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CHAPTER 1

Introduction

1.1 General Introduction

One can argue about which achievement in physics is the greatest of all. Some
would argue that Newton’s laws of classical mechanics or the unification of
electricity and magnetism deserves this title. But certainly a good candidate
would be the standard model of elementary particles. It is a quantum field
theory embodying all known particles and their interactions. For many years
it has proven to provide us with an extremely accurate tool to describe these
interactions. Although the standard model does a very good job, from the
beginning people realized it was not perfect, in the sense that it was not
a complete description of nature. The most obvious shortcoming is that
gravity is left out. Another, less obvious, problem goes by the name hierarchy
problem [1] and also indicates the existence of physics beyond the standard
model. Not too long ago another important thing turned out to be missing.
It has everything to do with the neutrino; the particle that is said to permeate
our bodies at a staggering rate of many billions per second!

In 1930, long before the formulation of the standard model, Wolfgang
Pauli was the first to imagine the existence of this neutral particle and called
it the neutron. He was led to this idea in an attempt to address the missing
energy and angular momentum in the process of beta decay in which a neu-
tron decays into a proton, an electron and, he reasoned, a neutrino. A few
years later Enrico Fermi formulated the famous Fermi theory of the weak
interactions and changed the name of the still undetected particle from neu-
tron into neutrino. Still at this stage the concept of a vector boson as a force
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agent was unknown. In the forties this was introduced by (among others)
Richard Feynman in quantum electrodynamics, where the photon plays the
role of a force carrier. Physicists realized the Fermi theory had its short-
comings and, inspired by the structure of QED, tried to build a combined
model model of electromagnetic and weak interactions, resulting in the fa-
mous SU(2)×U(1) gauge theory. Only massless particles could be described
by the model, which was eventually cured in the late sixties by the imple-
mentation of the Higgs-mechanism and resulted in the famous GSW-model of
electro-weak interactions, named after Sheldon Glashow, Abdus Salam and
Steven Weinberg.

Sofar this very short history of the electroweak part of the standard model.
As said, the neutrino was first ’made up’ in the thirties, but because of its
zero electric (and clearly, color-) charge it only feels the weak interactions
and it was not until 1956 that it was actually detected by Frederick Reines
and Clyde Cowan. Again 40 years later the 1995 nobel prize was awarded
for their discovery. The neutrino mentioned above is associated with the
electron and called the electron neutrino. After the discovery in 1962 of
a second type of neutrino in reactions involving muons (nobel prize 1988)
people expected a third corresponding to the tau lepton and, indeed, in 2000
it was first observed at Fermilab in nice accordance with the standard model.

At the time the standard model acquired its final shape, the neutrino
was considered massless and described accordingly. Given the gauge group,
the fieldcontent and their transformation properties under the gauge group,
it turns out that the neutrino cannot possibly be described as a massive
particle. Preserving the standard model gauge group, we either need to add
new fermion fields or scalar fields for neutrino mass terms to appear.

When the standard model was formulated physicists did everything but
lay back, enjoying their masterpiece. Models were invented in which the
unanswered question of maximally broken parity in the weak interaction
was addressed and attempts were made to further unify strong and weak
interactions but also leptons and quarks. Meanwhile, often in a combination
with these two issues, models that allowed for massive neutrinos were under
investigation because, after all, the only certain thing about neutrino masses
was that they had to be smaller than a few electron volts.

In 1998 the physics community saw direct evidence of the existence of
neutrino masses, in the shape of observed neutrino oscillations in the Su-
perkamiokande collaboration based in Japan. As early as 1957 this phe-
nomenon had been hypothesized by Bruno Pontecorvo. The only driving
force behind these oscillations, so far as people know nowadays, is mass or,
more correctly, mass differences. The oscillations reveal information on the
mass difference between the particles involved. There are other types of
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experiments from which we can learn more about the absolute scale of the
mass.

In short: the neutrino mass is there, the standard model is extremely
accurate but no doubt incomplete. In this report a specific model will be
explored that allows for the presence of neutrino masses and is able to account
for their smallness. Also, it deals with the odd asymmetry between left and
right in the weak interactions.

1.2 This Report

The outline of this report is as follows
Chapter 2. Before one should start thinking about extensions of the

standard model, it is good to have some understanding of the standard model
itself. A requirement of the new model is that at low energies it reproduces
the standard model, up to some corrections suppressed by the large masses
of some inevitable new particles. In this chapter the electro-weak sector of
the standard model will be reviewed and in of course the role neutrino is
discussed.

Chapter 3. The standard fermion mass terms like the one for the
electron is known as a Dirac mass. A right handed field is coupled to a left
handed field. There is a second type of mass term called Majorana mass
term. In this case, left is coupled to left and right to right. An inevitable
consequence is that lepton number will be violated. To be able to explain
all this, the chapter will start out by introducing the two component Weyl
spinors; the building blocks for the Dirac and Majorana spinor.

Chapter 4. Some general aspects of massive neutrino physics will be
treated. A short introduction on the history of neutrino related experiments
is followed by an application of the ideas of chapter 3 to neutrinos. The seesaw
mechanism will be explained as well as some aspects of neutrino mixing and
the simplest extensions of the standard model are discussed.

Chapter 5. Until this chapter all aspects of non-vanishing neutrino
masses are discussed outside the context of a concrete model. Here an at-
tractive extension of the standard model is discussed in quite some detail: a
left-right symmetric model with one bi-doublet and two triplet scalar fields.
This set of scalars is the smallest able to produce the most general neutrino
mass terms already at tree level. We will see that a seesaw mechanism is
more or less automatically incorporated.

Chapter 6. In this chapter a humble attempt is made to get a glimpse at
some numerical values of the main parameter in the model: the mass scale
of the extra gauge bosons, the right handed neutrinos and some Yukawa
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coupling strengths. This is checked against some experimental results. The
chapter closes with a remark on neutrinoless double beta decay.
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CHAPTER 2

Neutrinos in the Standard Model

In this report the neutrino masses are of main interest. Before one looks at
possible extensions of the standard model, it is vital to understand the story
of the neutrino in the standard model. In chapter 3 two different kinds of
possible mass terms are discussed. The construction of the standard model
was, of course, motivated by experimental results that led to the exile of the
right handed part of the neutrino (more on this later). There was simply
no need for it. Consequently, the Dirac type of mass is ruled out. Also,
the other type, the Majorana mass, is no possibility in the standard model
because the left handed neutrino carries a U(1) charge. These remarks will
become clear in this and the next chapter.

In the following the leptonic electro-weak sector of the standard model,
is reviewed. The quarks and their weak as well as their strong interactions
will be left out of the discussion.

2.1 The Electro-Weak Model and the Absence of a
Right Handed Neutrino

The standard model is a gauge theory with symmetry group SU(2)L×U(1)Y

resulting in the W± and Z0 gauge fields. Around 1972 it was realized that
this could solve the problems at high energy of the Fermi theory, being the
description of the weak interaction until then. Some authors take this group
structure as some axiom and start from there. The reasoning may be ’clean’
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and beautiful, but not very intuitive: why would one take this as a starting
point? How can one justify this choice of the gauge group other than ’it
works’?

In the strategy described above one uses Noether’s theorem, guided by the
imposed symmetries, to find the conserved currents and the corresponding
charges. It may seem more natural that we do not know the symmetry group,
but we may have some knowledge about the currents from experiments. This
allows us to work in the other direction (see for example [2, 3]): one knows
the current and hence the charges. Then realize that the charges satisfy the
same commutation relations as the generators responsible for them. In other
words: the commutation relation of the charges uncover the structure of the
underlying group.

In ’57 it was first proposed by Feynman and Gell-Mann that [4]

jµ = ψνγ
µ(1− γ5)ψe (2.1)

was the correct description of the charged current. For the µ and τ genera-
tions exactly the same holds.

Before we calculate the charges and their commutation relations, a few
remarks about this current are in place. The factor (1− γ5) makes sure only
the lefthanded parts of the fields (ψL) take part in the interaction:

ψL := P−ψ := 1
2
(1− γ5)ψ (2.2)

The righthanded part (ψR) is defined analogously but with pluses. The
operators P± are projection operators in the usual sense: P+ + P− = 1,
P 2
± = P± and P±P∓ = 0. It is clear at first sight that in (2.1) only the

lefthanded part of the electron is present. To see that the same holds for the
neutrino, write ψν as the sum of its left- and righthanded part and applying
the rules of appendix A will lead us to the conclusion that the neutrino can
just as well be replaced by its lefthanded part.

At this point it is already possible to see why the righthanded part of
the neutrino was not included in the standard model: under the dynamics
of the Dirac equation ’left remains left’ and so does right. This is only true
for massless particles1 and since the neutrino was regarded massless at the
time, the righthanded part would be completely decoupled from everything
else. So why bother to take it along in the description? To put it more
dramatically, its very existence could be questioned.

