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Abstract

The quantum phase estimation algorithm has been utilized by a variety of quantum
algorithms, most notably Shor’s algorithm, to obtain information regarding the period
of a function that is appropriately encoded into a unitary operator. In many cases, it
is desired to estimate whether a specific state exhibits a certain pattern quickly. In
this paper, we exhibit a methodology based on the QPE algorithm to identify certain
patterns. In particular, starting from a properly encoded state, we demonstrate how
to construct unitary operators whose eigenvectors correspond to states with proper
diagonals. QPE will then output an eigenphase equal to zero with certainty for these
states, thereby identifying this class of matrices. For partial matches, our algorithm,
based on the tolerance threshold used, will show areas of high similarity, and it will
outperform classical ones when the number of mismatches defined by the tolerance is
significantly low when compared to the size of the diagonal.

Keywords Quantum pattern matching - Quantum phase estimation - Quantum
computing - Shor’s algorithm

1 Introduction

Inmany applications, we are interested in determining some characteristics of a dataset,

such as if it contains certain pre-defined patterns. For example, when searching for
large text data, a dot plot matrix [1] can be constructed to indicate the positions of the
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matches. In this dot plot matrix, diagonals will indicate matches; if there is a quick
algorithm to identify whether diagonals exist, it can be used to isolate areas of interest
in the input data; Schutzhold [2], for example, designed a quantum algorithm that can
be used to identify the locations of patterns within such a structure, while Prousalis
and Konofaos [3] have shown that pairwise sequence alignment can be improved
using quantum pattern recognition algorithms in dot plots. In general, even at the
classical level, many problems can be solved by mapping instances of the problem
into an operator and by solving the problem of estimating the eigenvalues of a given
operator in its abstract form [4, 5] or in a matrix representation form [6]. Generally,
the perturbations of unitary eigenvalues [7] and the repercussions of their physical
manifestations are a topic of wide interest [8].

In the present work, we present a method that uses the quantum phase estimation
(QPE) algorithm [9] to try to find patterns in the aforementioned fashion that identify
matrices that contain proper diagonals. The methodology is based on a modification
of the traditional QPE; whereas in the traditional QPE, we compute the eigenphases of
the states, in our approach, the input state can be arbitrary. Our algorithm constructs a
unitary operator U that has eigenvectors that correspond to states that encode perfect
diagonals. We show that when we apply QPE to this operator and with an input
state that encodes a perfect diagonal, our algorithms will produce, as expected, an
eigenphase with perfect certainty, thus correctly identifying the pattern. Moreover,
when the state differs slightly from an eigenstate, our algorithm produces values close
to the eigenphase with a bounded error. Thus, it can be used to identify partial matches
and areas of imperfect matches. These imperfect matches may have applications when
we are interested in sequences of data that have common characteristics, such as in
multiple sequence alignment (MSA) [10] where we are interested in relating sequences
that indicate similar functions or common ancestry and can therefore exhibit variations
in certain locations. Though our approach is mainly targeted at matrix diagonals in
the present work, it should be pointed out that the methodology finds applications in
pairwise sequence alignment (PSA) where we are interested in relating two sequences
where dot-matrix representations have been used in classical techniques such as the
Needleman—Wunsch (NW) [11] and Smith-Waterman (SW) algorithms [12]. In these
algorithms, each element of the matrix is assigned a specific score, based on a dynamic
programming routine, and the alignment is found after a back-tracking technique. The
proposed method—even in the classical sense—is by definition faster, since it does
not have to back-track to identify the alignment. NW [13] and SW [14] algorithms
are often used in combination with MSA as an alignment refiner. Furthermore, our
methodology can be extended to handle different kinds of patterns with the proper
redefinition of the operator, e.g., in typical pattern recognition where exact matches
are of interest.

In the landscape of quantum algorithms, our algorithm falls within the category of
quantum pattern matching, for which several approaches have already been estab-
lished, based both on methods extending Grover’s algorithm for searching in an
unsorted database [15] and on more modern approaches-based quantum machine
learning techniques.

The work on this document is structured in the following manner: Sect.2 gives
an overview of the existing theory and specifically on the core aspects of Shor’s
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algorithm that are being used in our work. Section 3 then describes the main idea behind
the proposed methodology in terms of the algorithm description and the operator
definition. Section4 describes the case of partial matches in the compared data strings
and how the algorithm can still be applied to identify areas of high correlation between
the source and target data. Some examples in the form of test runs are conducted in
Sect. 5, which show how the algorithm would behave in a noise-free setting in the
different scenarios of perfect and imperfect matches. An analysis of the performance
of the algorithm in terms of the running time is given in Sect.6; this section also
includes a comparative analysis with classical algorithms for sequence alignment and
with other quantum computing approaches for pattern matching. An analysis for the
number of one and two qubits required for transpiling our circuit in modern hardware,
together with an estimation of the accumulated error and some targeted mitigation
measures is listed in Sect.7. Finally, in Sect. 8, the results of the present work are
summarized together with a discussion on how to extend these to different patterns.

2 Theory

The algorithm presented in our work is based on Shor’s algorithm [16]; for complete-
ness, the most basic parts of Shor’s algorithm that are also relevant to the present work
will be briefly highlighted.

