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Abstract: This paper surveys recent progress in our search for an appropriate internal space algebra
for the standard model (SM) of particle physics. After a brief review of the existing approaches, we
start with the Clifford algebras involving operators of left multiplication by octonions. A central
role is played by a distinguished complex structure that implements the splitting of the octonions
O = C ⊕ C3, which reflect the lepton-quark symmetry. Such a complex structure on the
32-dimensional space S of Cℓ10 Majorana spinors is generated by the Cℓ6(⊂ Cℓ10) volume form,
ω6 = γ1 · · ·γ6, and is left invariant by the Pati–Salam subgroup of Spin(10), GPS = Spin(4)×Spin(6)/Z2.
While the Spin(10) invariant volume form ω10 = γ1 . . . γ10 of Cℓ10 is known to split S on a complex
basis into left and right chiral (semi)spinors, P = 1

2 (1 − iω6) is interpreted as the projector on the
16-dimensional particle subspace (which annihilates the antiparticles).The standard model gauge group
appears as the subgroup of GPS that preserves the sterile neutrino (which is identified with the Fock
vacuum). The Z2-graded internal space algebra A is then included in the projected tensor product
A ⊂ PCℓ10P = Cℓ4 ⊗ Cℓ0

6. The Higgs field appears as the scalar term of a superconnection, an
element of the odd part Cℓ1

4 of the first factor. The fact that the projection of Cℓ10 only involves the
even part Cℓ0

6 of the second factor guarantees that the color symmetry remains unbroken. As an
application, we express the ratio mH

mW
of the Higgs to the W boson masses in terms of the cosine of the

theoretical Weinberg angle.

Keywords: Clifford algebra; composition algebra; triality; Jordan algebra; complex structure;
superselection rules; Higgs mass; superconnection; fermion doubling

1. Introduction

The elaboration of the standard model (SM) of particle physics was completed in
the early 1970s. To quote John Baez [1], “years trying to go beyond the Standard Model
hasn’t yet led to any clear success”. The present survey belongs to an equally long—albeit
less fashionable—effort to clarify the algebraic (or geometric) roots of the SM or, more
specifically, to find a natural framework featuring its internal space properties. After
discussing some old explorations, we provide an updated exposition of recent develop-
ments (particularly, of [2]) while clarifying the meaning and role of complex structures,
and we concentrate on one structure associated with a Clifford algebra (in our case, Cℓ6)
pseudoscalar.

Most ideas on the natural framework of the SM originate in the 1970s, the first
decade of its existence (There are two exceptions: the Jordan algebras were introduced
and classified in the 1930s [3,4]; and the non-commutative geometry approach was born
in the late 1980s [5–7] and is still vigorously developed by Connes and collaborators and
followers [8–12]).
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First, early in 1973, the ultimate division algebra, the octonions1, were introduced
by Gürsey2 and his student Günaydin [14,15] for the description of quarks and their
SU(3) color symmetry. The idea was taken up and extended to incorporate all four
division algebras by G. Dixon (see [16,17] and the earlier work cited there) and was further
developed by Furey [18–24]. Dubois-Violette (D-V) [25,26] emphasizes the lepton-quark
correspondence and unimodularity of the color group SU(3)c as a physical motivation for
introducing the octonions; they come equipped with a complex structure preserved by
subgroup SU(3) of the automorphism group G2 of O:

O = C⊕C
3 . (1)

1.1. (Split) Octonions as Composition Algebras

One can in fact provide a basis-free definition of the octonions, starting with the
splitting (1). To this end, one uses the skew symmetric vector product and standard inner
product on C3 to define a non-commutative and non-associative distributive product xy on
O and a real-valued, non-degenerate symmetric bilinear form 〈x, y〉 = 〈y, x〉, such that the
quadratic norm N(x) = 〈x, x〉 is multiplicative:

N(xy) = N(x)N(y) for N(x) = 〈x, x〉 (2)

(cf. [25,27,28]). Furthermore, by defining the real part of x ∈ O by Re x = 〈x, 1〉 and
the octonionic conjugation by x → x∗ = 2〈x, 1〉 − x, we have

xx∗ = N(x)1I ⇔ x2 − 2〈x, 1〉x + N(x)1I = 0 . (3)

A unital algebra with a non-degenerate quadratic norm obeying (2) is called a composi-
tion algebra.

Another basis-free definition of the octonions O and their split version Õ can be
provided in terms of quaternions using the Cayley–Dickson construction. We represent the
quaternion as scalars plus vectors

H = R⊕R
3, x = u + U, y = v + V, u, v ∈ R, U, V ∈ R

3,

xy = uv − 〈U, V〉+ uV + Uv + U × V (4)

with the vector product U × V ∈ R3 satisfying

U × V = −V × U, (U × V)× W = 〈U, W〉V − 〈V, W〉U . (5)

The product (4) is clearly non-commutative, but one verifies that it is associative. The
Cayley–Dickson construction defines the octonions O and split octonions Õ in terms of a
pair of quaternions and a new “imaginary unit” ℓ is defined as:

x = u + U + ℓ(v + V), ℓ(v + V) = (v − V)ℓ ,

ℓ
2 =

{
−1 ⇒ x ∈ O

1 ⇒ x ∈ Õ .
(6)

We shall encounter the split octonions as generators of Cℓ(4, 2) in Section 3.1 below.

1.2. Jordan Algebras; Guts; Clifford Algebras

Studying quantum field theory, it appears natural to replace classical observables
(real-valued functions) by an algebra of functions on space-time with values in a finite

dimensional Euclidean Jordan algebra3. As a particularly attractive choice that incorporates
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the idea of lepton-quark symmetry, D-V proposes [25] the exceptional Jordan or Albert
algebra of 3 × 3 Hermitian octonionic matrices,

J8
3 = H3(O) , (7)

which is the only irreducible one that does not admit an associative envelope [32]. Further
progress was achieved in [27,28,30,33–35] by considering the Clifford algebra envelope of
its non-exceptional subalgebra J8

2 , which fits one generation of fundamental fermions. In
these papers, as well as in the present one, we are effectively working with associative
algebras that should be viewed as an internal space counterpart of Haag’s field algebra (see
[36]).

A second development, grand unified theory (GUT), anticipated again in 1973 by Pati
and Salam [37], became mainstream for a time4. Fundamental chiral fermions fit the
complex spinor representation of Spin(10), which was introduced as a GUT group by
Fritzsch and Minkowski and by Georgi. A preferred symmetry breaking yields the maximal
rank semisimple Pati–Salam subgroup

GPS =
Spin(4)× Spin(6)

Z2
⊂ Spin(10),

Spin(4) = SU(2)L × SU(2)R, Spin(6) = SU(4) . (8)

We note that GPS is the only GUT group that does not predict a gauge triggered proton
decay; it is also encountered in the non-commutative geometry approach to the SM [8,10].
In general, GUTs provide a nice home for the fundamental fermions, as displayed by the two
16-dimensional complex conjugate “Weyl spinors” of Spin(10). Their other representations,
however, such as the 45-dimensional adjoint representation of Spin(10), are much too big
and involve hypothetical particles such as lepto-quarks which cause difficulties.

The Clifford algebra5 Cℓ10, on the other hand, like the Clifford algebra of any even-
dimensional Euclidean vector space, has a unique irreducible representation (IR); in the case
of6 Cℓ10

∼= R[25], it is the 32-component real (Majorana) spinor. Viewed as a representation
of Spin(10), it splits upon complexification into two 16-dimensional (complex) IRs that
can be naturally associated to the left and right chiral fundamental (anti)fermions of
one generation:

32 = 16L + 16R. (9)

Clifford algebras were also applied to the SM in the 1970s—see [40] and the references
therein. An essential difference in our approach is the use of octonions with a preferred
complex structure in Cℓ8+ν, ν = 0, 1, 2 to restrict the corresponding gauge group (another
new point, the use of the Z2 grading of Cℓ10 to define the Higgs field, will be discussed in
Section 1.3 below).

The Pati–Salam subgroup of Spin(10) is singled out as the stabilizer of the
Cℓ6(⊂ Cℓ8 ⊂ Cℓ10) pseudoscalar

ω6 = γ1 . . . γ6 for γα = σ0 ⊗ ǫ ⊗ Lα, γ8 = σ0 ⊗ σ1 ⊗ 1I8(∈ Cℓ10),

σ0 = 1I2, ǫ = iσ2, Lα = Leα , [Lα, Lβ]+ = −2δαβ1I8, α, β = 1, · · · , 7. (10)

Here, Lx is the operator of left multiplication in the eight-dimensional real vector
space of the octonions, Lxy = xy for x, y ∈ O. The action of the operators Lα ∈ R[8] on the
octonion units will be made explicit in Section 2.2 (Equation (22)). The group GPS (8) in fact
preserves each factor in the graded tensor product representation of Cℓ10:

Cℓ10 = Cℓ4⊗̂Cℓ6 (11)
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Introduced earlier by Furey [20,21] and exploited in [2], the complex structure J ∈
SO(10) generated by ω6 will be displayed, and the physical interpretation of the mutually
orthogonal projection operators

P =
1
2
(1 − iω6), P ′ =

1
2
(1 + iω6) (12)

will be revealed in Section 2.3.

1.3. Main Message and Organization of the Paper

The present survey focuses on ongoing attempts to answer two questions:
(1) Why is the arbitrarily looking gauge group of the SM

GSM = S(U(2)× U(3)) =
SU(2)× SU(3)× U(1)

Z6
, (13)

and what dictates its highly reducible representation for fundamental fermions?
(2) How do we put together the Higgs field with the gauge bosons? Can we explain

their mass ratios?
1. Most physicists accept GUT as an answer to the first question. One has the intriguing

result of Baez and Huerta [38], where GSM appears as the intersection of two popular GUT
subgroups of Spin(10):

GSM = SU(5) ∩ GPS ⊂ Spin(10).

