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Abstract: In this article, the field equations of new general relativity, constructed by Hayashi and Shirafuji, contain three
free parameters. These field equations have been applied to the Friedmann—Robertson—-Walker metric in the domain of
cosmology. In the application, a family of models, involving two of the parameters characterizing the field equations of
new general relativity, is obtained. Conditions are placed on these parameters in order for the model to be compatible with
the Big Rip or Big Crunch models. These models refer to original relativistic models of relativity theory if the parameters
characterizing the field equations are equal to unity. The exact solutions are obtained under a specific choice of the
parameters characterizing the field equations and the quadratic deceleration parameter. Radiation, dust, dark energy,
vacuum, and phantom universes are obtained from field equations, and these models are not affected by the field

parameters. Energy conditions, as well as the effective potential of the proposed models, are discussed.
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1. Introduction

In 1979, Hayashi and Shirafuji succeeded in obtaining a
gravitational theory which is formulated on the Weitzenbock
space—time, and which is characterized by both the vanishing
curvature tensor due to the absolute parallelism geometry
(AP — geometry) and by the torsion tensor formed of four
parallel vector fields. This theory is called new general rela-
tivity (NGR), and has been extensively explored in the liter-
ature [1-8]. Blixt et al. studied the Hamiltonian and primary
constraints of the new general relativity [3]. Jiménez and
Dialektopoulos revisited the number and nature of new gen-
eral relativity perturbative degrees of freedom around the flat
Minkowski background from a different perspective, and
extended it to include cubic interactions [6]. Guzman and
Khaled created a classification of the principal constraints in
the parametric method for the new general theory of relativity
[7]1. The field equations of NGR contains three free
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parameters dj, d,, and d3, as seen in Sect. 3. Several years
after the emergence of this theory, specifically in 1996,
Mikhail et al. succeeded to find cosmological models based
on this theory. These models depend on the theoretical free
parameters and are not interpreted based on the change of
these parameters [9]. These models built on this theory think
that the expansion of the current Universe could be well
described by solving the field equations in the presence of dust
within the framework of spatially flat Robertson—Walker
space—time (RW), which gives a decelerating expansion with
a constant deceleration parameter. From 1998, the experi-
mental efforts to confirm this, however, led to the discovery
that the current Universe is in fact accelerating [10—13]. In
2003, Caldwell et al. discussed some scenarios of the Uni-
verse where it will eventually re-collapse and end with a Big
Crunch, or expand forever, becoming increasingly cold and
empty [14]. At the end of the search, Caldwell et al. found the
consequences that follow if the dark energy is phantom
energy, in which the sum of the pressure and energy density is
negative. The positive phantom energy density becomes
infinite in finite time, overcoming all other forms of matter in
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such a way that the gravitational repulsion rapidly brings the
epoch of cosmic structure to a close. The phantom energy rips
apart the Milky Way, solar system, Earth, and ultimately the
molecules, atoms, nuclei, and nucleons of which it composed,
before the death of the Universe in the Big Rip [14]. Since that
astonishing discovery, many cosmologists have resorted to
explaining the evolution of the universe using a deceleration
parameter that varies with cosmic time [15-19]. The main
objective of this article, according to the modern data of the
evolution of the universe, is to find cosmological models that
depend on NGR field equations under the conditions on the
free parameters of the field equations for this theory. In this
article, we review cosmological models that end with the Big
Rip and others that end with the Big Crunch. To crystallize
this article, in Sect. 2 we provide a brief summary of
AP—geometry. Section 3 reviews the general formalism of
the NGR theory. The Big Bang-Big Rip model as well as
energy conditions in the NGR theory is discussed in Sect. 4.
Also, the Big Bang—Big Crunch model and energy conditions
in the NGR theory are discussed in Sect. 5, with conditions on
the effective potential. Special solutions of NGR field equa-
tions are found in Sect. 6. The purpose of this article is clar-
ified by a number of Figures and Tables. Finally, the
conclusions linked to this article are outlined in Sect. 7.

