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Abstract. An exactly solvable model mimicking demixing of two Bose-Einstein condensates at
the many-body level of theory is devised. Various properties are expressed in closed form along
the demixing pathway and investigated. The connection between the center-of-mass coordinate
and in particular the relative center-of-mass coordinate and demixing is explained. The model
is also exactly solvable at the mean-field level of theory, allowing thereby comparison between
many-body and mean-field properties. Applications are briefly discussed.

1. Introduction

Demixing of Bose-Einstein condensates has drawn an extensive attention and usually studied
numerically, either at the mean-field level or at the many-body level of theory, see, e.g., [1-29].
Spatial inhomogeneity makes the problem analytically almost intractable. Here we introduce
a solvable model which enables one to emulate demixing, or mixing, of two Bose-Einstein
condensates at the many-body as well as at mean-field levels of theory. With a solvable model
we can investigate analytically various properties along the pathway of demixing, such as the
energetics, spatial overlap of the bosonic clouds, and entanglement between the two species to
list a few. To this end, we extend the harmonic-interaction model for mixtures [30-32] to treat
demixing. Our work builds on and naturally goes beyond [33-35]. The harmonic-interaction
model for bosons, fermions, and mixtures has drawn much attention, see, e.g., [36-51].

2. Theory and Properties

Consider two Bose-Einstein condensates which consist of species 1 and species 2 bosons,
respectively. Condensate 1 is placed in an harmonic potential localized at the origin and
condensate 2 is held in an harmonic potential centered at a distance L from the first. All
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particle-particle interactions are harmonic. The many-particle Hamiltonian hence reads

A~
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Throughout this investigation we work in one spatial dimension and take i = 1. There are
N7 bosons of type 1 and Ny bosons of type 2, the corresponding masses are mq and ms, the
intra-species interaction strengths are A\; and Ag, and the inter-species interaction strength is
A12. The total number of bosons is denoted by N = Ny + No.
] . . . : _ 1 k _
Expressed in terms of the Jacoby coordinates of the mixture, Qy = T 23:1($k+1
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VNN (Xn, = Ya,); and Qn = ™ Xy, + ™22y, where Xy, = 5= Y0 75 and Yy, =

N% Z;Vﬁl y;j are the center-of-mass coordinates of the individual species, the Hamiltonian (1) is
diagonalized and takes on the form
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where Mya = *72 and M = Niymj + Namg are the relative center-of-mass and total masses,

respectively. The shifts in the relative center-of-mass and center-of-mass coordinates

w malV:
Q1 =—VNiNogg L, Q=L (3)

emerge from completing the squares but actually govern, as we shall discuss below, the demixing
of the two condensates. In particular, unless L # 0, demixing cannot occur in our model. The
specific case L = 0, which cannot exhibit demixing, has been analyzed in [32]. Finally, the
interaction-dressed frequencies are given by

N N
ng = \/w2 + 2 <1 + 2) )\127
mo miq
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mi ma

and seen to be independent of L. For attractive inter-species interaction 12 > 1 and for repulsive
interaction 0 < Qﬁ < 1. Correspondingly, |Q N_1| — 0 with increasing 1nter—spe61es attraction

and |Q(])V_1| — oo with increasing repulsion. From a different perspective, for an attractive inter-
species interaction the last term in the Hamiltonian (2) and hence the total energy, see below,
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decrease as L — 0 whereas for repulsive inter-species interaction the total energy decreases as
L — oo, as is expected for attractive and repulsive forces. The center-of-mass of the mixture is
localized at Q?V—l independently of any interaction.

