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Abstract

This thesis introduces representation theory. It gives the necessary
mathematics for its applications on the quark model. These applications
are discussed, especially the pentaquark is analyzed on its symmetries.
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1 Introduction

Each chapter of mathematics has an application in physics. This thesis will go
into one of those chapters, representation theory, and one of its applications in
physics, quarks. Quarks have been hypothesized to be the building blocks of
many particles, called hadrons. These hadrons have a symmetry, i.e., they can
be transformed into each other with a set of matrices SUn. Hadrons can not
be transformed into arbitrary hadrons, but they form groups, called multiplets.
A multiplet is a group of particles which is invariant under the transformations
SUn. For the study of hadrons it is thus of interest to study the invariant groups
of SUn.

To study the groups describing the symmetries of hadrons knowledge of the
symmetric groups Sn is needed. These groups will be studied with the help of
the mathematical representation theory. Chapters 2 through 4 will introduce
this theory at the hand of many examples. In chapter 5 it is explained how
representation theory can be used as a model for quarks. One of the impor-
tant goals of this thesis is to introduce a general mathematical formalism that
is needed to study the quark model, which is done in chapter 6. Most of the
mathematics in this chapter is given without proof but still a few examples are
given to clarify the theory. In chapter 7 the formalism is applied to the quark
model. The formalism nicely explains the need of a new symmetry called colour.
It will also be shown it what manner one can construct exotic hadrons.

One of the exotic hadrons that can be constructed is the pentaquark. As an
application of the mathematical formalism introduced in this thesis, this parti-
cle is studied in chapter 8. The pentaquark is an exotic particle that is neither a
baryon nor a meson; it consists of 4 quarks and an antiquark. It has a complete
different structure compared to the hadrons discovered so far. Because of this it
will give more insight on the forces described by Quantum Chromo Dynamics.
These particles are thus of great interest for development of QCD. A lot of ex-
periments have been done to find the pentaquark, in particular the Θ particle.
For an overview of these experiments see [1]. So far there is no extraordinary
proof for the extraordinary claim of the pentaquark.

The analysis of the pentaquark will be given in this thesis only as an appli-
cation of the mathematical formalism. To minimize the computations needed,
the spin of quarks won’t be considered during this analysis. Nevertheless, it will
be shown that the flavour and colour symmetries give limits on how can make
a pentaquark. More direct and complete analyses of the pentaquarks have been
done, [2]. Although the model here is incomplete, it is still comparable with
those described in the literature.
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2 Representation Theory

Representation theory is a way to describe groups. It is assumed that the reader
is acquainted with group theory. In representation theory one starts with a map
from the group to a space of linear maps. Each element of the group is thus
associated with an invertible linear transformation. This is done in a way such
that properties of the group are conserved, in other words, the map is a homo-
morphism. One can wonder whether the maps that can be constructed in this
way have a certain ordering. This leads to the concept of irreducible representa-
tions. These representations are in a way the basis of all representations. How
these look like depends of course on the group one starts with. But first a more
formal definition for representations is given.

2.1 Constructing Representations

The formal definition of a representation of a group is:

Definition 2.1. A representation of a group G on a finite dimensional complex
vector space V is a map ρ from G to the group of automorphisms of V :

ρ : G → GL(V ),

which is a homomorphism.

The requirement of homomorphism in definition 2.1 explicitly means:

ρ(a× b) = ρ(a)ρ(b), (1)

where a, b ∈ G.

Example 2.1. Take an arbitrary group G and let the vector space V be the
1-dimensional complex space C. Now let ρ map all elements of G to the map
ρ(g)z = z, in other words, the identity map. It can easily be checked that this
is a representation. It is called the trivial representation.

In example 2.1 it is shown that representations can be very simple, in the
next example another simple 1-dimensional representation will be constructed.

Example 2.2. Take a symmetric group Sn and let again the vector space V be
the 1-dimensional complex space C. Now map all the even permutations to the
identity map (1) and map all the odd permutations to the negative identity map
(−1). In other words ρ(g)v = sgn(g)v for all v ∈ V . Because for all a, b ∈ G:

sgn(a× b) = sgn(a) · sgn(b), (2)

the map is homomorphic. This representation is called the alternating repre-
sentation.
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The next theorem will be used further on in the next chapter. It is stated
here to give more insight on the alternating representation.

Theorem 2.2. Given a finite group G with a 1-dimensional representation ρ.
The subset S ⊂ G on which ρ is trivial: S = {g|ρ(g) = 1} is a normal subgroup
whose quotient is cyclic.

Proof. Part if this theorem is actually a special case of a lemma in group theory
stating: If the map φ : G1 → G2 is a group homomorphism, then Ker(φ) is a
normal subgroup. This can now be applied to ρ from which follows that S is a
normal subgroup of G.

Now take two elements g, h ∈ G\S and state that ρ(g) = ρ(h). This is
equivalent to saying that ∃s ∈ S s.t. g = sh from which follows that g and h are
equivalent in G/S. Because G/S has finite number of elements (#G/S = n),
the elements of ρ(ḡ) ∈ G/S are n-th roots of unity. Because ρ(ḡ) 6= ρ(h̄) if
ḡ 6= h̄ the set of transformation must be all the n-th unity roots, which is a
cyclic group. From this it follows that G/S must also be a cyclic group.

Example 2.3. The group S3 has two normal subgroups whose quotient is cyclic:
the group itself and the alternating subgroup A3. Therefore, the group S3 can
have only two different 1-dimensional representations. One which is trivial on
the whole group, the trivial representation. And one which is trivial only on the
alternating subgroup group A3, that would be the alternating representation of
example 2.2. For S3 the alternating representation is:

g (e) (12) (13) (23) (123) (132)
ρ(g) 1 -1 -1 -1 1 1

According to the definition of a representation, one refers to the map when
one speaks of a representation. If it is clear what the underlying map is one
usually refers to the space V as being the representation of the group. When this
is the case one can speak of the dimension of the representation, which is equal to
the dimension of the space V . The trivial and the alternating representations are
both 1-dimensional representations. In the next example a higher dimensional
representation will be constructed.

Example 2.4. Take again a symmetric group Sn and let the transformation
ρ(g), g ∈ G work on an n-dimensional representation in the following way:

ρ(g)~x = ρ(g)


x1

x2

...
xn

 =


xg−1(1)

xg−1(2)

...
xg−1(n)

 . (3)

In S3 the group elements will be mapped to the following matrices:
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ρ(e) =

 1 0 0
0 1 0
0 0 1

 , ρ(123) =

 0 0 1
1 0 0
0 1 0

 , ρ(132) =

 0 1 0
0 0 1
1 0 0

 ,

ρ(12) =

 0 1 0
1 0 0
0 0 1

 , ρ(23) =

 1 0 0
0 0 1
0 1 0

 , ρ(13) =

 0 0 1
0 1 0
1 0 0

 .

I will call this representation the permutation representation. To check
whether this actually is a representation, whether it satisfies the holomorphic
condition one can do the following calculation:

ρ(g1)ρ(g2)~x =


(ρ(g2)x)g−1

1 (1)

(ρ(g2)x)g−1
1 (2)

...
(ρ(g2)x)g−1

1 (n)

 (4)

=


xg−1

2 ×g−1
1 (1)

xg−1
2 ×g−1

1 (2)

...
xg−1

2 ×g−1
1 (n)

 =


x(g1×g2)−1(1)

x(g1×g2)−1(2)

...
x(g1×g2)−1(n)

 = ρ(g1 × g2)~x. (5)

Example 2.5. In this example the regular representation will be constructed.
Take an arbitrary finite group G with n elements. The representation R is n
dimensional, and has the following basis vectors: {eg|g ∈ G}. Thus each basis
vector is associated with a group element A transformation works on a arbitrary
basis vector in the following way:

ρ(g)eh = egh. (6)

If one orders the elements of S3 as: {e, (123), (132), (12), (23), (13)} the
element (12) will be mapped to the matrix:

ρ(12) =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

To check whether the map is homomorphic, it is sufficient to check whether
equation (1) holds for an arbitrary basis vector:

ρ(g)ρ(h)ei = ρ(g)ehi (7)
= eghi = ρ(g × h)ei. (8)
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2.2 Combining Representations

As was shown in the examples in the previous section, representations can be
constructed in different ways. It is also possible to construct more representa-
tions from given representations. Before this is done the representations con-
structed so far will be given the following symbols.

Representation Symbol
Trivial U
Alternating U ′

Permutation P
Regular R

Table 1: names and symbols of four different representations

The symbols refer to the vector spaces. One way to construct new represen-
tations is to sum representations. If S is a sum of two vector spaces (S = V ⊕W )
the representation coinciding with S can be defined in the following manner:

ρS(g)
(

a
b

)
=

(
ρV (g)(a)
ρW (g)(b)

)
. (9)

Because things are getting a little abstract, it is useful to look closely at
the notation. ρS is the representation corresponding to the vector space S.
Thus ρS is by definition a map from the group G to a space of transforma-
tions. Because g ∈ G, ρS(g) is a transformation, working on the vector space
S: ρS(g) ∈ End(S). Furthermore, (a, b)T ∈ S.

So summing two representations is actually summing two vector spaces. The
first representation describes how to transform the first part of the vector space
and the second representation describes how to transform the second part of
the vector space. Looking at the construction of this representation should be
enough to convince the reader that it is indeed a representation, that the defin-
ing map ρS is indeed homomorphic.

Example 2.6. Take for example the trivial representation U and the alternating
representation U ′. The sum representation U⊕U ′ of the group S2 will take form
as the following matrices:

ρ(e) =
(

1 0
0 1

)
, ρ(12) =

(
1 0
0 −1

)
.

The same trick can be performed with tensor product spaces: Pr = V ⊗W .
In this case the defining equation for the representation coinciding with the
product space is:

ρPr(g)[a⊗ b] = [ρV (g)(a)⊗ ρW (g)(b)]. (10)
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Here a ∈ V and b ∈ W . To describe this equation in further detail one can
construct a basis for the product space V ⊗W . The standard basis is constructed
as follows: {vi ⊗ wj} where vi is the basis for V and wj the basis for W . So
written out the basis for Pr becomes:

p1

p2

...
pm

pm+1

...
pm×n


=



v1 ⊗ w1

v1 ⊗ w2

...
v1 ⊗ wm

v2 ⊗ w1

...
vn ⊗ wm


. (11)

It can easily be shown that the map defined by equation (10) is homomorphic:

ρPr(g2)ρPr(g1)[a⊗ b] = ρPr(g2)[ρV (g1)(a)⊗ ρW (g1)(b)]
= ρV (g2)ρV (g1)(a)⊗ ρW (g2)ρW (g1)(b)
= ρV (g2 × g1)(a)⊗ ρW (g2 × g1)(b)
= ρPr(g2 × g1)[a⊗ b].

Example 2.7. Look at the product space of the representations of S2: Pr =
(U ⊕ U ′)⊗ P . In table 1 it is described to what representations these symbols
refer. A little calculation shows that the dimension of this new representation is
4. For clarity, let e be the basis vector of U , let f be the basis vector for U ′and
let {e(e), e(12)} be the basis vectors for P . As an example of how to calculate
the matrix elements of this new representation, look at ρPr(12)(p3):

ρPr(12)(p3) = ρPr(12)[f ⊗ e(e)]
= [ρU⊕U ′(12)(f)⊗ ρP (12)(e(e))]
= [−(f)⊗ (e(12))]
= −p4.

