (£,7,t,)(bs7";)
case, which corresponds to the auxiliary diagram . While there is another
contraction structure, marked as structure (2), corresponds to another pure SM
auxiliary diagram . Note that the fermions in the loop of this SM diagram are
t-quarks, in order to get the expected EFT amplitude, one should delete the extra
W boson propagator and replace the t-quarks in the loop with b-quarks. Through
these two auxiliary diagrams, FormCalc will be able to calculate the EF'T amplitudes
automatically.

We must stress that the relationship between each four-fermion operator and each
diagram is not one-to-one, since these operators are not written in terms of particle
states. Rather than using the original operators, we need to expand these opera-
tors into polynomials in terms of their third-generation particle states. Taking the
LLRR type operator Q%) = (@Yu9r) (Gs7"q:) for example, The corresponding poly-
nomial is (£7,t) (by"b) + (by,b) (b7"b) + (by.b) (by"b). Notice that (fy,t) (by*b) and
(B'yub) (ty#t) only have one contraction way to generate bb final states, both of them
belongs to structure (1). Together we can mark them as 2 (£,7,t,) (bs7"b;) (1), where
(1) means they belong to structure (1). While (by,b) (by"b) has both contraction
structures and each structure has one contraction way respectively. We can write
down the corresponding polynomial as 2 (l;'yub) (Bv“b) (1)+2 (l;'yub) (B'y“b) (2), these
terms could be connected with the diagrams directly. For RRRR operators, taking
QS} for example, the corresponding polynomial term should be (#7,t) (l_w“b) (1). For
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LLRR operators, taking qu = (@pYuar) (bsy*b;) for example. The corresponding
polynomial is (£y,t) (b7/b) + (by.b) (b4*b). The term (v,t) (by"b) only have one
contraction way, while the term ([_?%b) (l_)yub) has two possible contraction ways.
Note that the bb pairs in the left part of the operators are left-handed while the
bb pairs in the right are right-handed, we have to distinguish diagrams with left-
handed bottom quarks in the final states and diagrams with right-handed quarks in
the final states. If these diagram belongs to structure (1), we mark diagrams with
left handed fermions in the final states with (1L) and diagrams with right-handed
fermions in the final states with (1R). Then we can write the polynomial of Qé}i)
as (ty,t) (0vD) (1) + (byub) (") (1R) + (byub) (by*d) (1L) + (byub) (bv) (2R) +
() (D) (2L).
We summarize all the expansions in a table below in Table [4.1]

Qé? 2 (ty,t) (B”y“b) (1)+2 (B’yﬂb) (B’y“b) (1)
+2 (byub) (by*d) (2)
QP 4 (tyut) (0y"b) (2) — 2 (Fyut) (0y#D) (1)
+2 (b7ub) (09*0) (1) + 2 (byub) (b3*0) (2)
QL (Fyut) (07D) (1)
Qfd) (f%TAt) (bv“TAb) (1)
Qaa 2 (byb) (b9"b) (1) +2 (b% ) (br") (2
Qd (tyut) (by"D) (1
o @wTﬂ(’T%M
(t7ut) (09#0) (1R)
QY + (byb) (byb) (1 ) (by,b) (b770) (1L
+ (Bd) (5°D) (2R) + (B,0) (B°D) (2L)
(Geae) (bv“TAb) (1L)+
QU | (B 78) (BT 0) (1R) + (B, T45) (BT 4) (1
+(by, T4b) (4" T4b) (2R) (by, Tb) (WTAb) (2L)

Table 4.1 In the table, we expand the those Class 8 operators that contribute
to NLO corrections for Z — bb and ete™ — bb processes in terms of the third-

generation particle states.



4.4. The Class 8 Matrix Element 85

I will organize this section as follows. First, the bare amplitudes of Z — bb
process will be given in a very detailed way, so that many subtleties can be mani-
fested. And then the amplitudes of ete™ — bb diagrams will be written into a more
compact form.

In the Z — bb process, for the (EL) (EL) type operator Q((;]), the diagram with

a t-quark loop only contributes to structure (1), the bare amplitude is

1) 2NC*C(1) e .
MG = i ==L (byyb) (g (M2 = 6m?) + 641 Ao [m?]
+3 (g,m; — 3gkm; — g, M3) By [M3,m], mf}) (4.4.36)
12N,eCy%) ey -
- Z;% (brabe) (391 — 39k) mi — gL M7)

where ¢t and gf, are the SM weak chiral couplings, the general form of SM weak
chiral couplings are given in [1.2.47 And diagrams with b-quark loops include a

structure (1) part and a structure (2) part, together they contribute

QW 2NECSPe - .
MG = =L (b ) e (gf, (M3 — 6m?) + 69} Ao [mi]

+3 (gfm3 — 3ghm? — g MZ) B [M3,mi, m?])
12NECS et
— i = 52 (bube) (31, — 3gR)mi — g;M7)
‘C on (4.4.37)
2eCyq’ €y
7272
695 Ao [m3] +3 (ghm? — 3ghm — g} M2) B [MZ, m?, m?] )

12eCel
i S (bube) (89, — Bekmd — gEM3)

bryubre’ (—=15g7my + 997 mi + 4gp M3

Note that for (EL) (EL) type operators, the b-quarks in the final states must be
left-handed.

From now on, we will avoid writing down the operators into the particle states
for simplicity’s sake. Similar to Qé}l), Q((f(}) belongs to the (LL)(LL) type operators

as well. We sum up the all amplitudes of Q((;:}) with two kinds contraction structures
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as below:

2N, eCd et A
@M?_)bb = @TM <bL%bL> (gf: (M% — 6mt2) + 694 Ag(m?)

+3 (gm? — 3gm? — g}, MZ) By [M3, m?, m?])

1 2NceC e’
- Z 127T2qq = <bL7HbL> ((3911 - 39R) - gtLM%)

,4équ EZ 7 m t 2 t 2 t 2 t A 2
Tl S bryubr > € ( =15gpmy; + 9gpmi + 4gr M7 + 697 Ag [m7]

+3(g;mi — 3gmi — gLMZ)BO [MZ7mt>mﬂ>

14eCPes

— ZZ# <bL7ubL> ((392 - 39?%) ml2; - giM%)
O o) i (4.4.38)
. c€ €y /7 n

— L (byb) € (—15gmE + g} + 4gh M + 67 Ao [m]

+3 (g3 — 3gkm? — g} MZ) B [M3, mi, m?])
12N, eC'qq el

— ZET <bL’YubL> ((392 - 39?%) mg - Q%Mg)
.25052)6% T " b2 b2 b2 b A 2
BT < bryubr > € (—15ngb +9g;my, + 495 M7 + 697 Ay [mb]

+3 (gfm? — 3gkm? — g} MZ) B [M3,mi, m?] )
12eCSD el

it (B (39 — 30k) mi — g} M3)

Next we consider the (RR) (RR) type operators, which only contribute to the
diagrams with right-handed b-quarks in final states. For QS}, only a t-quark loop

diagram with structure (1) can contribute:

oM ; C

ZMZ—)bb = —z% <bR%bR> e gR ((MZ 6mt) + 6gRA0 [mt}

+3 (ghm? — 3ghm? — gh,M2) By [M2, m?,m?}) (4.4.39)
12N, C

- ’E% (brvubr) ((39% — 397) mi — grM3) .

For @44, there are b-quark loops with structure (1) and structure (2), they contribute
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as

2N eCyae, - -
NGy = 2L ) (g (M — 6m) + 6gh o (]

+3 (g%mb 3ngb QRMQ) BO [M%ambame

1 2N, 0. _
i 2RO (5, bm) (305 — 303) i — ghM3) "
2e _ R 4.

. €7gdd;Z <bwaR> ( — 159%7712 + Qg%mg + 4g§’%M§ + 69%140 [mﬂ

+3 (ngb 39Rmb gRMZ) By [Mvammb] )

B ZZW (brvbr) ((3gk — 391) mi — gpM3)

For the (EL) (RR) type operators, the b-quarks in the final states could be
left-handed or right-handed. For Q((ﬁ), a t-quark loop with structure (1L) lead to a
amplitude with left-handed b-quarks in the final states:

o NeCheh )

iMG = ==L (b e (g (M3 — 6m?) + 695 Ao [m]

+3 (ghm? — 3gim? — g M2) Bo [MZ,m?, m?] ) (4.4.41)
1 chcv(qlt) B

— i (Buube) (35 — 3h) m? — gk M3) .

For the Qéz) case, it turns out that only the structure (1) diagrams are non-vanishing.
The corresponding amplitudes are

~~(1) p
oW N.eC e, _ N
iMyy = _Zn—qiz (brYubR) € <9tL (M7 — 6m7) + 697, Ag [m?]

+3 (ngt 3ngt gLMQ) BO [Mgvmtam?]>

1 NceC(l)
- gTqi (brrubr) (397 — 39%) mi — ¢1,M3)
NceC e, _ .
— i1 (brubr) € (g5 (M2 — 6m) + 697 Ay [m?]
+3 (ghm? — 3ghym? — g M2) B (M7, m, mb]> (4.4.42)
1 NceC(l)
- ZgTqi (brrubr) ((39% — 39%) mi — g1,M3)
N.eCuels - i
NN (e (o (043 — 6m) + Gy [m]
+3 (ghm3 — 3ghm? — ghMZ) Bo [MZ,m?, m?] )
1 NCeC’;d)

— it (bembe) (39 — 3g1) mi) — g M3)
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In the case of efe~ — bb, the amplitudes are very similar to the amplitudes
in Z — bb. Instead of writing down the amplitude for each diagram, we prefer

to express them in a compact form. For this purpose, some notations need to be

defined:
T4 = gi (—6m +5) + 6. Agfm?),
13" =3 (gimi — 3gymi — gis) Bols,m?, m3],
| ( | . ), B (4.4.43)
I3" = =15g,m; + 9gym; + 4g,s + 69, Ao [m7]
I;" =3 (3gmi — 3gymi — gus) |
where a,b = L, R with b # a, and i = t,b. 92?3 are the chiral neutral weak coupling

constants. Using [4.4.43] the bare matrix element of efe™ — bb in Class 8 can be

written down in a simple way. Due to the different dirac structures, the bare matrix
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element can be divided into 4 parts, in which the finite terms are

gie? 1
212 s — M3

(2 (20 + 2" o+ (30 1 w212+ 1) o)

+ N, ((I}f + Iﬁ;b> i 42 (Ii’b Ty Uy s I%t) cy

iMon (LLLL) = —i (ezy"er) (bry"br.)

ete——bb

R+ = I = YO + (1 + 1) ) )

gre® 1
212 s — M2

(2 (4 2¥) oW+ (0 + 3w 2(13+ 1)) )

+ N, ((I}%’B + [f-gb> ) 42 <[ L C Ly S I%t> cy

M, (RRLL) = —i (egn*er) (bry"br)

+2 (ng U Ii’t) CO 4+ (15 4 12 cqq)) )

g7 > 1

M, (LLRR) = =i (errex) (bi"bie) 225~

(2 (1 + 1+ (18 + 17 V) Caa

+ N, ((Ié”’ NN LT p I%t> Y+ (I + 1) Oﬁ}) ) :

gre® 1

72m% s — M3

(4 (1 + 1) Caat N (B0 + 120+ 1+ 1) O + (I + 1) 1Y) ) ,
(4.4.44)

iM%, (RRRR) = —i (exy¥er) (Bxy*be)



4.4. The Class 8 Matrix Element 90

and the UV divergent terms are

gie? 1
212 s — M3

iMEY L (LLLL) = —i (ery*er) (bry*br)

(2 (rhew + (1" +211) c)

qq
N (e +2 (1t + i) o +2 (1 - 1) o + 1))

e 52
. iv ) (e b IRrC L
IME 5 (RRLL) = —i (ery"er) (b17""br) 73%2 s — Mj

(2 (]ﬁ’b(Jé;) + (fgb + 21#) qgg>)

(4.4.45)
N (1 e w2 (1 + ) e 2 (1 - 1) 9 + ' ed))

e 52
- rdiv G b ILC !
Moy (LLRR) = —i @ryer) (bay"br) 2o 53 p
(21 + N+ N (1 + 1) o) + 1Y)
g%é* 1

IME, s (RRRR) = i (enyen) (bny"be) 55—

(218 0+ N+ N (12 + 1) ) + 1) )

4.4.2 Class 8 Counterterms and Renormalised Amplitudes

As is outlined in [1.4] UV poles need to be cancelled by the counterterms building

through [4.2.22] and [4.2.20] respectively for Z — bb and ete~ — bb processes. Since

we are not interested in corrections with leptons in the loop, the renormalisation
of the couplings g7 r will not be considered here. Other counterterms could be
calculated according to [4.2.23] However, the wavefunction renormalisation for the

b-quark due to the Class 8 is not given in 4.2.23] which is needed in the counterterm.

