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Abstract

The top quark plays an important role in the search for physics beyond the standard model because of its

large mass. In the situation where new physics exist at an energy scale higher than the scale we can probe

directly, it is desirable to have a model-independent approach, which we can use to parametrize and to

constrain possible new physics. In this dissertation an effective-field-theory approach to top quark physics is

suggested. In this approach, the leading effects of new physics at relatively low energy scale is parametrized

by effective operators which have mass dimension six.

We first consider top-quark decay, single top production, and top-quark pair production in hadron col-

liders. We classify all dimension-six operators and identify 15 operators that contribute to these processes.

We compute the deviation from the standard model induced by these operators. The results provide a

systematic way of searching for (or obtaining bounds on) physics beyond the standard model.

We then turn to precision electroweak experiments. We study the effect of one dimension-six operator

involving the top quark and the electroweak gauge bosons on precision electroweak data via a top-quark

loop. We demonstrate the renormalizability, in the modern sense, of the effective field theory. We use the

oblique parameter Û to bound the coefficient of this operator, and compare with the bound derived from

measurements on top-quark decay.

Finally, we extend this analysis to include 8 dimension-six operators which generate anomalous interac-

tions among the electroweak gauge bosons and the top quark. We calculate their corrections to all major

precision electroweak observables. The corrections are compared with data to obtain constraints on these

operators.
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2.9 The t-channel (d̄b→ ūt) differential cross section at
√
s = 2mt. . . . . . . . . . . . . . . . . . 20

2.10 The gb→Wt channel differential cross section at
√
s = 2mt. . . . . . . . . . . . . . . . . . . 20

2.11 The Feynman diagrams for gg → tt̄ process. Diagram (a-c) are the SM amplitude. (d-h) are
the gtt vertex correction induced by OtG. (i) is the g3 vertex correction induced by OG. (j)
is a ggtt interaction from OtG, and (k) is a gg → h→ tt process, induced by OϕG. . . . . . . 23
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Chapter 1

Introduction

More than a century of experimental results and theoretical progress have led us to the formulation of an

elegant and compact theory of the fundamental interactions among particles: the standard model (SM).

It reproduces a huge amount of experimental data, spanning several orders of magnitude in energy. The

electromagnetic, weak and strong forces are all described in the same mathematical framework of gauge

theories. The electromagnetic and weak interactions are associated to the SU(2)L×U(1)Y gauge symmetry,

which is then spontaneously broken by the vacuum expectation value (VEV) of the Higgs field, at the TeV

scale. All massive particles acquire masses from the VEV of the Higgs boson.

The SM of particle physics, while giving an extremely economical description of the electroweak symmetry

breaking (EWSB), does not explain the origin of the symmetry breaking. A common puzzle in the SM is the

so-called hierarchy problem, which reduces to the question of “why is the Higgs boson so light?”, because

naturally one would expect that the Higgs boson would receive radiative corrections that push its mass up

to the Planck scale. For this reason, it is a general belief that new states which couple to the SM states exist

at the TeV scale. Fortunately, with the recent turn-on of CERN’s Large Hadron Collider (LHC), searches

for new physics at the TeV scale becomes possible.

1.1 Top Quark as a Probe of New Physics

Top quark physics is among the central physics topics at the Tevatron and it will remain so at the LHC

in the next few years. Searching for new physics beyond the SM in observables involving the top quark is

strongly motivated for several reasons:

• The top quark Yukawa coupling is expected to be enhanced compared to those of lighter fermions.

In the SM, all fermions acquire mass through the Yukawa interaction, which describes the coupling

between the fermions and the Higgs sector. The top quark, being the heaviest particle, is the only

particle with Yukawa coupling y ≈ 1 among all the SM fermions. This implies that any new physics

which is responsible for EWSB is expected to couple strongly to the top quark, leading to many events
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where top quarks are produced in association with new physics.

• The largest contribution to the quadratic divergence of the SM Higgs mass comes from the top quark

loop. This implies the immediate need for new physics at the TeV scale to solve the hierarchy problem.

One example is the scalar partner of the top quark in supersymmetry.

• The top quark is the only “bare” quark whose spin information can be measured from its decay

products. An important property of the top is that it decays before hadronization (with a lifetime of

10−25s which is an order of magnitude smaller than the hadronization lifetime of 10−24s). This offers

the opportunity to explore the properties of a “bare quark”, such as its spin, mass, and couplings.

For the above reasons, the top quark plays a special role in searches for new physics beyond the SM.

While the current existing bounds do not forbid the existence of new degrees of freedom that are within

the kinematical reach of the LHC, it is important to consider also the possibility that these states are heavier

and cannot be produced on shell. In this case new degrees of freedom enter only at the virtual level to modify

the interactions among the SM particles, especially the top quarks. Perhaps the most well known example

for such effects is the forward-backward asymmetry (AFB) measurement at the Tevatron. In this experiment,

top quark pairs produced in proton-antiproton collisions are observed to be produced preferentially in the

forward hemisphere. The AFB is predicted in the SM only from higher order QCD contributions, but the

data exceed the predictions by a few standard deviations. This is possibly the first hint for new physics in

the top sector.

When considering physics beyond the SM, there are often two choices. One can study a particular

extension of the SM, or one can take a model-independent approach. The latter is mostly useful in the

situation where the new heavy states are beyond the energy region of the LHC and reveal themselves only as

anomalous interactions among the SM particles. A model-independent approach to physics beyond the SM

is useful in two respects. First, it allows one to search for new physics without committing to a particular

extension of the SM. Second, in the case that no new physics should appear, it allows one to quantify the

accuracy with which the new physics is excluded.

A common task for anyone considering physics beyond the SM is making sure that the proposed new

physics is consistent with current experimental bounds. An important subset of accurate data is the so-called

precision electroweak measurements (PEWM). This contains some low-energy data such as deep inelastic

scattering and atomic parity violation, a few dozens of observables at the Z pole, and the LEP2 data on

e+e− scattering at various center-of-mass energies between the Z mass and 209 GeV. In this energy range,

new heavy states could not be produced directly, and a model-independent approach is again useful. The
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anomalous interactions involving top quark can have effects on the PEWM, because the top quark also

plays an important role as a virtual particle in precision electroweak physics. Indeed, the correct range

for the top quark mass was anticipated by precision electroweak studies. Now that the top quark mass is

accurately known from direct measurements, the constrains from the PEWM can be converted into bounds

on anomalous top quark couplings. In order to do this, a model-independent approach in which radiative

corrections can be consistently carried out is needed.

1.2 Effective Field Theory

Having seen the need for a model-independent approach to describe new physics involving top quark, now

the question is: what are the candidates for this approach?

When contempting a model-independent approach to physics beyond the SM, there are a number of

desirable features that one should incorporate:

• Any extension of the standard model should satisfy the S-matrix axioms of unitary, analyticity, etc..

• The symmetries of the standard model, namely Lorentz invariance and SU(2)L × U(1)Y gauge sym-

metry, should be respected.

• It should be possible to recover the standard model in an appropriate limit.

• The extended theory should be general enough to capture any physics beyond the standard model,

but should give some guidance as to the most likely place to see the effects of new physics.

• It should be possible to calculate standard-model radiative corrections in the extended theory.

• It should be possible to calculate radiative corrections involving the new interactions of the extended

theory.

The unique way to incorporate all of these features is via an effective quantum field theory. The first two

features alone indicate a quantum field theory. The remaining features are captured by an effective quantum

field theory [1, 2].

In an effective quantum field theory, heavy particles are “integrated out”, leaving nonlocal interactions

from virtual heavy-particle exchange. These interactions are then replaced with a set of local interactions,

constructed to give the same physics at low energies. These interactions are suppressed by inverse power of

the masses of the heavy particles. In this process, we have modified the high energy behavior of the theory,
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so the effective theory is only a valid description of the physics at energies below the masses of the heavy

particles.

An example of this approach is displayed in fig. 1.1, in the context of a Z ′ boson. At energies above the

mass of the Z ′, one observes the new particle directly. At energies below the mass of the Z ′, one observes

non-local interactions of SM fermions mediated by the exchange of a virtual Z ′ boson. At energies much

less than the Z ′ mass, the leading effect appears as an effective four-fermion interaction.

Figure 1.1: At energies greater than the Z ′ mass, one observes the new particle directly. At energies below
the Z ′ mass, one observes its effects on SM particles indirectly.

Let us attach a coupling g to the Z ′ interaction with the SM fermions, and include the Z ′ propagator,

proportional to (p2 −M2)−1. At energies much less than the Z ′ mass, we can expand the propagator in

p2/M2:

1

p2 −M2
= − 1

M2

[
1 +

p2

M2
+

(
p2

M2

)2

+ · · ·

]
(1.1)

Each term in the bracket can be mimicked by a local interaction. The leading term is generated by an

effective four-fermion interaction with strength g2/M2. Terms of higher order in p2/M2 can be generated

by interactions involving more derivatives, with higher mass dimension. At leading order, the theory is

described by the Lagrangian

Leff = LSM +
g2

M2
ψ̄ψψ̄ψ . (1.2)

This effective Lagrangian can be viewed as a description of new physics, at energy below the mass of the

heavy state, M .

The principle behind the effective field theory is to take advantage of scale separation. The effects of

large energy scales, or short distance scales, are suppressed by powers of the ratio between the scale of the

problem and the large energy scale. This observation follows from many other fields in physics. For example,

one does not worry about the sizes of planets, when studying orbital motions in the solar system. Similarly,

the hydrogen spectrum can be calculated quite precisely without knowing that there are quarks and gluons

inside the proton. In fact, we are so used to this idea that we can use it without thinking about it. However,

in a relativistic, quantum mechanical theory, in which particles are created and destroyed, the construction
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of an effective field theory is particularly useful, because among the short-distance features that can be

ignored in an effective theory are all the particles too heavy to be produced. Eliminating heavy particles

from the effective theory produces an enormous simplification.

Decoupling of large energy scales in field theory seems to be complicated by the fact that integration over

loop momenta involves all scales. However, this is only a superficial obstacle which is straightforward to deal

with in a convenient regularization scheme, for example dimensional regularization. The decoupling of large

energy scales takes place in renormalizable quantum field theories whether or not techniques of effective field

theory are used. In fact, the decoupling of heavy states is the reason for building high-energy accelerators.

If quantum field theory were sensitive to all energy scales, it would be much more useful to increase the

precision of low-energy experiments instead of building large colliders.

If we knew the complete theory of the new physics at high energy, we could work our way down to the

low energy effective theory in a systematic way, by eliminating the heavy states at different energy scales

from the theory. This is a “top down” approach to effective field theory. In practice, however, we do not

know what the new physics is, but we do know the low energy limit of any correct theory must be the SM. It

is then more useful to look at the theory from the “bottom up” view. In this view, an effective quantum field

theory of the SM is constructed as follows. The SM is the most general theory of quarks, leptons, and Higgs

fields interacting via an SU(3)C × SU(2)L × U(1)Y gauge symmetry, where all operators (that is, products

of fields) in the Lagrangian are restricted to be of mass dimension four or less.1 To extend the theory, add

operators of higher dimension. By dimensional analysis, these operators have coefficients of inverse powers

of mass, and hence are suppressed if this mass is large compared with the experimentally-accessible energies.

We denote this mass scale by Λ, which is the analogue of M in Eq. (1.2), and can be regarded as the scale

of the new physics. The effect of physics above scale Λ, is then described by a tower of operators, with

mass dimension from two to infinity, beginning with conventional renormalizable interactions but going on

to include nonrenormalizable interactions of arbitrarily high dimension.

At this point, the reader may start to worry about the renormalizability of an effective field theory. In

particular, in the PEWM, the top quark enters only as a virtual particle, therefore how do we make sense of

any loop calculation, if the theory contains nonrenormalizable interactions? The answer to this question is

that only a finite number of terms need to be kept, because the theory only needs to reproduce experiments

to finite accuracy. The higher the dimension of an operator, the smaller its contribution to low-energy

experiments. Hence, obtaining results to a given accuracy requires a finite number of terms. This is the

reason why nonrenormalizable theories are as good as renormalizable theories. In real calculations, only the

1In practice all operators, except the quadratic term in the Higgs potential, are of dimension four.
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leading terms in 1/Λ are kept. Although an effective field theory is not renormalizable in the old-fashioned

sense, it is renormalizable at any order in 1/Λ, provided that all the pertinent operators are included [3]. In

practice, one also needs to be careful when choosing a regularization scheme, because this may introduce new

heavy masses which destroy the dimensional analysis. As we will see, the use of dimensional regularization

with minimal subtraction (MS) in loop calculations will avoid such problems. A complete review on this

subject may be found in [4].

All operators of higher dimension are expected to satisfy the SU(3)C×SU(2)L×U(1)Y gauge symmetry of

the SM. With this requirement, there is only one dimension-five operator, and it is responsible for generating

Majorana masses for neutrinos [5]. This operator is therefore irrelevant for our purpose. A complete list of

dimension-six operators was first given in [6, 7, 8]. Subsequently it was found that several of this operators

are not independent [9, 10]. A list of 59 independent dimension-six operators was recently given in [11].2

In addition, we show in Appendix A that only even-dimensional operators can conserve lepton and baryon

number. Therefore we can drop all the odd-dimensional operators, and the expansion parameter in an

effective field theory is actually 1/Λ2.

The effective field theory of the SM can be written as

Leff = LSM +
∑
i

Ci

Λ2
O(6)

i + · · · (1.3)

where O(6)
i are the dimension-six operators, and the ellipsis indicates the higher-dimension operators. The

coefficients Ci are dimensionless, and parametrize the unknown interactions. Referring to our list of desirable

features above, we see that the SM is recovered in the limit Λ → ∞. Since any new physics will look like

a quantum field theory at low energies, the effetive field theory is general enough to capture the low-energy

effects of any physics beyond the standard model, as long as we include all possible terms consistent with

the symmetries of the theory. However, by dimensional analysis we expect the dimension-six operators to be

dominant, so the theory provides some guidance as to the most likely place to see the effects of new physics.3

Finally, the extended theory can be used to calculate both tree-level and loop processes [3].

It is the dimension-six operators that we will focus on throughout this dissertation. We neglect any

operators with dimension equal or higher than eight, and only keep the leading 1/Λ2 terms. Although there

is a large number of dimension-six operators, typically only a few contribute to a given physical process

at this order. To study the top quark physics, all operators that do not involve a top quark field can be

2There are 59 operators for one generation of fermions. For more generations, the number of four-fermion operators increases
dramatically. For a list of four-fermion operators including three generations, see [12].

3For some physical processes, operators of dimension seven or greater may be dominant, and can be included.
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ignored. As we will see, at leading order there are 15 operators which contribute to processes involving top

quarks in hadron colliders. As for the PEWM, the number of pertinent operators is 9. Finally, because no

dimension-seven operator can contribute to the leading order, the error induced by keeping only the leading

correction is of order E2/Λ2, where E is the energy scale of the problem.

The dissertation is organized as follows: In Chapter 2, I classify the important dimension-six operators

in hadron colliders, and study their effects on top quark production and decay. In Chapter 3, I focus on one

operator which modifies the SM coupling between the top quark and the W boson, and study its loop effects

on the PEWM. In particular, I compare the constraints on this operator obtained from hadron collider and

from the PEWM. In Chapter 4, the study of PEWM is extended to include more dimension-six operators

of the top quark, and constraints on 8 operators are obtained.
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Chapter 2

Effective Field Theory for Top Quark
Production and Decay1

The effective-field-theory approach to top quark production and decay is not a new approach. The effects of

some dimension-six operators in certain processes are studied by different groups. This Chapter is devoted

to a more complete and systematic study on this subject. We will consider the effects of all dimension-six

operators on top quark interactions at hadron colliders. We focus on three different processes: top quark

decay, single top production, and top pair production. The coefficients of dimension-six operators are used

to parametrize the new physics. If experiments favor a non-zero coefficient, we should consider it as a hint

to new physics. On the other hand, if no deviation from SM is observed experimentally, then one can place

bounds on these coefficients. The effects of non-standard interactions on top-quark physics at linear colliders

and photon colliders can be found in Refs. [14, 15, 16, 17].

We use the operator set introduced by Buchmuller and Wyler [6]. In their paper, they categorize all

possible gauge-invariant dimension-six operators, and use the equations of motion (EOMs) to simplify them

into 80 independent operators (for one generation of fermions). Subsequently it was found that several of

these operators are actually not independent. A list of 59 independent dimension-six operators was recently

given in [11]. We focus on the operators that have an influence on the top quark.

The leading modification to SM processes is expected to be of order 1
Λ2 . In this dissertation we do not

consider any higher order contributions. The scale Λ is larger than the scale we can probe directly, so 1
Λ4

contributions should be small compared to the uncertainty on top quark measurements. Hence we ignore

all dimension-eight and higher operators, as well as effects involving two dimension-six operators.

For any physical observable, the 1
Λ2 contribution comes from the interference between dimension-six

operators and the SM Lagrangian. This contribution might be suppressed for a variety reasons. For example,

since all quark and lepton masses are negligible compared to the top quark mass, a new interaction that

involves a right-handed quark or lepton (except for the top quark) has a very small interference with the

SM charged-current weak interactions, which only involve left-handed fermions. It turns out that although

there are a large number of dimension-six operators, only a few of them have significant effects at order 1
Λ2 .

