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Abstract We consider non-linear plane gravitational waves
as propagating space-time defects, and construct the Burgers
vector of the waves. In the context of classical continuum
systems, the Burgers vector is a measure of the deformation
of the medium, and at a microscopic (atomic) scale, it is a
naturally quantized object. One purpose of the present article
is ultimately to probe an alternative way on how to quantize
plane gravitational waves.

1 Introduction

Non-linear gravitational waves constitute a class of exact
solutions of Einstein’s field equations of general relativity.
Several of these exact solutions form a subset of solutions
known as plane gravitational waves, or pp-waves (plane-
fronted gravitational waves). These waves, in turn, are char-
acterized by a local (in space and in time) deformation of
an otherwise flat space-time. For this reason, it is possible to
think of non-linear plane gravitational waves as propagating
space-time defects, since the latter are also locally flat.

Non-linear plane gravitational waves and space-time
defects share many features. Both field configurations (i) are
established over a flat space-time background, (ii) induce a
local deformation in the background geometry, (iii) may have
an axial symmetry (along the z axis, for instance), (iv) may
have a singularity along an axis (the z axis, for instance).
Therefore, it is possible to define and evaluate the Burgers
vector for non-linear plane gravitational waves. The Burgers
vector in a crystalline lattice or inside a metal determines the
nature of the defect.

Metals may be deformed both elastically and plastically.
Elastic deformations take place at low external stresses, and
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are reversible, whereas plastic deformations are irreversible.
The latter deformations are described by moving, dynamical
dislocations, which imprint a permanent deformation in the
metal. The two ordinary types of dislocations in a metal are
the screw and edge dislocations. A screw dislocation occurs
when a half plane moves, or slips, relatively to one adja-
cent half plane (consider two infinite, adjacent and parallel
planes, the upper and lower planes; one upper half plane
remains attached to the adjacent lower half plane, whereas
the other upper half plane slips with respect to the adjacent
lower half plane), and an edge dislocation is characterized
by a missing half plane in an otherwise perfect lattice. We
refer the reader to Chapter 5 of Ref. [1], where a clear expla-
nation of these defects is presented. The Burgers vector is
constructed by first establishing a Burgers circuit, which is a
circuit around the defect. The idea is to first consider a closed,
regular circuit in a perfect crystalline lattice. If the lattice is
deformed by one type of dislocation, the circuit established
in the perfect lattice fails to close in the deformed medium,
if the circuit encompasses the defect. The vector that must
be added in order to close the circuit, in the presence of a
defect, is precisely the Burgers vector. At the atomic scale in
a physical lattice, the Burgers vector is quantized, i.e., it is a
multiple of a minimum atomic distance. In the context of the
4-dimensional space-time geometry, space-time (or topolog-
ical) defects have already been investigated in some depth,
see for instance Refs. [2–6].

Non-linear gravitational waves are relatively simple solu-
tions of Einstein’s equations, as we learn from the well
known review by Ehlers and Kundt [7]. This waves have been
recently reconsidered in connection with the memory effect
[8–11]. The memory effect is the permanent displacement
of massive particles and ordinary objects of a physical sys-
tem caused by the passage of a non-linear gravitational wave
(although the memory effect is also considered in the context
of linearised gravitational waves). In particular, the dynami-
cal state of the massive particles is different before and after
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the passage of the wave [12–15], in view of the velocity mem-
ory effect. The “permanent displacement” mentioned above
may be understood as a plastic deformation of the physical
medium, that is constituted by massive particles, and in this
sense propagating defects in metals (and crystalline lattices)
and non-linear gravitational waves share relevant features.
On the other hand, linearised gravitational waves may be
understood as elastic deformations of the space-time.