With diagonalization of the Hamiltonian (1) to (2), the wavefunction and energy of the

ground state are readily given by
— ) x
7

Q = Q = M2
4 4
V(@ On) <m; 1) <mjr 2) ( 137 12)

N

Xe_%{mlgl ]kvzlfl Q24+m2Qs Z,ICV;AQH Qi-ﬁ-Mlelz[QN—1—Q(])V,1]2+MW[QN—Q9V]2} (5)
and

1 2 2
FE=— (Nl — 1)\/&)2 + 7(]\71)\1 + NQ)\lg) + (NQ — 1)\/w2 + 7(N2)\2 + Nl)\12) +

2 mq ma

N1 NQ m1N1m2N2 2,9 w2

242 — 4+ A —wLf 1 - — 6

+\/w + <m2+m1> 12 +w-+ % w %, (6)

It is instructive to compare the structures of the wavefunction (5) and energy (6) to the solution
of the problem for L = 0 [32]. In particular, the center-of-mass and relative center-of-mass are
not centered anymore at their origins and a term proportional to L? is added to the energy. We
shall analyze the implications of these structures shortly.

To translate the wavefunction to the laboratory frame, we plug in the mixture’s Jacoby
coordinates explicitly into (5). Furthermore, the shifts of the relative center-of-mass and center-
of-mass coordinates (3) have to be ‘translated’ to corresponding coordinates’ shifts z¢ and yo of

the two species in the laboratory frame. Using the inverse relations Xy, = Qn + 57 %Q N—1
and Yy, = Qn — % %Q ~N—1 the final result for the wavefunction is given by
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where the coefficients «, 3, and « are collected in Appendix A. The shifts of the coordinates in
the laboratory frame are given by the expectation values of the individual species’ center-of-mass
operators

5 mQNQ w2 ~ m1N1 w2
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! M 02, 2 M 02,

We can now discuss the meaning of repulsion and attraction between the two condensates which
becomes transparent within our model. When A2 = 0, species 1 is localized at zo = 0 and
species 2 at yg = L. For repulsive inter-species interaction the two species grow apart: xg
decreases and yq increases; whereas for attractive inter-species interaction the two species come
closer together: x increases and gy decreases. Side by side, the term added to the energy [last
term in (6)] takes on an appealing form as a function of the individual species’ center-of-mass
expectation values (8),

1 m1Nymo N w? 1 1
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also see Appendix B. The added energy term (9) can be interpreted as the ‘classical potential
energy’ of a Nj particles of mass mj shifted by x¢ in a harmonic potential localized at the
origin, No particles of mass my shifted by yy — L in a harmonic potential localized at L, and
the corresponding energy of their mutual harmonic interaction which scales like the square of
their distance (2o — y0)?. We emphasis that all terms of the mixture’s energy (6), except that
originating from the center-of-mass, depend on the inter-species interaction A1 and hence vary
along the demixing pathway.

Let us proceed to many-body quantities derived from the many-particle wavefunction of the
mixture (7). The all-particle density matrix of the mixture is defined by (here normalized to
unity):

N
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Ni-—1 No—1 1 1
- mi1§ 2 molly 2 Mio19\2 (Mw) 2 »
N T T T T

o= T [(@—20)2+ (@) —20)2] =B 12 [ (@ —w0) (@ —w0)+(2f —wo) (@}, —20)] o

o~ F T [w5=v0) (0 —v0)?] =82 12, [ (i o) (we—v0) + (v —v0) (W, —w0)]

et S 2 [ —w0) (yk—y0)+ (2, —x0) (v, —v0)] ) (10)

The integration of (10) to the intra-species and inter-species reduced density matrices [52] follows
the lines of [32, 34] and are not reproduced here. The final results for the lowest-order intra-
species and inter-species reduced density matrices are given by

)
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where the various coefficients C1 g, 0671, Cia, C’Ll, D11, and D’Ll are results of coupled recursive
relations [32] and prescribed in Appendix A. The respective densities, i.e., the diagonals of the
reduced density matrices (11), are given by
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Clearly, the intra-species densities are localized around z( or yg whereas the inter-species density
is localized both at x¢ and yg. Since all these many-body quantities are given analytically, we
can evaluate them explicitly at each point along the demixing pathway.