One of the main breakthroughs of Shor’s algorithm was that it implements a
polynomial algorithm to find the period r of a periodic function f, defined by:

f(x)=a" mod N. (D

The period r is the smallest integer such that:
a” mod N = 1. (2)
Shor’s algorithm computes the period by first defining a unitary operator U such that:
Uly) = |ay mod N). 3
Due to the periodicity of the mod function, this operator, when applied successively

for r iterations, cycles an eigenstate of U back to itself. For example, with a = 3,
N = 35 and if we start with state |1) we have:

Ul = 13)
U1y = |9)
U3y = |27)
U = 112)
Uy = 1) 4
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It is straightforward to verify that if U is applied on a superposition of all the states
in the above cycle, the superimposed state defined by:

r—1
1
luo) = 7 gakmodzv) Q)

would also be an eigenstate of U, with an eigenvalue equal to one

For example, for the cyclic state:

1
luo) = —= (1) +13) +19) +--- +[4) + [12)) (6)
0 NGV
if the operator acts on |ug), it will produce:
1
Ulug) = —=WU|1) + U3) + U|9) +--- + Ul4) + U|12))

(I3) +19) + 127) + - - - + [12) + [1))
= |uo). )
thus making |uo) an eigenstate of U, with eigenvalue equal to one. The above process

can be repeated if we allow the superposition of states that have a relative phase. In
the general case, |u) can then be defined to be of the form:

1 r—1 ok
|us)=ﬁl;e r |a* mod N) )

In a similar fashion, when U is applied to |uy), we obtain:

Ulug) = e+ luy) ©)

It can be seen that for 0 < s < r — 1, all u, are composed of states that, except state
[1), which is formed for k=0, pick up phases that correspond to the r-roots of unity.
Choosing a smaller example for the purposes of depiction witha = 7, N = 15 (in
which r = 4), and ignoring the overall normalization factor of 1/+/4, the eigenstates
of U can be formed as:

lug) = [1) +|7) + |4) + [13)
2 g or
ur) = 1) + e~ F[7) + e F14) + e T [13)
4 8 2
uz) = 1) + e~ F[7) £ T14) + ¢ T [13)
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u3) = |1) + e~ T7) + e~ T |4) + e~ 1 |13)
(10)

where we have omitted simplification in the exponents to demonstrate the relevant
rotation in each successive s. Adding all these states, we can note two things:

e The states add up to the state |1)
o The superposition consists of an equal superposition of the eigenstates of U, each
N

one with eigenphase equal to ¢ = 3.

Thus, if we perform the QPE algorithm on the U operator with an initial state equal

to |1) and measure the result, we will obtain ¢ = I with equal probability for each s;
from this result, » can then easily be obtained by the continuous fraction algorithm.

3 Methodology

As mentioned, the motivation behind the proposed algorithm lies in applying a QPE
pipeline in the dataset to gauge the existence of potential patterns. The following
Sects. 3.1 and 3.2 explain the motivation and execution of the algorithm, respectively.
Section 3.3 shows how the operator U can be constructed.

3.1 Motivation

In its simplest form, QPE works by assuming that an eigenstate |) of a unitary
operator U has been prepared. If the state is encoded in a register of size m and
a register of size n is used to store the phase estimation, then QPE works by first
performing a Hadamard operation on the output registered followed by a series of
controlled — U operations:

2"—1 2"—1
H®n @m 1 . C_Uzjm®n 1 ) .
0" 19)" ——— 25 D) ——— 25 > DIy A1)
Jj=0 Jj=0

Knowing that a pattern exists and searching for characteristic values is the way that
Shor’s algorithm works (i.e., we know that a period should exist, and we try to find its
value). In many problems, the reverse problem arises, i.e., trying to verify if certain
patterns exist.

The core idea of our approach is to apply QPE to a state and check if a pure phase
is an output. If it is, then the state has the pattern that we search for. We thus need to
solve the following:

Problem definition: Let a pattern P, be a perfect pattern and let D be a dataset.
Construct U such that its eigenstates correspond to representations of D that exhibit
the pattern P.

Our work will focus on the case where the pattern is perfect diagonals, and we will
provide a brief discussion of how it can be extended to general use cases in Sect. 8.
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3.2 Algorithm

The main goal of the algorithm is to construct an operator that has eigenstates that
correspond to diagonal states, where here we assume the simplest case of square
matrices with proper diagonals for simplicity.

We start the process by defining a sufficient representation of the problem: Define
an N x N matrix which contains N2 elements. Matrices can be encoded in a quantum
register of size equal to log N2 = 2log N, if we follow the simple scheme of basis state
encoding (i.e., encoding the various matrices in base states of the quantum register;
see [17] for a review of the most common quantum encoding schemes).

For example, for N = 2 we have the following schema:

0w
(00) =
(15)- o
<8 ?) — [11). (12)

where we have used Qiskit’s [18] convention for numbering indexes in registers, with
the rightmost qubit denoting the least significant bit.
Arbitrary matrices can, of course, be encoded via superpositions, e.g.,

((1)(1)>_> 100) + [11). (13)

where the normalization factors have been omitted.
We are now defining the operator U':

Ulx) =|(x + N 4+ 1) mod (N(N + 1))), (14)
withx € {0,1,..., N — 1}

Intuitively, this operator adds N + 1 to each state; with N+1 being the distance
between diagonal elements, it can be seen that this operator “moves” diagonal elements
down a row. The mod operation is present to ensure that the last element is cycled
back to the first place. For the simple N = 2 case, the operator is defined as:

Ulx) = |(x 4+ 3) mod 6) 15)

and its operation on the diagonal elements can be depicted as:

10 U 00
<0 0) — [00) — |11) — (O 1)
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(g (1)) S 200y - <(1) 8). (16)

where in the 2nd equation the element |11) = |3) was mapped to |(3 + 3) mod 6) =
|00).

An obvious eigenstate of operator U is the one taken from a superposition of
states that single out diagonal elements. This superposition, which we denote by |d),
maps a proper diagonal matrix (equal to the identity matrix in the simple case with 0/1
elements discussed here), such as the example in Eq. 13. If U is applied to |d), it leaves
the phase invariant. Thus, |d) is an eigenstate of U with an eigenvalue(eigenphase)
equal to one(zero).