A top-down approach starting with Spin(10), however, should involve the maximal
rank subgroup U(5) instead of SU(5), in line with the philosophy of Borel-de Sieben-
thal [41], yielding an extra U(1) factor in the intersection.

The minority that are trying to go further includes, besides the fans of octonions and
the already cited enthusiasts of almost commutative real spectral triples, Holger Nielsen,
whose more than two decades of musing over the problem are reviewed in [42]. Our
approach exploits the complex structure and particle projector P (12) associated with the
Clifford pseudoscalar ω6 (10); it permeates the entire paper (Sections 2.3, 3.2–3.4 and 5.1. . .).

2. The second problem has been universally recognized (see, e.g., the popular
account [43]). We follow the superconnection approach anticipated by Ne’eman and
Fairlie—for a concise review and references, see Section 4.1. We exploit the restricted
particle projector Pr, which annihilates the sterile neutrino (Section 3.3) to deform the Fermi
oscillators in the lepton sector into the odd generators of the simple Lie superalgebra postu-
lated in [44,45]. The resulting difference between the flavor spaces of leptons and colored
quarks allows one to compute the mass ratio mH/mW in agreement with the experiment
(Section 4.2).

The paper aims to be self-contained and combines our contribution in a single narrative
with a review of the background material. Section 2.1 provides a summary of the known
triality realization of Spin(8). Section 2.2 and Appendix A spell out the relation between
left and right multiplication using imaginary octonion units, which is applied in Section 3.4
to display the stabilizer of R7. We would like to single out two messages from Section 2.3:
(1) the indirect connection between the Cℓ6 pseudoscalar and the complex structure
J ∈ SO(8) (33) and (35); (2) the observation that the Lie subalgebra of so(8) that commutes
with ω6 and the electric charge operator Q (45) is the rank four subalgebra
su(3)c ⊕ u(1)Q ⊕ u(1)B−L. Section 3.1 contains, along with a glance on the equivalence
class of Clifford algebras involving Cℓ(3, 1), Cℓ−6(= Cℓ(0, 6)), Cℓ10, the observation that
the conformal Clifford algebra Cℓ(4, 2) of this class is generated by the split octonions and
gives rise to their isometry group SO(4, 4). Section 3.2 contains one of the main messages of
the paper: the SM gauge group (13) is the subgroup of GPS (8) that leaves the sterile neutrino
invariant (Proposition 1). Section 3.3 discusses superselection rules and the superselection
of the weak hypercharge. Section 3.4 reviews and comments on recent work [24,46] on the
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complex structure associated with the right action of octonion units as well as the derivation
of the gauge group for the SM [35] and its left-right symmetric extension [47].

The Dirac operator γµ(∂µ + Aµ) anticommutes with the chirality γ5 and hence inter-
twines the left and right fermions; so does the Higgs field, which substitutes a mass term
in the fermionic Lagrangian. This inspired Connes and coworkers [5,6,9] to identify the
Higgs field with the internal space part of the Dirac operator. This idea finds a natural
implementation in the Clifford algebra approach for the SM superconnection (reviewed in
Section 4.1). The concise exposition in Section 4 emphasizes our assumptions and some
delicate points, referring the reader for calculational details to the preceding publication [2].

We recapitulate our convoluted route to Cℓ10 in Section 5.1. In Section 5.2, we compare
our solution of the fermion doubling problem with the approach of [23]. A summary of
the main results of the paper is given in Section 5.3, which also cites existing (inconclusive)
attempts to understand why are there exactly three generations of fundamental fermions.

2. Triality Realization of Spin(8): Cℓ
−6

2.1. The Action of Octonions on Themselves

The group Spin(8), the double cover of the orthogonal group SO(8) = SO(O), can be
defined (see [48,49]) as the set of triples (g1, g2, g3) ∈ SO(8)× SO(8)× SO(8) such that

g2(xy) = g1(x) g3(y) for any x, y ∈ O . (14)

If u is a unit octonion, u∗u = 1; then, the left and right multiplications by u are
examples of isometries of O

|Lu x|2 = 〈ux, ux〉 = 〈x, x〉, |Ru x|2 = 〈xu, xu〉 = 〈x, x〉 for 〈u, u〉 = 1 . (15)

Using the Moufang identity,7

u(xy)u = (ux)(yu) for any x, y, u ∈ O , (16)

One verifies that the triple g1 = Lu, g2 = Lu Ru, g3 = Ru satisfies (14) and hence
belongs to Spin(8). It turns out that triples of this type generate Spin(8) (see [48] or
Yokota’s book [49] for a proof).

The mappings x → Lx and x → Rx are, of course, not algebra homomorphisms, as
Lx and Ry each generate an associative algebra, while the algebra of octonions is non-
associative. They do, however, preserve the quadratic relation xy∗ + yx∗ = 2〈x, y〉1:

LxLy∗ + LyLx∗ = 2〈x, y〉1I = RxRy∗ + RyRx∗ (L∗
x = Lx∗) . (17)

Equation (17) applied to the span of the first six imaginary octonion units ej,
j = 1, · · · , 6 and setting Lej

=: Lj, Rej
=: Rj becomes the defining relation of the Clif-

ford algebra Cℓ−6:

LjLk + LkLj = −2δjk = RjRk + RkRj, j, k = 1, · · · , 6 . (18)

2.2. Cℓ−6 as a Generating Algebra of O and so(O)

The octonions appear in any of the nested Clifford algebras Cℓ8 ⊂ Cℓ9 ⊂ Cℓ10. In fact,
the minimal realization of O is provided by Cℓ−6, generated by the left multiplication Lα by
six of the seven imaginary octonion units eα. In general, LxLy 6= Lxy (and similarly for R),
but remarkably, as noted in [20], the relation e1(e2(e3(e4(e5(e6 ea)))))) = e7 ea is satisfied
for all a = 1, · · · , 8 (e8 = 1) so that

L1L2 · · · L6 = Le7 =: L7, R1R2 · · · R6 = Re7 =: R7 . (19)

While LxRx = RxLx (for x ∈ O), the non-associativity of the algebra of octonions is
reflected in the fact that for x 6= y, Lx and Ry in general, do not commute. The Lie algebra
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so(8) is spanned by the elements of the negative square of Cℓ−6. If we denote the exterior
algebra on the span of L1, · · · , L6 by

Λ∗ ≡ Λ∗Cℓ−6 = Λ0 + Λ1 + · · ·+ Λ6
(

Λ1 = Span
1≤j≤6

Lj, Λ6 = {R L7}
)

then so(8) = Λ1 + Λ2 + Λ5 + Λ6 (accordingly, the 28-dimensional adjoint representation
of so(8) splits into four irreducible representations of so(6) : 28 = 6 + 15 + 6∗ + 1. In
particular, Λ5 = Span{Lα7, α = 1, . . . , 6} for Lαβ defined below). A basis of the Lie algebra,
given by

Lα8 = 1
2 Lα, Lαβ = − 1

4 [Lα, Lβ], α, β = 1, · · · , 7 (20)

obeys the standard commutation relations (CRs) for so(n) (herein n = 8):

[Lab, Lcd] = δbc Lad − δbd Lac + δad Lbc − δac Lbd,

Lab = 1
4 (LaL∗

b − LbL∗
a), a, b, c, d = 1, 2, · · · , 8 (L∗

α = −Lα, L∗
8 = L8) (21)

(and similarly for Rab). Each element of so(8) of square −1 defines a complex structure (see
Section 2.3). Following [24], we shall single out the Clifford pseudoscalars L7 and R7 (19)
(called volume forms in the highly informative lectures [51] and Coxeter elements in [52]).
We shall use the (mod 7) multiplication rules of [13] for the imaginary octonion units

Liej(= eiej) = −δij + fijk ek, fijk = 1

for (i, j, k) = (1, 2, 4)(2, 3, 5)(3, 4, 6)(4, 5, 7)(5, 6, 1)(6, 7, 2)(7, 1, 3) (22)

and fijk is fully antisymmetric within each of the above seven triples. The Clifford pseu-
doscalar is naturally associated with the Cartan subalgebra of so(6), spanned by

(L13, L26, L45) as L7(e1, e2, e4) = (e3, e6, e5) . (23)

We can write

L7 = 23L13L26L45 (as 2L13 = L1L∗
3 = −L1L3 etc.). (24)

The infinitesimal counterpart of (14) reads

Tα(x, y) = (Lα x)y + x(Rα y) for α, x, y ∈ O, α∗ = −α ,

i.e., Tα = Lα + Rα . (25)

There is an involutive outer automorphism π of the Lie algebra so(8) such that

π(Lα) = Tα, π(Rα) = −Rα, π(Tα) = Lα (π2 = id) . (26)

As proven in Appendix A,

π(Lab) = Eab, where Eab ec = δbc ea − δac eb (a, b, c = 1, 2, · · · , 8, e8 = 1). (27)

(Lab), (Eab), and (Rab) provide three bases of so(8), each obeying the CRs (21). They
are expressed by each other in terms of the involution π:

Lab = π(Eab), Eα8 = Lα8 + Rα8, α = 1, · · · , 7 . (28)

We find, particularly (see Appendix A):
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L7 = 2L78 = E78 − E13 − E26 − E45 = 2E78 − R7; 2L13 = E13 − E26 − E45 − E78,

2L26 = E26 − E13 − E45 − E78, 2L45 = E45 − E13 − E26 − E78. (29)

While L78 = 4L13L26L45 (24) commutes with the entire Lie algebra spin(6) = su(4)
and the u(1) generator (whose physical meaning is revealed by (45)).

C1 = L13 + L26 + L45 centralizes u(3) = u(1)⊕ su(3) ⊂ su(4) (30)

where the second summand is the unbroken color Lie algebra su(3) = su(3)c.