1The work presented in this Chapter is published in Ref. [13].
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We list these operators in Tables 2.1 and 2.2.

operator process

O
(3)
ϕq = i(ϕ+τ IDµϕ)(q̄γ

µτ Iq) top decay, single top

OtW = (q̄σµντ It)ϕ̃W I
µν (with real coefficient) top decay, single top

O
(1,3)
qq = (q̄iγµτ

Iqj)(q̄γµτ Iq) single top

OtG = (q̄σµνλAt)ϕ̃GA
µν (with real coefficient) single top, qq̄, gg → tt̄

OG = fABCG
Aν
µ GBρ

ν GCµ
ρ gg → tt̄

OϕG = 1
2 (ϕ

+ϕ)GA
µνG

Aµν gg → tt̄

7 four-quark operators qq̄ → tt̄

Table 2.1: CP-even operators that have effects on top-quark processes at order 1/Λ2. Here q is the left-handed
quark doublet, while t is the right-handed top quark. The field ϕ (ϕ̃ = ϵϕ∗) is the Higgs boson doublet.
Dµ = ∂µ−igs 1

2λ
AGA

µ −ig 1
2τ

IW I
µ−ig′Y Bµ is the covariant derivative. W I

µν = ∂µW
I
ν −∂νW I

µ+gϵIJKW
J
µW

K
ν

is theW boson field strength, and GA
µν = ∂µG

A
ν −∂νGA

µ +gsf
ABCGB

µG
C
ν is the gluon field strength. Because

of the Hermiticity of the Lagrangian, the coefficients of these operators are real, except for OtW and OtG.

The operator O
(3)
ϕq with an imaginary coefficient can be removed using the EOM.

operator process

OtW = (q̄σµντ It)ϕ̃W I
µν (with imaginary coefficient) top decay, single top

OtG = (q̄σµνλAt)ϕ̃GA
µν (with imaginary coefficient) single top, qq̄, gg → tt̄

OG̃ = fABCG̃
Aν
µ GBρ

ν GCµ
ρ gg → tt̄

OϕG̃ = 1
2 (ϕ

+ϕ)G̃A
µνG

Aµν gg → tt̄

Table 2.2: CP-odd operators that have effects on top-quark processes at order 1/Λ2. Notations are the same
as in Table 1, and G̃µν = ϵµνρσG

ρσ.

In Table 2.1, only one of the four-quark operators, O
(1,3)
qq = (q̄iγµτ

Iqj)(q̄γµτ Iq), is listed explicitly. Here

the superscripts i, j denote the first two quark generations, while q without superscript denotes the third

generation. In single top production, this is the only (independent) four-quark operator that contributes.

However, there are many other four-quark operators with different isospin and color structures [6, 7]. In the

top pair production process qq̄ → tt̄, seven such operators contribute. The details are discussed in Section

2.3.

In Table 2.2, the CP-odd operators are listed. These interactions interfere with the SM only if the spin of

the top quark is taken into account. The reason is that the SM conserves CP to a good approximation (the

only CP violation is in the CKM matrix), and the interference between a CP-odd operator and a CP-even

operator is a CP violation effect. It was shown in Ref. [18] that, in the absence of final-state interactions,

any CP violation observable can assume non-zero value only if it is TN -odd, where TN is the “naive” time

reversal, which means to apply time reversal without interchanging the initial and final states. Thus an

observable is TN -odd if it is proportional to a term of the form ϵµνρσv
µvνvρvσ. If we don’t consider the

top quark spin, v must be the momentum of the particles, and such a term will not be present because
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the reactions we consider here involve at most three independent momenta. Therefore top polarimetry is

essential for the study of CP violation. Since the top quark rapidly undergoes two-body weak decay t→Wb

with a time much shorter than the time scale necessary to depolarize the spin, information on the top spin

can be obtained from its decay products. CP violation will be discussed in Section 2.4.

There is an argument that can be used to neglect certain operators [8]. Some new operators can be

generated at tree level from an underlying gauge theory, while others must be generated at loop order. In

general the loop generated operators are suppressed by a factor of 1/16π2. However, the underlying theory

may not be a weakly coupled gauge theory, or the loop diagrams could be enhanced due to the index of a

fermion in a large representation. Furthermore, the underlying theory may not be a gauge theory at all.

Fortunately, the effective-field-theory approach does not depend on the underlying theory. We will consider

all dimension-six operators, without making any assumptions about the nature of the underlying theory.

We do not make any assumptions about the flavor structure of the dimension-six operators, although we

don’t consider any flavor-changing neutral currents in this paper. The charged-current weak interaction of the

top quark is proportional to Vtb, so the SM rate for top decay and single top production is proportional to V 2
tb.

We write all dimension-six operators in such a way that all relevant couplings derived from these operators

involve fields in their mass-eigenstates, so no diagonalization of the new interactions is necessary. Hence,

in charged-current weak interactions, the interference between the SM amplitude and the new interaction

is proportional to VtbCi, where Ci is the (real) coefficient of the dimension-six Hermitian operator Oi (also

recall that Vtb itself is purely real in the standard parameterization [19]). If the operator is not Hermitian, the

coefficient Ci is complex; CP-conserving processes are proportional to VtbReCi, while CP-violating processes

are instead proportional to VtbImCi.

Deviations of top-quark processes from SM predictions have often been discussed using a vertex-function

approach, where the Wtb vertex is parameterized in terms of four unknown form factors [20]. Given our

precision knowledge of the electroweak interaction, this approach is too crude. The effective field theory

approach is well motivated; it takes into consideration the unbroken SU(3)C × SU(2)L × U(1)Y gauge

symmetry; it includes contact interactions as well as vertex corrections; it is valid for both on-shell and

off-shell quarks; and it can be used for loop processes [3]. None of these virtues are shared by the vertex

function approach [21].

The remainder of this Chapter is organized as follows. In Section 2.1 we discuss top-quark decay. In

Section 2.2 we discuss single top production. Top pair production is discussed in Section 2.3. The CP-odd

operators are considered in Section 2.4. Section 2.5 is conclusion.
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2.1 Top Quark Decay

When the fermion masses (except for the top quark) are ignored, there are only two independent dimension-

six operators in [11] that contribute to top-quark decay at leading order:

O
(3)
ϕq = i(ϕ+τ IDµϕ)(q̄γ

µτ Iq) (2.1)

OtW = (q̄σµντ It)ϕ̃W I
µν (2.2)

The operators O
(3)
ϕq and OtW modify the SM Wtb interaction. Upon symmetry breaking, they generate the

following terms in the Lagrangian:

Leff =
C

(3)
ϕq

Λ2

gv2√
2
b̄γµPLtW

−
µ + h.c. (2.3)

Leff = −2
CtW

Λ2
vb̄σµνPRt∂νW

−
µ + h.c. (2.4)

where v = 246 GeV is the vacuum expectation value (VEV) of ϕ. The operator O
(3)
ϕq simply leads to a

rescaling of the SM Wtb vertex by a factor of (1 +
C

(3)
ϕq v2

Λ2Vtb
), so it does not affect any distributions, and is

therefore impossible to detect in angular distributions of top-quark decays. The vertex-function approach

to top-quark decay is pursued in Refs. [22, 23].

These operators interfere with the SM amplitude, as is shown in Figure 2.1. We can compute their

correction to the SM amplitude. The t→ be+ν squared amplitude is:

1

2
Σ|M |2 =

V 2
tbg

4u(m2
t − u)

2(s−m2
W )2

+
C

(3)
ϕq Vtbv

2

Λ2

g4u(m2
t − u)

(s−m2
W )2

+
4
√
2ReCtWVtbmtmW

Λ2

g2su

(s−m2
W )2

(2.5)

where Ci is the coefficient of operator Oi, and s, t, u are generalizations of the usual Mandelstam variables

(s = (pt − pb)
2, t = (pt − pν)

2, u = (pt − pe+)
2). C

(3)
ϕq is real.

Using the narrow width approximation for the W boson, the differential decay rate is

dΓ

d cos θ
=

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4

4096π2m3
tmWΓW

(m2
t −m2

W )2[m2
t +m2

W + (m2
t −m2

W ) cos θ](1− cos θ)

+
ReCtWVtbg

2

128
√
2π2Λ2m2

tΓW

m2
W (m2

t −m2
W )2(1− cos θ) (2.6)

Here θ is the angle between the momenta of top quark and the neutrino in the W rest frame, and ΓW is the
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Figure 2.1: The Feynman diagrams for t → be+ν. (a) is the SM amplitude; (b) represents the vertex

correction induced by the operator O
(3)
ϕq and OtW .

width of the W boson. In the SM, at tree level ΓW is given by:

ΓW =
3αW

4
mW . (2.7)

The angular dependence is shown in Figure 2.2. The curves are normalized to have equal areas. The

contribution from O
(3)
ϕq is the same as the SM contribution, because O

(3)
ϕq simply rescales the SM Wtb vertex.

It therefore does not affect angular distributions. The angular dependence of the contribution from OtW is

not dramatically different from the SM.

The partial width is given by

Γ =

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4(m6

t − 3m4
Wm2

t + 2m6
W )

3072π2ΓWm3
tmW

+ReCtWVtb
g2m2

W (m2
t −m2

W )2

64
√
2π2Λ2ΓWm2

t

. (2.8)

Both dimension-six operators affect the partial width. The total width is given by the above expression

times a factor of nine. Unfortunately, it is not known how to measure the partial or total widths in a hadron

collider environment.

We also consider the energy dependence of the leptons in the top quark rest frame. The SM computation

can be found in [24, 25]. The correction from dimension-six operators at leading order is:

dΓ

dEe+
=

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4Ee+(mt − 2Ee+)

128π2mWΓW
+

ReCtWVtbg
2m2

W (mt − 2Ee+)

16
√
2π2Λ2ΓW

dΓ

dEν
=

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4(−4E2

νm
2
t + 2Eν(m

3
t + 2m2

Wmt)−m2
W (m2

t +m2
W ))

256π2m2
tmWΓW

+
ReCtWVtbg

2m2
W (2Eνmt −m2

W )

16
√
2π2Λ2mtΓW

(2.9)
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0
θ

dΓ
/d

co
sθ

SM and Oφq
(3)

O
tW

π/2 π

Figure 2.2: The differential decay rate induced by different operators. The curves are normalized so that
the area is the same.

where m2
W /2mt < Ee+ , Eν < mt/2 are the energies of the electron and neutrino, respectively. We do not

list the energy dependence of the bottom quark, because the narrow width approximation for the W boson

is used and the energy of the bottom quark is given by Eb = (m2
t −m2

W )/2mt. These results are shown in

Figure 2.3 and 2.4. Again the curves are normalized so that the areas are the same. Compared to Figure

2.2, the two curves are more distinct, which implies the effect of OtW would be more apparent in the energy

distribution of the leptons.

The angular distribution and the energy distribution are not independent. The energy of the leptons are

fixed in the W rest frame. Therefore their energy in the top quark rest frame is given by a boost, which

only depends on the angle θ:

Eν =
1

2
(E + |q| cos θ) (2.10)

Ee+ =
1

2
(E − |q| cos θ) (2.11)

where E = (m2
t +m

2
W )/2mt and |q| = (m2

t −m2
W )/2mt are the energy and momentum of theW boson in the

top quark rest frame. Furthermore, both the angular distribution and energy distribution can be expressed

using the W helicity fractions [22]:

1

Γ

dΓ

d cos θ
=

3

8
(1 + cos θ)2f+ +

3

8
(1− cos θ)2f− +

3

4
sin2 θf0 (2.12)
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Figure 2.3: The energy dependence of the electron.
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Figure 2.4: The energy dependence of the neutrino.

and

1

Γ

dΓ

dEe+
=

1

(Emax − Emin)3
(
3(Ee+ − Emin)

2f+ + 3(Emax − Ee+)
2f− + 6(Emax − Ee+)(Ee+ − Emin)f0

)
(2.13)

where Emax = mt/2 and Emin = m2
W /2mt, fi = Γi/Γ are the W boson helicity fractions, corresponding to

positive (+), negative (-), or zero (0) helicity. The helicity fraction is affected by the operator OtW :

f0 =
m2

t

m2
t + 2m2

W

− 4
√
2ReCtW v2

Λ2Vtb

mtmW (m2
t −m2

W )

(m2
t + 2m2

W )2

f− =
2m2

W

m2
t + 2m2

W

+
4
√
2ReCtW v2

Λ2Vtb

mtmW (m2
t −m2

W )

(m2
t + 2m2

W )2

f+ = 0 (2.14)

These equations make manifest the earlier observation that the operator O
(3)
ϕq , which simply rescales the SM

vertex, cannot affect any distributions. Thus top-quark decay is sensitive only to the operator OtW , and can

be used to measure (or bound) its coefficient.

Finally, we investigate the polarized differential decay rate. In the rest frame of the top quark, the

angular distribution of any top quark decay product is given by [24, 25]

1

Γ

dΓ

d cos θi
=

1 + αi cos θi
2

(2.15)

where θi = θb, θv, θe+ is the angle between the spin axis of the top quark and the momentum of the bottom

quark, neutrino or positron. The “analyzing power” αi measures the degree to which the direction of the

decay product i is correlated with the top spin. If dimension-six operators are added, the relation still
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holds, but the coefficient αi will be affected by the new operators. Since O
(3)
ϕq is just a rescaling of the SM

interaction, the only correction is from OtW . This could be an independent way to determine the coefficient

ReCtW . At leading order, the correction is given by:

αb = −m
2
t − 2m2

W

m2
t + 2m2

W

+
ReCtW v2

Λ2Vtb

8
√
2mtmW (m2

t −m2
W )

(m2
t + 2m2

W )2

αv =
m6

t − 12m4
tm

2
W + 3m2

tm
4
W (3 + 8 ln(mt/mW )) + 2m6

W

m6
t − 3m2

tm
4
W + 2m6

W

−ReCtW v2

Λ2Vtb

12
√
2mtmW (m6

t − 6m4
tm

2
W + 3m2

tm
4
W (1 + 4 ln(mt/mW )) + 2m6

W )

(m2
t + 2m2

W )2(m2
t −m2

W )2

αe+ = 1 (2.16)

The same equations hold for hadronic top decay, with αu = αν , αd̄ = αe+ . The coefficient αe+ is not affected

by dimension-six operators. This is consistent with the results in Ref. [26].

The measurement of these coefficients requires a source of polarized top quarks. This is addressed in the

next section.

2.2 Single Top Production

Single top quarks are produced through the electroweak interaction. There are three separate processes:

s-channel [27], t-channel [28, 29, 30], and Wt production [31]. An effective field theory approach to the s-

and t-channel processes was advocated in Ref. [32]. We update that analysis by including an additional

operator, which was neglected in that study because it is loop-suppressed if the underlying theory is a gauge

theory. We also perform an effective field theory analysis of the Wt process. The vertex-function approach

to single-top production is pursued in Refs. [33, 34, 35].

Single top production contains four distinct channels: the s-channel process ud̄ → tb̄, the t-channel

processes ub→ dt and d̄b→ ūt, and the Wt associated production channel gb→ Wt. We first consider the

s and t channels. The following operators contribute [32]:

O
(3)
ϕq = i(ϕ+τ IDµϕ)(q̄γ

µτ Iq) (2.17)

OtW = (q̄σµντ It)ϕ̃W I
µν (2.18)

O(1,3)
qq = (q̄iγµτ

Iqj)(q̄γµτ Iq) (2.19)

For the four-quark operator O
(1,3)
qq , the superscripts i, j denote the first two quark generations. Another

four-quark operator that could contribute is (q̄iγµq)(q̄γ
µqj). However, using the Fierz identity, this can
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Figure 2.5: Feynman diagrams for the s- and t-channel single top production. (a-c) are the s-channel
diagrams, while (d-f) are the t-channel diagrams. (a,d) are the SM amplitude, (b,e) are the correction from

O
(3)
ϕq and OtW , and (c,f) are the four-fermion interaction from O

(1,3)
qq . The diagrams for the t-channel process

d̄b→ ūt can be obtained by interchanging u and d quarks in (d-f).

be turned into a linear combination of O
(1,3)
qq and some other four-quark operators with different isospin

and color structures which do not contribute to this process. Four-quark operators are neglected in the

vertex-function approach to the Wtb vertex.

The Feynman diagrams are shown in Figure 2.5. Since the operator OtW will be measured (or bounded)

from studies of top-quark decay, the s- and t-channel production of single top quarks can be used to measure

(or bound) the operators O
(3)
ϕq and O

(1,3)
qq .

Now we turn to consider the gb→Wt process. The contributing operators are

O
(3)
ϕq = i(ϕ+τ IDµϕ)(q̄γ

µτ Iq) (2.20)

OtW = (q̄σµντ It)ϕ̃W I
µν (2.21)

OtG = (q̄σµνλAt)ϕ̃GA
µν (2.22)

Again, the first two operators O
(3)
ϕq and OtW will affect the Wtb coupling. The “chromomagnetic moment”

operator OtG modifies the gtt coupling:

Leff =
ReCtG√

2Λ2
v
(
t̄σµνλAt

)
GA

µν (2.23)

This interaction is neglected in the vertex-function approach to the Wtb vertex.
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Figure 2.6: The Feynman diagrams forWt associated production process. (a,b) are the SM amplitude. (c,d)

are corrections due to the operator O
(3)
ϕq and OtW . (e) is a modification on the gtt vertex.

The Feynman diagrams are shown in Figure 2.6. Since the operators O
(3)
ϕq and OtW will be measured

(or bounded) from single-top production and top-quark decay, respectively, the Wt associated production

process can be used to measure (or bound) the operator OtG, which is also present in tt̄ production (see

Section 2.3).

