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Abstract: In this article, the field equations of new general relativity, constructed by Hayashi and Shirafuji, contain three

free parameters. These field equations have been applied to the Friedmann–Robertson–Walker metric in the domain of

cosmology. In the application, a family of models, involving two of the parameters characterizing the field equations of

new general relativity, is obtained. Conditions are placed on these parameters in order for the model to be compatible with

the Big Rip or Big Crunch models. These models refer to original relativistic models of relativity theory if the parameters

characterizing the field equations are equal to unity. The exact solutions are obtained under a specific choice of the

parameters characterizing the field equations and the quadratic deceleration parameter. Radiation, dust, dark energy,

vacuum, and phantom universes are obtained from field equations, and these models are not affected by the field

parameters. Energy conditions, as well as the effective potential of the proposed models, are discussed.
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1. Introduction

In 1979, Hayashi and Shirafuji succeeded in obtaining a

gravitational theory which is formulated on theWeitzenböck

space–time, and which is characterized by both the vanishing

curvature tensor due to the absolute parallelism geometry

(AP� geometry) and by the torsion tensor formed of four

parallel vector fields. This theory is called new general rela-

tivity (NGR), and has been extensively explored in the liter-

ature [1–8]. Blixt et al. studied the Hamiltonian and primary

constraints of the new general relativity [3]. Jiménez and

Dialektopoulos revisited the number and nature of new gen-

eral relativity perturbative degrees of freedom around the flat

Minkowski background from a different perspective, and

extended it to include cubic interactions [6]. Guzmán and

Khaled created a classification of the principal constraints in

the parametricmethod for the newgeneral theory of relativity

[7]. The field equations of NGR contains three free

parameters d1; d2; and d3, as seen in Sect. 3. Several years

after the emergence of this theory, specifically in 1996,

Mikhail et al. succeeded to find cosmological models based

on this theory. These models depend on the theoretical free

parameters and are not interpreted based on the change of

these parameters [9]. These models built on this theory think

that the expansion of the current Universe could be well

described by solving thefield equations in the presenceof dust

within the framework of spatially flat Robertson–Walker

space–time (RW), which gives a decelerating expansion with

a constant deceleration parameter. From 1998, the experi-

mental efforts to confirm this, however, led to the discovery

that the current Universe is in fact accelerating [10–13]. In

2003, Caldwell et al. discussed some scenarios of the Uni-

verse where it will eventually re-collapse and end with a Big

Crunch, or expand forever, becoming increasingly cold and

empty [14]. At the end of the search, Caldwell et al. found the

consequences that follow if the dark energy is phantom

energy, inwhich the sumof the pressure and energy density is

negative. The positive phantom energy density becomes

infinite in finite time, overcoming all other forms of matter in
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such a way that the gravitational repulsion rapidly brings the

epoch of cosmic structure to a close. The phantom energy rips

apart the Milky Way, solar system, Earth, and ultimately the

molecules, atoms, nuclei, and nucleons ofwhich it composed,

before the death of theUniverse in theBigRip [14]. Since that

astonishing discovery, many cosmologists have resorted to

explaining the evolution of the universe using a deceleration

parameter that varies with cosmic time [15–19]. The main

objective of this article, according to the modern data of the

evolution of the universe, is to find cosmological models that

depend on NGR field equations under the conditions on the

free parameters of the field equations for this theory. In this

article, we review cosmological models that end with the Big

Rip and others that end with the Big Crunch. To crystallize

this article, in Sect. 2 we provide a brief summary of

AP�geometry. Section 3 reviews the general formalism of

the NGR theory. The Big Bang–Big Rip model as well as

energy conditions in the NGR theory is discussed in Sect. 4.

Also, the Big Bang–Big Crunchmodel and energy conditions

in theNGR theory are discussed inSect. 5,with conditions on

the effective potential. Special solutions of NGR field equa-

tions are found in Sect. 6. The purpose of this article is clar-

ified by a number of Figures and Tables. Finally, the

conclusions linked to this article are outlined in Sect. 7.

2. A brief summary of AP�geometry

In what follows, a review of the AP-geometry is under-

taken. The building of the conventional absolute paral-

lelism geometry AP is defined completely in the 4-

dimensions by a tetrad vector k c
i (i ¼ 1; 2; 3; 4) indicating

the vector number, and (c ¼ 1; 2; 3; 4) indicating the

coordinate component. These four vectors satisfy the nor-

malization condition [20]:

k c
i ki a ¼ d c

a ; and k a
i kj a ¼ di j: ð1Þ

One constructs the following symmetric tensors:

gab ¼ gij kiakjb; ð2Þ

where gij ¼ diagðþ1; �1; �1; �1Þ.
At any point in the AP geometry, one can define the