2. A brief summary of AP—geometry

In what follows, a review of the AP-geometry is under-
taken. The building of the conventional absolute paral-
lelism geometry AP is defined completely in the 4-
dimensions by a tetrad vector A, (i = 1, 2, 3, 4) indicating
the vector number, and (y =1, 2, 3,4) indicating the
coordinate component. These four vectors satisfy the nor-
malization condition [20]:

)»{'%,‘a = (3;, and /"Lia/"hj“ = 5,']‘. (1)

One constructs the following symmetric tensors:

where n; = diag(+1, -1, —1, —1).

At any point in the AP geometry, one can define the
Riemannian space, at which the symmetric tensor (2) plays
the following metric tensor:

ds* = gupdx*dx’. (3)

The generalization of the partial differentiation in the
Riemannian space is defined for the covariant vectors as
follows:

Apy = Apy — {ﬁyv}Am 4)

{a”’ﬂ} = 8"(8us p + 8pe.0 — 8up ) /2- (5)
One can define the non-symmetric connection I'” 2p AS

follows:

I’ = YRVIES _;“i“;“i?/} (6)

This is the consequence of the following absolute
parallelism condition:

)\.ia‘p:)\,i“,/f_l_‘yaﬁ/li«/. (7)

Using the affine connection (6), one can define the
following third-order tensors:

Ayw = F"’aﬁ — F"ﬁx = —A"ﬁa, (8)

y? p = ﬂxﬁ _ {m yﬂ} = Al_v,{m;ﬁ = _)“ioc/liy;/g, (9)

where A"aﬁ is the torsion tensor, and yyw is the contortion

tensor. Both can be related by:

o =5 (Ao + A = Ay). (10)
Contracting (8) and (10), one gets:

Co=Ny=1 (11)

which is called a basic vector.
From the above tensors, one can define another third-
order tensor given by:

1

1 1
ta,uv = E (Aoz;w - A,uow) - 6 (gvoccu + guvcot) + ggomcvv
(12)
with the axial vector:
1 :
a, = _s,uvpa/\ypo‘v (13)

6

where 56 = \/—8& Ouvpe 18 the Levi-Civita symbol, and g
is the determinant of the metric tensor.

In the following section, we will briefly review the
derivation of field equations for NGR to investigate the
effect of the parameters of this theory on the Big Rip-Big
Crunch models.

3. General formalism of the new general relativity
theory

In this section we will be concerned with the NGR theory
introduced in [1] that is defined by a local and parity-
preserving quadratic form of the torsion. These theories are
obviously formulated in a Weitzenbock space and have
been extensively explored in the literature. From Hayashi
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Table 1 Solutions of the field equations

Curvature constant Dust case P =0

Radiation case P = (1/3)p

a(t) = M

a(t) = (29)'1'2,

k=1 a(t) = (1 — cos W),
t= ﬁ(g)l/z(W —sinW),

k=0 ) = ()",

k=-1 a(t) = f(coshW — 1),

2 a2 212
at) = (@t wz()s %)

1= B(%)"(sinh w — w),

and Shirafuji [1], the Lagrangian function for the NGR
takes the following form:

R ) o o
(=) (w + d[ a ta”v + d2 C Ca + d3 a a[x> (14)

where d;, d,, dj are the dimensionless free parameters, R is
the Ricci scalar, and G is the Newtonian constant.

NGR with the gravitational Lagrangian (14) well
describes all the observed gravitational phenomena in the
identical level as the general relativity (GR). It is important
to mention the criteria governing the NGR Lagrangian:
Global Lorentz invariance, diffeomorphisms invariance
that is at most quadratic in the torsion and no higher than
second order field equations.