The extent to which the two condensates mix along the demixing pathway can be quantified
using the spatial overlap between their corresponding densities (12). Explicitly, we consider the
overlap of the square roots of the one-particle densities per particle,

G _ /+°°d$ (@) o8 @) _
12 . N N,

V(@1 +Cro)(az + Cpy)
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Definition (13) seems natural since it reduces to unity when the two densities are equal.
. 2 . .
Generally, when the distance between the two condensates yo — xo = Gz L increases, ie., for
12

% < 1, their overlap decreases and vice versa. Of course, expression (13) gives the precise
value of the two condensates’ overlap as a function of all parameters; the masses, interaction
strengths, and the number of particles of each species. Below, we obtain the analogous expression
evaluated at the mean-field level of theory, in which the interplay between the intra-species and
inter-species interactions can be straightforwardly analyzed.

Let us move to the mean-field solution for demixing which is obtained analytically as follows.
The derivation generalizes that in [32, 34, 41]. The Gross-Pitaevskii ansatz for the mixture’s
wavefunction is

N1 N2
Oz, Ny, Y1 yn) = [ o) [T dolum). (14)
j=1 k=1

The orbitals ¢1(x) and ¢2(y) have to be determined self consistently. Sandwiching the many-
body Hamiltonian (1) with the mean-field ansatz (14) one gets the Gross-Pitaevskii energy
functional. Minimizing the latter with respect to the shapes of the two normalized orbitals
¢1(z) and ¢2(y), one obtains the coupled nonlinear integro-differential equations

1 9 1
{ - Tﬁh@ + §m1w2x2 —i—Al/dac’\(bl(x')]Q(ac—x’)z +
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+A12/d$|¢1(3«")|2($ - y)2}¢2(y) = p262(y), (15)

where p; and po stand for the respective chemical potentials and the mean-field interaction
parameters are given by A; = A\ (N7 — 1), Ao = A\(Na — 1), Aja = A12Ny, and Ag; = A2 No.
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Recall that within the Gross-Pitaevskii treatment of demixing only the interaction parameters
A1, Ao, Ao, and Ay appear.

The coupled Gross-Pitaevskii equations (15) admit an analytic solution. This is intriguing in
itself, as we are not aware of other analytical mean-field solutions for demixing of two spatially-
inhomogeneous Bose-Einstein condensates. The final result for the orbitals reads

1
o) = <ml\/w2 b+ A21>> e (ke @e0)?

9

s ma
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where further details are collected in Appendix B. Finally, the Gross-Pitaevskii energy of the
mixture takes on the following form, expressed as a function of the interaction parameters only:
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Indeed, the first line in (17) is the mean-field energy as if the two harmonic traps overlap (L = 0),
see [32], and the second line is precisely the ‘potential-energy-and-interaction’ term added at the
many-body level of theory to describe the demixing for L # 0, see (6) and (9).

Let us intermediately summarize. We have put forward an exactly-solvable model for
demixing of two Bose-Einstein condensates, whose many-body and mean-field ground-state
solutions are given in closed and analytical forms. We can now ask further questions, on
energetics, condensation, correlations, and on other properties, first at the many-body level
of theory and than at the mean-field level of theory, and investigate the respective differences.
From what we have depicted so far above, the model (1) looks sufficiently rich such that a
detailed account can only find sufficient room beyond the present paper. We hence proceed with
exploration of just two additional selected quantities.