Here we list all the corrections to the SM amplitudes and cross sections. The squared amplitude of the

three channels are:

s-channel:

1

4
Σ|Mud̄→tb̄|2 =

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4u(u−m2

t )

4(s−m2
W )2

− 2
√
2ReCtWVtbmtmW

Λ2

g2su

(s−m2
W )2

+
2C

(1,3)
qq Vtb
Λ2

g2u(u−m2
t )

s−m2
W

(2.24)

t-channel:

1

4
Σ|Mub→dt|2 =

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4s(s−m2

t )

4(t−m2
W )2

− 2
√
2ReCtWVtbmtmW

Λ2

g2st

(t−m2
W )2

+
2C

(1,3)
qq Vtb
Λ2

g2s(s−m2
t )

t−m2
W

(2.25)

1

4
Σ|Md̄b→ūt|2 =

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4u(u−m2

t )

4(t−m2
W )2

− 2
√
2ReCtWVtbmtmW

Λ2

g2ut

(t−m2
W )2

+
2C

(1,3)
qq Vtb
Λ2

g2u(u−m2
t )

t−m2
W

(2.26)
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Wt associated production:

1

96
Σ|Mgb→Wt|2 =

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g2g2s

24m2
W s(t−m2

t )
2

(
m8

t − (2s+ t)m6
t + ((s+ t)2 − 2tm2

W − 2m4
W )m4

t

−(t(s+ t)2 − 2(s2 − st+ 2t2)m2
W + 2tm4

W − 4m6
W )m2

t

−2tm2
W (s2 + t2 − 2(s+ t)m2

W + 2m4
W )
)

+
2ReCtWVtbg

2
smtmW

3
√
2Λ2s(t−m2

t )
2

(
3m6

t − (2s+ 3t+ 6m2
W )m4

t

−(s2 + 2st− 3t2 − 6m4
W )m2

t + t(s2 − 2st− 3t2 + 6(s+ t)m2
W − 6m4

W )
)

+
ReCtGV

2
tbg

2gsmtv

3
√
2Λ2(m2

t − t)
(m2

t + 2s− t) (2.27)

As before, Ci is the coefficient of operator Oi and s, t, u are the usual Mandelstam variables. We have set

Vud = 1 for simplicity. The differential cross sections are as follows:

dσud̄→tb̄

d cos θ
=

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4(s−m2

t )
2

512πs2(s−m2
W )2

(1 + cos θ)
(
s+m2

t + (s−m2
t ) cos θ

)
+ReCtWVtb

g2mtmW (s−m2
t )

2

16
√
2πΛ2s(s−m2

W )2
(1 + cos θ)

+C(1,3)
qq Vtb

g2(s−m2
t )

2

64πΛ2s2(s−m2
W )

(1 + cos θ)(s+m2
t + (s−m2

t ) cos θ) (2.28)

with θ the angle between up quark and top quark momenta in the center of mass frame;

dσub→dt

d cos θ
=

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4(s−m2

t )
2

32πs(2m2
W + (s−m2

t )(1− cos θ))2

+ReCtWVtb
g2mtmW (s−m2

t )
2(1− cos θ)
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√
2πΛ2s(2m2
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t )(1− cos θ))2

− C(1,3)
qq Vtb

g2(s−m2
t )

2

8πΛ2s(2m2
W + (s−m2

t )(1− cos θ))
(2.29)

dσd̄b→ūt

d cos θ
=

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4(s−m2

t )
2(1 + cos θ)(s+m2

t + (s−m2
t ) cos θ)

128πs2(2m2
W + (s−m2

t )(1− cos θ))2

− ReCtWVtb
g2mtmW (s−m2

t )
3 sin2 θ

8
√
2πΛ2s2(2m2

W + (s−m2
t )(1− cos θ))2

− C(1,3)
qq Vtb

g2(s−m2
t )

2(1 + cos θ)(s+m2
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t ) cos θ)

32πΛ2s2(2m2
W + (s−m2

t )(1− cos θ))
(2.30)
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Figure 2.7: The s-channel differential cross sec-
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Figure 2.8: The t-channel (ub → dt) differential
cross section at

√
s = 2mt.

with θ the angle between bottom quark and top quark momenta in the center of mass frame;

dσgb→Wt

d cos θ
=

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g2g2sλ

1/2

1536πs3m2
W (s+m2

t −m2
W − λ1/2 cos θ)2

[
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W )s3

+(3m4
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2
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4
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W )s

+5(m2
t −m2

W )3(m2
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W )− (m2
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W )λ3/2 cos3 θ

+
(
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W −m2
t )s−m4

t −m2
tm

2
W + 2m4

W
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λ cos2 θ

−
(
(14m2

W −m2
t )s

2 − 2(m4
t − 7m2

tm
2
W + 6m4

W )s+ 3(m6
t − 3m2

tm
4
W + 2m6

W )
)
λ1/2 cos θ

]
− ReCtWVtb

g2smtmWλ1/2

96
√
2πΛ2s3

(
s+m2

t −m2
W − λ1/2 cos θ

)2 [5s3 − 9(m2
t −m2

W )s2

+(19m4
t + 10m2

tm
2
W − 29m4

W )s− 15(m2
t −m2

W )3 + 3λ3/2 cos3 θ − (5s− 3m2
t + 3m2

W )λ cos2 θ

−
(
3s2 − 10(m2

t −m2
W )s− 9(m2

t −m2
W )2
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λ1/2 cos θ

]
+ReCtGV

2
tb

g2gsvmtλ
1/2
(
m2

t −m2
W + 5s− λ1/2 cos θ

)
96
√
2πΛ2s2

(
m2

t −m2
W + s− λ1/2 cos θ

) (2.31)

with θ the angle between gluon and top quark momenta in the center of mass frame, and

λ = s2 + m4
t + m4

W − 2sm2
t − 2sm2

W − 2m2
tm

2
W . The angular dependence at

√
s = 2mt (recall that the

kinematic threshold is
√
s = mt) is shown in Figures 2.7-2.10 (areas are normalized).

The total cross sections are:
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σud̄→tb̄ =

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4(s−m2

t )
2(2s+m2

t )

384πΛ2s2(s−m2
W )2

+ReCtWVtb
g2mtmW (s−m2
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2

8
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W )2
+ C(1,3)

qq Vtb
g2(s−m2

t )
2(2s+m2

t )

48πΛ2s2(s−m2
W )

(2.32)

σub→dt =

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2

)
g4(s−m2

t )
2

64πΛ2sm2
W (s−m2

t +m2
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− ReCtWVtb
g2mtmW
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W
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4
√
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W )

− C(1,3)
qq Vtb

g2(s−m2
t ) ln
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t+m2

W

m2
W

8πΛ2s
(2.33)

σd̄b→ūt =

(
V 2
tb +

2C
(3)
ϕq Vtbv

2
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)
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(s+ 2m2
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W

− ReCtWVtb
g2mtmW

(
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t ) ln
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W−m2

t

m2
W

− 2(s−m2
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4
√
2πΛ2s2

− C(1,3)
qq Vtb

g2
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W ) ln
s+m2

W−m2
t
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(2.34)
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σgb→Wt =

(
V 2
tb +

2C
(3)
ϕq Vtbv

2

Λ2
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g2g2s

384s3m2
W

(
−
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(3m2

t − 2m2
W )s+ 7(m2
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W )2) ln
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t −m2
W + λ1/2
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− ReCtWVtb

g2smtmW

24
√
2Λ2s3

((
s+ 21(m2

t −m2
W )
)
λ1/2

+2
(
s2 − 6(m2

t −m2
W )s− 6(m2

t −m2
W )2

)
ln

(
s+m2

t −m2
W + λ1/2

s+m2
t −m2

W − λ1/2

))
+ReCtGV

2
tb

g2gsvmt

24
√
2Λ2s2

(
2s ln

(
s+m2

t −m2
W + λ1/2

s+m2
t −m2

W − λ1/2

)
+ λ1/2

)
(2.35)

The operators O
(3)
ϕq and O

(1,3)
qq will be measured (or bounded) by single top production. Because they

enter with the opposite relative sign in s- and t− channel production (see Eqs. (2.28),(2.29)), it will be

valuable to measure these two processes separately.

The operator OtW also has an effect on the produced top quark spin. In the SM s− and t−channel

single top production, the top quark is always polarized in the direction of d or d̄ three-momentum in the

top rest frame [36]. When OtW is present, the top quark spin deviates from its original direction, but is

still in the production plane. For example, in the s−channel process, the top spin deviates away from the

three-momentum of the b̄, with an angle (in the top rest frame)

δθ = ReCtW
2
√
2v2

Λ2

√
s

mW

(s−m2
t ) sin θ

s+m2
t + (s−m2

t ) cos θ
(2.36)

where θ is the scattering angle in the W rest frame. Similarly, in the t−channel process bd̄ → tū, the top

spin deviates toward the three-momentum of ū, with the same angle. In the t−channel process bu→ td, the

top spin deviates toward the three-momentum of the incoming b quark, with an angle

δθ = ReCtW

√
2v2

Λ2

√
s

mW
sin θ (2.37)

In Eq. (2.16) we reported the effect of the operator OtW on the analyzing power of top decay. Let ŝ be the

unit vector in the top quark spin direction and p̂i be the unit vector in the direction of the three-momentum

of the decay product i in the top rest frame, we have

αi = 3 < ŝ · p̂i > (2.38)
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In practice, we can use the s− and t−channel single top production as a source of polarized top quark. To

measure the analyzing power, we can replace ŝ with p̂d,d̄, the unit vector in the direction of three-momentum

of d or d̄, depending on the production channel:

αi = 3 < p̂d,d̄ · p̂i > (2.39)

In single top production the top quark spin is affected by OtW , so ŝ and p̂d,d̄ are not exactly aligned. However,

the direction in which the top quark spin deviates from the three-momentum of d or d̄ is independent of the

p̂i, i.e.

< (p̂d,d̄ − ŝ) · p̂i >= 0 (2.40)

Therefore Eq. (2.39) still holds. In other words, the effect of OtW on the production vertex doesn’t affect

the measurement of the analyzing power.

2.3 Top Pair Production

The effect of higher dimension operators on top quark pair production is studied in [37, 38, 39]. In Ref. [37],

two dimension-six operators, the chromomagnetic moment operator, OtG, and the triple gluon field strength

operator, OG, are considered:

OtG = (q̄σµνλAt)ϕ̃GA
µν (2.41)

OG = fABCG
Aν
µ GBρ

ν GCµ
ρ (2.42)

It is shown that OG will generate observable cross section deviations from QCD at the LHC even for relatively

small values of its coefficient.

Here we redo the leading order calculation, and also take into account the operator OϕG:

OϕG =
1

2
(ϕ+ϕ)GA

µνG
Aµν (2.43)

which is a Higgs-gluon interaction. Its effect on the Higgs production rate and branching ratios has been

discussed in [40]. We include this operator because it contributes to top pair production through gg → h→ tt̄,

Leff =
1

2

CϕG

Λ2
vhGA

µνG
Aµν (2.44)
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which could be significant because the top quark has a large Yukawa coupling.

Top quark pair production proceeds at the tree level through the parton reactions gg → tt̄ and qq̄ → tt̄.

We first consider the gluon channel. The Feynman diagrams are shown in Figure 2.11. The operator OtG

changes the SM gtt coupling, and also generates a new ggtt interaction. OG affects the three-point gluon

vertex in QCD. OϕG generates a new diagram with an s-channel Higgs boson.

Figure 2.11: The Feynman diagrams for gg → tt̄ process. Diagram (a-c) are the SM amplitude. (d-h) are the
gtt vertex correction induced by OtG. (i) is the g

3 vertex correction induced by OG. (j) is a ggtt interaction
from OtG, and (k) is a gg → h→ tt process, induced by OϕG.
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The squared amplitude is:

1

256
|M |2 =

3g4s
4

(m2 − t)(m2 − u)

s2
− g4s

24

m2(s− 4m2)

(m2 − t)(m2 − u)
+
g4s
6

tu−m2(3t+ u)−m4

(m2 − t)2

+
g4s
6

tu−m2(t+ 3u)−m4

(m2 − u)2
− 3g4s

8

tu− 2m2t+m4

s(m2 − t)
− 3g4s

8

tu− 2m2u+m4

s(m2 − u)

+

√
2ReCtGg

3
svm

3Λ2

4s2 − 9tu− 9m2s+ 9m4

(m2 − t)(m2 − u)
+

9CGg
3
s

8Λ2

m2(t− u)2

(m2 − t)(m2 − u)

−CϕGg
2
sm

2

8Λ2

s2(s− 4m2)

(s−m2
h)(t−m2)(u−m2)

(2.45)

where m is the mass of the top quark and mh is the mass of the Higgs boson.

The differential and total cross sections are

dσ

d cos θ
=

g4sβ

1536πs(1− β2 cos2 θ)2(
7(1 + 2β2 − 2β4)− β2(5− 32β2 + 18β4) cos2 θ − (25β4 − 18β6) cos4 θ − 9β6 cos6 θ

)
+ReCtG

g3svβ
√
1− β2(7 + 9β2 cos2 θ)

96
√
2πΛ2

√
s(1− β2 cos2 θ)

+ CG
9g3sβ

3(1− β2) cos2 θ

256πΛ2(1− β2 cos2 θ)

−CϕG
g2ssβ

3(1− β2)

256πΛ2(s−m2
h)(1− β2 cos2 θ)

(2.46)

σ =
g4s

768πs

(
31β3 − 59β + (33− 18β2 + β4) ln

1 + β

1− β

)
+ReCtG

g3sv
√
1− β2

48
√
2πΛ2

√
s

(
8 ln

1 + β

1− β
− 9β

)
+CG

9g3s(1− β2)

256πΛ2

(
ln

1 + β

1− β
− 2β

)
− CϕG

g2ssβ
2(1− β2)

256πΛ2(s−m2
h)

ln
1 + β

1− β
(2.47)

Here θ is the angle between the gluon and top quark momenta in the center of mass frame; β ≡
√
1− 4m2

s is

the velocity of the top quark. Top quark pair production can be used to measure (or bound) the coefficients

of the operators OtG, OG and OϕG. The operator OtG is also probed by Wt associated production, as

discussed above, and the operator OϕG is probed by Higgs production [40].

Now we turn to consider the quark process qq̄ → tt̄. There are a large number of four-quark operators with

different chiral and flavor structures [7, 6, 37]. Here we consider all possible chirality and color structures.

In Ref. [6], only one generation is considered. When there are three generations, the quark field in these

operators can be of any generation. For example, (q̄iγµq
j)(q̄γµq) and (q̄iγµq)(q̄γ

µqj) (superscripts i, j are

used to denote the first two generations) should be considered as different operators. The effect of some of

these operators are suppressed by the color structure or by the small quark mass. For example, (q̄iγµq
j)(q̄γµq)
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Figure 2.12: The Feynman diagrams for uū → tt̄ process. (a) is the SM amplitude, (b) is the correction on
gtt coupling induced by OtG, and (c) is the four-fermion interactions. The dd̄ → tt̄ process has the same
diagrams.

doesn’t interfere with the SM, because the t and t̄ form a color singlet; an operator like (q̄t)ϵ(q̄idj) doesn’t

interfere either, because it involves a left-handed and a right-handed down quark while the SM gdd̄ coupling

doesn’t change chirality.

Using the Fierz transformation and the following SU(2) and SU(3) identities

τ Iabτ
I
cd = −δabδcd + 2δadδbc

tAijt
A
kl = −1

6
δijδkl +

1

2
δilδjk (2.48)

we find that only the following four-quark operators contribute to the uū, dd̄→ tt̄ reaction:

O
(8,1)
qq = 1

4 (q̄
iγµλ

Aqj)(q̄γµλAq) O
(8,3)
qq = 1

4 (q̄
iγµτ

IλAqj)(q̄γµτ IλAq)

O
(8)
ut = 1

4 (ū
iγµλ

Auj)(t̄γµλAt) O
(8)
dt = 1

4 (d̄
iγµλ

Adj)(t̄γµλAt)

O
(1)
qu = (q̄ui)(ūjq) O

(1)
qd = (q̄di)(d̄jq)

O
(1)
qt = (q̄it)(t̄qj)

(2.49)

We do not include the operators that have the form (q̄λAui)(ūjλAq). This operator can be turned into a

linear combination of O
(1)
qu , which is already considered, and another operator (q̄cu

i
b)(ū

j
aqd)δabδcd (a, b, c, d

denote color indices), which does not contribute because the t and t̄ form a color singlet. In addition, we

also need to consider the operator OtG, whose effect is to change the gtt coupling. The diagrams are shown

in Figure 2.12. The result is

1

36
|Mūu→t̄t|2 = g2s(M

2
1 +M2

2 ) +
32

√
2ReCtGg
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svm
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s
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2

1

36
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svm

9Λ2
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d

s
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1 + C2
d

s
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2 (2.50)
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where

C1
u = C(8,1)

qq + C(8,3)
qq + C

(8)
ut (2.51)

C2
u = C(1)

qu + C
(1)
qt (2.52)

C1
d = C(8,1)

qq − C(8,3)
qq + C

(8)
dt (2.53)

C2
d = C

(1)
qd + C

(1)
qt (2.54)

M2
1 =

4g2s
9s2

(3m4 −m2(t+ 3u) + u2) (2.55)

M2
2 =

4g2s
9s2

(3m4 −m2(3t+ u) + t2) (2.56)

The cross section is

dσūu,d̄d→t̄t

d cos θ
=

g4s
144πs

β(2− β2 sin2 θ) + ReCtG
g3svβ

√
1− β2

9
√
2πΛ2

√
s

+C1
u,d

g2s
288πΛ2

β(2 + 2β cos θ − β2 sin2 θ)

+C2
u,d

g2s
288πΛ2

β(2− 2β cos θ − β2 sin2 θ) (2.57)

where θ is the angle between up or down quark and the top quark momenta, in the center of mass frame.

