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Abstract: We prove that in the 2D Ising model with a weak bidimensional quasi-
periodic disorder in the interaction, the critical behavior is the same as in the non-
disordered case; that is, the critical exponents for the specific heat and energy-energy
correlations are identical, and no logarithmic corrections are present. The disorder pro-
duces a quasi-periodic modulation of the amplitude of the correlations and a renormal-
ization of the velocities, that is, the coefficients of the rescaling of positions, and of the
critical temperature. The result establishes the validity of the prediction based on the
Harris–Luck criterion, and it provides the first rigorous proof of universality in the Ising
model in the presence of quasi-periodic disorder in both directions and for any angle.
Small divisors are controlled assuming a Diophantine condition on the frequencies, and
the convergence of the series is proved by Renormalization Group analysis.
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1. Introduction

1.1. Universality and Harris–Luck criterion. A certain number of macroscopic proper-
ties close to phase transitions show a remarkable independence from microscopic details.
In particular, it is both predicted theoretically and observed experimentally that the crit-
ical exponents, describing the singularities of thermodynamic functions, are the same in
systems sharing only a few general features but having different inter-molecular forces,
atomic weights, or lattice structures. This phenomenon is known as universality, and
the Renormalization Group, introduced by Kadanoff [41] and Wilson [65], provides an
explanation by introducing the concepts of scaling dimension, dimensionally relevant,
marginal, or irrelevant interactions, and universality classes. The fact that interactions
are dimensionally relevant or marginal does not by itself imply that they can change
the critical behavior; the precise effect on critical exponents is governed by an effective
dimension, which can be different from the scaling dimension due to cancellations or
other mechanisms.

A paradigmatic model where universality can be investigated is the Ising model,
which describes a system of spins with nearest-neighbor interactions and shows a phase
transition in dimensions d ≥ 2 characterized by certain values of the critical exponents.
One can perturb this model with finite-ranged or higher spin interactions, or consider it
on different lattices, and ask what happens to the critical behavior. In d ≥ 4, universality
is proven in the context of the closely related φ4 models (see, e.g., [8] and references
therein), where it has been rigorously shown that the values of the exponents are equal
to the mean-field ones, e.g., the correlation length exponent is ν = 1/2 and the specific
heat exponent α = (4 − d)/2. We remark, however, that while in d ≥ 5 the behavior is
exactly the same as in the mean-field theory, in d = 4 logarithmic corrections are present;
the difference is that in the first case the interaction is irrelevant in the Renormalization
Group sense, while in the second it is marginal (or, more precisely, marginally irrelevant).

In d = 2, the Ising model with nearest-neighbor interaction on a square lattice was
solved by Onsager [60]. His solution proves that the value of the critical exponents
(ν = 1, α = 0) is different from the ones obtained by approximate methods, such
as the mean-field. With universality in mind, it is natural to ask whether these values
are robust under perturbations. One can ask, for example, if the addition of a next-to-
nearest neighbor interaction or a non-quadratic one leaves the system in the Onsager
universality class or not. In this case, it is not convenient to use φ4 models, but one can
use the representation in terms of Grassmann integrals, at the basis of the exact solution,
and analyze it using Renormalization Group methods. This strategy was proposed in
[64] and applied to the computation of the specific heat and energy correlations in [63]
and in Appendix N of [44]. The Grassmann integral representation was then used in
[43,44] for the case of two Ising models coupled to each other by a quartic interaction,
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which can be mapped into models like the Eight-vertex, Six-vertex, or the Ashkin-Teller
model.

Even if single or coupled Ising models have the same exponents in the absence of
quartic interaction, when the interaction is present they belong to different universality
classes. In the first case, the interaction is dimensionally irrelevant, implying that, when
the strength of the interaction is small enough, the exponents are the same as in the pure
Ising model (e.g. ν = 1, α = 0) and no logarithmic corrections are present. In the second
case, the interaction is marginal, and its flow is controlled thanks to the complicated
cancellations related to emergent symmetries. The exponents are continuous functions of
the strength of the coupling [44], verifying suitable Kadanoff extended scaling relations
[11,12]. Continuous exponents also appear in the transition between the two universality
classes in the Ashkin-Teller model [32,46].

Subsequently, the Renormalization Group approach to interacting Ising models was
used in the proof of the universality of the central charge [33], the scaling limit of all the
energy correlations [31], and to analyze the role of non-periodic boundary conditions
[6]. Interacting dimer models, which are in the same universality class as coupled Ising
models in some parameter regions, were studied in [35,37]. This approach typically
requires a small value of the coupling.

Other approaches, different from the Renormalization Group, lead to universality
results for the Ising model, like those in [16,17], with nearest-neighbor interactions
on different planar graphs. In [4], the Ising model with non-planar, or alternatively
some non-nearest-neighbor pair interactions, was considered, proving the Gaussianity
of correlations without a smallness condition but without providing information on
exponents.

Another situation where the issue of universality can be posed in the Ising model
is when disorder is considered. Disorder can be introduced either in the magnetic field
[1–3,39] or in the interaction, and we focus here on this second case, for which much
less is known at a rigorous level. Typically, one can consider two kinds of disorder in the
interaction: random or quasi-periodic. The first describes the effect of impurities, while
the second is realized in quasi-crystals or cold atoms experiments. Early investigations
were done in the 2D random Ising model; in particular, the Ising model with a layered
disorder (that is, constant in one direction) was considered in [57] (see also [38] and [24]),
and the specific heat was found continuous (instead of logarithmically divergent), while
with a bidimensional random disorder, a double logarithmic behavior in the specific heat
[21] was found.

In more general cases, Harris [38] proposed a criterion to predict when random
disorder is irrelevant or not; if ξ is the correlation length and �2 is the covariance of the
disorder, the condition for irrelevance is

√
�2/ξd � |β − βc|, where the left-hand side

is (roughly) the ratio between typical fluctuation of the sum of disorder terms within
a distance given by the correlation length ξ and the mean (βc is the critical inverse
temperature). As close to criticality ξ ∼ |β − βc|−ν , with ν being the critical exponent,
irrelevance is predicted for νd/2 > 1, see [38], while relevance is expected for νd/2 < 1.
According to this criterion, irrelevance is predicted for d ≥ 5 (ν = 1/2 > 2/d) and
relevance for d = 3 (conformal bootstrap predicts ν = 0.627 · · · < 2/3, see [62]). In
the marginal cases d = 4 (ν = 1/2) and d = 2 (ν = 1), Harris’s criterion gives no
predictions in general.

On the rigorous side, a generalization of Harris’s result was proved in [15], where it
was shown that in all systems with continuous transitions ν̃ ≥ 2/d, with ν̃ being the index
of the disordered system. In the case of layered disorder in d = 2, the system is effectively



  235 Page 4 of 50 M. Gallone, V. Mastropietro

one-dimensional as far as the ratio between mean and fluctuations is concerned, so the
relevance of disorder is predicted in agreement with [57]. A rigorous proof is still lacking,
despite progress being made in this direction in [18,30]. In addition, the Harris criterion
has been verified in simplified models of a probabilistic nature [29].

While the Harris criterion regards the case of random hopping, the case of quasi-
periodic disorder was considered by Luck [42] (Harris–Luck criterion). In the case of
the 2D Ising model with layered quasi-periodic disorder, the condition for irrelevance
was generalized to 1/ξ

∑ξ
x=0 δx � |β − βc|, where δx is a suitable function measuring

the fluctuation of the quasi-periodic hopping, see [42]. Since ν = 1, the condition for
irrelevance requires that

∑ξ
x=0 δx is bounded and small uniformly in ξ , a condition

verified in the case of weak quasi-periodic modulation, while it is violated for strong
quasi-periodic disorder.

Such conjectures were checked in [42] by a perturbative method, but the issue of
convergence of the series was not addressed; they have also been confirmed by numerical
investigations, see e.g. [19,36]. In particular, in [19] it was numerically found that the
Ising model with weak quasi-periodic disorder remains in the Onsager class, while
evidence of a new universality class is found at stronger disorder. Finite difference
equations for the spin correlations have been derived in [14,61] from which low and
high temperatures expansions are obtained.

In this paper, we finally prove that the critical exponents for the specific heat and
energy-energy correlations in the weak quasi-periodic Ising model are identical to the
Onsager ones, both for layered and non-layered disorder, in agreement with the Harris–
Luck criterion. The result is based on convergent series expansions in the disorder,
and the small-divisor problem is addressed via Renormalization Group analysis. This
provides one of the very few cases in which a rigorous understanding of the critical
behavior of the 2D Ising model with disorder is achieved and universality is proven.

1.2. Main result. The Hamiltonian of the 2D quasi-periodic Ising model is

H = −
∑

x∈	i

[
J (1)

x σxσx+e1 + J (0)
x σxσx+e0

]
(1.1)

where e0 = (1, 0), e1 = (0, 1), x = (x0, x1), σx = ± and:

(1) For i ∈ N, x ∈ 	i , 	i = (−L0,i/2, L0,i/2] × (−L1,i/2, L1,i/2] ∩ Z
2, σx = ± and

periodic boundary conditions are imposed.
(2) The interaction is given by

J ( j)
x =

(
1 + λφ( j)(2πω0,i x0 + θ j,0, 2πω1,i x1 + θ j,1)

)
J ( j), j = 0, 1 (1.2)

where φ( j)(y) is such that

φ( j)(y) =
�(L0,i −1)/2�∑

n0=−�L0,i /2�

�(L1,i −1)/2�∑

n1=−�L1,i /2�
φ̂

( j)
n ei(n0 y0+n1 y1), (1.3)

with φ̂
( j)
n = (φ̂

( j)
−n)∗, n = (n0, n1) and y = (y0, y1); moreover, for suitable real

constants A, η > 0

|φ̂( j)
n | ≤ Ae−η|n|. (1.4)
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(3) {ω0,i }i∈N, {ω1,i }i∈N are the best approximants ω0,i = p0,i/q0,i and ω1,i = p1,i/q1,i
of two irrational numbers ω0, ω1 < 1. For j = 0, 1, the latter are obtained starting
from the continuous fraction representation ω j = a j,0 + 1

a j,1+ 1
a j,2+ 1

a j,3+···
from which,

one has
p j,1
q j,1

= a j,0 + 1
a j,1

,
p j,2
q j,2

= a j,0 + 1
a j,1+ 1

a j,2

with
∣∣∣ω j − p j,i

q j,i

∣∣∣ ≤ C
q2

j,i
(see e.g.

Section IV.7 in [20]).
(4) ω1, ω0 are irrational numbers verifying a Diophantine condition, that is, for j = 0, 1,

|2πω j n|T ≥ c j |n|−ρ j ∀n ∈ Z \ {0}, (1.5)

where | · |T := infm∈Z | · +2mπ | and ρ j ≥ 1, c j > 0.
(5) The side lengths of the boxes are chosen so that

L1,i = q1,i , L0,i = q0,i , (1.6)

and limi→∞ L1,i/L0,i = c with 0 < c < ∞.

Remark 1.1. (1) The energy correlations of the quasi-periodic Ising model are obtained
as the limit of the energy correlations of a sequence of Ising models in boxes with
interactions periodic in space with a period equal to the side of the boxes. In the limit
i → ∞ the modulation becomes

∑∞
n0,n1=−∞ φ̂

( j)
n ei(n0(2πω0x0+θ j,0)+n1(2πω1x1+θ j,1)),

that is quasi-periodic in both directions. While in principle other ways to define a
quasi-periodic Ising model can be imagined, this is the one chosen in numerical
simulations in the physical literature, see e.g. [19].

(2) The quasi-periodic Ising model has been considered up to now only with layered
disorder, corresponding e.g. to φ(0) = 0; for instance J (0)

x = J and J (1)
x = J (1 +

λ cos(2πω1x1 +θ)). In contrast, we consider a rather more general situation including
interactions of the form, for instance, J (0)

x = (1 + λ cos(2πω0x0 + θ) cos(2πω1x1 +
φ))J (0), J (1)

x = (1 + λ(cos(3πω0x0 + ψ) cos(6πω0x0 + 2ψ) cos(2πω1x1 + ξ)))J (1),
with θ, ϕ,ψ, ξ phases: that is the interaction is different in any bond, and quasi
periodically modulated in both directions.

(3) The form of disorder we are considering breaks essentially all the symmetries present
in the non-disordered case other than spin-flip symmetry; in particular translation
invariance and inversion symmetry x j → −x j in both directions. Less general forms
of disorder preserve some symmetry; in particular, in the case of layered disorder,
translation invariance and inversion in one space direction is preserved.

The truncated energy correlations are defined for x1, x2 ∈ 	i and j1, j2 ∈ {±} as

Si (x1, j1; x2, j2) = 〈σx1σx1+e j1
σx2σx2+e j2

〉i − 〈σx1σx1+e j1
〉i 〈σx2σx2+e j2

〉i , (1.7)

with

〈O〉i = 1

Z

∑

{σx}∈{±}	i

e−βH O, Z =
∑

{σx}∈{±}	i

e−βH , (1.8)

where Z is the partition function at inverse temperature β > 0.
If λ = 0, for β �= βc, with βc given by

sinh(2βc J (0)) sinh(2βc J (1)) = 1, (1.9)
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the thermodynamic limit i → +∞ of the truncated energy correlations exists and is
denoted by S(x1, j1; x2, j2). Such limit decays exponentially for large distances with
correlation length ξ diverging at βc as ξ = O(|β − βc|−1); βc is therefore the critical
temperature. Moreover, in the limit β → βc one has

S(x1, j1; x2, j2) = Z j1 Z j2 g0
+(x1 − x2)g

0−(x2 − x1) + R j1, j2(x1, x2) (1.10)

with g0±(x − x2) = (v1(x1,1 − x2,1) ± i(v0(x1,0 − x2,0))
−1, Z j , v1, v0 real constants,

|R j1, j2(x1, x2)| ≤ C
|x1−x2|2+θ for |x1 − x2| → ∞, θ = 1

4 and a real constant C . βc is
therefore the critical temperature, defined as the temperature at which the correlation
length diverges. Note that one is taking the |	i | → ∞ limit at β �= βc, so that terms
O(e−Li c|β−βc|) vanishes in the limit, see Sect. 5 below, if c is a constant and Li =
min{L0,i , L1,i } is the shorter side of 	i . Note that v1, v0 are the coefficients of the
anisotropic rescaling of positions g+(x) = ḡ(v1x1, v0x0) with ḡ(x1, x0) = 1

x1+ix0
(and

similar for g−); they will be also called velocities. Our main result describes the long-
distance decay of correlations in the interacting case.

Theorem 1.2. Consider the Hamiltonian (1.1) and assume (1)–(5). There existλ0, C, κ >

0, functions b : (−λ0, λ0) → R, ξ j : (−λ0, λ0)×T
2 → R and α j : (−λ0, λ0) → C for

j = 0, 1, with supλ |b(λ)|, supλ |α j (λ)|, supλ,ϑ |ξ j (λ,ϑ)| < C such that the following
holds. For any |λ| < λ0 there exists βc(λ) = βc + b(λ) such that

(1) for β �= βc(λ) the limit limi→∞ Si (x1, j1; x2, j2) = S(x1, j1; x2, j2) exists and is
finite.

(2) For β �= βc(λ)

|S(x1, j1; x2, j2)| ≤ Ce−κ(|β−βc(λ)||x1−x2|)
1
2
. (1.11)

(3) For β → βc(λ)

lim
β→βc(λ)

S(x1, j1; x2, j2) = Z j1,x1(λ)Z j2,x2(λ)g+(x1 − x2)g−(x2 − x1)

+R j1, j2(x1, x2) (1.12)

with

g+(x) = 1

v1(λ)x1 + iv0(λ)x0
, g−(x) = 1

(v1(λ))∗x1 − i(v0(λ))∗x0
, (1.13)

and |R j1, j2(x1, x2)| ≤ C
|x1−x2|2+θ for |x1 − x2| → ∞, θ = 1/4 and

Z j,x(λ) = Z j + λξ j (λ, 2πω0x0, 2πω1x1) v j (λ) = v j + λα j (λ) (1.14)

with Z j , v j defined in (1.10).

Remark 1.3. (1) The asymptotic behavior of the 2-point correlation (1.12) at criticality is
similar to the one of the unperturbed case, with the main difference that the amplitude
is the product of two quasi-periodic functions Z j1,x1(λ) and Z j2,x2(λ). The velocities
and the critical temperature are also modified. In contrast, the exponents are universal
and no logarithmic corrections are present; this provides a rigorous confirmation of
the Harris–Luck criterion. Outside the critical temperature a stretched exponential
decay is found, but this is just for technical reasons and exponential decay is expected.
The analysis could be easily extended to the n-point energy correlations.
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(2) The proof is based on the convergence of the series for the correlations, showing
a small-divisor problem similar to the one appearing in perturbation of integrable
Hamiltonian systems, see e.g. [25]. Convergence is shown assuming only a Dio-
phantine condition on the frequencies, the smallness of the coupling and a fast decay
property of the harmonics; without such assumptions a different behavior is expected.