Figure 4.4 The self energy diagrams for b-quarks involving Class 8 operators and

QCD contribution

The wavefunction renormalisation for the b-quark together with the mass renor-
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malisation can be found in [108], these renormalisation constants are

1 [m? -
s = L [12 (oo 1) (i + €8 + s (B C5))

€
—4m;} <C(§z? + cF,gC’ég))} +om]"™ (),

omi™ (1) = T Ao(m?) (2N, +1) (Clis, + Cliy ) + s (Clon + o))
+ 2my, <m§ — 2A0(m§)) (Cé;) + CF,3C(§S)) ;

e L[ m (1) o
5Zb( = [_EZ <(2Nc +1) (thqb + tht;b> ters <C(t‘1b + O;tq)b>>

€
+ozp
o)~ ) (. 1 (G OB s (0 E5)
02, =0,

(4.4.46)
in which we have omitted the lepton masses. The renormalisation constant of b-
quark mass is also listed in [4.4.46| as it will be needed in the transformation pro-
cedure from on-shell scheme matrix element to the MS scheme one. And the wave-
function and mass renormalisation for the electron can be obtained by calculating

the two-point function similarly as

1
(5m£6) = Z (—4m301e + Ncmg (Clebq + Cl*ebq) + Ncm? (Cleqt - Cl@tQ)) + 6m2n(€)7

smin(e) = 2m? (mg — Ay [mg]) Cle + Nemy Ag [75] (Crebg + Ciey)

3
L (Ch = Cl) = "2 (Cu = Cia) ) + 925

5m2n(ﬂ) = 2Nc (_ﬁAO [mt} (Cleqt Olfeqt) - @AO [mlﬂ (Olebq - Cl*ebq))

me Me

(4.4.47)
in which the electron mass m, can not set to zero since it appears in the denomina-

tors.

Observe 4.4.46| and [4.4.47, we can find that the real parts of the four-fermion

Wilson coefficients only contribute to the mass renormalisation, while the imagi-

nary parts only contribute to the fields wavefunction renormalisation. Since in our
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assumption, the Wilson coefficients are real, the wavefunction renormalisation con-
stants just vanish. Furthermore, the tree-level amplitudes of Z — bb and eTe™ — bb
processes have no mass terms, so we can conclude that there are no terms due to
the mass renormalisation in the counterterm. It needs to be stressed that the wave-
function and mass renormalisation also occur in the SM, through a QCD interaction
in the self-energy diagram as shown in 4.4 But it can be neglected in the vanish-
ing gauge couplings limit. As a result, the wavefunction renormalisation and mass
renormalisation of b-quark will not contribute to the counterterm at all.

Through [4.2.23] we know that the renormalisation of the electron charge does
not contribute as well. The only source of the counterterm in Class 8 case is the
renormalisation of the Wilson coefficients, which only contributes to the divergences.
Therefore, we can conclude that the finite NLO corrections related to four-fermion
EFT operators only come from the one-loop diagrams. Those UV divergent terms
due to the one-loop diagrams are directly canceled by the counterterms arising from
the Wilson coefficients renormalisation in Class 7 category. Extracting the pieces
involving only four-fermion contributions in the vanishing gauge couplings limit to

O};;, CSZ and Cpq gives

2 2 2 2
N1 oMy MY 1 3 my 1 my (1)
Cltg =27 55— (22N, +1)CY +6CP) —2 P 2N.CL) +2 52 2VeCod
2 2 2 2
w3 oMyt 3 1 my 1 my 1)
Oty = —2= g (22N, — 1)CP +2C)) — 2@_§2N60§“) 25 2N
2 2 2 2
Ca = 2224 (N, + 1) Cgg — 2L oN,0 V) 4 o™ — T 7 (1),
07 02 2 a
(4.4.48)

in which all the flavour indices have been removed. In the Class 8 case, we also check
the cancellation of UV divergent terms which are proportional to M2. Therefore we

also list the gauge parts of these dotted Wilson Coefficients:

: 8
4 4
: 2 2
Chig = 395C3) + 5(2Ne = )g3Ci0),

: 8 8 4
Cha = 3 (Ne +1) 67 NeyryaCaa + +§ cngcyquCﬁ) + chg%NcyHyuCSi)-
(4.4.49)
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The details of the cancellation of UV divergence in the Z — bb case can be found
in in the Appendix. Cancellation of UV divergence in the ete™ — bb case is
very similar to former one, which will not be given in detail any more.

In order to convert the on-shell-scheme matrix element to the MS-scheme one,
we need to recover the p-dependence of the one-loop matrix element, which could
be done by shifting the scalar integrals by a u-dependence logarithm. In the class 8

case, the one-point scalar integral and the two-point integral shift as

Ay [mf] = Ag [m7] —miIn [Z_E] (4.4.50)

A . m;
By [s,mf,mﬂ — By [s,m?,mﬂ —In {M—Qt} :

Furthermore, though the mass of electron is neglected in our assumption, the b-
quark mass in the bare matrix element is the physical mass which is valid in the
on-shell scheme but not the MS scheme. However, it is straightforward to derive the
MS mass from the physical mass with the mass renormalisation of b-quark in hand.

The relation between the MS mass and the physical mass for b-quarks are given as

(i) = my + omi® (p). (4.4.51)

Since dmi™ in is also a function of the scalar integrals, the operation in
can also be used to recover the p-dependence factor in the MS scheme. We need
stress that the b-quark mass shift due to the MS scheme will not affect our results
at all, as there is no counterterm due to the renormalisation of the mass of b-quark.
If one just directly replaces mj with 7, (1) in the one-loop amplitude, the dmin(u)
term will contribute to the % order in the power counting of SMEFT, which can

be neglected.

4.5 The Class 7 Matrix Element

As is shown above in [4.1] the operators in class 7 which contribute to the tree level
correction of forward-backward asymmetry are C}}} , CS’Z) , C'He, Cg;,CS’g. A subset
of Class 7 operators also contributes to the Z — bb process through the diagrams

shown in Fig. Unlike the Class 8 case, we only keep the diagrams that contribute
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() (f) (&)

Figure 4.5 Class 7 one-loop diagrams for the Z — bb process

to the m? terms, since they are dominating in the results. In this approximation,
Only the operators Cg;, Cg’[)] and Cgy in Class 7 will be involved. It turns out only
the left-handed helicity amplitudes survive to contribute, therefore only g; needs

to be considered. For the first diagram [4.5(a)l the SMEFT operators alter the Ztt
coupling according to QEL, ) in 4.1.13| The bare amplitude is

2

) A
el (bt (Cond (M3 2 ot = M3) B [, 3

iMe o — T Z
Z—bb A a4
3272¢,, 8, M7

— (2m} — 2Mj, + M) By [MZ, w3, m?] ) +2 (Cu (m? — M3)?
. 1
+ (OB = Y m2M2) Co (M. m? m? 03 — M%ZC’Ht)
(4.5.52)
It can be seen in the above amplitude that only Cp; contributes to the UV di-

vergence, while all the other three operators only contribute to the finite part. Cyy

does not appear in the born matrix element, it only contribute at the one-loop order.

Note that C’g; and Cg; have opposite signs in |4.5.52| as in the gt.
In the cases of diagrams [4.5(b)||4.5(c), the EFT operators change the coupling
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of the goldstone boson to two fermions. Together, these two diagrams contribute as

Mbc ‘ 60 3) #

Zbh = 2 m (bryubr) ( (—3¢2, M3
+ (4mf —AMG + MZ) éw) Bg[mg, m?, My
48 (M3 (2m — 2043, + M2) Bo[MZ,m?2, m?))
(4 (mE - MR)* 52+

—lMZ(:SC + 3 ))

mEME (=382 + 32) ) ColMZ, mi, mi, m?, mé, M)

(4.5.53)
The bare matrix element for the diagrams [4.5(d)|and [4.5(e)|i

de . thCH €y 22
My = 327r26w A5M2 (bryubr) (&, — 53)

( (M3 =2 (m2 = M3y) Bo [mi, m, M) + (2m? — 203, + MZ) Bo[M3, My, M3,

42 (i + My + (<2003 + M2)) Co [ M, i 2, M M3 ) + %Mﬁ)

(4.5.54)
And the last two diagrams [4.5(f)| and [4.5(g)| contribute as
m2es,C\Y ek . 1
iMbI o — tCWTHZ B 2 2 N2 M2 4.5.55
WMy =2 872, M2 (bryubr) | Bo [my, mi, My, + Mz ( )
Summing up all divergences above in the Z — bb reaction, we have
2 K
. emge, 4, @)\ /7
Zm (CHt + (6 + gsw) CHq) <bL7pr> . (4556)

The ete™ — bb case is very similar to the Z — bb one. We just simply write

down the four corresponding bare amplitudes in the ete~ — bb reaction, they are

2
iMoo — O !
ete——bb

167r332 2 s — M2
((Jm (s+2 (mf = M) Bo [, m#, M3 ] = (2mF — 2M3, + ) By [s,m?, m?] )

+ 2(Cre(m? — M) + <C’§3 — CS;) mfs)éo {S, my,my,m?

2 2
by My, My MW}
SCHt

: ) (262 (Eurer) (Brbe) — (& — &) Erren) (Burby))

(4.5.57)



4.5. The Class 7 Matrix Element 96

. b,c amt C}?; 1
ZMe*e*—ﬂ)l; =2 247T882 02 _ M2

<( 3625+ (4mf — AM, +5) § )Bo [mb,mt,M2 ]
1282 (s — (2m2 — 2ME, + 5) By [, mf,mg})
+ (=32 m2s + (4 (m? — M2)” + mzs) 52)Co [s,m2, m2, m2,m2, M2]

— —(36 + S )) (2§3U <éL’}/'u6L> <Z_JL’}/'ubL> — (é?u — §i}) (éRfy“eR> <6L’)/‘ubL>) s
(4.5.58)

<s+z(_m§+M5V) B [mg,mg,Mgv] (2m2 — 202 + ) Bo [s, My, M2
+2<(mf—M3V) +m?s )C’o [m3, s, mj, mi, M, My,] z)

(2312,] (ezy™er) <BL7%L> - (6121) - §120) (erY"er) <BL'Y'ubL>) )
(4.5.59)

and

f, B ath’Hq 1 . s g 1
Mg =20 gy By [mb,mt,MW}—irE

(2§121) <éL’}/M€L> <Z)L’}/MbL> — (6121) — ‘§1211) <éR’7M6R> <BL’}/MbL>) .

As in the Class 8 case, the renormalisation of the Wilson coefficients only con-

(4.5.60)

tributes to the divergent counterterm. Extracting the pieces involving only Class 7

contributions in the vanishing gauge coupling to C‘}};, C’g and Cpq gives

2 N,
Chy = ;”t ( Cred (7 + 1) O — 90}5’3)
T

2mt

2
CHq+2 mi
T

o) (N, +1) CJ(L?; (4.5.61)
Vi

q

C.'Hd = 07

which could generate the following divergent counterterms:

1 emzel, 3 )
4.5.62
€ 16725, <CHt + (7= 2N,) O — (1 +2Ne) C ) (bryubr) - ( )

Following the renormalisation procedure in there are still counterterms due to
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5@
&fg 02 and 629" which are

v

~(4),di
1 Nem?