We return to the degree of mixing of the two condensates characterized by their spatial overlap
(13), but now at the mean-field level. The Gross-Pitaevskii densities per particle are nothing
but ¢2(z) and ¢3(y) [the orbitals (16) are real-valued functions]. Consequently, we readily find

1
2
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where xg—yo = —S—;L just like in the many-body case, see Appendix B. Equation (18) shows in
12

a transparent manner the dependence of the spatial overlap between the two condensates on the
masses, m1 and me, and intra-species A1, Ay and inter-species A12, Aoy interaction parameters.
One can push the analysis further in the case the parameters of both species are equal, i.e.,

—m,/w2+i(A1+A21)%L2
mo = mq, Ao = Ay, and Aj3 = Agy. Then, S%P =e " 2 | For a given intra-

species interaction Aq, attraction or repulsion, the overlap decreases monotonously with inter-
species repulsion and increases monotonously with inter-species attraction. Furthermore, for a
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given inter-species interaction Asj, attraction or repulsion, the overlap increases monotonously
with intra-species repulsion and decreases monotonously with intra-species attraction. The latter
reflects the common wisdom that it is more difficult to spatially-separate condensates when they
are made of repulsive species.

Perhaps, the most obvious difference between the many-body and mean-field wavefunctions
of the mixture, equations (7) and (14), respectively, is that in the many-body treatment the
two species are entangled whereas in the mean-field description, using the separable product
state, the two species are obviously not entangled. Thus, finally, we move to the Schmidt
decomposition of the many-body wavefunction, thereby generalizing recent results in the specific
case of a symmetric mixture [35]. We begin from and employ Meher’s formula which can be
written as follows:

1 2
S\5 _104p%)s( 2, 2 2ps
(2) e e (#4+0) Hifzow _
T

IS

H,(vsy)e 2, (19)
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where the parameters s > 0, 1 > p > 0 for Schmidt decomposition of the wavefunction, and
H,, are the Hermite polynomials. The wavefunction (7) is rewritten in terms of the Jacoby
coordinates of each of the species, including the shifts of the coordinates xg and g,
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and Yy, = N% Z;le(yj — yo). Furthermore, in (20) it is convenient to treat first the case of
mixing, i.e., of attractive inter-species interaction ;5 > w; the slight modifications in the
treatment of demixing, i.e., for repulsive inter-species interaction {213 < w, are put forward
below. Clearly, the wavefunction (20) boils down to that of the symmetric mixture when the
parameters of species 1 and species 2 bosons are equal and for L = 0. On the other hand, unlike
the Schmidt decomposition of the symmetric mixture [35] and before Mehler’s formula (19) can
be applied, equation (20) would require a squeeze mapping of Xy, and Yy,. Thus, defining

NoQ) N ~ _ N N.
my (maNaQi2 + miNqw) Y22EY1\2[2\/m2 (m1N1Q12 + maNow) (21)

B =X
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(satisfying X, Yn, = Xn, Y, ), the last row of the wavefunction (20) transforms and reads
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Now, with equation (22), Mehler’s formula can be directly applied. The final result for the



29th annual International Laser Physics Workshop (LPHYS"21) IOP Publishing
Journal of Physics: Conference Series 2249(2022) 012011  doi:10.1088/1742-6596/2249/1/012011

Schmidt decomposition reads
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where the Schmidt parameters are
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Finally, the case of repulsive inter-species interaction {212 < w implies the assignments of, e.g.,
Yy, — =Yy, in (20) and p — —p in (24), similarly to [35].

Equation (24) quantifies precisely as a function of the mixture’s parameters the entanglement
between the two species along the demixing pathway. It is instrumental to discuss a few limiting
cases. Without inter-species interaction, i.e., when 215 = w, one has p = 0 and the two
species are, of course, not entangled; The condensates themselves can possess strong intra-
species interactions though. When ;9 is very large (strong inter-species attraction) or very
small (strong inter-species repulsion), p increases more and more towards unity and a high degree
of entanglement emerges. Hence, within our model, a high degree of entanglement accompanies
both mixing and demixing. Last but not least, when a very large asymmetry between the two
species exists, explicitly, say, m1 N1 > moNs, p decreases more and more towards zero, implying
the entanglement diminishes further and further, see in this context the situation for L = 0 [31].
As can be expected, for symmetric mixtures and L = 0 some of the above-obtained results boil
down to those in [35]. This is a suitable place to stop the current investigation.