From a variational principle for the Lagrangian function
(1), Hayashi and Shirafuji were able to obtain the field
equations in the form [1] (we have chosen the unit system
such that 87 G = 1),

G" + 2walu 7 2C)~F”M + 2HMW gva/ _ Tp\;’ (15)

where G*" is the Einstein tensor defined by:
, N N
G" =R"W — Eg’“R7 (16)

with R* being the Ricci tensor, and:

Fuv/l _ dl (tuv). o tu},v) _ dz(gyvc/l

_ UAY
= —FH

_ gulcv) _ % gu\%pap

(17)

D %A"”"F" o = H", (18)

(19)
and the material energy momentum tensor 7*" is defined

as follows:

164,
~i8b,

L=/,

™

b, (20)

where /,, denotes the Lagrangian density of the material
fields.

We can notice that Egs. (1-7) are reduced to the original
GR equations when d; = dr, = d3 = 0.

The field equations for the Friedmann—Robertson—
Walker (FRW) metric [21]:

16 a*(t)

ds® = —di* + ————= (dr* + r*(d0® + sin> 0d¢*)),

4+ kr2)? ( ( ?))
(21)

are obtained as follows [9]:
3Bk
3YH? + — =0 (22)
. Bk
2YH +3YH* +— = —P, (23)
a

where the dot denotes differentiation with respect to the
cosmic time ¢, k is the curvature constant (k = 0,1, —1),
a(t) is an unknown function which is called the scale
factor, H(t) is the Hubble parameter which is defined
through H(f) = d/a, here p and P are the proper energy
density and pressure respectively, and the new parameters
Y and B are given by Y =1 —3d),B =1+ (4/3) d;.

Equations (22) and (23) are reduced to the original GR
atd, = d; = 0.

The equation of state for this model is given by:

P a>(2YH + 3Y H?) + Bk

=L 3Y 2H? + 3Bk

(24)

The solutions found for Egs. (22) and (23) are given by
the following table [9] (Table 1).

These solutions involve the two parameters d, and ds
characterizing the field equations of the NGR, where f, y
and ¢ are the constants of integration.

In the next section, we will study the effect of the
parameters Y and B on the Big Rip universe as well as on
the energy conditions.
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4. The Big Bang-Big Rip model and energy conditions
in NGR

The field Egs. (22) and (23) have three unknowns, namely
p, P and a.So, in order to obtain the unique solution, we
need one physically reasonable relation among the vari-
ables. Consequently, we assume a quadratic deceleration
parameter of the form [19]:

g = (8n* — 1) — 12nt + 3¢%, (25)

where n is a free parameter given from observations.
The relation between the Hubble parameter and the
deceleration parameter is given by [22]:

q+1=dH"/dr. (26)

The deceleration parameter (26) represents the Big
bang-Big Rip—Big Crunch model. It has a singularity at
t =0, 2n and 4n. Also, the universe begins with the Big
Bang and ends with the Big Crunch with the same value
g = 8n* — 1. The deceleration parameter behavior has been
discussed before in most of the literature; for example, see
Refs. [23-28].

From Egs. (25) and (26), one obtains:

a 1

Ta t(t—2n)(t—4n)’ 27)

and its derivative is given by:
8n> — 12nt+ 31

s =y @)

Integration of Eq. (17) leads to:

( (1 — 4n))"/>"

a(r) = (1 — 2n) 77

(29)

In order to study the physical behavior of the model, we
substitute from Egs. (27-29) in (22-24) to get:

3y 3BKk(1 — 2n)'/?"

1‘2(1‘ — 2n)2(t — 471)2 (t(t _ 4_n))l/4n2 ’ (30)

p:

p_ _ [Y(160°+3 — 24t +6r%) Bk(r — 2n)'/*"
A ) )
(1)

P 1 (Y(3 w+16n®+3 —24nt + 61%)
2(t — 2n)*(t — 4n)*
Bk(3w + 1) (1 — 2n)'/*"
(t(t — 4n))"/*" '

(32)

One can study the energy conditions using Eq. (32),
which  gives the Dominant Energy Condition
(DEC)p+P>0, the Null Energy Condition

(NEC)p — P >0, as well as the Strong Energy Condition
(SEN) p +3P>0.