’lA)T € 2@%
57 Ldiv _ 1-mf (4.5.63)
b e 0%

iv 1
52\ = Zom2C).
€

~(4),div
It is easy to check that the counterterms with N, due to o UTT are responsible for

cancelling the counterterms including N, in[4.5.62. All other divergent counterterms

directly cancel the divergences in the one-loop amplitude.

4.6 The Class 4 Matrix Element

In the large-m, limit, there is only one operator Cgw g in Class 4 that can contribute
to the NLO correction in both Z — bb and ete™ — bb processes. These one-loop

diagrams in the Z — bb case are shown in Fig. |4.6
(b)

Figure 4.6 Class 4 one-loop diagrams for the Z — bb process

(a)

() (d)

For the first diagram [4.6(a), the bare amplitude takes the form

mféCHWBeg 4 A 2 2 2 92 2 397 /T
—bh = ! 167252 CwthO |:M27mb7mb7mt7mt7MW] <bL7NbL> '
w

(4.6.64)

- a
zMZ



4.6. The Class 4 Matrix Element 98

For the second diagram [4.6(b)| we have

25 K
’iMb . ,mteCHWBeZé
b 'To8_91s2 20 Cw
7ot 32m2M352,

( (M§ —2(m? — M2) By [m2,m?, M2,] + (2m? — 2M2, + M2) By [M2, M2, M2)]
+2 (mi 4+ My +m2 (—=2M2, + M2)) Co [m2, M2, m2, m2, M2, Mgv})
1\ —
# 037 ) Bt
(4.6.65)

The third and forth diagram will lead to a same amplitude, together they contribute
as

20712 5 0
q resd miMzeCpwpey . . - 2 g2 2 2 gr2 21 /7%
ZMZ—N)I; =2 3972 CwaCO [mba MZumb7mt7 MW: MW] <bL/7p,bL> .

(4.6.66)
For the ete™ — bb case which is similar to the Z — bb case, we just show the

corresponding amplitudes as follows:

4_
. m;aCgwp 1 4 2 2 9 9 g9
a = C
M~ l ET R — 0 [SambymmmmmtaMW] (4.6.67)
<2§30 (eryuer) <Z_7L7ubL> + (*ﬁ - é%u) (ErVueR) <BL%bL>) ;
2_
. b .y aCHWB 1
ZMe*e*—>bl; =

' 16mé,sss s — M2
( (5 =2 (m? = M) Bo [ 2. 23] + (2m? = 2003 + ) B [5. Miy. 23]

42 ((mg M) mgs) Co [m2, 5, m2, m?, M&V,Mgv})

N i o -
+ SZ) (257, (eryuer) (bryubr) + (5, — &) (Ervuer) (bryube))
(4.6.68)
o ed B asCywn 1 A 2 2 2 2 2
Mere—tp = =2 96063 5= M%OO 8,y i, My My (4.6.69)

(2§12U <éL7ueL> <6L’Y;LbL> + (éfv - 612”) <éR7,u€R> <l_7L'Y,ubL>) .
Only one diagram contributes to the divergent term in the Z — bb process as well

as in the ete™ — bb process. The one-loop UV divergencies for those two process

can be directly read off from [4.6.65| and |4.6.68|

As usual, one source of divergent counterterms is the renormalisation of Wilson
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coefficients. In the Class 4 case, only 6C'yw g is involved:

) 2m?
Crws = 2L N,Crrwp. (4.6.70)
(%

T

.(4)
Similar to the Class 7 case, the other divergent counterterms also arise from %,

. (4)
5Z1§4)’L and 62156)’L. The normal SM renormalisation constants % and 5Z,§4)’L are
the same for Class 4 and Class 7 cases, while the EF'T renormalisation constant

5Z£6)’L does not include any Class 4 Wilson Coefficient. We have
57—, (4.6.71)

Since the divergent structure in the Class 4 case is simple for both processes, it is easy
NO)

to check that the divergent counterterms due to % directly cancel the divergent

counterterms due to Cyw g, and the one-loop UV divergencies are cancelled by the

counterterms due to 52554)’L.

4.7 G as an Input Parameter

In the above calculation, we express our calculations in terms of vy that is deduced
from the input parameter My . However, the measurement precision of My, is not
as good as G in the experiments. Consequently, it is better to replace My, with Gg
in the set of input parameters in the numeric calculation. To be more specific, we
need to express the vacuum expectation value vy in terms of Gp. Correspondingly,
the tree-level relation has to be extended to its one-loop form. In [108], such
a relation is given as

11
ﬁv_g(l + Ar)=Gp+ RY, (4.7.72)
T

where Ar represents for the finite non-QED radiative corrections to muon decay in

terms of two-point functions |115]. In the vanishing gauge couplings limit,

Ap — (M—W _ E) _ (4.7.73)

By using the relations in [4.2.23| one can obtain Ar at the one-loop order, the specific

expression of Ar can be found in [108]. And R is the finite correction arising from
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the SMEFT contribution, including a tree-level part and a one-loop part. The tree
level part could be deduced from [2.1.18], which is

2
AR0 — _\/501(%) + gom (4.7.74)

in which the favour indices are dropped. The one-loop part can be found in the
large-m; limit in [108]. Dropping the redundant flavour indices, it can be written as

2N m? I : ;
ARG — Mcﬁf) L (CS’? _ Cl<ls>> In (m_g) : (4.7.75)
vt V2 H

where the 1 dependence has been restored by the RG equations. For convenience’s

sake, we can divide a general amplitude in dimension-six SMEFT into four parts as

MEL s = D)7 u(pe) (o) y0(pg) (AGO 4 AGO) 4 AGD 4 AGD)
(4.7.76)
where A®Y is the tree-level pure SM part, A*Y is the one-loop SM part, AG9) is
the tree-level EFT part and A% is the one-loop EFT part. For each SM diagram,
each vertex will contribute to a v;', which is equal to Gj‘p/z. Accordingly, A®9 and

A6 will receive shifts as follows:

A6,0) _y 4(6,0) _|_6A(6,0)

“r (4.7.77)
AGD _y AGD 4 540D N
Gp
in which the shifts could be computed as
6,0
T
’ Gr (4.7.78)
6.1 ARG 2AR(G0) o
§A( 1) _ A(4’0)— + A(4’1)—.
Gr Gp Gp

4.8 Phenomenology and Numerical Results

In this section we focus on the ete™ — bb process. In the following numerical
calculations, input parameters are chosen as a = 1/127.91 m; = 173.3 GeV, myz =
91.1875 GeV my = 125.0 GeV, G = 1.16638 - 107> GeV ™2, T'y = 2.4952 GeV [13],
and the physical scale is chosen as p = u; ~ my, in which case the large logarithms

arising from the one-loop matrix elements are absorbed into the Wilson coefficients



4.8. Phenomenology and Numerical Results 101

Ci(p). According to the RG equations, one can obtain the following relation of
Wilson Coefficients for different energy scales:

Cilpm) = ClA) + 51

. IU/Q
= C;(A)In {—t} , (4.8.79)
through which the numerical results obtained at the scale u; could be transformed
to the result at the new physics scale A on the assumption that A does not exceed
1 by several orders of magnitude. The specific form of each C; at one loop has been
given in [104-106]. Benefiting from this approach, our following numerical result
could be used to test new physics models at the scale A.

The following calculation is up to one loop and 1/A?, which means the self-
interference of the pure EFT terms that are proportional to 1/A* are neglected.
In order to constrain the values of the Wilson coefficients, one should compute the
predictions for specific observables. To began with, the squared Matrix elements
of ete™ — bb process should be calculated. In the SMEFT, the squared matrix
elements could be decomposed into SM part and EFT part, in which the SM part

can be written as

\M(‘*) M@0 Ap(A0) 4 9 pp(0)x . pr(d) (4.8.80)

| =
and similarly the EFT part can be written as

|M(6) ‘2 — 2M(470)7* . M(G,O) + 2M(471)7* . M(G,O) + 2M(470)7* . M(le). (4881)
The total squared matrix elements should be the sum of these two parts:

‘MSMEFT|2 = [M®P 4 |[MOP, (4.8.82)

For the eTe™ — bb process, neglecting the mass of electron, the general differential

cross-section can be expressed as
V1= "M [*dcosd (4.8.83)
do = e
8ms

To make the suppression of dimension-6 contributions more explicit, we define the

dimensionless Wilson Coefficient as

C; (1) = G, (j1e). (4.8.84)
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In terms of the dimensionless Wilson Coefficients, the tree-level general differen-

tial cross section do/dcy (e*e’ — bB) which is the massive version of equation 4.2
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of [109] can be expressed as:

1do QB2+ (-1+6) )  ENQQ.S

N, dcg 327s 64mA2
{2 (6’eb + @b + d,e) + 2¢p8 (@b - @b - 5'qe> — (5513 + 511; + 5qe> B*(1—cp)

+ <5l(q1) + 6’;?) (24 2coB — B> + 03,82)]

§ S {9% (35 (2 = 2008 — 8 + 3B°) + 77, (2+ 2008 — 5 + G57))

+ 5% (37 (2= 2coB — B° + 3B%) + g (2+ 2¢08 — B2+ ¢38°)) }

5P
128mA*

2752 22 N~ a2 2,792 2 ~(1) ~A ~(3) ~3) )
+ AC2B° — 204 CouB + AC2 B2 + (qq +¢CY) ﬁ) + (qq + ¢l 5)

+

{531, £ G2 1200 C + C2 4 26408 — 2408 — 2e4C2 5 + AC2 B

- 2001+ ) + 205 (G - Cut® + 8 (1 + cad) |

5255( (s) b (e (A ~ 02, A 2

+ 1287TA2 ﬁ |:gL (gR (Ceb - Cebﬁ + qu (_1 + CGB) >
—e [~ ~ 02 ~(1) 2 ~(3) 2

+97, (Clb — OB+ C (1+coff)” + , (14 cof) ))

+ g (gi (@(;) 4 @f’) _ gl(;) 32— Cl<q3> 8%+ Ciy (=1 + ¢4 5)2>

+0r <5qe - 5(1@52 +Cp(1+ Ceﬁ)2>> }

é4QerﬁX (3)
1287

(14 coB)? + ghgs (1 +coB)” — gogs (—1 + %)
—g0g% (=14 B8%) — 9195 (-1 + B°) — ghdh (-1 + 587) }

e*Bsx (s)
1287A2

+ {gig% (—1+coB)’ + G205 (-1 + o)’ + 3275

{Cnbgﬁgi + Cigo gy + Cargoge + Cocdtds + Cergidly + CocGndle
— 204035 58 — 2¢Coeh 358 + 2¢0CarGhdn — Cingods 52 + caCui §hb’

— Cagb G358 + 3Coegt 758 + 3008 — CoeGndin

+C55 (G — TR+ 30 (L + oB)?) + O g5 (Gh — 308 + 35 (1 + coB)?) }

etBx (s) x (s b e . o
% —2979% (37° + 9%°) (=14 8%) + 3;° (95 (=1 + coB)’
+ (97 + co918)°) + G5 (97" (=1 + coB)” + (75 + 0995%5)2)] :

(4.8.85)
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2
where § =14/1 — %, cg is the scattering angle we have encountered in and

X (s) = ST (s (4.8.86)

is the propagator at the Z peak obtained by using the Breit-Wigner formula, in
which the Breit-Wigner distribution is denoted as w (s). Note that in |4.8.85 terms
proportional to % are kept, which will be dropped in the following numerical cal-

culations.