In this article we will consider several relevant circuits in
the space-time of pp-waves and construct the corresponding
Burgers vector. The graphical distribution of Burgers vectors
in the three dimensional space allows an alternative under-
standing and characterization of these waves. We will also
evaluate the gravitational pressure that the pp-waves exert on
certain surfaces, that allows to obtain the gravitational force
applied on idealized particles. The evaluation of the gravita-
tional pressure is carried out with the definitions established
in the teleparallel equivalent of general relativity. Under cer-
tain approximations, the resulting expressions of the gravi-
tational pressure are quite simple and interesting.

This article is divided as follows. In Sect. 2 the Telepar-
allelism Equivalent to General Relativity is described. In
Sect. 3 the generalized pp-waves are introduced. The strain
tensor and the Burgers vector are evaluated also in Sect. 3.
In Sect. 4, the gravitational pressure and the force exerted by
the wave are calculated. Finally in the last section the con-
clusions are presented. We use geometrical unities system
where G = c = 1.

2 Teleparallelism equivalent to general relativity
(TEGR)

In this section we briefly introduce the ideas of teleparal-
lelism equivalent to general relativity (TEGR) along the lines
of reference [16]. In this approach, the gravitational field is
represented in terms of the dynamic tetrad field ea μ, but at
the same time it establishes the reference system by choosing
the six additional components when compared to the metric
tensor. The geometric framework of TEGR is such that abso-
lute parallelism is a fundamental attribute of space-time. This
condition is determined by the Weitzenböck connection

�μλν = ea μ∂λeaν

which has a vanishing curvature and a torsion tensor defined
by

T a
λν = ∂λe

a
ν − ∂νe

a
λ . (1)

The Weitzenböck connection is related to the Christoffel’s
symbols, 0�μλν , identically by

�μλν = 0�μλν + Kμλν , (2)

where Kμλν is the contortion tensor, and is given by

Kμλν = 1

2
(Tλμν + Tνλμ + Tμλν) , (3)

with Tμλν = eaμT a
λν . The expression (2) induces a direct

relationship between Ricci scalar and a quadratic combina-
tion of torsions. It reads

eR(e) ≡ −e

(
1

4
T abcTabc + 1

2
T abcTbac − T aTa

)

+2∂μ(eTμ) . (4)

It should be noted that the left-hand side of the above expres-
sion is the Hilbert–Einstein Lagrangian. Thus the TEGR
Lagrangian density is given by

L(eaμ) = −κ e

(
1

4
T abcTabc + 1

2
T abcTbac − T aTa

)
− LM

≡ −κ e�abcTabc − LM , (5)

where κ = 1/(16π), LM is the Lagrangian density of matter
fields and �abc is defined as

�abc= 1

4
(T abc + T bac − T cab)+ 1

2
(ηacT b − ηabT c) , (6)

with T a = ea μTμ = ea μT ν
ν

μ. Hence the field equations
that are equivalent to Einstein’s equations read

∂ν

(
e�aλν

) = 1

4κ
e ea μ(tλμ + T λμ) , (7)

where

tλμ = κ
[
4 �bcλTbc

μ − gλμ �abcTabc
]

, (8)

is the gravitational energy–momentum tensor. Such an
expression goes one step further towards the solution of the
longstanding problem of gravitational energy.

Due to the anti-symmetric feature of �aλν , it is possible
to obtain

∂λ∂ν

(
e�aλν

) ≡ 0 . (9)

Then the energy–momentum vector is

Pa =
∫
V
d3x e ea μ(t0μ + T 0μ) , (10)

this can be equivalently expressed as

Pa = 4k
∫
V
d3x ∂ν

(
e�a0ν

)
. (11)

It should be noted that the energy–momentum vector is
invariant under coordinate transformations of the 3-dimensional
space, and under time reparametrizations. On the other hand,
it transforms as a vector under SO(3,1) symmetry.