The other matrix elements are also given:

ρPr(e) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , ρPr(12) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 .

The next way to create more representations that is going to be introduced
is the second symmetric power Sym2V . The space Sym2V consists of pairs of
vectors (v ⊗ w), for v, w ∈ V in quite the same way as a product space. The
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difference is that the vector pairs are symmetric, meaning that the component
(e1 ⊗ e2) is equal to (e2 ⊗ e1). The basis of Sym2V thus consists only of those
pairs (ei ⊗ ej) where i < j. The space Sym2V is n(n + 1)/2 dimensional where
n is the dimension of V . Given a representation on V , the defining equation for
the representation coinciding with the symmetric power Sym2V takes the same
form as with the tensor product, see equation (10):

ρSym2
V

(g)(v ⊗ w) = (X(w)⊗X(v)), (12)

v, w ∈ V and X = ρV (g). In the same way as with the product space it can be
shown that this map is also homomorphic.

Example 2.8. In this example the second symmetric power of the projection
representation of A3 will be taken. To explicitly calculate matrix elements one
first has to choose a basis. Here the following basis has been chosen: {(e1 ⊗
e1), (e1 ⊗ e2), (e1 ⊗ e3), (e2 ⊗ e2), (e2 ⊗ e3), (e3 ⊗ e3)}. The matrices describing
the transformations are going to be:

ρSym2
V

(e) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , ρSym2
V

(123) =


0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

 ,

ρSym2
V

(132) =


0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0

 .

In the same way as the symmetric power was just defined, it is also possible
to define a kind of antisymmetric power, called exterior power. The second
exterior power ∧2V is an n(n − 1)/2 dimensional space. Again it consists of
pairs of vectors (v ⊗ w) for v, w ∈ V but this time the component (ei ⊗ ej) is
equal to −(ej ⊗ ei). In particular, this implies (v ⊗ v) = 0 for all v ∈ V The
map defining the representation is given by:

X(v ⊗ w) = 1/2[(X(w)⊗X(v))− (X(v)⊗X(w))], (13)

v, w ∈ V and X = ρV (g). As an example the matrix elements of the exterior
power of the projection representation of A3 are given:

Example 2.9. With the following basis for ∧2Pr: {(e1⊗e2), (e1⊗e3), (e2⊗e3)}
the matrix elements of the second exterior power of the projection representa-
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tions will be:

ρ∧2Pr(e) =

 1 0 0
0 1 0
0 0 1

 , ρ∧2Pr(123) =

 0 −1 0
0 0 −1
1 0 0

 ,

ρ∧2Pr(132) =

 0 0 1
−1 0 0
0 −1 0

 .

A totally different way to create more representations is by means of the dual
V ∗ of a representation V . This is the space of linear maps from φ : V → C.
The defining map for this representation is:

ρV ∗(g)(φ) = φρV (g−1). (14)

So in this case, not just vectors are being transformed but maps. The space
of maps is still linear so there is no problem in doing this. Because ρV (g−1) is a
map from V to V and φ is a map from V to C, the map ρV ∗(g)(φ) in equation
(14) being a map from V to C is well defined. One can also easily check if the
map is homomorphic:

ρV ∗(g1)ρV ∗(g2)φ = ρV ∗(g1)φρV (g−1
2 )

= φρV (g−1
2 )ρV (g−1

1 )
= φρV ((g1 × g2)−1) = ρV ∗(g1 × g2)φ.

Example 2.10. This is an example of how the map φ : V → C works. Let
V be the permutation representation P of the group S3 which is worked out
in example 2.4. Let φ be the map −6e1 + ie2 + 2e3. Then the element (123)
transforms this map to:

ρV ∗(123)φ = (−6, i, 2)

 0 1 0
0 0 1
1 0 0

 = (2, −6, i). (15)

The dual representation V is actually a special case of Hom(V,W ), where
V and W are representations of the same group G. Hom(V,W ) is the notation
for all linear maps φ : V → W . The associated map of the representation
Hom(V,W ) is:

ρHom(V,W )g(φ) = ρW (g)φρV (g−1). (16)

Checking that this map is well defined and is homomorphic is very similar
to the case of the dual map:

g1g2φ = g1[ρW (g2)φρV (g−1
2 )]

= ρW (g1)ρW (g2)φρV (g−1
2 )ρV (g−1

1 )
= ρW (g1 × g2)φρV (g1 × g2)−1 = (g1 × g2)φ.
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Comparing definitions one can see that when W is the trivial representation
C the following equation holds: V ∗ = Hom(V, C). This can be generalized to
the following equation:

Hom(V,W ) ∼ V ∗ ⊗W. (17)

The equivalence between these two representations is not trivial. Let v be
a basis for V and w a basis for W . The equivalence of the two representations
is shown in figure 1. It can be seen by associating to each element (v∗ ⊗ w) ∈
V ∗ ⊗ W a map φv,w ∈ Hom(V,W ) which maps v to w and all other vectors
to zero. Now transforming the tensor gives the new tensor (v∗ρ(g−1)⊗ ρ(g)w).
In the same way this tensor should be associated with the map φ(ρ(g)v,ρ(g)w) =
ρ(g)φ(v,w)ρ(g−1) which is exactly the map ρ(g)φ.

v∗ ⊗ w
ρ(g)→ v∗ρ(g−1)⊗ ρ(g)w

l l
φv,w

ρ(g)→ ρ(g)φ(v,w)ρ(g−1)

Figure 1: a sketch of relation (17)

2.3 Irreducible Representations

As is described in the previous section, a group can be represented in many ways.
Irreducible representations are representations that are used to seek order in all
the ways a group can be represented. Later it shall be shown that irreducible
representations are kind of the basis vectors of all the representations. But first
a more formal description of irreducible representations is given:

Definition 2.3. A vector space W is a subrepresentation of a representation
V if W is a subspace of V, W 6= V and if W is an invariant subspace under
transformations defined by the representation V, i.e.,

ρV (g)(w) ∈ W, (18)

for all w ∈ W and all g ∈ G.

One can show that for each subrepresentation W of V there exists a com-
plementary subrepresentation W ′ such that V = W ⊕W ′. See [3]-pg 6.

Example 2.11. For an example of a subrepresentation look at example 2.6.
Here it is easy to see that the sum representation constructed has two sub-
representations: the two representations it was made out of. For a less trivial
example, take the permutation representation of S3, which is the vector space
C3. Now construct the subspace W :
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W = C

 1
1
1

 . (19)

This space is invariant under transformations of the projection representa-
tion. Thus W is a new 1-dimensional representation. It also interesting to
mention that W is the trivial representation because:

ρ(g)

 1
1
1

 =

 1
1
1

 ∀ g ∈ S3. (20)

In this way each representation can be split up into subrepresentations. Of
course, for any finite dimensional representation, this can be done only a finite
number of times, because the dimension of a subrepresentation W is always less
then that of the representation V it was part of. The trivial and the alternat-
ing are examples of representations that can’t be decomposed any further in
subrepresentations. This leads to the definition of irreducible representations:

Definition 2.4. An irreducible representation is a representation which has no
subrepresentations.

So the trivial and the alternating representations are irreducible representa-
tions. Each representation can be split up in irreducible representations. This
is called complete reducibility and is a consequence of every subrepresentation
having a complementary subrepresentation.

2.4 Schur’s Lemma

It is interesting to investigate if each representation decomposes into irreducible
representations in a unique way, just like natural numbers splitting up into
prime factors in a unique way. A first starting point is to introduce the concept
of G-module homomorphism:

Definition 2.5. Let V and W be two representations of the group G. The map
φ : V → W is a G-module homomorphism if the following relation holds:

φ(gv) = gφ(v) ∀ g ∈ G, ∀ v ∈ V. (21)

In equation (21) the notation ρV (g) and ρW (g) have both been shortened
to just g. In the future, when it is clear that g is not a group element but a
transformation representing that element this shorthand notation will be used.
Two representations are G-homomorphic to each other when there exist a map
between the vector spaces which is a G-module homomorphism. This definition
is introduced to describe more formally when two representations are similar.
In figure 2 relation (21) has been worked out.
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V
ρV (g)→ V

↓ ↓
W

ρW (g)→ W

Figure 2: a sketch of relation (21)

So in the case that V and W are G-homomorphic to each other, in figure
2 it wouldn’t matter if one takes the top/right route or the left/bottom route
from V to W . If V and W are also both irreducible representations then Schur’s
lemma has something to say about the similarity between V and W .

Schur’s Lemma 2.6. If V and W are irreducible representations of G and
φ : V → W is a G-module homomorphism, then:

1. Either φ is an isomorphism, or φ = 0.

2. If V = W , then φ = λI for some λ ∈ C.

Only the first part of Schur’s Lemma will be proved here, for a proof of the
second part see [3]. For the first statement of Schur’s Lemma to be true, W
doesn’t need to be irreducible.

Proof. Note that kernel of φ is a invariant subspace of V :

φ(v) = 0 ⇒ gφ(v) = φ(gv) = 0 (22)
⇒ gKer φ ⊂ Ker φ (23)

The fact that φ is a G-module homomorphism is used. From the fact that V
is an irreducible representation it follows that Ker φ is either {0} or V . In the
latter case φ = 0. If Ker φ = 0 meaning that φ has an inverse. This inverse is
also a G-module homomorphism: φ−1(gw) = gφ−1w. This implies that φ is an
isomorphism.

Corollary 2.7. Decompositions of representations of groups are unique.

Proof. Begin with two decompositions of a representation V :

V = V1 ⊕ . . .⊕ Vk = W1 ⊕ . . .⊕Wl, (24)

and consider the identity map Id : Vi → W1 ⊕ . . . ⊕ Wl which is of course a
G-module homomorphism. First look at where a subrepresentation Vi can be
mapped to. If it was mapped to more than one subrepresentation Wj then
Vi can’t be a irreducible representation. So Vi can only be mapped to one
irreducible representation Wj . From Schur’s Lemma it follows that Vi = Wj .
(because φ is in this case an isomorphic identity map.)
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A direct consequence of Schur’s Lemma considers Albelian groups. Take an
representation V of an Abelian group G. For the map φ used in Schur’s Lemma
use the map ρ(g) : V → V . Because g commutes with all elements of the group,
ρ(g) defines a G-module homomorphism, thus part two of Schur’s Lemma can
be used. This part states that ρ(g) is equal to a multiple of the identity map.
This holds for all g ∈ G from which follows ρ(g) = λI ∀ g ∈ G implying that V
can be decomposed into 1-dimensional subrepresentations. Abelian groups thus
only have 1-dimensional irreducible representations.

Example 2.12. As an example consider the projection representation of the
Abelian group A3:

ρ(e) =

 1 0 0
0 1 0
0 0 1

 , ρ(123) =

 0 0 1
1 0 0
0 1 0

 , ρ(132) =

 0 1 0
0 0 1
1 0 0

 .

The three irreducible representations which this representation consists of
are 1-dimensional:

V1 = Span{

 1
1
1

} , V2 = Span{

 1
w
w2

} , V3 = Span{

 1
w2

w

}.
where w = e2πi/3. The proof of this pudding is in the eating, or so the English
say.
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3 Character Theory

So far we have looked at representations of groups. Each representation of each
group can be uniquely decomposed into the smallest subrepresentations called
irreducible representations. Do there exist infinitely many different kinds of
irreducible representations . And if not, is it possible to give a classification of
irreducible representations? Is it also possible to determine the decomposition
of a arbitrary representation? Character theory is a very useful theory and gives
some answers to these questions.