4.8.1 The Forward-Backward Asymmetry at Z peak

The complete forward-backward asymmetry at Z peak in dimension-six SMEFT
includes the pure SM contribution and the EFT contribution. The SM result could
be directly computed by evaluating [1.3.61] In order to compare the contribution
from LO and NLO diagrams, we need to calculate the ratio of the NLO SM cross-
section and the LO SM cross-section, it is

dob)

gy = 00627827, (4.8.87)

and the ratio of NLO SM forward-backward asymmetry and LO SM forward-backward
asymmetry can be obtained similarly as

(4,1)

Y — _0.297382. (4.8.88)

(4,0)

It can be seen from[4.8.87|that the NLO corrections only alter the LO cross-section by
a few percents, but alter the LO forward-backward asymmetry by dozens of percents.
Therefore we can conclude that in the SM, the NLO order contribution plays a very

important role in the determination of the forward-backward asymmetry.
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Figure 4.8 The forward-backward Asymmetry in the large-m,; limit in the SM for

the ete~ — bb process

From Fig. [.§ we can see that the NLO SM value of the forward-backward asym-
metry at Z peak in the large-m; limit is very close to the SM prediction, which
means the physical scale y, is a reasonable scale in predicting the forward-backward
asymmetry at the electroweak scale. The shift of forward-backward asymmetry due

to the SMEFT operators could be generally expressed as

© 9 % ) g éG) g 26 )
. sym ym sym
JSym Sym JSym
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in which we have defined

) 0 go@ ) 0 go@

@ _ [ 47 o @ _ e / i 4.8.90

Tasm = | a0 a T | gt | g (4890)
where d = 4, 6.

Inserting the values of input parameters, we can obtain the numerical result of

the LO EFT correction to the cross-section at Z peak in dimension-six SMEFT:

1
0000 = 55 (2 17337 - 10°Cy + 1.00681 - 10°Cr — 1.25168 - 10°Cy)

—1.17991 - 10°C*) — 1.30399 - 10°C1) — 1.30399 - 10°C) 4 511.365C,) (48.91)

+511.365C) + 5.11365 - 10°Cep + 5.11365 - 102Cy, — 3.58804 - 10*Cy

+5.11365 - 102C,, + 1.89214 - 10°Cpyp + 4.77194 - 1066*HWB> :
And the NLO numerical EFT corrections are

1
556D _ N (1 33936 - 10*Cyy, + 2.68963 - 10*Cy, + 2.46264 - 10°C'})

+1.68147 - 10°C’y) — 1.88730 - 10*CYy) — 6.04193 - 10*CYy) + 7.98682 - 10°C).)
+3.39398 - 10°C)) + 2.38262C., + 2.38262C), — 7.17605 - 10*Cy
+79.8682C, — 2.6339 - 10'Clyp + 1.87414 - 10°Chyy + 1.04460 - 10°Cryyy
1.60261 - 10*CLD — 1.74154 - 10°C D) + 4.23562 - 10°CY) + 1.92525 - 10*C})
~1.10309 - 10°C{}) — 2.17381 - 103@5}}) .
(4.8.92)
Through 4.8.91] and |4.8.92, we find that as in the SM case, roughly speaking, the

cross-section due to the NLO calculation changes the tree-level EFT correction only
by a few percents except for the C’l(; ) term, which receive a shift due to ARG,
which is a reasonable result that could be directly seen from [£.1.4]

According to the order in perturbative theory and power order in EFT, the
complete forward-backward asymmetry in the dimension-six SMEFT can be divided

into four parts:

5A5MEFT A 0 | A (41) 4 5Af(;,0 + 5A(6 o (4.8.93)
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in which the tree-level EFT numerical correction is

X N B _
dARY = Az <—6.72941 -10°Cr, — 9.22652 - 10*Cly, — 8.46914 - 10*C})
—~9.62913 - 10*Cy) — 7.99348 - 10°Cl) — 7.99348 - 10°C) + 36.6943C], (4.8.94)
+1.72582 - 10*C)Y + 36.6943C., — 48.9561C}, + 5.79993 - 10°Cyy

—48.9561C,, + 1.40548 - 10°Cyyp + 1.73060 - 1055HWB> :

Using the result in 4.8.81] we find the total EFT numerical correction up to NLO
for Ay is
JA%E) = 545" +5AGY
= % (—6.70038 -10°Cyp — 9.16456 - 10*C'ye — 7.99811 - 10*C)
~6.75213 - 10'CYy) — 5.37357 - 10°Cl;) — 5.67248 - 10°C};) + 37.1437C},)
+1.72587 - 10°CY) + 36.6659C;, + 1.40547 - 10°Cyp + 1.1627Ch, (4.8.95)
+1.60080 - 10°Cryyyp — 48.9847Cy, — 6.22994 - 10°Cy; — 49.6197C,
99.4018C1Y — 1.08018 - 102CY) — 12.7867C) — 5.81193C"}

—6.84184C(Y) +29.4381C})

To show the impacts of Wilson coefficients on the forward-backward asymmetry
in the SMEFT, we perform a chi-squared analysis. According to our numerical
results, the contributions from different Wilson coefficients have huge gaps from
each other, so a global fit will be not appropriate. Alternatively, we analyse each
Wilson coefficient respectively. According to |13], the SM fit value of A, is 0.1038,
and the measurement value of Ay, is 0.0992 £ 0.0016. Accordingly, the chi-squared
of Aﬁ) can be defined as

Al =64%) +0.1038,

6 2 4.8.96
(A - 0.0992) (4.8.96)

(0.0016)°

AXQ 6) —
A

All the plots according to the chi-squared analysis are given as what follows.
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In these plots we choose to vary each Wilson Coefficient from —1 — 1 for four
fixed values of A, in which see how each Wilson Coeflicient affects the Ay, . Generally
speaking, the EFT corrections due the Class 8 operators are much smaller compared
to the Class 7 and Class 4 contributions, however, C}; and C’l(;’ ) are exceptions, since
their influences on Ay, receive extra tone-up due to their influences on the input
parameter Gr. Therefore in the plots of Fig. for the four-fermion Operators
except Cy and Cl(;’ ), only the A = 500 GeV case is given, since in the other three
cases the influences of these Class 8 Wilson coefficients are very small. Moreover,
the influence of the Class 7 Wilson coefficient C'y; which only contributes at the
NLO is too small so that it is even not obvious in the A = 500 GeV case, therefore
the plots of Cy; are absent. For all the other Wilson coefficients, the corrections

could be clearly seen even in the A = 2.0 TeV case.

4.8.2 The EFT Effects on The eTe~ — bb Cross-Section

In this section, we focus on the EFT corrections of the cross-section of the ete™ —
bb process for different energy scales up to one-loop. As in we perform a

full analysis for each Wilson Coefficient respectively. However, there are several
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hundreds of plots all together, so we decide to only choose several interesting typical
plots in the case A = 1.0 TeV. Generally, the Wilson Coefficients involved can be
divided into three categories. The first category includes the Wilson Coefficients that
contribute both at LO and NLO. Accordingly, Cys, Che, C}j}, C}f}, C’g; and C’g’;
belong to this category. Cy; that only takes part in the one-loop contribution and
Cy can also be grouped into this category, the reason of which will be explained later
soon. The second category includes the four-fermion Wilson coefficients which only
contribute at the tree-level, i.e. Cy, Cep, Coe, Cz(ql ) and C’l(q3 ). And the four-fermion
Wilson coefficients which only contribute at one-loop belongs to the third category,
which include C’,gé), Cég), Cad, iji), C’é}) and Cécll). We choose only one typical Wilson
Coeflicient in each category, they are C’é;), Cep and C’g; respectively. In the following
plots, four typical values of /s are selected for each Wilson Coefficient, they are

500 GeV, 1.0 TeV, 1.5 TeV and 2.0 TeV.
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Figure 4.20 The cross-sections for C’}};

for the eTe™ — bb process
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4.20], we can see that for C’gg the ratio of EFT shift and the SM prediction

is roughly kept unchanged for different y/s. The other Wilson Coefficients in this

category generate similar plots.

In these plots, the EFT corrections are always
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smaller than the SM values. Note that the topologies of relevant diagrams are the
exactly the same as some of the SM diagrams both at LO and one-loop NLO. As
a result, with the increment of /s, the decrease of the cross-section due to these
Wilson Coefficients will be similar to the SM case as well. Recall that the one-loop
diagram of C'y; also has the same topology as the one of the SM one-loop diagram,
and the (5/4(@?) and (5A(£}1) are directly built from the SM amplitudes, both Cy;
and Cy can be grouped into this category. Moreover, the cross-section for CI(;; also
receives a shift from 5A(G61’w1), but that does not change the basic feature mentioned
above.

In Fig. [4.21], we find that as the energy increases, the ratio of EFT shift and the
SM prediction gets larger too. This is not hard to understand since the scattering
amplitudes due to these four-fermion Wilson Coefficients are not suppressed by 1/s
or 1/(s— M%). In this category, the cross-section for Cl(ql ) also receives a shift due to
5A(£1’71) which behaves similarly like the tree level SM cross-section. However, when
/s is large enough, the contribution from the tree level four-fermion interaction will
be dominating since it is not suppressed by 1/s or 1/(s — M32).

In Fig.[4.22] one can observe similar curves as in Fig. [£.21] though the magnitude
of the ratio is not as large as the former one. Generally speaking, the NLO cross-
section corrections due to these four-fermion Wilson Coefficients in this category
are much smaller than the corrections due to those four-fermion Wilson Coefficients
that contribute at tree-level. All the diagrams due to these Wilson Coefficients share
the same topology that does not appears in the SM case. As a result, the plots are
similar for different Wilson Coefficients in this category. It is worth to emphasize
that the correction due to Cég’) will change the sign when /s increases to a certain
value. This behaviour originates from the minus sigh appearing in the expansion
of the operator ij’;) which can be found in Table . The correction due to C’ég’)
includes contributions from both structure (1) and structure (2). Actually, we find

that the amplitudes due to these two different structures behave differently when

V/s changes.
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Chapter 5

Conclusions

In this thesis, we mainly investigate the applications of two kinds of Effective Field
Theories, namely a Simplified Model for ¢¢X interactions and the dimension-six
Standard Model Effective Field theory. To start with, a brief review of the Standard
Model is given in Chapter 1, including an introduction to two processes in SM which
are inextricably linked with the research in Chapter 4. In chapter 2, a general
introduction to effective field theories is given followed by the detailed introduction
of these two effective field theories mentioned above.

In Chapter 3, a simplified model is adopted to investigate the searches for ttX
production at the LHC are sensitive to a new resonance X coupled to the third
generation quarks. If X is discovered, a further measurement of its parity and spin
will be essential for revealing the underlying new physics scenario. In this work we
assumed a class of simplified models to describe the couplings between X and the
third generation quarks, with X being a scalar, pseudoscalar, vector, or axial vector.
Then we sought kinematic variables that are helpful for determining parity and spin
quantum numbers and investigated the expected sensitivity through detailed simu-
lations. We have proposed four parton-level variables which exhibit different shapes
for different models. Two of them are defined in the t#X CM frame. Therefore, using
them requires a nearly full reconstruction of two tops and the resonance X, which
can be achieved in the semi-leptonic channel. We have carried out the reconstruction
procedure based on simulations in this channel and estimated the LHC sensitivity

for discovery. We constructed the detector-level counterparts of the parton-level
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variables and observed that their distributions preserve the important features for
discrimination between the different simplified models. A C'L, hypothesis test has
been performed to evaluate the sensitivity of discrimination separately based on
each variables. We found that the scalar is the easiest one to be distinguished from
others while the hardest case is to discriminate between the pseudoscalar and the
axial vector. Further improvements to our analysis could be made by utilising jet
substructure techniques to suppress the background more, and to allow a more ac-
curate attribution of the b-jets used in the top and X reconstruction. It would also
be interesting to perform a combined analysis of leptonic and semi-leptonic final
states to see the ultimate sensitivity of the LHC. We leave this for future work.