The total cross section is

σūu,d̄d→t̄t =
g4s

108πs
β(3− β2) + ReCtG

√
2g3sv

9πΛ2
√
s
β
√
1− β2 + (C1

u,d + C2
u,d)

g2s
216πΛ2

β(3− β2) (2.58)

Although there are seven four-fermion operators, their effects on top-quark pair production are summarized

by only four coefficients C1,2
u,d. Thus top-quark pair production can be used to bound four linear combinations

of the four-quark operators as well as the operator OtG.

If C1
u,d and C2

u,d are distinct, they will generate a forward-backward asymmetry:

At
FB =

N(cos θ > 0)−N(cos θ < 0)

N(cos θ > 0) +N(cos θ < 0)

= (C1
u,d − C2

u,d)
3sβ

4g2sΛ
2(3− β2)

(2.59)

The recent measurements of the top quark forward-backward asymmetry from the CDF and the D0 exper-

iments can be found in [41, 42, 43, 44, 45]. The SM prediction is dominated by O(α3
S) QCD interference

effects and is 5% in the lab frame [46, 47, 48, 49]. There is a discrepancy of about 2σ between theory and
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experiment. It is interesting to ask whether this discrepancy can be accommodated within the effective field

theory framework. The challenge is to avoid too large a modification of the tt̄ production cross section,

since the current measurement is in good agreement with the SM prediction [50]. In the effective field

theory approach, this can be done if C1
u,d and C2

u,d have similar non-zero values but with opposite sign,

i.e. C1
u,d ≈ −C2

u,d.

2.4 CP Violation

Violations of the CP symmetry are of great interest in particle physics especially since its origin is still

unclear. Better understanding of this rare phenomenon can lead to new physics which may explain both the

origin of mass and the preponderance of matter over anti-matter in the present universe.

The SM predicts that CP-violating effects in top physics are very small. This is primarily due to the

fact that its large mass renders the Glashow-Iliopoulos-Maiani (GIM) [51] cancellation particularly effective

[52, 53]. Therefore, the study of CP-violation effects in top physics is important because any observation of

such effects would be a clear evidence of physics beyond the SM.

Effective field theory is a complete and model-independent approach to physics beyond the SM. Its CP-

odd operators can be used to describe the CP-violation effects in top quark physics. We find that there are

four CP-odd operators that can have significant contribution to top quark production and decay processes,

as listed in Table 2. In this section we will consider the effects of these four operators.

2.4.1 Polarized Top Quark Decay

In top quark decay, the momenta of the four particles, t,b,e+ and ν are not independent because of the

energy-momentum conservation. However, if we define the top quark spin vector (in the top rest frame):

s = (0, ŝ) (2.60)

where the unit vector ŝ is the direction of the top quark spin, then a term proportional to ϵµνρσp
µ
t p

ν
bp

ρ
e+s

σ

is TN -odd. Thus it becomes possible to observe CP violation effects.

In the top quark decay process, there is only one operator that contributes at leading order:

OtW = (q̄σµντ It)ϕ̃W I
µν (2.61)

This operator is CP-odd if its coefficient is imaginary.
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To investigate the effect of OtW , we choose the coordinate axes in the top rest frame such that the

positron momentum is in the z-direction, and the bottom momentum is in the xz plane, with a positive x

component. The top quark spin is ŝ = (sin θ cosϕ, sin θ sinϕ, cos θ). The decay rate is given by:

dΓ

d cos θdϕ
=
V 2
tbg

4(m6
t − 3m4

Wm2
t + 2m6

W )

12288π3m3
tmWΓW

(1 + cos θ)− ImCtWVtbg
2mW (m2

t −m2
W )3

2048
√
2π2Λ2ΓWm3

t

sin θ sinϕ (2.62)

The CP-odd contribution is proportional to sinϕ, so it doesn’t affect the total decay rate and the analyzing

power αi defined in Eq. (2.15).

We now define the following triple-product and evaluate it in the top rest frame:

T = − 1

mt
ϵµνρσp

µ
t p

ν
bp

ρ
e+s

σ = (pb × pe+) · ŝ (2.63)

which corresponds to the projection of the top spin onto the direction perpendicular to the plane formed by

the bottom quark and the positron. This leads to an asymmetry:

At→Wb =
N(T > 0)−N(T < 0)

N(T > 0) +N(T < 0)

= ImCtW
3πv2(m2

t −m2
W )

4
√
2Λ2Vtb(m2

t + 2m2
W )

(2.64)

Such an asymmetry is a sign of CP violation. To observe such an asymmetry requires a source of polarized

top quarks. This is addressed in the next section.

2.4.2 Spin Asymmetry in Single Top Production

In single top production, we can construct CP-odd observables in a similar way. In the s- and t-channel

processes, OtW (with imaginary coefficient) is the only CP-odd operator that contributes. Consider the

s-channel process ud̄→ tb̄. We can define the following triple-product in the top rest frame

T = − 1

mt
ϵµνρσp

µ
t p

ν
up

ρ

d̄
sσ = (pu × pd̄) · ŝ (2.65)

In the SM, the top spin in its rest frame is in the direction of the d̄ three-momentum [36], therefore T = 0.

When the CP-odd operator is added, the direction of the top quark spin can be computed. It deviates from

the production plane, with an angle (in the top rest frame)

θ = ImCtW
2
√
2v2

√
s(s−m2

t ) sin θW
Λ2VtbmW (s+m2

t + (s−m2
t ) cos θW )

(2.66)
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where θW is the angle between the momenta of the up quark and the top quark in the W rest frame. The

value of T is then given by

T = −
√
2ImCtW v2s(s−m2

t )
2 sin2 θW

2Λ2VtbmWmt[s+m2
t + (s−m2

t ) cos θW ]
(2.67)

In practice, assume the top spin ŝ is measured in the direction perpendicular to the production plane,

i.e. s⊥ takes either 1 or −1, then this will lead to an asymmetry:

Aud̄→tb̄ =
N(s⊥ = 1)−N(s⊥ = −1)

N(s⊥ = 1) +N(s⊥ = −1)

= ImCtW
3πv2

√
s(s−m2

t )

2
√
2Λ2VtbmW (2s+m2

t )
(2.68)

Similarly, for the t-channel process bu→ td, we find

T = (pb × pu) · ŝ =
ImCtW v2s(s−m2

t ) sin
2 θW

2
√
2Λ2VtbmWmt

(2.69)

and for the process bd̄→ tū,

T = (pb × pd̄) · ŝ =
√
2ImCtW v2s(s−m2

t )
2 sin2 θW

2Λ2VtbmWmt(s+m2
t + (s−m2

t ) cos θW )
(2.70)

If the top spin ŝ is measured in the direction perpendicular to the production plane, the corresponding

asymmetries are

Abu→td =
N(s⊥ = 1)−N(s⊥ = −1)

N(s⊥ = 1) +N(s⊥ = −1)

= −ImCtW

√
2πv2

√
s((s−m2

t + 2m2
W )
√
s−m2

t +m2
W − 2mW (s−m2

t +m2
W ))

Λ2Vtb(s−m2
t )

2
(2.71)

Abd̄→tū =
N(s⊥ = 1)−N(s⊥ = −1)

N(s⊥ = 1) +N(s⊥ = −1)

= −ImCtW

√
2πv2

√
s((s−m2

t + 4m2
W )
√
s−m2

t +mW 2 − (3s− 3m2
t + 4m2

W )mW )

Λ2Vtb((s−m2
t )(s+ 2m2

W )−m2
W (2s+ 2m2

W −m2
t ) ln

s−m2
t+m2

W

m2
W

)
(2.72)

In Wt associated production channel gb→Wt, the chromo-electric dipole moment operator

OtG = (q̄σµνλAt)ϕ̃GA
µν (2.73)
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will also contribute. We find

Agb→Wt =
N(s⊥ = 1)−N(s⊥ = −1)

N(s⊥ = 1) +N(s⊥ = −1)

=ImCtW
v2
√
2smWλ

2Λ2Vtb

×
(√

λ((2m2
W − 3m2

t )s− 7(m2
t + 2m2

W )(m2
t −m2

W ))− 2(m2
t + 2m2

W )(λ+ 4sm2
t + (m2

t −m2
W )2) log y

)−1

−ImCtG
2
√
2vm2

t s
3/2

gsΛ2(s+m2
t −m2

W +
√
λ)3y2

×
{[

(7m2
t − 8m2

W )λ+ 4sm2
t (11m

2
t − 15m2

W )− 4m2
t (m

2
t −m2

W )2
] (√

λ+ s+m2
t −m2

W

)
−8y

[
2(m2

t − 2m2
W )(m2

t −m2
W ) + s(3m2

t − 4m2
W )
] [
λ+ (s+m2

t −m2
W )

√
λ+ 2sm2

t

]}
×
(√

λ
(
s(2m2

W − 3m2
t )− 7(m2

t + 2m2
W )(m2

t −m2
W )
)
− 2(m2

t + 2m2
W )(λ+ 4sm2

t + (m2
t −m2

W )2) log y
)−1

(2.74)

where

λ = s2 +m4
t +m4

W − 2sm2
t − 2sm2

W − 2m2
tm

2
W (2.75)

and

y =

√
s+m2

t −m2
W −

√
λ

s+m2
t −m2

W +
√
λ

(2.76)

In practice there is no way to measure the top spin directly, so we need to use the momentum of the

decay products as the spin analyzer. The positron has a spin analyzing power αe+ = 1. It can be shown

that, if the top production process is followed by a semileptonic decay, one can replace the top spin in the

triple-product T by the positron three-momentum, and the corresponding asymmetry will be decreased by

a factor of 1/2. For example, in the s-channel process, consider

T = (pu × pd̄) · pe+ (2.77)

We find

Aud̄→tb̄ =
N(T > 0)−N(T < 0)

N(T > 0) +N(T < 0)

= −ImCtW
3πv2

√
s(s−m2

t )

4
√
2Λ2VtbmW (2s+m2

t )
(2.78)

which is exactly half of Eq. (2.68), as expected. Similarly, for t-channel and gb → tW channel, the results

in Eqs. (2.71), (2.72) and (2.74) should also be reduced by a factor of 1/2. Note that although the CP-odd
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operator has effects on both production and decay processes, this asymmetry only reflects its effect on the

production, because the decay process is only used as the spin analyzer, and the analyzing power αe+ = 1

is not affected by the CP-odd effect.

We can also reverse the procedure and construct a CP-odd observable that only reflects the CP-odd

effect in the decay process. In single top production, the top spin in its rest frame is always in the direction

of the d or d̄ quark [36]. Although this gets modified by the operator OtW in the production vertex as is

shown in Eqs. (2.36), (2.37), the direction in which the top spin deviates is independent of the decay process,

and thus the leading order effect gets averaged out as one considers the asymmetries. Therefore the d or d̄

three-momentum can be used to replace the top spin in Eq. (2.63):

T = (pb × pe+) · pd,d̄ (2.79)

and the asymmetry becomes

At→Wb =
N(T > 0)−N(T < 0)

N(T > 0) +N(T < 0)

= ImCtW
3πv2(m2

t −m2
W )

4
√
2Λ2Vtb(m2

t + 2m2
W )

(2.80)

which agrees with Eq. (2.64).

2.4.3 CP-Violation in Top Pair Production

The CP-violation effects in top pair production and decay have been considered in the literature before.

Refs. [54, 55] have considered the CP-violation effect in the multi-Higgs doublet extensions of the SM.

The effect of the top quark “chromoelectric” dipole moment, which corresponds the operator OtG with

an imaginary coefficient, can be found in Refs. [56, 57, 58], where [58] has also considered the other two

operators, OG̃ and OtW . An analysis of the lepton transverse energy asymmetry at the Tevatron can be

found in Ref. [59]. A recent numerical study of the ATLAS sensitivity to the complex phase of the Wtb

anomalous couplings can be found in Ref. [23]. The CP-violation effects of the top quark at linear colliders

and photon colliders are discussed in Refs. [14, 60, 9].

In the top pair production processes, there are three operators that will contribute to CP violating
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observables:

OtG = (q̄σµνλAt)ϕ̃GA
µν

OG̃ = fABCG̃
Aν
µ GBρ

ν GCµ
ρ

OϕG̃ =
1

2
(ϕ+ϕ)G̃A

µνG
Aµν (2.81)

where G̃µν = ϵµνρσG
ρσ. The first one contributes to both gg → tt̄ and qq̄ → tt̄ channels, while the last two

contribute only to the gg → tt̄ channel.

A natural choice of the CP-odd observable is the triple-product considered in single top production. One

could define similar quantities such as

T = (pg × pg) · st (2.82)

However this quantity doesn’t result in any asymmetry, because the three CP-odd operators are P-odd but

C-even. For both gg → tt̄ and qq̄ → tt̄ channels, under PTN symmetry the initial and final state do not

change, except that the spins of t and t̄ are flipped. This means that T defined in Eq. (2.82) is PTN -odd

and therefore the C-even operators cannot result in non-zero expectation values for T . We will need the

spin information of both t and t̄ to observe CP-violation effect.

Here we define our CP-odd observables in a different way than the usual CP-odd triple product in most

of the literature. In the top quark semileptonic decay, the amplitude contains a factor which is the inner

product of the top spin and the lepton spin [56], and therefore we can use the spin projection operator

to project the top spin on to the direction of the lepton three-momentum and ignore the other two decay

products, in order to reduce the problem to a 2 to 2 scattering problem.

Consider the quark channel process qq̄ → tt̄ followed by the semileptonic decays of both t and t̄ quarks.

We choose the coordinate axes such that in the CM frame, the top quark momentum is in the z-direction,

the q and q̄ momenta are in xz plane, and the angle between the q and t momenta is θ. Let p̂e+ =

(sinα1 cosβ1, sinα1 sinβ1, cosα1) be the unit vector of the positron three-momentum in the top rest frame,

p̂e = (sinα2 cosβ2, sinα2 sinβ2, cosα2) be the unit vector of the electron three-momentum in the anti-top

rest frame, and v = (cos θ, 0,
√
1− β2 sin θ). Define the following triple-product:

T = (p̂e+ × p̂e) · v (2.83)
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we find that the the contribution from OtG can be written as:

dσ

d cos θd cosα1dβ1d cosα2dβ2
= −ImCtG

g3svβ
2 sin θ

23328
√
2π3Λ2

√
s
T (2.84)

Clearly T leads to an asymmetry:

Aqq̄→tt̄ =
N(T > 0)−N(T < 0)

N(T > 0) +N(T < 0)

= −ImCtG
π
√
sv
√
1− β2

2
√
2gsΛ2β(3− β2)

(
K

(
β2

β2 − 1

)
− (1− 2β2)E

(
β2

β2 − 1

))
(2.85)

where

K(k2) =

∫ π/2

0

dθ√
1− k2 sin2 θ

(2.86)

and

E(k2) =

∫ π/2

0

√
1− k2 sin2 θdθ (2.87)

are the complete elliptic integral of the first and the second kind. The SM has no contribution to this

asymmetry because T is parity-odd while the strong interaction is parity-even.

Now consider the gluon channel gg → tt̄. We use the same coordinate system, i.e. top quark momentum

is in the z-direction and gluon momenta are in the xz plane. p̂e+ (p̂e) is the unit vector in the direction

of the momentum of the positron (electron) in the top (anti-top) rest frame. Define two triple-products Tz

and Tx:

Tz = (p̂e+ × p̂e) · ẑ (2.88)

Tx = (p̂e+ × p̂e) · x̂ (2.89)

The cross-section due to the CP-odd operators is

dσ

d cos θd cosα1dβ1d cosα2dβ2
= ImCtG(f

z
tGTz + fxtGTx) + CG̃(f

z
G̃
Tz + fx

G̃
Tx) + CϕG̃f

z
ϕG̃
Tz (2.90)
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where

fztG = − g3svβ
2

248832
√
2π3Λ2

√
s(1− β2 cos2 θ)2

√
1− β2(

9β4 cos6 θ + (7β2 − 18β4) cos4 θ + (18β4 − 25β2 + 16) cos2 θ + 7(2β2 − 3)
)

(2.91)

fxtG =
g3svβ

2

248832
√
2π3Λ2

√
s(1− β2 cos2 θ)2(

9β4 cos4 θ + (7β2 − 9β4) cos2 θ − (23β2 − 16)
)
sin θ cos θ (2.92)

fz
G̃

=
3g3sβ

2(1− β2) cos2 θ

165888π3Λ2(1− β2 cos2 θ)
(2.93)

fx
G̃

= − 3g3sβ
2
√
1− β2 sin θ cos θ

165888π3Λ2(1− β2 cos2 θ)
(2.94)

fz
ϕG̃

= − g2ssβ
2(1− β2)

165888π3Λ2(s−m2
h)(1− β2 cos2 θ)

(2.95)

In general, any quantity that has the form T (â) = (p̂e+ × p̂e) · â may lead to an asymmetry. Using the

following property of T (â): ∫
dΩe+dΩeT (â)sign

(
T (b̂)

)
= 2π3

(
â · b̂

)
(2.96)

we find the asymmetry of T (â) is

dσ(T (â) > 0)

d cos θ
− dσ(T (â) < 0)

d cos θ

= 2π3
[
ImCtG(f

z
tGaz + fxtGax) + CG̃(f

z
G̃
az + fx

G̃
ax) + CϕG̃f

z
ϕG̃
az

]
(2.97)

2.5 Conclusions

We have considered the effects of dimension-six operators in top quark production and decay processes

in hadron colliders. The analysis is linear in the coefficients of these operators, therefore the deviation

from the SM is the interference terms between the SM and the new operators. In general, integrating out

heavy particles leads not to just one but to several operators whose coefficients are related. Therefore it is

necessary to consider all dimension-six operators simultaneously. Fortunately, although the total number

of these operators is large, we found that there are only 15 operators that can have significant interference

terms. In addition, for each decay or production process, only a few of them will contribute. This is one

of the advantages of the effective field theory approach: although we don’t have any knowledge of the new

physics beyond the SM, by making use of power counting and symmetries, the number of parameters required

to describe the new physics can be largely reduced.