2.3. Complex Structure and Symmetry Breaking in Cℓn

The algebra Cℓ8 is generated by two-by-two Hermitian matrices whose elements
involve the operators La of the left multiplication by octonion units:

γa =

(
0 La

L∗
a 0

)
, La = Lea , L∗

a = Le∗a , a = 1, . . . , 8. (31)

Here, e8 = 1(= e∗8), L8 = 1I8 is the unit operator in R8; L∗
α = −Lα for α = 1, . . . , 7 so

that the Cℓ10 generators γα (10) are obtained from the above (for α = 1, . . . , 7) through
tensoring with the 2 × 2 unit matrix σ0.

A compact way to identify the particle states in a Clifford algebra Cℓ2n is to introduce
a complex structure which, as we shall demonstrate, gives rise to a fermionic Fock space
in Cℓ2n.

(JX, JY) = (X, Y), (JX, Y) = −(X, JY), ∀X, Y ∈ E2n. (32)

For a non-zero vector X and a complex structure J, the vector Y = JX is orthogonal to
X (and has the same norm):

Y = JX ⇒ (X, Y) = 0 ((X, X) = (Y, Y) > 0).

It follows that for each complex structure J in E2n, there exists an orthonormal basis of
the form (γ1, . . . , γn, Jγ1, . . . , Jγn) in Cℓ2n. Then, aj =

1
2 (γj − i Jγj) and a∗j = 1

2 (γj + i Jγj),
j = 1, . . . , n each span the image in Cℓ2n(= Cℓ2n(C)) of a maximal isotropic subspace of the
complexification of E2n. Together, they yield a realization of the canonical anticommutation
relations (CAR). Fermionic oscillators have been used in the present context in [21,53]. The
complex structure in so(2n) involves a distinguished maximal (rank n) Lie subalgebra (a
notion studied in [41]), u(n) ⊂ so(2n), which is generated by the products bjb

∗
k . It also

selects two distinguished u(n) singlet states in Cℓ2n, the vacuum, which is annihilated by
all bj and the antipode, which is annihilated by the b∗j . Both singlets are annihilated by the
simple part su(n) of u(n).

Complex structures have been studied in relation to spinors by Élie Cartan (since
1908), Veblen (1933), and Chevalley (1954). For a carefully written survey with historical
highlights - see [54]. For a concise modern exposition that connects them to the states in a
fermionic Fock space, see Dubois-Violette [55]. We have also been influenced by their use
(in SO(9)) by Krasnov [46] and by relating them to Clifford pseudoscalars in [24].

The pseudoscalar ω6 of Cℓ6 belongs to Cℓ8 but only defines a complex structure
through its action on the octonion units. More precisely, taking the basic relations (22) and
the identity ǫ2 = −σ0 into account, we can write

ω6 = −σ0 ⊗ L7 , where − L7ea = ∑
b

Jabeb, Jαβ = − f7αβ, α, β = 1, . . . , 6,
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Jab = −Jba, J13 = J26 = J45 = −J78 = −1. (33)

Warning: due to the non-associativity of O, −L7e3 = e1 does not imply −L7L3 = L1,
etc.

We shall see that each of the subgroups Spin(n)ω6 of the spin groups of Cℓn for
n = 8, 9, 10 that leaves ω6 invariant is relevant for the particle physics:

Spin(8)ω6 = U(4), Spin(9)ω6 = SU(4)× SU(2), Spin(10)ω6 = GPS (34)

The U(1) factor in the U(4) of Spin(8)ω6 and the SU(2) in Spin(9)ω6 are generated by
all three components of the “total weak isospin” I = IL + IR, as will be made explicit in
Section 3.2.

We shall define a complex structure J corresponding to ω6 by extrapolating (33) to a
transformation of the gamma matrices of Cℓ8:

J : γa → ∑
b

Jabγb = ωJγaω∗
J , ωJ =

1
4
(1 + γ13)(1 + γ26)(1 + γ45)(1 − γ78). (35)

We can extend the basis (31) of Cℓ8 to Cℓ10, setting (cf. (10)):

γα = σ0 ⊗ ǫ ⊗ Lα for α = 1, . . . , 7,

γ8 = σ0 ⊗ σ1 ⊗ 1I8, γ9 = σ2 ⊗ σ3 ⊗ 1I8, γ10 = σ1 ⊗ σ3 ⊗ 1I8. (36)

In particular, Cℓ9 = R16 ⊕R16 is generated by the 32 × 32 matrices γ1, . . . , γ9, which
commute with ω9 = γ1γ2 . . . γ9 = σ2 ⊗ 1I16. The Lie subalgebra of so(n) of the derivations
of Cℓn, n = 8, 9, 10 that commute with ω6 (10) is so(6)⊕ so(n − 6). For n = 10, it is the Lie
algebra gPS of the Pati–Salam group (8) that respects the tensor product representation (11)
of Cℓ10.

We now proceed to give meaning to the projection operator

P =
1 − iω6

2
(P2 = P), tr P = tr(1 −P) = 2ℓ−1 for n = 2ℓ(= 6, 8, 10). (37)

To begin with, we introduce the isotropic elements

2b1 = (1 − i J)γ1 = γ1 + iγ3, 2b2 = (1 − i J)γ2 = γ2 + iγ6, 2b3 = (1 − i J)γ4 = γ4 + iγ5. (38)

These correspond to the projected octonion units 1
2 (1 + iL7)eℓ, ℓ = 1, 2, 4. Together

with their conjugates b∗j (b
∗
1 = 1

2 (γ1 − iγ3), etc.), they realize the CAR

[bj, bk]+ = 0, [bj, b∗k ]+ = δjk, j, k = 1, 2, 3. (39)

The annihilation operators bj span the (maximal) three-dimensional isotropic subspace
H(1,0) of the six-dimensional complex vector space CE6, while b∗j span its orthogonal

complement H(0,1); we have:

J(1 ∓ i J)γℓ = ±i(1 ∓ i J)γℓ for ℓ = 1, 2, 4. (40)

The commuting Hermitian elements iγℓ3ℓ(mod7), ℓ = 1, 2, 4, which span a Cartan
subalgebra of the comlexified so(6), can be expressed as commutators of b∗j and bj, j = 1, 2, 3
or as differences of the associated projection operators p′j − pj:

iγℓ3ℓ = [b∗
ℓ
, bℓ] = p′

ℓ
− pℓ, ℓ = 1, 2, iγ45 = [b∗3 , b3] = p′3 − p3,

pj = bjb
∗
j , p′j = b∗j bj = 1 − pj, pj p

′
j = 0, j = 1, 2, 3. (41)
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In terms of these operators, the Cℓ6 pseudoscalar and the projector P assume the form:

iω6 = (p′1 − p1)(p′2 − p2)(p′3 − p3) = P ′ −P , P ′ = 1 −P ,

P = ℓ+ q, ℓ = p1 p2 p3, q = q1 + q2 + q3, qj = pj p
′
k p′

ℓ
. (42)

The triple (j, k, ℓ) being a permutation of (1, 2, 3).
We shall identify the generators (of the comlexification sℓ(3,C)) of su(3) with the trace-

less part of the matrix (bjb
∗
k ), whose elements belong to H(1,1). Then, the splitting (42) of P

into the su(3) singlet ℓ and the triplet q implements the lepton-quark splitting anticipated
by its image (1) on the octonions. We shall thus interpret the one-dimensional projectors ℓ
and qj as describing the lepton and the colored quark states in Cℓ6. The states ℓ and qj are
mutually orthogonal idempotents, with ℓ playing the role of the Fock vacuum in Cℓ6:

ℓ
2 = ℓ, ℓqj = 0, qjqk = δjkqj, bjℓ = 0 = ℓb∗k . (43)

Remark 1. We shall argue in Section 3.3 that the identification of P as a particle subspace projector
(adopted in [34]) would only be justified if we have a clear distinction between particles and
antiparticles. This can be claimed for the 30 fundamental (anti)fermions of the Cℓ10 multiplet 32 (9),
which have different quantum numbers with respect to the gauge Lie algebra gSM of the SM. It fails
in the two-dimensional subspace of sterile neutrinos annihilated by gSM; νR and ν̄L are allowed
to form a coherent superposition—a Majorana spinor. In Sections 3.3 and 4, we shall adopt the
restricted projector ℓr on the (three- rather than four-dimensional) lepton subspace excluding the
sterile neutrino.

In order to extend the Fock space picture to Cℓ8, we shall set

iγ7 = a∗ − a, γ8 = a + a∗ ⇒ iγ78 = [a∗, a] (44)

where the pair (a∗, a) describes another Fermi oscillator ([a, a∗]+ = 1) anticommuting with
bj, b∗k . We shall fix the physical interpretation of [a∗, a] by postulating that the electric charge
operator is given by

Q :=
1
3

3

∑
j=1

b∗j bj − a∗a =
1
2
(B − L − [a∗, a]),

where B − L =
2i

3
(L13 + L26 + L45) =

1
3 ∑

j

[b∗j , bj], (45)

and stands for the difference between the baryon and the lepton numbers. B − L takes
the eigenvalues ± 1

3 for (anti)quarks and ∓1 for (anti)leptons. Demanding that the gauge
Lie algebra within so(8) commutes with both ω6 and Q, we shall further reduce it from
so(6)⊕ so(2) to the rank four Lie subalgebra

g4 = su(3)c ⊕ u(1)Q ⊕ u(1)B−L = {X ∈ u(4), [X, Q] = 0}. (46)

The knowledge of the charges Q, B − L along with the color Lie algebra allows us to
identify the primitive idempotents of Cℓ8, given by ℓ, qj and multiplied by aa∗ or a∗a, with
the fundamental fermions:

ℓaa∗ = ν, ℓa∗a = e, qjaa∗ = uj, qja
∗a = dj. (47)

The “isotopic doublets” (ν, e) and (uj, dj) stand for neutrino/electron and up/down
colored quarks. We see, in particular, that the Fock vacuum in Cℓ8 that is associated with the
complex structure (33) is identified with the neutrino (as it has no charge and aν = 0 = bjν).
Note that the subalgebra of g4 that annihilates ν is the known unbroken gauge Lie algebra
u(3) of the SM:

u(3)SM = su(3)c ⊕ u(1)Q = {X ∈ g4; Xν = 0}. (48)



Universe 2023, 9, 222 10 of 25

This picture ignores chirality, which will find its place in Cℓ10 (Section 3.2).