3.3 Construction of U

It can be seen both intuitively and by the precise definition of U that the operator
basically performs a permutation of the basis states, as it adds the number N + 1 to
all states and cycles the last N states back to the first ones.

Using pseudocode, the operator U can be dynamically constructed using the code
depicted in algorithm listing 1 (please refer to code listing 1 in “Appendix A” for the
Python code using IBM’s Qiskit framework):

Algorithm 1 Compute the controlled-U operator
2

1: N < size
2: U < Matrix(N, N)

3: modulo < size mod size * (size — 1)

4: permutation <= 0

5: for i do between (modulo, (size*(size-1) + modulo):
6 Uli mod (size x (size —1)] =1

7 permutation <= permutation + 1

8: end for

9: for r do between (size*(size-1), N);

10: Ulrllrl < 1

11: end for

12: return U

It is to be noted that for the operator U to be able to cycle back the state of the
last element to the first position, it should, by its definition, act on a bigger space
than that corresponds to the matrix states (an example can be shown in Fig. 1). By
composing the above operator, we can construct the QPE circuit, depicted in Fig. 2 for
the 4 x 4 case. The Encoder sub-circuit is responsible for preparing the input state by
performing basic encoding (see Listing 2 in “Appendix A” for sample code that creates
the appropriate superposition ). This sub-circuit is non-unitary and is presented here
for simulation needs. In a real-world scenario, the encoding would be the outcome of
a quantum algorithm that would encode the input data as necessary. (See [19] for an
example of how to encode dot plots that originate from genetic sequence data).
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Fig. 1 Example of an operator U acting on a 16 x 16 state

phasep —— H 0 a
phase; —— H e 1QFT*
phase, —— H _— 2 a_
plot_Uy —0 —+—0 —0 —0 —0 —0 —0 —0
plot_U; —1 —_t—1 —1 —1 —1 —1 —1 —1
plot U, —2 _2 —2 —2 —2 —2 =2 =2
Encoder

plot_ U3 —3 —+—3U—3U—3U—3U—3U—3U—3U
plot_ Uy, —4 —_———4 —4 —4 —4 —4 —4 —4
plot_Us —5 —t—5 —5 —5 —5 —5 —5 —5
plot Y ——+—6 —6 —6 —6 —6 —6 —6

Cll 3 0 i 2

Fig.2 Example circuit for estimating whether there are main diagonals in the input matrix

Assuming a proper encoding of a state that represents a matrix with a proper main
diagonal, the operation of the circuit is straightforward: The state is an eigenstate of
operator U with an eigenvalue equal to one; therefore, the circuit will produce the
eigenphase 0 with 100% probability. In a real use case scenario, if a batch process
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produces dot plots by comparing test and target datasets, a quantum routine can classify
which parts of the compared datasets have a perfect match.

4 Partial matches

In a typical real-world scenario, data will rarely demonstrate perfect matches. Patterns
may often exhibit partial matches that will appear as diagonals with gaps. In contrast,
many patterns may also exhibit off-diagonal matches; in a text search problem, for
example, matches can occur in an off-diagonal position clearly due to chance; the
smaller the alphabet, the higher the chance of random off-diagonal matches. In such
cases, we would like to isolate areas that have a big correlation. Although the algorithm
will not produce a zero phase result deterministically, it can be seen that states that
are close to proper diagonals have a big overlap with states that correspond to proper
diagonals states that have already been studied.

More specifically, let |d) be the eigenstate corresponding to a full-match main
diagonal, i.e.,

1N—l
d) = — (N +1))=10 N +1 N —1)(N +1 17
|d) W;m +1)=[0)+ N +1) 4+ )N 4+ 1)) (17)

and let |d,,) be an eigenstate corresponding to a partial-match main diagonal, i.e., a
diagonal with m gaps/mismatches

N—-1 m

I .
e D0 Suili(N + 1)) (18)

Jj=0 pn=1

with 8, ; the Kronecker delta. Then, exploiting the orthogonality property (i|j) = &;;,
we obtain

1 1 m
k) = 75 i 2 20 =1y a9

The last relation clearly implies that for m << N, we expect the phases projected by
the QPE to be close to 0, while for a non-negligible number of gaps, m, we expect them
to deviate significantly from 0. Equation 19 reveals that if w is the phase corresponding
to the overlap between |d,;) and |d) it holds that

. m
w = arcsin <\/;> (20)
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The total measure of the overlap can be retrieved by taking the norm of the inner
product defined in (19):

() =1 - = 1)
N

Next, we consider the case of a “noisy” pattern. Such a pattern consists of a per-

fect match that is accompanied by off-diagonal matches. Such mismatches can occur

commonly in practice due to randomness, as off-position letters can match at various

positions. In practice, the larger the alphabet is, the rarer these off-diagonal occurrences

will be. Amino acid sequences, for example, will have much less “noise” than DNA

or RNA sequences. For these patterns, the state will be represented by the following
state |W,,)

1 N-—1 m
U,)) = —— (N +1 i(N + 1) + ki, 22
W) N ;)m +>>+;m +1) + k) (22)

with k,, representing the entries |k) corresponding to “noise.” By the same technique
as before, we arrive at

1

1 - .
N+m

< [(Wnld)* < 1 (23)

_N—l—m

depending on which of the m non-diagonal matches |k, ) are mapped by U to their
diagonally subsequent entries |k, + N + 1).