Riemannian space, at which the symmetric tensor (2) plays

the following metric tensor:

ds2 ¼ gabdx
adxb: ð3Þ

The generalization of the partial differentiation in the

Riemannian space is defined for the covariant vectors as

follows:

Ab;c ¼ Ab;c � a
b c

� �
Aa; ð4Þ

where

c
a b

� �
¼ gceðgae ;b þ gbe ;a � gab ;eÞ=2: ð5Þ

One can define the non-symmetric connection Cc
ab as

follows:

Cc
ab ¼ k c

i ki a ;b ¼ �ki ak
c
i ; b ð6Þ

This is the consequence of the following absolute

parallelism condition:

ki a j b ¼ ki a ; b � Cc
ab ki c: ð7Þ

Using the affine connection (6), one can define the

following third-order tensors:

Kc
ab ¼ Cc

ab � Cc
ba ¼ �Kc

ba; ð8Þ

cc ab ¼ Cc
ab � c

a b

� �
¼ k c

i ki a ; b ¼ �ki ak
c
i ; b; ð9Þ

where Kc
ab is the torsion tensor, and c cab is the contortion

tensor. Both can be related by:

calm ¼
1

2
Kalm þ Kmla � Klam
� �

; ð10Þ

Contracting (8) and (10), one gets:

Ca ¼ Kb
ab ¼ cbab; ð11Þ

which is called a basic vector.

From the above tensors, one can define another third-

order tensor given by:

talm ¼
1

2
Kalm � Klam
� �

� 1

6
gmaCl þ glmCa
� �

þ 1

3
galCm;

ð12Þ

with the axial vector:

al ¼ 1

6
elmqrK

mqr; ð13Þ

where elmqr ¼ ffiffiffiffiffiffiffi�g
p

dlmqr is the Levi–Civita symbol, and g

is the determinant of the metric tensor.

In the following section, we will briefly review the

derivation of field equations for NGR to investigate the

effect of the parameters of this theory on the Big Rip–Big

Crunch models.

3. General formalism of the new general relativity

theory

In this section we will be concerned with the NGR theory

introduced in [1] that is defined by a local and parity-

preserving quadratic form of the torsion. These theories are

obviously formulated in a Weitzenbock space and have

been extensively explored in the literature. From Hayashi
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and Shirafuji [1], the Lagrangian function for the NGR

takes the following form:

‘ ¼ k
R

16pG
þ d1 t

alm talm þ d2 C
aCa þ d3 a

a aa

� �
ð14Þ

where d1; d2; d3 are the dimensionless free parameters, R is

the Ricci scalar, and G is the Newtonian constant.

NGR with the gravitational Lagrangian (14) well

describes all the observed gravitational phenomena in the

identical level as the general relativity ðGRÞ. It is important

to mention the criteria governing the NGR Lagrangian:

Global Lorentz invariance, diffeomorphisms invariance

that is at most quadratic in the torsion and no higher than

second order field equations.

From a variational principle for the Lagrangian function

(1), Hayashi and Shirafuji were able to obtain the field

equations in the form [1] (we have chosen the unit system

such that 8pG ¼ 1),

Glm þ 2Flmk
jk � 2CkF

lmk þ 2Hlm � glmL0 ¼ Tlm; ð15Þ

where Glm is the Einstein tensor defined by:

Glm ¼ Rlm � 1

2
glmR; ð16Þ

with Rlm being the Ricci tensor, and:

Flmk ¼ d1ðtlmk � tlkmÞ � d2ðglmCk � glkCmÞ � d3
3
elmkqaq

¼ �Flkm;

ð17Þ

Hlm ¼ KqrlF m
qr �

1

2
KmqrFl

qr ¼ Hml; ð18Þ

L0 ¼ ‘=k; ð19Þ

and the material energy momentum tensor Tlm is defined

as follows:

Tlm ¼ 1

k
d ‘m
d bam

bal; ð20Þ

where ‘m denotes the Lagrangian density of the material

fields.

We can notice that Eqs. (1–7) are reduced to the original

GR equations when d1 ¼ d2 ¼ d3 ¼ 0.

The field equations for the Friedmann–Robertson–

Walker (FRW) metric [21]:

ds2 ¼ � dt2 þ 16 a2ðtÞ
ð4þ k r2Þ2

dr2 þ r2ðdh2 þ sin2 h d/2Þ
� �

;

ð21Þ

are obtained as follows [9]:

3YH2 þ 3B k

a2
¼ q; ð22Þ

2Y _H þ 3Y H2 þ Bk

a2
¼ �P; ð23Þ

where the dot denotes differentiation with respect to the

cosmic time t, k is the curvature constant (k ¼ 0; 1;�1),

aðtÞ is an unknown function which is called the scale

factor, HðtÞ is the Hubble parameter which is defined

through HðtÞ ¼ _a=a, here q and P are the proper energy

density and pressure respectively, and the new parameters

Y and B are given by Y ¼ 1� 3 d2,B ¼ 1þ ð4=3Þ d3.
Equations (22) and (23) are reduced to the original GR

at d2 ¼ d3 ¼ 0.