3. The Internal Space Subalgebra of Cℓ10

3.1. Equivalence Class of Lorentz-like Clifford Algebras

Nature appears to select real Clifford algebras Cℓ(s, t) of the equivalence class of
Cℓ(3, 1) (with a Lorentz signature in four dimensions) in Élie Cartan’s classification (which
involves8 the signs, ω2(s, t) and (−1)s−t):

Cℓ(s, t) = R[2n], for s − t = 2(mod 8), s + t = 2n . (49)

They act on 2n dimensional Majorana spinors that irreducibly transform under the
real 2n dimensional representation of the spin group Spin(s, t). If γ1, · · · , γ2n is the image
in Cℓ(s, t) of an orthonormal basis of the underlying vector space Rs,t, then the Clifford
pseudoscalar defines a complex structure

ωs,t = γ1 · · · γ2n, 2n = s + t, ω2
s,t = −1 , (50)

which commutes with the action of Spin(s, t). Upon complexification, the resulting Dirac
spinor splits into two inequivalent 2n−1 dimensional complex Weyl (or chiral) spinor repre-
sentations, which are irreducible over C under Spin(s, t). The corresponding projectors ΠL

and ΠR on the left and right spinors are given in terms of the chirality χ, which involves
the imaginary unit i:

ΠL = 1
2 (1 − χ), ΠR = 1

2 (1 + χ), χ = iωs,t ,

χ2 = 1I ⇔ Π2
L = ΠL, Π2

R = ΠR, ΠLΠR = 0, ΠL + ΠR = 1I . (51)

Another interesting example of the same equivalence class (also with indefinite metric)
is the conformal Clifford algebra Cℓ(4, 2) (with isometry group O(4, 2)). We shall demon-
strate that just as Cℓ−6 was viewed (in Section 2.2) as the Clifford algebra of the octonions,
Cℓ(4, 2) plays the role of the Clifford algebra of the split octonions (also appearing in bitwistor
theory [56]):

x = v + V + l(w + W), v, w ∈ R, V = iV1 + jV2 + kV3, W = iW1 + jW2 + kW3

i2 = j2 = k2 = ijk = −1, l2 = 1, Vl = −lV . (52)

Indeed, defining the mapping (cf. (6)),

i → γ−1, j → γ0, l → γ1, jl → γ2, ℓk → γ3, ℓi → γ4

[γµ, γν]+ = 2ηµν1I, η11 = η22 = η33 = η44 = 1 = −η−1,−1 = −η00 (53)

we find that the missing split-octonion (originally, quaternion) imaginary unit k (= ij = −ji)
can be identified with the Cℓ(4, 2) pseudoscalar:

ω4,2 = γ−1 γ0 γ1 γ2 γ3 γ4 ↔ k, ω2
4,2 = −1, [w4,2, γν]+ = 0 . (54)

The conjugate to the split octonion x (52) and its norm are

x∗ = v − V − ℓ(w + W), N(x) = xx∗ = v2 + V2 − w2 − W2,

so that the isometry group of Õ is O(4, 4) (in particular, the maximal compact subalgebra
so(4) ⊕ so(4) ⊂ so(4, 4) is spanned by γjk, j, k = 1, . . . , 4 and by ω4,2, γα,
α = −1, 0, and their commutators. The remaining 16 non-compact generators of so(4, 4)
involve the square-one matrices γj, γαγj, γjω4,2).
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As we are interested in the geometry of the internal space of the SM acted upon by a
compact gauge group, we shall work with (positive or negative) definite Clifford algebras
Cℓ2ℓ, ℓ = 1(mod 4). The algebra Cℓ−6 considered in Section 2 belongs to this family (with
ℓ = −3). For ℓ = 1, we obtain the Clifford algebra of the two-dimensional conformal field
theory; the one-dimensional Weyl spinors correspond to analytic and antianalytic functions.
Here, we shall argue that for the next allowed value, ℓ = 5, the algebra Cℓ10 = Cℓ4 ⊗̂Cℓ6
(11) fits the internal space of the SM beautifully if we associate the two factors to the
color and flavor degrees of freedom, respectively. We shall strongly restrict the physical

interpretation of the generators γab

(
= 1

2 [γa, γb], a, b = 1, · · · , 10
)

of the derivations of
Cℓ10 by demanding that the splitting (11) of Cℓ10 into Cℓ4 and Cℓ6 is preserved. This
amounts to selecting a first step of symmetry breakings of the GUT group Spin(10), which
leads to the semi-simple Pati–Salam group (Spin(4)× Spin(6))/Z2 (8). Each summand of
gPS, so(4) and so(6), expressed in terms of Fermi creation and annihilation operators, has a
distinguished Lie subalgebra, u(2) and u(3), that belongs to H1,1. We identify the leptons
and quarks with u(3) singlets and triplets. This identification implements the lepton-quark
symmetry alluded to by (1).

3.2. gSM as Annihilator of Sterile Neutrino

We proceed to extend the complex structure J (33) and (35) to Cℓ10, expressing, in
particular, the electroweak gauge group generators in terms of the fermionic oscillators
corresponding to the Cℓ4 factor in (11). To this end, we complement the definition (38) of
bj by

2a1 = (1 − i J)γ10 = γ10 − iγ9, 2a2 = γ8 − iγ7 ⇒ iγ78 = [a∗2 , a2], iγ910 = [a∗1 , a1] (55)

(where γa are given by (36)). In particular, (a2, a∗2) coincide with the unique flavor fermionic
oscillator (a, a∗) (44) of Cℓ8. They allow us to define two pairs of complementary projectors.

πα = aαa∗α, π′
α = a∗αaα = 1 − πα, α = 1, 2, παπ′

α = 0, πα + π′
α = 1. (56)

The three pairs of color (pj, p′j, j = 1, 2, 3) and two pairs of flavor (πα, π′
α, α = 1, 2)

projectors give rise to a (25 = 32-dimensional) maximal abelian subalgebra of Cℓ10 of the
commuting observables. The flavor gauge Lie algebra gnerators, the left and right chiral

isospin components, are expressed in terms of a
(∗)
α :

IL
+ = a∗1 a2, IL

− = a∗2 a1, [IL
+, IL

−] = 2IL
3 = π′

1π2 − π1π′
2 = π′

1 − π′
2 ;

IR
+ = a1 a2, IR

− = a∗2 a∗1 , [IR
+, IR

−] = 2IR
3 = π1π2 − π′

1π′
2 = π2 − π′

1 . (57)

The chirality operator χ = ΠR − ΠL is expressed in terms of the Cℓ10 pseudoscalar (as
implied by (51) for s = 10, t = 0):

χ = iω10 = iω6γ78γ910 = (P ′ −P)[a∗1 , a1][a2, a∗2 ] = (P ′ −P)(P1 − P′
1),

P1 = (2IL
3 )

2 = π′
1π2 + π1π′

2, P′
1 = (2IR

3 )
2 = π1π2 + π′

1π′
2 = 1 − P1, (58)

so that ΠL = PP1 + P ′P′
1, ΠR = PP′

1 + P ′P1. Within the particle subspace P , the operator
P1 projects on the left chiral and P′

1 on the right chiral fermions.
The sum I3 = IL

3 + IR
3 coincides with the total isospin projection that generates the

commutant u(1) of su(4) in u(4)—see the discussion after Equation (34) in Section 2.3.
Conversely, IL

3 , IR
3 appear as chiral projections of I3:

2I3 = 2IL
3 + 2IR

3 = [a2, a∗2 ] = π2 − π′
2 = 2Q − (B − L),

(2I3)
2 = 1, IL

3 = P1 I3P1, IR
3 = P′

1 I3P′
1 (IL

3 IR
3 = 0). (59)
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The identification of the vacuum vector a1a2b1b2b3 (annihilated by all aα, bj) becomes
consequential if we demand that this ket-vector is a singlet with respect to the gauge group
of the SM. The fact that the left and right isospin cannot vanish simultaneously (because
(2(IL

3 + IR
3 ))

2 = 1) implies that the Lie algebra gSM of the SM should be chiral:

gSM ⊂ u(2)⊕ u(3), where u(2) = su(2)L ⊕ u(1)IR
3

, u(3) = su(3)c ⊕ u(1)B−L. (60)

It is therefore rewarding that we can identify the Fock space vacuum in Cℓ10 (given by
ν of (47) for Cℓ8) with the (right handed, hypothetical) sterile neutrino (in fact, νR and its
antipode ν̄L do not interact with the gauge bosons):

νR = π1π2ℓ, aανR = 0(= νRa∗α), bjνR = 0 ⇔ ν̄L = π′
1π′

2ℓ
′, a∗αν̄L = 0 etc. (61)

The role of the electric charge Q (45) that breaks the u(4) symmetry of ω6 in so(8) to
u(3)⊕ u(1)Q is played by the weak hypercharge Y in so(10):

1
2

Y =
1
3

3

∑
j=1

b∗j bj −
1
2

2

∑
α=1

a∗αaα =
1
2

2

∑
α=1

aαa∗α −
1
3

3

∑
j=1

bjb
∗
j . (62)

They both annihilate the respective vacuum state as well as its antipode. This is made
obvious by the two forms of Y in Equation (62) as sums of the normal and antinormal
products. By definition, Y belongs to the center of the broken symmetry subalgebra of
gPS. As pointed out in [2] and as will be discussed below in Section 3.3, it gives rise to a
superselection rule in the SM.