Definition 3.1. Given a representation V of a group G, the character of the
representation V is a complex valued function on the group defined by:

χV (g) = Tr(g|V ). (25)

One of the first observation that can be made is that the character is a class
function on a group G. It is an element of the set of class functions. This set is
denoted by Cclass(G):

χV (hgh−1) = Tr(hgh−1) (26)
= Tr(h−1hg) = Tr(g). (27)

Example 3.1. From example 2.4 the character of the projection representation
of the group S3 can easily be calculated.

Class (e) (12) (123)
χP 3 1 0

A few properties of characters that are needed for further discussion are
stated here without proof:

χV⊕W (g) = χV (g) + χW (g), (28)
χV⊗W (g) = χV (g) · χW (g), (29)

χV (g−1) = χV ∗(g) = χV (g). (30)

To further exploit the concept of character two other concepts have to be
introduced: HomG(V,W ) and the first projection formula. The meaning of the
first notation can be generalized to:

V G = {v ∈ V | gv = v ∀g ∈ G}. (31)

Here V is a representation of G. By definition V G is a direct sum of trivial
subrepresentations of V . For the permutation representation of the group S3,
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PS3 is already calculated in example 2.11: PS3 = C(1, 1, 1)T .

Now HomG(V,W ) is a direct sum of trivial subrepresentation of Hom(V,W ).
One can show that HomG(V,W ) consists of all G-module homomorphisms be-
tween V and W . According to Schur’s Lemma, if V and W are irreducible
representations, the dimension of this representation is:

dim HomG(V,W ) =
{

1 if V ' W
0 if V 6= W.

(32)

Also, with the help of equations (29) and (30), it is possible to calculate
the character of HomG(V,W ). The easiest way to do this is using the dual
of V : Hom(V,W ) = V ∗ ⊗ W . The character can now directly be seen to
be: χHomG

(V,W )
= χV χW . The character of the map in question can also

be calculated using basic linear algebra techniques. Start by defining a basis
for V ({e1 . . . en}) and W ({f1 . . . fm}). A basis of Hom(V,W ) is thus: {eifj}
which maps the basis vector ei to the basis vector fj (and all other basis vectors
e 6= ei to zero). These “basis maps” can also be denoted by the matrices δj

i . To
calculate the trace of a transformation with these “basis maps” as basis vectors,
one needs to calculate in what quantity these maps are mapped to their selves:

χHom(V,W )(g) = Trace ρHom(V,W )(g)

=
∑
ij

[ρW (g)δj
i ρV (g−1)]ij

=
∑
ij

∑
kl

[ρW (g)]ik[δj
i ]kl[ρV (g−1)]lj

=
∑
ij

[ρW (g)]ii[ρV (g−1)]jj

=
∑

i

[ρW (g)]ii
∑

j

[ρV (g−1)]jj

= χW (g)χV (g−1),

so χHom(V,W )(g) = χW (g)χV (g). (33)

As was said before, a way to exploit the concept of characters is by means
of the first projection formula given by equation (34):

φ =
1
|G|

∑
g∈G

g. (34)

Here |G| is a notation for the number of elements of the group G. The
transformation φ is kind of average of all the transformations g. The reason
why this is called a projection formula is because φ maps V into V G for any
representation V of G. Thus with an appropriate basis, φ can take on the
following form:
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φv =
(

Im A
0 0

) (
v1

v2

)
. (35)

Here Im is the m-dimensional identity matrix, m = dimV G , v1 ∈ V G and
v2 ∈ V \V G. The trace of the matrix of the transformation φ is thus m. But
this is also equal to:

m = dimV G = Trace(φ) =
1
|G|

∑
g∈G

Trace(g) =
1
|G|

∑
g∈G

χV (g). (36)

Now replace in equation (36) the representation V by the representation
Hom(V,W ) for arbitrary irreducible representations V,W . The dimension m
of HomG(V,W ) is already calculated, see equation (32). Also the character
χHom(V,W )(g) has been calculated, see equation (33). Filling this in gives the
striking result:

1
|G|

∑
g∈G

χW (g)χV (g) =
{

1 if V ' W
0 if V 6= W

. (37)

To see what the consequences of these equations are consider the linear
space: Cclass(G). This is a space of all maps from conjugacy classes of the
group G to the complex numbers. In the beginning of this section it was shown
that the character χV (g) of a representation is an element of this space for all
representations V . Now define an inner product on this linear space:

(a, b) =
1
|G|

∑
g∈G

a(g)b(g). (38)

The dimension of the space Cclass(G) is equal to the number of conjugacy
classes. χV (g) is an element of this space and due to equation (37) all characters
of irreducible representations are orthogonal elements of the space Cclass(G).
Thus

Corollary 3.2. The number of different irreducible representations of a group
G is equal to or smaller than the number of conjugacy classes of that group.

Another consequence of equation (37) is:

Corollary 3.3. If V is any representation with a decomposition V = V ⊕a1
1 ⊕

. . .⊕ V ⊕ak

k , then the multiplicities ai can be calculated using the inner product:

ai = (χV , χVi
). (39)

The last consequences that will be discussed concerns the calculation of inner
product (χV , χV ) for any representation. First look at the regular representation
R of an arbitrary group G, which was introduced in example 2.5. Any element
g ∈ G will map basis vectors (coinciding with elements of the group) to other
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basis vectors. Only the unit element e is an exception in this case. The character
of R can thus be expressed by:

χR(g) =
{

0 if g 6= e
|G| if g = e

. (40)

In general R is not an irreducible representation but has a decomposition
R = V ⊕a1

1 ⊕ . . . ⊕ V ⊕ak

k . Here all irreducible representations of G have been
taken into this decomposition. The multiplicities ai can be calculated with the
use of corollary 3.3:

ai =
1
|G|

∑
g∈G

χVi
(g)χR(g) =

1
|G|

χVi
(e)|G| = dimVi. (41)

One can already conclude that any irreducible representations V is part
of the regular representation R. Now comparing the dimensions of R and its
decomposition:

Corollary 3.4. For any group G, the number of elements is equal to:

|G| =
∑

i

dim(Vi)2. (42)

The sum is over all possible irreducible representations of G.

Corollary 3.5. A representation V is irreducible if and only if (χV , χV ) = 1.

This last corollary follows from corollary 3.3 and equation (37). With the
results achieved so far it is possible to make character tables. These are tables
which describe the characters of all irreducible representations of a group.

3.1 The Characters of S3

Consider for example the group S3. The characters of the trivial representation
U and the alternating representation U ′ are easily calculated, they are shown
in table 2. These characters can be checked by calculating their norm which
should be equal to: (χU , χU ) = (χU ′ , χU ′) = 1.

The character of the permutation representation was already calculated in
example 3.1. Its norm (χP , χP ) = 1/6(9 · 1 + 1 · 3 + 0 · 2) = 2. Thus P is not
an irreducible representation. Indeed, in example 2.11 it was calculated that P
has a trivial representation as a subrepresentation. One can show that every
permutation representation of a symmetric group Sn has a trivial subrepresen-
tation. The complementary representation is called the standard representation
S. So P = U ⊕ S from which the character of S can be calculated.

χS = χP − χU . (43)

Once the character of S is known one can easily calculate its norm: (χS , χS) =
1/6(4 · 1 + 0 · 3 + 1 · 2) = 1. Table 2 gives a list of all characters calculated so
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far. Note that on the top line the number of elements in the conjugacy classes
are shown. These are needed to quickly check the norms of the characters.

1 3 2
(e) (12) (123)

U 1 1 1
U ′ 1 -1 1
S 2 0 -1

Table 2: character table of the group S3

From corollary 3.2 it can be concluded that all irreducible representations have
been discovered. This can also be checked with equation (42). It is not a coin-
cidence that the number of irreducible representations is equal to the number
of conjugacy classes. It can be shown that this is the case for all groups.

With the help of characters one can easily check whether a representation
is irreducible. Also it gives a way to check whether all the irreducible represen-
tations are known. Moreover it gives a way to find the complete decomposition
of a representation into its irreducible representations. It is thus a very useful
theory to analyze representations. Let us enhance this theory by working out
another example.

3.2 The Characters of S6

In this example the much larger group S6 will be analyzed. It will be a cum-
bersome calculation, but with all the techniques discussed so far it is going to
work. The analysis will start with the conjugacy classes of S6 and a calculation
of their number of elements. Once these are known the first irreducible repre-
sentations can be filled in the character table.

1 15 40 90 144 120 45 15 120 90 40
(e) (12) (123) (1234) (12345) (123456) (12)(34) (12)(34)(56) (12)(345) (12)(3456) (123)(456)

U 1 1 1 1 1 1 1 1 1 1 1
U ′ 1 -1 1 -1 1 -1 1 -1 -1 1 1
S 5 3 2 1 0 -1 1 -1 0 -1 -1

The character of the standard representation is calculated using equation
(43). A calculation of its norm shows that it is indeed an irreducible represen-
tation. To find other representations one can take either symmetric powers or
exterior powers of known representations. Their characters are given by:

χ∧2V (g) = 1/2[χV (g)2 − χV (g2)], (44)

19



χSym2
V

(g) = 1/2[χV (g)2 + χV (g2)]. (45)

These two relations can be proven by analyzing the eigenvalues of trans-
formations coinciding with V , ∧2V and Sym2V . First of all look at ∧2S. By
calculating its character and taking its norm one can see that this is an irre-
ducible representation of dimension 10. Also one can calculate the character of
Sym2S. But calculating its norm shows that it isn’t an irreducible representa-
tion. To see what its subrepresentations are one can calculate inner products
of Sym2S with known irreducible representations, hoping to find an new irre-
ducible representation in this way. Doing the calculations shows that:

(χSym2
V

, χU ) = 1 (46)

(χSym2
V

, χS) = 1. (47)

So Sym2s has rhe decomposition: Sym2s = U ⊕S⊕V . The character of the
new representation V is: χV = χSym2

S
− χS − χU . This new representation

turns out to be irreducible. Another trick to find other irreducible represen-
tations is to construct product spaces of known irreducible representations.
With symmetric groups it turns out that the product space of the alternating
representation and another representation V ′ = V ⊗U ′ is irreducible when V is
irreducible. In this way another 3 irreducible representations can be found.

1 15 40 90 144 120 45 15 120 90 40
(e) (12) (123) (1234) (12345) (123456) (12)(34) (12)(34)(56) (12)(345) (12)(3456) (123)(456)

U 1 1 1 1 1 1 1 1 1 1 1
U ′ 1 -1 1 -1 1 -1 1 -1 -1 1 1
S 5 3 2 1 0 -1 1 -1 0 -1 -1

S ⊗ U ′ 5 -3 2 -1 0 1 1 1 0 -1 -1
∧2S 10 2 1 0 0 1 -2 -2 -1 0 1

∧2S ⊗ U ′ 10 -2 1 0 0 -1 -2 2 1 0 1
V 9 3 0 -1 -1 0 1 3 0 1 0

V ⊗ U ′ 9 -3 0 1 -1 0 1 -3 0 1 0

One can wonder if not all irreducible representations have been found yet.
This is not the case: as mentioned before the number of irreducible represen-
tations is equal to the number of conjugacy classes. Also equation (42) must
hold. Up to now, the right side of this equations sums op to 414 which is by
far not the number of elements of S6. Finding the remaining irreducible repre-
sentations one can again take products of known representations. Consider for
example the following product space: S⊗∧2S. This is a 5×10 = 10-dimensional
representation, which character can be calculated using equation (29). Again
one can take inner products:

(χSym2
V⊗S

, χS) = 1 (48)
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(χSym2
V⊗S

, χV ) = 1 (49)

(χSym2
V⊗S

, χ∧2S) = 1 (50)

(χSym2
V⊗S

, χ∧2S⊗U ′) = 1. (51)

This representation turns out to be reducible in at least the following sub-
representations: S ⊗ ∧2S = S ⊕ V ⊕ ∧2S ⊕ ∧2S ⊗ U ′ ⊕W where W is a new
representation of dimension 16. This suggestion wouldn’t be mentioned if W
didn’t turn out to be an irreducible representation. Also one can again try to
construct another irreducible representation: W ⊗ U ′. But this representation
turns out to be the same as W .