We have obtained the deviation from the SM caused by these operators. This allows us to constrain
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the new physics in a systematic way. For example, we can measure (or put bounds on) the operator OtW

by measuring the W boson helicity fraction FL,R,0 and the analyzing power αb,ν , and then use the s- and

t-channel single top production to put bounds on O
(3)
ϕq and O

(1,3)
qq . The operator OtG can be constrained from

the Wt associated production and the gluon channel tt̄ production, while the latter process also constrains

OG and OϕG. Finally, the quark channel tt̄ production can be used to put bounds on the four linear

combinations of the four-quark operators.

The CP-violation effects in top quark physics are of particular interest. We have calculated the spin

asymmetries caused by the 4 CP-odd operators. The observation of these asymmetries can be evidence

of physics beyond the SM. In the single top production, these are the spin asymmetries in the direction

perpendicular to the production plane. One could use the top decay process as a spin analyzer to study

the asymmetry in the top production process, or vice versa. In tt̄ production, we showed that both the top

quark spin and anti-top quark spin are required to construct CP-odd observables.
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Chapter 3

PEWM vs W -Helicity Measurements1

In Chapter 2 we have considered the effects of dimension-six operators on top-quark production and decay.

The top quark also plays an important role as a virtual particle in precision electroweak physics. Indeed, the

correct range for the top-quark mass was anticipated by precision electroweak studies. Now that the top-

quark mass is accurately known from direct measurements, we can ask what the PEWM have to say about

the presence of dimension-six operators in loop diagrams involving the top quark. As we have explained

in Chapter 1, the effective field theory is a renormalizable theory in the modern sense, and is able to

calculate radiative corrections involving effective interactions. Therefore this is a well-defined question with

an unambiguous answer.

In this Chapter, we will focus on just one dimension-six operator that affects the top quark,

OtW = (q̄σµντ It)ϕ̃W I
µν , (3.1)

We chose this operator because as we have shown in Eq. (2.14), it is the only one which contributes to the

leading correction to the branching ratio of the top quark to W bosons of zero helicity.2 Thus this operator

can already be bounded from present data.

The remainder of this Chapter is organized as follows. In Section 3.1, we extract bounds on this operator

from W -helicity fraction measurements. In Section 3.2, we calculate the contribution of this operator to

precision electroweak data via a top-quark loop and compare the resulting bound on this operator with

the bound obtained from W -helicity measurements. In Section 3.3, we perform a more general analysis,

assuming that new physics is oblique. The conclusion is present in Section 3.4.

1The work presented in this Chapter is published in Ref. [61].
2Two other operators contribute to the leading correction to the branching ratio of the top quark to W bosons of positive

helicity [22, 62].
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3.1 Constraints from W-helicity Fraction

When the Higgs field acquires a vacuum-expectation value, the dimension-six operator OtW yields the

effective interactions [10]

Leff = LSM +
CtW

Λ2

[
(v(b̄σµν(1 + γ5)t)∂µW

−
ν + h.c.)

+
√
2cW v(t̄σµνt)∂µZν +

√
2sW v(t̄σµνt)∂µAν −

√
2igv(t̄σµνt)W+

µ W
−
ν + · · ·

]
(3.2)

where CtW is a dimensionless coefficient, v ≈ 246 GeV is the Higgs vacuum expectation value, and sW , cW

are the sine and cosine of the weak mixing angle. The first term in the effective interactions modifies the

top-quark branching ratios to zero-helicity, negative-helicity, and positive-helicity W bosons (see Fig. 3.1),

as is given in Eq. (2.14)

f0 =
m2

t

m2
t + 2m2

W

− 4
√
2CtW v2

Λ2

mtmW (m2
t −m2

W )

(m2
t + 2m2

W )2
(3.3)

f− =
2m2

W

m2
t + 2m2

W

+
4
√
2CtW v2

Λ2

mtmW (m2
t −m2

W )

(m2
t + 2m2

W )2
(3.4)

f+ = 0 (3.5)

where we have neglected the bottom-quark mass throughout, which is an excellent approximation for the

operator OtW (but not for the other two operators mentioned in a previous footnote [22, 62]).

Figure 3.1: The dimension-six operator OtW contributes to the top-quark decay process through a correction
to the Wtb vertex.

We compare with recent data from the CDF [63] and D0 [64] collaborations, which report a measurement

of f0 (with the constraint f+ = 0 imposed):

f0 = 0.62± 0.11 (stat)± 0.06 (syst) (CDF) , (3.6)

f0 = 0.735± 0.051 (stat)± 0.051 (syst) (D0) . (3.7)
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These measurements are consistent with the SM prediction, at NNLO in QCD [65],

f0 = 0.687(5) (3.8)

where the uncertainty is primarily from the uncertainty in the top-quark mass. Because we are using an

effective-field-theory approach, we can consistently include both QCD radiative corrections and the correction

due to the dimension-six operator. Comparing with data yields the constraints

CtW

Λ2
= 1.10± 2.06 TeV−2 (CDF) , (3.9)

CtW

Λ2
= −0.79± 1.19 TeV−2 (D0) . (3.10)

The NLO QCD correction to the second term in Eq. (3.3) is also known [66]. It increases the value of

CtW /Λ2 by about 1%, much less than the uncertainty in this quantity.

3.2 Constraints from PEWM

We now turn to the effect of OtW on precision electroweak measurements via a top-quark loop, as shown

in Fig. 3.2.3 Since this loop only affects the electroweak-gauge-boson self energies, we may be able to use

the well-known S, T, U formalism to characterize it [67, 68, 69]. The idea is to Taylor-expand the four

self-energies ΠWW , ΠZZ , Πγγ and ΠγZ ( which only include the new physics contributions), to the leading

order of q2. Requiring the photon to be massless, Πγγ and ΠγZ must be zero at q2 = 0, so there will be

six non-zero coefficients. Three of them are absorbed in the definition of g, g′ and v. This leaves three

independent parameters.

Following Ref. [69], we define these oblique parameters in terms of self energies and derivatives of self

energies at q2 = 0,

Ŝ = − cW
sW

Π′
30(0) = c2WΠ′

ZZ(0)−
cW
sW

(c2W − s2W )Π′
γZ(0)− c2WΠ′

γγ(0) (3.11)

T̂ = −Π33(0)−Π11(0)

m2
W

=
1

m2
W

[
ΠWW (0)− c2WΠZZ(0)

]
(3.12)

Û = Π′
33(0)−Π′

11(0) = −Π′
WW (0) + c2WΠ′

ZZ(0) + 2cW sWΠ′
γZ(0) + s2WΠ′

γγ(0) . (3.13)

The contribution of the operator OtW to the oblique parameters, via Fig. 3.2, is calculated in dimensional

3There is also a diagram contributing to the W -boson self energy, with a top-quark loop, constructed from the contact
interaction given by the last term in Eq. (3.2). Since this interaction is antisymmetric in µ, ν, this diagram does not contribute
to the self energy.
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regularization to be

Ŝ = Nc
gCtW

4π2

√
2vmt

4Λ2

5

3

(
1

ϵ
− γ + ln 4π − ln

m2
t

µ2

)
(3.14)

T̂ = 0 (3.15)

Û = Nc
gCtW

4π2

√
2vmt

4Λ2
(3.16)

where Nc = 3 is the number of colors and µ is the ’t Hooft mass.

Figure 3.2: The dimension-six operator OtW contributes to the electroweak-gauge-boson self energies via
loop diagrams.

The contribution of OtW to the Ŝ parameter is ultraviolet divergent. However, there is another dimension-

six operator,

OWB = (ϕ†τ Iϕ)W I
µνB

µν , (3.17)

(Bµν is the U(1)Y field-strength tensor) that contributes to the Ŝ parameter at tree level, as shown in

Fig. 3.3. This operator must be included for consistency, since it also contributes to the Ŝ parameter at

order 1/Λ2. We find

Ŝ =
C0

WBv
2

Λ2

cW
sW

(3.18)

where C0
WB is the bare coefficient of the operator. This coefficient is renormalized by the one-loop contri-

bution of the operator OtW in Eq. (3.14). In the MS scheme, the total contribution to the Ŝ parameter

is

Ŝ =
CWB(µ)v

2

Λ2

cW
sW

−Nc
gCtW

4π2

√
2vmt

4Λ2

5

3
ln
m2

t

µ2
(3.19)

which is finite and unambiguous. This is an example of the renormalizability of an effective field theory in

the modern sense. Although an effective field theory is not renormalizable in the old-fashioned sense, it is

renormalizable at any order in 1/Λ, provided that all the pertinent operators are included [3].

Figure 3.3: The operator OWB contributes to the electroweak-gauge-boson self energies at tree level.
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Although the result for the Ŝ parameter is finite and unambiguous, it cannot be used to constrain the

coefficient CtW , because of the tree-level contribution from the operator OWB . A measurement of the Ŝ

parameter constrains only the linear combination of CWB and CtW contained in Eq. (3.19). For the choice

µ = mt, a measurement of the Ŝ parameter constrains only CWB(mt).

There is no contribution to the T̂ parameter from the operator OtW [see Eq. (3.15)]. Even if there were a

contribution, there is also a tree-level contribution from the operator O
(3)
ϕ = (ϕ†Dµϕ)[(Dµϕ)

†ϕ] that would

mask the one-loop contribution from OtW . A top-quark model that gives a nonvanishing contribution to the

T̂ parameter is discussed in Ref. [70].

There is no tree-level contribution to the Û parameter, defined by Eq. (3.13), at order 1/Λ2, so the

one-loop contribution from the operator OtW , Eq. (3.16), is the sole contribution at this order. The one-loop

result is finite, as guaranteed by the renormalizability of the effective field theory in the modern sense.

The value of the Û parameter may be obtained from Ref. [71]. In Ref. [71], the U parameter is defined

as

αU =4s2W

[
Π11(m

2
W )−Π11(0)

m2
W

− Π33(m
2
Z)−Π33(0)

m2
Z

]
=4s2W

[
ΠWW (m2

W )−ΠWW (0)

m2
W

− c2W (ΠZZ(m
2
Z)−ΠZZ(0)) + 2sW cWΠγZ(m

2
Z) + s2WΠγγ(m

2
Z)

m2
Z

]
(3.20)

(α is the fine structure constant) which apparently differs from the definition of Û in Eq. (3.13). However,

Ref. [71] tacitly assumes that the gauge boson self energies are linear in q2, in which case the two definitions

of U are equivalent up to normalization: Û = −αU/4s2W . Nevertheless, we must also check whether our

calculation of the contribution to the self-energy function from OtW is approximately linear in q2. Since

the constraint on the U parameter comes dominantly from the measurement of the W -boson mass [71], it

suffices to show that the linear approximation is valid in predicting the value of W -boson mass.

In the Ŝ, T̂ , Û formalism, the W -boson mass can be expressed as [68]

m2
W = m2

W (SM)

(
1− 2s2W

c2W − s2W
Ŝ +

c2W
c2W − s2W

T̂ − Û

)
= m2

W (SM) +
c2W

c2W − s2W
ΠWW (0) +m2

WΠ′
WW (0)

− c4W
c2W − s2W

[
ΠZZ(0) +m2

ZΠ
′
ZZ(0)

]
+

s2W c2W
c2W − s2W

m2
ZΠ

′
γγ(0),

(3.21)
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where the definitions of Ŝ, T̂ , Û in Eqs. (3.11-3.13) are used, and mW (SM) is the value of the W -boson mass

calculated as accurately as possible in the SM.

The exact formula for mW , without assuming a linear dependence of the self energies on q2, is

m2
W = m2

W (SM) + ΠWW (m2
W ) +

s2W
c2W − s2W

ΠWW (0)− c4W
c2W − s2W

ΠZZ(m
2
Z) +

s2W c2W
c2W − s2W

m2
ZΠ

′
γγ(0) . (3.22)

Comparing Eqs. (3.21) and (3.22), we find that the error introduced by the linear approximation is

δm2
W = −

[
ΠWW (m2

W )−ΠWW (0)−m2
WΠ′

WW (0)
]
+

c4W
c2W − s2W

[
ΠZZ(m

2
Z)−ΠZZ(0)−m2

ZΠ
′
ZZ(0)

]
.

(3.23)

For the operator OtW , we find

δm2
W = −Nc

gCtW

4π2

√
2vmt

Λ2
m2

W

{
3− 8s2W

3(1− 2s2W )
c2W

(
1−

√
4m2

t −m2
Z

mZ
arctan

mZ√
4m2

t −m2
Z

)

+
1

2

[
m2

t

m2
W

+

(
m2

t

m2
W

− 1

)2

ln

(
1− m2

W

m2
t

)]
− 3

4

}

= 0.47 GeV2CtW

Λ2
TeV2 . (3.24)

Using the world-average W -boson mass, mW = 80.399± 0.023 GeV, the uncertainty in m2
W is δm2

W ≈ 4

GeV2. As we will see shortly, the value of CtW /Λ2 extracted from precision electroweak data is of order 1

TeV−2, so the error introduced by the linear approximation, Eq. (3.24), is an order of magnitude less than

the experimental uncertainty in m2
W . Thus the linear approximation is excellent, and we may use the U

parameter to bound CtW /Λ2. The linear approximation is valid because the expansion parameter for the

contribution of the operator OtW to the self energies (Fig. 3.2) is q2/m2
t , and this parameter is sufficiently

small for the values q2 = m2
W ,m2

Z needed in Eq. (3.23).

The value of the U parameter is [71]

U = 0.06± 0.10 (3.25)

for mt = 173.0 GeV and mh = 117 GeV, although there is very little dependence on the Higgs mass. This

corresponds to

Û = (−5.0± 8.4)× 10−4 (3.26)

Using Eq. (3.16), we find the constraint

CtW

Λ2
= −0.7± 1.1 TeV−2 (3.27)
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which is slightly stronger than the constraint from the measurement of top-quark decay, Eqs. (3.9) and

(3.10).

3.3 A More General Analysis with All Oblique Parameters

Included

Thus far we have assumed that OtW , OWB , and O
(3)
ϕ are the only nonvanishing dimension-six operators.

We can relax this assumption by including, along with OtW , all dimension-six operators that contribute to

the gauge-boson self energies at tree level, which includes OWB and O
(3)
ϕ . These are [72]

OWB = (ϕ†τ Iϕ)W I
µνB

µν , O
(3)
ϕ = (ϕ†Dµϕ)[(Dµϕ)

†ϕ] , (3.28)

ODB = 1
2 (∂ρBµν)(∂

ρBµν) , ODW =
1

2
(DρW

I
µν)(D

ρW Iµν) . (3.29)

Such operators originate whenever heavy fields directly couple only to the SM gauge fields and the Higgs

doublet. Such operators are sometimes referred to as “universal.”

Once these operators are included, the self energies are no longer approximately linear functions of

q2, since ODB and ODW generate terms proportional to q4. Therefore we need four additional oblique

parameters, which correspond to the second order derivatives of the four self energies with respect to q2.

Along with Ŝ, T̂ , Û , we will use the four additional oblique parameters defined in Ref. [69]:

V =− m2
W

2
(Π′′

33(0)−Π′′
11(0)) =

m2
W

2

[
Π′′

WW (0)− c2WΠ′′
ZZ(0)− 2cW sWΠ′′

γZ(0)− s2WΠ′′
γγ(0)

]
(3.30)

W =− m2
W

2
Π′′

33(0) = −m
2
W

2

[
c2WΠ′′

ZZ(0) + 2cW sWΠ′′
γZ(0) + s2WΠ′′

γγ(0)
]

(3.31)

X =− m2
W

2
Π′′

30(0) =
m2

W

2

[
cW sWΠ′′

ZZ(0)− (c2W − s2W )Π′′
γZ(0)− cW sWΠ′′

γγ(0)
]

(3.32)

Y =− m2
W

2
Π′′

00(0) = −m
2
W

2

[
s2WΠ′′

ZZ(0)− 2cW sWΠ′′
γZ(0) + c2WΠ′′

γγ(0)
]

(3.33)
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At tree level, four of the seven oblique parameters receive a contribution from a dimension-six operator:

Ŝ =CWB
cW
sW

v2

Λ2
, (3.34)

T̂ =− C
(3)
ϕ

v2

2Λ2
, (3.35)

W =− 2CDW
m2

W

Λ2
, (3.36)

Y =− 2CDB
m2

W

Λ2
. (3.37)

The other three oblique parameters, Û , V , and X, are zero at tree level. Thus the contribution to these

parameters from OtW at one loop (Fig, 3.2) must be finite, as guaranteed by the renormalizability of the

effective field theory in the modern sense. We find

Û =Nc
gCtW

4π2

√
2vmt

4Λ2
, (3.38)

V =−Nc
gCtW

4π2

√
2vmt

Λ2

m2
W

12m2
t

, (3.39)

X =Nc
gCtW

4π2

√
2vmt

Λ2

5m2
Z

72m2
t

sW cW . (3.40)

where the result for Û was already given in Eq. (3.16). The one-loop contribution to the parameter Y

vanishes, and the one-loop contribution to the W parameter is −V [Eq. (3.39)].