The significance of choosing the sterile neutrino as a Fock vacuum is summarized by
the following:

Proposition 1. The Lie subgroup of GPS (8) that leaves the Fock vacuum νR (61) invariant is the
SM gauge group (13).

Proof. We shall first complete the argument that the maximal Lie subalgebra of gPS anni-
hilating the sterile neutrino is gSM. We have already noted that the Lie subalgebra of gPS

for which the vacuum transforms as a singlet is u(2)⊕ u(3) (60). This follows from the
observation that generators involving a∗1 a∗2 and b∗j b∗k transform νR into a right-handed elec-
tron eR and an up quark uR, respectively. It remains to analyze the two-dimensional center
u(1)B−L + u(1)IR

3
of this extended algebra. νR and ν̄L are eigenvectors of both generators

with eigenvalues of opposite sign; only multiples of Y annihilate the sterile neutrino:

(2IR
3 − 1)νR = 0 = (B − L + 1)νR, Y = B − L + 2IR

3 ⇒ YνR = 0 = Yν̄L. (63)

This establishes the characterization of the Lie algebra gSM as the annihilator of
the sterile neutrino. It will be straightforward to extend the result to the SM gauge
group (13) after displaying the quantum numbers of the fundamental fermions in the
following subsection.

3.3. Superselection Rules: Restricted Particle Subspace

The weak hypercharge (62) and (63) generates the u(1) center of the gauge Lie algebra
of the SM and hence commutes with all gauge transformations. It is not only conserved
in the observed micro processes but even in hypothetical ones, such as a possible proton
decay (with a conserved B − L), or in the presence of a Majorana neutrino (a coherent
superposition of νR and ν̄L) that would break B − L by two units. The weak hypercharge
was proposed in [2] as a superselection rule, assuming that Y commutes with all observables.
The Jordan algebra of the 32-dimensional space of internal observables of one generation
splits into 11 superselection sectors corresponding to the 11 different eigenvalues of Y (see
Appendix to [2]).
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Superselection rules (SSR) were introduced by Wick, Wightman, and Wigner [57,58]
in 1952. The superselection of the electric charge has been thoroughly discussed in [58]
and the review [59]; for more references and a historical survey addressed to philosophers,
see [60]. The charge Q (45) is superselected by the exact symmetry of the SM (otherwise,
IL
± do not commute with it). SSRs are also related to measurement theory [52]. SSR and

superselection sectors are an essential part of the Doplicher–Haag–Roberts reconstruction
of quantum fields from the algebra of observables—see [36].

For all we know, the exact symmetry of the SM is given by the rank four unbroken Lie
algebra (obtained from g4 (46) by the substitution B − L → Y):

a4 = su(3)c ⊕ u(1)Y ⊕ u(1)Q, Q =
1
2

Y + IL
3 =

1
3

3

∑
j=1

p′j − π′
2. (64)

The states of the fundamental (anti)fermions are given by the primitive idempotents
of Cℓ10, represented by the 25 = 32 different products of the five pairs of basic projec-

tors π
(′)
α , p

(′)
j (56) (41). The 16 particles can be labeled by the eigenvalues of the pair of

superselected charges (Q, Y):

(νR) = ℓπ1π2 = (0, 0) = |νR〉〈νR|, (νL) = ℓπ′
1π2 = (0,−1) = |νL〉〈νL|,

(eL) = ℓπ1π′
2 = (−1,−1) = |eL〉〈eL|, (eR) = ℓπ′

1π′
2 = (−1,−2) = |eR〉〈eR|;

ℓ = (νL) + (eL) + (νR) + (eR) = p1 p2 p3, ℓ2 = ℓ, tr ℓ = 4. (65)

(u
j
L) = qj π′

1π2 = ( 2
3 , 1

3 ) = |u
j
L〉〈u

j
L|, (d

j
L) = qj π1π′

2 = (− 1
3 , 1

3 ) = |d
j
L〉〈d

j
L|,

(u
j
R) = qj π1π2 = ( 2

3 , 4
3 ) = |u

j
R〉〈u

j
R|, (d

j
R) = qj π′

1π′
2 = (− 1

3 ,− 2
3 ) = |d

j
R〉〈d

j
R|;

qj = (u
j
L) + (d

j
L) + (u

j
R) + (d

j
R) = pj p′k p′

ℓ
, qi qj = δijqj, tr qj = 4 (66)

(j, k, ℓ) ∈ Perm(1, 2, 3), q = q1 + q2 + q3 = q2, tr q = 12 (as the color is unobservable,
we do not bother to assign to it eigenvalues of the diagonal operators iγ13, iγ26, iγ45 that
would replace the index j). Note that chirality in the particle subspace Pχ = χP is
determined by the hypercharge:

Pχ = P(ΠR − ΠL) = P(−1)3Y. (67)

The charges (Q, Y) for the corresponding antiparticles have the opposite sign. The
spectrum of Y and of 2IL

3 = 2Q −Y, together with the analysis of [38], allow us to complete
the group theoretic version of Proposition 1.

Remark 2. The factorization of the primitive idempotents (65) and (66) into bra and kets involves
choices. We demand, following [2], that they are Hermitian conjugate elements of Cℓ10, homogeneous

in a
(∗)
α and b

(∗)
j such that the kets corresponding to a left(right) chiral particle contains an odd (or

even) number of factors. Choosing then |νR〉 = a1a2ℓ, |νL〉 = a∗1 |νR〉, we find:

〈νR| = ℓa∗2 a∗1 ⇒ (νR) = π1π2ℓ, |νL〉 = π′
1a2ℓ ,

|eL〉 = IL
−|νL〉 = −a1π′

2ℓ , |eR〉 = −a∗1 |eL〉 = π′
1π′

2ℓ = IR
−|νR〉;

|d
j
L〉 = π1a∗2 qj , |uj

L〉 = IL
+|d

j
L〉 = a∗1π2 qj ,

|d
j
R〉 = a∗1 |d

j
L〉 = a∗1 a∗2 qj , u

j
R = a1|u

j
L〉 = π1π2 qj , (68)

qj = pj p′k p′
ℓ
, j, k, ℓ ∈ Perm(1, 2, 3), i.e. q1 = p1 p′2 p′3 = p1 p′3 p′2, etc. We note that all above

kets as well as all primitive idempotents (65) (66) obey a system of five equations (specific for each
particle), aα|νR〉 = 0 = bj|νR〉, a∗1 |νL〉 = a2|νL〉 = 0 = bj|νL〉, α = 1, 2, j = 1, 2, 3, etc., so that
they are minimal right ideals in agreement with the philosophy of Furey [20].
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The fact that νR, ν̄L are not distinguished by the superselected charges has a physical
implication; one can consider their coherent superposition as in the now popular theory
of a (hypothetical) Majorana neutrino. This suggests the introduction of a restricted 15-
dimensional particle subspace with projector

Pr = P − (νR) = q + ℓr , ℓr = ℓ(1 − π1π2) . (69)

Theories whose field algebra is a tensor product of a Dirac spinor bundle on a space-
time manifold with a finite dimensional internal space usually encounter the problem of
fermion doubling [61] (still discussed over 20 years later, [62]). It was proposed in [34]
as a remedy to consider the algebra PCℓ10P , where P is the projector (42) on the 16 di-
mensional particle subspace (including the hypothetical right-handed sterile neutrino). It
is important—and will be essential in the treatment of the Higgs field (Section 4)—that

the operators a
(∗)
α and b

(∗)
j behave quite differently under particle projection. While a

(∗)
α

commute with P so that

Pa
(∗)
α P = a

(∗)
α P = Pa

(∗)
α , [Pa∗α,Paβ]+ = Pδαβ, (70)

the 2-sided particle projection of b
(∗)
j vanishes:

PbjP = 0 = Pb∗j P . (71)

Accordingly, while the generators (57) of the (electroweak) flavor “left-right symmetry”
su(2)L ⊕ su(2)R just get multiplied by P , the particle subspace projections of the su(3)c

generators take a modified form:

Pbjb
∗
kP = bjb

∗
k p′

ℓ
=: Bjk for (j, k, ℓ) ∈ Perm(1, 2, 3), Bjj − Bkk := qj − qk;

Ta =
1
2 Bjkλ

kj
a , λa ∈ H3(C), tr λa = 0, tr λa λb = 2δab, a, b = 1, · · · , 8 , (72)

but still obey the same CR. It makes sense to separately consider the gauge Lie algebra in the
lepton and quark sectors (or the factors Cℓ4 and Cℓ6 in Cℓ10), noting that P(B − L) = −1
for leptons and P(B − L) = 1

3 for quarks. It is particularly appropriate to treat the lepton
sector by itself when using the restricted particle space as it is there that the flavor oscillators

a
(∗)
α are also modified:

ℓra
(∗)
1 ℓr = a

(∗)
1 π′

2 =: A
(∗)
1 , ℓra

(∗)
2 ℓr = a

(∗)
2 π′

1 =: A
(∗)
2 . (73)

The operators A
(∗)
α provide a realization of the four odd generators of the smallest

simple Lie superalgebra, sℓ(2|1), whose even part is su(2)L ⊕ u(1)Y (for a detailed iden-
tification with the standard definition of sℓ(2|1), see Section 3 of [2]). The non-vanishing

anticommutators of A
(∗)
α are:

[A1, A∗
1 ]+ = π′

2 = −Q, [A2, A∗
2 ]+ = π′

1 = Q − Y,

[A∗
1 , A2]+ = a2a∗1 = −I+, [A1, A∗

2 ]+ = −I−; [I+, I−] = 2I3 = 2Q − Y (74)

