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ABSTRACT. When two dynamical systems of partial nonlinear equations

differ by a term considered as a perturbation, one is called free ,the
other one perturbed. Their solutions equal at the initial time, are
related by an integral equation that allows to write the perturbed
solution as an expansion, the terms of which are completely explicit
expressions of the free solution. This generalises the usual
perturbation theories around free solutions satisfying linesar

equations. This result is applied to the KDV equation.

In the first section of this paper, we establish two integral
equations used in the second section to relate the solutions of two
systems differing by a perturbation term. One of them, affine with
respect to the perturbed solution, furnishes an jiterative process to
obtain this solution in terms of the free one. The other one let
appear a generalisation of the Green function for nonlinear equations.
In the third part, we apply the previous result to the KDV eqguation

considered as a perturbed Euler equation.

I _INTEGRaAL EQUATIONS RELATING FREE AND PERTURBED SUBSTITUTION OPERATORS

lLet ¥ be any vector space and 8 the space of the mappings from ¥
into ¥ . The substitution operator §:: e £(8,%8) is related to the flow

A
§ts € & by the formula

A% = A
BL_(F) = Foly_ ,VF 8. (1)
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It fulfils the semigroup properties

A X AX

§tr §st = §sr’ (2)
and

b =

§55 =1 (3)

where T is the identity in £(%,%) . In the following we will call free

the guantities when A=0, perturbed the other ones. The field SK*(t)

associated with the operator QK* is defined by
ad AX N
{—5? §Tt } = S () (4)
=t

Using the equations (2) and (4), we deduce

a he § AKX
—— - = Y
T3 §ts §ts ST (L)Y 3 (3
The property (3) acts as an initial condition. From (2) and (3}, it
results that §t: and QQ: are mutually inversej;the equation (3) gives
then
& o AF _ K AX
2t Qst = S () §st . (6}

Assuming that the field S™¥(t) takes the form s°¥(t)y+a N¥(t), we have

o a0 - el ana L 8%F B = - 22wt o
where §°* is equal to QA* for A=0. The integrations of these equalities
on the interwval [s,t] lead to

t t
AR S xj; ar 825 N (oadt ana #)i- 20N kJ;dT T ST S G

These two equations relate the operataors §:: and iz:. Their iterations

can be performed and give

t

t t
®
ANE_ ok k ok X oX oX X o¥
§ts_ L zL A J diJ di—:"I d11§T N (Tk)QT r ..§T - N ('r1)§t,r (?)
k=1 s T, T k k-1 k 12 1
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In this relation the perturbed substitution operator §k* is expressed
in terms of the free one §°*. Let us summarise this result:

tet a2 substitution gperator §At belonging to £(%,%8), & being the
space aof the mappings from a vector space ¥ intoc itself, satisfy 2

t(t)+k N‘(t)} with the conditicn

differential equation: "%? §i: = t:{So
that §t: is the identity when t=s. The operator §kx is related to §D:

by the integral eguations (8) that can be solved by iteration giving

the expression (9) of QK’ in terms af §°t.

I1_INTEGRAL EQUATIONS FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

We now apply this result to two interesting cases {general results

are given in [I]), the space ¥ is that of the smooth mappings of R" in
R (resp.Rz). The value at x of §tsty], ulA;tys,x3v¥1s is solution of the
nonlinear partial differential equation (resp.equations) obtained by
applying (5) to the identity I in 8, the result being itself applied to

a function vy € ¥,

—%zu[k,t,s,x;y]= BK[t,x;u] x& R", ulh,t,s,x3jyle R (resp.R%) (10)

where Sk[t,x;u] belongs to R (resp.mz)and is defined by

e, xsyl= [[(s"*(n](n](y)](x) (11)

The initial condition resulting from (3) reads

wlA,s,8,x3y]= y(x), y(xle R (resp.Rz). (12)

The flow QtSand the field SA are now the usual ones associated with the
equation (10).
When ulAr,t,s,x:3;y] belongs to R, the first relation (8) leads to

t
UEAstys,x3yl= u[O,t,s,x;y]+kj;derf {ﬁ[r,f;zlggfg)u[k,t,r,x;zl (13)