From Eqs. (7) and (9) one obtains

d

dt

∫
V
d3x e ea μ(t0μ + T 0μ)
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= −
∮
S
dS j

[
e ea μ(t jμ + T jμ)

]
,

which indicates an energy–momentum flux, where the sur-
face S delimits the volume V . The gravitational energy–
momentum flux is defined as


a
g =

∮
S
dS j (e ea μt

jμ) , (12)

and the energy–momentum flux of matter fields as


a
m =

∮
S
dS j (e ea μT

jμ) . (13)

Then, it is possible to write

dPa

dt
= −

(

a

g + 
a
m

)

= −4k
∮
S
dS j ∂ν(e�

ajν) . (14)

The momentum flux is given by the spatial part of the above
equation, thus

dP(i)

dt
= −

∮
S
dS j φ

(i) j , (15)

where

φ(i) j = 4k∂ν(e�
(i) jν) . (16)

Equation (15) has the nature of force, therefore Eq. (16) rep-
resents the pressure on a direction (i) over a surface oriented
towards j .

3 The generalized pp-waves

The line element of the pp waves can be described in double
null coordinates u, v by the generalized line element

ds2 = H(u, x, y)du2 + dx2 + dy2 + 2dudv

−2a1(u, x, y)dudx − 2a2(u, x, y)dudy . (17)

The surfaces u = constant are flat and the wave propagates
along the null direction v. The functions a1,2(u, x, y) may
be eliminated locally by an appropriate choice of coordi-
nates, therefore they may be chosen as zero. However, some
topological properties of the space-time may be lost when
such a choice is made [17]. Topological defects manifests as
a global effect, thus it is worth considering the generalized
form of the pp-waves metric and particularizing it latter as
special cases.

The line element (17) may be written in Cartesian coordi-
nates by means of the relations

u = z − t√
2

, v = z + t√
2

. (18)

The line element becomes

ds2 =
(
H

2
− 1

)
dt2 + dx2 + dy2

+
(
H

2
+ 1

)
dz2 − Hdtdz

+ √
2a1dtdx − √

2a1dxdz + √
2a2dtdy

− √
2a2dydz . (19)

The regular pp-waves may be obtained by choosing
a1,2(u, x, y) = 0, as mentioned above.

A tetrad field adapted to a stationary observer and related
to the line element above can be can be written as

eaμ =

⎛
⎜⎜⎝

−A a1/
√

2A a2/
√

2A −H/2A
0 1 0 0
0 0 1 0
0 −a1/

√
2A −a2/

√
2A 1/A

⎞
⎟⎟⎠ , (20)

where a and μ denote lines and rows, respectively, and A =√
1 − H/2.
A particular class of pp-waves that can be described by

the line element (17) are the gyratonic waves [18–20]. Those
waves represent the outer field of the gyratons, which are
spinning particles moving at the speed of light. In order to
describe these waves, we introduce cylindrical coordinates
in the transverse plane of the propagation line by means of
the standard relations

x = ρ cos φ ,

y = ρ sin φ ,

together with the functions,

a1 = − J

ρ
sin φ , (21)

a2 = J

ρ
cos φ . (22)

Then, the line element (19) becomes

ds2 =
(
H

2
− 1

)
dt2 + dρ2 + ρ2dφ2 + √

2Jdtdφ

−√
2Jdzdφ +

(
1 + H

2

)
dz2 − Hdtdz . (23)

The function J is related to the spinning nature of the
gyratons. Similarly, the tetrad field adapted to a stationary
observer for the above metric may be rewritten as

e′
aμ =

⎛
⎜⎜⎜⎝

−A 0 J√
2A

−H/2A

0 cos(φ) −ρ sin(φ) 0
0 sin(φ) ρ cos(φ) 0
0 0 − J√

2A
1/A

⎞
⎟⎟⎟⎠ . (24)
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It should be noted that for J = 0 the regular pp-waves are
recovered. From the field equations, the relation between H
and J is given by

∇2H = 2

ρ2

(
∂u∂φ J

)
, (25)

where ∇2 ≡ ∂ρ∂ρ+ 1
ρ
∂ρ+ 1

ρ2 ∂φ∂φ in cylindrical coordinates.
For J = J (u) ⇒ ∂φ J = 0

∇2H = 0 , (26)

then it is possible to solve the Eq. (25) to obtain the following
classes of solutions