The equation of state for this model is given by:

x ¼ P

q
¼ � a2 ð2Y _H þ 3Y H2Þ þ Bk

3Y a2H2 þ 3B k
: ð24Þ

The solutions found for Eqs. (22) and (23) are given by

the following table [9] (Table 1).

These solutions involve the two parameters d2 and d3
characterizing the field equations of the NGR, where b, c
and d are the constants of integration.

In the next section, we will study the effect of the

parameters Y and B on the Big Rip universe as well as on

the energy conditions.

Table 1 Solutions of the field equations

Curvature constant Dust case P ¼ 0 Radiation case P ¼ ð1=3Þq

k ¼ 1 aðtÞ ¼ bð1� cosWÞ;

t ¼ b Y
B

� �1=2ðW � sinWÞ;
aðtÞ ¼ ðc2�ðtd2�c2Þ2Þ1=2

d

k ¼ 0
aðtÞ ¼ 9Bb

2Y

	 
2=3
t2=3; aðtÞ ¼ ð2cÞ1=2t1=2;

k ¼ �1 aðtÞ ¼ bðcoshW � 1Þ;

t ¼ b Y
B

� �1=2ðsinhW �WÞ;
aðtÞ ¼ ððtd2�c2Þ2�c2Þ1=2

d
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4. The Big Bang–Big Rip model and energy conditions

in NGR

The field Eqs. (22) and (23) have three unknowns, namely

q; P and a.So, in order to obtain the unique solution, we

need one physically reasonable relation among the vari-

ables. Consequently, we assume a quadratic deceleration

parameter of the form [19]:

q ¼ ð8n2 � 1Þ � 12nt þ 3t2; ð25Þ

where n is a free parameter given from observations.

The relation between the Hubble parameter and the

deceleration parameter is given by [22]:

qþ 1 ¼ dH�1=dt: ð26Þ

The deceleration parameter (26) represents the Big

bang–Big Rip–Big Crunch model. It has a singularity at

t ¼ 0; 2n and 4n. Also, the universe begins with the Big

Bang and ends with the Big Crunch with the same value

q ¼ 8n2 � 1. The deceleration parameter behavior has been

discussed before in most of the literature; for example, see

Refs. [23–28].

From Eqs. (25) and (26), one obtains:

H ¼ _a

a
¼ 1

t ðt � 2nÞ ðt � 4nÞ ; ð27Þ

and its derivative is given by:

_H ¼ � 8n2 � 12n t þ 3 t3

t2 ðt � 2nÞ2 ðt � 4nÞ2
: ð28Þ

Integration of Eq. (17) leads to:

aðtÞ ¼ t ðt � 4nÞð Þ1=8n
2

t � 2nð Þ1=4n2
: ð29Þ

In order to study the physical behavior of the model, we

substitute from Eqs. (27–29) in (22–24) to get:

q ¼ 3Y

t2ðt � 2nÞ2ðt � 4nÞ2
þ 3Bkðt � 2nÞ1=2n

2

ðtðt � 4nÞÞ1=4n2
; ð30Þ

P ¼ � Yð16n2 þ 3� 24nt þ 6t2Þ
t2ðt � 2nÞ2ðt � 4nÞ2

þ Bkðt � 2nÞ1=2n
2

ðtðt � 4nÞÞ1=4n2

 !
;

ð31Þ

q� P

x
¼ 1

x
Yð3 xþ 16n2 þ 3� 24nt þ 6t2Þ

t2ðt � 2nÞ2ðt � 4nÞ2

 

þBkð3xþ 1Þ ðt � 2nÞ1=2n
2

ðtðt � 4nÞÞ1=4n2

!
:

ð32Þ

One can study the energy conditions using Eq. (32),

which gives the Dominant Energy Condition

ðDECÞqþ P� 0, the Null Energy Condition

ðNECÞq� P� 0, as well as the Strong Energy Condition

ðSENÞ qþ 3P� 0.