To study the physical quantities of our model, we take
n = 0.5. Now, as per the different values of the parameters
Y and B, we have different cosmological fluids. These are
discussed in the subcases as follows. We use different
values for the pair of parameters (Y, B) when
(Y, B) = (1, 1), which represents the original GR. Fig-
ures 1, 2, 3 and 4 represent the behavior of the proper
energy density p against cosmic time ¢. Behavior patterns
for the flat, open, and closed universes are similar (i.e., the
curves are identical). All the discussed models have sin-
gularity at + = 0,and 1: The universe begins with the Big
Bang at + =0 and ends with the Big Rip at t = 1. The
choice of the parameter values Y and B is important as it is
determined to accept the model. Accordingly, we can
accept the models (Y =B=1), (Y=1,B=0), (Y =1,
B=-1), (Y=0,B=1) and (Y=0,B=—-1,k=1)

600

500

400

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1 Dynamics of the proper energy density p against cosmic time
t:0—1 for (Y=1,B=0), (Y=1,B=-1), (Y=B=1) and
k=1,0,—1

-100
~200
L 300
—400

-500

—-600

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2 Dynamics of the proper energy density p against cosmic time
t:0—-1for (Y=-1,B=0), (Y=—-1,B=-1), (Y=-1, B=
I)and k=1,0,-1
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Fig. 3 Dynamics of the proper energy density p against cosmic time
t:0—1for (Y=0,B=1)
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Fig. 4 Dynamics of the proper energy density p against cosmic time
t:0—1for (Y=0,B=-1)

because they achieve the weak energy condition
(WEC) p>0. One can reject the models (¥ = —1,
B=1), (¥=-1,B=0), (Y=-1,B=-1),(Yy=0,
B=1,k=1) and (Y =0,B= —1,k=1) for incompati-
bility with the (WEC)

In Fig. 5, we plot the dynamics of the pressure P against
cosmic time ¢ for the flat, open, and closed universe. The
pressure diverges at the beginning and the end of the uni-
verse, but exhibits the same behaviors (i.e., the curves are
identical) for spatially closed, flat, and open universes for
the models (Y=B=1), (Y=1,B=-1) and
(Y =1,B=0). In Fig. 6, we plot the dynamics of DEC
against cosmic time ¢ for the flat, open, and closed uni-
verse. It is clear from the curve that DEC is fulfilled only
with the acceleration of the universe until it reaches the Big
Rip. In Figs. 7 and 8, we plot the dynamics of (NEC)
against cosmic time ¢ for the models (Y =B =1),
(Y=1,B=-1),(Yy=1,B=0). It is clear from the
curve that (NEC) is fulfilled for these models.

In Fig. 9, we plot the dynamics of SEC against cosmic
time 7 for the flat, open, and closed universe. In the models

Fig. 5 Dynamics of the pressure P against cosmic time ¢ : 0 — 1 for
(Y=B=1), Y=1,B=—-1),(Y=1,B=0)and k=1,0,—1

100

p+P

-100

=200

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6 Dynamics of the (DEC) p + P against cosmic ¢t : 0 — 1 for

(Y=B=1),(Y=1,B=0), (Y=1,B=—1), (Y=0,B=
~1),(¥=0,B=1) and k = 1,0,—1
1000}
800
gr 600
< 400
200
0
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7 Dynamics of the (NEC) p — P against cosmic time 7 : 0 — 1
for(Y=1,B=—1),(Y=1,B=0),(Y=B=1)andk=1,0,—1