H0 = −C0 ln

(
x2 + y2

a2

)
f (u) , (27)

H1+ = −C1+
(
x2 − y2

)
f (u) , (28)

H1× = −C1× (xy) f (u) , (29)

H2+ = −C2+
x2 − y2

(
x2 + y2

)2 f (u) , (30)

H2× = −C2×
xy(

x2 + y2
)2 f (u) . (31)

Here, the multiplicative factors have a proper dimension
to leave H dimensionless, for instance C1+ and C1× have
dimension of inverse squared distance, C2+ and C2× have
dimension of squared distance, while C0 is dimensionless.
The constant a in (27) delimits the validity region of the
solution in vacuum, i.e., the radius of the source. These func-
tions are not the only possible solutions, but they have a well
establish physical meaning. The function f (u) is arbitrary
and establishes the form of the pulse, usually chosen as a
Gaussian. In the next subsections, effects such as deforma-
tions and distortions associated with generalized pp-waves
will be analyzed.

3.1 The strain tensor

In solid mechanics, the deformation of materials is an impor-
tant feature in understanding their properties. When an elastic
deformation is present, the strain tensor quantifies the relative
amount of change during deformation. In the case of plastic
deformations such as dislocations, where Hooke’s law does
not apply everywhere, a dislocation core is constructed and
outside this core the Hooke’s law is applied. In a plastic defor-
mation, the components of the strain tensor can be written as
a function of the dislocation intensity, i.e., the Burgers vector.

We can import this concept into space-time. Thus we intro-
duce the strain tensor, understood as the difference between
the geometries before and after a given event, for instance, the
passage of a gravitational wave. Therefore the strain tensor

is defined as [21]

εμν ≡ (
gμν − ḡμν

)
(32)

where ḡμν is the flat space-time metric in an arbitrary coordi-
nate system and gμν is the metric tensor of the gravitational
wave. Usually, in the case of metals, this tensor is built in
three dimensions. Here it is always possible to take the three-
dimensional part of the deformation tensor for comparison.

The strain tensor calculated from the metric (19) is given
by

εμν = 1

2

⎛
⎜⎜⎝

H −√
2a1 −√

2a2 H
−√

2a1 0 0 −√
2a1

−√
2a2 0 0 −√

2a2

H −√
2a1 −√

2a2 H

⎞
⎟⎟⎠ . (33)

A deformation is a measurable effect, that is, it is not depen-
dent on the chosen coordinate system. Hence, it is necessary
to project such a quantity on the Lorentz symmetry indices.
We get then

εab = eaμebνεμν

= 1

2

⎛
⎜⎜⎝

H/A −√
2a1/A −√

2a2/A H/A
−√

2a1/A 0 0 −√
2a1/A

−√
2a2/A 0 0 −√

2a2/A
H/A −√

2a1/A −√
2a2/A H/A

⎞
⎟⎟⎠ .

(34)

As a consequence the 3D strain tensor of a gyratonic wave is

ε(i)( j) = 1

2

⎛
⎜⎜⎝

0 0
√

2J
ρA sin φ

0 0 −
√

2J
ρA cos φ√

2J
ρA sin φ −

√
2J

ρA cos φ H/A

⎞
⎟⎟⎠ , (35)

therefore it is possible to see that regular pp-waves are respon-
sible for longitudinal deformations while gyratonics also
cause transversal shearing.