To study the physical quantities of our model, we take

n ¼ 0:5. Now, as per the different values of the parameters

Y and B, we have different cosmological fluids. These are

discussed in the subcases as follows. We use different

values for the pair of parameters (Y ; B) when

ðY; BÞ ¼ ð1; 1Þ, which represents the original GR. Fig-

ures 1, 2, 3 and 4 represent the behavior of the proper

energy density q against cosmic time t. Behavior patterns

for the flat, open, and closed universes are similar (i.e., the

curves are identical). All the discussed models have sin-

gularity at t ¼ 0; and 1: The universe begins with the Big

Bang at t ¼ 0 and ends with the Big Rip at t ¼ 1. The

choice of the parameter values Y andB is important as it is

determined to accept the model. Accordingly, we can

accept the models ðY ¼ B ¼ 1Þ; ðY ¼ 1;B ¼ 0Þ, ðY ¼ 1;

B ¼ �1Þ, ðY ¼ 0;B ¼ 1Þ and ðY ¼ 0;B ¼ �1; k ¼ 1Þ

Fig. 1 Dynamics of the proper energy density q against cosmic time

t : 0 ! 1 for ðY ¼ 1;B ¼ 0Þ; ðY ¼ 1; B ¼ �1Þ, ðY ¼ B ¼ 1Þ and

k ¼ 1; 0;�1

Fig. 2 Dynamics of the proper energy density q against cosmic time

t : 0 ! 1 for ðY ¼ �1; B ¼ 0Þ; ðY ¼ �1;B ¼ �1Þ; ðY ¼ �1; B ¼
1Þ and k ¼ 1; 0;�1
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because they achieve the weak energy condition

ðWECÞ q� 0. One can reject the models ðY ¼ �1;

B ¼ 1Þ, ðY ¼ �1;B ¼ 0Þ, ðY ¼ �1;B ¼ �1Þ,ðY ¼ 0;

B ¼ 1; k ¼ 1Þ and ðY ¼ 0;B ¼ �1; k ¼ 1Þ for incompati-

bility with the ðWECÞ
In Fig. 5, we plot the dynamics of the pressure P against

cosmic time t for the flat, open, and closed universe. The

pressure diverges at the beginning and the end of the uni-

verse, but exhibits the same behaviors (i.e., the curves are

identical) for spatially closed, flat, and open universes for

the models ðY ¼ B ¼ 1Þ, ðY ¼ 1;B ¼ �1Þ and

ðY ¼ 1;B ¼ 0Þ. In Fig. 6, we plot the dynamics of DEC

against cosmic time t for the flat, open, and closed uni-

verse. It is clear from the curve that DEC is fulfilled only

with the acceleration of the universe until it reaches the Big

Rip. In Figs. 7 and 8, we plot the dynamics of ðNECÞ
against cosmic time t for the models ðY ¼ B ¼ 1Þ;
ðY ¼ 1; B ¼ �1Þ,ðY ¼ 1; B ¼ 0Þ. It is clear from the

curve that ðNECÞ is fulfilled for these models.

In Fig. 9, we plot the dynamics of SEC against cosmic

time t for the flat, open, and closed universe. In the models

ðY ¼ B ¼ 1Þ; ðY ¼ 1; B ¼ 0Þ; ðY ¼ 1; B ¼ �1Þ;
ðY ¼ 0; B ¼ 1Þ; ðY ¼ 0; B ¼ �1Þ, SEC is violated and the

curves are identical. In Fig. 10, we plot the dynamics of the

equation of the state parameter x against cosmic time t for

the models ðY ¼ B ¼ 1Þ and ðY ¼ 1;B ¼ �1Þ. The flat,

open, and closed universe moves from the phase of

Fig. 3 Dynamics of the proper energy density q against cosmic time

t : 0 ! 1 for ðY ¼ 0;B ¼ 1 Þ

Fig. 4 Dynamics of the proper energy density q against cosmic time

t : 0 ! 1 for ðY ¼ 0; B ¼ �1Þ

Fig. 5 Dynamics of the pressure P against cosmic time t : 0 ! 1 for

ðY ¼ B ¼ 1Þ; ðY ¼ 1; B ¼ �1Þ;ð Y ¼ 1; B ¼ 0Þ and k ¼ 1; 0;�1

Fig. 6 Dynamics of the ðDECÞ qþ P against cosmic t : 0 ! 1 for

ðY ¼ B ¼ 1Þ; ðY ¼ 1;B ¼ 0Þ; ðY ¼ 1; B ¼ �1Þ; ðY ¼ 0;B ¼
�1Þ ; ðY ¼ 0;B ¼ 1Þ and k ¼ 1; 0;�1

Fig. 7 Dynamics of the ðNECÞ q� P against cosmic time t : 0 ! 1

for ðY ¼ 1; B ¼ �1Þ; ðY ¼ 1; B ¼ 0Þ, ðY ¼ B ¼ 1Þ and k ¼ 1; 0;�1
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radiation x ¼ 1=3 to the dust stage x ¼ 0, and then to the

quintessence stage �1=3\x\� 1, the vacuum energy

stage x ¼ �1, and ends with Phantom Universe x\� 1

at the Big Rip t ¼ 1.

The cosmological models studied in this Section repre-

sent the Big Bang–Big Rip model under the values of the

parameters n; Y; andB. In the following Section, we will

discuss models for the rebound of the universe after the Big

Rip until it reaches the Big Crunch, without addressing the

causes of the rebound that may affect quantum gravity; for

more, see Ref. [29].