Now equation (42) is going to be fully exploited. Written out the equation
is in this case:

720 = 12 + 12 + 52 + 52 + 102 + 102 + 92 + 92 + 162 + n2
1 + n2

2. (52)

A look at this equation tells that n2
1 + n2

2 = 50. There are exactly 2 remain-
ing irreducible representations. There are 2 possibilities for their dimensions:
n1 = 7, n2 = 1 or n1 = n2 = 5. If there was another 1-dimensional irreducible
representation problems would occur. According to theorem 2.2 it is going to be
trivial on normal subgroup of S6 whose quotient group is cyclic. There are only
two such normal groups: the group itself and the group A6. The representations
coinciding with these normal groups are the trivial group and the alternating
group. The conclusion is that the dimension of the last two remaining repre-
sentations must be equal to 5.

Known is that the character of one of the two remaining irreducible repre-
sentations Z looks like (5, a2, a3, . . . , a11). An educated guess for the remaining
representation could be Z ′ = U ′⊗Z with its character (5,−a2, a3, . . . , a11). First
check that Z 6= Z ′. If Z = Z ′ then a2 = a4 = a6 = a8 = a9 = 0, which leaves 5
unknown variables. The character of Z should satisfy the (χZ , χU ) = (χZ , χS) =
(χZ , χ∧2S) = (χZ , χV ) = (χZ , χW ) = 0. These 5 equations give a unique solu-
tion for a: (a3, a5, a7, a10, a11) = (−5.7473, 1.9827, 0.4730,−1.1663, 1.3866). It
is known that characters of symmetric groups are always natural numbers thus
it can be concluded that Z 6= Z ′. These remaining two characters must be
orthogonal to all other characters. This is enough information to complete the
character table:
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1 15 40 90 144 120 45 15 120 90 40
(e) (12) (123) (1234) (12345) (123456) (12)(34) (12)(34)(56) (12)(345) (12)(3456) (123)(456)

U 1 1 1 1 1 1 1 1 1 1 1
U ′ 1 -1 1 -1 1 -1 1 -1 -1 1 1
S 5 3 2 1 0 -1 1 -1 0 -1 -1

S ⊗ U ′ 5 -3 2 -1 0 1 1 1 0 -1 -1
∧2S 10 2 1 0 0 1 -2 -2 -1 0 1

∧2S ⊗ U ′ 10 -2 1 0 0 -1 -2 2 1 0 1
V 9 3 0 -1 -1 0 1 3 0 1 0

V ⊗ U ′ 9 -3 0 1 -1 0 1 -3 0 1 0
W 16 0 -2 0 1 0 0 0 0 0 -2
Z 5 1 -1 -1 0 0 1 -3 1 -1 2

Z ⊗ U ′ 5 -1 -1 1 0 0 1 3 -1 -1 2
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4 Young Diagrams

Up to now representations have been discussed. It turned out that these can
be decomposed into irreducible representations. Character theory gives ways to
check whether a representation is irreducible. But it doesn’t give a method to
find all the irreducible representations of a group, only by trial and error one is
capable of finding all the irreducible representations (see section 3.2) and there
is no reason to assume that this techniqu will work in all cases. Young diagrams
give a way to systematically give all the irreducible representations of a group,
but it only works for symmetric groups Sn.

The number of irreducible representations of a group is equal to the number
of conjugacy classes. For a symmetric group Sn this is equal to the number
of partitions of n. A partition of n is a way to split up n in a sum of natural
numbers. A partition of 7 could be 4+2+1 which corresponds to the conjugacy
class of the group element (1234)(56). For each partition n = λ1+. . . λn a Young
diagram can be constructed. A Young diagram is a number of boxes. The ith

row consists of λi boxes. The Young diagram of 7 = 4 + 2 + 1 looks like:

A shorthand notation for a Young diagram is (λ1, . . . , λn). The diagram
above would be (421). One can also fill in the boxes with the numbers {1, . . . , n}.
The picture that is constructed in this way is called a Young tableau. The
canonical tableau of the diagram (421) is:

1 2 3 4
5 6
7

Before going on with this story, the group algebra CG of a group G needs to
be introduced. This is a linear vector space with basis eg corresponding to the
elements in G. The multiplication in this algebra is defined in a logical way:

eg · eh = eg×h. (53)

The group algebra thus contains the structure of the underlying group. The
advantage is that it is possible to create expressions like: (234) + (23) ∈ CS4.
The basis elements of the space CG are not denoted with eg but with the same
notation as a group element. This notation will be used when it is clear what
the underlying set or space is. The group can be seen as a space of maps from
the group algebra to the group algebra. This is done by left-multiplying all the
basis vectors of the group algebra with an element of the group. See the next
example:
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Example 4.1. Take the following elements: g = (12) ∈ S3 and c = (e) − 4 ·
(13) ∈ CS3. Then the map:

g ∈ G : CS3 → CS3, (54)

maps g to g(c) = (12)× [(e)− 4 · (13)] = (12)− 4 · (132).

In this way it is possible to construct representations of the group G. Actu-
ally, the representation CG is the regular representation discussed in example
2.5. The group algebra itself can also be seen as a space of maps, in the sense
that CG : CG → CG. This works in exactly the same way as with the map in
example 4.1.

A representation of the group Sn that is needed for this discussion but has
not yet been introduced is the nth tensor product of an arbitrary vector space
V : V ⊗n. The coinciding map is defined as follows:

σ(ei1 ⊗ . . .⊗ ein) = eiσ−1(1)
⊗ . . .⊗ eiσ−1(n)

. (55)

This equation can also be used to define a map CSn → End(V ⊗n). An
example of such a map is given in example 4.2.

Example 4.2. Take an element c ∈ CS3: for example c = (e)− 4 · (13): Then
c defines the map:

c(vijk) = vijk + 4vkji. (56)

Here the shorthand notation for the basis vectors is used: vijk = ei ⊗ ej ⊗ ek ∈
V ⊗3.

Because it is not trivial why the inverse of σ is used in equation 55 it will
be shown that it does define a homomorfism. Consider gh(ei1 ⊗ . . .⊗ ein):

gh(ei1 ⊗ . . .⊗ ein) = g(eih−1(1)
⊗ . . .⊗ eih−1(n)

)
= ejg−1(1)

⊗ . . .⊗ ejg−1(n)
,

where jk = ih−1(k) for all indices k. Thus jg−1(n) = ih−1g−1(n). Thus:

ejg−1(1)
⊗ . . .⊗ ej−1

g (n) = eih−1g−1(1)
⊗ . . .⊗ eih−1g−1(n)

= (gh)(ei1 ⊗ . . .⊗ ein)

For certain group elements c ∈ CSn this map will turn out to be very useful.
Using Young tableaux one can construct these elements called Young symmetriz-
ers. To construct a Young symmetrizer coinciding with a Young tableau one
first starts with the following subsets of the group Sn

Pλ = {g ∈ Sn | g preserves each row}, (57)
Qλ = {g ∈ Sn | g preserves each column}, (58)

where the subscript λ refers to the Young tableau.
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Example 4.3. For the canonical Young tableau of the Young diagram (421) of
S7, the subgroups P and Q of CG are:

Pλ = {(e), (12), (13), (14), (1234), (56), . . .}, (59)
Qλ = {(e), (15), (17), (57), (157), (26), . . .}. (60)

Now construct the following elements of CSn:

aλ =
∑

g∈Pλ

eg and bλ =
∑

g∈Qλ

sgn(g) · eg (61)

and set cλ = aλ · bλ ∈ CSn. This is called the Young symmetrizer. It is has
the following astonishing property.

Theorem 4.1. For each Young diagram λ and arbitrary corresponding Young
tableau λ, the image of Young symmetrizer cλ(CSn) ∈ CSn is an irreducible
representation Vλ of Sn with corresponding map ρVλ

(g) = g. Moreover, each
irreducible representation of Sn can be found in this way.

This theorem will not be proven in this thesis, for a proof see [3]-pg52.
Instead the following example will make clear how this theorem can be used:

Example 4.4. To keep the calculations simple, consider the group S3. The
number 3 has exactly 3 partitions (corresponding to 3 irreducible representa-
tions) which lead to 3 Young diagrams:

, , .

First start with the first Young diagram (λ = (111)). For this diagram it does
not matter which corresponding tableau is chosen. P(111) consists of the unit
element only while Q(111) = S3, thus:

c(111) = (e)− (12) + (123)− (13) + (132)− (23). (62)

Now to calculate the image of c(111)(CS3) one can calculate where c(111) maps
the basis vectors eg of CS3. Because gc(111) = ±c(111) this image is equal to the
one dimensional space spanned by c(111). So this space is according to theorem
4.1 an irreducible representation. The map corresponding to this representation
is the map ρg(c(111)) = sgn(g) · c(111) which shows that it is the alternating rep-
resentation. In general the Young diagram (1n) corresponds to the alternating
representation of Sn.

Now look at the third Young diagram (λ = (3)). Again it does not matter
what corresponding tableau is chosen. Q(3) is just the unit element while P(3) =
S3, thus now c(3) becomes:

c(3) = (e) + (12) + (123) + (13) + (132) + (23). (63)

25



This Young symmetrizer looks even simpler then c(111). A quick argumentation
would be to say that it must correspond to the most simple representation, the
trivial representation. ρg(c(3)) = c(3) shows that this is indeed the case.

The last Young diagram should coincide with the standard two dimensional
representation. It will take some more work to show this. Start with an arbitrary
Young tableau, for example:

1 2
3

The corresponding aλ and bλ become: a(12) = ((e) + (12)) and b(12) =
((e)− (13)). This yields the Young symmetrizer:

c(12) = (e) + (12)− (13)− (132). (64)

Now one has to calculate the image of c(12). A first glance shows that
(e)c(12) = (12)c(12) = c(12). But expressions of images of other basis vectors
are not as easy: (13)c(12) = (123)c(12) = (13) + (123) − (e) − (23). These
two elements are thus mapped to a vector independent of c(12), call this vector
a. This shows that the image of c(12) is indeed at least 2-dimensional. The
remaining two basis vectors are mapped into the space spanned by a and c(12):
(23)c(12) = (132)c(12) = −(a + c(12)). Thus according to the theory V(12) is a 2-
dimensional irreducible representation. If one takes a and c(12) as basis vectors
of V(12) one can explicitly calculate the corresponding map ρ:

ρ(e) =
(

1 0
0 1

)
, ρ(123) =

(
0 −1
1 −1

)
, ρ(132) =

(
−1 1
−1 0

)
,

ρ(12) =
(

1 −1
0 −1

)
, ρ(23) =

(
−1 0
−1 1

)
, ρ(13) =

(
0 1
1 0

)
.