Combining the two terms, the one corresponding to errors due to gaps with the
overlap defined in Eq. 21 and the one corresponding to errors due to mismatch defined
in Eq. 23, we can state the following:

Theorem 1 Let a dot plot contain k gaps and | off-diagonal matches for a total of
m = k + [ mismatches. If |dy 1) is the state that encodes the dot plot, and |d) is the
state that encodes the perfect dot plot, the two states differ with a factor that scales as
O(R)-

Based on Theorem 1, we can define tolerance thresholds that can be used to classify
whether a sampling output corresponds to a match or not. These thresholds will depend
on the use case at hand.

5 Example runs

In this section, we will investigate some examples run on Qiskit simulation that depict
the various cases that can be encountered in practice and how the output can be
evaluated for match or mismatch. We will use the case of an 8 x 8 matrix and consider
the case of a proper diagonal, of gaps in the diagonal and of off-diagonal matches. The
circuit to be run for all cases is depicted in Fig. 3. Each simulation consisted of 1024
shots and was performed by the Aer simulator of Qiskit with a zero noise model.
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phasey —— H 0
phase; —— H _ 1QFTT ﬂ
phase; —— H O > ‘ ﬂ_
plot_ Uy —0 —+—0 —0 —0 —0 —0 —0 —0
plot_ U; —1 _ 1 -1 —1 —1 —1 —1 —1
plot_ U, —2 —_ 2 -2 —2 —2 —2 —2 =2
Encoder

plot_ U3 —3 —+—3U—3U—3U—3U—3U—3U—3U
plot_ Uy —4 — 4 —4 —4 —4 —4 —4 —4
plot_Us —5 —+—5 —5 —5 —5 —5 —5 —5
plot Yy ——+—6 —6 —6 —6 —6 —6 —6

c11 3 v 0 1 2

Fig.3 Circuit for detecting perfect matches on proper diagonals in an 8 x 8 matrix

-1.0

-0.8

0.6

0.4

0.2

0.0

Fig.4 Heatmap of a dot plot containing a proper diagonal

5.1 Perfect diagonal
Figure 4 depicts a heatmap corresponding to a dot plot with proper diagonal. Figure 5

depicts the results of the simulation. As expected, all runs produced a phase equal to
zero, indicating the presence of a proper diagonal. Although 1024 shots were used, it
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1024

10001

7501

Count

5001

250

Fig.5 Simulation results for a proper diagonal

is clear that when there is a perfect diagonal, very few runs are needed to identify that
there is a perfect match. The reason for this is that, in a perfect match, the algorithm
produces the value of zero with certainty, and we only need to exclude the case of a
false positive (i.e., a result of zero occurring when there is not a match). This can be
estimated as:

P(O|not perfect match) ~ o' (24)

where w, defined in Eq. 20, is the overlap of the state with the state |d) corresponding
to a state of perfect diagonal and ¢ the number of precision qubits that are used to
measure the eigenphase of the operator. The larger the distance between the input
state and the zero states is, the lower the measure of the overlap w is, and thus, the
closer the probability is to zero. This relation is further amplified by an increased
number of 7.

5.2 Gaps in the main diagonal

For a gap in the main diagonal, consider the example depicted in the heatmap in
Fig.6. There is one gap, so the mismatch, according to Eq. 21, is expected to be
around 1 — % = 0.875. Figure7 depicts the results of the simulation. The result
indicates a state resembling one that is close to a perfect diagonal within a factor of
893/1024 ~ 0.87, which is close to what is computed by theory. Depending on the
similarity threshold that is defined, this result can be accepted to indicate a match or

not.
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Fig. 6 Heatmap of a dot plot containing a diagonal with a single gap
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(S S (o) S S S :r, ::,

Fig.7 Simulation results for a dot plot with a single gap in the diagonal

5.3 Off-diagonal noise
The last case concerns off-diagonal matches. Figure 8 depicts a sample dot plot, where

there are two off-diagonal matches indexed at positions (0, 4) and (4, 0). When dot
plots are generated by comparing text data, off-diagonal matches generally come in
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Fig. 8 Heatmap of a dot plot containing noise with 2 off-diagonal matches

pairs; if (i, j) position denotes a match, so does position (J, ). If, however, the diago-
nal denotes matches via another procedure other than dot plots, this is not necessarily
true. Figure9 denotes the results of running the circuit for a total of 1024 shots and
obtaining the counts. The similarity is 859/1024 ~ 0.83, which is within the bounds
defined in Eq. 23.

6 Performance

In this section, an analysis of the complexity of the algorithm will be provided. The
analysis will focus on two axes, namely a standalone analysis that will be a running time
estimation for the algorithm (Sect. 6.1) and a comparative analysis with the most known
classical sequence alignment strategies (Sect.6.2) as well with the most established
approaches for quantum pattern matching (Sect. 6.3).

6.1 Running time complexity

The complexity of the algorithm depends on the accuracy needed for the phase
estimation and the execution time of the reverse QFT.

For the QPE part and as a first approximation, the controlled — U operation can
be considered as given oracle operations and be assigned a cost of O(1) (we will
see in Sect.7 how it can be decomposed in basis gates). Under this assumption, the
QPE algorithm can be shown to require a total of t = n + p qubits, where n is the
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Fig.9 Simulation results for a noisy dot plot with 2 off-diagonal matches

total number of qubits required to encode the state and p is the number of qubits used
to encode the eigenphase. The number p is related to the additive error of the phase
estimation (to achieve a smaller error, a greater number of controlled — U operations
is required), which scales as p =~ O(log é). To achieve this additive error, the number
of controlled — U operations required is O(é) [20].