5. The Big Bang–Big Crunch model and energy

conditions in NGR

In this Section we look at the behavior of the universe after

the Big Rip. We will study the physically accept-

able models obtained in the previous Section. As previ-

ously mentioned, the Big Rip of the universe occurs when

t ¼ 2n ¼ 1, then the universe rebounds until it collapses on

itself by what is called the Big Crunch when t ¼ 4n ¼ 2.

With the same previous steps used in the previous Section,

the evolutionary behavior of both the proper energy density

and pressure of the fluid can be studied using Eqs. (30–32).

In Figs. 11, 12 and 13, we plot the dynamic evolution of the

proper energy density with respect to cosmic time. Fig-

ures 11, 12 and 13 represent the evolution of the universe

from the moment of the Big Bang to the Big Crunch (that

is,t : 0 ! 2). We note that the energy density is a positive

value in the two phases, that is, it meets the WEC for the

models ðY ¼ B ¼ 1Þ; ðY ¼ 1; B ¼ 0Þ; ðY ¼ 1; B ¼ �1Þ,
ðY ¼ 0; B ¼ 1Þ and ðY ¼ 0; B ¼ �1Þ.We also note that

the universe has a singularity at both the Big Bang t ¼ 0,

Big Rip t ¼ 1, and Big Crunch t ¼ 2. In Fig. 14, we plot

the dynamic evolution of the pressure of the fluid with

respect to cosmic time. The pressure has a positive value

and enters to a negative value at t : 0 ! 1 for the models

ðY ¼ B ¼ 1Þ; ðY ¼ 1; B ¼ 0Þ; ðY ¼ 1; B ¼ �1Þ, and its

behavior is reversed in the second stage. In Fig. 15, we plot

the dynamics of DEC against cosmic time t. DEC has a

positive value and enters to a negative value at t : 0 ! 1

Fig. 8 Dynamics of the ðNECÞ q� P against cosmic time t : 0 ! 1

for ðY ¼ 0; B ¼ 1Þ ; ðY ¼ 0; B ¼ �1Þ and k ¼ 1; 0;�1

Fig. 9 Dynamics of the ðSECÞ against cosmic time t : 0 ! 1 for

ðY ¼ B ¼ 1Þ; ðY ¼ 1; B ¼ 0Þ; ðY ¼ 1; B ¼ �1Þ; ðY ¼ 0; B ¼
1Þ; ðY ¼ 0; B ¼ �1Þ and k ¼ 1; 0;�1

Fig. 10 Dynamics of the equation of state x against cosmic time

t : 0 ! 1 for ðY ¼ B ¼ 1Þ; ðY ¼ 1; B ¼ �1Þ and k ¼ 1; 0;�1

Fig. 11 Dynamics of the proper energy density q against cosmic time

t : 0 ! 2 for ðY ¼ B ¼ 1Þ;ðY ¼ 1; B ¼ 0Þ; ðY ¼ 1; B ¼ �1Þ and

k ¼ 1; 0;�1
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for the models ðY ¼ B ¼ 1Þ; ðY ¼ 1; B ¼ 0Þ; ðY ¼ 1;

B ¼ �1Þ,ðY ¼ 0; B ¼ �1Þ; and ðY ¼ 0; B ¼ 1Þ its

behavior is reversed in the second stage at t : 1 ! 2 and the

curves are identical. One can notice that the models ðY ¼
B ¼ 1Þ; ðY ¼ 1; B ¼ �1Þ and ðY ¼ 1;B ¼ 0Þ satisfy the

NEC in both the first and second stages of the evolution of

the universe, as is clear in Fig. 16. In Fig. 17, we plot the

dynamics of NEC against cosmic time t. NEC has a neg-

ative value and enters to a positive value at t : 0 ! 1 for

the models ðY ¼ 0; B ¼ �1Þ; ðY ¼ 0; B ¼ 1Þ, and its

behavior is reversed in the second stage. In Fig. 18, we plot

the dynamic evolution of the SEC with respect to cosmic

time. SEC has a positive value and enters to a negative

value at t : 0 ! 1 for the models ðY ¼ B ¼ 1Þ; ðY ¼ 1;