1Consequently ∂µ(P±ψ) = 0 for zero mass particles so that currents such as jµ =
ψ̄LγµψL will be conserved, i.e. ∂µjµ = 0.
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Let us follow the programme outlined above to obtain the group structure
of the theory of the weak interactions. With (2.1) we can write down the
following charges:

T+ = 1
2

∫
d3x j0 =

∫
d3xψ†ν,Lψe,L

T− = T †
+ = 1

2

∫
d3x j0† =

∫
d3xψ†e,Lψν,L

T3 = 1
2
[T+, T−] = 1

2

∫
d3x (ψ†e,Lψe,L − ψ†ν,Lψν,L)

Q = −
∫

d3xψ†eψe (2.3)

Where the last one is nothing more than the electric charge. When we make
the following redefinitions:

Q1 = 1
2
(T+ + T−)

Q2 = 1
2i

(T+ + T−)

Q3 = T3

Y = 2(Q− T3) (2.4)

and calculate the commutators between these charges one can indeed see the
group structure appear.

[Qa, Qb] = iεabcQc

[Qa, Y ] = 0 (2.5)

The first line of (2.5) shows that we are dealing with SU(2). Besides there is
also second group - U(1) - with one generator: the so-called hyper charge Y .

The above shows how one arrives at the particular group choice. We
know that the symmetries come with conserved charges, so it is important
to be sure they are indeed conserved (ie. ∂µj

µ = 0). To check this, we
need to invoke the Dirac equation and it turns out that only for a vanishing
electron mass there will be charge conservation (see previous footnote). For
that reason all the fermion masses will be set to zero at this stage.

The zero mass of all fermions and the non-existence of the right handed
neutrino brings us to the following Lagrangian:

L = Li∂/L + eRi∂/eR (2.6)
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From now on we will denote the fermion fields by some suitable letter
instead of ψ carrying a zoo of indices. In particular eR := ψe,R. Also, in
(2.6), we have defined the left handed lepton doublet:

L =

(
νL

eL

)
(2.7)

This L is a doublet of SU(2) whereas er is a singlet. The Y charge of the
doublet is -1 and of eR -2. The important thing is that (2.6) is invariant under
the action of SU(2)× U(1). The transformation rule for the doublet will be
L → eiαaτa

eiβY/2L where the Y in the second exponent can be replaced by
the number representing the Y -charge of the object of interest.

Now, the next step is to promote the global symmetry to a local one.
In doing so, one gauge field for every generator of the group is needed. In
this case it gives three corresponding to SU(2), one to U(1). The ordinary
derivatives are replaced by covariant derivatives. For some generic symmetry
group with generators Ta we have the replacement (see appendix B)

∂µ → Dµ = ∂µ − igT aAa (2.8)

In the particular case of the lepton doublet L and the right handed electron
eR this implies2:

DµL = (∂µ − igAa
µτ

a + 1
2
ig′Bµ)L

DµeR = (∂µ + ig′Bµ)eR (2.9)

The above replacement of the ordinary derivative by the covariant version
gives rise to interaction terms of the fermions with the gauge fields Aa

µ and Bµ.
Clever redefinitions of the A and B fields make sure that, for example, there
is a vector field that couples to the electron, but does not ’see’ the neutrino.
In fact, it has the correct couplings known from QED3 to be regarded as the
photon field.

Sofar, the dynamics of the ’force agents’4 themselves have not been men-
tioned. It will not be of much importance here, but for completeness, the
kinetic term for the gauge fields are (see for example [5])

Lkin = −1
4
F a

µνF
µν a with F a

µν = ∂µA
a
ν − ∂νA

a
µ + gfa

bcA
b
µA

c
ν (2.10)

2We apply the widely used notation τa = σa/2.
3Plus some extra couplings with the ’new’ charged gauge fields.
4As ’t Hooft tends to call gauge fields.
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In this equation the numbers fa
bc are the structure constants of the group

corresponding to the gauge fields Aa
µ. This is the origin of vertices involving

two or three gauge fields, that are so characteristic for non abelian gauge
theories.

2.2 The Higgs Mechanism

Sofar, all fields are massless. One cannot write down a mass term without
violating gauge invariance. It was realized that the introduction of some new
scalar fields could save the day. The Lagrangian of the field and its couplings
respect the gauge symmetry, but its ground state does break gauge invariance
leading to mass terms via Yukawa couplings of the scalar fields to two fermion
fields. In the process, the gauge fields also acquire a mass. This spontaneous
symmetry breaking5 can be compared with a pencil balancing on its point on
a table. The Hamiltonian of the system is cylindrically symmetric. However,
in the ground state the pencil lies flat on the table pointing in some specific
direction. Here we will see how this idea is put into the standard model.

A ’standard’ electron mass term (classified as a Dirac mass in the next
chapter) looks like

Lm = −mψ̄eψe = −m(ēLeR + ēReL). (2.11)

Clearly, this is not invariant under the group action: under an SU(2)
transformation, eL and νL go into linear combinations of each other and
equation (2.11) will definitely change. Also, the U(1) transformation causes
trouble.

A solution to this problem lies in the introduction of an SU(2) doublet
of scalar fields

φ = (φ1, φ2)T (2.12)

having Y = 1 so that the gauge invariant Yukawa coupling between these
scalar fields and the fermions can be formed

LY = fL̄φeR + h.c. (2.13)

If the Lagrangian looks like

5Gerard ’t Hooft argues that spontananeous symmetry breaking is in fact a misnomer.
No symmetry is broken, but the physical particles are not in a representation of the gauge
group. The local symmetry is merely hidden by the shift in the scalar field. [7]
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LH = (Dµφ)†Dµφ + µ2φ†φ− λ(φ†φ)2

with Dµφ = (∂µ − igτaAa
µ −

ig′

2
Bµ) (2.14)

the last two terms, being the Higgs potential, cause the doublet to have a
non-zero vacuum expectation value: the minimum of the potential is at φ†φ =
µ/
√

λ := v2 6= 0. Choosing6 〈φ〉 := 〈0|φ|0〉 = (0, v)T we can parametrize the
field as φ = U(0, v+φ′)T , where U is and SU(2) group element, parametrized
as U = exp[iξiτ i] so the φ doublet still has four degrees of freedom, as it
started out with in (2.12). We can do an SU(2) gauge transformation to
get rid of this matrix U and hence work in the so called unitary gauge. The
parametrization of the scalar doublet we are left with is just (0, v + φ′). The
three degrees of freedom, that seem to have disappeared, are by some people
[6] said to be eaten by the gauge bosons which have acquired a mass in this
procedure and, therefore, gained a degree of freedom.

2.2.1 Gauge Boson Masses

The exact expressions for the gauge boson masses follow directly when sub-
stituting 〈φ〉 for φ in (2.14). We single out the terms quadratic in the gauge
fields:

L =
v2

4




A1
µ

A2
µ

A3
µ

Bµ




T 


g2

g2

g2/2 −gg′/2
−gg′/2 g′2/2







A1,µ

A2,µ

A3,µ

Bµ


 . (2.15)

where empty entries are zero. The eigenvectors tell what are the massive
combinations of the gauge fields and the corresponding eigenvalues give the
masses through7 m2 = 2 × eigenvalue. For example, (1,0,0,0) is obviously
an eigenvector with eigenvalue (gv)2/4. So we conclude that A1

µ has a mass

gv/
√

2. The full list reads8:

6In fact, any choice 〈φ〉 = (v1, v2)T with |v1|2 + |v2|2 = v2 will do the job. The
mass terms that arise will not be diagonal in the fermion fields and a redefinition will be
necessary to fix this. At the end of the run it is equivalent to choosing 〈φ〉 = (0, v)T .

7This is because the mass terms look like 1
2M2A2. This implies that the mass term for

W± = 1√
2
(A1 ∓ iA2) is lacking the factor 1

2 and looks like M2W+W−.
8In many textbooks people use and alternative definition of the vev v, namely vthere =

vhere/
√

2. See for example Peskin & Schroeder [5] ch. 20.
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W± = 1√
2
(A1 ∓ iA2); mW = gv/

√
2

Z = cos θwA3 − sin θwB; mZ =
√

g2 + g′2v/
√

2
A = sin θwA3 + cos θwB; mA = 0

(2.16)

A few things need to be said about this. Firstly, the cosine of the angle
θw, known as the Weinberg angle, is defined by cos θw = g/

√
g2 + g′2 so

that sin θw = g′/
√

g2 + g′2. Secondly, since A1 and A2 are ’eigenvectors’
with the same eigenvalue, any linear combination of the two is again one
with this eigenvalue. The first two lines in the table give convenient linear
combinations that ensures we have two massive charged gauge bosons. Lastly,
we note that the following relation holds: mW = mZ cos θw.

We are now in a position to estimate the numerical value of some of
the couplings g and g′ and v. From measurements it is known that mw =
gv/

√
2 = 80.4 GeV and mz = 91.1 GeV which gives sin2 θw = 0.22. This al-

ready tells us that g/g′ = cot θw = 1.7. To obtain an absolute scale we merely
mention that we are forced9 to make the identification gg′/

√
g2 + g′2 =

g sin θ = e, the coupling constant of the electromagnetic interaction. In
natural units, via 137 = α−1 = 4π/e2, we find e = 0.30, giving in turn
g = 0.64 and g′ = 0.38. With the mass formula for the W boson this finally
gives v ≈ 1.8× 102 GeV. This is often referred to as ’the weak scale’.