When compared to classical algorithms, and ignoring the cost of constructing the dot
plot, these typically have to check a number of elements that is proportional to the size
N of the diagonal, and they runin O (N) steps. For perfect diagonals, where a single run
is required, the quantum algorithm presented clearly outperforms the classical ones.
As the tolerance threshold is increased, an even greater number of running shots is
required to obtain the sampler output that reproduces the output distribution faithfully.
According to Theorem 1, if the acceptance threshold, defined by the acceptable number
of mismatches m (gaps plus off-diagonal matches), scales lower than O (N), then we
have an asymptotical speedup. If, however, m scales similarly to N, then there is no
speedup. A 50% similarity acceptance criterion combined with a small window size
in a DNA matching problem, for example, may lead to dot plots that need a number
of shots that scale as O (N) before constructing a reliable output distribution.

6.2 Relevance to sequence alignment algorithms

When viewed in relation to existing algorithms for pairwise sequence alignment, our
algorithm should be seen as an accelerating routine for other algorithms that utilize
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dot plots to identify sequence matches. If, for simplicity, we assume a sequence of
equal matches equal to N, a dot plot algorithm would require:

e O(N?) steps for generating the dot plot
e O(N?) steps for analyzing the dot plot
e O(N?) space for storing the dot plot

These steps may, of course, involve further analysis depending on the specifics of the
problem at hand, such as whether the search includes gaps and mismatches. Another
class of algorithms is the ones based on dynamic programming, such as the SW [12]
or the NW [11] algorithm. Dynamic algorithms have been analyzed in [21], and they
also generally require O (N?) time to run, while the space requirements can be linear
for certain strategies. Finally, algorithms based on heuristics, such as FASTA [22] or
BLAST [23], are widely used in practice. These algorithms, although they still have a
complexity of O(N?), in practice they typically perform way better than algorithms
that depend on exhaustive search, although they do so with a possible loss of accuracy
in their results due to their heuristic nature.

As mentioned in Sect. 6, our algorithm can potentially lower the number of steps
required for analyzing the dot plot, especially if the number m of gaps and mismatches
is significantly lower than N. Regarding the dot plot generation, although not treated
in this work, this can be achieved by various techniques. Clapis [19], for example, uses
Quantum Programmable Logic Array (QPLA) techniques to dynamically construct
the dot plot; by leveraging the Espresso algorithm [24], Clapis construction, while still
polynomial, is still significantly shorter than the one obtained using QPLA directly.
One drawback, however, is the need for multi-controlled gates, which typically behave
very badly under transpilation into one- and two-qubit gates. Another approach, cur-
rently followed by many other problems, is to reduce the steps and number of qubits
needed to encode the dot plot by using custom encoding schemas that go beyond the
typical basis state encoding. Such a schema could be the quantum autoencoder [25],
which utilizes quantum machine learning techniques to compress the input data so
that the dot plot is then generated in fewer steps. Of course, under this new encoding
the exact formulation of our operator U would have to change, but, since it is defined
based on properties of its eigenspace, we expect that the change would involve its
representation only. This approach is a work in progress currently by the authors.
Generally, as long as the dot plot generation remains quadratic, it will dominate the
time complexity of any dot plot approach. As such, the quantum acceleration offered
by our algorithm is not expected to have such a big impact, at least in the near future,
in challenging established classical algorithms such as FASTA and BLAST. For a sub-
class of problems, however, that do not involve full alignment but only identification
of regions of high similarity, the algorithm may have a practical impact.

6.3 Relevance to other quantum algorithms for pattern matching
Quantum pattern matching algorithms can be broadly separated into two categories,

the ones that are based on the query model and that typically leverage the approach of
Grover’s algorithm, and the ones that depend on machine learning techniques.
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From the first category the original algorithm of Grover allows searching in an
unstructured database with a time complexity equal to O (v/N); supplemented with
new techniques that allow the efficient construction of equal superposition even when
the size of the state is not an exact power of 2 (see, for example, [26]), the application
of Grover’s algorithm can have a wide range of text searching problems. More related
to the problem of searching sequences, we can identify the algorithm proposed by
Niroula and Nam [27] which searches for a pattern of length M within a text of size N
in O(ﬁ ) steps, using O (N + M) space. Schaller and Schutzhold on the other hand
proposed an algorithm for image template recognition that similar to other approaches
achieves a O (v/N); however, they also proposed a noise filtering methodology that
can identify similar images that differ by some noise, in a similar fashion that our
algorithm tries to identify and isolate partial matches.

Compared to the above algorithms, our approach achieves a linear speed-up in the
best-case scenario. However, for a certain domain of use cases, it can be argued that
our algorithm has certain advantages:

e While generic pattern matching does not assume a structure of the input data,
our algorithm is performed on data that is pre-processed, such as dot plots. The
mechanics of preprocessing are encoded in the U operator, and the characteristics
of the dataset are taken into account by the search algorithm, such structure is, by
definition, ignored by algorithms that tackle the unstructured search problem.

e Our algorithm can be versatile to accommodate various preprocessing schemes.
Although demonstrated for the dot plot use case, different representations and/or
function definitions may accommodate different use cases; for example different
operands in the addition module N could lead to detection of rows (addition of
one), columns (addition of N) or even checkboard patterns (addition in mod2
arithmetic).

Quantum machine learning (QML) techniques, on the other hand, have shown great
promise in providing efficient alternative algorithms for various problems. Most of the
popular quantum machine learning approaches, such as the quantum neural networks
(QNNs), make use of feature maps, circuits that are used to efficiently encode, map and
reduce the dimensions needed to encode information. In contrast with the query model,
various feature maps that are of practical use can be implemented very efficiently in
NEAR-term hardware. One remarkable result by Huang et al. [28] demonstrates a
methodology for constructing quantum kernels that cannot be modeled classically in
an efficient manner. The extent to which these kernels are meaningful (i.e., they can
be used to extract useful information from datasets and thus be used by a machine
learning algorithm) is still a matter of research. If such kernels are found, computational
tasks that are performed by classical ML techniques are expected to be significantly
accelerated in the quantum setting. As classical neural networks show remarkable
efficiency in finding patterns, the corresponding QNNs with asymptotically faster
kernels can realize even greater breakthroughs.