(3) The result holds for any angle θ j , including cases where inversion or translation
invariance is broken in both directions. This is a peculiar fact since in many similar
models with small-divisor problems, extra conditions are usually required.

1.3. Sketch of the proof. The starting point of the analysis is the exact representation
of the quasi-periodic Ising model as a Grassmann integral, which is an immediate con-
sequence of the dimer representation, see e.g. [57], and the fact that Pfaffians can be
expressed as Gaussian Grassmann integrals, see e.g. [56]. The energy correlations can
be written as the sum of terms of the form (the exact expressions are in Sect. 2)

∫
Pψ(dψ)Pξ (dξ)eV O
∫

Pψ(dψ)Pξ (dξ)eV
(1.15)

where Pψ(dψ), Pξ (dξ) are Grassmann Gaussian integrations, O is a quartic monomial
in the Grassmann variables, and V is a sum of monomials in ψ, ξ and vanishes for λ = 0.
The propagator (or covariance) of Pξ (dξ) is ĝξ (k), given by

ĝξ (k) :=
(−it (1) sin k1 + t (0) sin k0 imξ (k)

−imξ (k) −it (1) sin k1 − t (0) sin k0

)−1

, (1.16)

with t ( j) = 1
|	|
∑

x∈	 tanh(β J ( j)
x ) and mξ = mχ = O(1). From the explicit expression

given below in (2.22), mχ (k) = mχ (0) + F(k) with mχ (0) = O(1) and F(k) = 0
at k = 0, and bounded away from zero uniformly in β in the other three poles of the
diagonal elements of ĝξ (k). One recognizes in (1.16) the propagator of a lattice Dirac
fermion with a mass mχ (0) and Wilson term F(k).

The propagator ĝψ(k) of Pψ(dψ) has a similar expression with a mass that can
vanish as a function of temperature. The variables ξ , being associated with a bounded
propagator (called non-critical variables for this reason), can be integrated out (see
Sect. 3), expressing the energy correlations as Grassmann integrals of the form

∫
Pψ(dψ)eṼ Õ
∫

Pψ(dψ)eṼ
(1.17)

with Ṽ = 1
|	i |

∑
n
∑

k ψ−kŴn(k)ψk−2π�n, where Ŵn(k) is a matrix with elements

exponentially decaying in n and analytic in λ. Here, ψ = (ψ+, ψ−), � =
(

ω0 0
0 ω1

)
,

and Õ is still quartic in ψ . This representation is an immediate consequence of Wick’s
theorem, allowing us to represent Wn(k) as a sum of chain graphs, that is, products of
propagators of the form ĝξ (k)ĝξ (k−2π�n1)ĝξ (k−2π�n2) · · · . Convergence follows
from the exponential decay of φ̂n and the boundedness of ĝξ .

One could perform the integration in ψ (critical variables) in a similar way, obtaining
an expansion for the correlations still expressed in terms of graphs. In this case, however,
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the propagator of the ψ-variables is unbounded, and at criticality there are graphs that
are naively bounded by O(n!α) if n is the order and α a constant, due to the presence of
small divisors. To achieve convergence, one needs to improve the bounds, showing that
such factorials are indeed not present.

To show this, a multiscale analysis is required, as described in Sect. 4. One decom-
poses the propagator as a sum of propagators supported at different momentum shells
with scale h, that is |k| ∼ γ h , γ > 1, with h = 1, 0,−1,−2, . . . . In other words,
ĝψ(k) = ∑1

h=−∞ ĝ(h)(k) with ĝ(h)(k) = O(γ −h). Integrating the higher momentum
scales, we obtain

∫
P(≤h)

ψ (dψ(≤h))eV (h)(ψ(≤h)) Õ(h)

∫
P(≤h)

ψ (dψ(≤h))eV (h)(ψ(≤h))
(1.18)

with P(≤h)
ψ (dψ(≤h)) a Gaussian Grassmann integration corresponding to scales ≤ h and

again

V (h) = 1

|	i |
∑

n

∑

k

ψ
(≤h)
−k Ŵ (h)

n (k)ψ
(≤h)
k−2π�n

with Ŵ (h)
n depending on the scale h. Using that, for Gaussian Grassmann integrals,

P(≤h)
ψ (dψ(≤h)) = P(≤h−1)

ψ (dψ(≤h−1))P(h)
ψ (dψ(h)), we can integrate the ψ(h) variable

iteratively; this again produces chain graphs as a product of propagators of arbitrarily
large size O(γ −h) times products of the Ŵ (h)

n . In Renormalization Group terminology,
the terms in V (h) are relevant perturbations that could alter the critical behavior.

To show that this is not the case, one needs to distinguish between the case n = 0,
which are called resonant terms or resonances, and the non-resonant case n �= 0. In
the first case, one gets an accumulation of identical small divisors in the perturbative
expansion, ending with a non-summable behavior. Such a phenomenon is avoided by
modifying the expansion, introducing a counterterm to account for the modification
of the critical temperature, and by modifying the velocities at each iteration step, see
Sect. 4.1. That is, the propagator of the ψ(≤h) close to k = 0 acquires the form ∼
χh(k)

(−iv1,hk1 + v0,hk0 −im
im −iv∗

1,hk1 − v∗
0,hk0

)−1

where χh(k) �= 0 for |k| ≤ γ h . Note

that reabsorbing certain terms in the propagator is possible only if the Ŵ (h)
0 have a

suitable form that does not change the qualitative structure of the propagator; this is
indeed what happens. When the angles θ j are generic, the breaking of symmetries does
not allow us to conclude the reality of velocities (which turn out to be real in the layered
case).

One has then to deal with the terms in V (h) with n �= 0; in that case, the repeated
small divisors are not identical and they cannot be reabsorbed into the propagator. If the
disorder was periodic, that is, � is rational so that 2π�n mod 2π is bounded, this would
mean that there is a scale h̄ so that such terms are not present for h ≤ h̄; hence, they
could be easily bounded. In contrast, if � is irrational, that is in the quasi-periodic case,
such terms appear at any scale h, and the propagators associated with fields multiplying
Ŵ (h)

n are as large as O(γ −h). One needs therefore, to achieve convergence, to prove
that Ŵ (h)

n (k) has a fast decay in h compensating for the small divisor γ −h . This follows
from the Diophantine condition, as it implies that if k and k − 2π�n are O(γ h), then
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n is large, that is |n| ≥ γ − h
τ for a suitable constant τ . The decay in n of Ŵ (h)

n (k) can
therefore be converted into a decay in γ −h compensating for the γ −h of the propagator.

However, the gain must be obtained at every iteration step and one has to check that no
non-summable combinatorial factors are present; this is done using the cluster structure
of graphs (see Sect. 4 and in particular Lemma 4.7 where the convergence of the series
expansion is proved). The series obtained is in λ and in the running coupling constants
(corresponding to the renormalizations of the temperature and of the velocities); one
has to show that it is possible to fine-tune a parameter, corresponding to the shift of the
critical temperature, to prove that they remain small at any iteration, as proved in Sect. 4.

Finally, in Sect. 5, the full expansion for the energy correlations is considered. In this
case, after the integration of the fields of scales 1, 0,−1,−2, . . . , h, one gets source terms
of the form 1

|	i |2
∑

n, j,k,p Z ( j)
h,nψ

(≤h)
−k σ2ψ

(≤h)
k+p−2π�n Â( j)

p where Z ( j)
h,n are running coupling

constants associated with the source terms in the generating function for correlations
and Â( j)

p is the Fourier coefficient of an external field (see (2.1) below). In this case,
there are running coupling constants corresponding to n �= 0 as there is no gain due
to the Diophantine condition. They have a finite limit as h → −∞, and this implies
that the critical exponents are the same as in the unperturbed case, and they produce the
quasi-periodic amplitude of the energy correlations.

1.4. Comparison with previous results. The paper uses a fermionic Renormalization
Group approach to the Grassmann representation of the Ising model, previously used in
the case of non nearest neighbor perturbations, see [31,33,44], or for coupled Ising and
related models like Six-vertex, Ashkin-Teller or dimer models [11,12,35,44]. In such
cases, the starting point is a Grassmann integral similar to (1.15) but with V a quartic or
higher order translation invariant interaction.

In the case of the quasi-periodic Ising model, the situation is different: the interac-
tion in the Grassmann integral is quadratic but the modulation of the potential breaks
translation invariance and it requires the use of KAM methods to solve the small-divisor
problem.

The relation with KAM appears from (1.15); as the exponent of the integrand is
quadratic in the Grassmann variables, the energy correlations could, in principle, be
deduced by a suitable lattice Dirac equation in a quasi-periodic potential, essentially
given by

σ2(ψx+e0 − ψx + λφ(0)
x ψx) + σ1(ψx+e1 − ψx + λφ(1)

x ψx) + imσ3ψx = Eσ1ψx,

with σ1, σ2, σ3 being the Pauli matrices. Indeed, such an equation has not been studied,
but an extensive literature has been instead devoted to the related problem of the lattice
Schrödinger equation with a quasi-periodic potential (which is strictly related to a KAM
problem), like

ψx+1 + ψx−1 + λφxψx = Eψx

where x ∈ Z and φx = φ̄(2πωx + θ) with φ̄ 2π -periodic. For small λ, the eigenvalues
and eigenfunctions of the above equation were studied in [22] where two Diophantine
conditions are assumed, one over the frequency and the other over the energy, using KAM
methods. In particular, it was required that |2πωn|T ≥ C |n|−τ and |2πωn ± 2ρ|T ≥
C |n|−τ , with E = cos ρ (first and second Melnikov condition). In [59] instead, the case
ρ = nπω was studied, corresponding to the gaps in the spectrum. Several attempts
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were made to improve such conditions, culminating in [23], where the second Melnikov
condition was removed, and in [7] where ω was assumed to be any irrational. In higher
dimensions, for the strong coupling regime, results on localization are in [10,40].

An important related issue is the computation of the correlations of a system of
several particles (fermions in particular) in a quasi-periodic potential, with a single-
body interaction described by (1.4). In the absence of a many-body interaction, the
knowledge of the single particle properties of (1.4) could be sufficient to determine the
properties of the ground state correlations. If φx in (1.4) is random, this was indeed
done in [5], and with a periodic potential (in the continuum) it was done in [9], where
indeed the asymptotic properties of correlations were determined only by a very precise
knowledge of the singularities of the eigenvalues (branch points) in the complex plane.

In the quasi-periodic case, a derivation of the asymptotic behavior of fermionic cor-
relations directly from the Schrödinger equation (1.4) has never been attempted. How-
ever, such asymptotic decay has been derived by writing the fermionic correlations as
Grassmann integrals similar to (1.15), with interacting measure P(dψ)eV , propagator
(ik0 +cos(k1 +nω)− E)−1 and V sum of monomials ψ+

k0,kψ
−
k0,k+2πnω. The long-distance

behavior of the non-interacting ground state correlations in d = 1 has been determined
using a multiscale analysis in [13] via fermionic Renormalization Group methods, in-
spired by the ones used in KAM Lindstedt series [26,27]. The result was valid for
E = cos m̄πω, m̄ ∈ N, that is assuming a gap condition like the one in [59]; the ground
state correlations decay exponentially both in space and Euclidean time. Note that there
are infinitely many gaps with size O(λφ̂m̄), the spectrum being a Cantor set.

Later on, the RG methods were extended to include the presence of a weak many-body
interaction (and weak quasi-periodic potential): it was shown in [45] that the gaps are
not closed by the interaction (if the corresponding harmonic is present in the potential),
but are strongly modified via the presence of a critical interaction-dependent exponent;
the gaps become O((λφ̂m̄)1+η), η = aU + O(U 2), where U is the coupling of the many-
body interaction and η is a critical exponent. A similar phenomenon was also shown to
happen in the interacting Aubry-André model where only one harmonic is present in the
initial potential [49] and in the interacting Hofstadter model [50] for the Hall effect. In
higher dimensions, a class of fermionic systems in d = 2, 3 known as Weyl semimetals
have been considered [55] in presence of a quasi-periodic disorder and interaction in the
weak coupling regime; by assuming a first and second Melnikov condition restricting
densities, it was shown the stability of the Weyl phase, that is the absence of localization.

While the above-mentioned results regard the case of fermions on a lattice with a weak
quasi-periodic potential and a many-body interaction, the case of strong potential has a
different behavior, manifesting the phenomenon of Anderson localization. In this case,
one considers the kinetic energy as a perturbation of the quasi-periodic potential, and not
the opposite as in the previous case. In [28], localization without many-body interaction
was shown, and later the proof of T = 0 many-body localization of interacting fermions
[47,48,51–54] was established. It should be remarked that at the moment, such RG
methods are the only ones allowing us to take into account rigorously the interaction in
the thermodynamic limit.

At the mathematical level, the Renormalization Group methods used to analyze the
above fermion systems in the weakly disordered regime are related to the ones used
here for the quasi-periodic Ising model, but there are important differences. First of all,
in fermionic systems one has to restrict the values of the chemical potential either to
ensure the validity of a gap condition, as in [45,49,50], or a second Melnikov condition
[55]. There is no analogue of chemical potential in the Ising model, but we can solve
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the small-divisor problem without imposing any condition. In addition, in fermionic
models considered so far, the 2-point fermionic correlation was studied, while here
the energy correlations are considered, quartic in the fermions, a fact producing new
(infinitely many) marginal operators and the quasi-periodic modulation of the amplitude.
Moreover, the quasi-periodic disorder is bidimensional in space and Euclidean time
and all possible choices of angles are considered, while previously the only layered or
bidimensional cases with angles chosen equal to zero were treated [54]. The general form
of the disorder considered here breaks the inversion symmetries, an important property
to prove the reality of the velocities.

In addition to such technical improvements, it should be also remarked that the
application of direct methods, previously developed for apparently unrelated problems
like KAM series or non-relativistic fermions, to the quasi-periodic Ising model is a major
novelty of this paper and it produces the first rigorous proof of the Harris–Luck criterion,
and a natural starting point for the inclusion of next to nearest neighbor interactions.

2. Grassmann Representation

From the dimer representation of the Ising model, see e.g. [58], one can express the
energy correlations, which are expressed in terms of four Pfaffians, using Grassmann
integrals; see e.g. [56]. The energy correlations can therefore be written as

S(x1, j1; x2, j2) = ∂2

∂ Ax1, j1∂ Ax2, j2
log Z(A)

∣∣∣∣
A=0

, (2.1)

with

Z(A) = 1

2

∑

α∈{±}2

τα Zα(A), (2.2)

where τ+,− = τ−,+ = τ−,− = −τ+,+ = 1 and

Zα(A) =
⎡

⎣
∏

x∈	i

1∏

j=0

cosh(β J ( j)
x + Ax, j )

⎤

⎦
∫

D	i � eS	i (�,A), (2.3)

with

S	i (�, A) :=
∑

x∈	i

[
tanh(β J (1)

x + Ax,1)Hx Hx+e1 + tanh(β J (0)
x + Ax,0)V xVx+e0

]

+
∑

x∈	i

[
Hx Hx + V xVx + V x Hx + Vx Hx + HxV x + Vx Hx

]
.