2.2.2 Lepton Masses

What we are also interested in is what the Higgs mechanism does to the
fermions. For these fields it is fairly easy to read off the masses from the
Yukawa terms. Substituting φ = (0, v + φ′)T in (2.13) we see a mass term
arising for the electron:

Lm = vf ēLeR + h.c. (2.17)

The Yukawa coupling f must be very small (∼ 10−6) in order to give the
electron mass me = vf its, compared to the weak scale, small value of 0.5
MeV.

Without the presence of νR in the standard model it is not possible to
construct a mass term as in (2.17) for the neutrino. In the next chapter we
will see that a different kind of mass term can be constructed (−1

2
m(νT

L CνL+
h.c.)), involving only νL. However, this is forbidden within the standard
model since it is not invariant under the U(1)Y symmetry.

9This will become clear in the first stage of symmetry breaking in the model described
in chapter 5, where something very similar takes place.
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2.3 Lepton Number Conservation

From experiment it is known that lepton number is conserved to a high degree
of accuracy (for example [8]). To be more precise, there appears to be lepton
number conservation within each generation. The way this is apparent in
the SM is through an accidental symmetry in the shape of the global U(1)
transformation

L → eiθL

eR → eiθeR, (2.18)

which leaves the Lagrangian invariant. Later we will see that the so-called
Majorana mass term (see section 3.3) disturbs the invariance under (2.18).
The presence of such terms can result in some new physical processes, de-
scribed briefly in section 4.1.

2.4 Remark on describing more than one Generation

2.4.1 Leptons

We close this chapter with a final note. In the entire chapter we merely
mentioned the muon, the tauon and their corresponding neutrinos. These
other two lepton generations can be very easily incorporated in the SM by
just duplicating all terms for every generation. In practice this is usually
done by giving the lepton doublet a ’generation index’ index: L is replaced
by Li so that the kinetic term becomes L̄iD/Li where there is a sum over the
generations. Note that all generations couple with the same strength to the
gauge fields.

A more profound effect of adding two more generations happens through
the Yukawa couplings. There is a priory no reason for them to be diagonal.
Equation (2.13) is replaced by10

LY = f ijL̄iφej
R + h.c.

Where the complex 3 × 3 matrix f is not constrained by any symmetry.
This seems to add the undesirable amount of 32 × 2 = 18 free parameters to
the theory. Fortunately, there is the accidental (i.e. not explicitly imposed)
global the [U(3)]2 symmetry

10Notation ei
R = eR, µR, τR.
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Li → U ij
L Lj and ei

R → U ij
eR

ej
R, (2.19)

which effectively replaces f by f ′ = ULfU †
eR

. So it seems that by choosing
the transformations properly, f can be brought to a more simple form with
less free parameters.

How much simpler can it be made? If we put f in some restricted form
by using the freedom expressed in equation (2.19), we clearly no longer have
the (full) [U(3)]2 symmetry. Now, note that (2.19) is the three generation
equivalent of the transformation related to lepton number conservation (2.18)
if UeR

= UL. What we would like to end up with is a symmetry (also in
the Yukawa Lagrangian) that guarantees the lepton number conservation
per generation. This is accomplished by invariance under a 3-parameter
subgroup of (2.19): Li → eiθiLi and ei

R → eiθiei
R; all generations transform

independently. This subgroup of [U(3)]2 we cannot use to simplify f , so we
only have 2 × 32 − 3 = 15 parameters we can use. In its simplest and yet
most general form, f has only three (18-15) free parameters, all of which
are needed to set the values of the masses. In other words, f can be put in
real diagonal11 form, sacrificing the freedom of (2.19). We conclude that the
gauge eigenstates coincide with the mass eigenstates.

2.4.2 Quark Mixing

When we do a similar counting in the quark sector something very different
happens. Without going into details, it turns out there are 10 free param-
eters. This is reflected in the fact that there are 6 quark masses and 4
parameters to be chosen in the famous CKM-matrix. Three of them are
mixing angles, one is a CP-violating phase. The CKM-matrix enters the
theory through the charged current Lagrangian which looks schematically
like

ūi
LγµU ij

CKMdj
LW+

µ

It is clear that off-diagonal elements of UCKM cause vertices with quarks
from different generations. In section 4.2.2 we will encounter almost an exact
equivalent for the lepton sector, which goes by the name of NMS-matrix.

Note that the masslessness of the neutrinos imply that a CKM-like ma-
trix cannot be present in the lepton sector. If the gauge eigenstates of the
charged leptons were different from the mass eigenstates, they would require
a redefinition (see for more details in section 4.2.2). If the neutrino fields are

11In fact, it must be diagonal to guarantee lepton number conservation for each gener-
ation separately.
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redefined by exactly the same transformation, which can be done without
consequences because of the absence of mass terms, the equivalent of the
CKM-matrix in the above expression would simply be the unit matrix.
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CHAPTER 3

Dirac and Majorana Mass Terms

In this chapter different types of fermion mass terms will be discussed. In
the previous section 2 the leptons gained their masses through terms like:

Lmass = −mψψ = −m(ψLψR + ψRψL) (3.1)

Besides this so called Dirac mass there is the Majorana mass term. In order
to define it, it is useful to introduce the Weyl spinor. We will see different
ways to combine these objects to form Lorentz invariant terms involving both
one and two different Weyl spinors to form Majorana and Dirac masses.

3.1 Weyl spinors

One can roughly say that the upper (and lower) two components of a four-
componenent spinor compose one Weyl spinor. To be more precise we define
the Weyl spinor according to its transformation behavior under the Lorentz
group, SO(3, 1). Its generators can be divided in boosts and rotations, Ki and
Ji respectively. Of course there are three of each. The following commutation
relations between them hold1:

1According to Anthony Zee the second line of (3.2) represents ”one of the most signif-
icant calculations in the history of twentieth century physics. (...) Two Lorentz boosts
produce a rotation!” [6]
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[Ji, Jj] = iεijkJk

[Ki, Kj] = −iεijkJk

[Ji, Kj] = iεijkKk (3.2)

From this set of generators we can define Ai = 1
2
(Ji + iKi) and Bi = 1

2
(Ji −

iKi). It is important to note that the (anti-)hermicity of the (Ki) Ji ensures
that Ai and Bi are hermitian. Using the above commutation relations it
follows that

[Ai, Aj] = iεijkAk

[Bi, Bj] = iεijkBk

[Ai, Bj] = 0 (3.3)

The conclusion is that A and B satisfy two separate SU(2) algebras and
so SO(3, 1) is said to be locally isomorphic to SU(2) × SU(2). Since the
representations of SU(2) are labelled by j = 0, 1

2
, 1, 3

2
, ... those of the Lorentz

group will receive a label (jA, jB).
The simplest nontrivial representation of all is (1

2
, 0), these are the Weyl

spinors. In this case we must have:

Ji = 1
2
σi and iKi = 1

2
σi (3.4)

These relations lead us to the transformation rules of the Weyl spinors. Let
a be a Weyl spinor, then we have

a → e−
i
2

σ·θa (rotation)

a → e−
1
2

σ·ηa (boost) (3.5)

It is important to note that the rotation is represented by a unitary matrix
and the boost by a hermitian one. The behavior under rotations shows that
a Weyl spinor carries a spin of one half. From these two component Weyl
spinors one can construct the four component Dirac spinor.

3.2 Dirac spinors

Consider two (possibly) different Weyl spinors a and b. These will form the
building blocks of a Dirac spinor ψ:
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ψ =

(
a

εb∗

)
with ε := iσ2. (3.6)

Some texts refer to a and the combination εb∗ as left and right handed Weyl
spinors respectively [5]. This will become clear in equation (3.8). If a trans-
forms under the (1/2, 0) representation then εa∗ does so under the (0,1/2)
representation, which differs by a minus sign in the exponent of the boost
transformation [9] in (3.5). Suppose a transforms under rotations as a → Ua,
then, using σ2Uσ2 = U∗, we should find that εa∗ transforms in the same way:

εa∗ → ε(Ua)∗ = U(εa∗)

And it does! For boosts, on the other hand, the transformation will be
a → Ha, H being hermitian and we hope to see a change in sign in the
exponent.

εa∗ → ε(Ha)∗ = H−1(εa∗)

Where the identity σ2H∗σ2 = H−1, which holds for 2× 2 hermitian matrices
with unit determinant, gave the last equality. Now look back at (3.5); the
bottom two components of the Dirac spinor indeed need a minus sign in
the exponent of the boost transformation. This verifies the statement of the
combination εa∗ being in the (0,1/2) representation of the Lorentz group. For
obvious reasons people say that a Dirac spinor lives in the (1/2, 0)⊕ (0, 1/2)
representation of the Lorentz group.
Before we move on to write down the mass terms, there are two more things
to be discussed, starting with the charge conjugation. The spinor conjugate
to (3.6), ψc, is defined as follows:

ψc =

(
b

εa∗

)
=

( −ε 0
0 ε

) (
0 1
1 0

)
ψ∗ (3.7)

The first matrix is given the name C and the second is just γ0, in the chiral
basis2, so in short we have ψc = Cγ0ψ∗.
In the special case that the two Weyl spinors constituting ψ are identical
(a = b) we obviously have ψ = ψc. This is called a Majorana spinor.
In chapter 2 the projection operators were mentioned. Now we will restate
the results in the ’new language’ of Weyl spinors. When P± are written out
explicitly using the gamma matrices in the chiral basis we see that we get
when acting on ψ

2This is the basis used throughout this report. See appendix A for more details.
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ψL = 1
2
(1− γ5)ψ =

(
1 0
0 0

)(
a

εb∗

)
=

(
a
0

)

ψR =

(
0

εb∗

)
(3.8)

So we see that that the projection operators pick out the upper or lower two
components.