3. Concluding Remarks

In the present work a solvable model mimicking demixing of two Bose-Einstein condensates at
the many-body level of theory is devised and investigated. The wavefunction, energy, reduced
density matrices, densities, spatial overlap, and entanglement between the two condensates
expressed as the Schmidt decomposition of the many-particle wavefunction are given in closed
form along the demixing pathway. The connection between the center-of-mass and in particular
relative center-of-mass coordinates and demixing is elucidated, within our model. Furthermore,
the model is also solved analytically at the mean-field level of theory, and the above-computed
properties are expressed in closed form also at the mean-field level of theory. A short discussion
on the differences between properties computed at the many-body and mean-field levels of theory
along the demixing pathway is made.

There are several research directions the present investigation can lead to, of which we list
the following three. An immediate study would be a comprehensive comparison between many-
body and mean-field descriptions of demixing at the limit of an infinite number of particles.
Therein, some properties, like the energy per particle and densities per particle, would exactly
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coincide and other properties, like variances per particle of many-particle observables and the
overlap between the many-body and mean-field wavefunctions, can differ substantially [53-65].
For finite mixtures, the fragmentation [66] along the demixing pathway would be instrumental
to follow. Another research venue that is worth pursuing is benchmarking multiconfigurational
time-dependent Hartree methods [67-70] and other numerical approaches for bosonic mixtures
along the demixing pathway. Finally, a more distant but rewarding challenge would be the
emulation and subsequent investigation of many-body effects when scattering attractive bosonic
clouds from a potential barrier, or off each other, fully analytically [71-74].
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Appendix A. Coefficients of the inter-species and intra-species reduced density
matrices

It can be shown that the parameters of the wavefunction (7) in the laboratory frame entering
the reduced density matrices are those of the wavefunction without the coordinates’ shifts xg
and yo, and therefore are given by [32]:

1 1
= Q = O — NoQ) N
m1Q + B, 51 ml[ 1N1+(m2 28212 + My lw)MNJ’
1 1
g = mafls + o, B2 = ma [—Q2N2 + (MmN + mQNzw)MNJ ;
v = mjl\ZnQ (12 —w). (A1)

Correspondingly, since the various integrations of the all-particle density matrix (10) are taken
along the variables (z; — 29) = (2; — w0) and (y}, — y0) = (Yx — ¥o), and hence, upon these
integrations, the coordinates’ shifts g and yo can be eliminated, the coefficients of the inter-
species reduced density matrix (11) are also those of the corresponding reduced density matrix
without coordinates’ shifts [32]:

a1 +C11 = (a1 — B1) [(a1 = B1) + NBi][(e2 — B2) + (N2 — 1)Ba] — v° N1 (N2 — 1)
1L PV (an = By + (N - DA[(az — Bo) + (N2 — 1)Ba] — 42(Ny — 1)(N2 — 1)’
as+C = (ag — Bo) [(a2 — B) + NaBo][(1 — B1) + (N1 — 1)B1] — 7 Na (N1 — 1)
2+ Chq 27 P (g = B + (N — 1)B1][(e2 — B2) + (Ng — 1)Ba] — v2(Ny — 1)(Ny — 1)’

(1 — B1)(ag — Bo)
— B1) + (N1 = 1)B1][(e2 — B2) + (Na — 1) 2] = 3(Ny — 1)(N2 — 1)’
/1,1 =7 (A.2)

Analogously, the coefficients of the intra-species reduced density matrices (11) are given by [32]:

Dl,l =7 [(al

a1+ Cro = (a1 — 1) (a1 — B1) + N1Bu][(e2 — B2) + NafBa] — 7> N1 N,
PO T 0y = B0 + (N = DB [(az — B2) + NaBo] — (N — DN,
g+ Chy = (a — B2) [(1 — B1) + N1Bi][(az — 52) + Nafo] — 2N1N2
2 0,1 272 (a2 — B2) + (N2 — 1) B2][(a1 — B1) + Nif1] —v2(Na — 1) Ny