B ¼ 0Þ; ðY ¼ 1; B ¼ �1Þ, and its behavior is reversed in

the second stage. In Fig. 19, we plot the dynamics of the

equation of state x against cosmic time t. The scenario of

the evolution of the universe with the state parameter in

relation to the models proposed in this paper sees that the

universe passes through several stages from the moment of

the Big Bang until it ends in the Big Crunch. In the first

stage, the universe began with the radiation stage x ¼ 1=3,

then moved to the dust stage x ¼ 0, and then proceeded to

the quintessence stage �1=3\x\� 1, the vacuum

energy stage x ¼ �1, and ends with Phantom Universe

x\� 1 at the Big Rip t ¼ 1. In the second stage, the

expansion of the universe regresses in the opposite way, as

Fig. 12 Dynamics of the proper energy density q against cosmic time

t : 0 ! 2 for ðY ¼ 0; B ¼ 1Þ

Fig. 13 Dynamics of the proper energy density q against cosmic time

t : 0 ! 2 for ðY ¼ 0; B ¼ �1Þ

Fig. 14 Dynamics of the pressure P against cosmic time t : 0 ! 2 for

ðY ¼ B ¼ 1 Þ ; ðY ¼ 1; B ¼ �1Þ and ðY ¼ 1; B ¼ 0Þ

Fig. 15 Dynamics of the ðDECÞ qþ P against cosmic time t : 0 ! 2

for ðY ¼ 1; B ¼ �1Þ; ðY ¼ 1; B ¼ 0Þ; ðY ¼ B ¼ 1Þ; ðY ¼ 0; B ¼
�1 Þ ; ðY ¼ 0; B ¼ 1 Þ and k ¼ 1; 0;�1

Fig. 16 Dynamics of the ðNECÞ q� P against cosmic time t : 0 ! 2

for ðY ¼ 1; B ¼ �1Þ; ðY ¼ 1; B ¼ 0Þ; ðY ¼ B ¼ 1Þ and k ¼ 1; 0;�1
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it begins with a Phantom Universe phase and ends with a

radiation phase.

The Friedmann Eq. (22) can be rewritten as follows:

_a2 þ Bk

Y
� a2q

3Y
¼ _a2 þ VeffðaÞ ¼ 0; ð33Þ

where VeffðaÞ is the effective potential, and _a2 is the analog
of kinetic energy.

The continuity (or conservation of energy–momentum)

equation in NGR is given by [9]:

_q ¼ � 3Hðqþ PÞ: ð34Þ

Substituting P ¼ xq in Eq. (34), one gets:

_q ¼ � 3Hð1þ xÞq; ð35Þ

Integrating this Equation, one obtains:

a2q ¼ a�ð1þ3xÞ: ð36Þ

Therefore, the effective potential is given by:

VeffðaÞ ¼
Bk

Y
� 1

3Yað1þ3xÞ ; ð37Þ

where aðtÞ is given by Eq. (29).

The Eq. (37) gives the relationship between the effec-

tive potential and cosmic time. Now let’s test some special

cases. In Fig. 20, we plot the effective potential against

cosmic time t. We note that in cases of the flat, closed, and

open models, when x ¼ 1=3, the effective potential for the

ðY ¼ B ¼ 1 Þ model exhibits different behaviors, but the

effective potential converges to the curvature constant at

the very late times of the universe, strictly speaking,

Veff ! k. But for the ð Y ¼ 1; B ¼ �1Þ model, the effec-

tive potential converges to the inverse of the curvature

constant at the very late times of the universe, strictly

speaking, Veff ! �k as shown in Fig. 21. In the ð Y ¼
1; B ¼ �1Þ model, the effective potential converges to the

same value at the very late times of the universe, strictly

speaking, Veff ! 0 as shown in Fig. 22. In Figs. 23, 24 and

25, we note that in cases of the flat, closed, and open

models, when x ¼ �1=3, the effective potential has a

constant value in all the considered models in this paper. In

Fig. 17 Dynamics of the ðNECÞ q� P against cosmic t : 0 ! 2 for

ðY ¼ 0;B ¼ 1Þ, ðY ¼ 0;B ¼ �1Þ and k ¼ 1; 0;�1

Fig. 18 Dynamics of the ðSECÞ qþ 3P against cosmic time t : 0 !
2 for ðY ¼ B ¼ 1 Þ; ð Y ¼ 1; B ¼ �1Þ;ðY ¼ 1; B ¼ 0Þ and

k ¼ 1; 0;�1

Fig. 19 Dynamics of the equation of state x against cosmic time

t : 0 ! 2 for ðY ¼ B ¼ 1 Þ; ðY ¼ 1; B ¼ �1Þ; ðY ¼ 1; B ¼ 0Þ and

k ¼ 1; 0;�1

Fig. 20 Effective potentials against cosmic time t : 0 ! 1 when x ¼
1=3 for ðY ¼ B ¼ 1Þ
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Figs. 26, 27 and 28, we note that in cases of the flat, closed,

and open models, when x ¼ �1, the effective potential

converges to the same value at the very late times of the

universe for the model ð Y ¼ 1; B ¼ 1Þ, strictly speaking,

Veff : k ! 1, while the effective potential for the model

ð Y ¼ 1; B ¼ �1Þ changes as follows Veff : �k ! 1.

We will discuss the previous Figures in the discussion

section.