3.3 The Majorana mass term

This mass term is formed from a single Weyl spinor a and needs to be a
Lorentz scalar:

L = 1
2
m(aT εa− a†εa∗) = 1

2
m(aT εa + h.c.) (3.9)

One can check the Lorentz invariance by using (3.5). One thing that can
immediately be seen from (3.9), is that these terms are forbidden for particles
carrying an unbroken U(1) charge. For this reason charged particles can not
have such a mass term. Note that the global U(1) symmetry associated with
lepton number conservation is broken by the Majorana mass term.

When doing algebraic manipulations involving Weyl spinors one should be
aware of their Grassman nature, that is, their components are anticommuting
numbers. Looking at the Majorana mass term one can see this is absolutely
vital. Consider the following calculation (which is wrong!): aT εb = aiεijbj =
bj(−εji)ai = −bT εa. In the case of a Majorana mass term, this would clearly
be very disturbing. Despite all this, when doing a Hermitian conjugation,
there is no need to insert an extra minus sign for swapping the two spinors
as can be seen in the second equality of equation (3.9).

It is possible to form a Majorana mass from a Dirac spinor. As can be
seen from (3.9) only one of the two Weyl spinors plays a role. This can be
accomplished by using only ψL:

L = −1
2
m(ψT

L CψL + h.c.) (3.10)

The C is inserted to produce the required ε and the fact that it needs a minus
sign can be traced back to the definition of C. If ψ is as in (3.6), equation
(3.10) contains only a’s. It is easily checked that

L = −1
2
m(ψT

R CψR + h.c.) (3.11)
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is a Majorana mass term for b.
There are other ways to arrive at a Majorana mass using either Dirac or

Majorana spinors. Table 3.1 summarizes all the results which can be verified
with relatively easy matrix manipulations.

3.4 The Dirac mass term

First we construct the mass term using Weyl spinors and then we give the
more familiar form using their four component brothers, the Dirac spinor.

The Dirac mass can be written in terms of two Weyl spinors

L = m(aT
Lεb− b†εa∗) (3.12)

Its Lorentz invariance follows from that of the Majorana mass term: b trans-
forms exactly as a does. If a and b carry a U(1) charge they need to have
opposite sign or, in other words, if a transforms as a → Ua then b should go
like b → U∗b.

Equation (3.12) can also be written in terms of a single Dirac spinor.
This is of course the guise in which it is most often encountered:

L = −mψ̄ψ = −m(ψ̄LψR + ψ̄RψL). (3.13)

Note that, in contrast to the Majorana mass, the left is coupled to the right
handed part.

Again, the mass term can be written in terms of all types of spinors we
have met sofar. The table below summarizes this.

Spinor Majorana mass Dirac mass

Weyl 1
2
m(aT εa + h.c.) m(aT

Lεb + h.c.)

Majorana −1
2
mψψ

Dirac −1
2
m(ψT

LCψL + h.c) −m((ψc)T
LCψL + h.c.)

Dirac −mψψ

Table 3.1: Overview of the two types of mass terms using different kinds of
spinors.
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CHAPTER 4

Neutrino masses

In the last two chapters we have seen how neutrinos are accommodated in the
standard model and also what kind of fermion mass terms there are. In the
present chapter we see how a general mass term can be written neatly in a
matrix form and that the massive neutrinos can lead to neutrino oscillations,
a phenomenon alien to the standard model.

But, first a very short review will be given of the kind of experiments
being done around the globe in an attempt inquire more and more accurate
data on neutrino masses.

4.1 Experiments

In 1932 Enrico Fermi first theoretically introduced the neutrino in a descrip-
tion of β-decay. Some 25 years later the ν̄e was actually detected by Frederick
Reines and Clyde Cowan [10]. The first experiment that, in retrospect, hinted
towards the occurrence of neutrino oscillations was performed by Ray Davis
using a chlorine based detector built in the 1960’s, in an attempt to measure
the neutrino flux from the sun. The observed flux was roughly one third of
what was to be expected from the solar models. The solar neutrino problem
was born.

One way to fix this problem was to adjust the solar model. Another so-
lution speculated about massive neutrinos. If the weak eigenstates produced
in interactions are in fact an admixture of non-degenerate mass eigenstates,
oscillations between different types of neutrinos will occur which may explain
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Figure 4.1: Frederick Reines in the control room.

the deficit found in Davis’s experiment. Pontecorvo raised this possibility as
early as 1969.

The strongest indication of oscillations came from the Superkamiokande
experiment in Japan. The possible oscillations of atmospheric rather than
solar neutrinos are measured. In this experiment an immensely big tank with
50,000 tons of pure water together with 11,200 photo multiplier tubes serve
as a detector. Because in each detection event the direction of the neutrino
can be resolved it is possible to distinguish between neutrino’s coming from
the sky or through the earth from below. The latter type, once detected,
has had a fair bit of travelling so that oscillations become apparent in an
asymmetry in the yield of the upward and downward travelling neutrinos.
The Superkamiokande started acquiring data on April 1, 1996 which lead to
their famous publication in 1998 [11] announcing the conclusion that the dis-
crepancy just mentioned can perfectly be explained by neutrino oscillations.
The inferred mixing angle between τ and µ neutrinos should have a value of
sin2 2θ > 0.82 and a mass squared difference1 of 5× 10−4 < ∆m2 < 6× 10−3

eV2. Experiments that study the oscillation of neutrinos can only give us a
clue of the mass squared differences. No absolute scale can be found.

There is another class of experiment in which the β-decay of tritium is
studied. As a product of the decay the neutrino, as well as the electron,
carries away some energy. If the neutrino has zero rest mass, the maximum
energy to be carried away by the electron is just the total energy produced
in a single decay reaction. This picture changes in the case of massive neu-
trinos. In short, the high end of the energy spectrum of the electron provides
information on the mass of the neutrino in an absolute sense. The most

1This means ∆(m2), not (∆m)2. Usually people write ∆m2
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recent attempt of such an experiment is made by The Mainz Neutrino Mass
Experiment group from the University of Mainz. The newest results were
published in The European Physical Journal in 2005 [12]. It was found that
m2(νe) = (−0.6±2.2stat±2.1syst) eV2/c4. The results, curious as they may

seem, were useful to derive an upper limit of m(νe) ≤ 2.2 eV/c2 at a 95%
confidence level.

At the moment in Karlsruhe the Katrin experiment is being prepared. It
is an experiment of the same kind as the one in Mainz but the claim is that
after three years of acquiring data the limit on m(νe) can be pushed down
to 0.2 eV/c2 (see for example: [13]), if, of course, the electron neutrino is
indeed that light.

Besides experiments to determine the mass scale and mass differences,
there are ways to determine wether the neutrino has a Majorana mass or
not. An intriguing consequence of the presence of a Majorana mass term is
that a process called neutrinoless double beta decay can take place which
violates lepton number conservation by two units. Two neutrons decay each
into a proton and an electron. The special thing is that the neutrinos remain
virtual particles on an internal line (see diagram 4.2). The occurrence of
neutrinoless double beta decay is not an indisputable proof of the existence
of a Majorana mass term as there is the possibility of other, heavy particles
causing this to happen. In the model discussed in chapter 5 the doubly
charged component of the heavy triplet scalar field is a candidate. What
may happen, is that the two W bosons from figure 4.2 merge into this heavy
scalar, which in turn decays into two electrons. In chapter 6 we will make an
estimate of the relative amplitude of these two processes.

Figure 4.2: Feynman diagram for neutrinoless double β-decay.
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4.2 Mass Terms for the Neutrino; the Seesaw Mecha-
nism

The previous chapter may have left the reader with the impression that a
field has either a Dirac or a Majorana mass. In the most general situation,
however, there is a combination of both. Since we do not really know which
is the case for the neutrino, it is useful to look at the general situation and of
course to a particularly interesting special case, known as the seesaw scenario.
In the SM people found that there was no need for a RH neutrino.

For the time being we just assume it is there, in order to have the possi-
bility of a Dirac mass. Also, for now, we will not bother with the question as
to what model and what scalar field content could give rise to the situation
described here. That we will postpone to chapter 5.