In chapter 4, we mainly investigate the ete™ — bb process up to NLO in the
framework dimension-six SMEFT. Numerical analysis is provided for the forward-
backward asymmetry and the cross-section, we explored the Z — bb process as
well without the numerical results. Firstly, we calculate the LO amplitudes for the
two processes. In the LO calculation, we expressed the effective left-handed and
right-handed Z boson couplings to fermions in terms of the bare quantities in the
SM. In order to compute the EFT corrections up to NLO, we choose to perform
the wavefunction, mass, and electric charge renormalisation in the on-shell scheme,
while the operator renormalisation was done in the MS scheme. Following the
renormalisation procedure in the SM, we found the way to build the counterterms
for the two processes in the SMEFT. The one-loop renormalised matrix elements
for Class 8, Class 7, and Class 4 were then obtained, in which step, we have shown
how the cancellations of UV divergences occur. The cancellation of UV divergences
was illustrated in a detailed way for the Z — bb process, which could be extended
to the eTe™ — bb process straightforwardly. In the NLO Class 8 case, only the
operators altering the Z boson couplings to fermions were calculated up to NLO,
since their contributions will dominate on the Z resonance. Finally, the numerical
results of the forward-backward asymmetry and the cross-section of the ete™ — bb
process were obtained. We computed the forward-backward asymmetry at Z peak
in the SMEFT for Wilson coefficients defined at the scale = m;, which is a

reasonable choice for observables measured at the electroweak scale. Then the cross-
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sections for different Wilson Coefficients defined at the same scale were calculated,
whose numerical results can be translated by RG equations into their high-energy
forms at © = Anp, where Ayp is the scale for the new physics. According to
the numerical results, the corrections to cross-section due to the NLO contribution
are not obvious on the Z resonance, which could be neglected compared to the
LO’s contribution within the current experimental precision. However, the NLO
corrections to the forward-backward asymmetry in the SMEFT are important and
can not be neglected, especially for the Class 7 operators. The forward- backward

asymmetry is mostly sensitive to the Class 7 operators, Cy, c® Cuywp and Cyp.

lg
And the cross-section is mostly sensitive to those four-fermion Wilson coefficients
which contribute at tree-level. Extending SMEFT calculations to NLO will improve
the accuracy of the theoretical predictions, which will become increasingly important

in the future.
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Appendix A

Basic and Auxiliary Results

A.1 Independent Dimension-six Operators in the
Warsaw Basis

The 59 baryon number conserving operators in the Warsaw Basis [36] of dimension-

six operators are listed in this section.
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Class 1: X3
ABC ~Av
Qc | 148 Gu Gprgu Class 3: H*D?
_ . 776
Qs fABCG;‘”Gprg“ Class 2: H (HTH)D(HTH)
Qu | (H'H)?

QW EIKJWJVWVI(prJH QHD ([—[TDMH)(HTD“H)
Qi eABCWJ”WfPWl;]“

Class 4: X2H? Class 6: ¢*XH + h.c.
Quc th[UTt[GfL‘VGAW Qow (l_pa“”eT)TIHWJV
Qué HTH(N};?Z,GAW QeB (l,o" e, )HB,,,

Class 5: ¢*H?® + h.c. ~

Quw | HUHWL W ass 5 T | o | (@or T B G,

— Qerr | (H'H)(lpe, H) ~
QHW HTHWJVWI“” — Quw (qpa“”ur)TIHW/fV
Que | (H'H)(Gyu, H) N
QHB HTHW;WWMV QuB (quMVUT)HBW,
N Qerr | (HYH)(Gpd, H)

Qup | HYHB,,B" Quc | (G0 T*d,)HGy,
Quwsp | HiT'HW], B Qaw | (qo™d,)T"HW],
Quivp | HITTHW!, B Qas | (G,0"d,)HB,,

Class 7: ¢*H?*D
= =

Q| (H'D H)(I",)

= =

Qi | (H'D H)(@,r"y",)

= _

Qe (H'i D H)(eyte,)

= _

Qiy | (H'D H)(g"q)

: = _

Qiny | (HYD ,H)(@,m"7"q,)

= _

Quu | (H'D ,H)(u,7"u,)

= =

QHd (HTZ D H‘H) (dp’}/udr)

PR e d _
Q Hud Z(HT D MH) (upVMdr)
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Class 8: (LL)(LL)
Qll (l_p/yltlr)(l_sfyult)
N ey
qq (QP'YMQT)(%’Y Q)
((1::’1) (gpﬁ)/uTIQT)(qSPY“TI%)
QY | Gyl (@ a)
Q| (L L) (@ qr)

Class 8: (RR)(RR)

Qee (Epvuer)(Esy™er)
Qua | (@ryur) @y uy)
Qaa (dpypudy ) (dsytdy)

G @en) (@)
Qed (@pyuer) (dsy™dy)
QU | (@) (dydy)
QU | (@ T, (dy* TAdy)

Class 8: (LL)(RR)

Class 8: (LR)(LR)

QW (@u)en(@id,)
QW | (@T u)es(@ T u)
Q. | (Berein(d@u)
QY. | (BT%e,)eji(q T u,)

Qe (Lpyulr) (€57 er)
Quu (Ll ) (s ue)
Qud (L Yulr) (doy*dy)
W @) (@)
Wl @) (@)
W (@) @y Ty
QW | (@) (dydy)
Q%) | (@ T4 (dey'TAdy)

Class 8: (LR)(RL)
CQledq (Z26T>(J3qt7)
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A.2 Large-m; Limit and Vanishing-m;, Limit

The large-m; procedure can be found in [10§]. I will also give a introduction here
according to our calculations. In order to determine the large-m; corrections in
the one-loop diagrams, all fermion masses but the masses of top quark have to
be neglected in the integrals appearing in the one-loop scattering amplitudes. The
details of taking large-m; procedure could be illustrated by explaining the calculation
of following one-loop SMEFT diagram in the Z — bb reaction, in which process the
SM contribution the will be neglected. Three Class 7 operators are involved, in
which ng and CS; alter the left-handed coupling and Cy; alter the right-handed
coupling. The coupling of the quarks to the Goldstone bosons is also affected by the
Class 7 operators, but they are not considered here for simplification. In the flavour
symmetry limit, the amplitude of the above diagrams in the Feynman gauge can be

expressed as:

2e ddl 1
1A=1— | —u mpPr — m; P
2 / S (1s) (( yPr — myPR) S
J+my v} 0y )
2—m22 <<0Hq a OHQ> P+ CH'*PR) (A.2.1)

(l_pb_p5> Ty

57— (muPr — myPr) | v(pp)e,
(I —py—pp)° —m?

where we have replaced the bare vev 0; with vr, since the difference only arise at
the order A*, thus can be neglected. Again, all the couplings are written in the
broken phase. In the following calculations, we set m;, — 0 in the large-m,; limit.

For convenience, the amplitude can be split into finite part and divergent part as

. (&
= l—F
20,2
167207

iA u(py)v(pp) €y (Aﬁ“ + A (A.2.2)

The amplitude has been given in [4.5.52| it turns out that the left-handed coupling

vanishes in the divergent part, only Cyy; is left in the divergent part:

. 1
ST = MEmE (A.2.3)
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And the finite amplitude can be reduced by using the scalar integrals:
iafm (cHt (M3 + 2 (m? — M3y By [ m?. M3
— (2m? — 2M2, + M2) By [M2,m2, mﬂ) +2 (cm (m?—MZ)*  (A24)
+ (O + C0) mNZ) Colb,mi i . Mgv]),
where only the finite parts of these integrals are reserved, which are marked as
"hatted” symbols. There are two kinds of scalar integrals apearing in the above
expression: scalar two-point integral and three-point integral. Actually, scalar one-
point integral will also be needed to calculate Class 8 one-loop corrections, which is
denoted as A [m?], usually with ¢ = ¢,b in our case. The scalar one-point integral is

very simple:

2 2 2
Ag =154 Agm2 = T 4?2 (1 +In {%D : (A.2.5)
€ € 7

In the large-mt limit, we can simply have AOQm?O = 0. For the other scalar integrals,
the general result of these integrals should be expanded into a series of 1/m; and
taking the limit m; — co. According the parameters apearing in the integral, there

are two general cases for the scalar two-point integral:

. 1 2 2 2
i B oot t] = 1+ (57 mtin 7] ) < [
my

me—00 m 2 ,MQ
"> ‘ L (A.2.6)
: N 2 2 271 1 t
mlilinoo BO [ml, my, mt] = 6_77’Lt2 — 1n |:F:| .

Furthermore, there are usually gauge boson mass terms like My, and My appearing
in the integral. In the vanishing gauge couplings limit, the positive powers of gauge
boson masses could also be neglected together with the fermion masses with excep-
tion of the top-quark mass. In such a way, the two-point integral could be simplified

a lot. Now we write down the two two-point integrals in [A.2.4}

lim By [mdom? M2] =1 —n || im B [MEm2m?] =0~ In| ™

dim  Bo |my, my, My | = n Tz Jim Bo | Mz, my,my| = n F
(A.2.7)

. For the three-point integral that are related to the triangle one-loop diagrams, the

large-mt reduction could be done in a similar way. Now we consider the integral in

[A24

lim Co[M2,m2 m2 m? m? M2] — lim C, [0,0,0,m;, m;,0] (A.2.8)

m¢—00 m¢—»00
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. Then we find that the finite part of the amplitude that we consider here can take

a very simple form:

Afin — (o (cW L o®) Loy, (141 my 2 A2.9
te T Chg) T CHt —i—n,u2 vF (A.2.9)

For convenience, we sum up those integrals we might encounter in the calculation

of one-loop amplitudes in the ete™ — bb:

~ 2 b 2 2
woto 1o ) (- 5u[])

o mi L

By [s,m?,mﬂ = 6717)13 —1In lf—f} ,

Bo (M) = 1= 1 [”mi;] . [f—;] e
RO € el e |

o[mb,mp}—l—i- my + 0 n[]+ﬁfnﬁ —In | L],

t

Bo [m2,m?,b] =

—2m?’
Bo [m2,m2, a%b] = ot (A.2.10)
By [aQb, mg,mﬂ =1—-1In {ZL—E} + (g — %gln {%]) )
Bo [bm2 m?] = 6—;2 —n {%2} ,

2
Bo [y, MRy, M2 = Bofm?y, M3, M2 — In [ﬁ] |
1
6m?

By [miy, m¢,mi] =

1 1 s

m?  12m?’

1 2
CO [mz,s,mg,mg,M%/’Ma/] = _W (1 +Z7T _|_1n |:%:|> :
t

2 2 2 2 2
Co [s,mi,mi,mi,m;,my,| = —

However, in the numerical calculation, we would choose the vanishing-m, limit
rather than the large-m; limit. In such a case, we set the mass of bottom-quark as
zero together with the other non-t-quark masses, but keeping the masses of gauge

bosons. The scalar integrals in the calculation of one-loop diagrams in the ete~ — bb
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process in the vanishing-m,, limit are listed below:

2 2
lim By [mg, mi, M) =1+ (MW (mf + Mg,) In {M_gt]) —In [ﬂ] )

my—0 mu?
2
2 m2l = 5 |2
#IEOBO |37, mi] = 6m? hn Lﬂ} ’
> 1 Mgy
n%rgo Co [s,mp, mi, m{, myMy,| = o — (12m] + 12My, + s + 12M7, In e ),

1 2
lim By [s. MW,MW]—Q—@+ﬁ—n[ Zﬂﬂl { ”},
112

mb—> _Z+Z
1 M2 —2M2, + s +izs
) _— B W B w
nglgloco [mj, s, my, my My, Mgy = m? < 1+ m? _HZID{ 2M2, ]) ’
(A.211)
in which z = /2 _ 1,

s

A.3 Cancellation of UV Divergence for Class 8
Operators in the Z — bb Process

In the following I will show how to build the counterterms and how they cancel
the UV divergence for the Z — bb process. All the One-loop UV divergent terms
and Counterterms for each Wilson Coefficient could be obtained from [£4 For
simplicity’s sake, I just show the original form of the one-loop UV divergent terms
and the corresponding counterterms. For convenience, we denote the Hyper charge
as y; and the Yukawa coupling as Y; for a particle ¢ in this section, where the Hyper
charge of Higgs is yg = 1/2.