(where we are omitting the superscript L on Ia). We shall apply the odd generators A
(∗)
α in

defining the Higgs part of a superconnection in Section 4. The minimal associative envelope Aℓ

of sℓ(2|1) ⊂ Cℓ4 is nine-dimensional; it contains on top of A
(∗)
α and their anticommutators

(74) the projector A∗
1 A1 = A∗

2 A2 = π′
1π′

2 ∈ Cℓ4. The resulting internal space algebra that
ignores the sterile neutrinos is the direct sum

A = Aℓ ⊗ ℓ⊕ Cℓ4 ⊗Aq, Aq = qCℓ0
6q. (75)

Here, Aq is effectively the nine-dimensional associative envelope of u(3) ⊂ Cℓ0
6.
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3.4. Complex Structure Associated with R7: A Comment

Inspired by [24,46,63], we shall display and discuss the symmetry subalgebras of
Cℓn, n = 8, 9, 10 of the complex structure generated by the Clifford pseudoscalar ωR

6
corresponding to the right action of the octonions:

ωR
6 = γR

1 · · · γR
6 for γR

α = ǫ ⊗ Rα α = 1, · · · , 7 . (76)

Written in terms of the color projectors pj and p′j, the Hermitian pseudoscalar iωR
6

assumes the form:

iωR
6 = 1

2 (P
′ −P − 3(B − L)) = ℓ+ q′ − ℓ′ − q ,

ℓ
′ = p′1 p′2 p′3, q′ =

3

∑
j=1

q′j, q′1 = p′1 p2 p3, q′2 = p1 p′2 p3, q′3 = p1 p2 p′3 (77)

where we have used
L = ℓ− ℓ

′ , 3B = q − q′ . (78)

While the term P ′ −P (42) commutes with the entire derivation algebra spin(6) = su(4)
of Cℓ6, the centralizer of B − L in su(4) is u(3)—see Proposition A2 in Appendix A. It
follows that the commutant of ωR

6 in so(8) is u(3)⊕ u(1), while its centralizer in so(9) is the
gauge Lie algebra gSM = su(3)⊕ su(2)⊕ u(1) of the SM; finally, in so(10), ωR

6 is invariant
under the left-right symmetric extension of gSM [24,63],

gLR = su(3)c ⊕ su(2)L ⊕ su(2)R ⊕ u(1)B−L . (79)

Furthermore, as proven in [46], the subgroup of Spin(9) that leaves ωR
6 invariant is

precisely the gauge group9 GSM = S(U(2)× U(3)) (13) of the SM (with the appropriate Z6
factored out). One is then tempted to assume that Cℓ9, the associative envelope of the Jordan
algebra J8

2 = H2(O), may play the role of the internal algebra of the SM, corresponding
to one generation of fundamental fermions, with Spin(9) as a GUT group [27,28,33]. We
shall demonstrate that although GSM appears as a subgroup of Spin(9), its representation,
obtained by restricting the (unique) spinor IR 16 of Spin(9) to S(U(2)×U(3)) only involves
SU(2) doublets, so it has no room for (eR), (uR), (dR) (65) (66). We shall see how this comes
about when restricting the realization (57) of IL and IR to Spin(9) ⊂ Cℓ9. It is clear from
(57) that only the sum a1 + a∗1 = γ9 (not a1 and a∗1 separately) belongs to Cℓ9. So, the su(2)
subalgebra of spin(9) corresponds to the diagonal embedding su(2) →֒ su(2)L ⊕ su(2)R:

I+ = IL
+ + IR

+ = (a∗1 + a1) a2 = γ9 a2, I− = IL
− + IR

− = a∗2γ9

2I3 = 2IL
3 + 2IR

3 = [a2, a∗2 ] = π2 − π′
2 . (80)

In other words, the spinorial IR 16 of Spin(9) is an eigensubspace of the projector
P1 = (2IL

3 )
2. It consists of four SU(2)L particle doublets and their right chiral antiparticles.

More generally, the only simple orthogonal groups with a pair of inequivalent complex
that conjugate fundamental IRs are Spin(4n + 2) (see, e.g., [64], Proposition 5.2, p. 571).
They include Spin(10) but not Spin(9).

A direct description of the IR 16L of Spin(10) acting on CH⊗ CO is given in [23]
(Here, CH and CO are a short hand for the complexified quaternions and octonions:
CH := C⊗R H). The right action of CH on elements of CH⊗CO, which commutes with
the left-acting spin(10), is interpreted in [23] as the Lorentz (SL(2,C)) transformation of
the (unconstrained) two-component Weyl spinors.

The left-right symmetric extension gLR (78) of gSM has a long history, starting with [65]
and vividly (with an admitted bias) told in [66]; it has been recently invigorated in [67,68].
The group GLR was derived by Boyle [47] starting with the group E6 of determinant
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preserving linear automorphisms of the complexified Albert algebra CJ8
3 and following

the procedure of [35].

4. Particle Subspace and the Higgs Field

4.1. The Higgs as a Scalar Part of a Superconnection

The space of differential forms Λ∗ = Λ0 + Λ1 + Λ2 + . . . can be viewed as a Z2
graded setting Λev = Λ0 + Λ2 + . . . , Λod = Λ1 + Λ3 + . . .. Let M = M0 + M1 be a Z2
graded matrix algebra. A superconnection in the sense of Quillen [69,70] is an element of
Λev ⊗ M1 + Λod ⊗ M0, the odd part of the tensor product Λ∗ ⊗ M; a critical review of the
convoluted history of this notion and its physical implications is given in Section 4 of [71]
(one should also mention the neat exposition of [72] in the context of the Weinberg–Salam
model with two Higgs doublets).

Let D be the Yang–Mills connection one-form of the SM,

D = dxµ(∂µ + Aµ(x)) ,

iAµ = W+
µ IL

+ + W−
µ IL

− + W3
µ IL

3 +
N

2
YBµ + Ga

µ Ta , (81)

where Y, IL, and Ta are given by (62), (57), and (72), respectively; Ga
µ is the gluon field, and

Wµ and Bµ provide an orthonormal basis of electroweak gauge bosons; the normalization
constant N will be fixed in Equation (93) below. Then, one defines a superconnection D

in [34] involving the chirality χ (60) by

D = χD + Φ , Φ = ∑
α

(φα a∗α − φα aα) ∈ PCℓ1
10P = PCℓ1

4 (82)

(we omit, for the time being, the projector P in Aµ and Φ). The last equation follows from
(71); the projection on the particle subspace kills the odd part of Cℓ6, thus ensuring that the
quarks’ color symmetry remains unbroken. The factor χ (first introduced in this context
in [71]) ensures the anticommutativity of Φ and χD without changing the Yang–Mills
curvature D2 = (χD)2.

The projector P (42) on the 16-dimensional particle subspace that includes the hy-
pothetical right chiral neutrino (and is implicit in (82)) was adopted in [34]. By contrast,
particles are only distinguished from antiparticles in [2] if they have different quantum
numbers in the Lie algebra of the SM

gSM = su(3)c ⊕ su(2)L ⊕ u(1)Y . (83)

Thus, in [2], P is replaced by the 15-dimensional projector Pr = q + ℓr (69). We have

seen that the projected odd operators A
(∗)
α = ℓra

(∗)
α ℓr give rise to a realization of the four

odd elements of the eight-dimensional simple Lie superalgebra sℓ(2|1) whose even part
is the four-dimensional Lie algebra u(2) of the Weinberg–Salam model of the electroweak
interactions. It is precisely the Lie superalgebra that was proposed in 1979 independently
by Ne’eman and by Fairlie [44,45] (and denoted by them su(2|1)) in their attempt to unify
su(2)L with u(1)Y (and explain the spectrum of the weak hypercharge). Let us stress that
the representation space of sℓ(2|1) consists of the observed left and right chiral leptons
(rather than of bosons and fermions like in the popular speculative theories in which the
superpartners are hypothetical). Note that the trace of Y on negative chirality leptons
(νL, eL) is equal to its eigenvalue on the unique positive chirality state (eR) (equal to −2) so
that only the supertrace of Y vanishes on the lepton (as well as on the quark) space. This
observation is useful in the treatment of anomaly cancellation (cf. [73]).

We shall sketch the main steps in the application of the superconnection (82) to the
bosonic sector of the SM, emphasizing specific additional hypotheses used on the way (for
detailed calculations, see [2]).
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The canonical curvature form

D
2 = D2 + χ[D, Φ] + Φ2, [D, Φ] = dxµ(∂µΦ + [Aµ, Φ]) (84)

satisfies the Bianchi identity

DD
2 = D

2
D (⇒ χ(dΦ2 + [A, φ2] + [Φ, DΦ]+) = 0) , (85)

equivalent to the (super) Jacobi identity of our Lie superalgebra. It is important that the
Bianchi identity, which is needed for the consistency of the theory, still holds if we add to
D2 a constant matrix term with a similar structure. Without such a term, the Higgs potential
would be a multiple of Tr Φ4 and would only have a trivial minimum at Φ = 0, yielding no
symmetry breaking. The projected form of Φ (82) and hence the admissible constant matrix
addition to Φ2 depends on whether we use the projector P (as in [34]) or Pr (as in [2]). In

the first case we just replace a
(∗)
α with a

(∗)
α P . In the second, however, the odd generators for

leptons and quarks differ, and we set:

Φ = ℓ(φ1 A∗
1 − φ1 A1 + φ2 A∗

2 − φ2 A2) + ρq
2

∑
α=1

(φα a∗α − φα aα) , (86)

where ρ (like N in (81)) is a normalization constant that will be fixed later. Recalling that ℓ
and q are mutually orthogonal (ℓq = 0 = qℓ, ℓ+ q = P), we find

Φ2 = ℓ(φ1φ2 IL
+ + φ1φ2 IL

− − φ1φ1π′
2 − φ2 φ2π′

1)

−ρ2q(φ1φ1 + φ2 φ2) (φα = φα(x)) . (87)

This suggests defining the SM field strength (the extended curvature form) as

F = i(D2 + m̂2) , m̂2 = m2(ℓ(1 − π1 π2) + ρ2q) (88)

(while m̂2 = m2P for the 16-dimensional particle subspace of [34]).