(Y=B=1),(Y=1,B=0), (Y=1,B=-1),

(Y=0,B=1), (Y =0, B=—1), SEC is violated and the
curves are identical. In Fig. 10, we plot the dynamics of the
equation of the state parameter o against cosmic time ¢ for
the models (Y =B =1) and (Y =1,B= —1). The flat,
open, and closed universe moves from the phase of
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100

p—P

-100

=200

t

Fig. 8 Dynamics of the (NEC) p — P against cosmic time 7:0 — 1
for (Y=0,B=1),(Y=0,B=—-1)andk=1,0,-1

500

oy 0
e
+
Q

-500

-1000

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 9 Dynamics of the (SEC) against cosmic time 7:0 — 1 for
(Y=B=1),(Y=1,B=0),(Y=1,B=—1), (Y=0,B=
1), (Y=0,B=—1)and k=1,0,-1

radiation w = 1/3 to the dust stage @ = 0, and then to the
quintessence stage —1/3<w< — 1, the vacuum energy
stage w = —1, and ends with Phantom Universe o< — 1
at the Big Rip r = 1.

The cosmological models studied in this Section repre-
sent the Big Bang—Big Rip model under the values of the

0.0

-0.5

-1.0

-1.5

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 10 Dynamics of the equation of state « against cosmic time
t:0—-1for (Y=B=1), Y=1,B=—1)andk=1,0,—1

parameters n, Y, and B. In the following Section, we will
discuss models for the rebound of the universe after the Big
Rip until it reaches the Big Crunch, without addressing the
causes of the rebound that may affect quantum gravity; for
more, see Ref. [29].

5. The Big Bang-Big Crunch model and energy
conditions in NGR

In this Section we look at the behavior of the universe after
the Big Rip. We will study the physically accept-
able models obtained in the previous Section. As previ-
ously mentioned, the Big Rip of the universe occurs when
t = 2n = 1, then the universe rebounds until it collapses on
itself by what is called the Big Crunch when ¢ = 4n = 2.
With the same previous steps used in the previous Section,
the evolutionary behavior of both the proper energy density
and pressure of the fluid can be studied using Egs. (30-32).
In Figs. 11, 12 and 13, we plot the dynamic evolution of the
proper energy density with respect to cosmic time. Fig-
ures 11, 12 and 13 represent the evolution of the universe
from the moment of the Big Bang to the Big Crunch (that
is,t : 0 — 2). We note that the energy density is a positive
value in the two phases, that is, it meets the WEC for the
models (Y=B=1), (Y=1,B=0),(Y=1,B=-1),
(Y=0,B=1) and (Y =0, B=—1).We also note that
the universe has a singularity at both the Big Bang r = 0,
Big Rip # = 1, and Big Crunch ¢ = 2. In Fig. 14, we plot
the dynamic evolution of the pressure of the fluid with
respect to cosmic time. The pressure has a positive value
and enters to a negative value at ¢ : 0 — 1 for the models
(Y=B=1), (¥=1,B=0),(Y=1,B=-1), and its
behavior is reversed in the second stage. In Fig. 15, we plot
the dynamics of DEC against cosmic time . DEC has a
positive value and enters to a negative value at : 0 — 1

500

400

300

200

100

0.0 0.5 1.0 1.5 2.0

t

Fig. 11 Dynamics of the proper energy density p against cosmic time
t:0—-2 for (Y=B=1),(Y=1,B=0), (Y=1,B=-1) and
k=1,0,—1
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Fig. 12 Dynamics of the proper energy density p against cosmic time
t:0—->2for (Y=0,B=1)

1.0 1.5 2.0

t

Fig. 13 Dynamics of the proper energy density p against cosmic time
t:0—2for (Y=0,B=-1)