Contrasting our algorithm with QML, it has little overlap, since its mechanics and
methodology follow a different path. However, QML can be used for the construction
of smaller and more NEAR-term friendly circuits of implementing the U operator as
mentioned in Sect. 6.2.
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7 Implementation in NEAR-term hardware and error analysis

While error advancements in hardware, as well as algorithm design and error mitigation
techniques [29], have led to an increase of the size of problems that can be run on real
quantum processors, the size of problems that can be tackled in real quantum hardware
is still much lower compared to classical implementations. As the number of qubits
grows with each year and as the threshold theorem [30] establishes the possibility
of arbitral scaling once certain error thresholds have been achieved, there is a good
possibility to witness practical quantum computations in the near future. Currently,
most of the algorithms that run for sufficient depth to justify anticipation for practical
applications in the near future are those that are specifically targeted to run on NEAR-
term hardware, such as ML algorithms that are based on feature maps [31] that can
be easily implemented in NEAR-term hardware or Variational Quantum Eigensolvers
based on hardware efficient ansatzes [32] .

Unfortunately, for our algorithm, as well as for many of the well-known quantum
algorithms, such as Shor’s and Grover’s algorithms, transpilation in existing hard-
ware is not straightforward. The main reason is that both of these algorithms use the
query model of computations for operators that entangle a large number of qubits.
Under the query model, function f is implemented via an operator U defined by the
transformation:

Ur(x)y) = |x)ly & f(x)) (25)

Uy performs a mapping between basis states that is 1-1 in order for it to be unitary.
As such, it essentially performs a permutation of the input qubit states. Such permu-
tation matrices can require a large number of single- and two-qubit gates, which is
further increased when the limitation of qubit connectivity is taken into account. This
section will provide a gauge of our algorithm’s requirements in terms of single- and
two-qubit gates, as well as an estimation of computational error and methods by which
this can be reduced.

7.1 Gate count analysis

As mentioned, the main obstacle in running the algorithm in NEAR-term hardware
is the transpilation of the U operator defined in Eq. 14. As proven in [33], a general
n-qubit U gate can be decomposed in a number of basic operations that has an upper
bound of @ (n>4"). Currently, there is no known efficient process for transpiling per-
mutation matrices in one- and two-qubit gates that can produce circuits that have such
a depth that practical applications can be run. However, some known methods com-
bined with the characteristics of the algorithm can be exploited to lower the required
number of qubits and the depth requirements of the circuit. Before we describe such
approaches, we first present some transpilation results using the maximum optimiza-
tion level of Qiskit’s transpiler (see “Appendix A” for a listing of the source code that
produced these results). The results can be seen in two cases:
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Table 1 Number of gates

produced by Qiskit transpiler Problem size Rz SX X X Depth
when the circuit is transpiled 2 425 257 24 241 625
against the Mumbai backend

4 8793 5774 - 6787 14,390

6 36,633 24,206 - 28,927 60,790

8 146,727 96,158 - 121,609 243,040
Table 2 Number of gates .

Probl RZ SX X CX Depth
produced by Qiskit transpiler robrem size °p
th.:l’l the circuit is transpiled 2 285 182 108 (383
against a fully connected
backend 4 7302 5024 2577 {9285

6 30,951 21,554 11,211 {42,200

8 125,124 85,528 45,261 {165,291

e For the case of qubit topology that resembles one found in typical transmon-based
processors in Table 1. For this case, the coupling map of the IBM’s 27-qubit
Mumbiai processor was used. As the connectivity is limited, the transpiler has to
account for the extra gates needed to conform to connectivity constraints that are
not present in the original circuit design

e For the case of a fully connected qubit topology as depicted in Table 2. Although
such topologies may be found in certain architectures (e.g., processors based on
Ion-traps), they are unrealistic for most. They serve here to gauge the cost solely
due to gate decomposition.

As can be seen by the results, the number of gates scales significantly with the
problem size. It is to be noted that the number of gates does not exhibit the typical
explosion encountered in generic quantum circuits that are based on Programmable
Logic Array (such as those used for encoding in [19]). This is probably due to the
fact that the operator has a more “local” behavior, in the sense that, apart from the
control qubit, its input gates remain the same throughout the computation. This is also
reflected in the fact that the depth of the tranpiled circuits is comparable in the two
cases (less than double for a given size).

7.2 Error analysis

In order to estimate the accumulation of errors, we are going to provide some models
of how the error accumulates under two models. We will ignore State Preparation And
Measurements (SPAM) errors in this analysis, as the way these are introduced does not
depend on any specific characteristics of our algorithm. Furthermore, we will ignore
the analysis of the non-unitary operator that encodes the dot plot, as this again can
be implemented in various ways and will be treated here as a black box; Schutzohld,
for example, gives an implementation based on optical hardware in [2], while Clapis
provides a circuit for generating the dot plot dynamically together with the analysis
of the size of the transpiled circuits in [19].
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q—"MN— U —

Fig. 10 Incoherent noise model. The gate A is introduced to the channel with probability p and the identity
gate [ with probability 1 — p

Our analysis will be based on the case of transpilation of a fully connected qubit
network (Table 2). We will create a circuit that contains a similar distribution of
gates, that is, a number of CX gates equal to 25% of the depth and a number of SX
gates equal to 70% of the depth. X gates will be ignored, as they were produced
in very small numbers. We will also ignore the RZ gates; these are virtual in the
Transmon-based backends of IBM’s Quantum Platform and can be implemented by the
classical hardware by appending phase shifts in subsequent pulses (see, for example,
the explanation in the relevant part of the documentation of the Pulser software package
[34]).