3.2 The Burgers vector

In a spacetime with torsion, the Burgers vector is defined as

ba = 1

2

∫
S
T a

μνdx
μ ∧ dxν , (36)

where ∧ is the exterior product. This means that torsion is the
dislocation superficial density. Due to the torsion symmetry
and the properties of tetrad (20), the spatial components of
the Burgers vector can be written as

b(i) =
∮
C
e(i)

j dx
j ,

whereC is a path delimited by the surface S. It is worth noting
that the result of this integral depends on the path taken.
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In order to construct the Burgers circuit, a plane can be
chosen. First, let us consider a square with side 2L in the YZ
plane, centered at an arbitrary point (t0, x0, y0, z0). Thus

b(i) =
∫ y0+L

y0−L
e(i)

2(t0, x0, y, z0 + L)dx2

+
∫ z0−L

z0+L
e(i)

3(t0, x0, y0 − L , z)dx3

+
∫ y0−L

y0+L
e(i)

2(t0, x0, y, z0 − L)dx2

+
∫ z0+L

z0−L
e(i)

3(t0, x0, y0 + L , z)dx3 . (37)

Then, the only non-vanishing component of the Burgers vec-
tor is

b(3) = − 1√
2

∫ y0+L

y0−L

a2

A

∣∣∣z=z0+L

z=z0−L
dy +

∫ z0+L

z0−L

1

A

∣∣∣∣
y=y0+L

y=y0−L
dz .

The result for a regular pp-wave can be obtained by choosing
a1,2 = 0, yielding

b(3) =
∫ z0+L

z0−L

1

A

∣∣∣∣
y=y0+L

y=y0−L
dz . (38)

We must note that the Burgers vector is calculated locally,
therefore depends on the circuit shape and the location of
its center. This means that we have a distribution of vec-
tors in space, i.e., a vector field. Each set of coordinates
(t0, x0, y0, z0) will have its own Burgers vector within its
neighborhood. In the figures below we show the form of this
distribution for some choices of H , all for a regular pp-wave.
All figures were obtained for 2L = 0.002 and f (u) = e−u2

.
In all of them below, the side bar indicates a color scale for
the vector modulus.

If we choose a similar circuit in the plane XZ, we obtain

b(3) = − 1√
2

∫ L

−L

a1

A

∣∣∣z=L

z=−L
dx +

∫ L

−L

1

A

∣∣∣∣
x=L

x=−L
dz .

In Figs. 1, 2, 3 and 4, a non-vanishing distribution of Burgers
vectors for the regular pp-wave is displayed. They are con-
sistent with the polarization of the chosen H solution. It is
worth noting that the Burgers vector has a direct relationship
with the strain tensor, despite the latter coming from the met-
rical tensor while the first comes from the space-time torsion.
With J = 0 we have only the component (3)(3) of the strain
tensor, and at the same time there is only the component in
the z direction of the Burgers vector, in all polarizations. That
is, the choice of H is the only determinant for the evolution
of the system.

The most interesting solution is obtained by choosing a
circuit perpendicular to the axis of propagation Z. In order to
present this solution, we consider a circular path, centered at

the propagation axis, and focus only on the gyratonic wave.
The Burgers vector is

b(i) =
∫ 2π

0
e′(i)

2dφ =
∫ 2π

0
e′(3)

2dφ , (39)

where e′ is given by (24). Similarly to the above cases, the
only non-vanishing component is

b′(3) = b = − 1√
2

∫ 2π

0

J

A
dφ . (40)

We can see that the Burgers vector is zero if evaluated for
a regular pp-wave in this circuit, i.e., J = 0. An interesting
result occurs when we have an axially symmetric wave, i.e.,
J = J (u) and H = H(u, ρ). In this particular case it is
possible to evaluate the integral analytically, obtaining

b = − 2π J√
2A

. (41)

We can define a dislocation core and write the strain tensor
as a function of the Burgers vector. The strain tensor can be
transformed into polar coordinates as

ε(φ)(z) = − sin φ ε(1)(3) + cos φ ε(2)(3) . (42)

Thus, using (35) and (41), we obtain

ε(φ)(z) = b

2πρ
, (43)

The result above is exactly the same result observed in a
crystal with a screw dislocation, as can be seen in equation
(5.3) of [1]. The obtained stress field, outside the dislocation
core, falls off as ρ−1, therefore consists in a long range field.
This fact can cause a particle to feel the effects of dislocation
even outside the core.