400
200 ——— k==1
-— k=1
[~ 0 — k=0
-200
-400
1.0 L5 2.0
t

Fig. 14 Dynamics of the pressure P against cosmic time ¢ : 0 — 2 for
(Y=B=1),(Y=1,B=—-1)and (Y=1,B=0)

for the models (Y=B=1), (Y=1,B=0), (Y=1,
B=-1),(Yy=0,B=-1), and (Y=0,B=1) its
behavior is reversed in the second stage at f : 1 — 2 and the
curves are identical. One can notice that the models (Y =
B=1), (Y=1,B=—1) and (Y =1,B =0) satisfy the
NEC in both the first and second stages of the evolution of

p+P

100

-100

=200
0.0 0.5 1.0 1.5 2.

t

Fig. 15 Dynamics of the (DEC) p + P against cosmic time ¢ : 0 — 2
for (Y=1,B=-1),Y=1,B=0),(Y=B=1), (Y=0, B=
-1),(Y=0,B=1) andk=1,0,-1

1000

800

;r 600
< 400
200

0

0

0.0 0.5 1.0 1.5 2.0

t

Fig. 16 Dynamics of the (NEC) p — P against cosmic time ¢ : 0 — 2
for (Y=1,B=—-1),(Y=1,B=0),(Y =B=1)andk=1,0,-1

the universe, as is clear in Fig. 16. In Fig. 17, we plot the
dynamics of NEC against cosmic time ¢. NEC has a neg-
ative value and enters to a positive value at t: 0 — 1 for
the models (Y=0,B=-1),(Y=0,B=1), and its
behavior is reversed in the second stage. In Fig. 18, we plot
the dynamic evolution of the SEC with respect to cosmic
time. SEC has a positive value and enters to a negative
value at 7:0 — 1 for the models (Y =B=1), (Y =1,
B=0),(Y=1,B=—1), and its behavior is reversed in
the second stage. In Fig. 19, we plot the dynamics of the
equation of state o against cosmic time ¢. The scenario of
the evolution of the universe with the state parameter in
relation to the models proposed in this paper sees that the
universe passes through several stages from the moment of
the Big Bang until it ends in the Big Crunch. In the first
stage, the universe began with the radiation stage » = 1/3,
then moved to the dust stage w = 0, and then proceeded to
the quintessence stage —1/3<w< — 1, the vacuum
energy stage w = —1, and ends with Phantom Universe
w< —1 at the Big Rip = 1. In the second stage, the
expansion of the universe regresses in the opposite way, as
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Fig. 17 Dynamics of the (NEC) p — P against cosmic ¢ : 0 — 2 for
(Y=0,B=1),(¥=0B=—1)andk=1,0,—1
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—-1000
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Fig. 18 Dynamics of the (SEC) p + 3P against cosmic time 7: 0 —

2 for (Y=B=1),(Y=1,B=-1),(Y=1,B=0) and
k=1,0,-1
0.0
-0.5
3
-1.0
-15
0.0 0.5 1.0 1.5 2.0

t

Fig. 19 Dynamics of the equation of state  against cosmic time
t:0—=2for (Y=B=1), (Y=1,B=-1), (Y=1,B=0) and
k=1,0,—1

it begins with a Phantom Universe phase and ends with a
radiation phase.
The Friedmann Eq. (22) can be rewritten as follows:

, Bk & .
Pl Ll gy Verr(a) = 0,

Yy 3Y (33)

where Vgt (a) is the effective potential, and d? is the analog
of kinetic energy.

The continuity (or conservation of energy—momentum)
equation in NGR is given by [9]:

p=—-3H(p+P). (34)
Substituting P = wp in Eq. (34), one gets:

p=—-3H(1+ w)p, (35)
Integrating this Equation, one obtains:

ap= a 1139, (36)
Therefore, the effective potential is given by:

Vet (a) = B—; - ma (37)

where a(t) is given by Eq. (29).