4.2.1 One Generation

Given the left and right handed parts of the neutrino field, νL and νR respec-
tively, one may write down the general mass term using Dirac spinors:

Lmass,ν = − m(ν̄LνR + ν̄RνL)− 1

2
ML(νT

LCνL − ν†LCν∗L)

− 1

2
MR(νT

RCνR − ν†RCν∗R). (4.1)

Where all the ”+h.c.’s” are written out in full. Now define ν := νL and
N := (νR)c to arrive at the matrix expression. The third line in the table
in the Dirac mass column, contains the object (ψc)L. What does this mean?
The conjugation interchanges the two Weyl spinors and the left projection
gets rid of the lower two components. Obviously, one can just as well throw
away the upper two and then do the conjugation: (ψc)L = (ψR)c. With this
in mind we can use the third line of the table to rewrite the Dirac term in
(4.1) using ν and N only. Some similar work can be done with the Majorana
terms in (4.1) to find eventually

L = −1

2

(
νT NT

) (
ML m
m MR

)(
Cν
CN

)
+ h.c. (4.2)

For the last two equations to be equal we must have that νT CN = NT Cν.
Writing it out with the (spinor) indices explicit this seems to work out:
νT CN = CijνiNj = −(CT )jiNjνj = −(−C)jiNjνj = NT Cν. The two minus
signs arising from the Grassmann nature of the numbers and of C being anti
symmetric cancel out.
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The next thing one ought to do is find the eigenvalues of this matrix.
They are given by

M1,2 =
1

2
[MR + ML ±

√
(MR −ML)2 + 4m2]. (4.3)

Let us look at a special limiting case. A common scheme is the so-called
seesaw mechanism, which was first introduced by R. N. Mohapatra and G.
Senjanovic [15]. What we ultimately want is to have a light neutrino. This
can be accomplished by making MR much larger than both m and ML. In
this case (MR À m,ML) eigenvalues of the mass matrix in this case are
approximated by

Mν ' ML − m2

MR

MN ' MR. (4.4)

Since the off-diagonal elements are small compared to ML and MR one can
still speak of a ’mainly ν’ and ’mainly N ’ neutrino; the mixing is just minute.
Hence the labelling in (4.4). The large MR will naturally be at the scale of
the new physics, which also happens in the model to be seen in the next
chapter.

4.2.2 Three Generations

Sofar the discussion was focussed on the case of one flavour (or ’generation’).
As far as we know now their are three flavours in nature. It has actually
been confirmed in an experiment performed at CERN [14], in which the
decay width of the Z boson was studied, that there are indeed three types of
light neutrinos.

The discussion of the ’one generation’ section can be straightforwardly
extended the three generation case. The mass term in equation (4.1) or
equivalently (4.2) is duplicated for the other two generations. This can again
be written compactly in matrix form

L = −1

2

(
νT NT

) (
ML m
mT MR

)(
Cν
CN

)
+ h.c. (4.5)

This time the objects ν and N are vectors of spinors:

ν = (νe, νµ, ντ )
T ; N = (Ne, Nµ, Nτ )

T .

Assuming the entries of MR are much larger than those of the other sub-
matrices, we can, following reference [16], bring the neutrino mass matrix
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in block diagonal form by quite literally rotating away the off-diagonal ’ele-
ments’ m from (4.5). Since the matrix is very close to wanted form, a small
rotation suffices:

(
Mν 0
0 MN

)
=

(
1 ε
−ε 1

)T (
ML m
mT MR

)(
1 ε
−ε 1

)

≈
(

ML −mM−1
R mT 0

0 MR

)
, (4.6)

ε being equal to M−1
R mT . The blocks of zeroes are not identically zero but

the ratio of its entries to those on the diagonal blocks is of order ε. The upper
left corner shows the famous see saw formula for the light neutrinos and is
clearly the analog of formula (4.4). We will assume the diagonal blocks to
be symmetric, which is true for the model we will restrict our attention to in
this report, the left-right symmetric model.

If we call the original mass matrix from (4.5) M, the block diagonal
form MBD and rotation matrix in the previous equation S, we can write
M = SMBDST . The two symmetric blocks occurring inMBD can be further
transformed into a diagonal form Md

ν,N = V T
ν,NMν,NVν,N where the V ’s are

3 × 3 unitary matrices. If we define V :=

(
Vν 0
0 VN

)
We can write the

original matrix M in terms of its diagonal form MD in the following way:
M = SV ∗MDV †ST . This implies that

NGauge = SVNMass with N(...) =

(
ν(...)

N(...)

)
. (4.7)

Usually the effects of the matrix S are ignored, which is to say that the
mixing between the light left handed and the heavy right handed neutrinos
is extremely small (for example [16, 20])

The fact that the mass eigenstates are essentially different from the gauge
eigenstates, is in great contrast with the situation in the standard model.
There we saw that the neutrino fields can be redefined, to ’absorb’ the effects
of the mass eigenstates of the charged leptons being different from the gauge
eigenstates. Consequently in the SM lepton flavour is conserved and the
charged currents are diagonal in the flavours.

Now that we know the neutrinos have mass and relations like (4.7) seem
to hold, such harmless redefinitions are no longer possible. Consider a left
handed charged current interaction term. Besides the neutrinos the charged
leptons need a redefinition. To distinguish this matrix from the one in equa-
tion (4.7), both are given an index. In terms of the mass eigenstates the
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charged current interaction is no longer diagonal. Up to some factors we
have

Lcc = W+
µ l̄i(V †

l Vν)
ijγµνj, (4.8)

with the flavour indices explicitly showed and where l = (e, µ, τ)T and also
ν is a 3-vector. The matrix between brackets is given name of its own: the
NMS-matrix, after Maki, Nakagawa and Sakata2:

UNMS = V †
l Vν . (4.9)

there is no reason for this matrix to be diagonal so there are vertices with
a charged gauge boson, a charged lepton and neutrino of possibly different
flavour. This lies at the heart of the oscillation phenomena mentioned in
earlier in the short summary of experiments on neutrinos.

One can show that field redefinitions can be made with the purpose of
reducing the number of parameters in the NMS matrix by removing some
of entry’s complex phases. In general, the number of phases phases cannot
be reduced further than three, one of which plays the same role as the CP-
violating phase in the CKM-matrix occurring analogously in the quark sector.
The other two are the so-called Majorana phases (α1,2 below). A common
parametrization of the NMS-matrix is (cf. [16]).

UNMS = R23R
δ
13R23 × diag(1, eiα1 , eiα2)

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




× diag(1, eiα1 , eiα2). (4.10)

The notation

Rδ
13 =




c13 s13e
−iδ 0

−s13e
iδ c13 0

0 0 1




is used. The matrices R12 (R23) represent similar rotations, but in the 1-2
(2-3) plane with δ = 0. Obviously c12 stands for cos(θ12), etc.

2Sometimes called the PNMS matrix; the P standing for Pontecorvo.
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4.3 Minimal Extensions of the Standard Model

In the previous sections the Seesaw mechanism was discussed. The simplest
way to implement this in the standard model is to introduce a right handed
neutrino field, in the literature often denoted by NR. We need a coupling
similar to (2.13) involving the left and right handed neutrino fields to produce
the light Dirac mass needed in the seesaw scenario:

LY = −f ij
ν L̄iφ̃N j

R. (4.11)

Here φ̃ := iσ2φ
∗ transforms exactly like φ; it is also an SU(2) doublet. This

construction is needed to involve the upper component of L, the left handed
neutrino and is also used to give the up quarks mass. Looking at the above
Yukawa term, one sees that NR is obviously a singlet under SU(2). It does
not carry a U(1)Y charge since Y (L) = −1 and Y (φ) = 1. We conclude it
is a singlet under the standard model gauge group. Therefore, a Majorana
mass term for the new field is allowed:

L = −1
2
N iT

R M ij
R CN j

R. (4.12)

When φ acquires its vacuum expectation value, the above two terms result
in the mass matrix

1

2

(
0 vf

vfT MR

)
. (4.13)

This is often referred to as a type I seesaw mechanism, and is responsible for
the second term in the mass Mν in equation (4.6).

The scenario of the singlet right handed neutrinos cannot give rise to
Majorana mass for the left handed neutrino. This can be achieved in a
different way. Suppose that in the standard model, besides the familiar
Higgs doublet, there is an extra set of scalar fields: an SU(2) triplet field
which would be a 2×2 matrix parametrized as ∆ = δ ·σ. It would transform
by the rule ∆ → U∆U †, so that a Yukawa coupling of the kind

LT ε∆CL (4.14)

is allowed by the local symmetry. That is, if we assign the hypercharge
Y (∆) = +2. By choosing the suitable component to acquire a vacuum
expectation value one can assure that a Majorana mass term arises only for
the neutrino, not for the electron. One may wonder if this implies extra
Yukawa terms for the quarks as well. The hypercharge of the quark doublet
is 2

3
so that no such couplings are allowed in the quark sector. The field

∆ can acquire a vev to create a mass term mνT Cν via the above Yukawa
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coupling. This is called a Type II contribution and corresponds to the first
term in (4.6).

Figure 4.3: At energies far below the masses of the heavy particles, both the
type I and II seesaw mechanism effectively lead to a dimension 5 operator
involving two scalar fields and two fermions.

The problem is that if the new particles involved (NR and ∆) are heavy,
which should be the case for the Yukawa couplings not to be too small, there
is no way of distinguishing between the two scenarios. Effectively, they both
give rise to an effective operator schematically denoted by L5 = GLφφL.
Figure 4.3 shows how at energies much lower than the intermediate particle
masses one effectively appears to have a term in the Lagrangian like L5.
The intermediate particle stays on an internal line since it is too heavy to
actually be produced so that ’from the outside’ it simply looks like a four
particle point interaction.