4 Gravitational pressure

In this section we aim to calculate the gravitational force
imparted by the gyratonic gravitational waves. We calculate
the torsion components. The non-vanishing components are
[22]

T (0)(0)(1) = −T (3)(1)(3)

= − 1

4ρA2

(
2
√

2 sin φ∂t J − sin φ∂φH + ρ cos φ∂ρH
)

,

T (0)(0)(2) = −T (3)(2)(3)

= − 1

4ρA2

(
−2

√
2 cos φ∂t J + cos φ∂φH + ρ sin φ∂ρH

)
,

T (0)(0)(3) = T (3)(0)(3) = − 1

4A3 ∂t H ,

T (0)(1)(3) = 1

2ρA2

(√
2 sin φ∂t J − sin φ∂φH + ρ cos φ∂ρH

)
,

T (0)(2)(3) = 1

2ρA2

(
−√

2 cos φ∂t J+cos φ∂φH + ρ sin φ∂ρH
)

,

123
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Fig. 1 Burgers vector for H0
with t = x = 0 and C0 = 1. The
points were distributed with y0
ranging from −10 to −1 and
from +1 to +10, in steps of
0.05; and z0 ranging from −3 to
+3, in steps of 0.1. The region
around the propagation axis was
excluded from integration

Fig. 2 Burgers vector for H2+
with t = x = 0 and C2+ = 1.
The points were distributed with
y0 ranging from −5 to −0.8 and
from +0.8 to +5, in steps of
0.05; and z0 ranging from −3 to
+3, in steps of 0.1. The region
around the propagation axis was
excluded from integration. The
bars on the right side indicate
the modulus of the Burgers
vector on both sides

T (3)(0)(1) = − 1√
2ρA2

sin φ∂t J ,

T (3)(0)(2) = 1√
2ρA2

cos φ∂t J .

Then, using the above quantities, we have

�(0)01 = �(3)01 = − 1

4
√

2

∂ρH√
2 − H

�(0)02 = �(3)02 = − 1

4
√

2ρ2

∂φH√
2 − H

+ ∂t J

2ρ2
√

2 − H

�(1)01 = 1

4

∂t H

2 − H
cos φ

�(1)02 = − 1

4ρ

∂t H

2 − H
sin φ

�(1)03 = − 1

4ρ

∂φH sin φ − ρ∂ρH cos φ

2 − H

�(2)01 = 1

4

∂t H

2 − H
sin φ

123
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Fig. 3 Burgers vector for H2×
with t = 0, x = 0.1 and
C2+ = 1. The points were
distributed with y0 ranging from
−5 to −0.8 and from +0.8 to
+5, in steps of 0.05; and z0
ranging from −3 to +3, in steps
of 0.1. The region around the
propagation axis was excluded
from integration. The bars on
the right side indicate the
modulus of the Burgers vector
on both sides

Fig. 4 Burgers vector for H1+
with t = x = 0 and
C2+ = a = 1. The points were
distributed with y0 ranging from
−1.5 to 1.5, in steps of 0.05;
and z0 ranging from −3 to +3,
in steps of 0.1. The bars on the
right side indicate the modulus
of the Burgers vector on both
sides

�(2)02 = 1

4ρ

∂t H

2 − H
cos φ

�(2)03 = 1

4ρ

∂φH cos φ + ρ∂ρH sin φ

2 − H
.

The non-null components of the energy–momentum tensor
are

t00 = t03 = t33

= − k

8ρ2A2

[
ρ2(∂ρH)2 + (∂φH)2 + 2∂u J∂φH

]
. (44)

Finally, the gravitational pressure defined by (16) is given by

φ(3)3 = − k

8ρA3

[
ρ2(∂ρH)2 + (∂φH)2 + 2∂u J∂φH

]
. (45)

123



   67 Page 8 of 9 Eur. Phys. J. C            (2021) 81:67 

Fig. 5 Forces for solutions (27, 30, 31) withC0 = 1/4,C2+ = C2X =
1, a = 1, t = 0 and f (u) = e−u2 = J

One can calculate the total force by integrating over a surface
S,

F (i) = −
∫

φ(i) j dS j .