The Eq. (37) gives the relationship between the effec-
tive potential and cosmic time. Now let’s test some special
cases. In Fig. 20, we plot the effective potential against
cosmic time t. We note that in cases of the flat, closed, and
open models, when w = 1/3, the effective potential for the
(Y =B =1) model exhibits different behaviors, but the
effective potential converges to the curvature constant at
the very late times of the universe, strictly speaking,
Vetr — k. But for the (Y = 1, B= —1) model, the effec-
tive potential converges to the inverse of the curvature
constant at the very late times of the universe, strictly
speaking, Ve — —k as shown in Fig. 21. In the (Y =
1, B = —1) model, the effective potential converges to the
same value at the very late times of the universe, strictly
speaking, Ve — 0 as shown in Fig. 22. In Figs. 23, 24 and
25, we note that in cases of the flat, closed, and open
models, when @ = —1/3, the effective potential has a
constant value in all the considered models in this paper. In

3—
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1 ‘\
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1 T e e -]
— k=
-2 — k=1
— k=—1
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 20 Effective potentials against cosmic time 7 : 0 — 1 when v =
1/3 for (Y =B=1)
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Fig. 21 Effective potentials against cosmic time 7 : 0 — 1 when v =
1/3for (Y=1,B=-1)
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Fig. 22 Effective potentials against cosmic time 7: 0 — 1 v =1/3
for (Y=1,B=0)and k=1,0,-1
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Fig. 23 Effective potentials against cosmic time # : 0 — 1 when w =
—1/3for (Y=B=1)

Figs. 26, 27 and 28, we note that in cases of the flat, closed,
and open models, when w = —1, the effective potential
converges to the same value at the very late times of the
universe for the model (Y = 1, B = 1), strictly speaking,

Fig. 24 Effective potentials against cosmic time 7 : 0 — 1 when v =
—1/3for (Y =1,B=—1)

0.0 0.2 0.4 0.6 0.8 1.0

t

Fig. 25 Effective potentials against cosmic time # : 0 — 1 when w =
—1/3for (Y=1,B=0)and k=1,0,-1

— k=0
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Y 0.2 0.4 0.6 0.8 1.0

t

Fig. 26 Effective potentials against cosmic time 7 : 0 — 1 when o =
—lfor (Y=B=1)

Vetr : kK — oo, while the effective potential for the model
(Y =1, B=—1) changes as follows Vg : —k — 0.

We will discuss the previous Figures in the discussion
section.
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Fig. 27 Effective potentials against cosmic time # : 0 — 1 when v =
—lfor(Y=1, B=-1)

0.0 0.2 0.4 0.6 0.8 1.0

t

Fig. 28 Effective potentials against cosmic time # : 0 — 1 when v =
—lfor(Y=1,B=0) andk=1,0,—1

6. Special solutions of the NGR field equations

In this section, we test the field parameters on some special
solutions. In the case of a flat universe, the field Eqs. (22—
23) can be written as follows:

.3
H+§(1+a))H:0, (38)

Note that the previous equation does not depend on the
field parameters.
Integrating Eq. (38), one gets:

2
H:§(1+w)“f1, (39)

and
Cl(t) — 1‘2/3(1-“‘)). (40)

In Table 2, we find the special solutions from Eq. (40)

Table 2 Special solutions of the field equations

Model Equation of state & The scale factor a(f) att=0
Radiation 1/3 1172 a—0
Dust 0 £2/3 a—0
Dark energy — 1/3 t a—0
Vacuum -1 — 00 a— oo
Phantom — 1.5 43 a— 00

7. Conclusions

In this article, we have discussed the solution of the NGR
field equations in view of the absolute Parallelism geom-
etry and studied the effect of the field parameters d;, d5, d3
on the proposed models. The exact solutions are analyzed
for flat, open, and closed universes. The qualitative
behavior of energy density p and pressure P is examined.
Also, the energy conditions for these models have been
discussed. We have also discussed the evolutionary
behavior of the effective potential of the models proposed
in this article. The observations for the various universes
discussed above are as follows:

e All the suggested models in this article have a
singularity at t =0, 1, 2 for n = 1/2. The choice of
the parameter n is important as it determines the
singularity.