This kind of reasoning lies at the heart of what is called Effective Field
Theory (short introduction in [6], chapter III.2, or [17]), usually abbreviated
by EFT. Of a given theory with both ’heavy’ and ’light’ particles one can
produce its low energy limit. In doing so, one writes the theory in terms
of the light particles only. The standard example is the Fermi theory of
weak interactions where the heavy W and Z bosons are the heavy particles,
invisible at energies way below some tens of GeV’s. The Lagrangian contains
interaction terms with four fermion fields. It is very similar to the situation
in figure 4.3. The effective field theory can approximate the full theory with
arbitrary precision by adding more terms to the Lagrangian, which becomes
a series expansion in momenta over mass or, equivalently, there will be an
infinite number of derivative corrections.

The subscript 5 in L5 is to say that the mass dimension of the combi-
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nation3 [ψφφψ] = 5 is five so that [G]=-1. A non-renormalizable operator
like this was for a long time considered unacceptable. Suppose one wants
to calculate an amplitude involving this interaction. It can be argued that
terms of the order Gn behave like GnEn−1 (see for example [6]) where E
is the center of mass energy of the process. Without bothering about the
coefficients, the amplitude can be written as G(1 + GE + (GE)3 + ...). At
energies comparable to G−1 all terms become equally important and things
go wrong. Therefore, the theory must have a cut off, which in modern views
is not an indication the theory is wrong, but that it is only a low energy
effective description of a bigger scenario involving heavier particles at the
scale of the cut off. In the above notation this means these heavy particles
have masses of the order G−1. In the ’bottom-down’ approach of figure 4.3
it probably makes more sense to say that G−1 must be of the order of the
masses of the heavy particles.

The point to be made is that both attempts to extend the standard model are
not very fruitful approaches since it gives no clue whatsoever about the scale
of the new physics. The masses of the particles are not linked to those of other
particles. In the next chapter we will discuss a model in which essentially the
above two methods are implemented. There are indeed right handed neutri-
nos in there. They are singlets under the standard model group, which is a
sub group off the full gauge group. Also, there are SU(2) triplets allowing
for Yukawa couplings similar to the one in equation (4.14).

3Square brackets around some object denote its mass dimension.
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CHAPTER 5

The Left-Right Symmetric Model

Ever since the birth of the standard model physicists have been trying many
alternatives theories with more complex gauge groups. Famous examples are
the SO(10) and SU(5) Grand Unified Theories that try to make the values
of the different coupling constants we know from QED, the weak and strong
interaction to converge to a single value at some very high energy.

Our goals are somewhat more modest and no renormalization group flow
will be needed. The aim is to give the neutrino a small mass in the context
of a model that very closely resembles the standard model at low energies,
that is, energies at which present day experiments take place. Our choice is
to focus on a so-called left-right symmetric model which seems to be one of
the most straightforward extensions of the standard model. Its gauge group
is SU(2)L ⊗ SU(2)R ⊗ U(1)B−L which is, with its 7 generators and as many
gauge bosons, obviously bigger than the SM group. It provides a description
of the weak interactions only.

The main idea is that the essential difference between the left and right
handed (from now on also LH and RH, respectively) parts of the fermion
fields, as present in the SM, is abandoned. In other words, parity is an explicit
symmetry until spontaneous symmetry breaking takes place. At the end of
section 5.1 we will see how this discrete symmetry is implemented in the
model. Because of the pronounced V-A structure1 of the weak interactions,
we know parity must be broken at some point.

1This is another way of saying that it only terms like ψ̄γµ(1 − γ5)ψ occur in the
interactions. This, in turn, implies that only the left handed parts of the fields play a role.
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Another peculiar feature of the model is the gauged U(1) B-L symmetry.
The difference between baryon and lepton number is a conserved quantity
but, again, only until spontaneous symmetry breaking takes place. Actually,
because there are no couplings between quarks and leptons in the theory,
L and B will be conserved separately. We have seen in section 3.3 that a
Majorana mass term, which we want to appear upon symmetry breaking,
violates lepton number conservation. Some authors say that the B-L makes
more physical sense then the hyper charge from the standard model, which
makes it a more attractive choice. The fact that the B−L is anomaly free, is
sometimes used as an answer to the question as to why one should gauge the
symmetry. Another reason is that B −L automatically appears as a gauged
symmetry in SO(10) grand unification [18]. Since the left-right symmetric
model can be embedded in SO(10), one is in some sense looking at a low
energy limit of this GUT.

The left-right symmetric models were first introduced around 1974 by Pati
and Salam [19] but also Rabindra N. Mohapatra and Goran Senjanovic were
very active in this field. In 1981 the latter two gentlemen wrote an article with
the title Neutrino masses in gauge models with spontaneous parity violation
[20]. That article forms the backbone of the present chapter.

5.1 Matter and Higgs Fields

Fermion fields

The Quark fields are arranged in left handed (LH) doublets of SU(2)L, just
as in the standard model, and right handed (RH) doublets of SU(2)R:

Qi
R =

(
ui

R

di
R

)
. (5.1)

where i is the generation-index so that ui = u, c, t and di = d, s, b. In the
leptonic sector we have the same: besides the familiar LH lepton doublet,
LL, there is the RH version

Li
R =

(
νi

R

liR

)
. (5.2)

with νi = νe, νµ, ντ and li = e, µ, τ . This means that there is room for the
right handed neutrino. The action of a group element of SU(2)L ⊗ SU(2)R

on these doublets is as follows2:

2The index H is a ’left-right’ index valued either L or R.

34



QH → UHQH
LH → UHLH

Where the index H is a ’left-right’ index valued either L or R. The matrix
UH is any local SU(2)H transformation. The quarks have qB−L = 1/3 and
the leptons -1, so that under U(1)B−L the doublets transform as

QH → eiqB−Lα(x)QH = eiα(x)/3QH
LH → eiqB−Lα(x)LH = e−iα(x)LH. (5.3)

The minus sign in the exponent is a convention chosen here. There is some
freedom here, as long as the transformation rule of the fermion fields, the
gauge fields and the precise form of the covariant derivative are consis-
tent with each other (more on that in appendix B). In summary we have
LL(2, 0,−1), LR(0, 2,−1), QL(2, 0, 1/3) and QR(0, 2,−1/3),

Before we move on to the Higgs fields, a short remark is in place. It needs
to be stressed that the field νR needs not to pair up with its LH partner to
a Dirac spinor. In section 3.4 we have seen that two Weyl spinors can be
combined into a Dirac spinor if they both have zero Majorana mass. Here,
the option for Majorana masses is left open.

Scalar fields and masses

What kind of scalar fields do we need? To produce Dirac masses the LH and
RH spinors should be brought together by a Yukawa coupling of LL to LR

and some scalar field. The obvious choice would be a 2×2 matrix field Φ
transforming like

Φ → ULΦU †
R, (5.4)

called a bi-doublet, allowing the following gauge invariant couplings

LY = f ij
1 L

i

LΦLj
R + f ij

2 L
i

LΦ̃Lj
R

+ F ij
1 Q

i

LΦQj
R + F ij

2 Q
i

LΦ̃Qj
R + h.c. (5.5)

We use the notation Φ̃ := σ2Φ∗σ2. The important thing is that Φ̃ transforms
in the same way Φ does. It is clear that qB−L for this field is zero.
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So far so good, but the couplings just mentioned will never produce a
Majorana mass. Recall from table 3.4 that we need a term like mψT

LCψL. To
this end a field ∆H is introduced allowing for the following Yukawa couplings

LY = hij(LiT
L Cε∆LLj

L + LiT
R Cε∆RLj

R). (5.6)

Note that both terms have the same ’coupling strength’ hij. This is to
preserve the discrete left-right symmetry. The ε makes sure that the trans-
formation of ∆L

∆H → UH∆HU †
H, (5.7)

leaves the Yukawa term untouched. This can be seen by applying the rule
εU = U∗ε. Since none of the lepton fields in (5.6) has a complex conjugation,
∆ has qB−L = +2. This charge assignment forbids a coupling of quarks to
∆H

In summary we have the scalar fields Φ(2, 2∗, 0), ∆L(3, 0, +2) and ∆R(0, 3, +2).
The precise parametrization of the matrix fields will be dealt with in the next
section.

Parity symmetry

The Lagrangian that appeared in bits and pieces in this section contains
many parameters. The parity symmetry will put some restrictions on them.
One of them we have already encountered: the Majorana couplings of the
left and right handed fields must be the same. The obvious way to impose
the discrete parity symmetry is to demand invariance under:

Qi
L, Li

L ↔ Qi
R, Li

R

Φ → Φ†. (5.8)

The most obvious consequence is that the gauge couplings of the left and
right handed SU(2) are equal (gL = gR =: g). Looking at the Dirac Yukawa
couplings (5.5) it can be seen that under (5.8) each term must transform
into its hermitian conjugate. Therefore, the matrices f1,2 and F1,2 should be
taken Hermitian.
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5.2 Kinetic Terms of the Lepton and Higgs fields; Gauge
Fields

Sofar we have not looked at the kinetic terms of the fields. To keep them
gauge invariant a covariant derivative is needed. So first the covariant deriva-
tives will be given, and then the kinetic terms.