In order to obtain constraints on Û , V and X, we did a global fit using most major precision electroweak

measurements. These include the Z-pole data, the W -boson mass and width, DIS and atomic parity vio-

lation, and fermion pair production at LEP 2. The data and corresponding SM predictions can be found

in [71, 73, 74, 75]. The corrections to these observables from the seven oblique parameters can be derived

from the “star” formalism described in Ref. [68]. We will present the details of this formalism in Chapter 3.

We calculated the total χ2 as a function of the oblique parameters. The central value for the fit is given by

minimizing χ2, and the one-sigma bound is given by χ2 − χ2
min = 1. We let Ŝ, T̂ , W and Y freely float and

put constraints on the Û , V and X parameters. We find three statistically independent combinations:

0.46Û − 0.46V + 0.76X = −0.0013± 0.0007, (3.41)

0.54Û − 0.54V − 0.65X = 0.0000± 0.0017, (3.42)

0.71Û + 0.71V = −0.009± 0.030. (3.43)

The most stringent constrain, Eq. (3.41), corresponds to Û −V + 2sW cW
c2W−s2W

X, which appears in the theoretical
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value of the W -boson mass:

m2
W =m2

W (SM)

[
1− 1

c2W − s2W

(
2s2W Ŝ − c2W T̂ − s2WW − s2WY

)
−
(
Û − V +

2sW cW
c2W − s2W

X

)]
. (3.44)

Combining Eqs. (3.38-3.41) yields the constraint

CtW

Λ2
= −3.4± 2.0 TeV−2. (3.45)

Including Eqs. (3.42) and (3.43) gives a slightly better constraint,

CtW

Λ2
= −2.8± 1.8 TeV−2. (3.46)

This constraint is weaker than the one given in Eq. (3.27), but it is still comparable in precision to the

constraints from direct measurements, Eqs. (3.9) and (3.10). It applies in more general situations than

Eq. (3.27), as we only assume that the new physics is oblique (aside from OtW ). If this assumption were not

valid, and additional operators were present at low energies, our analysis could be extended to include them.

The central value of CtW in Eq. (3.46) is nonzero at 1.5σ, which indicates that the precision electroweak

data have a slight preference for the presence of physics beyond the standard model.

Constraints on the operator OtW may also be gleaned from B physics. This operator affects the branching

ratio for B̄ → Xsγ, which is a loop-induced process. It was found in Ref. [76] that the contribution from OtW

is ultraviolet divergent. Thus there must be a tree-level contribution from another dimension-six operator,

which masks the contribution from OtW . The operator OtW also affects B − B̄ mixing, and it was found

in Ref. [77] that the contribution is ultraviolet finite, despite the fact that there are other dimension-six

operators that contribute to this process at tree level. Focusing only on OtW , the constraint

CtW

Λ2
= −0.06± 1.57 TeV−2. (3.47)

was obtained, which is comparable with the bounds from precision electroweak data [Eq. (3.27)] and top-

quark decay [Eqs. (3.9) and (3.10)].

3.4 Conclusions

We found that the indirect measurement of the coefficient of the operator OtW from precision electroweak

data is comparable in precision to the direct measurement from the branching ratio of top quarks to W
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bosons of zero helicity. The indirect measurement will become more accurate with more precise electroweak

measurements, in particular of the W -boson mass. The direct measurement will become more accurate with

more data from the Tevatron and the Large Hadron Collider. The direct measurement has the advantage that

is affected, at order 1/Λ2, only by the operator OtW . In contrast, there are nine operators that contribute

to precision electroweak data at order 1/Λ2, of which OtW is just one. In Chapter 4, we will present a global

analysis of constraints on these dimension-six operators from PEWM.
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Chapter 4

A Global Analysis for PEWM

Any operator that generates anomalous interaction among top quark and a electroweak gauge boson can

potentially affect the precision electroweak data. These operators modify the SM Wt̄b, Zt̄t and γt̄t vertices,

and therefore contribute to the self-energies of the electroweak bosons, via top-quark loop. There are 9 such

operators at dimension-6:

O
(3)
ϕq = i(ϕ†τ IDµϕ)(q̄γ

µτ Iq), (4.1)

O
(1)
ϕq = i(ϕ†Dµϕ)(q̄γ

µq), (4.2)

Oϕt = i(ϕ†Dµϕ)(t̄γ
µt), (4.3)

Oϕb = i(ϕ†Dµϕ)(b̄γ
µb), (4.4)

Oϕϕ = i(ϕ̃†Dµϕ)(t̄γ
µb), (4.5)

OtW = (q̄σµντ It)ϕ̃W I
µν , (4.6)

ObW = (q̄σµντ Ib)ϕW I
µν , (4.7)

OtB = (q̄σµνt)ϕ̃Bµν , (4.8)

ObB = (q̄σµνb)ϕBµν , (4.9)

The contribution from these operators to the vertices can be found in [10].

Naively, from dimensional analysis we may expect that the effects of these operators are suppressed by

E2/Λ2 where E is the energy scale of the process. However, this is not the case for the operators listed

above in Eqs. (4.1)-(4.9). These anomalous couplings violate the SU(2)L symmetry, so they are related to

the Higgs VEV v, which is the electroweak symmetry breaking scale. Instead of E2/Λ2, these anomalous

vertices scale as v2/Λ2, and is independent of the energy scale of the process. This can be seen in [10], where

the relation between the anomalous couplings and the dimension-six operators are given.

The consequence of this is that the effects of new physics will not increase as much with energy at a

collider experiment as we might have expected. On the other hand, the effect will not disappear in the
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low energy limit. Therefore an important question is whether it is possible to extract better bounds from

PEWM for these operators, than from the measurements performed at the high-energy colliders.

Most of the operators listed above do not directly contribute to PEWM at tree-level. Their corrections to

theW , Z and γ self-energies occur at loop-level, so they are suppressed by 1/(4π)2. However, the electroweak

measurements have a much cleaner background than hadron colliders, and therefore are performed with a

much higher level of precision. In addition, the large mass of the top quark can also lead to an enhancement

of the loop-level contribution. As a result, the constraints on top quark obtained from PEWM may be

comparable with those obtained from collider experiments. This is exactly what we have seen in Chapter 3,

where the bounds on operator OtW are extracted from both PEWM and W -helicity measurements, and are

found to be comparable.

The easiest way to put constraints on these operators is to simply extend the analysis in Chapter 3 to

include these operators. However, as we will see, this approach is not appropriate for all 9 operators. In

addition, by calculating the Û parameter, one can only put constraint on one special linear combination of

the operators. The PEWM itself, on the other hand, contains much more information.

Figure 4.1: Corrections to gauge boson self-energy. The black dots indicate the dimension-six vertex.

Consider the gauge boson self-energies modified by these operators, through the loop diagrams shown in

Figure 4.1.1 Here one should assume that the coefficients Ci are real because an imaginary part of Ci violates

CP and will not contribute to any self-energy. We list the leading order contribution of the 9 dimension-six

operators to the gauge boson self-energies in Appendix B. These expressions in general contain ultraviolet

divergences. However, not all of these divergences have physical effects, because self-energies are not directly

observable. Since all divergent terms are either constant or proportional to q2 (q is the momentum of the

gauge boson), they can contribute at most to the three oblique parameters Ŝ, T̂ and Û . In fact, we find that

1There is also a diagram contributing to the W -boson self-energy, with a top-quark loop, constructed from the contact
interaction given by OtW and ObW . Since this interaction is antisymmetric in µ, ν, this diagram does not contribute to the
self-energy.
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the Ŝ and T̂ parameters are divergent. As we have discussed in Chapter 3, these divergences are properly

absorbed by including

OWB = (ϕ†τ Iϕ)W I
µνB

µν , (4.10)

O
(3)
ϕ = (ϕ†Dµϕ)[(Dµϕ)

†ϕ]. (4.11)

in the analysis.

On the other hand, the Û parameter is always finite, because there is no dimension-six operator that

can be used to absorb the divergence. It is straightforward to calculate the Û and compare it with data.

However, the constraints on Ŝ, T̂ and Û parameters are obtained by assuming a linear q2 dependence of the

self-energies. While this assumption is reasonable for the operator OtW , as is explicitly shown in Eq. (3.24),

it is too crude after including all 9 operators. Once loop-level contributions are included, the self-energies

will contain terms like ln q2 and q2 ln q2. Especially, in a diagram with a bottom quark loop, the self-energies

can have very different q2 dependence in the regions q2 < 4m2
b and q2 > 4m2

b . An example is shown in

Figure 4.2. Since the PEWM include data measured at both q2 = 0 and q2 ≥ m2
Z , it is not reasonable to use

a bound obtained by assuming a linear q2 dependence. In addition, obtaining bounds from the Û parameter

does not make full use of the q2 dependence of the self-energies. When the linear q2 dependence is subtracted

into Ŝ and T̂ , the residual q2 dependence can still affect the PEWM. In fact, PEWM contains more than

a hundred of observables measured at different values of q2. This allows a more detailed determination of

these operators.

Therefore we should abandon the Ŝ, T̂ and Û parameters, and explicitly calculate the effects of these

operators on all electroweak measurements. We then compare the results with data and perform a global fit

to obtain one-sigma bounds on the coefficients of these operators. In order to be specific, we assume that

these operators are the only new physics effects in the theory.

This Chapter is organized as follows. In Section 4.1, we show all major precision electroweak measure-

ments which we will use to obtain bounds. In Section 4.2, we calculate the corrections on all observables

from these operators, and perform the global fit. We present our conclusion in Section 4.3. Finally, the

self-energy corrections from each operator are shown in Appendix B, and some numerical details of the

global fit are given in Appendix C.
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Figure 4.2: The q2 dependence of ΠZγ . The contributions from the operators O
(3)
ϕq and Oϕb are shown for

illustration. A linear part in q2 is subtracted so that ΠγZ(0) = Π′
γZ(0) = 0.

4.1 Experiments

The measurements we use to constrain the coefficients of the operators are listed in Table 4.1. Detailed

descriptions for individual experiments can be found in the corresponding references.

For a given observable X, the prediction of the effective field theory can be written as

Xth = XSM +
∑
i

CiX
dim6
i , (4.12)

where Xth is the prediciton in the presence of the operators. XSM is the Standard Model prediction, and∑
i CiX

dim6
i are the corrections from the new operators. Since only dimension-six operators are included,

higher-order terms in Ci/Λ
2 must be dropped.

The SM predictions are computed to the required accuracy, and can be found in the literature shown in

Table 4.1. The three most precisely measured electroweak sector observables, α, GF , and mZ , are taken to

be the input parameters, from which the SM gauge couplings and the Higgs vev are inferred. In addition,

the following input parameters are used:

mHiggs = 90+27
−22 GeV, mt = 173.2± 1.3 GeV, αs(mZ) = 0.1183± 0.0015, (4.13)

except for LEP2. The sensitivities of the SM predictions for the fermion pair production and W pair

production cross sections at LEP2 are negligible compared to the experimental errors [79]. Therefore, we
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Notation Measurement Reference
Z-pole ΓZ Total Z width [71, 73]

σhad Hadronic cross section
Rf (f = e, µ, τ, b, c) Ratios of decay rates

A0,f
FB(f = e, µ, τ, b, c, s) Forward-backward asymmetries

s̄2l Hadronic charge asymmetry
Af (f = e, µ, τ, b, c, s) Polarized asymmetries

Fermion pair σf (f = q, µ, τ, e) Total cross sections for e+e− → ff̄ [74]

production at LEP2 Af
FB(f = µ, τ) Forward-backward asymmetries for e+e− → ff̄

W mass mW W mass from LEP and Tevatron [71]
and decay rate ΓW W width from Tevatron

DIS QW (Cs) Weak charge in Cs [71]
and QW (T l) Weak charge in Tl

atomic parity violation QW (e) Weak charge of the electron
g2L, g

2
R νµ-nucleon scattering from NuTeV

gνeV , gνeA ν-e scattering from CHARM II
W pair production σW Total cross section for e+e− → W+W− [78]

Table 4.1: Relevant measurements. The total cross section for e+e− → e+e− is divergent. We use the cross
section in the angular range cos θ ∈ [−0.9, 0.9] instead.

use the SM prediction given in the corresponding references.

The corrections from the dimension-six operators include:

• The tree-level contribution from OWB and O
(3)
ϕ .

• The tree-level correction to the Zbb̄ couplings from O
(3)
ϕq , O

(1)
ϕq and Oϕb.

• The loop-level contribution from all 9 operators in Eqs. (4.1)-(4.9) to the self-energies.

Once the self-energies are given, the corrections Xdim6
i to all the experiments can be obtained from the

tree-level formulae for each observable. This will be discussed in the next Section.

Given these results, we can calculate the total χ2 as a function of Ci:

χ2 =
∑
X

(Xth −Xexp)
2

σ2
X

=
∑
X

(XSM −Xexp +
∑

i CiX
dim6
i )2

σ2
X

, (4.14)

where Xexp is the experimental value for observable X and σX is the total error which consists of both

experimental and theoretical uncertainties. The χ2 is a quadratic function of Ci. The fit for the coefficients

of the new operators is given by minimizing χ2. The one-sigma bounds on the coefficients are given by

χ2 − χ2
min = 1.

Eq. (4.14) needs to be modified to account for the correlations between different measurements. There

are two sets of data for which the correlations between measurements cannot be neglected. These are the

correlations between Z-pole observables [73], and the experimental error correlations for the hadronic total
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cross sections at LEP2 [74]. To include correlations, Eq. (4.14) should be modified to

χ2 =
∑
p,q

(Xp
SM −Xp

exp +
∑
i

CiX
p,dim6
i )(σ2)−1

pq (X
q
SM −Xq

exp +
∑
i

CiX
q,dim6
i ) (4.15)

where Xp,q denotes different observables. The error matrix σ2 is related to the error σp and the correlation

matrix ρpq by

σ2
pq = σpρpqσq (4.16)

The correlations for theoretical and experimental errors should be taken into account separately.

4.2 Calculations

In the presence of the new operators, the corrections to the self-energies of W , Z and γ can be written as

ΠXY =
∑
i

CiΠXY i, (4.17)

where ΠXY only includes the contributions from the new operators. (XY ) = (ZZ), (WW ), (γγ), (γZ).

For the operators in Eqs. (4.1)-(4.9), the ΠXY i’s are given in Appendix B. We also include OWB and

O
(3)
ϕ in our calculation, so that the divergences can be absorbed. For these two operators, the contributions

at tree-level are:

ΠWW = 0, (4.18)

ΠZZ = CWB
2v2

Λ2
sW cW q2 + C

(3)
ϕ

v2

2Λ2
m2

Z , (4.19)

Πγγ = −CWB
2v2

Λ2
sW cW q2, (4.20)

ΠγZ = −CWB
v2

Λ2
(c2W − s2W )q2, (4.21)

where sW = sin θW and cW = cos θW with the weak angle θW .

In this Section, we discuss the effect of self-energy corrections on each experiment. We will show how to

obtain the CiX
dim6
i term in Eq. (4.14). We first illustrate the idea in an example.

For processes involving light fermions as external particles, Peskin and Takeuchi have shown in Ref. [68]

that the corrections of the gauge boson self-energies can be incorporated by a change in the coupling constants

and gauge boson parameters. For example, for electromagnetic interactions, the fine structure constant α
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should be replaced by

α∗(q
2) = α0(1 + Π′

γγ(q
2)), (4.22)

where α0 is the SM value, i.e. the value that appears as parameters in the SM Lagrangian.2

Note that α0 is different from the value of α measured in the experiment. Therefore, the self-energy

corrections affect the theoretical predictions in two different ways, which we will call direct correction and

indirect correction respectively. The direct correction is simply described by Eq. (4.22). Any observable in

an electromagnetic process is affected by a change in α. The indirect correction arise from the fact that we

take α as one of the input parameters. The SM value α0 is then shifted from the measured α, which can be

obtained by substituting q2 = 0 (α is measured at q2 = 0) into Eq. (4.22):

α = α0(1 + Π′
γγ(0)). (4.23)

Therefore any observable that depends on α as an input parameter is affected by Eq. (4.23). We can now

eliminate α0 by combining Eq. (4.22) and (4.23), to obtain

α∗(q
2) = α

[
1 + Π′

γγ(q
2)−Π′

γγ(0)
]
, (4.24)

which can be used to calculate the corrections on any electromagnetic observable.

This is the basic idea of our calculation. We will show the direct correction and indirect correction to

all parameters in Section 4.2.1 and 4.2.2, respectively, and combine them to calculate the total effects on all

electroweak measurements, except for the cross section of the W pair production. The W pair production at

LEP2 only has a low statistics in the measurements, and thus we will only consider the tree-level contribution,

i.e. the contribution from OWB and O
(3)
ϕ .