4.2. Higgs Potential and Mass Formulae

This yields the bosonic Lagrangian (setting TrX = 1
4 trX—see [2])

L(x) = Tr
{

1
2 FµνFµν − (∂µΦ + [Aµ, Φ])(∂µΦ + [Aµ, Φ])

}
−V(Φ) (89)

where the Higgs potential V(Φ) is given by (noting that Trℓr =
3
4 ):

V(Φ) = Tr (m̂2 + Φ2)2 − 1
4 m4 = 1

2 (1 + 6ρ4)(φφ − m2)2 . (90)

Minimizing V(Φ) gives the expectation value of the square of φ = (φ1, φ2):

〈φ φ〉 = φm
1 φm

1 + φm
2 φm

2 = m2, for Φm =
2

∑
α=1

φm
a a∗α(ℓπ′

3−α + ρq) + c · c (91)

(the superscript m indicates that φα takes a constant in x values depending on the mass pa-
rameter m). The mass spectrum of the gauge bosons is determined by the term
−Tr [Aµ, Φ][Aµ, Φ] of the Lagrangian (89), with Aµ and Φ given by (81) and (86) for
φα = φm

α . The gluon field Gµ does not contribute to the mass term as Cℓ0
6 commutes with

Cℓ1
4. The resulting quadratic form is generally not degenerate, so it does not yield a massless

photon. It does so, however, if we assume that Φm is electrically neutral (i.e., commutes
with Q (64)):

[Φm, Q] = 0 ⇒ φm
2 = 0 (= φm

2 ) . (92)



Universe 2023, 9, 222 18 of 25

The normalization constant N (=tg θw) is fixed by assuming that 2IL
3 and NY are

equally normalized:

N2 =
Tr (2IL

3 )
2

Tr Y2 =
3
5

(
= (tg θw)

2 ⇔ sin2 θw =
3
8

)
. (93)

As Y(νR) = 0 = IL
3 (νR), this result for the “Weinberg angle at unification scale” is

independent of whether we use P or Pr. If one takes the trace over the leptonic subspace,
the result would have been (tg θw)2 = 1

3 (⇒ sin θw = 1
2 , [44]), which is closer to the

measured low-energy value.
Demanding, similarly, that the leptonic contribution to Φ2 is the same as that for a

colored quark (which gives ρ = 1 for the projector P), we find

ρ2 =
Tr(ℓ(1 − π1π2)Φ

2)

Tr qj Φ2 =
Tr(π′

1π′
2 φ φ + π′

1π2 φ2 φ2 + π1π′
2 φ1 φ1)

4 φ φ
=

1
2

. (94)

The ratio m2
H

m2
W

, on the other hand, is found to be

m2
H

m2
W

= 4
1 + 6ρ4

1 + 6ρ2 =

{
4 for ρ2 = 1

5
2 for ρ2 = 1

2
. (95)

The result of [2], which is much closer to the observed value, can also be written in the
form m2

H = 4 cos2 θW m2
W , where θW is the theoretical Weinberg angle (93).

5. Outlook

5.1. Coming to Cℓ10

The search for an appropriate choice of a finite dimensional algebra suited to represent
the internal space F of the SM is still ongoing. The road to the choice of Cℓ10, our first step
to the restricted algebra A (75), has been convoluted.

In view of the lepton-quark correspondence that is embodied in the splitting (1) of
the normed division algebra O of the octonions, the choice of Dubois-Violette [25] of the
exceptional Jordan algebra F = H3(O) (7) appeared to be particularly attractive. We
realized [27,28,35] that the simpler to work with subalgebra

J8
2 = H2(O) ⊂ H3(O) = J8

3 (96)

corresponds to the observables of one generation of fundamental fermions. The associative
envelope of J8

2 is Cℓ9 = R[16]⊕R[16] with the associated symmetry group Spin(9). It was
proven in [35] that the SM gauge group GSM (13) is the intersection of Spin(9) with the
subgroup of the automorphism group F4 of J8

3 that preserves the splitting (1); that is, the

group SU(3)×SU(3)
Z3

⊂ F4.
We were thus inclined to identify Spin(9) as the most economic GUT group. As

demonstrated in Section 3.4, however, the restriction of the spinor IR 16 of Spin(9) to its
subgroup GSM gives room to only half of the fundamental fermions, the SU(2)L doublets;
the right chiral singlets, eR, uR, dR, are left out. It was then recognized that the (octonionic)
Clifford algebra Cℓ10 does the job. The particle interpretation of Cℓ10 is dictated by the
choice of a (maximal) set of five commuting operators in the Pati–Salam Lie subalgebra
of so(10) that leaves our complex structure invariant. This led us to presenting all chiral
leptons and quarks of one generation as mutually orthogonal idempotents (65) and (66).

Furey [21] arrived (back in 2018) at the tensor product Cℓ4⊗̂Cℓ6 (11) following the
R⊗C⊗H⊗O road. In fact, Clifford algebras have arisen as an outgrowth of Grassmann
algebras and quaternions10. The 32 products eaεν (=ενea), a = 1, · · · , 8 (e8 = 1I), ν = 0, 1, 2, 3
of octonion and quaternion units may serve as components of a Spin(10) Dirac (bi)spinor,
acted upon by Cℓ10 (with generators (36) involving the operators Lα)—cf. [23].
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5.2. Two Ways to Avoid Fermion Doubling

There are two inequivalent possibilities to avoid fermion doubling within Cℓ10. One,
which was adopted in [2,34] and in Section 3.3 of the present survey, consists in projecting
on the particle subspace, which incorporates four SU(2)L doublets and eight SU(2)L (right
chiral) singlets, with projector (42)

P = ℓ+ q =
1 − iω6

2
, ℓ = p1 p2 p3 , q = q1 + q2 + q3 (97)

(see (70)–(72)). Here, ω6 is the Cℓ6 pseudoscalar, the distinguished complex structure used
in [24] as a first step in the “cascade of symmetry breakings”. The particle projector (97) is
only invariant under the Pati–Salam subgroup (8) of Spin(10). The more popular alterna-
tive, which was adopted in [23], projects on the left chiral fermions (four particle doublets
and eight antiparticle singlets) with projector ΠL, which is defined in terms of the Cℓ10
chirality χ = iω10:

ΠL =
1 − χ

2
= PP1 + P ′P′

1 (P + P ′ = 1 = P1 + P′
1) , (98)

invariant under the entire Spin(10); here, P1 projects on SU(2)L doublets (cf. (58)). The
components of the resulting 16L are viewed in [23] as Weyl spinors; the right action of
(complexified) quaternions (that commutes with the left spin(10) action) is interpreted as
an sℓ(2,C) (Lorentz) transformation.

The difference of the two approaches, which can be labeled by the projectors P and
ΠL (on the left and right particles and on the left particles and antiparticles, respectively),
has implications in the treatment of the generalized connection (including the Higgs) and
anomalies. Thus, for the ΠL (anti)leptons (νL, eL), eL, νL we have vanishing trace of the
hypercharge, tr ΠLY = 0. For P leptons, (νL, eL), νR, eR, the traces of the left and right
chiral hypercharge are equal: tr(PΠLY) = −2 = tr(PΠRY), so that, as noted in Section 4.1,
only the supertrace vanishes in this case. The associated Lie superalgebra fits Quillen’s
notion of superconnection ideally. A real “physical difference” only appears under the
assumption that the electroweak hypercharge is superselected and P is replaced by the
restricted projector Pr on the 15-dimensional particle subspace (with the sterile neutrino νR

and with the vanishing hypercharge excluded). Then, the leptonic (electroweak) part of
the SM is governed by the Lie superalgebra sℓ(2|1), whose four odd generators are given

by third-degree monomials in a
(∗)
α , the Cℓ4 Fermi oscillators. The replacement of ℓ by ℓr

breaks the quark-lepton symmetry; while each colored quark qj appears in four flavors, the
colorless leptons number just three. This yields a relative normalization factor between the
quark and leptonic projection of the Higgs field and allows us to derive (in [2]) the relation

m2
H = 5

2 m2
W = 4 cos2 θth m2

W , (99)

where θth is the theoretical Weinberg angle, such that tg2 θW = 3
5 . The relation (99) is satisfied

within 1% accuracy by the observed Higgs and W± masses.

5.3. Summary and Discussion; a Challenge

After the pioneering work of Feza Gürsey and the collaborators in the 1970s, Geoffrey
Dixon devoted over 30 years to division algebras, which is followed by Cohl Furey since
the 2010s. The Clifford algebra approach to unification, coupled with fermionic creation
and annihilation operators, has also been pursued since the late 1970s by the Italian group
around Roberto Caslbuoni. The notion of superconnection was anticipated and applied to
the Weinberg–Salam model during the first decade of the creation of the SM as well. Thus,
the basic ingredients of our endeavor have been with us for some 50 years. The pretended
new features of the present survey concern certain details. Here belong:

- The interpretation of the Clifford pseudoscalar ω6 as i(P −P ′), where P and P ′ are
the particle and antiparticle projection operators, respectively.
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- The realization that the projected Clifford algebra

PCℓ10P = Cℓ4 ⊗ Cℓ0
6, (100)

only involves the even part Cℓ0
6 of Cℓ6; coupled with the assignment of the Higgs field to

the odd part, Cℓ1
4 of the first factor explains the symmetry breaking of the (electroweak)

flavor symmetry while preserving the color gauge group.
- Exhibiting the role of the sterile neutrino (of the first generation of fundamental

fermions) as the vacuum state of the theory. The gauge group of the SM is identified as the
maximal subgroup of the Pati–Salam group GPS (8) that leaves νR invariant.