(A.3)

Of course, all these coefficients depend explicitly on the masses mq, mo, interaction strengths
A1, A2, A12, and the numbers of particles Ny, No, and vary along the demixing pathway.
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Appendix B. Further details of the solution of the coupled Gross-Pitaevskii
equations and the coordinates’ shifts

It is useful to rewrite (15) in terms of shifts of the coordinates xo and yo, which themselves
have to be determined explicitly within mean-field theory. Making use of the normalization of
¢1(z) and ¢2(y) and that they are even functions with respect to z¢ and yo [see the obtained
self-consistent solution (16) given in the main text], one finds

1

2
{ - 2;186:62 + §m1w2(ﬂz —z0)* + Ay /dl‘/|¢1($/)|2 [(z — 20) — (2/ — xg)]2 +

+Ag /dy\¢2(y)|2 [(z — z0) — (y — o)) }¢1(9E) = [Ml - %mlﬂf% — Ao1(zo — yo)2] o1(x),

{ o gm0+ A [ lon P [ w0) — O )]+
i [ delon@)P [ = 0) — (o o)l }¢2<y> = |12 = malon L = v — 90| a0,
(B.1)
where, for the terms linear in (z — x¢) and (y — yo) to drop out, xop and yp must obey
miw®zo + 2A21 (20 — yo) = 0,
maw?(yo — L) — 2A12(z0 — yo) = 0. (B.2)
The solution of the linear system (B.2) is xzy = 2A21 L and yo = (1 — 73;\(123 )L, where

Oy = \/w2 +2 (%122 + %), hence zo — yo = [2 <A12 + A21) o~ 1] L. These are exactly

the same values found within the many-body solution, see (8). Intriguingly, the frequency of
the relative center-of-mass Jacoby coordinate in the many-body treatment is obtained (in the
mean-field treatment) from re-expressing the mean-field equations using the coordinates’ shifts
xo and yg.

Consequently, the Gross-Pitaevskii solution for the demixing scenario (L # 0) can be related
to the solution of the coupled equations without the shifts of coordinates (L = 0). The self-
consistent orbitals are given in the main text, see (16), and the respective chemical potentials
read

1 2 A A
=y \/w2+(A1+A21)+ < + 2 +
m Vo B A Aa) [0+ E (A + M)

1
+-myxd + Ao (2o — y0)?,

2
1 A A
/1,225 \/w2+(A2+A12 2 12 +
\/w2+f(A2+A12 \/w2+7 A1+ Aop)
1
+§m2(yo - L)2 + Ara(x0 — 3/0) . (B.3)

The total Gross-Pitaevskii energy (17) for demixing is equivalently obtained from the chemical
potentials and the interaction energy, EGY = Nyuy + Nopg — 5t [Al [ dxda! |1 (z) | p1 ()| (x

10
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PP+ Aot [ dedylon@) PP — 92| — % [Ae [ dydy'lea() Pl )Py — ¥ +
Az [ dadylén (@) Ploa(v) P — 9]

Finally and for completeness, it is instructive to re-express the Hamiltonian in the laboratory
frame (1) using the shifts of the coordinates zy and yp,

ol 18 1 )

' 2
H(xlv"'ax]\fuyla"'?yNQ):; 2m 8$2+2m1w (.TJ—.’B()) +

Ll o1 91 ) il )

2

P e R L T U D IR I C R R Gl

J=1 1<<k

Na N1 Na )
+A2 Z [(y5 — o) — (k — 50)]* + A1z Z Z — o) — (yx — yo)|” +
1<j<k j=1k=1

1 1

—|—§m1N1w21‘(2) + §m2N2w2(yO — L)2 + A2 N1 Ny ($0 — y0)2 . (B.4)

Equation (B.4) admits an appealing physical interpretation of demixing and its energetics, within
our model, as discussed in the main text.
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