4.2.1 Direct Correction

In the SM, the matrix elements of the charged- and neutral-current interactions mediated by electroweak

gauge bosons can be written as

MNC = e2
QQ′

q2
+

e2

s2W c2W
(I3 − s2WQ)

1

q2 −m2
Z

(I ′3 − s2WQ′), (4.25)

MCC =
e2

2s2W
I+

1

q2 −m2
W

I−. (4.26)

2The running of α0 is a higher order effect. As we will see, because we are only focusing on the contribution from dimension-
six operators, the running only leads to effects of order 1/(4π)2Λ2 and thus can be neglected.
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Peskin and Takeuchi have shown in Ref. [68] that the modification of the gauge boson self-energies can

be included by writing

MNC = e2∗
QQ′

q2
+

e2∗
s2W∗c

2
W∗

(I3 − s2W∗Q)
ZZ∗

q2 −m2
Z∗

(I ′3 − s2W∗Q
′), (4.27)

MCC =
e2∗

2s2W∗
I+

ZW∗

q2 −m2
W∗

I−, (4.28)

where the starred quantities are functions of q2:

m2
W∗(q

2) = (1− ZW )q2 + ZW

(
m2

W0 +ΠWW (q2)
)
, (4.29)

m2
Z∗(q

2) = (1− ZZ)q
2 + ZZ

(
m2

Z0 +ΠZZ(q
2)
)
, (4.30)

ZW = 1 +
d

dq2
ΠWW (q2)|q2=m2

W
, (4.31)

ZZ = 1 +
d

dq2
ΠZZ(q

2)|q2=m2
Z
, (4.32)

ZW∗(q
2) = 1 +

d

dq2
ΠWW (q2)|q2=m2

W
−Π′

γγ(q
2)− cW

sW
Π′

γZ(q
2), (4.33)

ZZ∗(q
2) = 1 +

d

dq2
ΠZZ(q

2)|q2=m2
Z
−Π′

γγ(q
2)− c2W − s2W

sW cW
Π′

γZ(q
2), (4.34)

s2W∗(q
2) = s2W0 − sW cWΠ′

γZ(q
2), (4.35)

e2∗(q
2) = e20 + e2Π′

γγ(q
2), (4.36)

where Π′
XY (q

2) is defined as

Π′
XY (q

2) =
(
ΠXY (q

2)−ΠXY (0)
)
/q2. (4.37)

The subscript 0 denotes the SM value, i.e. the value derived from the SM parameters. For example,

m2
W0 =

e20
s2W0

v2

4
, m2

Z0 =
e20

s2W0c
2
W0

v2

4
. (4.38)

Since the ΠXY ’s are already of order C/Λ2, we do not distinguish the subscript 0 and ∗ if a term is already

of order 1/Λ2, because their difference only leads to terms that are of order 1/Λ4. For example, for the e2

in the last term of Eq. (4.36), the difference between e20 and e2∗(q
2) is a C2/Λ4 order contribution. Thus we

will simply omit the subscript at this order.

Eqs. (4.27) and (4.28) have exactly the same form as the tree-level SM amplitudes, except that all the

coupling constants and gauge-boson parameters are replaced by starred parameters. This shows that the

oblique corrections affect electroweak interaction observables only via the starred parameters. In other words,

given an observable in terms of bare parameters at tree-level, we only need to replace the bare parameters
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with their starred counterparts evaluated at the appropriate momentum to incorporate the corrections from

the self-energy diagrams. For example, at tree-level the left-right asymmetry Ae at the Z-pole is given by

Ae(m
2
Z) =

2
(
1− 4s2W0

)
1 + (1− 4s2W0)

2 . (4.39)

This is modified to

Ae(m
2
Z) =

2
(
1− 4s2W∗(m

2
Z)
)

1 + (1− 4s2W∗(m
2
Z))

2 (4.40)

after the self-energy corrections are included. Similarly, the Z to e+e− partial width is now corrected to

Γe+e− =
e2∗(m

2
Z)ZZ∗(m

2
Z)mZ

192πs2W∗(m
2
Z)c

2
W∗(m

2
Z)

((
1− 4s2W∗(m

2
Z)
)2

+ 1
)
. (4.41)

Note that these corrections come from a change of the SM parameters, i.e. the quantities with a subscript

0, such as e0 and sW0. Therefore these are direct corrections.

For low energy measurements, it is more convenient to write

MNC = −4
√
2GF0

(
1− 1

m2
Z

ΠZZ(0)

)(
I3 − s2W∗(0)Q

) (
I ′3 − s2W∗(0)Q

′) , (4.42)

MCC = −2
√
2GF0

(
1− 1

m2
W

ΠWW (0)

)
I+I−, (4.43)

where

GF0 =
1√
2v2

(4.44)

is the SM value of the Fermi constant. The direct corrections to any low energy observables are thus

incorporated by replacing sW0 by sW∗(0) and including an overall factor of (1 − ΠZZ(0)/m
2
Z) (or (1 −

ΠWW (0)/m2
W )) for neutral-current (or charged-current) observables.

4.2.2 Indirect Correction

The indirect corrections arise from the shifts in the input parameters. The SM parameters (g, g′, v) are

not directly measured. Instead, we derive them from the most precisely measured observables (α, mZ , GF ).

When calculating the SM predictions for these observables, the SM relations between (g, g′, v) and (α, mZ ,

GF ) are used. When we include the new operators, the SM relations are altered. This corresponds to a

correction to all three input parameters.

To consider the indirect corrections, we use (α0, mZ0, GF0) to denote the SM values for the three input
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parameters. The relation between α and α0 can be read off from Eqs. (4.27) and (4.36):

α =
e2∗(0)

4π
= α0(1 + Π′

γγ(0)). (4.45)

The Z mass mZ can be obtained by solving m2
Z∗(m

2
Z) = m2

Z , this gives

m2
Z = m2

Z0 +ΠZZ(m
2
Z). (4.46)

The Fermi constant can be read off from Eq. (4.43):

GF = GF0

(
1− 1

m2
W

ΠWW (0)

)
. (4.47)

We will also need

s2W0 =
1

2

(
1−

√
1− 4πα0√

2GF0m2
Z0

)

=
1

2

(
1−

√
1− 4πα√

2GFm2
Z

)[
1− c2W

c2W − s2W

(
Π′

γγ(0) +
1

m2
W

ΠWW (0)− 1

m2
Z

ΠZZ(m
2
Z)

)]
. (4.48)

Combining Eq. (4.29)-(4.36) with Eq. (4.45)-(4.48) to eliminate α0, mZ0, GF0 and sW0, we conclude that,

for q2 > 0, the total effect of direct and indirect corrections can be incorporated by making the following

replacement to the bare parameters in the tree-level expressions for any observable:

α→α+ δα = α
(
1 + Π′

γγ(q
2)−Π′

γγ(0)
)
×


1 for interactions mediated by photon

ZZ∗(q
2) for interactions mediated by Z boson

ZW∗(q
2) for interactions mediated by W boson

, (4.49)

m2
Z →m2

Z + δm2
Z = m2

Z −ΠZZ(m
2
Z) + ΠZZ(q

2)− (q2 −m2
Z)

d

dq2
ΠZZ(q

2)|q2=m2
Z
, (4.50)

s2W →s2W + δs2W = s2W

[
1− cW

sW
Π′

γZ(q
2)− c2W

c2W − s2W

(
Π′

γγ(0) +
1

m2
W

ΠWW (0)− 1

m2
Z

ΠZZ(m
2
Z)

)]
. (4.51)

For any observable measured at the Z-pole or above, we can write it at tree-level in terms of α, m2
Z and

s2W :

Xtree
th = Xtree

th (α,m2
Z , s

2
W ). (4.52)
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Therefore the contribution from the self-energy corrections can be written as

δX = CiX
dim6
i =

∂Xtree
th

∂α
δα+

∂Xtree
th

∂m2
Z

δm2
Z +

∂Xtree
th

∂s2W
δs2W . (4.53)

Note that Eq. (4.52) is a tree-level relation, and we will not use it to compute the entire theoretical prediction.

Instead, we use Eq. (4.53) to find the corrections which arise from the dimension-six operators. Since these are

already small corrections, the tree-level calculation is enough. We then add them to the full SM predictions,

which are provided in the references shown in Table 4.1.

If the observables depend on the Zbb̄ couplings, we will need to add to the r.h.s of Eq. (4.53) the following

terms:

− v2

2Λ2

(
C

(3)
ϕq + C

(1)
ϕq + Cϕb

) ∂Xtree
th

∂gbV
− v2

2Λ2

(
C

(3)
ϕq + C

(1)
ϕq − Cϕb

) ∂Xtree
th

∂gbA
. (4.54)

This accounts for the tree-level correction to the Zbb̄ couplings from C
(3)
ϕq , C

(1)
ϕq and Cϕb.

For low energy measurements, we can now write

MNC = −4
√
2GF ρ∗(0)

(
I3 − s2W∗(0)Q

) (
I ′3 − s2W∗(0)Q

′) , (4.55)

MCC = −2
√
2GF I+I−, (4.56)

where

ρ∗(0) = 1− 1

m2
Z

ΠZZ(0) +
1

m2
W

ΠWW (0). (4.57)

The results of DIS and atomic parity violation experiments are usually expressed in terms of the effective

couplings in the neutral-current interactions. The corrections to these results can thus be obtained by

replacing s2W by

s2W

[
1− cW

sW
Π′

γZ(0)−
c2W

c2W − s2W

(
Π′

γγ(0) +
1

m2
W

ΠWW (0)− 1

m2
Z

ΠZZ(m
2
Z)

)]
(4.58)

and including an overall factor of ρ∗(0) to the couplings.

4.2.3 Observables

Now we proceed to consider the correction to each observable. We will give the tree-level expressions for

each observable, and then use Eq. (4.53) to find the corrections that arise from the new operators.
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Z-pole observables

The e+e− → ff̄ was studied around the Z-pole at SLC and LEP1. At tree-level, the measured cross sections

and asymmetries can be derived from two quantities: the partial width of Z → ff̄ , Γff , and the polarized

asymmetry Af . The expressions are

Γff =
αmZ

12s2W c2W

(
gfV

2
+ gfA

2
)
, (4.59)

Af =
2gfV g

f
A

gfV
2
+ gfA

2 , (4.60)

where the Z-fermion couplings gfV and gfA are given by

f gfV gfA

νe, νµ, ντ + 1
2 + 1

2

e, µ, τ −1
2 + 2s2W − 1

2

u, c, t +1
2 − 4

3s
2
W + 1

2

d, s, b −1
2 + 2

3s
2
W − 1

2

(4.61)

The Z-pole observables include:

• Total width

ΓZ =
∑
f

Γff . (4.62)

• Total hadronic cross-section

σ0
h =

12π

m2
Z

ΓeeΓhad

Γ2
Z

. (4.63)

• Ratios of decay rates

Rf =


Γhad

Γff
for f = e, µ, τ

Γff

Γhad
for f = b, c

. (4.64)

• Forward-backward asymmetries

A0,f
FB =

3

4
AeAf , f = e, µ, τ, b, c, s. (4.65)

• Hadronic charge asymmetry

s̄2l = s2W . (4.66)
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• Polarized asymmetries

Af , f = e, µ, τ, b, c, s. (4.67)

With these tree-level expressions, we can apply Eq. (4.53) to derive the correction from the new operators.

For example, for the ratio Rb, we find

δRb = −24
16s4W − 36s2W + 9

(88s4W − 84s2W + 45)2

[
cW
sW

Π′
γZ(m

2
Z) +

c2W
c2W − s2W

(
Π′

γγ(0) +
1

m2
W

ΠWW (0)− 1

m2
Z

ΠZZ(m
2
Z)

)]
−24

v2

Λ2

(
C

(3)
ϕq + C

(1)
ϕq

) 40s6W − 96s4W + 72s2W − 27

(88s4W − 84s2W + 45)2
− 48

v2

Λ2
Cϕb

20s4W − 18s2W + 9

(88s4W − 84s2W + 45)2
. (4.68)

This is a leading order result. Using the expressions for the ΠXY ’s given in Appendix B, this can be written

in the form of CiX
dim6
i .

Fermion pair production at LEP2

The observables are the total cross-sections and forward-backward asymmetries for fermion pair production,

measured at different center of mass energies. The matrix element for e+e− → ff̄ (f ̸= e) is given by

M =
4πα

(p+ p′)2 −m2
Z + iΓZmZ

1

4c2W s2W
v̄(p′)γµ

(
geV − geAγ

5
)
u(p)ū(k)γµ

(
gfV − gfAγ

5
)
v(k′)

− 4παQ

(p+ p′)2
v̄(p′)γµu(p)ū(k)γµv(k

′), (4.69)

where p, p′ are the momenta of the incoming e+e−, and k, k′ are the momenta of the outgoing fermions.

The cross-sections and forward-backward asymmetries can be calculated from M, and Eq. (4.53) can be

applied to obtain the corrections from the operators.

For f = e, there are additional contributions from the t-channel diagrams. The matrix element is

M =
4πα

(p+ p′)2 −m2
Z + iΓZmZ

1

4c2W s2W
v̄(p′)γµ

(
geV − geAγ

5
)
u(p)ū(k)γµ

(
geV − geAγ

5
)
v(k′)

− 4πα

(p− k)2 −m2
Z + iΓZmZ

1

4c2W s2W
ū(k)γµ

(
geV − geAγ

5
)
u(p)v̄(p′)γµ

(
geV − geAγ

5
)
v(k′)

+
4πα

(p+ p′)2
v̄(p′)γµu(p)ū(k)γµv(k

′)− 4πα

(p− k)2
ū(k)γµu(p)v̄(p′)γµv(k

′). (4.70)

W mass and width

The W mass is measured both at Tevatron and LEP2. For the tree-level expression of mW , we first solve

mW∗(m
2
W ) = m2

W , which gives

m2
W = m2

W0 +ΠWW (m2
W ). (4.71)
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Combining Eq. (4.38), (4.46) and (4.48) with Eq. (4.71), we find that the correction to the W mass is

δm2
W = ΠWW (m2

W ) +
s2W

c2W − s2W
ΠWW (0)− c4W

c2W − s2W
ΠZZ(m

2
Z) +

s2W c2W
c2W − s2w

m2
ZΠ

′
γγ(0). (4.72)

The W width is measured at Tevatron. The tree level expression is

ΓW =
3αmW

4s2W
. (4.73)

The correction can be calculated using Eq. (4.53).

DIS and atomic parity violation

These are experiments performed at q2 ≈ 0. These low energy observables are usually expressed in terms of

the effective couplings gfV and gfA, which depend on s2W . For the tree-level expressions, we will also include

the factor ρ∗(0), which is 1 in the SM, and takes the value of Eq. (4.57) in the presence of new operators:

ρ∗(0) = 1 + δρ(0) = 1− 1

m2
Z

ΠZZ(0) +
1

m2
W

ΠWW (0). (4.74)

The correction to an observable X is then given by

δX = CiX
dim6
i =

∂Xtree
th

∂s2W

∣∣∣∣
ρ∗(0)=1

δs2W (0) +
∂Xtree

th

∂ρ∗(0)

∣∣∣∣
ρ∗(0)=1

δρ(0). (4.75)

The observables include:

• The weak charges for Cs and Tl, measured in the atomic parity violations. The weak charge is given

by

QW (Z,N) = −2 [(2Z +N)C1u + (Z + 2N)C1d] , (4.76)

where Z and N are the proton number and the neutron number of the atom. The tree-level expressions

for C1u and C1d are

C1u = 2ρ∗(0)g
e
Ag

u
V , C1d = 2ρ∗(0)g

e
Ag

d
V . (4.77)

• The weak charge of the electron, QW (e) , measured in the polarized Møller scattering:

QW (e) = −2C2e = −4ρ∗(0)g
e
Ag

e
V . (4.78)
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• The effective couplings gL and gR for ν-nucleon scattering, measured at NuTeV. These are defined as

g2L = gu2L,eff + gd2L,eff , g2R = gu2R,eff + gd2R,eff . (4.79)

where guL,eff , g
u
R,eff , g

d
L,eff and gdR,eff are the effective couplings between the Z boson and the up and

down quarks. The tree-level expressions are

guL,eff = ρ∗(0)
guV + guA

2
, gdL,eff = ρ∗(0)

gdV + gdA
2

, (4.80)

guR,eff = ρ∗(0)
guV − guA

2
, gdR,eff = ρ∗(0)

gdV − gdA
2

. (4.81)

(4.82)

• The effective couplings gνeV and gνeA for ν-e scattering, measured at CHARM II. The expressions are

gνeV = ρ∗(0)g
e
V , gνeA = ρ∗(0)g

e
A. (4.83)

W pair production

This is the total cross section σW for e+e− →W+W− at LEP2.

So far we have been using the approach of Peskin and Takeuchi to study the effects of new operators.

However, this approach only applies for processes involving light fermions as external particles, and cannot

be used to study the W pair production. Due to the low statistics in the measurements, the constraints

from W pair production are weak compared to other electroweak observables. Therefore we will ignore all

loop effects, and only focus on the effects of operators OWB and O
(3)
ϕ .

Using Eq. (4.18)-(4.21) and Eq. (4.48), we have

s2W0 =
1

2

(
1−

√
1− 4πα√

2GFm2
Z

)[
1 +

c2W
c2W − s2W

(
4CWB

v2

Λ2
sW cW +

1

2
C

(3)
ϕ

v2

Λ2

)]
. (4.84)

Note that Eq. (4.48) only has to do with the indirect corrections, so it is still valid.