(2.4)

Here, Hx, Hx, V x, Vx are independent Grassmann variables, four for each lattice site,
and Ex,1 := Hx Hx+e1 , while Ex,0 := V xVx+e0 . Moreover, � := {Hx, Hx, V x, Vx}x∈	i

denotes the collection of all these Grassmann variables, and D	i � is a shorthand for∏
x∈	i

d Hxd HxdV xdVx. The Grassmann integration is defined so that, for all x ∈ 	i ,

∫
d Hxd HxdV xdVx = 0,

∫
d H xd HxdV xdVx(VxV x Hx Hx) = 1. (2.5)
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The label α = (α1, α2), with α1, α2 ∈ {±}, refers to the boundary conditions, which
are periodic or antiperiodic in the horizontal (resp. vertical) direction. Letting Z =∑

α∈{±}2 τα Zα with Zα = Zα(0), the truncated energy correlation (2.1) can be written
as

S(x1, j1; x2, j2) =
∑

α∈{±}2

τα Zα

2Z

〈
Ex1, j1; Ex2, j2

〉T
α,i , (2.6)

where 〈·〉α,i is the average with respect to the Grassmann “measure” D	i �eS	i (�,0)/Zα

with α boundary conditions.
Let us consider first the case A = 0.
We perform the (well-known) change of variables

H x + iHx = eiπ/4ψ+,x − eiπ/4χ+,x, Hx − iHx = e−iπ/4ψ−,x − e−iπ/4χ−,x,

V x + iVx = ψ+,x + χ+,x, V x − iVx = ψ−,x − χ−,x.
(2.7)

We set �α = ∫ D	i � eS	i (�,0), and, for j = 0, 1, t ( j) = 1
|	i |

∑
x∈	i

tanh(β J ( j)
x ), we

define V ( j)
x as

t ( j)
x = tanh(β J ( j)

x ) = tanh
(
β J ( j)

(
1 + λφ( j)(2πω0,i x0 + θ j,0, 2πω1,i x1 + θ j,1)

))

≡ t ( j) + V ( j)
x (2.8)

so that
∑

x∈	i
V ( j)

x = 0. We can write

�α =
∫ ∏

x∈	i

dψ+,xdψ−,xdχ+,xdχ̄−,xeS(χ)(χ)+S(ψ)(ψ)+Q(ψ,χ) (2.9)

where, denoting with · the Euclidean scalar product,

S(χ)(χ) := − 1

4

∑

x∈	i

t (1)
x

(
χ+,x
χ−,x

)
·
(−1 +i

−i −1

)(
χ+,x+e1

χ−,x+e1

)
+

− 1

4

∑

x∈	i

t (0)
x

(
χ+,x
χ−,x

)
·
(−i +i

−i +i

)(
χ+,x+e0

χ−,x+e0

)
+

− 1

4

∑

x∈	i

2i(
√

2 + 1)
(
χ+,xχ−,x − χ−,xχ+,x

)
.

(2.10)

S(ψ)(ψ) := − 1

4

∑

x∈	i

t (1)
x

(
ψ+,x
ψ−,x

)
·
(−1 +i

−i −1

)(
ψ+,x+e1

ψ−,x+e1

)
+

− 1

4

∑

x∈	i

t (0)
x

(
ψ+,x
ψ−,x

)
·
(−i +i

−i +i

)(
ψ+,x+e0

ψ−,x+e0

)
+

− 1

4

∑

x∈	i

[− 2i(
√

2 − 1)
](

ψ+,xψ−,x − ψ−,xψ+,x
)
.

(2.11)
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Q(ψ, χ) := 1

4

∑

x∈	i

t (1)
x

(
ψ+,x
ψ−,x

)
·
(−1 i

−i −1

)(
χ+,x+e1

χ−,x+e1

)
+

1

4

∑

x∈	i

t (0)
x

(
ψ+,x
ψ−,x

)
·
(

i −i
i −i

)(
χ+,x+e0

χ−,x+e0

)
+ (ψ ↔ χ).

(2.12)

Note that, by (2.8), V ( j)
x is a 2π -periodic function in 2π�x +ϑ j with � =

(
ω0,i 0

0 ω1,i

)
,

and with zero mean so that we can write

V ( j)
x =

∑

n

V̂ ( j)
n ein·ϑ j ei2π�n·x, with V̂ ( j)

n := 1

|	i |
∑

x∈	i

V ( j)
x e−in·(2π�x+ϑ j ), (2.13)

where V ( j)
x is defined in (2.8), n takes values as in (1.3),

|V̂ ( j)
n | ≤ C |λ|e−η|n| (2.14)

with C and η independent of i , and V̂ ( j)
n = (V̂ ( j)

−n )∗, V̂ ( j)
0 = 0; these properties follow

from (1.4), (2.8) and by analyticity of V ( j)
x as a function of the coordinates.

Denoting by ζ± = ψ±, χ±,

ζ±,x := 1

|	i |
∑

k∈Dα

ζ̂±,keik·x, (2.15)

with

Dα =
{

k = (k0, k1) ∈ R
2
∣∣∣∣

k j = π
L j

(2κ j + 1 − α j 1)

κ j ∈ {− ⌊ L j +1
2

⌋
, . . . , 0, 1, . . . ,

⌊ L j
2

⌋}

}

. (2.16)

Note that
∑

x∈	i

V (1)
x

(
χ̂+,x
χ̂−,x

)
·
(−1 i

−i −1

)(
χ̂+,x+e1

χ̂−,x+e1

)

= 1

2|	i |
∑

k∈Dα

n∈Z2

V̂ (1)
n ein·ϑ1

(
χ̂+,−k
χ̂−,−k

)
· ei(k1−2πω1n1)

(−1 i
−i −1

)(
χ̂+,k−2π�n
χ̂−,k−2π�n

)

+
1

2|	i |
∑

k∈Dα

n∈Z2

V̂ (1)
n ein·ϑ1

(
χ̂+,k−2π�n
χ̂−,k−2π�n

)
· e−ik1

(−1 i
−i −1

)(
χ̂+,−k
χ̂−,−k

)

= 1

2|	i |
∑

k∈Dα

n∈Z2

V̂ (1)
n ein·ϑ1

(
χ̂+,−k
χ̂−,−k

)

·
[

ei(k1−2πω1n1)

(−1 i
−i −1

)
− e−ik1

(−1 −i
i −1

)](
χ̂+,k−2π�n
χ̂−,k−2π�n

)

= 1

|	i |
∑

k∈Dα

n∈Z2

V̂ (1)
n e−π iω1n1 ein·ϑ1

(
χ̂+,−k
χ̂−,−k

)

·
(−i sin

(
k1 − πω1n1

)
i cos

(
k1 − πω1n1

)

−i cos
(
k1 − πω1n1

) −i sin
(
k1 − πω1n1

)
)(

χ̂+,k−2π�n
χ̂−,k−2π�n

)
.

(2.17)
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and similar expressions hold for the other quadratic expressions. By setting

Â( j)
n = V̂ ( j)

n e−iπω j n j ein·ϑ j , (2.18)

we finally obtain

�α =
∫ ∏

k∈Dα

dψ̂+,kdψ̂−,kdχ̂+,kdχ̂−,k

eS(χ)
free(χ)+S(ψ)

free (ψ)+Qfree(ψ,χ)+S(χ)
int (χ)+S(ψ)

int (ψ)+Qint(ψ,χ) (2.19)

where, if ψ̂k = (ψ̂k,+, ψ̂k,−) and χ̂k = (χ̂k,+, χ̂k,−).

S(ζ )
free(ζ ) = − 1

4|	i |
∑

k∈Dα

ζ̂−k · Cζ (k)̂ζ k, (2.20)

Cζ (k) :=
(−it (1) sin k1 − t (0) sin k0 −imζ (k)

imζ (k) −it (1) sin k1 + t (0) sin k0

)
, (2.21)

mχ (k) := t (1) cos k1 + t (0) cos k0 + 2(
√

2 + 1), (2.22)

m0
ψ(k) := t (1) cos k1 + t (0) cos k0 − 2(

√
2 − 1). (2.23)

and

Qfree(ψ, χ) = 1

4|	i |
∑

k∈Dα

[
ψ̂−k · Q(k)χ̂k + χ̂−k · Q(k)ψ̂k

]
, (2.24)

with

Q(k) :=
(

it (1) sin k1 − t (0) sin k0 i
(
t (1) cos k1 − t (0) cos k0

)

−i
(
t (1) cos k1 − t (0) cos k0

)
it (1) sin k1 + t (0) sin k0

)
. (2.25)

Moreover,

S(ζ )
int = − 1

4|	i |
∑

k∈Dα

n∈Z2

∑

j=0,1

Â( j)
n ζ̂−k · P( j)(k, n)̂ζ k−2π�n, (2.26)

Qint(ψ, χ) = 1

4|	i |
∑

k∈Dα

n∈Z2

∑

j=0,1

Â( j)
n ψ̂−k · Q( j)(k, n)χ̂k−2π�n + (ψ ↔ χ), (2.27)

with

P(1)(k, n) =
(−i sin

(
k1 − πω1n1

)
i cos

(
k1 − πω1n1

)

−i cos
(
k1 − πω1n1

) −i sin
(
k1 − πω1n1

)
)

(1 − δn1,0), (2.28)

P(0)(k, n) =
(

sin
(
k0 − πω0n0

)
i cos

(
k0 − πω0n0

)

−i cos
(
k0 − πω0n0

) − sin
(
k0 − πω0n0

)
)

(1 − δn0,0), (2.29)

and

Q(1)(k, n) = P(1)(k, n), Q(0)(k, n) = −P(0)(k, n). (2.30)
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Finally, we introduce new Grassmann variables ξ̂k

χ̂k = ξ̂k + C−1
χ (k)Q(k)ψ̂k (2.31)

and with a straightforward computation yields

Sfree = S(ξ)
free + S(ψ)

free, Sint = S(ξ)
int + S(ψ)

int + Q(ψ,ξ)
int . (2.32)

Explicitly, we obtain S(ξ)
free(ξ) = S(χ)

free(ξ) and

S(ψ)
free(ψ) = − 1

4|	i |
∑

k∈Dα

ψ̂−k · (gψ(k))−1ψ̂k (2.33)

with

(ĝψ(k))−1 = Cψ(k) − Q(k)C−1
χ (k)Q(k), (2.34)

Q(k)C−1
χ (k)Q(k) = Mψ + R(k) (2.35)

where, if we denote with |M | := ∑
a,b |Ma,b| the chosen norm on the space of matrices,

we have |R(k)| ≤ C |k|, Mψ = −((t (0) − t (1))2/mχ )σ2 and, if mχ (0) =: mχ and
m0

ψ(0) =: m0
ψ ,

mψ =m0
ψ − (t (0) − t (1))2/mχ

= 1

m0
χ

[(t (0) + t (1)) − 2(
√

2 − 1))(t (0) + t (0)) + 2(
√

2 + 1)) − (t (0) − t (0))2)

= 1

mχ

((t (0) + t (1))2 − 4 + 4(t (0) + t (0)) − (t (0) − t (0))2)

= 4

mχ

(t (0)t (1) + t (0) + t (1) − 1). (2.36)

In conclusion,

�α = N
∫

Pξ (dξ)

∫
Pψ(dψ)eV (ψ,ξ) (2.37)

where N is a normalization constant and Pξ (dξ) is the Gaussian Grassmann integration,
see e.g. Section 4.1 of [27], with propagator ĝξ (k) ≡ C−1

ξ (k)

gξ (x − y) = 2

|	i |
∑

k∈Dα

eik·(x−y)ĝξ (k), (2.38)

Pψ(dψ) is the Grassmann integration with propagator gψ(x − y) = 2
|	i |

∑
k eik·(x−y)

ĝψ(k) and V (ψ, ξ) = S(ξ)
int (ξ) + S(ψ)

int (ψ) + Qint(ψ, ξ) where

S(ξ)
int (ξ) = − 1

4|	i |
∑

k∈Dα

n∈Z2

∑

j=0,1

Â( j)
n ξ̂−k · P( j)(k, n)̂ξk−2π�n, (2.39)
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S(ψ)
int (ψ) = − 1

4|	i |
∑

k∈Dα

n∈Z2

ψ̂−k ·
⎛

⎝
∑

j=0,1

Â( j)
n P( j)

ψ (k, n)

⎞

⎠ ψ̂k−2π�n, (2.40)

and

Qint(ψ, ξ) = 1

4|	i |
∑

k∈Dα

n∈Z2

∑

j=0,1

Â( j)
n ψ̂−k · Q( j)

ψ (k, n)̂ξk−2π�n + (ψ ↔ χ),(2.41)

with

Q( j)
ψ (k, n) = Q( j)(k, n) − Q(k)C−1

ξ (k)P( j)(k, n), (2.42)

and

P( j)
ψ (k, n) = P( j)(k, n) − Q( j)(k, n)C−1

ξ (k − 2π�n)Q(k − 2π�n)

− Q(k)C−1
ξ (k)Q( j)(k, n) + Q(k)C−1

ξ (k)P( j)(k, n)

C−1
ξ (k − 2π�n)Q(k − 2π�n).

(2.43)

Remark 2.1. The partition function is written in terms of Grassmann integrals (see
(2.37)), and a similar representation holds for the energy correlations (see Sect. 5 be-
low). The propagator gζ (x − y) decays exponentially with a rate proportional to mζ (0),
where ζ = ψ, χ and mχ (0) = O(1). We call ψ and χ (or ξ ) respectively critical and
non-critical, or massless and massive variables.

If there is no disorder (i.e., λ = 0 and t ( j) = tanh(β J ( j))), the critical temperature
βc, which is the temperature at which the correlation length diverges, is given by the
condition mψ = 0. Indeed, one finds that this happens when sinh 2βc J (1) sinh 2βc J (0) =
1, noting that 4 t (1)

1−(t (1))2
t (0)

1−(t (0))2 = 1 is true for t (0) = 1−t (1)

1+t (1) . As we will see below, the
critical temperature when λ �= 0 is different.

3. Integration of Non-critical Variables

3.1. Series expansion. We define

eEξ +V(ψ) =
∫

Pξ (dξ)eV (ψ,ξ) = e
∑∞

q=1
1
q!E

T
ξ (V (ψ,·);q)

= exp

(
Eξ +

1

4|	i |
∑

k∈Dα

n∈Z2

ψ−k · V̂n(k)ψk−2π�n

)
(3.1)

where E
T
ξ (V (ψ, ·); q) are the truncated expectations with respect to Pξ (dξ) defined as

E
T
ξ (V ; q) = ∂q

∂αq
log

∫
Pξ (dξ)eαV (ψ,ξ)

∣∣∣
α=0

(3.2)

where α ∈ R and Eξ is constant. V̂n(k) is a 2 ×2 matrix which can be expressed as sum
of connected graphs defined as follows.
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Fig. 1. A graph � with q = 4

Definition 3.1. A graph with q vertices and index n is defined, see Fig. 1, as a chain of
q lines �1, . . . , �q+1 connecting points (vertices) v1, . . . , vq , so that �i enters vi and �i+1
exits from vi ; �1 and �q+1 are external lines of the graph and both have a free extreme,
while the others are the internal lines. A labeled graph � is defined from the graph
defined above by associating the following labels:

(1) To each point v is associated a label jv ∈ {0, 1} and a momentum label nv ∈ Z
2 with

the constraint that
∑q

v=1 nvi = n.
(2) To each line � is associated a momentum k� with the constraint that k�i+1 − k�i =

−2π�nvi ; moreover, k�1 = k and k�q+1 = k − 2π�n.
(3) Gn,q is the set of all possible graphs with q vertices and index n.

The value of the labeled graph � is defined as

W�(k) := Fv1(k)

( q∏

i=2

ĝξ (k�i )Fvi (k�i )

)

(3.3)

where

Fv(k�) = Â( jv)
nv

×
{

Q( jv)
ψ (k�, nv), if v = 1, q

P( jv)(k�, nv), if v = 2, 3, . . . , q − 1
(3.4)

with the definitions in (2.8), (2.18), (2.42) and (2.43).

Lemma 3.2. The effective potentialV(ψ)admits the representation 1
4|	i |

∑
k∈Dα

∑
n∈Z2

ψ−k · V̂n(k)ψk−2π�n with

V̂n(k) =
∞∑

q=1

∑

�∈Gn,q

W�(k). (3.5)

For the proof, see Appendix A.
We denote by |A| := ∑

i, j |Ai, j |, if A is a square matrix. Note that W�(k) depends
on n.