It is now easy to calculate the character of the representation V(12). Com-
paring it to the character of the standard representation shows that these two
are indeed equivalent.
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5 SU(n) and Quarks

Quarks are the building blocks of a lot of particles, the most popular ones being
the neutron and the proton. They were introduced to explain the existence
of the many subatomic particles, called hadrons, that were discovered. Also,
quarks were hypothesized to have certain symmetries. Not only does this hy-
pothesis lead to an ordering of quarks, it also gives predictions on what particles
may still be discovered. To explain the relation between quarks and SUn sym-
metry in more detail the concept of isospin will be discussed. This discussion
can be found in many standard textbooks such as [7] and [6].

5.1 Isospin

It was discovered that many hadrons have approximately the same mass, see
table 3 for a few of these particles.

Hadron Mass (MeV) Charge
p 939.6 0
n 938.3 1
π− 139.6 -1
π0 135 0
π+ 139.6 1
Σ− 1197.2 -1
Σ0 1192.3 0
Σ+ 1189.4 1

Table 3: mass and charge of a few hadrons

For example, the neutron and the proton have approximately the same mass.
The theory of isospin states that this mass difference is due to the difference
in charge. If one was able to create a world without electromagnetic forces,
the proton and neutron would actually be the same particle. It is equivalent to
stating that a spin-up electron and a spin-down electron are different states of
the same electron. In the same way, the neutron and the proton can be seen as
different states of the same hadron.

Particles are seen as vectors in Cn. Thus with an appropriate basis, the
neutron can be seen as n = e1 and the proton can be seen as p = e2. Now
if electromagnetic forces were to be shut down, these two particles would be
actually different states of the same hadron. Any transformation which mixes
these two basis vectors would yield a new state (a linear combination of the p
and n) of the same particle. The allowed transformations are mathematically
SU2, the group of 2 by 2 special unitary matrices.
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The group of special unitary matrices SU2 are all the matrices U with det
U = 1 and UU∗ = 1. This set forms a group under matrix multiplication. The
space spanned by p and n is invariant under SU2 transformations. In the lan-
guage of representation theory, this space is an representation of the SU2 group.
In a sense this representation is irreducible. This is only the case when one sees
SU2 not as the group but as the underlying transformations. Because in this
case one can not construct for example a trivial subrepresentation, for there
is an SU2 matrix that maps e1 to e2. Physically it is saying that one always
considering all transformation and not only a subset of the transformations.

So isospin groups particles with approximately the same mass. It states that
particles have an underlying symmetry, in other words, that certain particles
are nearly the same. Nearly, because this symmetry is broken by the electro-
magnetic forces. Isospin shows that all hadrons are tensors belonging to an
irreducible representation of a group, a group determining its symmetry. In
the case of isospin symmetry it is SU2. The other way around one can say
that a tensor can only represent a particle if it is an element of an irreducible
representation. Another conclusion is that the tensors spanning the space of
an irreducible representation of a symmetry, form a set of particles which are
equivalent with respect to this symmetry.

This symmetry of SU2 seemed to work but it was not satisfying. There were
still to many small groups of particles. That is why in 1962 Gell-Mann proposed
a higher symmetry, that of SU3. He called this theory of higher symmetry the
Eightfold-Way. But to analyze this symmetry, a little more mathematics needs
to be discussed.
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6 Link between Sn and SU(n)

In chapters 2, 3 and 4 representations of symmetric groups have extensively
been analyzed. To analyze quarks it is of great interest to know the representa-
tions of SUn. Not only will these be discussed in this chapter, also decomposing
tensor products and other mathematical tricks will be discussed. All theorems
will be stated here without proof but only some remarks.

6.1 Irreducible Representations of SUn

Say a quark has n freedoms (due to spin, isospin, flavour or any other internal
property). It can then be seen as a vector in Cn. Particles are mostly made out
of either 2 or 3 quarks. In this discussion this is generalized to the statement
that a hadron can be made out of d quarks. It is thus an element of the tensor
product (Cn)⊗d. An example of an element of this product space is the neutron
which consists of two down quarks and an up quark. If one only looks at three
flavour freedoms of a quark (up, down and strange) the neutron can be seen as
an element of (C3)⊗3. With an appropriate basis this becomes explicitly:

n = ddu =

 0
1
0

⊗

 0
1
0

⊗

 1
0
0

 . (65)

The space (Cn)⊗d can be seen as a representation of SUn. A matrix U ∈ SUn

transforms a tensor v1 ⊗ . . .⊗ vd ∈ (Cn)⊗d by transforming all the components
of the tensor:

Uv = Uv1 ⊗ Uv2 ⊗ . . .⊗ Uvd. (66)

This can also be denoted using the Einstein summation convention. Using
this convention a tensor in (Cn)⊗d is denoted using the basis tensors vi1i2...id

where the indices i1, i2, . . . , id run from 1 to n. An arbitrary tensor T ∈ (Cn)⊗d

can be is denoted as:

T = T i1i2...idvi1i2...id
, (67)

where T i1i2...id ∈ C. Here the same indices denote a summation, which
implies that the different basis vectors are summed together. The tensor T is
said to have d lower indices. The equation for the neutron (see equation 74) is
denoted as n = e2 ⊗ e2 ⊗ e1 = v221. A transformation of an arbitrary tensor T
with d lower indices is denoted as:

(UT )j1...jd = U j1
i1

U j2
i2

. . . U jd

id
T i1i2...id . (68)

The numbers U ik
jk

are the matrix elements Uij . Furthermore, the convention
states that one again sums over similar indices, in this equation one sums over
all i indices. This equation thus defines the transformation for the constants

29



T i1i2...id ∈ C.

The question is thus how the representation (Cn)⊗d splits up in irreducible
representations. The Young symmetrizers will help answer this question. To
see this recall the map c : CSd → End(V ⊗d) which was defined for all group
algebra elements c. A Young symmetrizer is such element and thus defines such
a map. The image of the map defined by the Young symmetrizer is denoted by:

SλV = Im(cλ|V ⊗d). (69)

Where λ denotes the corresponding Young diagram. In a sense the space
SλV is not only dependent of the Young diagram λ but also of the Young
tableau. This is not embedded in the notation for if one uses different Young
tableaux to calculate the spaces SλV , these spaces turn out to be equivalent.
When discussing quarks V would be the space Cn.

Example 6.1. In this example the spaces SλV will be constructed with V the
space C3 and d = 3. These will be the spaces of three quarks (the baryons)
with each three freedoms. Throughout this example the shorthand notation for
basis tensors will be used. The Young symmetrizers coinciding with the three
Young diagrams where already calculated in example 4.4. Now start with the
easiest Young symmetrizer c(3) belonging to the symmetric Young tableau:

1 2 3

The Young symmetrizer is c(3) = (e) + (123) + (132) + (12) + (13) + (23).
Now to calculate the space S(3)C3 one can calculate the image of all the basis
tensors of C3. There are three kinds of basis tensors of C3: viii, viij and vijk.
One has that c(3)viii = 6viii and c(3)vijk = vijk + vkij + vjki + vjik + vkji + vikj

for all i 6= j 6= k 6= i. Finally, c(3)viij = c(3)viji = c(3)vjii = 2viij + 2viji + 2vjii

for all i 6= j. The space S(3)C3 is thus an 10-dimensional subspace of (Cn)⊗d.

The next symmetrizer that is going to by analyzed is the one belonging to
the totally antisymmetric Young diagram. Note that, like the totally symmetric
diagram, it does not matter which tableau is taken. In this case the canonical
one is taken:

1
2
3

The Young symmetrizer belonging to this tableau is c(111) = (e) + (123) +
(132) − (12) − (13) − (23). One has that c(111)viii = c(111)viij = c(111)viji =
c(111)vjii = 0 for all i 6= j. And c(111)vijk = vijk +vkij +vjki−vjik−vkji−vikj =
±(v123+v312+v231−v213−v321−v132). The space S(111)C3 is thus 1-dimensional.
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The last symmetrizer comes with a few complications. Now it does matter
which Young tableau is taken if one wants to explicitly calculate basis vectors
of S(12)C3. The calculations here are done with the following Young tableau

1 2
3

The Young symmetrizer of this tableau is c(12) = (e) + (12)− (13)− (132).
Again one has that c(12)viii = c(12)viji = 0 for all i. Furthermore, c(12)viij =
−c(12)vjii = 2viij − vjii − viji. Running over all i, j (i 6= j), these tensors
span a 6-dimenionsal space. Running over all i,j and k, c(12)vijk denotes six
different tensors which span a 2-dimensional space. The space S(12)C3 is thus
8-dimensional. A thorough calculation of this tensor space can be found in Ap-
pendix 1.

It is also possible to calculate the space S(12)C3 when one starts with a
different Young tableau. As said before the space one would get would be
equivalent to the space already calculated.

Now the spaces SλCn which were calculated in the above example turn out
to be the irreducible representations of SUn. Here this statement is explained
with a minor discussion. For more thorough mathematical discussion about
this statement see [3] and [4]. With a few calculations one can see that the
space SλCn is an invariant subspace under SUn transformations. This can
be generalized to the following statement. Let W be a representation of an
arbitrary group G. W⊗d is a representation of G as well as Sd. Now for all
c ∈ CSd, the space c ·W⊗d is a subrepresentation of G. This follows from the
fact that elements from Sd and G commute. Let g ∈ G, σ ∈ Sn and w ∈ W⊗d:

gσ(wi1 ⊗ . . .⊗ wid
) = g(wiσ−1(1)

⊗ . . .⊗ wiσ−1(d)
)

= gwiσ−1(1)
⊗ . . .⊗ gwiσ−1(d)

= σ(gwi1 ⊗ . . .⊗ gwid
) = σg(wi1 ⊗ . . .⊗ wid

)

Physically one can say that a SUn transformations conserves symmetries

The dimensions of the spaces SλCn can be calculated as in example 6.1, by
calculating explicitly a basis for this space. There is a far easier way though,
with the help of the Hook product. For each box in a Young diagram one can
associate a Hook length: hij = (number of boxes under box (i, j)+number of
boxes to the right of box (i, j)+1). Here box (i, j) is the box in the ith row and
jth column, counting from the upper right corner. As an example, the Hook
length of each box of the Young diagram (421) has been calculated:

6 4 2 1
3 1
1
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The Hook product of a Young diagram is the product of all its Hook lengths:
hλ =

∏
ij hij . The Hook product of the Young diagram (421) is thus 144. The

dimension of SλCn is now given by:

dim SλCn =
∏
ij

n− i + j

hij
. (70)

The dimensions of the irreducible representations which were calculated in
example 6.1 can be checked using this formula.

dim S(3)Cn = (3 ∗ 4 ∗ 5)/(3 ∗ 2 ∗ 1) = 10
dim S(21)Cn = (3 ∗ 4 ∗ 2)/(3 ∗ 1 ∗ 1) = 8

dim S(111)Cn = (3 ∗ 2 ∗ 1)/(3 ∗ 2 ∗ 1) = 1

The space of 3 quarks with 3 symmetries used in example 6.1 splits up in
these irreducible representations: (C3)⊗3 = S(3)C3 ⊕ (S(12)C3)⊕2 ⊕ S(111)C3. A
check on this kind of expressions is to verify that both sides of the equality have
the same dimensions. It is easy to see that both spaces are 27-dimensional. The
equation can also be expressed in terms of Young diagrams:

⊗ ⊗ = ⊕ 2 · ⊕ (71)

6.2 Decomposition of Representations (Part 1)

Equation (71) is actually an example of decomposing product spaces into irre-
ducible representations. In chapter 3 it was shown that character theory gave
useful formulas for decomposing representations, see corollary 3.3. The problem
here is that the characters of representations of SUn are quite hard to describe
because there are infinitely many conjugacy classes. There is however a link
between the decomposition of a representation of SUn and that of a similar
decomposition of Sd:

Theorem 6.1. If c ∈ CSd and c · (CSd) =
⊕

λ V ⊕rλ

λ as representations of Sd,
then there is a corresponding decomposition of GL(V )-spaces:

c · V ⊗d =
⊕

λ

SλV ⊕rλ . (72)

A proof of this theorem can be found in [3]-pg 84. In [4] it is explained that
this theorem not only holds for GL(V )-spaces but also for SU(V ) spaces, where
V = Cn in our case. Note that the decomposition of V ⊗d is independent of the
dimension of V . The next example will demonstrate the use of this theorem by
giving a derivation of equation (71).