The operator OWB changes the mixing of W 3 and B boson. We then define sW∗ and cW∗ as the new

mixing angle,

sW∗ = sW0 − CWB
v2

Λ2
s2W cW , cW∗ =

√
1− s2W∗, (4.85)

so that the W+W−Z and W+W−γ vertices from the kinetic term −1
4W

I
µνW

Iµν have the same form as in

the SM. Note that this definition of sW∗ is different from the one in Eq. (4.35) which was only valid for light
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fermions. In this way, the operators OWB and O
(3)
ϕ have the following effects:

• The SM Zff̄ vertices are modified to:

LZff̄ =
e

sW∗cW∗

(
1 + CWB

v2

Λ2

sW
cW

)
Zµf̄γ

µ

(
T 3PL − s2W∗

(
1 + CWB

v2

Λ2

cW
sW

)
Qf

)
f, (4.86)

where PL = (1− γ5)/2.

• The SM W+W−Z and W+W−γ vertices are modified. The contribution comes from OWB :

OWB → −igCWB
v2

Λ2
cWAµνW+

µ W
−
ν + igCWB

v2

Λ2
sWZµνW+

µ W
−
ν . (4.87)

• The W mass is changed to:

m2
W = m2

Z

(
1

2

(
1 +

√
1− 4πα√

2GFm2
Z

)
− 2CWB

v2

Λ2

sW c3W
c2W − s2W

− 1

2
C

(3)
ϕ

v2

Λ2

c4W
c2W − s2W

)
. (4.88)

Using these results we can write down the matrix element. The process has a t-channel contribution Mt

and s-channel contributions Mγ and MZ , which come from photon and Z boson exchange. They are given

by

Mt = −i e2

2s2W∗
v̄(p′)γµ

1

/k − /p′
γνPLu(p)ϵ

∗λ1
µ ϵ∗λ2

ν , (4.89)

Mγ = −ie2v̄(p′)γρu(p)
1

q2
×[

(gµν(k′ − k)ρ − gνρ(q + k′)µ + gµρ(q + k)ν) + CWB
v2

Λ2

cW
sW

(gµρqν − gνρqµ)

]
ϵ∗λ1
µ ϵ∗λ2

ν ,(4.90)

MZ = −i e
2

s2W∗

(
1 + CWB

v2

Λ2

sW
cW

)
v̄(p′)γρ

[
1

2
PL −

(
1 + CWB

v2

Λ2

cW
sW

)
s2W∗

]
u(p)

1

q2 −m2
Z

×[
(gµν(k′ − k)ρ − gνρ(q + k′)µ + gµρ(q + k)ν)− CWB

v2

Λ2

sW
cW

(gµρqν − gνρqµ)

]
ϵ∗λ1
µ ϵ∗λ2

ν .(4.91)

where p, p′ are the momenta of the incoming e+e−, k, k′ are the momenta of the outgoing W+W−, and

ϵ∗λ1
µ , ϵ∗λ2

ν are the polarization vectors of the W+W−. q = p+ p′. The cross section can be calculated from

the matrix element. The correction due to OWB and O
(3)
ϕ is obtained by taking the linear part in CWB and

C
(3)
ϕ . Higher order terms in C/Λ2 are neglected.
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4.2.4 Total χ2

In the calculation of χ2, we choose the MS scheme, with the renormalization scale M2 = m2
Z . We find

that the contribution from the operator Oϕϕ is suppressed by the bottom quark mass, as can be seen

from Eq. (B.17). Therefore we neglect this operator. The contributions from operators ObW and ObB also

have a factor of mb. However, their effects can still be large, because the expressions contain the function

b0(m
2
b ,m

2
b , q

2), and its derivative with respect to q2 is inversely proportional to m2
b :

d

dq2
b0(m

2
b ,m

2
b , q

2)

∣∣∣∣
q2=0

= − 1

6m2
b

. (4.92)

and so their contributions to, for example, sW , may not be suppressed by mb. Therefore, we will consider

10 operators:

OWB , O
(3)
ϕ , O

(3)
ϕq , O

(1)
ϕq , Oϕt, Oϕb, OtW , ObW , OtB , ObB . (4.93)

On the other hand, the operator Oϕϕ can be bounded from the b→ sγ decay [32]

∣∣∣∣Cϕϕ

Λ2

∣∣∣∣ < 0.13 TeV−2. (4.94)

Using Eq. (4.14), χ2 can be written as a quadratic function of Ci:

χ2 = χ2
min + (Ci − Ĉi)Mij(Cj − Ĉj). (4.95)

Here χ2
min is the minimum χ2 in the presence of the new operators. Ĉi corresponds to the best fit value for

Ci.

In our calculation, we used the following input parameters:

α(m2
Z) = 1/128.91, GF = 1.166364× 10−5 GeV−2, mZ = 91.1876 GeV,

mt = 172.9 GeV, mb = 4.79 GeV. (4.96)

We find χ2
min = 78.40, the χ2

min per degree of freedom is 0.78, compared with the SM value 0.82. The matrix

Mij and the best fit values Ĉi are given in Appendix C.
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4.2.5 A Global Fit

The one-sigma bounds on the operators are given by χ2 − χ2
min = 1. By diagonalizing the matrix Mij , we

find 10 linear combinations of Ci that are statistically independent. Their best fit values and one-sigma

bounds are given by:



−0.961 −0.273 +0.029 −0.004 +0.024 +0.000 +0.012 −0.000 +0.015 +0.001

−0.064 +0.159 −0.701 −0.680 −0.015 +0.130 +0.001 −0.000 +0.001 +0.000

+0.267 −0.940 −0.063 −0.182 +0.088 +0.002 −0.022 +0.002 −0.005 −0.001

+0.008 −0.019 +0.095 +0.086 +0.004 +0.991 +0.019 −0.001 +0.000 +0.000

+0.016 +0.036 +0.241 −0.249 +0.223 −0.019 +0.903 −0.071 +0.079 +0.041

−0.005 +0.121 +0.402 −0.401 +0.670 +0.004 −0.403 +0.048 +0.221 −0.004

−0.016 +0.030 +0.136 −0.136 +0.126 −0.000 −0.002 +0.139 −0.935 −0.229

−0.004 +0.008 +0.035 −0.034 +0.039 +0.001 −0.094 −0.745 −0.244 +0.610

−0.001 +0.001 −0.004 +0.004 +0.007 −0.000 +0.025 +0.646 −0.090 +0.757

−0.001 +0.001 +0.505 −0.505 −0.689 −0.000 −0.108 +0.014 +0.054 +0.009



× 1

Λ2



CWB

C
(3)
ϕ

C
(3)
ϕq

C
(1)
ϕq

Cϕt

Cϕb

CtW

CbW

CtB

CbB



=



−0.0004 ±0.0029

−0.013 ±0.014

+0.011 ±0.023

−0.59 ±0.27

−0.05 ±1.17

+2.86 ±2.14

−1.7 ±11.9

−8.7 ±21.2

+102.4 ±50.4

−1.10e+3 ±1.41e+3



TeV−2. (4.97)

where the 10 by 10 matrix in the l.h.s is orthogonal. We can see that in the first row and the third row,

the first two components are much larger than the other components. This means that these two rows

approximately correspond to constraints on the coefficients CWB and C
(3)
ϕ , or equivalently, the S and T

parameters. Since we are interested in the other 8 operators, we can let CWB and C
(3)
ϕ freely flow (or in

other words, assume that CWB and C
(3)
ϕ always take the values that minimize the χ2). In this way, we find
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the following constraints on the 8 operators:



−0.702 −0.701 −0.000 +0.128 −0.003 +0.000 −0.000 −0.000

+0.094 +0.087 +0.002 +0.992 +0.019 −0.001 +0.001 +0.000

−0.244 +0.251 −0.228 +0.019 −0.901 +0.071 −0.080 −0.041

+0.405 −0.404 +0.675 +0.004 −0.408 +0.049 +0.218 −0.005

−0.136 +0.136 −0.126 +0.000 +0.002 −0.138 +0.936 +0.229

−0.035 +0.034 −0.039 −0.001 +0.094 +0.745 +0.244 −0.610

−0.004 +0.004 +0.007 −0.000 +0.025 +0.646 −0.090 +0.757

−0.505 +0.505 +0.689 +0.000 +0.108 −0.014 −0.054 −0.009



× 1

Λ2



C
(3)
ϕq

C
(1)
ϕq

Cϕt

Cϕb

CtW

CbW

CtB

CbB



=



−0.011 ±0.014

−0.59 ±0.27

+0.04 ±1.17

+2.84 ±2.12

+1.7 ±11.9

+8.7 ±21.2

+102.4 ±50.4

+1.10e+3 ±1.41e+3



TeV−2. (4.98)

This is the main result of this analysis.

We can see that the first row is approximately a constraint on (O
(3)
ϕq + O

(1)
ϕq )/

√
2, which corresponds

to the left-handed Zbb̄ coupling, while the second row corresponds to a constraint on Oϕb, which is the

right-handed Zbb̄ coupling. These are the tightest bounds, since the contribution arises at tree-level. The

other constraints are mainly from loop-level effects. The third row is approximately a bound on CtW . This

can be compared with the bound obtained from direct measurement of W -helicity fraction at the Tevatron,

i.e. Eqs. (3.9, 3.10). The results are of the same order.

4.3 Conclusions

In this Chapter, we have studied the effects of non-standard top quark couplings in the precision electroweak

measurements. The top quark plays a role as a virtual particle in these measurements. Our study is based

on an effective field theory approach, which allows us to calculate the self-energies of the electroweak gauge

bosons at loop-level.
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We have examined the effects of 8 dimension-six operators which generate non-standard couplings between

electroweak gauge bosons and the third generation quarks. These operators mainly contribute through loop

corrections to the gauge boson self-energies, but some of them also have a tree-level contribution to the Zbb̄

couplings. We have also included the operators OWB and O
(3)
ϕ , in order to deal with the divergences that

appear in our calculation.

We have calculated the total χ2 and performed a global fit including these 10 operators. We float CWB

and C
(3)
ϕ , and thus obtain bounds on the 8 dimension-six operators. The result is shown in Eq. (4.98). The

two tightest bounds are from tree-level contribution to the Zbb̄ couplings, gbL and gbR, and the other bounds

are from loop-level contribution. The best bound from loop-level contribution constrains C
Λ2 to be of order

1 TeV−2 which implies that Λ is of order 1 TeV if one makes the assumption that the coupling constant C

is of order one. This can be compared with the bound obtained from direct measurement at the Tevatron.

In addition, our results also include bounds on operators that cannot be constrained in high-energy collider

experiments.

Using Eq. (4.95), one can also put constraints on a subset of these operators. For example, the one-

sigma bound on the coefficient Ci, assuming only one coefficient deviates from its best fit value, is given by

Ĉi ±M
−1/2
ii , where Mii is the diagonal element of the matrix M and is not summed over i. However, some

linear combinations of Ci are only weakly bounded. These weak bounds can not be completely trusted,

because the linear analysis is not applicable if the coefficients are large.
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Appendix A

Proof that Odd-Dimensional
Operators Violate Lepton and/or
Baryon Number Conservation
If an effective operator conserves baryon and lepton number, the fermion fields must be paired up to form

terms such as f̄LfR, f̄Lγ
µfL, f̄Lσ

µνfR, etc., where fL, fR are the left-handed and right-handed fermions.

There is no need to put in γ5, because fL and fR are eigenstates of γ5. These fermion fields, combined with

other Standard Model fields, are the basic “building blocks” of any operator. We put these terms in the first

column of Table A.1.

An effective operator will be composed of some combination of the operators in Table A.1. Each of these

terms may have some Lorentz indices and some SU(2) fundamental representation indices, but the operator

must be invariant under both the Lorentz and SU(2) groups. Therefore, the total number of the Lorentz

indices in the operator must be an even number because we need either two vectors to form a scalar or four

vectors to form a pseudoscalar. Similarly, the total number of the SU(2) fundamental representation indices

in the operator must be even because we need two such indices to form an SU(2) singlet or triplet. These

numbers are shown in the second and third columns of Table A.1. Note that in the SM, fL is an SU(2)

doublet but fR is a singlet.

The dimension of each of the “building blocks” is shown in the fourth column of Table A.1. The sum of

these numbers is the dimension of the operator, which we denote by D. If we add the first three numbers

in each row of Table A.1, the result is always an even number, so the sum of these numbers for any given

lepton- and baryon-number-conserving operator must be even as well. Note also that the sum of the last

row in the Table is D plus an even number. We conclude that D, the dimension of the operator, must be

an even number.
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Lorentz indices SU(2) indices Dimension Total

f̄LfR, f̄RfL 0 1 3 4

f̄Lγ
µfL 1 2 3 6

f̄Rγ
µfR 1 0 3 4

f̄Lσ
µνfR, f̄Rσ

µνfL 2 1 3 4

ϕ, ϕ̃ 0 1 1 2

Dµ 1 0 1 2

Bµν , Gµν , W Iµν 2 0 2 4
Effective operator even even D D+even number

Table A.1: The numbers of Lorentz and SU(2) indices, and the dimensions, of the fields and the operator.
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Appendix B

Dimension-six Corrections to Gauge
Boson Self-Energies

Here we give ΠXY for all 9 operators. The following expressions are obtained assuming only one operator is

present at a time. The coefficient Ci is set to one.

• O
(3)
ϕq

ΠWW = −Nc
g2

4π2

v2

Λ2

[(
1

6
q2 − 1

4
(m2

t +m2
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)
E

−q2b2(m2
t ,m

2
b , q

2) +
1

2

(
m2

bb1(m
2
t ,m

2
b , q

2) +m2
t b1(m

2
b ,m

2
t , q

2)
)]

(B.1)

ΠZZ = −Nc
g2

cos2 θW
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[(
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2
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b , q
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Πγγ = 0 (B.3)
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2 sin θW
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• O
(1)
ϕq

ΠWW = 0 (B.5)

ΠZZ = Nc
g2

cos2 θW
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4
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1
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• Oϕt

ΠWW = 0 (B.9)

ΠZZ = Nc
g2

cos2 θW

1

4π2

v2

Λ2
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1

4
m2

t −
1

9
q2 sin2 θW
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4
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2
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3
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2
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2
t , q
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Πγγ = 0 (B.11)

ΠγZ = Ncg
2 sin θW
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6
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• Oϕb

ΠWW = 0 (B.13)

ΠZZ = Nc
g2

cos2 θW
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• Oϕϕ
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2 1
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• ObW
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Here θW is the weak angle, Nc = 3 is the number of colors. E = 2
4−d − γ + ln 4π, and the functions bi

are given by
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where M is the ’t Hooft mass. They have the following analytical expressions:
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Appendix C

Matrix Mij and the Best Fit Values Ĉi

The matrix Mij and the best fit values Ĉi in Eq. (4.95) are given by

M =
(1 TeV4)

Λ4
× 10−2×

CWB C
(3)
ϕ C

(3)
ϕq C

(1)
ϕq Cϕt Cϕb CtW CbW CtB CbB

OWB +1.10e7 +3.06e6 −3.16e5 +5.47e4 −2.70e5 −6.16e3 −1.35e5 +3.11e3 −1.71e5 −1.40e4

O
(3)
ϕ +3.06e6 +1.06e6 −1.40e5 −1.03e4 −9.49e4 +9.46e3 −3.39e4 +4.04e2 −4.77e4 −3.85e3

O
(3)
ϕq −3.16e5 −1.40e5 +2.58e5 +2.40e5 +1.28e4 −4.55e4 +3.99e3 −4.49e1 +4.96e3 +4.35e2

O
(1)
ϕq +5.47e4 −1.03e4 +2.40e5 +2.39e5 +1.16e3 −4.42e4 −1.28e2 +3.21e0 −8.20e2 −3.34e1

Oϕt −2.70e5 −9.49e4 +1.28e4 +1.16e3 +8.49e3 −9.17e2 +2.98e3 −3.34e1 +4.21e3 +3.40e2

Oϕb −6.16e3 +9.46e3 −4.55e4 −4.42e4 −9.17e2 +9.83e3 +1.13e2 −1.46e1 +9.24e1 +3.20e0

OtW −1.35e5 −3.39e4 +3.99e3 −1.28e2 +2.98e3 +1.13e2 +1.78e3 −5.16e1 +2.11e3 +1.76e2

ObW +3.11e3 +4.04e2 −4.49e1 +3.21e0 −3.34e1 −1.46e1 −5.16e1 +2.49e0 −4.89e1 −4.42e0

OtB −1.71e5 −4.77e4 +4.96e3 −8.20e2 +4.21e3 +9.24e1 +2.11e3 −4.89e1 +2.67e3 +2.19e2

ObB −1.40e4 −3.85e3 +4.35e2 −3.34e1 +3.40e2 +3.20e0 +1.76e2 −4.42e0 +2.19e2 +1.82e1


(C.1)

and

Ci CWB C
(3)
ϕ C

(3)
ϕq C

(1)
ϕq Cϕt Cϕb CtW CbW CtB CbB

Ĉi +0.74 −1.12 −556 +556 +761 −0.60 +121 +57.2 −64.5 +62.8
(C.2)

The numerical values of Ĉi depends on both the experimental values and the SM predictions. The matrix

M is symmetric and positive definite, and its value only depends on the errors of different measurements.

If any of the SM input parameters changes, the best values Ĉi will be affected, but the matrix M will not.

The sizes of the one-sigma bounds on the operators only depend on matrix M .
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