7.2.1 Depolarizating noise model

Depolarization is a case of incoherent noise, namely noise that is due to dissipative
processes that cause a loss of information and the reduction of the volume space that a
qubit occupies in the Bloch sphere. In an incoherent error model, for each gate in the
circuit, a gate A is introduced in each operation with a certain probability that causes
unwanted alteration of the qubit state (Fig. 10). Typical error models of incoherent
noise include:

e Bit flip errors, in which A = X with probability p and which causes shrinking of
the qubit’s Bloch sphere along the Y- and Z-axes.

e Phase flip errors in which A = Z with probability p and which causes shrinking
of the qubit’s Bloch Sphere along the X- and Y-axes.

e Depolarizing errors in which A = X, Y, Z each with probability p/4. These errors
cause the shrinking of the qubit’s Bloch sphere equally along all axes.

e Pauli errors in which A = X,Y, Z each with probability p., p, and p.,
respectively.

From the above models, we will adopt the depolarizing error model as this includes
the most generic model, including all axes of the Bloch spheres, without having any
bias towards any specific axis as the Pauli model does. For the two-qubit gate, the
depolarizing error is computed by taking the tensor of two depolarizing errors.

We create a circuit of depth equal to 1000, and we populate it with SX and CX gates
with the population numbers mentioned above. To accommodate for the missing non-
unitary state preparation circuit, we impose the condition that on the most significant
qubit a number of SX gates will be applied that will be a multiple of 4. This way, the
noise-free circuit will produce a subspace of the possible output states; the deviations
from this subspace can then be used to gauge the accumulation of error under different
values of error.

Figure 11 depicts the results for various values of p when the circuit is run on a
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Fig. 11 Results under different values of the depolarizing error p for a fixed circuit depth equal to 1000

circuit of depth equal to one thousand. It can be seen that, for a value of p = 0.005,
there is already little initial information left in the final distribution, while that for
p — 0.01 is essentially random. This can be seen more clearly in Fig. 12, in which the
entropy of the output is listed versus the values of p is listed. For p = 0 the entropy
is equal to H,—o ~ 3, while for p > 0.005, the entropy becomes H,—o.005 ~ 4; as
the output register has a size of 4 bits, this value approximates the maximum possible
value. To perform practical runs that involve transpiled circuits of the depth of the
order of hundreds of thousands or more, the depolarizing error should be smaller than
0.1%, or some other techniques to reduce the problem size are used.

7.2.2 Decoherence model

For this analysis, instead of adopting a stochastic alteration of a qubit, we explicitly
estimate the error based on the relaxation times of the qubits. As is typical for this
type of analysis, we consider:

e The relaxation time 77, which is the time it takes for the excited state |1) to decay
to state |0)

e The dephasing time 7>, which is the time it takes for the qubit to lose its phase
information, i.e., the time it takes for state |[+) or |—) to become a mixture of
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Information entropy vs depolarization error p
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Fig. 12 Information content of the circuit’s output for various values of p

phases, from which no information about the relative phase of the initial state
cannot be inferred by measurement.

Figure 13 depicts the results of our simulation. It can be seen that for 71 = 222us
and 72 = 138us, which are times typically encountered in IBM’s quantum proces-
sors, there is a lot of the initial information still present; the retained information
content is even higher for longer decoherence times. The circuit behaves better under
the decoherence model than under the depolarizing error model; however, it should
still be noted that based on these results, and in the same manner as with the depolar-
izing model, practical runs that involve transpiled circuits of the depth of the order of
hundreds of thousands lie still far ahead.

7.3 Mitigation measures

The noisy quantum computers of the NISQ era depend on error correction [35] and
error mitigation [36] techniques to increase the size of the problem instances run.
While the majority of these techniques are general for any computational task, specific
algorithms can leverage custom techniques to target characteristics of the underlying
structure of problems and achieve further lowering of the requirements in terms of
qubits and gates and of the accumulated computational error.

One such technique is the Iterative Phase Estimation [37] algorithm that targets the
QPE part of our algorithm. IPE can lower the number of the required accuracy qubits
by using only one qubit. For each bit of accuracy needed, the controlled operator is
performed the required number of times then the qubit is measured. After it is mea-
sured, it is reset to |0) and a phase correction gate is applied; the process is repeated
until all required values are collected. IPE lowers the number of target qubits; since the
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Fig. 13 Results under different times for decoherence error for a fixed circuit depth equal to 1000

operator now has a constant topology (it is coupled to only one control qubit), transpi-
lation can be more efficient. The introduction of mid-circuit measurement, however,
means that that circuit has to remain idle for a time defined by the measurement time
of the device. This can be greater than the decoherence time, and therefore, additional
errors may be introduced.

On another line of attack, one key attribute of the problem of diagonal matching
is that matrices can be separated into segments, which can be solved separately and
the result combined. This does not hold for other algorithms in general; for example,
factorization of a large number cannot be decomposed into smaller problems involv-
ing smaller numbers. A large matrix, on the other hand, can be split into diagonal
submatrices that can be solved independently; the result can then be post-processed
classically via, for example, majority voting to determine whether a pattern was iden-
tified or not. This segmentation has two major impacts. The first impact is that the
problem can be solved for matrices whose size is significantly larger than the number
of qubits of the underlying hardware, thus overcoming one of the major limitations
of existing hardware. The second one is that error accumulation can be minimized by
having the segments run in different runs, either sequentially or in parallel. The smaller
instances will have transpiled circuits of smaller depth than the full one, and therefore,
they will accumulate significantly less error. As long as the number of segments is
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asymptotically lower than the problem instance size, the algorithm should still retain
its quantum advantage.