Hence, if a surface whose normal vector is oriented towards
the z axis is chosen, then

Fz ≡ F (3) =
∫

φ(3)3dS3

= k

8

∫
dρdφ

ρ2(∂ρH)2 + (∂φH)2 + 2∂u J∂φH

ρA3 .

(46)

We see that the direction of the force is longitudinal, and
therefore the gravitational wave imparts a force on hypothet-
ical particles along the direction of the propagation of the
wave.

In the case of an axially symmetric wave, i.e., H =
H(u, ρ) and J = J (u), the integral (46) can be evaluated
analytically, where the surface of integration S is chosen as
a disc centered in the z axis, with ρ1 and ρ2 as the inner and
outer radii, respectively. In this case, where the solution of
the Einstein equation (26) is given by (27), we obtain

Fz = −C0

16

(
1

A(u, ρ2)
− 1

A(u, ρ1)

)
, (47)

where we considered a = 1 in the solution (27).
The gravitational force can be calculated numerically for

the different solutions. In Fig. 5 we see the respective graphs
as a function of the z coordinate, specifically at t = 0. We
can see that this is a negative force for all cases considered.
There is a deformation parallel to the Burgers vector itself,
as indicated by the strain tensor component ε(3)(3).

5 Conclusion

In this article we analyzed how generalized pp-waves can
be interpreted as topological defects. For this purpose, we
calculated the strain tensor associated with such waves, as
well as the dislocation determined by the Burgers vector. In
particular, we chose a square path in the YZ and XZ planes
and obtained a distribution of Burgers vectors for several H
solutions. With that we could see that there is a well defined
Burgers vector for regular pp-waves. In the same sense, we
chose a circular path perpendicular to the z axis that allowed
us to obtain the strain tensor as a function of the modulus of
the Burgers vector. Thus we compare the result with a dis-
location in a crystal. Surprisingly, we saw that the gyratonic
wave shares similarities with a crystal endowed with a topo-
logical defect with cylindrical symmetry. We conclude that
in order to describe a given metric as a topological defect, it
is necessary to take into account both the strain tensor and
the Burgers vector.

The results obtained with the gyratonic waves are very
similar to those of crystals, mainly between the gyratonic
wave and a crystal with a screw dislocation. The qualitative
differences arise due to the presence of a normal compo-
nent σ(z)(z) in the strain tensor of the pp-waves, while in the
case of a crystal screw dislocation, only the shear compo-
nent σ(φ)(z) is present. For gravitational waves, the existence
of the normal σ(z)(z) component is inherent to its type, while
the existence of the shear component σ(φ)(z) depends on the
existence of the gyratonic term J . Therefore, in the space-
time of a gravitational wave we may have compression and
shear when a longitudinal force is applied. Most interesting,
when we dismiss the gyratonic term J in the line element,
the pp-waves space-time looses its capacity to shear.

The characterization of waves as topological defects can
be applied in an attempt to quantize pp-waves. The quanti-
zation of a space-time may be performed by the geomet-
ric assumption of the Burgers vector being an integer of
the Planck’s length [23,24] and its quantization parameters
can be measured by analyzing the interaction of the gravita-
tional field with particles [25]. Thus, interpreting pp-waves
as space-time defects may provide a way to quantize these
waves. For instance, in the case of an axially symmetric
gravitational wave, we have b = −√

2π J/A, thus impos-
ing b = nb0 [25], where b0 is the fundamental scale of the
defect and n an integer, we have −√

2π J/A = nb0. This
feature will be further investigated elsewhere.
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