Fig. 21 Effective potentials against cosmic time t : 0 ! 1 when x ¼
1=3 for ðY ¼ 1; B ¼ �1Þ

Fig. 22 Effective potentials against cosmic time t : 0 ! 1 x ¼ 1=3
for ðY ¼ 1; B ¼ 0Þ and k ¼ 1; 0;�1

Fig. 23 Effective potentials against cosmic time t : 0 ! 1 when x ¼
�1=3 for ðY ¼ B ¼ 1Þ

Fig. 24 Effective potentials against cosmic time t : 0 ! 1 when x ¼
�1=3 for ðY ¼ 1; B ¼ �1Þ

Fig. 25 Effective potentials against cosmic time t : 0 ! 1 when x ¼
�1=3 for ðY ¼ 1; B ¼ 0Þ and k ¼ 1; 0;�1

Fig. 26 Effective potentials against cosmic time t : 0 ! 1 when x ¼
�1 for ðY ¼ B ¼ 1Þ
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6. Special solutions of the NGR field equations

In this section, we test the field parameters on some special

solutions. In the case of a flat universe, the field Eqs. (22–

23) can be written as follows:

_H þ 3

2
ð1þ xÞH ¼ 0; ð38Þ

Note that the previous equation does not depend on the

field parameters.

Integrating Eq. (38), one gets:

H ¼ 2

3
ð1þ xÞ�1 t�1; ð39Þ

and

aðtÞ ¼ t2=3ð1þxÞ: ð40Þ

In Table 2, we find the special solutions from Eq. (40)

7. Conclusions

In this article, we have discussed the solution of the NGR

field equations in view of the absolute Parallelism geom-

etry and studied the effect of the field parameters d1; d2; d3
on the proposed models. The exact solutions are analyzed

for flat, open, and closed universes. The qualitative

behavior of energy density q and pressure P is examined.

Also, the energy conditions for these models have been

discussed. We have also discussed the evolutionary

behavior of the effective potential of the models proposed

in this article. The observations for the various universes

discussed above are as follows:

• All the suggested models in this article have a

singularity at t ¼ 0; 1; 2 for n ¼ 1=2. The choice of

the parameter n is important as it determines the

singularity.

• Some of the suggested models are compatible with the

positivity condition of energy density q� 0 within the

cosmic time interval of t 2 ½0; 2�, under the condition

d2 � 1=3. We accept the flat, closed, and open universe

in this article for the previous reason.

• The field equations of NGR are reduced to the original

GR at d1 ¼ d2;¼ d3 ¼ 0.

• Model Y ¼ 1; B ¼ 1 represents the original GR for the

Big Bang–Big Rip model within the cosmic time

interval of t 2 ½0; 1�, and the Big Rip–Big Crunch

model within the cosmic time interval of t 2 ½1; 2�.
• In the considered models, WEC is satisfied, but NEC;

DEC, and SEC are violated of energy bounds. It is also

interesting to mention here that the violation of these

energy bounds ensures the existence of the instabilities,

which is an interesting feature of modified gravity that

supports the cosmic acceleration due to dark energy. In

order to explain the late-time cosmic acceleration with

x ¼ �1, DEC and SEC need to be violated since

P ¼ xq. Such a violation of DEC and SEC is con-

firmed from Table 2, and therefore ensures the cosmo-

logical viability of our models ðY ¼ B ¼ 1Þ,
ðY ¼ 1; B ¼ �1Þ and ðY ¼ 1; B ¼ 0Þ:

Fig. 27 Effective potentials against cosmic time t : 0 ! 1 when x ¼
�1 for ðY ¼ 1; B ¼ �1Þ

Fig. 28 Effective potentials against cosmic time t : 0 ! 1 when x ¼
�1 for ðY ¼ 1; B ¼ 0Þ and k ¼ 1; 0;�1

Table 2 Special solutions of the field equations

Model Equation of state x The scale factor aðtÞ at t ¼ 0

Radiation 1/3 t1=2 a ! 0

Dust 0 t2=3 a ! 0

Dark energy - 1/3 t a ! 0

Vacuum - 1 ! 1 a ! 1
Phantom - 1.5 t� 4=3 a ! 1
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• The energy conditions are linear relationships consist-

ing of energy density and pressure constructed from

Raychaudhuri equation. They are important tools to

understand the behavior of time-like or space-like

curves and singularities [30]. The energy conditions

applied to the proposed cosmological models are given

in Table 3. Also, the ranges of the effective potential

are given in Table 4.

• It is clear from Table 4 that the effective potential for

our cosmological models is affected by the values of

the parameters of the field equations.

• In the case x : 1=3 ! �1 and Y ¼ B ¼ 1, the effective

potential ranges from 1 ! k ! 1 for all values of a.