Secondly we consider the LLLL operators. For QSI}I), three kinds of diagrams are
included, we will list their UV divergent terms respectively. According to [£.4] the
UV divergent term of 2(¢v,)(by*b)(1) is

1, - eN. [2 (g}, — gk) mi — 245 M7]
— 2i—¢y (byy"b : sy
ZEEZ< Ly L> 167225, ¢ 4
1, - éQNcm2
1 - eN( )M2 + eN, (4) 2M§
— 2i—eb (bpy"b d b,
i (bun"be) 1672250 %
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For 2(by,b)(by#b)(1), the UV divergent term is

eN. [2 (91 — gk) mi = 39LM7] )

1
— 2% (bt
ez (bry"br) 16722540, aq

1, - —e2N,m?
Y, ¥ S 4 NPT % (1) A.3.13
i€ ("0e) 15 29— -Cn ( )
1, - eN M2 + eN,(=2)s> M3
— 2i—¢y (bry"b ¢ Z 9 Zom,
ez (") 167223t 7
For 2(bv,b)(07#b)(2), the UV divergent term is
- b b 2 b
¢’ 1672238,,¢, a
_ il {(bry"br) imZC(U (A.3.14)
e’ 167728,,C,y ™
1, - eMj +e(5)s* M7
Summing the above divergent terms up, we have
1, - e2N.m?
— 2= {brAHb <t o)
i ") T, 6 O
1 - —e2N,m?
— 2=t (b AMh, ) —h ()
el "bu) 353555, Con
1, —e2mi
_ 2226% <bL’yubL> m aq (A315)
1, eN.(2)32 M2
— 2= (DA, ) N9 w2 (1)
e (") g, o G

cWw

qq

w
eM3 + e(5£)82 M2
Cu

1,
U )

Following the renormalisation procedure in [£.2] we can obtain the counterterms for

Qé}), they are
evy (ANY?) Ly
167228,,¢,, 1
evp (—4ANYY) o
167228,,¢,, Y
é”l}% (_4}/;72) C(l)
167228,,¢,, Y
év%%Ncgfyqu (1)
167225,,C,, 4
ev%ggfyzfyq (1)
167225,¢, %
év%%gg (1)
167225,,¢,, 11

4 A1, -
10 = Zége‘g <bL7“bL>

11 -
+ 2526% <bL’Y‘ubL>

11 -
+ 2526% <bL7“bL>
(A.3.16)

11 -

+ 2526% <bL’)/'ubL>
11 -

+ 2526% <bL’7‘ubL>

11 -
+ 2526% <bL’Y‘ubL>
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For the Qg:;) operator, four types one loop diagrams are included. We simply list

the UV Divergent parts of the amplitudes and the relevant counterterms. The UV

divergent term arising from 4(¢v,t)(by#b)(2) is

e[2(g = gr) mi = 591 M7] o
1672250,y a
e2m? 3)
167225,,0, 14
oFIME e (8 B3
167225, aa

1 _
— 4226% <bL’)/'ubL>

1 _
— 4ZEE'LZL <bL’}/'ubL>

1 _
— 4Z26% <bL’)/ubL>

in which the UV divergent part due to —2(¢v,t)(by*b)(1) is

2 (91 = gr) mi = 59.M7] 5
167225,y &

e2N.m? 3)

167225,,6,, 1

eNe(FH) M + eN.(5)85 M o,

167228,,Cy, “

1, - eN.
2226% <bL"}/MbL> c

1 _
= 22;6% <bL”y“bL>

1
2i—¢eb, (bpy"b

+ Z€€Z< £"br)

the UV divergent part due to 2(by,b)(by*b)(1) is

_ b b 2 _2.b 2
_ 2@%6’2 (br"br) N [2(gh — g) m; — 591 M5 c®

167228,,Cy “

1, - —e2N.m?
— i (At ) — = ((3)
i2es () 5 5oz Can
1, - eN.MZ + &N, (32) 52 M2
— 2i—eb (bry*b 9w Z0®
AR 167228, ¢ 4

and the UV divergent part due to 2(b,7,b)(bsy*b)(2) is

26} — ) i~ 203)
167225,,Cy 4

167225,,¢, Y

_ _ —92\ A

eMj +eN, (32) &2 M5 )

167228,,C -

1 - _
— 2226% <bL’}/'ubL> ‘

1 _
= —22;6% <bL’Y“bL>

1 _
— 2226% <bL’yMbL>

(A.3.17)

(A.3.18)

(A.3.19)

(A.3.20)

Adding all these UV divergent parts up, we can obtain the total UV divergent terms
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for Qg?;), they are

—e2N, mt o®
167228,,¢ Ca
—e2N, mb o®
167228,,C0 Caq
eth c®)
167225,,¢ Ca
62mb @)
167228,,C0 Ca
eN.(3 M2)+€N (52)82,M3
167225,,Cy
e(ZEM2) +eN.(2)32 M2
3 "7 c\3/°w ZC(3)
167228,,¢y, -

e
— 2226% <bL’}/ubL

1,
— 4226% <bL’}/MbL

) Tom0s o
A i
) Tom08 7
(A.3.21)
) Tomog o

1, -
— 2@;6% <bL7”bL

0(3)

1 _
— 2226% <bL"}/ubL>

1 _
— 2226% <bL’}/ubL>

The corresponding counterterms for Q((I?I) are

11, . —ev2 (—4N,Y?)

0 = —i——eb (bpy"D T o
6 = —ig ey (") — 5 ms o Caa
vy (8Y) o)
167225,¢, 1
—e} (NYD)

167228,6, 99
—ev3 (4Y)
167225,¢p %
engNcglyqu c®)

6 228 qq
eN. UT392
—C'( )
167225,¢,
2 —2

A1, - eva=2gs
et (byAthy ) — L3792 o(3)
e e (V) Torgg,en Cia”

11 -

+ 2526% <bL’}/‘ubL>
11 -

+ 2526% <bL’7“bL>

11, .
et (bu7"be) (A.3.22)

11
+ ZE_EZ <bL’7'U’bL>

11 _
+ ZQEEg <bL’}/‘ubL>

which exactly cancel the UV terms.

Secondly we consider the RRRR operators. For Qud, there is only one diagram
involved, which corresponds to (£v,t)(by*b)(1). The UV divergent amplitudes of
this diagram are
eN: [2 (g — g1) m} — 395 M7]

1672258,,Cy
—éQNcmf (1)

_(] A.3.23
16m225,¢, "4 ( )
eN.(582M 2) oW

167225,¢, "4

1
Cui

1

— 226% <bR’}/ubR>
1 _

= —Z'EE'LZL <bR’y‘ubR>

1 _
- 226% <bR’}/“bR>
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and the corresponding counterterms are
1.1 ev 2N.Y;
()54 (i) Sl
(A.3.24)
11 evps Negiymye (1)
bry"b 3 c .
Z(Z)e < RY R> 167225,¢, @

For Quq, there are two diagrams involved, which correspond 2(bv,b)(bsy*b)(1) and

2(b,b) (by*b)(1). The one-loop UV part for 2(b7,b)(by*b)(1) is
y N (2 (9 — 91) M — 39RM]
167225,,Cy
1, - —e2N,m?
= —2i=€, (bpy"bp) ————1
ez (on"bn) 55
—eN, (352 M2)
167225,,C,

whose corresponding counterterms are

1,
— 2@26% <bR")/MbR

dd

— 2~ (bar"bi) Cua

11 - evZ (—4N,Y?)
et bt s) LN b )
22 EEZ < RY R> 16 22Aw Aw

11, - ev NGy H Y
i~ e (bpytbp) —22
+ P < =Y R> 167225,,C,,

Caa

Claa-

And the UV part for 2(by,b)(07#b)(2) is
¢ [2 (g1 — g1) miy — 39nM7
167225,,Cy

1 - —e2m?
— 22 (bpy by ) —t
A 1672280,

= A2M2)
—C
16722800

whose corresponding counterterms are

~ 2l (bnr"bi) L,

dd

— 22 €Z <bR’7ubR>

vy (—2Y)

167225,,Cyp

evFENGTYa Y
167225,,Cy

11 -
2526% <bR’}/MbR> dd

11 -
+ 2526’2 <va“bR> Cla.

Cdd

(A.3.25)

(A.3.26)

(A.3.27)

(A.3.28)

At last we consider the (LL)(RR). For the operator QL only one type of

diagram are included. For its expanded operator (v,t)(by*b)(1), the UV divergent

term is

eN. [2(gk — g5) mi — 295 M3Z]

1 - _
— ZEE% <bL’}/ubL> C(l)

167225, Cyp "
—e2N.m? ()
1672256, 9
eN.(58%M3) (1)

16m228,¢, 17

1 _
= —Z'EG'Z <bL’y‘ubL>

1 _
— ZEG% <bL"}/”bL>

(A.3.29)
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and the corresponding counterterms are
ev (—2N.Y?) o
1672238,,¢ au

eUT 3 Ncgl YuY: C(l)
167225,,¢ qau

11 -
’ii—E% <bL’y‘ubL>
¢ (A.3.30)

11 -
+ 2526% <bL’)/‘ubL>

For the operator Q five types of diagrams are included. According to the

qd

calculation, the amplitudes of two diagrams with structure (2) are zero. So on-
ly these types of operators are left to deal with, their expanded operators are
(£7) (07D (1) + (b7,b) (b7"b) (1L) + (b,.) (by*D) (1R). For (£y,t)(by*b)(1), the one-
loop UV divergent amplitude is

eN, [2( — gr) M — §9LM2}

cW
167225,,C, qd

~ il (b ba)

1, e2N.m?
= —i=et (bpy"bp) ——<—t ) A3.31
iz (br"br) T67223,,¢,, Cad ( )
1 - GN( )M2 +€N( )8 M2 (1)
—i— (brY"b e
i {bn"tn) 167223600 -
For (b7,b)(by"b)(1R), the one-loop UV divergent amplitude is
1 2 (b — o) m2 — 20 M2
— =€l <b37“b > [ (9L gR)Amf’ 39L z] (J(;)
€ 167225,,C q
1., - —e2Nomi (1)
= _ZEGPZL (br"br) T2 Coa (A.3.32)

1,5 eNe(3) M7 + eNo(F)5LME )
— ZZE% <bR’)/MbR> 167T22§wcw qu .

The diagrams for [A.3.31}and [A.3.32| both include right-handed b-quarks in the loop.

The sum of these two UV terms is

e2N.m?
Ol
167225,Cy
—é2Ncm2 (1)

1 _
— ZEE% <bR’7“bR>

1
— 2t (b Py — b A.3.33
el (br"br) 15 305 - ( )
1, - eN,(2)32 M2
—iZ* {haMb c\g/)2w " Z ~(1)
iz (b br) 167228,6, 94
which will be cancelled by the following counterterms:
A1, - evZ (2N.Y}2)
5 ¢ (br"br) 167223,
A1, - evZ (—2N.Y?)
— 2 (bpytbg) —L = etb ) o) A.3.34
+ i er (br"or) =g o o Cu ( )
11, 5 eVt S NeGTYnYy 1
N T3 1 2 ~( ).
+ Z2 EEZ< RY R> 167225,,Cy qu



A.3. Cancellation of UV Divergence for Class 8 Operators in the Z — bb

Process 135
For (b7,b)(by*b)(1L), the one-loop UV divergent amplitudes is
1 - eN.[2 (gt — gb) m2 — 2¢b M2
— =€t (b 12 (g% gL)A b~ 39n 7] o
€ 167225,,¢, g
1 - e2N.m:
= —ielt (bpyby) ——o b o) (A.3.35)
€

16m228,6 1
eN.(32)82 M7

C(l)
167228,,¢, 917

1 _
— ZEG% <bL’}/ubL>

whose corresponding diagram include left-handed b-quarks in the loop, will be can-

celled by the following counterterms

év% (QNC}/;Z) (1)
167225,¢,  9¢

evis Negtymys )
167225,¢, 907

11 -
1526'; <bL7“bL>

11 -
+ 2526% <bL’Y‘ubL>

(A.3.36)



A.3. Cancellation of UV Divergence for Class 8 Operators in the Z — bb
Process 136




Bibliography

[10]

[11]

Steven Weinberg. A Model of Leptons. Phys. Rev. Lett., 19:1264-1266, 1967.