Example 6.2. In this example the decomposition of ⊗ ⊗ will be calculated.
Again assume the number of freedoms for a quark n to be 3. One must thus look

32



for a decomposition of (C3)⊗3 = (C3)⊗3 ·(e). Now use theorem 6.1 with c = (e).
The representation (CS3) · (e) is just the regular representation R of S3. A
glance at example 2.5 gives the character of this representation: χR(e) = 6 and
χR(123) = χR(12) = 0. Taking inner products with characters of irreducible
representations gives: (CS3) · (e) = V(111) ⊕ (V(12))⊕2 ⊕ V(3)

This example can be generalized to the following theorem:

Theorem 6.2. The decomposition of (Cn)⊗d as a representation of SUn is:

(Cn)⊗d =
⊕

λ

SλV ⊕nλ , (73)

where nλ is the dimension of the representation coinciding with the Young dia-
gram λ of the group Sd.

Example 6.3. This example will make clear that the method just explained
works but is cumbersome to use and that logical thinking can sometimes be a
lot quicker. Look at the representation ⊗ , which is the representation of
a symmetric hadron consisting of 2 quarks combined with another quark. A
first calculation of this representation shows that it is 6 ∗ 3 = 18-dimensional.
Because this product space consists of a representation of 3 quarks the possible

irreducible representations it could consists of are , and . At least 2 of
the three quarks are symmetric thus the last Young diagram does not appear.
A further dimensional analysis shows that the decomposition must be:

⊗ = ⊕ , (74)

since dim( ) = 10 and dim( ) = 8. This is by far a faster method
then using theorem 6.1. However, the theorems does show the close relation
between the symmetric groups Sn and the groups SUn and for that reason it
will be utilized here. The slower method using theorem 6.1 starts by writing
down the group algebra element c = (e) + (12). The second step is calculating
the character of the representation CS3 · ((e) + (12)) of the group S3: χ(e) = 3,
χ(123) = 0 and χ(12) = 1. Calculating this character is most of the work of
the whole calculation and is omitted here. For the calculation see appendix 2.
It is equivalent to the calculation is example 4.4. Now only the inner products
of this character with characters of different irreducible representations must be
taken to get to equation (74).

6.3 Decomposition of Representations (Part 2)

When considering hadrons the first question one should always ask is what
freedoms the quark has. In the last section the quarks in question always had
one kind of freedom, in both examples the quarks only had a flavour freedom
(up, down or strange). But quarks can have more degrees of freedoms. And
each kind of freedom can be analyzed separately to give different symmetries.
In the next example it is explained how these symmetries can be put together.
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Example 6.4. Take a hadron consisting of 3 quarks. First consider only its spin
freedom, which is an SU2 symmetry. The tensor representing the spin of the
particle should be an element of an irreducible representation of SU2, say .
The quark could also have a flavour freedom. This would be an SU3 symmetry
because only the flavours up, down and strange are taken into consideration.
Again the tensor describing the flavour of the quark should be an element of an
irreducible representation of SU3, say . The two tensors describing spin and
flavour are elements of the spaces S(21)C2 and S(21)C3 respectively. To see how
these two tensors combine, look at the combination of these to spaces:(

S(21)C2 , S(21)C3
)

=
⊕

λ

(SλC6)⊕aλ . (75)

Here the coefficients aλ are called Clebsch-Gordan-coefficients. In this new
space quarks have both spin and flavour freedoms. It is thus a representation
of the larger group SU2 · SU3 which is a subset of SU6. To see that this is true
one can first generalize the statement to SUn · SUm ⊂ SUnm. Take A ∈ SUn

and B ∈ SUm and define the map A⊗B ∈ End(Cn ⊗ Cm) as:

A⊗B(v ⊗ w) = Av ⊗Bw. (76)

Now with this equation one can show that because A and B are simple
unitary, the new transformation A ⊗ B is also simple unitary. Return to the
discussion concerning SU2 · SU3 ⊂ SU6. An appropriate basis for the new
underlying space C6 could in this example be:

{e↑u, e↓u, e↑d, e↓d, e↑s, e↓s}, (77)

where the arrows denote the two different spin states and the letters u, d
and s the three different flavour states (up, down and strange). Combining the
freedoms in this way gives a restriction on the symmetry the new tensor can
have, or in other words an equation for CG-coefficients. The equation for the
CG-coefficients is [4]-pg 79:

V(21) ⊗ V(21) =
⊕

λ

(Vλ)⊗aλ . (78)

Here Vλ is the representation of Sn corresponding to the Young diagram λ.
This can be understood as follows. Only those irreducible representations are
part of the new representation, which represent a combined symmetry, combined
from the two different kind of freedoms. Now the CG-coefficients aλ can easily
be calculated with the help of character theory. The decomposition in terms of
Young diagrams now becomes:(

,
)

= ⊕ ⊕ (79)

The decomposition explained in example 6.4 can be generalized to the fol-
lowing theorem:
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Theorem 6.3. Let SµCn1 be an irreducible representation of the group SUn1

and SνCn2 an irreducible representation of the group SUn2 . Then the combi-
nation of these two representation as a representation of SUn1 · SUn2 ⊂ SUn

(n = n1 · n2) is:
(SµCn1 , SνCn2) =

⊕
λ

(SλCn)⊕aµνλ (80)

where the CG-coefficients are given by the inner product (χµχν , χλ) defined in
equation (38). The symbols µ, ν and λ denote irreducible representations of the
groups Sn1 , Sn2 and Sn respectively.

The decomposition just described could also work the other way around.
Take a particle consisting of three quarks with spin and flavour symmetry. Say
this particle is totally symmetric, so it is an element of the irreducible represen-
tation of the group SU6. What kind of spin and flavour symmetries can it
have? The next theorem answers this question [4]-pg 79:

Theorem 6.4. Let SλCn be an irreducible representation of the group SUn and
n = n1 ·n2. Then as a representation of the group SUn1 ·SUn2 the decomposition
of this representation is:

(SλCn) =
⊕
µν

(SµCn1 , SνCn2)⊕aνµλ (81)

where the CG-coefficients are given by the inner product (χµχν , χλ). The sym-
bols µ, ν and λ denote irreducible representations of the groups Sn1 , Sn2 and
Sn respectively.

According to this theorem the decomposition of the irreducible representa-
tion as representation of the group SU2 · SU3 in terms of Young diagrams
becomes:

=
(

,
)
⊕ ( , ) . (82)

Actually, when one just calculates the CG-coefficients one would find that
(χ(111)χ(111), χ3) = 1 meaning that one could expect a term ⊗ . But

since µ = (111) is not a valid Young diagram with the group SU2 (because
S(111)C2 = (0)), this term is omitted.

6.4 Invariant Tensors

Up to now a few examples of hadrons and their symmetries have been discussed.
The hadrons discussed always consisted of quarks which transform with matrices
U . Hadrons can also consist of anti-quarks, which transform with U∗. If a
quark is represented by a vector in the space V , than an anti-quark should be
represented by a vector in its dual V ∗. For example a meson consisting of a
quark q and an antiquark q̄ transforms like:
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U(q1 ⊗ q̄2) = U(q1)⊗ (q̄2)U∗, (83)

where q1 ∈ V and q̄2 ∈ V ∗. Using the Einstein summation convention this
becomes:

(UT )j1
j2

= U j1
i1

U∗i2
j2

T i1
i2

. (84)

Here T = q1 ⊗ q̄2 and T i1
i2

= (q1)i1 ⊗ (q̄2)i2 . Because the quark and the anti-
quark transform with different matrices, this transformation does not conserve
symmetry properties. Moreover, because of its upper index, the tensor isn’t an
element of the space SλCn. To overcome this problem one can use an invariant
tensor to get rid of the upper index in the tensor T . An invariant tensor which
can do the job is the Levi-Civita tensor ε. The Levi-Civita tensor is a tensor
with either n upper indices or n lower indices. All indices can run from 1 to n.
Furthermore:

εd =
∑

σ

sgn(σ)eσ(1) ⊗ . . .⊗ eσ(n) =
∑

σ

sgn(σ)vσ(1),...,σ(n) (85)

εu =
∑

σ

sgn(σ)e∗σ(1) ⊗ . . .⊗ e∗σ(n) =
∑

σ

sgn(σ)vσ(1),...,σ(n) (86)

For n = 3 the Levi-Civita tensors become:

εd = v123 + v231 + v312 − v213 − v321 − v132 (87)
εu = v123 + v231 + v312 − v213 − v321 − v132 (88)

A quick glance at equations (87) shows that the Levi-Civita tensor with lower
indices spans the totally antisymmetric irreducible representation S(111)C3. In
general the Levi-Civita tensor with lower indices of rank n spans the 1-dimensional
representation S(1n)Cn. From this follows that this tensor is always transformed
to a multiple of itself with an SUn transformation. A standard calculation (see
[4]-pg 51) shows that Uε = ε which implies that the Levi-Civita tensor is indeed
an invariant tensor.

The Levi-Civita tensor will be used to lower or raise indices. To see how this
works, first take a tensor T with an upper and a lower index:

T = T i
jv

j
i ∈ V ⊗ V ∗, (89)

where vj
i is a basis tensor of the space V ⊗ V ∗. The tensor T needs te be

transformed to a tensor with three lower indices:

T ′ = T ′ ijkvijk ∈ V ⊗3. (90)

Now the constants T ′ ijk need to be calculated. First consider the tensor
product T ′ = εdT , this can be written out in components:
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(T ′)jkm = (εd)ijkTm
i (91)

Here (εd)ijk denotes the constants corresponding to the εd tensor. Equa-
tion (87) implies that (εd)ijk = sgn(ε). Equation 91 can also be understood as
follows. Loosely speaking the ε tensor consists of three vectors in V . The T
tensor consist of a vector part and part which maps vectors to C (according to
the equation e∗j(ei) = δij). The notation in equation 91 implies that the first
vector of the ε tensor is mapped to C. As always when calculating a tensor
element (T ′)jkm using such an equation, one has to sum over the index i.