Lemma 3.3. There exist C, λ0 > 0 independent of i such that for |λ| ≤ λ0, V̂n(k) and
its derivatives satisfy, for s ≤ 2,

|∂s
kV̂n(k)| ≤ C |λ|e− η

2 |n|. (3.6)

Moreover,

V̂0(k) =
(

a(k) ib(k)

−ib(k) −a∗(k)

)
(3.7)

with a(k) = −a(−k) ∈ C and b(k) = b(−k) ∈ R.
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Proof. Using that |∂s
k j

gξ (k)| ≤ Gξ and recalling that by (2.8) and (2.14) one has

|Fv(kin)| ≤ |λ|C1 e−η|nv | , and by (2.18), (3.3) and (3.4) we get, for suitable constants
Gξ , C1 > 0 independent of i ,

|∂s
kW�(k)| ≤ 9q |λ|q Gq−1

ξ Cq
1

∏

v

e−η|nv | ≤ 9q |λ|q Gq−1
ξ Cq

1 e− η
2 |n|∏

v

e− η
2 |nv | (3.8)

where 9 is an upper bound for the number of derivatives on the propagators and on the
Fv’s. The sum over graphs consists simply in the sums over all possible jv and nv so
that, using that

∑
nv

e− η
2 |nv | ≤ 4

(1−e− η
2 )2

and the sum over jv is bounded by 2, one gets

|∂s
kVn(k)| ≤

∞∑

q=1

|λ|q 1

Gξ

(
72C1Gξ

(1 − e− η
2 )2

)q

e− η
2 |n| (3.9)

and the sum over q ≥ 1 is convergent for |λ| <
(1−e− η

2 )2

144C1Gξ
. The proof of (3.7) is in

Appendix B. ��

4. Integration of Critical Modes

4.1. Multiscale decomposition. We write

�α =N
∫

Pψ(dψ) exp
{ 1

4|	i |
∑

k∈Dα

n∈Z2

ψ̂−k · V̂n(k)ψ̂k−2π�n

}

=N1

∫
P(≤1)(dψ) exp

{ 1

4|	i |
∑

k∈Dα

ψ̂−k ·γ 2νσ2ψ̂k +
1

4|	i |
∑

k∈Dα

n∈Z2

ψ̂−k ·V̂n(k)ψ̂k−2π�n

}

(4.1)

where P(≤1)(dψ) := N
N1

P(dψ) exp{− 1
4|	i |

∑
k∈Dα

ψ̂−k · γ 2νσ2ψ̂k}. Note that, in
writing the above expression we have added and subtracted a counterterm proportional
to ν, which will be suitably chosen below.

As we noticed, in the integration over the ψ we cannot repeat the analysis done for
the ξ because the propagator is unbounded. The integration of ψ in (4.1) is done via a
multiscale analysis. We introduce a Gevrey class 2 function χ (see e.g. [34, Appendix
A]) such that χ ′(|k|T) ≤ 0 and

χ(k) = χ(|k|T) =
{

1, if |k|T < γ −1 π
2

0, if |k|T ≥ π
2

(4.2)

with T denoting the two dimensional torus of length 2π , |k|T :=
√

|k0|2T + |k1|2T with
|k|T := infm∈Z |k + 2mπ |. We also define, if γ > 1, h ≤ 0

χh(k) := χ(γ −hk), (4.3)
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Fig. 2. Plot of the function χ and some of the fh

and χ1(k) = 1. The functions fh(k) := χh(k) − χh−1(k) and f̃h(k) := χh(k)(1 −
χh−1(k)) are Gevrey class 2 compact support functions with support π

2 γ h−2 ≤ |k|T ≤
π
2 γ h , see Fig. 2.

The integration is defined recursively in the following way. Suppose we have just
integrated the field on scale h, h = 1, 0,−1,−2, . . . obtaining

�α = Nh

∫
P(≤h)(dψ(≤h))eV (h)(ψ(≤h)), (4.4)

with Nh constant in ψ and P(≤h)(dψ(≤h)) a Grassmann Gaussian integration with
propagator

g(≤h)(k) = χh(k)Ah+1(k) (4.5)

with

Ah(k) =
(

−ia(h)
1 k1 − a(h)

0 k0 − b1(k) −iμ − ib2(k)

iμ + ib2(k) −i(a(h)
1 )∗k1 + (a(h)

0 )∗k0 + b∗
1(k)

)−1

(4.6)

and |b1(k)|, |b2(k)| ≤ C |k|2; moreover

V (h)(ψ(≤h)) = 1

4|	i |
∑

k∈Dα

n∈Z2

ψ
(≤h)
−k · V̂(h)

n (k)ψ
(≤h)
k−2π�n. (4.7)

If h = 1, (4.5) holds with χ1(k) = 1; moreover μ = mψ + γ 2ν and V (1) given by the
exponent of the second line of (4.1).

Remark 4.1. We will show in the following that ν has to be chosen as a suitable non
trivial function of λ,μ, β; the condition for criticality, that is so that the correlation
length diverges, is given by μ = 0 and not by mψ = 0 as in the non disordered case.

We define a localization operation as

LV (h)(ψ(≤h)) := 1

4|	i |
∑

k∈Dα

ψ̂
(≤h)

−k ·
(
V̂(h)

0 (0) +
1∑

j=0

k j∂ j V̂(h)
0 (0)

)
ψ̂

(≤h)

k , (4.8)
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and

RV (h)(ψ(≤h)) = V (h)(ψ(≤h)) − LV (h)(ψ(≤h)). (4.9)

We move the second term ofLV (h)(ψ(≤h)) in the Gaussian integration and by the change
of integration property of Gaussian Grassmann Integrals [27, Eq. 2.24], we have for
suitable N̄h ∈ R,

Nh

∫
P(≤h)(dψ(≤h))eLV (h)(ψ(≤h))+RV (h)(ψ(≤h))

= N̄h

∫
P̄(≤h)(dψ(≤h))e

1
4|	i |

∑
k∈Dα

ψ̂
(≤h)

−k ·γ hνhσ2ψ̂
(≤h)

k +RV (h)(ψ(≤h))
,

(4.10)

where P̄(≤h)(dψ(≤h)) has propagator

ḡ(≤h)(k) = χh(k) Āh(k) (4.11)

with

Āh(k) :=
(

−ia(h)
1 (k)k1 − a(h)

0 (k)k0 − b1(k) −iμ − ib2(k)

iμ + ib2(k) −i(a(h)
1 (k))∗k1 + (a(h)

0 (k))∗k0 + b∗
1(k)

)−1

(4.12)

and

a(h)
1 (k) = a(h+1)

1 + iχh(k)
[
∂1V̂(h)

0 (0)
]

1,1, a(h)
0 (k) = a(h+1)

0 − χh(k)
[
∂0V̂(h)

0 (0)
]

1,1

(4.13)

where a(h+1)
j := a(h+1)

j (0) for any j = 0, 1 and for any h, and with νhσ2 = γ −hV̂(h)
0 (0).

To begin the iteration, one can define

a(2)
0 := −[∂0(ĝ

(≤1))−1(0)
]

1,1, a(2)
1 := i

[
∂1(ĝ

(≤1))−1(0)
]

1,1. (4.14)

We can write

P̄(≤h)(dψ(≤h)) = P(≤h−1)(dψ(≤h−1))P(h)(dψ(h)) (4.15)

where P(≤h−1)(dψ(≤h−1)) has propagator

g(≤h−1)(k) = χh−1(k)Ah(k) (4.16)

with Ah(k) being defined in (4.6). P(h)(dψ(h)) has propagator

g(h)(k) = ḡ(≤h)(k) − g(≤h−1)(k) (4.17)

where the analogous of (3.7) has been used. We can integrate P(h)(dψ(h)) and the
procedure can be iterated.
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4.2. The single scale propagator. Inserting (4.16) and (4.11) in (4.17) one obtains

g(h)(k) = fh(k)Ah(k) + f̃h(k)
(

Āh(k) − Ah(k)
)
, (4.18)

where fh and f̃h are defined after (4.3). It is important to notice that supp χh(k)( Āh(k)−
Ah(k)) ⊆ [π

2 γ h−1, π
2 γ h] (therefore we can multiply for free with (1 − χh−1(k) to

obtain f̃h) and therefore g(h)(k) is a Gevrey compact support function, with supp g(h) ⊆
[π

2 γ h−2, π
2 γ h]. Note also that in the expression of g(1) the second term is not present

because χ1(k) = 1.
Assuming iteratively (what will be proved inductively below in Lemma 4.7 for |λ|

small enough) that 7
8 a(2)

j ≤ a(h)
j ≤ 9

8 a(2)
j , we can show that for s = 0, 1, 2,

|∂s
kg(h)(k)| ≤ C1γ

−h(1+s). (4.19)

Indeed,

| det A−1
h (k)| = |ia(h)

1 k1 + a(h)
0 k0 + b1(k)|2 + |μ + b2(k)|2 (4.20)

with b1(k), b2(k) = O(|k|2) as k → 0. Then, by algebraic manipulations, one obtains

| det A−1
h (k)| ≥ |a(h)

1 |2k2
1 + |a(h)

0 |2k2
0 + 2Im(a(h)

1 a(h)
0

∗
)k0k1 + F(k) (4.21)

with F(k) = O(|k|3) as k → 0. Using now that a(2)
1 , a(2)

0 ∈ R and the iterative

hypothesis on a(h)
j , one has

|Im(a(h)
1 a(h)

0
∗
)| = |Im(a(h)

1 a(h)
0

∗ − a(2)
1 a(2)

0 )|
= |Im((a(h)

1 − a(2)
1 )a(h)

0
∗ − a(2)

1 (a(h)
0

∗ − a(2)
0 ))|

≤ |a(h)
1 − a(2)

1 ||a(h)
0 | + |a(2)

1 ||a(h)
0 − a(2)

0 | ≤
(

1

8
· 9

8
+

1

8

)
|a(2)

0 ||a(2)
1 |

≤ 17

64
|a(2)

0 ||a(2)
1 |. (4.22)

Thus, (4.21) can be estimated as

| det A−1
h (k)| ≥ |a(h)

1 |2k2
1 + |a(h)

0 |2k2
0 − 2|Im(a(h)

1 a(h)
0

∗
)k0k1| − |F(k)|

≥ 49

64
|a(2)

1 |2k2
1 +

49

64
|a(2)

0 |2k2
0 − 17

32
|a(2)

0 ||a(2)
1 ||k0||k1| − |F(k)|

≥ 1

2

(
(a(2)

1 )2k2
1 + (a(2)

0 )2k2
0

)
− |F(k)|, (4.23)

where in the last step we used |(a(2)
0 k0)(a

(2)
1 k1)| ≤ 1

2

(
(a(2)

0 )2k2
0 + (a(2)

1 )2k2
1

)
.
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4.3. Graphs and clusters. The outcome of the multiscale integration described above
is again a representation of the effective potential in terms of graphs, which are called
renormalized graphs.

Definition 4.2. GR,h
n,q is the set of renormalized graphs �, which are defined starting from

the graphs defined in Definition 3.1 by associating the following labels

(1) To each point v is associated a label nv and a label iv ∈ {ν, V }, with the constraint
that

∑q
i=1 nvi = n.

(2) To each line � is associated a momentum k� with the constraint that k�i+1 − k�i =
−2π�nvi ; moreover k�1 = k and k�q+1 = k − 2π�n.

(3) To each line � is associated a scale index h� = 1, 0, . . . ,−∞; if � is an internal line
h� ≥ h + 1; the minimal scale of the internal lines is h� . To each external line is
associated a scale and hext ≤ h is the greatest of such scales.

Given a renormalized graph, we associate a set of clusters defined in the following
way.

Definition 4.3. Given a renormalized Graph �

(1) A non-trivial cluster T is defined as a nonempty connected subset of internal lines
and points attached to them such that if hT is the minimum of the scales of the lines
of T , then hT > hext

T , where hext
T is the maximal of the scales of the external lines of

T (the lines �∈ T attached to a single point of T ). The points are trivial clusters and
� is also a cluster.

(2) The difference of the momenta of the external lines of T is given by 2π�nT with
nT = ∑

v∈T nv . If nT = 0 then T is a resonant cluster (or resonance), otherwise
is a non-resonant cluster. An inclusion relation is established between clusters and
we say that T̃ ⊂ T if all the elements of T̃ belong also to T . T̃ is a maximal cluster
(trivial or not trivial) contained in T if T̃ � T and there is no other cluster T̄ such
that T̃ � T̄ � T .

(3) QT is the number of maximal clusters in T , MT is the number of the maximal non-
resonant clusters contained in T ; RT is the number of the maximal resonant clusters
contained T ; QT = MT + RT ; Mν

T (M I
T ) is the set of resonant (non-resonant)

maximal trivial clusters (i.e. points) in T .

Given a cluster, we can associate a value in the following way.

Definition 4.4. The value of a cluster T with maximal clusters T̃w, w = 1, . . . , QT is
given by

WT (k) =
⎡

⎣
QT −1∏

w=1

W T̃w
(kw)g(hT )(kw+1)

⎤

⎦W T̃QT
(kQT ), (4.24)

where kw − kw−1 = 2π�nT̃w−1
, k1 = k and W T̃w

(kw) is defined as

(1) If T̃w is a trivial cluster, then by Definition 4.2 (item (1)) it has two labels iw and nw.
If iw = ν, then nw = 0 and WT̃w

(kw) = γ hT νhT σ2; if iw = V then either nw = 0

and then WT̃w
(kw) = RV̂0(kw) or nw �= 0 and then WT̃w

(kw) = V̂nw(kw) defined
in (3.1).

(2) If T̃w is a non-trivial cluster then W̄T̃w
= RWT̃w

with R = 1 − L defined in (4.8).
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Fig. 3. Graphical representation of a renormalized graph �: q = 11, h5 < h4 < h3 < h2 < h1, h� = h5.
Q� = 4 (with 2 non-trivial clusters, i.e. T1 and T2, and two trivial ones, i.e. the points 1 and 9). QT1 = 3
(with 2 non-trivial clusters T3 and T4 and a trivial one, v = 6). T3 has two maximal clusters, a trivial one
v = 2 and a non-trivial one T5. T5 has two maximal clusters, a non-trivial one T6 and a trivial one, n5. T6, T4
and T2 have two maximal trivial clusters each

Remark 4.5. Let v be a maximal trivial cluster v ∈ T . If v is a resonant V -point (i.e.
nv = 0), then by (4.9) and Lemma 3.3, we have

|χh(k)χh(k − 2π�n)RV̂0(k)| ≤ γ 2hT C |λ|. (4.25)

With the above definitions, the following lemma holds.

Lemma 4.6. V̂(h)
n (k) in (4.7) can be written as

V̂(h)
n (k) =

∞∑

q=1

∑

�∈GR,h
n,q

W�(k). (4.26)

Similarly, the running coupling constants verify

νh−1 = γ νh + βν,h a(h−1)
j = a(h)

j + βa j ,h (4.27)

with

βν,h = iγ −h+1
∞∑

q=2

∑

�∈GR,h−1
0,q ,h�=h

[
W�(0)

]
1,2,

βa1,h = −i
∞∑

q=2

∑

�∈GR,h−1
0,q ,h�=h

[
∂k1 W�(0)

]
1,1,

βa0,h =
∞∑

q=2

∑

�∈GR,h−1
0,q ,h�=h

[
∂k0 W�(0)

]
1,1.

(4.28)

The proof is an immediate consequence of Appendix A and Sect. 3.
An example of a renormalized graph with its clusters is given in Fig. 3: in Fig. 4 is

represented the same graph with only its maximal clusters.
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Fig. 4. The same graph as in Fig. 3 with only its maximal clusters represented. Trivial clusters are represented
by dots, non-trivial clusters by ellipses

Note that a set of clusters can be equivalently represented as a Gallavotti-Nicolò tree,
see e.g. [56].

If we consider as first non-trivial cluster T = � and we use the above definition we
get an expression similar to the graphs defined in Sect. 3 with the difference that (a) the
propagators associated to the lines � are g(h�); (b) to each resonant cluster is associated
the R operation; (c) the vertices are of type ν or V ; (d) the vertices do not have a jv
index. In contrast with the expansion in λ seen in Sect. 3, the renormalized expansion is
in λ and in the running coupling constants νh .

In the following we denote by
∏

T n.t.
= ∏

T ∈�
T non-trivial

.

4.4. Bounds. We define

‖V̂(h)
n ‖ := sup

k∈Dα

χh(k)χh(k − 2π�n)|V(h)
n (k)|. (4.29)

The following lemma holds. We denote with subscript l the infinite volume limit of a
quantity.

Lemma 4.7. Let τ := min{ρ1, ρ0}, take γ > 4τ and assume that for h′ > h one has
|νh′ | ≤ |λ|. Then, there exist λ0, C > 0 independent of i and h such that, for any |λ| < λ0
one has

(i) the limit V̂(h)
n,l (k) := limi→+∞ V̂(h)

n (k) exists;
(ii) for s = 0, 1, 2, the following estimates hold

‖∂s
kRV̂(h)

n,l ‖ ≤ γ h(1−s)C |λ|e− η
4 |n|, (4.30)

|βν,h | ≤ (Cλ)2γ h, |βa j ,h | ≤ (Cλ)2γ h . (4.31)

The bounds (4.30) and (4.31) are obtained by estimating the value of the graphs in
(4.26) and (4.28). For clarity, we write in Remark 4.8 below and example: we show how
the general procedure works in the particular case of the graph in Fig. 3.