Abdus Salam. Weak and Electromagnetic Interactions. Conf. Proc.,

C680519:367-377, 1968.

S. L. Glashow. Partial Symmetries of Weak Interactions. Nucl. Phys., 22:579—
588, 1961.

Michael E Peskin. An introduction to quantum field theory. CRC Press, 2018.

Chen-Ning Yang and Robert L. Mills. Conservation of isotopic spin and isotopic
gauge invariance. Physical review, 96(1):191, 1954.

Murray Gell-Mann. Symmetries of baryons and mesons. Physical Review,

125(3):1067, 1962.

Stephen F King. Neutrino mass models. Reports on Progress in Physics,

67(2):107, 2003.

J Van Bladel. Lorenz or lorentz? IEEE Antennas and Propagation Magazine,

33(2):69-69, 1991.

Peter W Higgs. Broken symmetries and the masses of gauge bosons. Physical

Review Letters, 13(16):508, 1964.

Lev Borisovich Okun. Leptons and quarks. Elsevier, 2013.

DALLAS C Kennedy. The electroweak polarization asymmetry: A guided
tour. Technical report, 1988.

137



Bibliography 138

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

Hideki Yukawa. On the interaction of elementary particles. i. Proceedings of

the Physico-Mathematical Society of Japan. 3rd Series, 17:48-57, 1935.

C Patrignani, Particle Data Group, et al. Review of particle physics. Chinese

physics C, 40(10):100001, 2016.

Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified
model of elementary particles. Progress of Theoretical Physics, 28(5):870-880,

1962.

Gideon Alexander, J Allison, N Altekamp, K Ametewee, KJ Anderson, S An-
derson, S Arcelli, S Asai, D Axen, G Azuelos, et al. A measurement of the

charm and bottom forward-backward asymmetries using D mesons at LEP.

Zeitschrift fiir Physik C Particles and Fields, 73(3):379-395, 1997.

Gregory Breit and Eugene Wigner. Capture of slow neutrons. Physical review,

49(7):519, 1936.

Benjamin Grinstein and Christopher W Murphy. Bottom-quark forward-

backward asymmetry in the standard model and beyond. Physical review

letters, 111(6):062003, 2013.

Debajyoti Choudhury, Rohini M Godbole, Saurabh D Rindani, and Pratishru-
ti Saha. Top polarization, forward-backward asymmetry, and new physics.

Physical Review D, 84(1):014023, 2011.

M Beccaria, G Macorini, G Panizzo, and C Verzegnassi. New Physics sig-
nals from measurable polarization asymmetries at LHC. Physics Letters B,

730:149-154, 2014.

Enrico Fermi. Versuch einer theorie der 5-Strahlen. i. Zeitschrift fiir Physik,

88(3-4):161-177, 1934.

Toichiro Kinoshita. Mass singularities of Feynman amplitudes. Journal of

Mathematical Physics, 3(4):650-677, 1962.




Bibliography 139

[22]

23]

[24]

[25]

28]

[31]

Tsung-Dao Lee and Michael Nauenberg. Degenerate systems and mass singu-

larities. Physical Review, 133(6B):B1549, 1964.

Martinus Veltman et al. Regularization and renormalization of gauge fields.

Nuclear Physics B, 44(1):189-213, 1972.

Wolfgang Pauli and Felix Villars. On the invariant regularization in relativistic

quantum theory. Reviews of Modern Physics, 21(3):434, 1949.

CG Bollini and JJ Giambiagi. Dimensional renorinalization: The number of
dimensions as a regularizing parameter. Il Nuovo Cimento B (1971-1996),

12(1):20-26, 1972.

Kenneth G Wilson and John Kogut. The renormalization group and the €
expansion. Physics Reports, 12(2):75-199, 1974.

M Boéhm, H Spiesberger, and W Hollik. On the 1-loop renormalization of
the electroweak standard model and its application to leptonic processes.

Fortschritte der Physik, 34(11):687-751, 1986.

Ansgar Denner. Techniques for the calculation of Electroweak radiative correc-

tions at the one-loop level and results for W-physics at LEP 200. Fortschritte

der Physik, 41(4):307-420, 1993.

Gerard’t Hooft. Dimensional regularization and the renormalization group.

Nuclear Physics: B, 61:455-468, 1973.

William A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta. Deep inelas-

tic scattering beyond the leading order in asymptotically free gauge theories.

Phys. Rev., D18:3998, 1978.

Georges Aad, T Abajyan, B Abbott, J Abdallah, S Abdel Khalek, AA Abde-
lalim, O Abdinov, R Aben, B Abi, M Abolins, et al. Observation of a new
particle in the search for the Standard Model Higgs boson with the ATLAS
detector at the LHC. Physics Letters B, 716(1):1-29, 2012.




Bibliography 140

32]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Serguei Chatrchyan, Vardan Khachatryan, Albert M Sirunyan, Armen Tu-
masyan, Wolfgang Adam, Ernest Aguilo, T Bergauer, M Dragicevic, J Ero,
C Fabjan, et al. Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC. Physics Letters B, 716(1):30-61, 2012.

Brian Henning, Xiaochuan Lu, and Hitoshi Murayama. How to use the Stan-
dard Model effective field theory. Journal of High Energy Physics, 2016(1):23,
2016.

Ta-Pei Cheng, Ling-Fong Li, and Ta-Pei Cheng. Gauge theory of elementary
particle physics. 1984.

Steven Weinberg. Baryon-and lepton-nonconserving processes. Physical

Review Letters, 43(21):1566, 1979.

Bohdan Grzadkowski, M Iskrzynski, Mikolaj Misiak, and Janusz Rosiek.
Dimension-six terms in the standard model lagrangian. Journal of High Energy

Physics, 2010(10):85, 2010.

Stephen P Martin. A supersymmetry primer. Adv. Ser. Direct. High Energy
Phys, 21(515):1-153, 2010.

Paul Langacker. Grand unified theories and proton decay. Physics Reports,
72(4):185-385, 1981.

Nima Arkani-Hamed, Gordon L Kane, Jesse Thaler, and Lian-Tao Wang. Su-
persymmetry and the LHC inverse problem. Journal of High Energy Physics,
2006(08):070, 2006.

Jay Hubisz, Joseph Lykken, Maurizio Pierini, and Maria Spiropulu. Missing
energy look-alikes with 100 pb~! at the CERN LHC. Physical Review D,
78(7):075008, 2008.

Andreas Albert, Martin Bauer, Jim Brooke, Oliver Buchmueller, David G
Cerdeno, Matthew Citron, Gavin Davies, Annapaola de Cosa, Albert

De Roeck, Andrea De Simone, et al. Towards the next generation of sim-

plified Dark Matter models. Physics of the dark universe, 16:49-70, 2017.




Bibliography 141

[42]

[43]

[45]

[47]

[48]

[49]

[50]

Jalal Abdallah, Henrique Araujo, Alexandre Arbey, Adi Ashkenazi, Alexander
Belyaev, Joshua Berger, Celine Boehm, Antonio Boveia, Amelia Brennan, Jim
Brooke, et al. Simplified models for dark matter searches at the LHC. Physics
of the Dark Universe, 9:8-23, 2015.

Hao Zhang, Qing-Hong Cao, Chuan-Ren Chen, and Chong Sheng Li. Effective
dark matter model: relic density, CDMS II, Fermi LAT and LHC. Journal of
High Energy Physics, 2011(8):18, 2011.

Maria Beltran, Dan Hooper, Edward W Kolb, Zosia AC Krusberg, and Tim M-
P Tait. Maverick dark matter at colliders. Journal of High Energy Physics,
2010(9):37, 2010.

Jessica Goodman, Masahiro Ibe, Arvind Rajaraman, William Shepherd,
Tim MP Tait, and Hai-Bo Yu. Constraints on light Majorana dark matter
from colliders. Physics Letters B, 695(1):185-188, 2011.

LJ Hall and Lisa Randall. Weak-scale effective supersymmetry. Physical

review letters, 65(24):2939, 1990.

B Sekhar Chivukula and Howard Georgi. Composite-technicolor standard
model. Physics Letters B, 188(1):99-104, 1987.

Andrzej J Buras, P Gambino, M Gorbahn, S Jager, and L Silvestrini. Universal
unitarity triangle and physics beyond the standard model. Physics Letters B,
500(1-2):161-167, 2001.

Giudice D’Ambrosio, GF Giudice, G Isidori, and A Strumia. Minimal flavour
violation: An effective field theory approach. Nuclear Physics B, 645(1-2):155—
187, 2002.

AA Abdo, Markus Ackermann, Marco Ajello, B Anderson, WB Atwood,
M Axelsson, Luca Baldini, J Ballet, Guido Barbiellini, D Bastieri, et al. Fermi
large area telescope measurements of the diffuse gamma-ray emission at inter-

mediate galactic latitudes. Physical Review Letters, 103(25):251101, 2009.




Bibliography 142

[51]

[54]

[55]

[58]

[59]

Alessandro Cesarini, Francesco Fucito, Andrea Lionetto, Aldo Morselli, and
Piero Ullio. The galactic center as a dark matter gamma-ray source.

Astroparticle Physics, 21(3):267-285, 2004.

Tim Linden. The characterization of the Gamma-Ray signal from the central
Milky Way: A compelling case for annihilating Dark Matter. In AAS/High
Energy Astrophysics Division, volume 14, 2014.

Prateek Agrawal, Brian Batell, Patrick J Fox, and Roni Harnik. WIMPs at the
galactic center. Journal of Cosmology and Astroparticle Physics, 2015(05):011,
2015.

Francesca Calore, Ilias Cholis, Christopher McCabe, and Christoph Weniger.
A tale of tails: dark matter interpretations of the fermi GeV excess in light of

background model systematics. Physical Review D, 91(6):063003, 2015.

Céline Beehm, Matthew J Dolan, and Christopher McCabe. Interpretation of
the galactic center excess of gamma rays with heavier dark matter particles.

Physical Review D, 90(2):023531, 2014.

Céline Beehm, Matthew J Dolan, Christopher McCabe, Michael Spannowsky,
and Chris J Wallace. Extended gamma-ray emission from Coy Dark Matter.

Journal of Cosmology and Astroparticle Physics, 2014(05):009, 2014.

Asher Berlin, Dan Hooper, and Samuel D McDermott. Simplified dark mat-

ter models for the galactic center gamma-ray excess. Physical Review D,

89(11):115022, 2014.

Dan Hooper. Z mediated dark matter models for the Galactic Center gamma-

ray excess. Physical Review D, 91(3):035025, 2015.

Oliver Buchmiiller, Matthew J Dolan, and Christopher McCabe. Beyond ef-
fective field theory for dark matter searches at the LHC. Journal of High
Energy Physics, 2014(1):25, 2014.

Oliver Buchmueller, Matthew J Dolan, Sarah A Malik, and Christopher M-

cCabe. Characterising dark matter searches at colliders and direct detection



Bibliography 143

[62]

[63]

[64]

[67]

[68]

experiments: vector mediators. Journal of High Energy Physics, 2015(1):37,

2015.

Sarah A Malik, Christopher McCabe, Henrique Araujo, Alexander Belyaev,
Céline Becehm, Jim Brooke, Oliver Buchmueller, Gavin Davies, Albert
De Roeck, Kees de Vries, et al. Interplay and characterization of dark matter

searches at colliders and in direct detection experiments. Physics of the Dark

Universe, 9:51-58, 2015.

Matthew R Buckley, David Feld, and Dorival Goncalves. Scalar simplified
models for dark matter. Physical Review D, 91(1):015017, 2015.