Note that using an Levi Civita tensor with upper indices εu one can in the
same way transform the tensor T back to T ′. This gives the inverse of the Levi
Civita tensor. Now because the Levi Civita tensor is an invariant tensor the
following equation holds:

UT ′ = U(εT ) = (Uε)(UT ) = ε(UT ) (92)

for an arbitrary SUn transformation U . This equation implies that the Levi
Civita tensor is an homomorphism between the tensors T ∈ V ⊗ V ∗ and the
tensors T ′ ∈ V ⊗3. In fact it is an isomorphism, because the Levi Civita tensor
has an inverse which is also homomorphic. One can wonder if thus the spaces
V ⊗3 and V ∗ are isomorphic, but this is not the case because their dimensions
are not equal. But note that the transformed tensor T ′ is always antisymmetric
in its first two indices:

(T ′)jkm = (εd)ijkTm
i = −(εd)ikjTm

i = −(T ′)kjm (93)

This implies that for all T , T ′ ∈ V ⊗3((e) − (12)). Now both spaces are
n2-dimensional where n is the dimension of V . Because these two spaces are
isomorphic, properties such as invariant subspaces are the same in both spaces.
To conclude one can say that the Levi Civita tensor can be used to transforms
tensors with upper indices to equivalent tensors with only lower indices. This
transformation is needed to be able to use the theories in the previous two sec-
tions. Thus if one ones to analyze for example a meson, one first lowers its upper
index, analyzes the equivalent tensor on its irreducible representations and fi-
nally raises the lower index again.

One can generalize this strategy to a tensor T with d1 lower indices and d2

upper indices. The space V with dimension n is still the underlying space. For
each upper index one uses an ε tensor of rank n to get an equivalent tensor with
an extra n− 1 antisymmetric lower indices. The transformed tensor T ′ is thus
a tensor with d1 + d2(n− 1) lower indices:

T ′j1...jd1 i(1,1)...i(d2,(n−1)) = εi1i(1,1)...i(1,(n−1)) . . . εid2 i(d2,1)...i(d2,(n−1))T
j1j2...jd1
i1i2...id2

(94)
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7 Colour

Before Colour was introduced the quarks were hypothesized to have an SU3

flavour symmetry. This was proposed in 1962 by Gell-Mann. Only three flavours
were known in that time: up, down and strange. Nowadays it is known that
there are quarks of three other flavours: charm, top and bottom. Putting these
flavours into the model will give a higher symmetry SU6. In the following dis-
cussion, like in the examples of the last chapter, only the lighter three flavours
up, down and strange will be taken into consideration.

The quarks are the building blocks of the hadrons. The different kinds
of hadrons split up into two groups: baryons, consisting of three quarks, and
mesons, consisting of a quark and an antiquark. Now we have all tools for
analyzing these groups, starting with the mesons.

7.1 Mesons

Only the spin and the up, down and strange flavour of the quarks are taken into
consideration. A quark has six freedoms and transforms with SU6 matrices. One
quark is a tensor in the irreducible representations , which is 6-dimenional.
An antiquark can be represented by a tensor with an upper index. In section 6.4
it is explained why and how to lower this index. This tensor is equivalent to a
tensor with 5 antisymmetric lower indices, which is an element of the irreducible
representation (15). Now mesons can be represented by tensors in the product
space of these two representations, which decomposes into:

⊗ = ⊕ . (95)

A check on the dimension of this decomposition: (6 ∗ 6 = 35 + 1). To
further analyze these mesons these representations must be split up into its
representations of SU2 ·SU3. For the 1-dimensional representation (16) this can
be easily done:

=
(

,
)

. (96)

This irreducible representation is also 1-dimensional and can directly be
associated with a particle. It must be totally antisymmetric in both spin and
flavour. There is however a complication. This is an analysis of the tensor vijk

with 2 antisymmetric indices, and not of the equivalent tensor representing the
mesons. The totally antisymmetric tensor A, which is the basis tensor of the
irreducible representation corresponding to the Young diagram (111), can be
transformed back into the tensor representing a meson with an ε tensor.
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(εuA)m
i = (εu)ijk(A)mjk

= sgn(σ1)sgn(σ2) = 1

The last equality follows from the fact that σ1 = σ2 which follows from the
fact that the last two indices of the ε tensor must be equal two the last two
indices of the A tensor. Now one can explicitly write down the particle that
corresponds to this one dimensional irreducible representations:

(εuA) = (e1 ⊗ e∗1) + (e2 ⊗ e∗2) + (e3 ⊗ e∗3) ⇒ uū + dd̄ + ss̄ (97)

where u, s, d denote quarks of the three different flavours, and ū, ū, ū denote
antiquarks of the three different flavours. The 35-dimensional representation
(2, 14) can also be decomposed into irreducible representations of SU3 · SU2.
How this is done is explained in theorem 9:

=
(

,
)

+
(

,
)

+
(

,
)

. (98)

Again a check on the dimension of this decomposition: 35 = 8∗1+8∗3+1∗3.
These representations coincide with three different multiplets: the spin-0 octet,
the spin-1 octet and a spin-1 singlet. Octets are a group of eight particles that
have been measured to have the same properties. In the same way that isospin
grouped particles, octets are groups of particles that are the same under SU3

transformations. Like with isospin, their symmetry (the particles being the
same) is broken by electromagnetic forces and weak forces. So the SU3 model
nicely orders particles to an ordering coinciding with experiment. This was one
of the first successes of this model. For a list of the particles found in these
octets and for more on properties of multiplets, see [6].

7.2 Baryons

The same analyses can be done with baryons. In this case there is no complica-
tion concerning antiparticles because a baryon consists of three quarks and no
antiquarks. Just as with the mesons the baryons can be denoted with tensors
which are elements of the following product space:

⊗ ⊗ = ⊕ 2 · ⊕ . (99)

Just to be sure, a check a dimensions gives: 6 ∗ 6 ∗ 6 = 56+2 ∗ 70+20. First
decompose the representation λ = (3) further into irreducible representations of
SU3 · SU2. This decomposition has already been calculated just after theorem
9:

=
(

,
)
⊕ ( , ) , (100)
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which can again be checked on dimensions: 56 = 10∗4 = 8∗2. The resulting
decomposition thus gives a 10-dimenional space in flavour, a decaplet, combined
with a 4-dimensional space in spin, meaning spin-3/2 particles. And it gives an
octet of spin-1/2 particles. These 18 particles are exactly all the baryons that
have been discovered. Not all of them were discovered before Gell-Mann pro-
posed the Eightfold-Way, but the predicted 18-th particle was discovered in 1964
making this theory a big success.

But how about the other two irreducible representations of SU6? Don’t they
represent particles? It seems that all particles are already represented by the
representation . The decomposition of the other two representations are
given here for completeness:

=
(

,
)
⊕

(
,

)
⊕

(
,

)
⊕

(
,

)
, (101)

=
(

,
)
⊕

(
,

)
. (102)

Moreover, when one considers the Pauli exclusion principle things become
even more complicated. The total wave function of the particles discovered
(flavour and spin together) is symmetric while the Pauli exclusion principle in-
sists this wave function to be antisymmetric. During the discussion of mesons
this was not considered since it consisted of a quark and an antiquark. The
exclusion principle only insists similar particles to be antisymmetric.

This is why the extra freedom of colour was introduced. It is postulated that
each quark has an extra colour symmetry. A quark can be red, green or blue.
The colour symmetry is, just like the flavour symmetry, an SU3 symmetry. It
was furthermore postulated that hadrons can only exist if they are invariant un-
der an SU3-colour transformation, insisting that they should be represented by
a tensor which is in a 1-dimensional irreducible representation. This property
is called colour confinement. It is also explained as the condition that a hadron
should be colourless.

The analysis should be redone, but now with colour. The total number of
freedoms of a quark is now 3 ∗ 2 ∗ 3 = 18. Equation (100) still holds, but now
the dimensions of the representations are different because the Young diagrams
represent irreducible representations in SU18 instead of SU6. The dimensions
become: 5832 = 1140+2∗1938+816. The Pauli exclusion principle states that
only the 816-dimensional antisymmetric representation can represent particles.
Decomposing this representation into irreducible representations of SU colour

3 ·
SU

flavour/spin
6 :

=
(

,
)
⊕

(
,

)
⊕

(
,

)
. (103)

The dimensions of this decomposition are: 816 = 1∗56+10∗20+8∗70. Now
colour confinement states that only the irreducible representations

 ,

can
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represent particles. From here our former analysis can be picked up. Colour
confinement thus explains neatly why flavour/spin-wave function must be sym-
metric while the total wave function is antisymmetric. In the next chapter exotic
particles will be analyzed on colour as well as spin and flavour.
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8 Consequences

8.1 Different Hadrons

Colour confinement means that a hadron must be invariant under colour trans-
formations. The tensor representing the colour symmetry must thus be an ele-
ment of a 1-dimensional irreducible representation of SU3. All the 1-dimensional
irreducible representations of SU3 can be represented by the following Young
diagrams:

, , , . . . (104)

Their dimension can be calculated with equation (70). It can also be shown
that these are the only 1-dimensional irreducible representations of SU3. From
this fact the conclusion can be taken that if hadrons consist of only quarks, they
must consist of 3m quarks, where m is a natural number. If a hadron consists
of an antiquark, its representing tensor has as upper index. The equivalent ten-
sor obtained by lowering this index has (n − 1) extra lower indices, where n is
the number of freedoms of a quark. Because a quark always has three colour
freedoms, n is always divisible by three. The total number of lower indices
should be a multiple of 3 for the tensor to be an element of a 1-dimenional rep-
resentation. If a hadron thus contains an antiquark it should have 3n+1 quarks.

This argument can be generalized to a hadron with d2 antiquarks. Lowering
all these indices the equivalent tensor gets an extra (d2n − d2) lower indices
where n is divisible by 3. The hadron thus should have 3m + d2 quarks for it
to have (3m + d2n) lower indices, which is divisible by 3. The different kinds
of hadrons that can be constructed are thus those that have d1 quark and d2

antiquarks where |d1 − d2| is divisible by 3.

qqq qq̄ qqq̄q̄ q̄q̄q̄
qqqqqq qqqqq̄ qqqqqq̄q̄ qqqq̄q̄q̄

qqqqqqqqq qqqqqqqq̄ qqqqqqqqq̄q̄ qqqqqqq̄q̄q̄
(105)

In this table one can clearly see the mesons and the baryons. Note that this
discussion does not depend on the number of other freedoms of the quarks in
question. In theory, also hadrons consisting of either a number of mesons or a
number of baryons can be allowed, which is not very surprising. Also a particle
consisting of a meson and a baryon is allowed to exist. This particle, having
5 quarks, is called a pentaquark. In the next paragraph it will be investigated
what flavours these pentaquarks can consist of.

8.2 Pentaquark (two flavours)

The discussion about the pentaquark will start simple. Only two flavours and
three different colours will be take into consideration. The pentaquark can
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thus be represented by a tensor vm
ijkl, with a SU6 symmetry. The first step

is lowering the upper index m. Doing this with the appropriate Levi-Civita
tensor one obtains a tensor with nine lower indices. Four of the nine indices
are antisymmetric because all the quarks are antisymmetric to one and other.
And the other five are antisymmetric to one and other for they stem from the
Levi-Civita symbol. The equivalent tensor of the pentaquark is thus an element
of the following product space:

⊗ = + . (106)

And of course a dimension check: 15∗6 = 20+70. Both of these representa-
tions should first be decomposed into irreducible representations of SU3 ·SU2. In
appendix 3 it is explained how these bigger and more complex Young diagrams
are decomposed into irreducible representations.

=
(

,
)
⊕

(
,

)
,

=
(

,
)
⊕

(
,

)
⊕

(
,

)
⊕

(
,

)
.