Proof. W�,l is obtained by W� replacing �i with �, considering nv ∈ Z
2 and k ∈

[−π, π)2. First, we show that we can multiply by χ� , i.e. we show that

χh(k)χh(k − 2π�n)W�,l(k) = χh(k)χh(k − 2π�n)χ�W�,l(k) (4.32)

where χ� = 1 if, for any non-resonant cluster T in �, it is true that

|nT | ≥ C0γ
− hext

T
τ (4.33)
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and χ� = 0 otherwise. Indeed if kin and kout are the momenta associated to the external
lines of T , then by the compact support properties of g(h)’s or χh , |kin|T ≤ π

2 γ hext
T and

|kout|T ≤ π
2 γ hext

T (note that h ≤ hext
T ). Therefore

|kin − kout|T ≤ |kin|T + |kout|T ≤ 2
π

2
γ hext

T (4.34)

and by the Diophantine condition (1.5) we get

2
π

2
γ hext

T ≥ |kin − kout|T = 2π min
m0,m1∈Z

√
(ω1n1 − m1)2 + (ω0n0 − m0)2

≥ max
j=0,1

c j |n j |−ρ j ≥ max(c1, c0)|nT |− min(ρ1,ρ0)
(4.35)

hence the l.h.s. of (4.32) is vanishing if for at least one non-resonant T , (4.33) is not
true.

The proof proceeds then by induction. First, notice that the first step is a straightfor-
ward consequence of Lemma 3.3. By the inductive step, let us assume that (4.30) and
(4.31) hold for any scale 2, . . . , h + 1 and we prove that they hold at scale h. First of all
by (4.31) we get

|a(h)
j − a(2)

j | ≤ C2λ2
2∑

k=h+1

γ k ≤ C2λ2 γ 3

γ − 1
(4.36)

hence for C2λ2 γ 3

γ−1 < min j
1
8 a(2)

j we get 7
8 a(2)

j ≤ a(h)
j ≤ 9

8 a(2)
j ; this implies (4.19) for

s = 0, 1, 2. To estimate the quantities appearing in (4.24), we recall that from Lemma
3.3, there exists a constant C2 independent of i , such that ‖∂s

kV̂n‖ ≤ C2|λ|e−η/2|n|, and
from (4.19) there exists a constant C1 independent from i and h′ such that ‖∂s

kg(h′)‖ ≤
C1γ

−h′(1+s). Moreover, by Remark 4.5, we can estimate resonant V vertices as |RV̂0| ≤
|λ|γ hT (see also Remark 4.9 below). Thus,

‖∂s
kR χ�W�,l(k)‖ ≤ (cC1C2)

qγ −sh |λ|q ×
(
∏

v

e− η
2 |nv |

)(
∏

T n.t.

γ −hT (MT +RT −1)

)( ∏

T n.t.nT =0

γ 2(hext
T −hT )

) ∏

T n.t.

γ hT Mν
T .

(4.37)

where c = 9 counts the number of derivatives produced byR or ∂s , the factor γ 2(hext
T −hT )

is the result of the application of the R operation described in Appendix C and
γ −hT (MT +RT −1) comes from the product of propagators. We can write

∏

v

e− η
2 |nv | ≤ e− η

4 |n|
(
∏

v

e− η
8 |nv |

)(
∏

v

e− η
8 |nv |

)

, (4.38)

and e− η
8 |nv | =

0∏

h=−∞
e−2h η

16 |nv | so that

∏

v

e− η
8 |nv | ≤

∏

T n.t.

e− η
16 2hext

T |nT |. (4.39)
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The presence of χ� guarantees that when nT �= 0, the estimate (4.33) holds and the

assumption γ > 4τ ensures that γ̃ := γ 1/τ

2 > 1. Therefore,

∏

v

e− η
8 |nv | ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−ζ γ̃ −h ∏

T n.t.
e−ζ MT γ̃ −hT if n� �= 0

∏

T n.t.
e−ζ MT γ̃ −hT if n� = 0

. (4.40)

with ζ = η
16 C0 a constant independent of i and h. We get therefore

‖∂s
kRχ�W�,l‖ ≤ (cC1C2)

qγ −sh |λ|q fexte
− η

4 |n|
(
∏

v

e− η
8 |nv |

)(
∏

T n.t.

γ −hT (MT +RT −1)

)

×
( ∏

T n.t.
nT =0

γ 2(hext
T −hT )

)(∏

T n.t.

e−ζ MT γ̃ −hT

)
∏

T n.t.

γ hT Mν
T ,

(4.41)

where

fext :=
{

e−ζ γ̃
−hext

T if nT �= 0
1 if nT = 0

. (4.42)

Using that for any M ∈ N, one has e−ζ γ̃ −hT ≤ γ −M
(

M ln γ
ζ

)M ln γ

γ MhT (this is a

consequence of the bound e−αx x M ≤ ( M
α

)M e−M ) and
∑

T n.t. MT ≤ 4q, we can bound

∏

T n.t.

e−ζ MT γ̃ −hT ≤ Cq
3

(
∏

T n.t.

γ 2hT MT

)
∏

T n.t.

γ hT M I
T (4.43)

by setting M = 3 and with C3 = γ −12
(

3 ln γ
ζ

)12 ln γ

. We bound MT with M I
T , that is

the number of non resonant maximal trivial clusters. Therefore
(
∏

T n.t.

γ −hT MT

)
∏

T n.t.

e−ζ MT γ̃ −hT ≤ Cq
3

(
∏

T n.t.

γ hT MT

)
∏

T n.t.

γ hT M I
T (4.44)

and

‖∂s
kRχ�W�,l‖ ≤ (cC1C2C3)

qγ −sh |λ|q fexte
− η

4 |n|
(
∏

v

e− η
8 |nv |

)

×
(
∏

T n.t.

γ −hT (RT −1)

)( ∏

T n.t.
nT =0

γ 2(hext−hT )

)(∏

T n.t.

γ hT MT

)
∏

T n.t.

γ hT (M I
T +Mν

T ).

(4.45)
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Finally, using that RT = Mν
T + Rn.t.

T where Rn.t.
T is the number of non-trivial resonant

maximal clusters in T we get
( ∏

T n.t.

γ −hT (RT −1)

)( ∏

T n.t.
nT =0

γ hext
T −hT

) ∏

T n.t.

γ hT Mν
T ≤ γ ε�h (4.46)

with ε� = 1 if n� = 0 and ε� = 0 otherwise. Equation (4.46) follows from the fact that
( ∏

T n.t.

γ −hT RT

)( ∏

T n.t.
nT =0

γ hext
T

) ∏

T n.t.

γ hT Mν
T

= γ ε�h
( ∏

T n.t.
nT =0, T �=�

γ hext
T

)( ∏

T n.t.

γ −hT RT

) ∏

T n.t.

γ hT Mν
T = γ ε�h

(4.47)

and, moreover
∏

T n.t.

γ hT
∏

T n.t.
nT =0

γ −hT ≤ 1. (4.48)

We define

f̃ext :=
{

e−ζ γ̃ −h
if n� �= 0

γ h if n� = 0
. (4.49)

Inserting (4.46) and (4.49) in (4.45), we get

‖∂s
kRχ�W�,l‖ ≤ γ −sh(cC1C2C3)

q |λ|q f̃ext e
− η

4 |n|
(
∏

v

e− η
8 |nv |

)

×
( ∏

T n.t.
nT =0

γ hext
T −hT

)(∏

T n.t.

γ hT MT

)
∏

T n.t.

γ hT M I
T .

(4.50)

We use the inequality e−ζ γ̃ −h ≤ γ −1
(

ln γ
ζ

)ln γ

γ h , and we call C4 := max {1,

γ −1
(

ln γ
ζ

)ln γ
}

. If T̃ ⊂ T is maximal and T is non-resonant we have γ hT = γ
hext

T̃ ≤
γ

hext
T̃

−hT̃ and therefore

f̃ext

( ∏

T n.t.
nT =0

γ hext
T −hT

) ∏

T n.t.

γ hT MT ≤ C4γ
h
∏

T n.t.

γ hext
T −hT . (4.51)

Inserting (4.51) in (4.50), bounding the factor
∏

γ hT M I
T in (4.50) by a constant, we get

‖∂s
kRχ�W�,l‖ ≤ γ h(1−s)(cC1C2C3C4)

q |λ|q e− η
4 |n|

(
∏

v

e− η
8 |nv |

)
∏

T n.t.

γ hext
T −hT . (4.52)



  235 Page 28 of 50 M. Gallone, V. Mastropietro

The sum over � consists in the sum over the label nv associated to the vertices and
the sum over the scales. We use that

∏

v

∑

nv

e− η
8 |nv | ≤

∏

v

4

(∑

n≥0

e− η
8 n
)2

≤ 4q(1 − e− η
8 )−2q . (4.53)

The sum over the scale labels of the lines, h� can be controlled by summing over the
scales of non-trivial clusters and keeping only the constraint that, for each non-trivial
cluster, hext

T < hT :

∑

{h�}

∏

T n.t.

γ hext
T −hT =

∏

T n.t.

∑

hT >hext
T

γ hext
T −hT ≤

(∑

r>0

γ −r
)∑

T MT ≤
( 1

γ − 1

)4q
, (4.54)

where we used again
∑

T MT ≤ 4q. Inserting (4.53) and (4.54) in (4.52), we get

‖∂s
kRχ�W�,l‖ ≤ γ (1−s)he− η

4 |n||λ|qC̄q , (4.55)

with C̄ := 4cC1C2C3C4
(1−e− η

8 )−2

(γ−1)4 a constant independent on i and h. The sum over q

is convergent if |λ| < C̄ , therefore, if |λ| ≤ C̄
2 one gets

‖∂s
kRV̂(h)

n,l ‖ ≤
+∞∑

q=1

∑

�∈Gn,q

‖∂s
kRχ�W�,l‖ ≤ γ (1−s)h2C̄ |λ|e− η

4 |n|. (4.56)

To estimate βν,h and βa j ,h , we have to bound W�(0) for � ∈ GR,h
0,q , with h� = h (see

(4.28)). In this case we have to consider only the case q ≥ 2, since the sums in (4.28)
start from q = 2. Moreover, there must be at least two maximal non-resonant clusters in
�, therefore M� ≥ 1. Indeed, if this was not the case, then there must be an internal line
with k� = 0, implying g(h�)(k�) = 0 by the support properties of g(h)’s, which yields
W�(0) = 0. Thus, in particular, we must have M� �= 0 and q ≥ 2.

One can repeat the same argument used to estimate ∂s
kRχ�W� with the following dif-

ference. By construction, � is a resonant cluster on which no R operator acts. Therefore,
analogously to (4.41), one obtains

|βν,h | ≤
∞∑

q=2

∑

�

(cC1C2)
q |λ|q

(∏

v

e− η
8 |nv |

)( ∏

T n.t.

γ −hT (MT +RT −1)

)

×
( ∏

T n.t.
nT =0
T �=�

γ 2(hext
T −hT )

)( ∏

T n.t.

e−ζ MT γ̃ −hT

) ∏

T n.t.

γ hT Mν
T .

(4.57)

Using that M� �= 0 and h� = h, one can replace (4.43) with

∏

T n.t.

e−ζ MT γ̃ −hT ≤ γ 2hC̃q
3

(
∏

T n.t.

γ 2hT MT

)
∏

T n.t.

γ hT M I
T (4.58)

where C̃3 = max

{
C3, γ

−20
(

5 ln γ
ζ

)20 ln γ
}

.
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Moreover,
( ∏

T n.t.

γ −hT (RT −1)

)( ∏

T n.t.
nT =0

γ hext
T −hT

) ∏

T n.t.

γ hT Mν
T ≤ 1. (4.59)

The sum over the graphs is done in the same exact way, with regard to the effective
potential. To sum over q, one first notices that we have no graphs with q = 1 and
therefore the sum starts from q = 2, and then one proceeds obtaining, for |λ| ≤ C̄ ′

2 ,

|βν,h | ≤ γ h
∞∑

q=2

λq(C̄ ′)q ≤ 2(C̄ ′)2λ2γ h (4.60)

for a constant C̄ ′ independent of i and h. With the exactly same argument one proves

|βa j ,h | ≤ 2(C̄ ′)2λ2γ h . (4.61)

We can therefore choose C = max{2C̄, 2C̄ ′} so that (4.30) and (4.31) hold. Moreover,

λ0 = min

{
1

C
,

1

C

√
γ − 1

8γ 3 min
j

a(2)
j

}
(4.62)

so that the inductive step is proved.
It remains to prove the existence of the limit i → +∞ where i is the index of the box

side Li introduced in point (iii) after (1.3). the expression obtained replacing Li with ∞
and ωi with ω is finite.

Let us denote with L̄i := min{L0,i , L1,i }. Define for shortness of notation k(t) =
(k − ki )t + ki where k ∈ [−π, π)2 and ki ∈ D−− with |k − ki | ≤ 2π

L̄i
, and �(t) :=

(� − �i )t + �i and χh(k,�) = χh(k)χh(k − 2π�n)χ� , then let us consider the term
with n �= 0 and s = 0. One has

‖V̂l,n(k) − V̂n(ki )‖ ≤
+∞∑

q=1

∑

�∈Gn,q

‖W�(k,�) − W�,l(ki ,�i )‖

=
+∞∑

q=1

∑

�∈Gn,q

∥∥∥∥

∫ 1

0

d

dt
[χh(k(t),�(t))W�(k(t),�(t))] dt

∥∥∥∥ .

(4.63)

By the Leibnitz rule there are three terms: one in which there is a difference k−ki which
can be estimated using the same argument of eq. (4.37)–(4.56) with an additional term
2πγ −h

L̄i
. Therefore, at the end, this is bounded by C |λ|e− η

4 |n| 1
L̄i

.
In the second term, the derivative can act either on a vertex or on a propagator

producing terms that can be estimated as |�i − �||nv|γ −h . Then, the procedure to
estimate the sum is again similar to (4.37)–(4.56) but in the sum over n (4.53) one sums∑

n≥0(|n|+1)e− η
8 n to absorb the term |nv| ≤ ∏

v′ |nv′ |. One then uses that |�i −�| ≤ C
L̄2

i
because the sizes of the lattice are the best approximants of the Diophantine numbers
ω0 and ω1 (see Section IV.7 in [20]). Therefore, the second term can be estimated as
C |λ|e− η

4 |n| 1
L̄2

i
.
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To estimate the third term we use the same procedure from (4.37) to (4.56) and the
fact that either |ki − k| ≤ 2π/L̄i or |�i − �| ≤ C/L̄2

i .

The last term involves graphs with at least a vertex with nv ≥ L̄i and this is O(e−L̄i ).
Therefore, there exists a λ0 > 0 and C > 0 independent of h such that, for any

λ < λ0 one has

‖V̂l,n(k) − V̂n(ki )‖ ≤ C

L̄i
. (4.64)

This implies the existence of the limit. ��
Remark 4.8. Take the Graph in Fig. 3 and consider the case in which the only resonant
cluster is T2. We repeat the argument of Lemma 4.7, applied to this graph only, in order
to clarify the procedure. One has,
∏

�∈�

|g(h�)(k�)| ≤ C10
1 γ −h5γ −h3γ −h1γ −h2γ −2h4γ −h3γ −2h5γ −h2

= C10
1 γ −h4(ST1−1)γ −h2(ST2 −1)γ −h3(ST3−1)γ −h3(ST4 −1)γ −h2(ST5−1)γ −h5(S�−1)

(4.65)

with QT1 = 3, QT2 = 2, QT3 = 2, QT4 = 2, QT5 = 2, QT� = 3; moreover the action
of the R operator on T2 produces a factor γ 2(h5−h2), in agreement with (4.37).

Remark 4.9. Note that in (4.52) we have bounded the factor
∏

γ hT M I
T in (4.50) with a

constant, and an extra γ hT coming from the analysis of Remark 4.5 has been estimated by
a constant before (4.37). Such terms will be used after (5.32) in the proof of Lemma 5.5
and in the proof Corollary 5.6.

4.5. The choice of the counterterm. In Lemma 4.7 we have proved the convergence of
the expansion considering νh as parameters and provided that νh are small enough. νh are
determined recursively by (4.27) starting from the initial value ν which is a free param-
eter; we show that there exists a unique choice of ν so that νh is bounded uniformly in h.
We impose the condition ν−∞ = 0 choosing ν verifying βν,h = βν,h(νh, νh+1, . . . , ν; λ)

ν = −
2∑

k=−∞
γ kβν,k(νk, νk+1, . . . , ν; λ) (4.66)

from which

νh = −
h∑

k=−∞
γ k−hβν,k(νk, νk+1, . . . , ν; λ) (4.67)

and we want to show that (4.67) has a solution.
We define the Banach space M of sequences ν = {νk}k≤2 with norm ‖ν‖M :=∑

k≤2 |νk |γ −k/4γ 1/2 and we consider the ballB ⊂ M of sequences ν such that ‖ν‖M ≤
|λ|. We define the map T : M → M as

T (ν)h = −
h∑

k=−∞
γ k−hβν,k(νk, νk+1, . . . , ν; λ). (4.68)

Therefore, (4.67) can be rewritten as

(ν)h = T (ν)h . (4.69)
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Lemma 4.10. For |λ| ≤ λ0, T : B → B is a contraction.