Philip Harris, Valentin V Khoze, Michael Spannowsky, and Ciaran Williams.
Constraining dark sectors at colliders: beyond the effective theory approach.

Physical Review D, 91(5):055009, 2015.

Qian-Fei Xiang, Xiao-Jun Bi, Peng-Fei Yin, and Zhao-Huan Yu. Searches for
dark matter signals in simplified models at future hadron colliders. Physical

Review D, 91(9):095020, 2015.

Ulrich Haisch and Emanuele Re. Simplified dark matter top-quark interactions

at the LHC. Journal of High Energy Physics, 2015(6):78, 2015.

Jonathan Kozaczuk and Travis AW Martin. Extending LHC coverage to light
pseudoscalar mediators and coy dark sectors. Journal of High Energy Physics,

2015(4):46, 2015.

Nathaniel Craig, Francesco D’Eramo, Patrick Draper, Scott Thomas, and Hao
Zhang. The hunt for the rest of the Higgs bosons. Journal of High Energy
Physics, 2015(6):137, 2015.

Mirkoantonio Casolino, Trisha Farooque, Aurelio Juste, Tao Liu, and Michael
Spannowsky. Probing a light CP-odd scalar in di-top-associated production
at the LHC. The European Physical Journal C, 75(10):498, 2015.

Lev Davidovich Landau. On the angular momentum of a system of two pho-

tons. In Dokl. Akad. Nauk Ser. Fiz., volume 60, pages 207-209, 1948.




Bibliography 144

[70]

[71]

[72]

[73]

[74]

[75]

[77]

Chen-Ning Yang. Selection rules for the dematerialization of a particle into

two photons. Physical Review, 77(2):242, 1950.

Peter Cox, Anibal D Medina, Tirtha Sankar Ray, and Andrew Spray. Novel
collider and dark matter phenomenology of a top-philic Z. Journal of High
Energy Physics, 2016(6):1-28, 2016.

LHC searches for heavy neutral Higgs bosons with a top jet substructure
analysis, author=Chen, Ning and Li, Jinmian and Liu, Yandong, jour-
nal=Physical Review D, volume=93, number=9, pages=095013, year=2016,
publisher=APS.

Stefania Gori, lan-Woo Kim, Nausheen R Shah, and Kathryn M Zurek. Clos-
ing the wedge: search strategies for extended Higgs sectors with heavy flavor

final states. Physical Review D, 93(7):075038, 2016.

Nathaniel Craig, Jan Hajer, Ying-Ying Li, Tao Liu, and Hao Zhang. Heavy
Higgs bosons at low tan : from the LHC to 100 TeV. Journal of High Energy
Physics, 2017(1):18, 2017.

Chiara Arina, Mihailo Backovi¢, Eric Conte, Benjamin Fuks, Jun Guo, Jan
Heisig, Benoit Hespel, Michael Kramer, Fabio Maltoni, Antony Martini, et al.
A comprehensive approach to dark matter studies: exploration of simplified

top-philic models. Journal of High Energy Physics, 2016(11):111, 2016.

Matthew R Buckley and Dorival Gongalves. Boosting the direct CP mea-
surement of the Higgs-Top coupling. Physical review letters, 116(9):091801,
2016.

Matthew R Buckley and Dorival Goncalves. Constraining the strength and
CP structure of dark production at the LHC: The associated top-pair channel.
Physical Review D, 93(3):034003, 2016.

Gregory Mahlon and Stephen Parke. Angular correlations in top quark pair
production and decay at hadron colliders. Physical Review D, 53(9):4886,
1996.




Bibliography 145

[79]

[80]

[82]

[85]

[36]

Ulrich Haisch, Anthony Hibbs, and Emanuele Re. Determining the structure
of dark-matter couplings at the LHC. Physical Review D, 89(3):034009, 2014.

Federico Demartin, Fabio Maltoni, Kentarou Mawatari, Ben Page, and Marco
Zaro. Higgs characterisation at NLO in QCD: CP properties of the top-quark
Yukawa interaction. The European Physical Journal C, 74(9):3065, 2014.

Mihailo Backovi¢, Michael Kramer, Fabio Maltoni, Antony Martini, Kentarou
Mawatari, and Mathieu Pellen. Higher-order QCD predictions for dark matter
production at the LHC in simplified models with s-channel mediators. The
European Physical Journal C, 75(10):482, 2015.

John Ellis, Dae Sung Hwang, Kazuki Sakurai, and Michihisa Takeuchi. Disen-
tangling Higgs-top couplings in associated production. Journal of High Energy
Physics, 2014(4):4, 2014.

Daniele Alves, Nima Arkani-Hamed, Sanjay Arora, Yang Bai, Matthew Baum-
gart, Joshua Berger, Matthew Buckley, Bart Butler, Spencer Chang, Hsin-
Chia Cheng, et al. Simplified models for LHC new physics searches. Journal
of Physics G: Nuclear and Particle Physics, 39(10):105005, 2012.

Matthew J Dolan, Philip Harris, Martin Jankowiak, and Michael Span-
nowsky. Constraining CP-violating Higgs sectors at the LHC using gluon
fusion. Physical Review D, 90(7):073008, 2014.

Adam Alloul, Neil D Christensen, Céline Degrande, Claude Duhr, and Ben-
jamin Fuks. FeynRules 2.0A complete toolbox for tree-level phenomenology.

Computer Physics Communications, 185(8):2250-2300, 2014.

Johan Alwall, R Frederix, S Frixione, V Hirschi, Fabio Maltoni, Olivier Mat-
telaer, H-S Shao, T Stelzer, P Torrielli, and M Zaro. The automated com-
putation of tree-level and next-to-leading order differential cross sections, and
their matching to parton shower simulations. Journal of High Energy Physics,

2014(7):79, 2014.




Bibliography 146

[87]

[88]

[91]

[92]

[95]

[96]

Celine Degrande, Claude Duhr, Benjamin Fuks, David Grellscheid, Olivi-
er Mattelaer, and Thomas Reiter. UFO-the universal FeynRules output.
Computer Physics Communications, 183(6):1201-1214, 2012.

Patrick De Causmaecker, Raymond Gastmans, Walter Troost, and Tai Tsun
Wu. Multiple bremsstrahlung in gauge theories at high energies (i). general
formalism for quantum electrodynamics. Nuclear Physics B, 206(1):53-60,
1982.

Glennys R Farrar and Filippo Neri. How to calculate 35 640 O(a®) feynman
diagrams in less than an hour. Physics Letters B, 130(1-2):109-114, 1983.

Frits A Berends and W Giele. The six-gluon process as an example of Weyl-van

der Waerden spinor calculus. Nuclear Physics B, 294:700-732, 1987.

Hermann Weyl. The theory of groups and quantum mechanics. Courier Cor-

poration, 1950.

Sérgio Ferraz Novaes and D Spehler. Weyl-van der Waerden spinor technique

for spin-32 fermions. Nuclear Physics B, 371(3):618-636, 1992.

Gregory Mahlon and Stephen J Parke. Spin correlation effects in top quark
pair production at the LHC. Physical Review D, 81(7):074024, 2010.

Niccolo Moretti, Petar Petrov, Stefano Pozzorini, and Michael Spannowsky.
Measuring the signal strength in ttH with H — bb. Physical Review D,
93(1):014019, 2016.

Torbjorn Sjostrand, Stephen Mrenna, and Peter Skands. PYTHIA 6.4 physics
and manual. Journal of High Energy Physics, 2006(05):026, 2006.

J De Favereau, Christophe Delaere, Pavel Demin, Andrea Giammanco, Vin-
cent Lemaitre, Alexandre Mertens, Michele Selvaggi, Delphes 3 Collaboration,
et al. DELPHES 3: a modular framework for fast simulation of a generic col-

lider experiment. Journal of High Energy Physics, 2014(2):57, 2014.




Bibliography 147

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Matteo Cacciari, Gavin P Salam, and Gregory Soyez. The anti-kt jet clustering
algorithm. Journal of High Energy Physics, 2008(04):063, 2008.

Thomas Junk. Confidence level computation for combining searches with s-

mall statistics. Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment, 434(2-
3):435-443, 1999.

Georges Aad, B Abbott, J Abdallah, O Abdinov, R Aben, M Abolins,
OS AbouZeid, H Abramowicz, H Abreu, R Abreu, et al. Study of the spin
and parity of the Higgs boson in diboson decays with the ATLAS detector.
The European Physical Journal C, 75(10):476, 2015.

Vardan Khachatryan, AM Sirunyan, Armen Tumasyan, Wolfgang Adam,
Thomas Bergauer, M Dragicevic, J Ero, M Friedl, R Frithwirth, VM Ghete,
et al. Constraints on the spin-parity and anomalous HVV couplings of the Hig-
gs boson in proton collisions at 7 and 8 TeV. Physical Review D, 92(1):012004,
2015.

J Elias-Mir6, JR Espinosa, E Masso, and A Pomarol. Renormalization of
dimension-six operators relevant for the Higgs decays h — 7, vZ. Journal of

High Energy Physics, 2013(8):33, 2013.

J Elias-Miro, JR Espinosa, E Masso, and A Pomarol. Higgs windows to new
physics through D = 6 operators: constraints and one-loop anomalous dimen-

sions. Journal of High Energy Physics, 2013(11):66, 2013.

Joan Elias-Mir6, Christophe Grojean, Rick S Gupta, and David Marzocca.
Scaling and tuning of EW and Higgs observables. Journal of High Energy
Physics, 2014(5):19, 2014.

Elizabeth E Jenkins, Aneesh V Manohar, and Michael Trott. Renormalization
group evolution of the standard model dimension six operators. i: formalism

and A dependence. Journal of High Energy Physics, 2013(10):87, 2013.




Bibliography 148

105

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Elizabeth E Jenkins, Aneesh V Manohar, and Michael Trott. Renormalization
group evolution of the standard model dimension six operators ii: Yukawa

dependence. Journal of High Energy Physics, 2014(1):35, 2014.

Rodrigo Alonso, Elizabeth E Jenkins, Aneesh V Manohar, and Michael Trott.
Renormalization group evolution of the standard model dimension six oper-

ators iii: gauge coupling dependence and phenomenology. Journal of High

Energy Physics, 2014(4):1-47, 2014.

Rodrigo Alonso, Hsi-Ming Chang, Elizabeth E Jenkins, Aneesh V Manohar,
and Brian Shotwell. Renormalization group evolution of dimension-six baryon

number violating operators. Physics Letters B, 734:302-307, 2014.

Rhorry Gauld, Benjamin D Pecjak, and Darren J Scott. One-loop corrections
to h — bb and h — 77 decays in the Standard Model Dimension-6 EFT: four-
fermion operators and the large-mt limit. Journal of High Energy Physics,

2016(5):80, 2016.

Laure Berthier and Michael Trott. Towards consistent electroweak precision
data constraints in the SMEFT. Journal of High Energy Physics, 2015(5):24,
2015.

Bernd A Kniehl and Apostolos Pilaftsis. Mixing renormalization in Majorana

neutrino theories. Nuclear Physics B, 474(2):286-308, 1996.

Mathias Butenschon, Frank Fugel, and Bernd A Kniehl. Two-loop electroweak
correction of O(GrpM}?) to the Higgs-boson decay into photons. Nuclear

Physics B, 772(1-2):25-48, 2007.

Thomas Hahn. Generating Feynman diagrams and amplitudes with FeynArts

3. Computer Physics Communications, 140(3):418-431, 2001.

Thomas Hahn and M Perez-Victoria. Automated one-loop calculations in
four and D dimensions. Computer Physics Communications, 118(2-3):153—

165, 1999.




Bibliography 149

[114] Giampiero Passarino and M Veltman. One-loop corrections for ete™ annihi-
lation into pu*p~ in the weinberg model. Nuclear Physics B, 160(1):151-207,
1979.

[115] A Sirlin. Radiative corrections in the SU(2), x U(1) theory: a simple renor-
malization framework. Physical Review D, 22(4):971, 1980.