And again a check on dimensions: 20 = 1 ∗ 4+8 ∗ 2 and 70 = 1 ∗ 2+10 ∗ 2+
8 ∗ 2 + 8 ∗ 4. Both decompositions contain an irreducible representation with
a 1-dimensional component as a colour representation. They both need to by
analyzed, starting with the decomposition of the (222111) representation. Its
flavour component coinciding with the 1-dimensional colour component is the
2-dimensional (63) representation. One can try to calculate two basis tensors for
this space via the Young Symmetrizer as explained in chapter 4. But the Young
symmetrizer is an sum of 6! · 3! · 8 elements of S9. This is a time consuming
calculation and is out of the scope of this project. But with a bit of deduction a
few conclusions can never the less be taken. First construct the following basis
of the space C6

{ur, ub, ug, dr, db, dg}, (107)

where the tensor v1 = ur denotes a red up quark, etcetera. Assume that
the pentaquark consist of an anti-up quark of the colour red. The colour of
this antiquark is irrelevant for the discussion. The tensor T representing this
pentaquark becomes:

T = T jkmn
i vi

jkmn. (108)

Thus T jkmn
i 6= 0 only when i = 1. Thus for the tranformed tensor T ′,
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(T ′)abcdejkmn = (εd)abcdeT jkmn
i , (109)

the following holds: (T ′)abcdejkmn 6= 0 only when the indices a, b, c, d, e are
a permutation of the numbers 2, . . . , 5. Physically this means that the trans-
formed tensor consist of three down quarks (one of each colour) and two up
quarks. Because eventually the flavour part of the equivalent tensor should be
an element of the irreducible representation (63), the equivalent tensor should
either consist of three up quarks and six down quarks or three down quarks
and six up quarks. The four possibilities for a pentaquark in this irreducible
representation are listed in table 4.

ūuuuu, d̄dddd,
ūdddu, d̄uuud.

Table 4: possible quarks in (63) considering 2 flavours

This same discussion can be done when considering the second irreducible
representation of SU6: (22221). Because the colour part must be a singlet,
the flavour part of the tensor must be an element of the irreducible representa-
tion (54). Thus the equivalent tensor can consist of either five up quarks and
four down quarks, or five down quarks and four up quarks. Again considering
that the index representing the antiquark must be lowered one has the following
four possibilities:

ūuuud, ,d̄dddu
ūuudd, d̄dduu.

Table 5: possible quarks in (54) considering 2 flavours

The pentaquarks that have not been listed in both tables are the quarks
d̄uuuu or ūdddd. According to this model it can be concluded that they are
forbidden.

8.3 Pentaquark (three flavours)

The discussion of the previous section will now be extended to three flavours.
The quarks now have nine freedoms. Lowering the upper index of the antiquark
will give a tensor of 12 lower indices, which is an element of the following product
space:

⊗ = + . (110)
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The dimensions keep getting larger: 126 ∗ 9 = 1050 + 84. The first Young
diagram decomposes as representation of SU colour

3 · SUflavour
3 into 12 different

irreducible representations. Of course, not all 12 are relevant, only those who
have a 1-dimensional colour component:

=
(

,
)
⊕

(
,

)
⊕ . . . (111)

The equation giving the dimensions of the 12 different irreducible represen-
tations is (1050 = 1 ∗ 27 + 1 ∗ 8 + 8 ∗ 1 + 2(8 ∗ 8) + 8 ∗ 10 + 8 ∗ 10 + 8 ∗ 27 + 10 ∗
8 + 10 ∗ 10 + 10 ∗ 8 + 27 ∗ 127 ∗ 8). The second Young diagram decomposes into
only three irreducible representations:

=
(

,
)
⊕

(
,

)
⊕

(
,

)
. (112)

And for the last time, this can also be checked on dimensions: 841∗10+64+
10∗1. Like with only two flavours, it is out of the scope of this project to calculate
basis tensors for the flavour component of the irreducible representations in
question. A similar reasoning as the previous section can be used to derive
some conclusions. First look at the irreducible representations (642). Six indices
should be symmetric to one and other, all of them being antisymmetric to four
other symmetric indices, being again antisymmetric to two other symmetric
indices. This can be accomplished by stating that in the equivalent tensor their
should be six quarks of one flavour, four of another and two of the third tensor.
Pentaquarks which satisfy these conditions are:

ūddds, ūsssd, d̄uuus, d̄sssu s̄dddu, s̄uuud.

Table 6: possible quarks in (642) considering 3 flavours

Quarks belonging to the other two representations become;

ūdduu, ūssuu, d̄uudd, d̄ssdd s̄ddss, s̄uuss,
ūduuu, ūsuuu, d̄uddd, d̄sddd s̄usss, s̄dsss,
ūddsu, ūssdu, d̄uusd, d̄ssud s̄uuds, s̄ddus.

Table 7: possible quarks in (543) considering 3 flavours

Pentaquarks of the type ūdddd, ūssdd and ūsduu can not be found in one
of the three tables meaning that according to this model, they are forbidden.
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ūdddu, ūsssu, d̄uuud, d̄sssd s̄uuus, s̄ddds,
ūuuuu, d̄dddd, s̄ssss, .

Table 8: possible quarks in (633) considering 3 flavours

It is not surprising that the pentaquark ūdddd was already forbidden when de-
scribing only two flavours. Do note that this is only a very simple first model.
To actually prove that pentaquarks of this type are forbidden a deeper mathe-
matical analysis of the flavour tensors is needed. But as was said before, this is
beyond the scope of this project.

One can also try to insert spin into this simple model. One would then be
working in a SU colour

3 · SUflavour
3 · SUspin

2 ⊂ SU18. Lowering the upper index
representing the antiquark one would get a tensor with 21 indices. If one want
to split this into irreducible representations of SU colour

3 · SUflavour
3 · SUspin

2 a
knowledge of the characters of the symmetric group S21 is needed. This is a
group of 21! elements and 792 different irreducible representations. Calcula-
tions with this group are also beyond the scope of this project.

The results from table 6, 7 and 8 can be compared with results from other
analyses such as [2]. The big difference between both studies is that in this
thesis spin isn’t included. The 18 pentaquarks that follow from the analysis in
[2] are given in table 9

ūdduu, ūddss, ūssuu, ūssdu ūuuds, ūddsu,
s̄dduu, s̄ddss, s̄ssuu, s̄ssdu s̄uuds, s̄ddsu,
d̄dduu, d̄ddss, d̄ssuu, d̄ssdu d̄uuds, d̄ddsu,

Table 9: possible quarks according to [2]

Comparing these results with those from the analysis in this thesis one im-
mediately sees that quarks from the representations (642) and (633) are not
given in table 9. The 18-plet given in this table is comparable with the 18-plet
in table 7. There are differences, one of the big one being that the Θ particle
(s̄uudd), the particle which is searched for in experiments isn’t mentioned in
table 7 (nor in table 6 or 8).

It must thus be emphasized that the analysis done in here are only an ap-
plication of the mathematical formalism described in chapter 6. The results do
not correctly predict the pentaquarks that can be formed because spin hasn’t
been included.
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9 Discussion and Conclusions

As mentioned in the introduction, this thesis describes how representation the-
ory can be applied to particle physics. One of the main conclusions that be can
taken is that representation theory can be very useful when analyzing quarks.
It not only gives more understanding on what quarks are, but also gives predic-
tions as to what kind of hadrons quarks can form. One of the most important
conclusions that can be taken from the mathematical formalism is the following:
colour confinement insists a hadron to consist of d1 quarks and d2 antiquarks
such that |d1 − d2| is divisible by three. This statement is independent on the
number of other freedoms and thus also holds if one considers SU6 symmetries

One such hadron is the pentaquark. It is investigated how this exotic particle
can be made out of quarks. This investigation illustrates how symmetries can
be analyzed and how this analysis can lead to a description of what particles can
be constructed. Comparison with other studies on pentaquarks shows that this
first investigation isn’t sufficient. To actually use the mathematical formalism
described in chapter 6 to predict how pentaquarks can be constructed, a more
thorough analysis is needed. An analysis which at least also includes the spin
of the particles has to be done. Also the basis tensors spanning the irreducible
representations describing different groups of pentaquarks need te be calculated
using the theory in chapter 4 to verify conclusions taken in chapter 8.
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Appendices

A.1 - Calculations on the space S(21)Cn

Calculation of the Young symmetrizer belonging to
1 2
3 :

P(21) = {(e), (12)}
Q(21) = {(e), (13)} ⇒ a(21) = (e) + (12)

b(21) = (e)− (13)
⇒ c(21) = (e) + (12)− (13)− (132)

Calculation of the space S(21)Cn:

c(21)(viii) = viii + viii − viii − viii = 0
c(21)(viji) = viji + vjii − viji − vjii = 0
c(21)(viij) = 2viij − vjii − viji (i 6= j and i, j ∈ {1, 2, 3} ⇒ 6 tensors)
c(21)(vjii) = vjii + viji − 2viij (i 6= j and i, j ∈ {1, 2, 3} ⇒ 6 tensors)
c(21)(vijk) = vijk + vjik − vkji − vjki (i 6= j 6= k and i, j, k ∈ {1, 2, 3} ⇒ 6 tensors)

Calculation on linear dependency: The tensors c(21)(viij) = −1 · c(21)(vjii)
are all are linear independent. This is not the case for the tensors (vijk):

c(21)(v123) = v123 + v213 − v321 − v231 ≡ v1

c(21)(v132) = v132 + v312 − v231 − v321 ≡ v2

c(21)(v213) = v213 + v123 − v312 − v132 = v1 − v2

c(21)(v231) = v231 + v321 − v132 − v312 = −v2

c(21)(v312) = v312 + v132 − v213 − v123 = v2 − v1

c(21)(v321) = v321 + v231 − v123 − v213 = −v1

A.2 - Calculations on the product space (2)⊗ (1)

The Young symmetrizer coinciding with the representation ⊗

c = ((e) + (12)) · (e) = (e) + (12)

Calculation of the space CS3((e) + (12))

(e)c = (e) + (12) ≡ c1

(12)c = (12) + (e) = c1

(13)c = (13) + (123) ≡ c2
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(23)c = (23) + (132) ≡ c3

(123)c = (123) + (13) = c2

(132)c = (132) + (23) = c3

The elements ci are linear independent and can thus be seen as a basis for
CS3(c): With respect to this basis the matrices ρ(g) become:

ρ(e) =

 1 0 0
0 1 0
0 0 1

 , ρ(123) =

 0 0 1
1 0 0
0 1 0

 , ρ(132) =

 0 1 0
0 0 1
1 0 0

 ,

ρ(12) =

 1 0 0
0 0 1
0 1 0

 , ρ(13) =

 0 1 0
1 0 0
0 0 1

 , ρ(23) =

 0 0 1
0 1 0
1 0 0

 .

The characters are:

Class (e) (12) (13)
χCS3(c) 3 1 0

(χCS3(c) , χU ) = 1
(χCS3(c) , χU ′) = 0
(χCS3(c) , χS) = 1

 ⇒ CS3(c) = U ⊕ S

Now from theorem the decomposition for ⊗ follows.

A.3 - Calculations on characters of S9 and S12

The character table of these two groups have been calculated with the program
Magma [8] using the code: SymmetricCharacterTable(d), where d is either 9 or
12. The CG-coefficients have been calculated with the Matlab.
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