Proof. To prove that T leaves B invariant, we prove a stronger statement: if ν is such
that |νh | ≤ |λ|, then T (ν) ∈ B. Under these hypothesis, Lemma 4.7 holds and, using
(4.31), we get

‖T (ν)‖M ≤
∑

h≤2

h∑

k=−∞
γ k−hγ − h

4 γ 1/2|βν,k | ≤ γ
15
4

(γ − 1)(γ
3
4 − 1)

(Cλ)2, (4.70)

where C is the constant of Lemma 4.7. Choosing now λ0 ≤ (γ−1)(γ
3
4 −1)

γ
15
4 C2

, we get

‖T (ν)‖M ≤ |λ|. If ν, ν′ ∈ M, then

T (ν)h − T (ν′)h = −
h∑

k=−∞
γ k−h(βν,k(νk, νk+1, . . . , ν; λ) − βν,k(ν

′
k, ν

′
k+1, . . . , ν

′; λ)
)
.

(4.71)

The r.h.s. can be expressed as a sum of graphs identical to � with the difference that in
a vertex instead of νk there is νk − ν′

k . Indeed, repeating the argument of Lemma 4.7,
one gets

|βν,h(ν) − βν,h(ν′)| ≤
∑

q≥2

∑

�

(cC1C2C̄3)
q |λ|q−∑T Mν

T γ h
(∏

v

e− η
8 |nv |

)

×
( ∏

T n.t.

γ hext
T −hT

)∣∣∣∣
∏

T n.t.

ν
Mν

T
hT

−
∏

T n.t.

ν
′Mν

T
hT

∣∣∣∣ (4.72)

Using now that ν ∈ B, one has |∏T n.t. ν
Mν

T
hT

− ∏
T n.t.(ν

′
hT

)Mν
T | ≤ (2|λ|)Mν

T −1‖ν −
ν′‖M. Therefore, summing over � as in Lemma 4.7, and calling C4 := 8cC1C2C̄3(1 −
e− η

8 )−2(γ − 1)−4 one gets

|βν,h(ν) − βν,h(ν′)| ≤
∑

q≥2

Cq
4 |λ|q−1γ h‖ν − ν′‖M. (4.73)

If |λ| ≤ 1
2C4

, then

|βν,h(ν) − βν,h(ν′)| ≤ 2C2
4 |λ|γ h‖ν − ν′‖M. (4.74)

Using (4.74), we now have

‖T (ν) − T (ν′)‖M ≤
∑

h≤2

γ − h
4 γ 1/2|T (ν)h − T (ν′)h |

≤
∑

h≤2

γ − h
4

h∑

k=−∞
γ k−hγ 1/2|βν,k(ν) − βν,k(ν

′)|

≤ 2γ 1/2C2
4 |λ|‖ν − ν′‖M

∑

h≤2

γ
3h
4

h∑

k=−∞
γ 2(k−h).

(4.75)

Thus, choosing λ0 ≤ (γ 2−1)(γ 3/4−1)

γ 19/42C2
4

, T is a contraction on B. ��
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Remark 4.11. Since, by construction, ν ∈ B, we have the bound
∑

h≥2 |νh |γ −h/4γ 1/2 ≤
|λ|, that implies

|νh | ≤ γ (h−2)/4|λ| ≤ |λ| (4.76)

which improves, and hence also justifies, the assumption in Lemma 4.7.

Remark 4.12. Equation (4.69) and Lemma 4.10 determines uniquely ν = ν(λ, μ, β)

and proves the assumption |νh | ≤ C |λ| used in Lemma 4.7. From (4.6), μ = mψ +
λγ 2ν(λ, μ, β) with mψ ≡ mψ(β) given by (2.36). The criticality condition is imposed
setting μ = 0; from 0 = mψ(β) + λγ 2ν(λ, 0, β) we determine the value of βc(λ) =
βc(0) + O(λ) by the implicit function theorem as the derivative is non vanishing. In
addition μ = O(|β − βc(λ)|).

5. Energy–Energy Correlations

5.1. Integration of ξ variables. The energy correlation (2.1) can be written as

S(x1, j1; x2, j2) =
∑

α∈{±}2

τα Zα

2Z

∂2

∂ Ax1, j1∂ Ax2, j2
Wα(A)

∣∣
A=0 (5.1)

with Z , τα and Zα defined as in (2.6),

Wα(A) := log
∫

D	i � eS(�,0)+B(�,A) (5.2)

where

B(�, A) =
∑

x∈	i

[
t̄ (1)
x (A)Hx Hx+e1 + t̄ (0)

x (A)V xVx+e0

]
(5.3)

and t̄ ( j)
x (A) = tanh(β J ( j)

x + Ax, j ) − tanh(β J ( j)
x ). Proceeding as in Sect. 2 we perform

the change of variables � = �(χ,ψ) defined in (2.7) and then (2.31) to get

eWα(A) =
∫

Pψ(dψ)

∫
Pξ (dξ)eV (ψ,ξ)+B̂(ψ,ξ,A) (5.4)

where

B̂(ψ, ξ, A) := B̄(ψ, ξ + C−1
χ Qψ, A), B̄(ψ, χ, A) := B(�(ψ, χ), A). (5.5)

Using the following representation in Fourier series for A

Ax, j := 1

|	i |
∑

p∈D++

Âp, j e
ip·x, (5.6)
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expanding in Taylor series t̄ ( j)
x (A) around A = 0 and denoting by ζ = ψ, ξ , one has

B̂(ψ, ξ, A) =
+∞∑

s=1

1

4|	i |1+s

∑

ζ 1,ζ 2=ψ,ξ

∑

k∈Dα,
p∈(D++)s ,

n∈Z2

j∈{0,1}s

ζ̂ 1,−k

· K̂ζ1,ζ2,n(k, p, j)ζ̂ 2,k−∑s
r=1 pr −2π�n

s∏

r=1

Âpr , jr .

(5.7)

We can integrate over the ξ field obtaining

eWα(A) = eN1(A)

∫
Pψ(dψ)eV (ψ)+B(1)(ψ,A) (5.8)

where

B(1)(ψ, A) =
+∞∑

s=1

1

4|	i |1+s

∑

k∈Dα,
p∈(D++)s ,

n∈Z2,
j∈{0,1}s

ψ̂−k · K̂2,s,1
n (k, p, j)ψ̂k−∑s

r=1 pr −2π�n

s∏

r=1

Âpr , jr

(5.9)

where K̂2,s,1
n (k, p, j) can be expressed as sum over graphs � similar to the ones in

Definition 3.1 with the following differences. To each point v of the graph � is associated
a label jv ∈ {0, 1, 2} and momentum label nv ∈ Z

2, if jv ∈ {0, 1}, or pv if jv = 2,
with the constraint that

∑
v nv = n and pv is equal to one of the p1, . . . , ps or a linear

combination of them; the number of points with jv = 0, 1 is q. To each line � is
associated a momentum k�; if ki and ko are two lines attached to the same point v, then
ki − ko = 2π�nv if jv = 0, 1 and ki − ko = pv if jv = 2. The proof of Lemma 3.3
can be repeated up to some trivial modifications and we get, under the same conditions,
the exponential decay of the kernels in B(1)(ψ, A):

|K̂2,s,1
n (k, p, j)| ≤ C̄se− η

2 |n| (5.10)

for a suitable constant C̄ .

5.2. Multiscale analysis. The integration of (5.8) is done inductively, by a general-
ization of the analysis in Sects. 3 and 4. Suppose we have just integrated the scales
1, 0,−1,−2, . . . , h + 1 obtaining

eWα(A) = eNh(A)

∫
P(≤h)(dψ(≤h))eV (h)(ψ(≤h))+B(h)(ψ(≤h),A), (5.11)

with
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B(h)(ψ(≤h), A)

=
+∞∑

s=1

1

4|	i |1+s

∑

k∈Dα

n∈Z2

∑

p∈(D++)s

j∈{0,1}s

ψ̂
(≤h)

−k · K̂2,s,h
n (k, p, j)ψ̂

(≤h)

k−∑s
r=1 pr −2π�n

s∏

r=1

Âpr , jr (5.12)

and

Nh(A) =
+∞∑

s=0

1

4|	i |s−1

∑

p∈(D++)s

j∈{0,1}s

∑

n∈Z2

K̂0,s,h
n (p, j)δ∑

r pr +2π�n,0

s∏

r=1

Âpr , jr (5.13)

where δ denotes the Kronecker delta. We define a localization operation as

LB̂(h)(ψ, A) := 1

4|	i |2
∑

k∈Dα,p∈D++,

n∈Z2,
j∈{0,1}

ψ̂
(≤h)

−k · K̂2,1,h
n (0, 0, j)ψ (≤h)

k−p−2π�n Âp, j . (5.14)

Note that, in contrast with the analysis in Sect. 4, the localization acts also on the terms
n �= 0. We get therefore

eWα(A) = eNh(A)

∫
P̄(≤h)(dψ(≤h))e

1
4|	i |

∑
k∈Dα

ψ̂
(≤h)

−k ·γ hνhσ2ψ̂
(≤h)

k

e
1

4|	i |2
∑

n∈Z2
∑

k,p, j ψ̂
(≤h)

−k ·Z ( j)
h,nσ2ψ

(≤h)
k−p−2π�n Âp, j +RV(h)(ψ(≤h))+RB(h)(ψ(≤h),A)

(5.15)

with Z ( j)
h,n = K̂2,1,h

n (0, 0, j). Note that, in writing the above expression, we have used

that K̂2,1,h
n (0, 0, j) is proportional to σ2. This latter fact can be checked simply using

the anticommutation property of Grassmann variables. We can write P̄(≤h)(dψ(≤h)) =
P(≤h−1)(dψ(≤h−1))P(h)(dψ(h)) and integrate ψ(h) so that the procedure can be iterated
as in Sect. 4.

Let us introduce the following definitions.

Definition 5.1. The special renormalized graphs are labeled graphs defined starting
from the renormalized graphs in Definition 4.2 with the following additional labels and
modifications

(1) if z = 2 the first and the last line are attached to a single point while if z = 0 there
are no external lines.

(2) Each point v is associated with a label Sv; if Sv = 0 (normal point) v is associated
with a label iv ∈ {ν, V } and a momentum label nv ∈ Z

2; if Sv = 1 (special point)
it is associated with a momentum pv , an index jv ∈ J , a momentum label nv ∈ Z

2

and an index ĩv ∈ {z, B}. The normal points are q and the special ones are s.
(3) GR,z,s,h,J

n,q is the set of special renormalized graphs � (here R stands for renormalized,
z ∈ {0, 2}, s ∈ {0, 1, 2}, h is the scale and J is the collection of jv of the special
points).

Similarly to what we did in Sect. 4.3, to a special renormalized graph we associate a set
of clusters in the following way.



2d Quasi-periodic Ising Model Page 35 of 50   235 

Fig. 5. (Left) A graph � ∈ GR,2,2,h,{ j1, j2}
n,3 . (Right) A graph � ∈ GR,0,2,h,{ j1, j2}

n

Definition 5.2. Given a special renormalized graph �, we define clusters as in Defini-
tion 4.3. Then, a non-trivial cluster T is associated with ST = 1, 2 if it contains ST
special end-point and ST = 0 otherwise; in the first case the cluster is called special,
and is associated with a momentum 2π�nT + pT (where pT := ∑

v∈T pv), and in the
second case is called normal, and it is associated with a momentum 2π�nT . We call QT
the number of maximal clusters in T ; Sn

T = Mn
T + Rn

T the number of normal maximal
clusters and Ssp

T the number of maximal special clusters; Msp
T is the set of maximal

special trivial clusters (i.e. points) in T . The scales are such that, when z = 2, h� = h;
when z = 0 to each external line is associated a scale and h is the greatest of such scales
(see Fig. 5).

Definition 5.3. The value of graph � ∈ GR,2,1,h,J
n,q with maximal clusters T̃w, w =

1, . . . , Q� is defined as

W�(p) =
⎡

⎣
Q�−1∏

w=1

W T̃w
(kw)g(h�)(kw+1)

⎤

⎦W T̃Q�
(kQ� ) (5.16)

where kw = kw−1 − 2π�nT̃w−1
if T̃w−1 is a normal cluster, kw = kw−1 + pT̃w−1

−
2π�nT̃w−1

if T̃w−1 is a special cluster k1 = k. W T̃w
(kw) is defined as

W T̃w
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Z ( jw)
hT ,ns

ifT̃w is a special z-point,

RK̂2,1,1
nw

if T̃w is a special B-point,
γ hT νhT σ2 if T̃w is a ν-point(nw = 0),

RV̂0 if T̃w is a V -point(nw = 0),

V̂nw if T̃w is a V − point (nw �= 0),

RWT̃w
if T̃w is a non-trivial cluster.

(5.17)

Similarly, if the special renormalized graph is � ∈ GR,0,2,h,J
n,q

W�(p) = 1

4|	i |
∑

k∈Dα

⎡

⎣
Q�−1∏

w=1

W T̃w
(kw)g(h�)(kw+1)

⎤

⎦W T̃Q�
(kQ� )g(h�)(kQ� ) (5.18)

with k1 = k.
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Lemma 5.4. The kernels K can be written as a sum of graphs

K̂2,s,h
n (k, p, j) =

∞∑

q=0

∑

�∈GR,2,s,h,J
n,q

W�(k, p, j),

K̂0,s,h
n (p, j) =

∞∑

q=0

∑

�∈GR,0,s,h,J
n,q

W�(p, j)

(5.19)

and the running coupling constants verify

Z ( j)
h−1,n = Z ( j)

h,n + β
( j)
z,n,h, β

( j)
z,n,h =

∞∑

q=1

∑

�∈GR,2,1,h−1, j
n,q
h�=h

W�(0, 0, j). (5.20)

Also in this case, the proof follows along the lines Appendix A and Lemma 4.6.

5.3. Bounds. Let us now define

‖|K̂2,1,h
n ‖| := sup

j∈{0,1}
sup

p∈D++

sup
k∈Dα

|χh(k)χh(k + p − 2π�n)K̂2,1,h
n (k, p, j)|. (5.21)

We will denote by
∏

v n.s. = ∏
v∈�,Sv=0.

Lemma 5.5. If |λ| ≤ λ0 and ν is chosen as in Sect.4.5, then there exists a constant C
independent of i ,β and h such that

‖|K̂2,1,h
n ‖| ≤ Ce− η

4 |n|, sup
p1,p2∈D++

|K̂0,2,h
n (p1, p2, j1, j2)| ≤ Ce− η

8 |n| (5.22)

and

|β( j)
z,n,h | ≤ C |λ|γ he− η

4 |n|. (5.23)

Proof. Assume inductively that the statement is valid for k ≥ h + 1; then |Z ( j)
n,2| ≤

C1e−η|n| by (5.10) and by induction

Z ( j)
n,h = Z ( j)

n,2 +
2∑

r=h

β
( j)
z,n,r ≤ 2CZ e− η

4 |n| (5.24)

assuming |λ|4C(1 − e− η
4 )2 ≤ C1.

We start from the first of (5.22). Considering that the operator R acting on a special
cluster gives a factor γ hext

T −hT , one proceeds as in the proof of Lemma 4.7 to get (instead
of (4.37))

‖|χ�W�,l‖| ≤C̄1(cC1C2)
q |λ|q

( ∏

T n.t.
ST =1
T �=�

γ hext
T −hT

)
e− η

4 |ns |
(
∏

v n.s.

e− η
2 |nv |

)

×
(
∏

T n.t.

γ −hT (Mn
T +Rn

T +Ssp
T −1)

)( ∏

T n.t.
nT =0
ST =0

γ 2(hext
T −hT )

) ∏

T n.t.

γ hT Mν
T

(5.25)
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where c = 18 (up to 2 derivatives to points and vertex, with j = 0, 1), ns is the
momentum label of the special point, Ssp

T is the number of special end-points contained
in T . We can write

1 = γ −h�

( ∏

T n.t.
ST =1
T �=�

γ hext
T −hT

) ∏

T n.t.