- Singling out the reduced 15-dimensional particle subspace yields a relation between
the Higgs and the W boson masses and the theoretical Weinberg angle satisfied within 1%
accuracy.

What is missing for completing the “Algebraic Design of Physics”—to quote from the
title of the 1994 book by Geoffrey Dixon—is a true understanding of the three generations of
fundamental fermions. None of the attempts in this direction [18,25,30,47,74] has brought a
clear success. The exceptional Jordan algebra J8

3 = H3(O) (7) with its built-in triality was
first proposed to this end in [25] (continued in [33]); in its straightforward interpretaton,
however, it corresponds to the triple coupling of left and right chiral spinors with a vector
in internal space rather than to three generations of fermions. As recalled in (Section 5.2
of) [30], any finite dimensional unital module over H3(O) has the (disappointingly unimag-
inative) form of a tensor product of H3(O) with a finite dimensional real vector space E. It
was further suggested there that the dimension of E should be divisible by three, but the
idea was not pursued any further. Boyle [47] proposed considering the complexified excep-
tional Jordan algebra, whose group of determinant preserving linear automorpghisms is
the compact form of E6. This led to a promising left-right symmetric extension of the gauge
group of the SM, but the discussion has not yet shed new light on the three generation
problem. Yet another development based on the study of indecomposable representations
of Lie superalgebras can be traced back from [75], but only the mathematical machinery
has been discussed so far.
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Appendix A

Appendix A.1. Notation for Clifford Algebras

Cℓ(s, t) stands for the Clifford algebra generated by γα satisfying

[γα, γβ]+ = 2ηαβ, ηαα = 1 for α = 1, . . . , s, ηαα = −1 for α = s + 1, . . . , s + t

(ηαβ = 0 for α 6= β). Its automorphism group is the (non-compact for st 6= 0) orthogonal
group O(s, t) = O(t, s). As internal symmetries correspond to compact gauge groups, we
are mainly working with (positive or negative) definite forms and use the abbreviated
notation Cℓs = Cℓ(s, 0) and Cℓ−t = Cℓ(0, t) for the associated Clifford algebras. The even
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subalgebra Cℓ0(s, t) is defined as the (closed under multiplication) span of products of
an even number of γ matrices; The odd subspace Cℓ1(s, t) is defined as the (real) span of
products of odd numbers of γs (which is not closed under multiplication).

Appendix A.2. Interrelations between the L, E, and R Bases of so(8)

The imaginary octonion units e1, · · · , e7 obey the anticommutation relations of Cℓ−7

[eα, eβ]+ := eαeβ + eβeα = −2 δαβ , α, β = 1, · · · , 7 (A1)

and give rise to the seven generators Lα = Leα of the Lie algebra so(8):

Lα8 := 1
2 Lα =: −L8α , Lαβ := [Lα8, L8β] ∈ so(7) ⊂ so(8) . (A2)

For α 6= β, there is a unique γ such that

Lα eβ = fαβγ eγ = ±eγ , fαβγ = − fβαγ = fγαβ . (A3)

The structure constants fαβγ (22) (which only take the values 0,±1) obey for different
triples (α, β, γ) the relations

fαβγ = fα+1 β+1 γ+2 = f2α,2β,2γ (mod 7) . (A4)

The list (22) follows from f124 = 1 and the first Equation (A4), taking into account
relations such as f679 ≡ f672 (mod 7), etc. Note that fαβγ 6= 0 fαβγ are the structure
constants of a (quaternionic) su(2) Lie algebra; they are not the structure constants of
so(7) ⊂ so(8).

Define the involutive outer automorphism π of the Lie algebra so(8) by its action
(26) on the left and right multiplication Lα and Rα of octonions by imaginary octonions
α = −α∗:

π(Lα) = Lα + Rα =: Tα , π(Rα) = −Rα ⇒ π(Tα) = Lα . (A5)

In the basis (A1) and (A3) of imaginary octonion units eα (α = 1, · · · , 7), by setting
e8 = 1I and Lα8 = 1

2 Lα (A2), Rα8 = 1
2 Rα = −R8α, we define Eab by the second relation (27)

Eab ec := δbc ea − δac eb , a, b, c = 1, · · · , 8 (e8 = 1) . (A6)

Proposition A1. Under the above assumptions/definitions, we have

π(Lab) = Eab (for Lαβ := [Lα8, L8β] , Lα8 = 1
2 Lα = −L8α) . (A7)

Proof. From the first equation (A5) and from (A1), (A2), and (A6), it follows that

Eα8 = Lα8 + Rα8 = π(Lα8) . (A8)

The proposition then follows from the relations

Lαβ = [Lα8, L8β] , Eαβ = [Eα8, E8β] (A9)

and from the assumption that π is a Lie algebra homomorphism.

Corollary A1. From (A7) and the involutive character of π, it follows that, conversely,

π(Eab) = Lab . (A10)

To each α = 1, · · · , 7, there are three pairs βγ such that Lβγ and Eβγ commute with Lα and
among themselves and allow for the expression Lα = 2Lα8 in terms of Eα8 and the corresponding
Eβγ:
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L1 = 2 L18 = E18 − E24 − E37 − E56 ,

L2 = 2 L28 = E28 + E14 − E35 − E67 ,

L3 = 2 L38 = E38 + E17 + E25 − E46 ,

L4 = 2 L48 = E48 − E12 + E36 − E57 ,

L5 = 2 L58 = E58 + E16 − E23 − E47 ,

L6 = 2 L68 = E68 − E15 + E27 − E34 ,

L7 = 2 L78 = E78 − E13 − E26 − E45 , or Lα = Eα8 − ∑
β<γ

fαβγ Eβγ . (A11)

Recalling that Eab = π(Lab) (A8) and the fact that π is involutive, so that π(Eab) = Lab

(A10), we deduce, in particular,

2 E78 = L78 − L13 − L26 − L45 ,

R7 = 2 E78 − 2 L78 = −L78 − L13 − L26 − L45 , (A12)

thus reproducing (29).
We now proceed to displaying the commutant of iω6 and iωR

6 in so(7 + j), j = 1, 2, 3.

Proposition A2. While the Lie algebra spin(6) = su(4) commutes with L7, the commutant of R7
(A12) in su(4) ⊂ sℓ(4,C) is u(3)(⊂ sℓ(4,C)), given by

u(3) =

{
3

∑
j,k=1

Cjk[b
∗
j , bk] ; Cjk ∈ C , Ckj = −Cjk

}
(A13)

in the fermionic oscillator relalization of Cℓ6(C) (the bar over Cjk standing for complex conjugation).

Proof. The fact that L7 = 2 L78 commutes with the generators Lαβ (α, β = 1, · · · , 6) of
so(6) and follows from (21). To find the commutant of R7 (A12), it is convenient to use the
fermionic realization of the complexification sℓ(4,C) of su(4), which is spanned by the nine
commutators [b∗j , bk] in (A13) and the six products

bj bk = −bk bj , b∗j b∗k = −b∗k b∗j , j, k = 1, 2, 3, j 6= k . (A14)

The sum L13 + L26 + L45 in (A12) is a multiple of B − L (58), the Hermitian generator
of the center of gℓ(3,C),

B − L

(
=

i

3
(γ13 + γ26 + γ45)

)
=

1
3

3

∑
j=1

[b∗j , bj] . (A15)

The relations

[B − L, b∗j b∗k ] =
2
3 b∗j b∗k , [B − L, bj bk] = − 2

3 bj bk ,

[[
B − L, [b∗j , bk]

]]
= 0 , j, k = 1, 2, 3, j 6= k , (A16)

show that the commutant of B − L (and hence of R7) in su(4) is u(3).

Corollary A2. The commutant of ωR
6 in so(8) is u(3)⊕ u(1); the commutant of ωR

6 in spin(9)
is the gauge Lie algebra of the SM:

GSM = {a ∈ spin(9) ; [a, ωR
6 ] = 0} = u(3)⊕ su(2) . (A17)
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Notes

1 For a pleasant-to-read review of octonions, their history, and applications, see [13].
2 I had the good fortune to know him personally. See Witten’s eloquent characterization of his personality and work in the

Wikipedia entry on Feza Gürsey (1921–1991).
3 These algebras are defined and classified in [3,4]; for a concise review, see [29], Section 3.2 of [25], and Section 2 of [30]; concerning

Pascual Jordan (1902–1980), see [31].
4 For an enlightening review of the algebra of GUTs and some 40 references, see [38].
5 Aptly called geometric algebra by its inventor—see [39].
6 For any associative ring K, particularly for the division rings K = R,C,H, we denote the algebra of m × m matrices with entries

in K by K[m].
7 See [50] for a reader-friendly review of Moufang loops and for a glimpse of the personality of Ruth Moufang (1905–1971).
8 The 10-fold classification of Z2 graded Clifford algebras also involves signs coming from squaring two antiunitary charge

conjugation operators—see [51] Chapter 13, pp. 87–125.
9 The group GSM was earlier obtained in [35], starting with the Albert algebra J8

3 ( 7).
10 The Dublin Professor of Astronomy William Rowan Hamilton (1805–1865) and the Stettin Gymnasium teacher Hermann Günter

Grassmann (1809–1877) published their papers on quaternions and on “extensive algebras”, respectively, in the same year of
1844. William Kingdom Clifford (1845–1879) combined the two in a “geometric algebra” in 1878, a year before his death, aged 33,
referring to both of them.
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