It looks very similar to the SM case, but there are some interesting mod-
ifications. The full list reads3:

DµLH = (∂µ − igAH
µ +

ig′

2
Bµ)LH

DµQH = (∂µ − igAH
µ −

ig′

6
Bµ)QH

DµΦ = ∂µΦ− ig(AL
µΦ− ΦAR

µ )

Dµ∆H = (∂µ − ig′Bµ)∆H − ig[AH
µ , ∆H] (5.9)

using the notation AL
µ := τaAL,a

µ which implies a grand total of 7 gauge
fields. Especially the last three lines may look somewhat unfamiliar: there
are terms occurring like igΦAR

µ where the gauge fields are placed to the right.
This has everything to do with the way Φ transforms. The following set of
transformations makes the complete framework consistent:

Aa,L
µ → ULAa,L

µ U †
L −

i

g
(∂µUL)U †

L

Aa,R
µ → URAa,R

µ U †
R −

i

g
(∂µUR)U †

R

Bµ → Bµ − 1

g′
∂µα. (5.10)

Details on the previous two groups of equations can be found in appendix B.
As for the kinetic terms of the lepton doublets: they are exactly the same

as in the SM:

iLHγµDµLH. (5.11)

More interesting is the case of the Higgs fields. They are scalar fields
grouped in matrices. The fields Φ en ∆H are parametrized as follows [20]:

3To arrive at the factor in front of Bµ, the q in the last boxed equation of appendix B
should be divided by 2. This is (again...) purely conventional.
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Φ =

(
φ0

1 φ+
1

φ−2 φ0
2

)
Φ̃ =

(
φ0∗

2 −φ−2
−φ+

1 φ0∗
1

)
(5.12)

∆H =

(
1√
2
δ+ δ++

δ0 − 1√
2
δ+

)

H
(5.13)

Before we proceed with the kinetic terms of these fields we note the following.
Let Aij be a square matrix. Then tr(A†A) = (A†)ijAji = (A∗)jiAji. In words:
the outcome is the sum of the absolute value squared of all matrix elements.
With this in mind and the above definitions of Φ and ∆H it follows that if
we take

Lkin,Higgs = tr
[
(Dµ∆L)†(Dµ∆L)+(Dµ∆R)†(Dµ∆R)+(DµΦ)†(DµΦ)

]
(5.14)

we get the ’standard’ complex scalar field kinetic term (ie. (∂µφ)†(∂µφ)) for
the separate components of the matrix fields plus of course some interaction
terms between Higgs fields and the various gauge fields. Using the cyclic
property of the trace operation, it is easily checked that these are indeed
gauge invariant. Look for example at the term involving Φ:

tr[(DµΦ)†(DµΦ)] → tr[UR(DµΦ)†U †
LUL(DµΦ)U †

R] (5.15)

where the different UL and UR matrices all combine to unit matrices.

5.3 Symmetry Breaking Pattern in the Model; Gauge
Boson Masses

When people discuss models to describe the weak interactions with bigger
gauge groups than the SM group, one usually constructs the Higgs potential
in such a way that there is more than one breaking scale. In the present
model there are two stages of symmetry breaking, in contrast with just one
in the standard model. In the discussion below we will concentrate on the
gauge bosons only. The implications of the breaking on the leptons will be
discussed later in section 5.5.
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5.3.1 First Stage: GLR → GSM

In the first stage (that is, occurring at the higher of the energies) ∆R acquires
the real4 vacuum expectation value

〈∆R〉 =

(
0 0
vR 0

)
. (5.16)

This breaks the SU(2)R symmetry by giving the RH neutrino a Majorana
mass via the Yukawa coupling (5.6). Also, the gauge fields of SU(2)R become
massive through the kinetic terms of ∆R. To keep the expressions somewhat
more compact, define K := 〈∆R〉. The terms from (5.14) that are relevant
to the mass of the RH gauge fields are:

L = tr(ig′BµK
† + ig[K†, AR

µ ])(−ig′BµK − ig[AR
µ , K])

= −v2
R

2
A†

µ




g2

g2

2g2 −2gg′

−2gg′ 2g′2


Aµ. (5.17)

With A†
µ := (AR,1

µ , AR,2
µ , AR,3

µ , Bµ). The same procedure as in section 2.2
results in the following list of massive combinations:

Eigenvector Mass Field combination New name

(1, i, 0, 0) gvR
1√
2
(AR,1

µ + iAR,2
µ ) W−

R,µ

(1,−i, 0, 0) gvR
1√
2
(AR,1

µ − iAR,2
µ ) W+

R,µ

(0, 0, g,−g′)
√

2(g2 + g′2)vR
1√

g2+g′2
(gAR,3

µ − g′Bµ) ZR,µ

(0, 0, g′, g) 0 1√
g2+g′2

(g′AR,3
µ + gBµ) B′

µ

Table 5.1: The massive combinations after the first stage of symmetry break-
ing. All the SU(2)L gauge bosons remain massless after the this stage.

Now we will explicitly calculate L̄RiγµDµLR in terms of the new gauge
fields. First we note that the ”Field combination” column of the above table
can be summarized by:

4A lot can be said about choosing real or general complex VEV’s of the potential. A
little more on this can be found in appendix C.
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


W−
R

W+
R

ZR

B′


 =




1/
√

2 i/
√

2

1/
√

2 −i/
√

2
cos α − sin α
sin α cos α







AR,1

AR,2

AR,3

B


 (5.18)

With cos α := g√
g2+g′2

and sin α := g′√
g2+g′2

. The unitary matrix in front of

A will be called S. If furthermore the notation

WT
µ = (W−

R , W+
R , ZR, B′)µ,

is used, we can write A = S†W . Finally, a last piece shorthand notation:
P = i(g~τ , g′1/2) that is used to write5 DµLR as follows in terms of the new
fields

DµLR = (∂µ − PA)LR

= (∂µ − PS†W)LR

=
[
∂µ − i

g√
2
(W+

R,µτ
+ + W−

R,µτ
−)− i

1√
g2 + g′2

ZR,µ(g2τ 3 + g′2
1

2
)

− i
gg′√

g2 + g′2
B′

µ(τ 3 − 1

2
)
]
LR, (5.19)

using the notation τ± = τ 1 ± iτ 2. The effect of τ+ (τ−) on LR is that it
annihilates its lower (upper) component. Note that in the last term the
massless gauge field B′ couples to LR via (τ 3− 1

2
) which makes sure that B′

µ

couples only to eR, being the lower component of LR. Concentrating on this
massless gauge field, the kinetic term of LR gives schematically:

L̄RiγµDµLR = ēRiγµ∂µeR − g̃ēRγµeRB′
µ + ν̄Riγµ∂µνR

+ couplings with heavy gauge bosons, (5.20)

with g̃ = gg′√
g2+g′2

. This pattern of symmetry breaking is exactly the same as

in the SM6 where the group SU(2)L ⊗ U(1)Y breaks down to U(1) so that
three gauge bosons acquire a mass and one remains massless. This massless
field, the photon field, couples to the LH electron, while the neutrino only

5This object P has four components each being a 2×2 matrix ; the order of things does
play a role!

6The definition of g̃ is very much related to that of e in the SM, see section 2.2.1.
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has couplings with the heavier force carriers and does not play a role in QED.
In the present case SU(2)R ⊗ U(1)B−L reduces to U(1). If we simply ignore
the heavy gauge bosons and the RH neutrino - for the sake of unveiling the
structure of the massless theory we are left with, as in QED - we can write
(5.20) as

ēRiγµDµeR := ēRiγµ(∂µ + ig̃B′
µ)eR.

Now let us have a look at the LH fermion kinetic terms. From equation
(5.18) we find B = − sin θZR + cos θB′ which enables us to write

L̄LiγµDµLL = L̄Liγµ(∂µ + igAL
µ − 1

2
ig̃B′

µ)LL

+ couplings with heavy gauge bosons. (5.21)

The last two equations show that the massless part of the theory is exactly
the same as in the standard model prior to its symmetry breaking.

5.3.2 Second Stage: GSM → U(1)QED

At lower energies the two other Higgs fields will also have a nonzero expec-
tation value. To be precise:

〈Φ〉 =

(
κ 0
0 κ′

)

〈∆L〉 =

(
0 0
vL 0

)
. (5.22)

At this stage the LH gauge bosons get their masses. Also, some of the
LH fermions get a Majorana mass and the Dirac masses are produced. As
promised, the fermions will be discussed later. For now, we concentrate on
the gauge bosons.

In the previous section we saw that after the first stage the massless part
of the theory possessed the all too familiar SU(2) ⊗ U(1) structure of the
standard model. We will work out what happens to these massless parts of
the theory to get a feeling of what happens if vR is by far the biggest scale
in the theory, so that particles with large masses acquired at the first stage
essentially decouple from the others.

The mass matrix in the basis (AL,1, AL,2, AL,3, B′) is given by:
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1

4




g2x
g2x

g2y −gg̃y
−gg̃y g̃2y


 , (5.23)

where x := κ2 + κ′2 + 2v2
L and y := x + 2v2

L. The eigenvectors are completely
analogous to those in previous section and are given in table 5.2.

Eigenvector Mass Field combination New name

(1, i, 0, 0) g
√

x/2 1√
2
(AL,1

µ + iAL,2
µ ) W−

L,µ

(1,−i, 0, 0) g
√

x/2 1√
2
(AL,1

µ − iAL,2
µ ) W+

L,µ

(0, 0, g,−g̃)
√

(g2 + g̃2)y/2 1√
g2+g̃2

(gAL,3
µ − g̃B′

µ) ZL,µ

(0, 0, g̃, g) 0 1√
g2+g̃2

(g̃AL,3
µ + gB′

µ) Aµ

Table 5.2: The massive combinations of the ’standard model gauge bosons’.
The field B′ is the massless field from the first redefinition from table 5.1.