γ hT Msp
T . (5.26)

We get therefore

‖|χ�W�,l‖| ≤(cC1C2)
q |λ|qγ −h�

( ∏

T n.t.
ST =1
T �=�

γ 2(hext
T −hT )

)(∏

v n.s.

e− η
2 |nv |

)

e− η
4 |ns |

×
(
∏

T n.t.

γ −hT (Mn
T +Rn

T +Ssp
T −1)

)( ∏

T n.t.
nT =0
ST =0

γ 2(hext
T −hT )

)(∏

T n.t.

γ hT Mν
T

)
∏

T n.t.

γ hT Msp
T .

(5.27)

We now use that
(
∏

T n.t.

γ −hT (Rn
T +Ssp

T −1)

)( ∏

T n.t.
ST =1
T �=�

γ hext
T −hT

)

×
( ∏

T n.t.
nT =0
ST =0

γ hext
T −hT

)(∏

T n.t.

γ hT Mν
T

)
∏

T n.t.

γ hT Msp
T ≤ γ h�

(5.28)

and following the same argument of Lemma 4.7 from (4.39) to (4.45) we get rid of all
γ −hT MT ’s and, since � is a special cluster, we finally obtain

‖|χ�W�,l‖| ≤C̄1(cC1C2C3)
q |λ|q

( ∏

T n.t.
ST =1
T �=�

γ hext
T −hT

)( ∏

T n.t.
ST =0

γ hext
T −hT

)

× e− η
4 |ns |

(
∏

v n.s.

e− η
8 |nv |

)
∏

v n.s.

e− η
4 |nv |.

(5.29)

To handle the sum over �, we perform the sum over the scales as in Lemma 4.7, while
in the sum over nv’s one uses that n is fixed, and

∑q
v=1 nv + ns = n: the sum over

nv’s and ns can be performed only on n1, . . . , nq . Thus, using triangular inequality∑q
v=1 |nv| + |ns | ≥ |n| in the last product of (5.29), one has

e− η
4 |ns |

(
∏

v n.s.

e− η
8 |nv |

)
∏

v n.s.

e− η
4 |nv | ≤ e− η

4 |n|
(
∏

v n.s.

e− η
8 |nv |

)

(5.30)
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and then one can sum over n1, . . . , nq as in Lemma 4.7. Therefore

∑

�∈GR,2,s,h,J
n,q

‖|χ�W�,l‖| ≤ e− η
4 |n||λ|qC̄1C̄q (5.31)

with C̄ = (c × 3)C1C2C3
(1−e− η

8 )−2

(1−1/γ ))
; by summing over q we get, for |λ| ≤ C̄/2 we get

∑

q≥0

∑

�∈GR,2,s,h,J
n,q

‖|χ�W�,l‖| ≤ e− η
4 |n|C̄12C̄ . (5.32)

We choose |λ| ≤ min{C/2, C1/(4C(1 − e− η
4 )2}, with C = C̄14C1C2.

In order to prove (5.23), we note that we have to bound K̂2,1,h
n (0, 0, j). This is exactly

the same argument used to prove (4.31).
Finally we have to prove the second of (5.22). Using that � ∈ GR,0,2,h

n,q , the analogue
of (4.37) becomes

|W�,l(p1, p2, j1, j2)| ≤(4C1C2)
qγ 2h� e− η

4 |ns1 |e− η
4 |ns2 ||λ|q

( ∏

T n.t.
ST =1
T �=�

γ hext
T −hT

)

×
(
∏

v n.s.

e− η
2 |nv |

)(
∏

T n.t.

γ −hT (Mn
T +Rn

T +Ssp
T −1+δT )

)

×
( ∏

T n.t.
nT =0
ST =0

γ 2(hext
T −hT )

) ∏

T n.t.

γ hT Mν
T

(5.33)

where the extra γ 2h� comes from the integration over k and the compact support prop-
erties of the propagators at scale h�; moreover δ� = 1 and δT = 0 if T �= �. Note that,
since � has two special points, we have

1 = γ −2h�

( ∏

T n.t.,
T �=�

γ ST (hext
T −hT )

) ∏

T n.t.

γ hT Msp
T . (5.34)

To prove the second of (5.22), one repeats the argument used to prove the first of (5.22)
with, instead of (5.28), the following

( ∏

T n.t.

γ −hT (Rn
T +Ssp

T +δT −1)

)( ∏

T n.t.
ST =1,2

T �=�

γ hext
T −hT

)

×
( ∏

T n.t.
nT =0
ST =0

γ hext
T −hT

)(∏

T n.t.

γ hT Mν
T

)
∏

T n.t.

γ hT Msp
T ≤ 1.

(5.35)
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Then, to perform the sum over nv’s one now can not repeat the previous argument to
isolate the ns as one has to sum to at least one of them. Thus, one has

e− η
4

∑
v special |nv |e− η

4

∑q
v=1 |nv | ≤ e− η

8 |n|e− η
8

∑
v special |nv | ∏

v n.s.

e− η
8 |nv |. (5.36)

The rest of the proof proceeds as in the cases before. ��
We now denote by K̃0,2,h

n (p1, p2, j1, j2) the contribution to K̂0,2,h
n (p1, p2, j1, j2) given

by the graphs with at least one ν or V point:

K̃0,s,h
n (p1, p2, j1, j2) =

∞∑

q=1

∑

�∈GR,0,s,h,J
n,q

W�(p1, p2, j1, j2). (5.37)

Corollary 5.6. Let |λ| < λ0 and let ν be chosen as in Sect.4.5. Then,

sup
p1,p2∈D++

|K̃0,2,h
n (p1, p2, j1, j2)| ≤ Cγ

h
4 e− η

8 |n|. (5.38)

Proof. Repeating the argument of Lemma 5.5, one has to estimate W�,l for graphs that

have q ≥ 1. One gets a bound identical to (5.33) with
(∏

T n.t. γ
5
4 hT Mν

T

)
replacing

(∏
T n.t. γ

hT Mν
T

)
(we used Remark 4.11 to estimate the ν vertices, i.e. |νh | ≤ γ

h
4 |λ| and

Remarks 4.5 and 4.9 to estimate resonant V vertices as |RV̂0| ≤ γ
5
4 hT ). We also decom-

pose the exponential as in (4.38) and from (4.43) we keep the factor
∏

T n.t. γ
hT M I

T ≤
∏

T n.t. γ
1
4 hT M I

T . Using now (5.36), and (5.35), we get

|χ�W�,l(p1, p2, j1, j2)| ≤ (cC1C2C̃3)
q |λ|qe− η

8 |n|
( ∏

v n.s.

e− η
8 |nv |

)( ∏

v special

e− η
8 |nv |

)

×
( ∏

T n.t.

γ hext
T −hT

) ∏

T n.t.

γ
hT
4 (Mν

T +M I
T ).

(5.39)

We now split

∏

T n.t.

γ hext
T −hT =

( ∏

T n.t.

γ
3
4 (hext

T −hT )

) ∏

T n.t.

γ
1
4 (hext

T −hT ), (5.40)

and since, by hypothesis, q ≥ 1 for at least one cluster, one has Mν
T + M I

T ≥ 1. Therefore,
using the telescopic sum, we can bound

( ∏

T n.t.

γ
1
4 (hext

T −hT )

) ∏

T n.t.

γ
1
4 hT (Mν

T +M I
T ) ≤ γ

h�
4 = γ

h
4 . (5.41)

At this point, one has

‖|χ�W�,l‖| ≤ (cC1C2C̃3)
q |λ|qe− η

8 |n|γ
h
4

( ∏

v n.s.

e− η
8 |nv |

)
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( ∏

v special

e− η
8 |nv |

) ∏

T n.t.

γ
3
4 (hext

T −hT ) (5.42)

and one can sum over all nv’s and one proceeds as in the proofs of Lemma 4.7 to sum
over scales to get (5.38). ��

5.4. The decay of the energy correlations. Before starting the analysis, let us recall
that μ = O(β − βc) and, in particular, μ = 0 identifies the critical temperature (see
Remark 4.12).

We have now to consider the energy correlation S(x1, j1; x2, j2) given by (2.6). We
consider first the infinite volume limit ∂2

∂ Ax1, j1∂ Ax2, j2
Wα,l(A):

∂2

∂ Ax1, j1∂ Ax2, j2
Wα,l(A)|A=0 =

2∑

h=h∗

∑

n∈Z2

e−2π i�n·x2K0,2,h
n (x1 − x2, j1, j2). (5.43)

where h∗ = logγ μ and

K0,2,h
n (x1 − x2, j1, j2) := 1

|	i |
∑

p

e−ip·(x1−x2)K̂0,2,h
n (p, p + 2π�n, j1, j2). (5.44)

Indeed, one can write K0,2,h
n (x1 − x2, j1, j2) as the sum over graphs in coordinate

space. On each graph, the constraint between the labels nv and the scales h� remains
unchanged, due to the presence of the χ� function.

Due to the Gevrey regularity of the cutoff function χ defined in (4.2), there exist
constants C, κ > 0 such that, for k > h∗, the propagator obeys to the bounds, see e.g.
Appendix A of [34]

|g(k)(x)| ≤ Cγ ke−κ(γ k |x|) 1
2 (5.45)

and

|g(≤h∗)(x)| ≤ Cγ h∗
e−κ(γ h∗ |x|) 1

2
. (5.46)

Note that γ h∗ = O(|μ|) for small μ. In the analysis of the graphs in coordinate space,
we use (5.45) to bound each propagator. Fixing x1, the L1 norm is therefore bounded
exactly as in the proof of Lemma 5.5.

Regarding the bound on the point-wise norm (i.e. when both x1 and x2 are fixed), we
can write, if h̄ is the scale of the smallest cluster T ⊂ � such that ST = 2, for k ≥ h̄,

e−κ(γ k |x|) 1
2 ≤ e−κ/2(γ h̄ |x|) 1

2 e−κ/2(γ k |x|) 1
2 so that we can extract a factor e−κ/2(γ h̄ |x|) 1

2

from each propagator. Moreover there is an extra γ 2h̄ in the bound due to the lack of
sum over the coordinates so that

∣∣∣∣
∂2

∂ Ax1, j1∂ Ax2, j2
Wα,l(A)|A=0

∣∣∣∣ ≤
2∑

h̄=h∗
Cγ 2h̄e−κ/2(γ h̄ |x1−x2|)

1
2 ≤ C1e−κ1(|μ||x1−x2|)

1
2
,

(5.47)
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for some constant κ1 > 0. In deriving the above expression we have used that the sum
over all the scales can be done fixing h̄ instead of h.

To get a sharper estimate in the case μ = 0, we can split ∂2

∂ Ax1, j1∂ Ax2, j2
Wα,l(A)|A=0

in the contribution with q ≥ 1 and in the contribution with q = 0. The term with q ≥ 1,

according to Corollary 5.6, has an extra γ
h̄
4 . The term with q = 0 contains two special

vertices, each one of which is associated with a Z ( j)
k,n, with k ≥ h.

In the term with q = 0 we replace the velocities a(k)
j appearing in the propagators

g(k) with a(∞)
j since the difference a(−∞)

j − a(k)
j is bounded by γ k/4 by (4.31).

In the same way we can replace Z ( j)
k,n with Z ( j)

−∞,n and the difference is bounded by

γ k/4. Moreover, Z ( j)
−∞,0 = Z ( j)

−∞,0,λ=0 + λF0(λ) and Z ( j)
−∞,n = λFn(λ) for n �= 0, with

F0, Fn bounded. Therefore, we can write

∂2

∂ Ax1, j1∂ Ax2, j2
Wα,l(A)|A=0 = Sa(x1, j1; x2, j2) + Sb(x1, j1; x2, j2), (5.48)

where we have included in Sb(x1, j1; x2, j2) the contributions with q ≥ 1 and the terms
with q = 0 and containing a(−∞)

j − a(k)
j or Z ( j)

k,n − Z ( j)
−∞,n so that

|Sb(x1, j1; x2, j2)| ≤ C1

2∑

h̄=−∞
γ 2h̄+h̄/4e−κ(γ h̄ |x1−x2|)

1
2 ≤ C2

|x1 − x2|2+1/4 . (5.49)

In Sa(x1, j1; x2, j2) are collected the terms with q = 0 and a(k)
j , Z ( j)

n,k replaced by their

limiting values, so that, calling ḡ(x1, x2) the propagator with velocities a(−∞)
j , we have

Sa(x1, j1; x2, j2) =
∑

n1,n1∈Z2

Z ( j1)−∞,n1
Z ( j2)−∞,n2

e2π i�n1·x1 e2π i�n2·x2

∑

ω∈±
ḡω,ω(x1, x2)ḡ−ω,−ω(x2, x1). (5.50)

Finally, we have to perform the sum over α in (5.1). First note that Z is non-vanishing;
we write

Z = Ẑ−−Z0 + Ẑ−−
∑

α∈{±}2

τα Z0
α

(
Ẑα

Ẑ−−
− 1

)

(5.51)

where Z0 = Z |λ=0 denotes the partition function of the Ising model for λ = 0, Ẑα =
Zα/Z0

α and Z0
α = Zα|λ=0. In the limit i → ∞, 1

|	i | log |Z0
α| is independent of boundary

conditions if β �= βc, see e.g. chapter IV in [58], and the limit is reached as O(e−c|μ|L̄i )

if L̄i := min{Li,0, Li,1}. Moreover, Z0 is non vanishing for β �= βc: indeed, for μ < 0,
Z0

α is positive for all α; for μ > 0, Z0
α is negative for α = ++ and positive for all other

α’s.
We consider now Ẑα

Ẑ−−
; note that ωi is the same in Ẑα for any α. log Ẑα

Ẑ−−
is sum of

graphs containing at least a difference of propagators with different boundary conditions.
We choose a point x̄ ∈ 	i and we decompose the graphs in a term in which all the
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sums are in a rectangle around x̄ of side Li,0/4 and Li,1/4 and a remainder. In the
remainder there is a product of propagators connecting x̄ to a point distant O(L̄i ),
L̄i := min{Li,0, Li,1}, hence such term is O(|λ||	i |e−c|μ|L̄i ). In the first term we use
Poisson summation allowing us to write the propagator as the infinite volume limit plus
a term depending on boundary conditions and exponentially decaying in x1 − x2 when
both x1 and x2 are in the rectangle around x̄ of side Li,0/4 and Li,1/4, hence again we
get for it a bound O(|λ||	i |e−c|μ|L̄i ). Therefore,

∣∣∣∣∣
Ẑα

Ẑ−−
− 1

∣∣∣∣∣
≤ C |λ||	i |e−c|μ|L̄i (5.52)

by using the uniform convergence, see Lemma 4.7. This says that

c1|Ẑ−−Z0| ≤ |Z | ≤ c2|Ẑ−−Z0| (5.53)

where c1, c2 = 1 + O(λ) constants.
Using that 2Z = ∑

α τα Zα , we can write (5.1) as

S(x1, j1; x2, j2) = ∂2

∂ Ax1, j1∂ Ax2, j2
W−−(A)|A=0

+
∑

α

τα Zα

2Z

[
∂2

∂ Ax1, j1∂ Ax2, j2
Wα(A)|A=0 − ∂2

∂ Ax1, j1∂ Ax2, j2
W−−(A)|A=0

]
.

(5.54)

where in the first term Z cancels out by (5.53).

The graphs contributing to ∂2

∂ Ax1, j1∂ Ax2, j2
Wα(A)|A=0 can be also decomposed as the

limit i → ∞, independent from α and a difference which is vanishing. Indeed the
difference contains a difference of propagators, whose contribution is vanishing at |μ| >

0, and a difference of oscillating factors ei2π�n·x which is bounded by |x||n||ω − ωi |;
note that |x| produces an extra max j {L j,i } and |ω − ωi | ≤ C/L̄2

i (see Section IV.7 in
[20]) while for the sum over n one uses the exponential decay of the Fourier coefficients
of the potential. Hence the difference vanishes in the limit because we take the limit
on sequences of L j,i such that limi→+∞ L1,i/L0,i = c > 0. Moreover, if μ �= 0, as

a consequence of (5.53) and (5.52) we have that Z0
α′/Z0

α = 1 + O(|	i |e−c|μ|L̄i ) and

Ẑα′/Ẑα = 1 + O(|λ||	i |e−c|μ|L̄i ). Therefore the second term in (5.54) vanishes in the
limit i → ∞.