e Some of the suggested models are compatible with the
positivity condition of energy density p > 0 within the
cosmic time interval of ¢ € [0, 2], under the condition
dy < 1/3. We accept the flat, closed, and open universe
in this article for the previous reason.

e The field equations of NGR are reduced to the original
GR atdy = dr,=d; = 0.

e Model Y = 1, B = 1 represents the original GR for the
Big Bang-Big Rip model within the cosmic time
interval of 7€ [0, 1], and the Big Rip-Big Crunch
model within the cosmic time interval of ¢ € [1, 2].

e In the considered models, WEC is satisfied, but NEC,
DEC, and SEC are violated of energy bounds. It is also
interesting to mention here that the violation of these
energy bounds ensures the existence of the instabilities,
which is an interesting feature of modified gravity that
supports the cosmic acceleration due to dark energy. In
order to explain the late-time cosmic acceleration with
w = —1, DEC and SEC need to be violated since
P = wp. Such a violation of DEC and SEC is con-
firmed from Table 2, and therefore ensures the cosmo-
logical viability of our models (Y =B=1),
(Y=1,B=—-1)and (Y =1, B=0).
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Table 3 Energy conditions for our cosmological models
Model p>0 p—P>0 p+P>0 p+3P>0
Y=B=1 Yes Yes No No
Y=1, B=0 Yes Yes No No
Y=1,B=-1 Yes Yes No No
Y=0,B=1,k=-1 Yes No No No
Y=0,B=-1,k=1 Yes No No No
Y=0,B=1k=0 Yes No No No
Y=0,B=-1,k=0 Yes Yes No No
Y=0, B=1k=1 No No No No
Y=0, B=—-1,k=-—1 No No No No
Table 4 Effective potential for our cosmological models
Model w=1 Vete w=-1 Vete w=-1 Vetr
Y=B=1 k=1 oo — 1 k=1 1 k=1 1 — o0
—1 oo — —1 k=—1 —1 k=—1 -1 — 0
k=0 oo — 0 k= 0 k=0 0— o0
Y=1 B=0 k= oo — 0 k=1 0 k=1 0— o0
=_1 00— 0 =-1 0 =-1 0—o0
k=0 oo — 0 k=0 0 k=0 0— o0
Y=1,B=-1 k=1 oo — —1 k=1 -1 k=1 -1 -0
k=—1 0o — 1 k=—-1 1 k=-1 1 — o0
k=0 oo —0 k=0 0 k=0 0— o0

e The energy conditions are linear relationships consist-
ing of energy density and pressure constructed from
Raychaudhuri equation. They are important tools to
understand the behavior of time-like or space-like
curves and singularities [30]. The energy conditions
applied to the proposed cosmological models are given
in Table 3. Also, the ranges of the effective potential
are given in Table 4.

e It is clear from Table 4 that the effective potential for
our cosmological models is affected by the values of
the parameters of the field equations.

e Inthecase w:1/3 — —1 and Y = B = 1, the effective
potential ranges from oo — k — oo for all values of a.
In the case Y =1,B = —1, the effective potential
ranges from oo — —k — oo for all values of a. Also, in
the case ¥ = 1,B =0, the effective potential ranges
from co — 0 — oo for all values of a. This means that
the entire expansion history is considered in these
models. The evolutionary behavior of the effective
potential is affected by the value of parameter B,
whether it is positive or negative.

e The Radiation, Dust, Dark energy, vacuum, and
Phantom universe are obtained from the field equations
without effect from the field parameters, see Table 2.

e By comparing the special solutions in Table 2 with the
previous solutions in Table 1, we find that they are
identical.

e Finally, we find that the cosmological models are
affected by the value of the field parameters. The
acceptable conditions for these parameters are:
dy andds € R, d, < 1/3
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