8 Results and discussion

The present document presented a methodology for identifying regions of potential
matches when comparing large datasets. The algorithm makes use of an operator that
is defined to have eigenstates that correspond to matched datasets and can identify
areas of similarity with a running time that is asymptotically better when the matching
threshold is high enough.

In a practical scenario that is expected to run in NEAR-term hardware (i.e., noisy
quantum processors that are currently available or are expected to be available in the
near future), the input data will be fragmented into chunks that can be represented
using the limited number of qubits available in the underlying architecture of the
quantum processor. Areas of similarity can be identified, or the outputs can be pooled
to conclude the similarity level of the whole dataset.

Although the algorithms were exhibited for a specific case, that of encoding matches
between target and reference data using a dot plot, it can be expanded to include other
schemes. This would include a re-definition of the operator U in such a way that
its eigenspace includes a state that encodes a perfect match. Due to the linearity of
the operator, it is expected that for any such operator, an analysis similar to the one
conducted in Sect.4 will hold; i.e., small deviations from a perfect match will lead to
states that have a significant overlap with the “perfect” eigenstate, and thus the QPE
algorithm will produce an output with high peaks for the phase corresponding to the
eigenphase of U.

Author Contributions D.N., A.K., and N.K. captured the main idea and designed the algorithm with equal
contribution. D.N. led the implementation of the algorithm in Qiskit and the running of the simulations
with the contribution of A.K. and N.K. A.K. performed the error analysis for partial matches with the help

of D.N. (experimental verification) and N.K. (validation). N.K. led the final review of the document.

Appendix A: Source code

Procedure for constructing the U operator that cycles back eigenstates corresponding
to proper diagonals.

Listing 1 Code for constructing the operator

import numpy as np

import math

from qiskit.quantum_info import Operator
from qiskit.extensions import UnitaryGate

def generate_x_mod_y_AdditionOperators(x, y):
N = 2 %% int(math.ceil (math.log(y, 2)))
u = np.zeros(shape = (N,N))
x_mod_y = x
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permutation = 0

for i in range(x_mod_y, (y + x_mod_y)):
uli
permutation += 1

for r in range(y,N):

ulrllr] =1
U = UnitaryGate(u, label="U")
return U

Non-unitary process for preparing a state that encodes a square matrix consisting
of entries equal to O or 1.

Listing 2 Code for preparing an input state

import numpy as np
from qiskit import QuantumCircuit
from qiskit.circuit.library import StatePreparation

def amp_enc_dagger(dotplot2DArray , NoQubits):
arr = dotplot2DArray. flatten ()
norm = np.linalg.norm(arr)
SP = StatePreparation(arr / norm)
gqc_enc = QuantumCircuit (NoQubits)

list_of_index_numbers = list (range(0, NoQubits))
qc_enc.name = "Encoder"
qc_enc.append(SP, list_of_index_numbers)

return qc_enc

Procedure for constructing a list of circuits that implement the algorithm. The
procedure assumes that a separate process has created the proper encoding of the
input states.

Listing 3 Code for constructing a list of circuits that implement the algorithm

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.library import QFT

qc_all = [1]

n_acc=3

for size in range(3,10):
CU_t = generate_x_mod_y_AdditionOperators(size, sizex(size —1))
phase_reg = QuantumRegister(n_acc, ’'phase’)
working_reg = QuantumRegister (CU_t.num_qubits—1, 'plot_U")
working_meas = ClassicalRegister (CU_t.num_qubits—1)
phase_meas = ClassicalRegister (n_acc)

qc_phase = QuantumCircuit (phase_reg, working_reg, phase_meas)
qc_phase.h(phase_reg)
qc_phase. barrier ()
for i in range(n_acc):
for j in range(i+1):
qc_phase.append (CU_t, \

[phase_reg[i]] + \

[work_q for work_qgq in working_reg[:CU_t.num_qubits — 1]])
qc_phase. barrier ()
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qc_phase.append (QFT(num_qubits = 3, \
inverse=True, do_swaps=True, \
name="$QFT A{\ dagger}$"), \
[phase_q for phase_q in phase_reg])
qc_phase. barrier ()
qc_phase.measure ([ phase_q for phase_q in phase_reg],\
[phase_c for phase_c in phase_meas])
qc_all.append(qc_phase)

Code for transpiling the circuit on FakeMumbaiV?2 backend of IBM’s quantum
platform and a simulated fully connected backend.

Listing 4 Code for transpiling the circuits

from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.providers.fake_provider import FakeMumbaiV2
from qiskit import transpile

backend = FakeMumbaiV2 ()
pass_manager = generate_preset_pass_manager (3, backend)

qc_transpiled_real = []

for qc in qc_all:
qc_t = transpile(qc, backend)
qc_transpiled_real .append(qc_t)

from qiskit.transpiler import CouplingMap
cmap = CouplingMap.from_full (9)

qc_transpiled_fully = []
for qc in qc_all:
qc_t = transpile(qc, optimization_level=3,\
basis_gates=["id", ‘rz’', '
coupling_map = cmap)
qc_transpiled_fully .append(qc_t)

’ 1yt

sx', 'x', "ex'1, \

gate_list_tfull = []
for qc in qc_transpiled_fully:
gate_list_tfull .append(qgc.count_ops())
df_f = pd.DataFrame(gate_list_tfull , columns=gate_list_tfull [0].keys ())
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