The first term in (5.54) can be decomposed according to (5.48) with Sa given by
(5.50) and Sb satisfying (5.49). Therefore, the first term in the r.h.s. of (1.12) is given
by Sa and the decay in |x1 − x2| of R j1, j2(x1, x2) is given by (5.49). This concludes the
proof of Theorem 1.2.
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Appendix A: Proof of Lemma 3.2

We begin by recalling that if f (̂ξ ) is a polynomial in the Grassmann variables ξ̂ , Eξ ( f ) =∫
P(dξ) f (̂ξ ). We then recall that, for m ∈ N, Wick’s theorem states that

Eξ

(
ξ̂k1,σ1 ξ̂p1,ρ1 · · · ξ̂km ,σm ξ̂pm ,ρm

) =
∑

p∈Sm

(−1)sgn(p)
m∏

j=1

Eξ

(
ξ̂k j ,σ j ξ̂pp( j),ρp( j)

)

(A.1)

where for all j , (p j )0 < 0, (k j )0 > 0 and σ j , ρ j ∈ {±} and Sm denotes the set of
permutations of m elements. From the definition of propagator of a Grassmann Gaussian
measure (see e.g. [27, eq. (4.11)]), one has

Eξ (̂ξk,σ ξ̂p,ρ) = [g(ξ)(k)]σ,ρδk,−p|	i |. (A.2)

For q ∈ N, let us compute Eξ (V q). Using linearity of the expectation and the explicit
form of V (ψ, ξ) (given in (2.40), (2.41), (2.42) and (2.43)), we can write

Eξ (V q) =
∗∑

Eξ

( q∏

r=1

M#r (kr , nr , σr , ρr , jr )
)

(A.3)

where
∑∗ is the sum over kr , nr , σr , ρr , #r ∈ {ψ, ξ, (Q, L), (Q, R)}, jr ∈ {0, 1}. The

monomials M� are defined as

Mψ(k, n, σ, ρ, j) = 1

|	i | ψ̂−k,σ A( j)
n [P( j)

ψ (k, n)]σ,ρψ̂k−2π�n,ρ, (A.4)

Mξ (k, n, σ, ρ, j) = 1

|	i | ξ̂−k,σ A( j)
n [P( j)(k, n)]σ,ρ ξ̂k−2π�n,ρ, (A.5)

MQ,L(k, n, σ, ρ, j) = 1

|	i | ψ̂−k,σ A( j)
n [Q( j)

ψ (k, n)]σ,ρ ξ̂k−2π�n,ρ,

MQ,R(k, n, σ, ρ, j) = 1

|	i | ξ̂−k,σ A( j)
n [Q( j)

ψ (k, n)]σ,ρψ̂k−2π�n,ρ,

(A.6)

and each one of them can be represented as in Fig. 6 by associating a dashed line to each
ψ variable and a solid line to each ξ variable.

http://creativecommons.org/licenses/by/4.0/
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Fig. 6. Vertices associated to monomials in (A.4), (A.5) and (A.6)

To compute each of the expectations on the r.h.s. of (A.3) we use Wick’s theorem
(A.1) and therefore Eξ (M#1 · · · M#q ) reduces to the sum over permutations of products
of expectations of pairs of ξ variables. Each of such summand has a graphical inter-
pretation obtained as follows. First, one draws the vertices in Fig. 6 corresponding to
the monomials M#1 , . . . , M#q . Second, one connects the solid lines corresponding to a
pair (̂ξk j ,σ j , ξ̂pi ,ρi ) whenever the expectation Eξ (̂ξk j ,σ j ξ̂pi ,ρi ) appears in the product of
expectations of the summand. In this way one obtains a graphical object that we define as
unordered graph. As a consequence of this correspondence, one writes Eξ (M#1 · · · M#q )

as the sum over all unordered graphs obtained by contracting all solid lines of the graph-
ical elements associated to M#1, . . . , M#q . Note that there are two types of unordered
graphs: connected and disconnected.

We now write truncated expectations in terms of expectations. Let us consider S =
{1, . . . , s} and let us denote by Pp the set of all possible partitions of S into p pairwise
disjoint subsets. Define for any I ⊆ S

E
T (MI ) = E

T (Mi1; . . . ; Mir ), I = {i1, i2, . . . , ir }, (A.7)

where each of the Mi ’s is one of the monomials in (A.4), (A.5) and (A.6).
One can prove (see eq. 2.100 in [56]) that the following formula connects expectations

and truncated expectations:

E
T
ξ (M#1; . . . ; M#s ) = Eξ (M#1 · · · M#s ) −

s∑

p=2

∑

{I1,··· ,Ip}∈Pp

p∏

j=1

E
T
ξ (MI j ). (A.8)

Using this formula, one can prove inductively that the truncated expectations are obtained
as the sum over connected unordered graphs only.

Using multilinearity of the truncated expectations, one has

E
T
ξ (V ; q) =

∗∑
E

T
ξ (M#1; · · · ; M#q ), (A.9)

where the
∑∗ is the same as in (A.3) and the dependence on all parameters is understood.

From (A.9) and the observation after (A.8) we obtain a representation of E
T (V ; q) in

terms of connected unordered graphs.
When q = 1, E

T
ξ (V (ψ, ξ); q) = S(ψ)

int (ψ) which gives the first term in the sum (3.5)
with W� given by the definition (3.3) in the case q = 1.

For the case q ≥ 2, one notices that with the vertices in Fig. 6 one can make only
two types of connected graphs: either one picks q vertices of type Mξ , or one picks two
vertices of type MQ,L , MQ,R and q − 2 vertices of type Mξ .

In the first case, the value of the associated truncated expectation does not depend on
ψ and it contributes to Eξ .
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In the second case, one first notices that each of the entries of the truncated expectation
on the r.h.s. of (A.9) is a quadratic monomial in the Grassmann variables, and then it
commutes with the monomials on each other entry. Fixing an order of the entries in
the truncated expectation produces a q! in front and restricts the sum over the graphs
of Definition 3.1. Last, the relation between E

T
ξ (M#1; · · · ; M#q ) and (3.5) (with W�

defined as in (3.3)) follows from (A.4), (A.5), (A.6), (A.1) and (A.2) after noting that
each unordered connected graph has the same sign. Indeed, it is sufficient to take the
sign appearing in Wick’s theorem (A.1) and to note that to keep the graph connected
one must always exchange an even number of Grassmann variables.

Appendix B: Derivation of (3.7)

The value of a graph W� is product of complex valued scalar functions An and matrices of

the form

(
an(k) bn(k)

b∗
n(k) −a∗

n(k)

)
such that an(k) = −a−n(−k) ∈ C and bn(k) = b−n(−k) ∈

iR. Equation (3.7) will be proved by induction. For the graph with two vertices we have
to consider the product of three matrices AnA(k), gχ (k − 2π�nA), BnB (k − 2π�nA).
Here A and B can be either P( j) or Q( j). The following explicit computation yields

AnA (k)gχ (k − 2π�nA) =
(

a(A)
nA (k) b(A)

nA (k)

(b(A)
nA (k))∗ −(a(A)

nA )∗

)

(
a(ξ)(k − 2π�nA) b(ξ)(k − 2π�nA)

(b(ξ)(k − 2π�nA))∗ −(a(ξ)(k − 2π�nA))∗
)

=
(

β(k, nA) α(k, nA)

−α∗(k, nA) β∗(k, nA)

)
.

where, explicitly,

α(k, nA) := a(A)
nA

(k)b(ξ)(k − 2π�nA) − b(A)
nA

(k)(a(ξ)(k − 2π�nA))∗,
β(k, nB) := a(A)

nA
(k)a(ξ)(k − 2π�nA) + b(A)

nA
(k)(b(ξ)(k − 2π�nA))∗.

It follows now from the symmetry properties of a and b that α(k, nA) = −α(−k,−nA)

and β(k, nA) = β(−k,−nA).
Computing the value of the graph, one has

AnA(k)gχ (k − 2π�nA)BnB (k − 2π�nA)

=
(

β(k, nA) α(k, nA)

−α∗(k, nA) β∗(k, nA)

)(
a(B)

nA (k − 2π�nA) b(B)
nB (k − 2π�nA)

(b(B)
nB (k − 2π�nA))∗ −(a(B)

nB (k − 2π�nA))∗

)

=
(

an(k) bn(k)

b∗
n(k) −a∗

n(k)

)

with

an(k) = β(k, nA)a(B)
nA

(k − 2π�nA) + α(k, nA)(b(B)
nB

(k − 2π�nA))∗,
bn(k) = β(k, nA)b(B)

nB
(k − 2π�nA) − α(k, nA)(a(B)

nB
(k − 2π�nA))∗.
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From the symmetry properties of a, b, α and β it follows that under the exchange
{nA, nB , k} �→ {−nA,−nB ,−k} one has that an(k) = −a−n(−k) and bn(k) =
b−n(−k). This completes the proof for the graph with two vertices. By the inductive
hypothesis we assume that the property holds for the product of the matrices associated
to the sub-graph of the first q − 1 points, and repeat the argument.

We note now that, calling Val(�{nv}(k)) the value W� with � ∈ Gn,q

∑

k∈Dα

ψ−k · V0(k)ψk = 1

4

∑

k∈Dα

ψ−k ·
∑

�{nv }∈Gξ
0,q

[
Val(�{nv}(k)) − (

Val(�{−nv}(−k))
)T

+Val(�{−nv}(k)) − (
Val(�{nv}(−k))

)T
]
ψk. (B.1)

We start by computing

Val �{nv}(k) − Val �{−nn}(−k)T

=
(
∏

v∈�

Â( jv)
nv

)

G{nv}(k) −
(
∏

v∈�

Â( jv)−nv

)
(
G{−nv}(−k)

)T (B.2)

It is convenient to call fn := ∏
v∈� Â( jv)

nv
. Then, using that f−n = f ∗

n , we have

Val �{nv}(k) − (
Val �{−nv}(−k)

)T

= fn

(
an(k) bn(k)

b∗
n(k) −a∗

n(k)

)
− f ∗

n

(
a−n(−k) b∗−n(−k)

b−n(−k) −a∗−n(−k)

)

= fn

(
an(k) bn(k)

b∗
n(k) −a∗

n(k)

)
− f ∗

n

(−an(k) b∗
n(k)

bn(k) a∗
n(k)

)

=
(

( fn + f ∗
n )an(k) fnbn(k) − f ∗

n b∗
n(k)

fnb∗
n(k) − f ∗

n bn(k) −( fn(k) + f ∗
n )a∗

n(k)

)
=
(

αn(k) βn(k)

β∗
n(k) −α∗

n(k)

)

(B.3)

with

αn(k) = ( fn + f ∗
n )an(k) βn(k) = fnbn(k) − f ∗

n b∗
n(k). (B.4)

With those explicit expressions at hand, it is clear that βn(k) ∈ iR and αn(k) ∈ C, in
general. Finally

Val �{nv}(k) − Val �{−nv}(−k)T + Val �{−nv}(k) − Val �{−nv}(−k)T

=
(

αn(k) βn(k)

β∗
n(k) −α∗

n(k)

)
+

(
α−n(k) β−n(k)

β∗−n(k) −α∗−n(k)

)

=
(

αn(k) + α−n(k) βn(k) + β−n(k)

β∗
n(k) + β∗−n(k) −α∗

n(k) − α∗−n(k)

)

=
(

αn(k) − αn(−k) βn(k) + βn(−k)

β∗
n(k) + β∗

n(−k) −α∗
n(k) + α∗

n(−k)

)
.

(B.5)

Remark .7. In the case of layered disorder constant in one direction, say e0, the theory is
translation invariant in one direction and one has to the additional property that an ∈ iR,
implying that the velocities are real. Indeed only P(1) matrices are present and, as we
are interested in the case k0 = k1 = 0 with ω1 �= 0. This implies that also the entries
of the propagator are purely imaginary, and the product of an odd number of imaginary
numbers is imaginary.
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Remark .8. With respect to the symmetries of Section II.D in [31] we break mani-
festly symmetries 1)-3) (which are, in order, parity, diagonal reflection and orthogo-
nal reflection). Moreover, note that all kernels Kn(k) appearing in Sect. 2 are such that
Kn(k) = [K−n(−k)]∗ which is nothing but the symmetry by complex conjugation (i.e.,
the symmetry 4) in Section II.D of [31].

Appendix C: Action of the R Operation

In this appendix, for j ∈ N, we denote by R j the set of resonant clusters strictly
contained in R j−1 and not in any other resonant cluster. (We also denote by R :=⋃+∞

j=1 R j .) Denoting with R2 the set of maximal resonances contained in R1, the value

of renormalized resonant cluster can now be estimated as, if T̃ is a resonance

∥∥∥RW
(hT̃ )

T̃
(kT̃ )

∥∥∥ ≤ sup
t∈[0,1]

∥∥∥∥
d2

dt2 W
(hT̃ )

T̃
(tkT )

∥∥∥∥ (C.1)

One has now to analyze what happens when a derivative acts on a renormalized
cluster.

If two derivatives corresponding to a resonance T̃ acts on the value of some renor-
malized resonant cluster T̃ ′ ⊂ T̃ , recalling that kT̃ ′ = tk + q for suitable q, one has

d2

dt2 RW
(hT̃ ′ )
T̃ ′ (tk + q) = d2

dt2

[
W

(hT̃ ′ )
T̃ ′ (tk + q) − W

(hT̃ ′ )
T̃ ′ (0) − (tk + q) · ∂kW

(hT̃ ′ )
T̃ ′ (0)

]

= d2

dt2 W
(hT̃ ′ )
T̃ ′ (tk + q). (C.2)

If one derivative acts on a renormalized cluster, we have instead

d

dt
RW

(hT̃ ′ )
T̃ ′ (tk + q) =

∫ 1

0

d

dt

d

ds
W

(hT̃ ′ )
T̃ ′ (s(tk + q)) ds. (C.3)

Whence we get the two bounds

∥∥∥∥
d2

dt2 RW
(hT̃ ′ )
T̃ ′ (tk + q)

∥∥∥∥ =
∥∥∥∥

d2

dt2 W
(hT̃ ′ )
T̃ ′ (tk + q)

∥∥∥∥ , (C.4)
∥∥∥∥

d

dt
RW

(hT̃ ′ )
T̃ ′ (tk + q)

∥∥∥∥ ≤ sup
s,t∈[0,1]

∥∥∥∥
d

dt

d

ds
W

(hT̃ ′ )
T̃ ′ (s(tk + q))

∥∥∥∥ . (C.5)

So, summarizing, for the estimate we have the following:

• if two derivatives corresponding to a resonance T̃ act on the value of some resonance
T̃ ′ ⊂ T̃ , one can replace with 1 the R operator;

• if one derivative corresponding to a resonance T̃ acts on the value of some resonance
T̃ ′ ⊂ T̃ , one can replace with d

ds the R operator and take the supremum over s ∈
[0, 1];

• if no derivatives act on a resonance, one can replace R with d2

ds2 and take the
supremum over s ∈ [0, 1].
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These remarks permit us to iterate this procedure considering the action of derivatives
on resonances inside resonances. Proceeding in this way, we see that the R.H.S. of (C.1)
can be bounded in the following way. We denote by f either a line or a vertex and with
TR ∈ R a resonant cluster.

• There is one term for each ordered pair ( f1, f2), with f1, f2 ∈ TR , not necessarily
different (i.e. it may happen that f1 = f2).

• If f1 ∈ T̃0 and T̃ is a cluster contained in TR , then T̃ = T (r) ⊂ T (r−1) ⊂ · · · ⊂
T (1) = TR is the chain of clusters associated to f1 containing T̃ and contained in TR .
Similarly, if f2 ∈ T̂0 and T̂ is a cluster contained in TR , one constructs the chain of
clusters associated to f2 containing T̂ and contained in TR .

• At this point we replaced theRoperator acting on the cluster TR with two derivatives.
• If a resonant cluster belongs to both the chain of clusters (the one associated with

f1 and the one associated with f2), then its R operator is removed.
• If instead there is a cluster (say, TV ) belonging to only one of the chain of clusters,

then there is one term for any f3 ∈ TV . If f3 ∈ (T ′
V )0 ⊂ TV , then one considers the

chain of cluster associated to f3, containing T ′
V and contained in TV . One replaced

the R operator acting on TV .
• This construction is repeated until all R operators are replaced. At this point each

cluster inside a resonance belongs to two chains of vertices.
• From their explicit expression, it is also obvious that one can estimate the action of

a derivative on a vertex with the action of a derivative on a propagator on the same
scale.

• Last, the number of terms that are generated in this procedure is estimated by 9q

(that is the number of terms generated when each vertex or each line can be derived
zero, one or two times without any constraint).

Note that, an adaptation of this argument permits to treat the terms ∂s
k appearing in

(3.6) and (4.30).
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