Z(xI=Uu[O,T,8,:%3}

In this equation the functional AN is the difference between Sk and s°.
This integral equation (13) relates the perturbed solution ull,t.s.x3vy]
to the free one ul[O,t,s,x3y] of the equation (10), satisfying the same
initial condition (12). This equation is linear with respect to the

perturbed solution and therefore gasy to iterate. Analogously the
second relation (8) furnishes an integral equation linear with respect
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to ufO,t,s,x3y]l, that is an explicit functional equation for

ulA;t,s.x3v1 when the free solution is known.

t
u[k,t,s,x;y]=u[0,t,s,x;y]+kJ;deBt {F[T,Z;z]g;T?)u[O,t,r,x;z] (14}

Z{xX)=U[N,T;S,X5Y

When the free equation is linear ,its solution is linear with respect
to y and the coefficient of N under the integral is a kernel that is
independent of u and equal to the Green function associated with the
linear equation. In the case of nonlinear eguation this coefficient can

therefore be viewed as a generalisation of the Green function.

When v is solution of an equation of the type
z
gzav = fptt,x;v}+ AHLE,x3v], and fulfils as its first t derivative
initial conditions at t= s, we introduce u= (v,—%¥v)e RZ, so  that u

satisfies the equations (10) and (12), we then get

t
vIAsEys,x35y] = V[O,t,S,X;V]*KI;dTIHf{I[T,f;Z]g;z?)vtkgt;T,xizi,Z;}(15)

zix)= VIO, T 8,x y],zgx)= —s;vto,t,s,x;y
0 &° v
When F Lt,xivi= W v+ @ , this expression relates the solutions of

the perturbed and of the free Liouville equations.

111 XKDV EGUATION CONSIDERED AS A PERTURBED EULER EQUATION.

The Korteveg-DeVries equation corresponds to equation (10) where
-}

Sl[t,x;u3= ~Eu.—g;u + h.~%;a u],n= 1,ue R.When A is a small dispersion

parameter ,the last term can be considered as a perturbation term added
to the Euler hydrodynamic equation ([II] The solution of this last

equation fulfilling the initial condition (12) is implicitly given by
ul0,t,s,x3y1 = y{x—{t—s)ulO,t,s,x5v1). {163

The perturbation theory assumes that the perturbed solution is analytic
with respect to A at least in a neighbourhood of A = 0 and t = s and
can be written ull,t,s,xiyl= %Zohnuh(t,x) [IIIl. The coefficient
uo(t,x) is equal to ulO,t,s,x3yl. The direct substitution of this
expression in (10} gives a linear partial differential equation for the
unin terms of the preceding ones that can be solved by tedious
calculations. On the contrary the method lying on the result of the

preceding section leads to an easy and quite systematic process. Let us
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calculate the first term. Using the equation (13) we have

t
u (t,x) = [ _dtfdz {N[T,E;z]gz(t)uto,t,r,x;z] (17)

z{x)=ulO,7r,5,x5¥1

Taking the functional derivative with respect to z(¥) of (1é) gives

gi?g)UCO,t,T,x;z] = 6(x—(t~r)u[0,t,r,x;z]~{}.{1+(t—r)z'(g))”l (18

In this expression we have to replace z(f) by uo(r,t) and ¢ by its
value resulting from the Dirac distribution. Putting {= x~(t~5)u°(t,x)
in the equation (18) we have

Uott,x) = uo(t,C+(t—5)y(E)) = y({)} (12)
From the expression of { and (19), we deduce that x = {+(t-s)y({).
Formula (19) implies that uott,f+(t—s)y(C)) = uo(T,C+(1—s)y((}).

Replacing in this equality ¥ and { by their expressions we obtain
uo(t,x} = UO(T,E) s for & = x*(t—r)uatt,x). {20)
The differentiation of (20) with respect to x gives
1+(t~r)u;(r,£) = (1—(t—r)u;(t,x))_l = f(71) (21}
where u;(t,x) is the derivative of ", with respect to x. When N in (17)
is a function of u, u (t,x) = N(uo(t,x)).E(t—s)—(t—s)zu;(t,x)].
In the case of the KDV equation, the integral (17) inveolves the

third derivative of uo(r,f) with respect to ¢. A calculation analogous
to that giving (21) leads to

ugﬂr,8)= f4(T) [ug%t,x)+ I(t-T)TlT) ug(t,x)]. {22)

By putting this expression in (17) finally we get

U, (t,x)=- L'Ef_%ﬂil[ug’(t,x) (1+£(5))+(t=5) .02, x) 2 (s) (1+2f(s})](23}
The following u_are obtained as functionals of u, by the same type of

talculation straightforwardly performed.
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