In the case Y ¼ 1;B ¼ �1, the effective potential

ranges from 1 ! �k ! 1 for all values of a. Also, in

the case Y ¼ 1;B ¼ 0, the effective potential ranges

from 1 ! 0 ! 1 for all values of a. This means that

the entire expansion history is considered in these

models. The evolutionary behavior of the effective

potential is affected by the value of parameter B,

whether it is positive or negative.

• The Radiation, Dust, Dark energy, vacuum, and

Phantom universe are obtained from the field equations

without effect from the field parameters, see Table 2.

• By comparing the special solutions in Table 2 with the

previous solutions in Table 1, we find that they are

identical.

• Finally, we find that the cosmological models are

affected by the value of the field parameters. The

acceptable conditions for these parameters are:

d1 and d3 2 R, d2 � 1=3.
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Table 3 Energy conditions for our cosmological models

Model q� 0 q� P� 0 qþ P� 0 qþ 3P� 0

Y ¼ B ¼ 1 Yes Yes No No

Y ¼ 1; B ¼ 0 Yes Yes No No

Y ¼ 1; B ¼ �1 Yes Yes No No

Y ¼ 0; B ¼ 1; k ¼ �1 Yes No No No

Y ¼ 0; B ¼ �1; k ¼ 1 Yes No No No

Y ¼ 0; B ¼ 1; k ¼ 0 Yes No No No

Y ¼ 0; B ¼ �1; k ¼ 0 Yes Yes No No

Y ¼ 0; B ¼ 1; k ¼ 1 No No No No

Y ¼ 0; B ¼ �1; k ¼ �1 No No No No

Table 4 Effective potential for our cosmological models

Model x ¼ 1
3

Veff x ¼ � 1
3

Veff x ¼ �1 Veff

Y ¼ B ¼ 1 k ¼ 1 1 ! 1 k ¼ 1 1 k ¼ 1 1 ! 1
k ¼ �1 1 ! �1 k ¼ �1 �1 k ¼ � 1 �1 ! 1
k ¼ 0 1 ! 0 k ¼ 0 0 k ¼ 0 0 ! 1

Y ¼ 1; B ¼ 0 k ¼ 1 1 ! 0 k ¼ 1 0 k ¼ 1 0 ! 1
k ¼ � 1 1 ! 0 k ¼ � 1 0 k ¼ � 1 0 ! 1
k ¼ 0 1 ! 0 k ¼ 0 0 k ¼ 0 0 ! 1

Y ¼ 1; B ¼ �1 k ¼ 1 1 ! �1 k ¼ 1 �1 k ¼ 1 �1 ! 1
k ¼ � 1 1 ! 1 k ¼ � 1 1 k ¼ � 1 1 ! 1
k ¼ 0 1 ! 0 k ¼ 0 0 k ¼ 0 0 ! 1
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[15] Ö Akarsu and T Dereli Int. J. Theo. Phys. 51 612 (2012).

[16] P K Sahoo Phys. Lett. A 33 1850193 (2018).

[17] P K Sahoo, P Sahoo, B K Bishi and S Aygün New Astron. 60 80

(2018).

[18] S R Prajapati Astron. Space Sci. 331 657 (2011).

[19] M A Bakry and A T Shafeek Astrophys. Space Sci. 364 135

(2019).

[20] F I Mikhail and M I Wanas Proc. R. Soc. Lond. A Math. Phys.
Sci. 356 471 (1977).

[21] H P Robertson Ann. Math. 496 (1932)

[22] V Berry Michael Principles of Cosmology and Gravitation
(Routledge) (2017)

[23] S K J Pacif Eur. Phys. J. Plus 1351 (2020)

[24] S K J Pacif Phys. Dark Univ. 32 100804 (2021).

[25] P Sahoo, A De, T H Loo and P K Sahoo arXiv preprint

arXiv:2110.11768 (2021)

[26] R Nagpal and S K J Pacif Eur. Phys. J. Plus 136 1 (2021).

[27] B K Bishi Naturforschung A 77 259 (2022).

[28] B K Bishi and P V Lepse New. Astron. 85 101563 (2021).

[29] M A Bakry and A T Shafeek Grav. Cos. 27 89 (2021).

[30] P H R S Moraes and P K Sahoo Eur. Phys. J. C 77 480 (2017).

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

2568 S K Ibraheem and M A Barky

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/19050.11919
http://arxiv.org/abs/2110.11768

	Influence of new general relativity parameters on the Big Rip--Big Crunch Model
	Abstract
	Introduction
	A brief summary of {\hbox{AP}} -geometry
	General formalism of the new general relativity theory
	The Big Bang--Big Rip model and energy conditions in {\hbox{NGR}}
	The Big Bang--Big Crunch model and energy conditions in {\hbox{NGR}}
	Special solutions of the {\hbox{NGR}} field equations
	Conclusions
	Author contributions
	Funding
	Availability of data and material
	References