To make sure this point is clear: only the gauge fields that remained massless
in the previous section, are dealt with in the above table. In this approxima-
tion the massive combinations from table 5.1 are untouched by the second
breaking stage. A more precise study of the massive eigenstates of the mass
matrix show that the charged gauge bosons W±

L have a tiny RH admixture,
and vice versa. This effect is also ignored in the above which is reasonable
as long as κ À κ′.

In our notation, in particular the use of B′, the similarities between the
two stages is stressed, but it is not so clear how the fields from the second
table can be written in terms of the original fields. The article of Senjanovic
and Mohapatra [20], presents a somewhat different notation of the massive
combinations. The equivalent of the Weinberg angle from the SM is intro-
duced:

sin θW =
g′√

g2 + 2g′2
cos θW =

√
g2 + g′2

g2 + 2g′2
(5.24)

Two useful consequences of this are
√

cos 2θW = g/
√

g2 + 2g′2 and tan θW =
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g′/
√

g2 + g′2. Now we can rewrite the massive combinations and their masses
as follows:

Aµ = sin θW (AL,3
µ + AR,3

µ ) + (cos 2θW )1/2Bµ,

ZL,µ = cos θW AL,3
µ − sin θW tan θW AR,3

µ − tan θW (cos 2θW )1/2Bµ,

ZR,µ =
(cos 2θW )1/2

cos θw

AR,3
µ − tan θwBµ

W±
L,µ =

1√
2
(AL,1 ∓ iAL,2)

W±
R,µ =

1√
2
(AR,1 ∓ iAR,2) (5.25)

The same can be done for their masses

mA = 0,

m2
ZL

=
g2

2

1

cos2 θW

(κ2 + κ′2 + 4v2
L),

m2
ZR

= 2(g2 + g′2)v2
R,

m2
W±

L
=

g2

2
(κ2 + κ′2 + 2v2

L),

m2
W±

R
= g2v2

R. (5.26)

The previous two sets of equations do not give true equalities, for we made
the approximations mentioned earlier.

It is of course possible to work out the complete set of mass terms coming
from the kinetic terms of the Higgs fields after the two stages of symmetry
breaking. In the basis (AL,1, ..., AR,1, ..., B) the full matrix is the following:

M =




0
ML MLR 0

−gg′v2
L

0
MLR MR 0

−gg′v2
R

0 0 −g2v2
L 0 0 −gg′v2

R g′2(v2
L + v2

R)




(5.27)

with the submatrices
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Mi =
g2

4




κ2 + κ′2 + 2v2
i 0 0

0 κ2 + κ′2 + 2v2
i 0

0 0 κ2 + κ′2 + 4v2
i




MLR = −g2

4




2κκ′ 0 0
0 2κκ′ 0
0 0 g2(κ2 + κ′2)


 (5.28)

The problem here is obvious. It is in principle possible to figure out the
eigenvectors and eigenvalues of this matrix. After a short struggle, computer
programs will give an answer. It may be no surprise that these are awfully
complicated expressions that are hardly possible to handle. Therefore, people
mainly work in the approximation adopted in this section.

5.4 The Electric Charge Formula

After the two stages of symmetry breaking their is only one massless gauge
field left which means there is still one linear combination of generators that
leaves the vacuum invariant. This corresponds to the electric charge.

Let us elaborate a bit on what this means. Suppose we have a matrix
scalar field φ with 〈φ〉 =: φ0. Now define φ′ through φ = φ′ + φ0. If φ
transforms like φ → ULφU †

R we may wonder whether we can find a set of
transformations that leaves the vacuum invariant:

ULφ0U
†
R = φ0. (5.29)

Suppose for definiteness that this subset of transformations has one genera-
tor, T̃ . Then the above condition is equivalent to saying that after symmetry
breaking there is one massless gauge field, say Ã, that couples with ’coupling
strength’ T̃ to the matter fields. This generator T̃ can be identified with the
electric charge.

Having made these remarks we are ready to find the electric charge
formula. Use the following parametrizations UL = exp[iαa

Lτa] and UR =
exp[iαa

Rτa]. For the U(1) transformation we take exp[−iqB−Lβ1/2]. We
need to find a set of (real!) α’s and a β such that the equivalent of (5.29)
is satisfied for all the Higgs fields in the model. To this end we consider the
infinitesimal form of the gauge transformation, starting with 〈∆R〉:
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e−iβe−iαa
Rτa〈∆R〉eiαa

Rτa ≈ (1− iβ)(1− iαa
Rτa)〈∆R〉(1 + iαa

Rτa)

≈ 〈∆R〉 − i[αa
Rτa, 〈∆R〉]− i1β〈∆R〉

= 〈∆R〉 − ivR

2

(
α1

R − iα2
R 0

2(β − α3
R) iα2

R − α1
R

)

(5.30)

With the constraint that the parameters of the transformations must be real,
we find α1

R = 0 = α2
R and α3

R = β.
As for the bi-doublet Φ

eiαa
Lτa〈φ〉e−iαa

Rτa ≈ 〈φ〉 − i(αa
Lτa〈φ〉 − 〈φ〉αa

Rτa). (5.31)

The second term on the left hand side should vanish, leading to the constraint
α3

L = α3
R.

All in all we see that transformations with α3
L = α3

R = β are the of type
we were looking for. This means the combination τ 3

L + τ 3
R + 1B−L

2
is the only

unbroken generator and hence corresponds to the electric charge. People
usually write this statement as [20]

Q = T 3
L + T 3

R +
B − L

2
. (5.32)

This is the equivalent of Gell-Mann Nishijima relation for the electric charge
in the standard model: Q = T 3 + Y/2. We can check the above relation by
calculating Q(∆H) = τ 3

L∆H −∆Hτ 3
L −∆H and comparing it with the charge

assignments in equation (5.13), which now turn out to be consistent.
Note that sofar we did not invoke the vev of the triplet field ∆L. It seems

it is not needed it to break the full gauge group down to U(1) which leaves
open the possibility of a vanishing vL, as may be desirable.

5.5 Lepton Masses

In the previous sections dealt with the Gauge boson masses only. Also of
great interest are the lepton masses. We will see that in a fairly natural way
a seesaw mechanism can be implemented so that the formulae from section
4.2 are applicable.

To find the mass terms of the leptons that arise in the symmetry breaking
process we need to consider the Yukawa terms that couple the lepton fields to
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the various Higgs fields. At the first stage this is the term hLT
RCε∆RLR and

with (5.16) we find that the creation of the Majorana mass term hvR(νT
RCνR+

ν†RCν∗R) is a fact. The second term between brackets is due to the Hermitian
conjugate of the Yukawa term mentioned. This ”h.c.” is always there. In
this first stage both the electron and νL remain massless.

As for the second stage, now the important Yukawa terms are f1LLΦLR+
f2LLΦ̃LR and hLT

LCε∆LLL. In appendix A on the gamma and sigma ma-
trices the effect of sandwiching any 2 × 2 matrix can be found explicitly.
Equation (5.22) tells us we get the mass terms hvL(νT

LCνL + ν†LCν∗L) and
(f1κ + f2κ

′)(ν̄LνR + ν̄RνL) for the neutrino and (f1κ
′ + f2κ)(ēLeR + ēReL) for

the electron. By construction of the Higgs potential the electron only has
a Dirac mass. This needs to be the case since after both symmetry break-
ing stages we want the electron to have a U(1) charge: the ordinary electric
charge.

To summarize, the following mass terms appears:

Lmass,ν = (f1κ + f2κ
′)(ν̄LνR + ν̄RνL) + hvL(νT

LCνL − ν†LCν∗L)

+ hvR(νT
RCνR − ν†RCν∗R). (5.33)

Following section 4.2 we define ν := νL and N := (νR)c so that the previous
equation can be conveniently written as

Lmass,ν =
1

2

(
νT NT

) (
ML m
m MR

)(
Cν
CN

)
+ h.c.

with m = f1κ + f2κ
′, ML = 2hvL, MR = 2hvR. (5.34)

From equation (4.4) we find that

Mν = 2hvL − (f1κ + f2κ
′)2

2hvR

MN = 2hvR (5.35)

From appendix C we know that vL is roughly of the order κ2/vR creating the
pleasant situation that if vR →∞ the LH neutrino mass goes to zero, while
the mass of the extra gauge bosons and the RH neutrino goes to infinity.

5.6 Interactions between Leptons and Gauge Bosons

At the beginning of this chapter we introduced the seven gauge fields. Later
we saw what are the physical (i.e. massive) combinations we should work
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with. In the present section we will give the result of inserting (the inverse
of) equation (5.25) in L̄HiγµDµLH, resulting in numerous interaction terms
with leptons and gauge fields. In other words, the interactions will be written
in terms of the physical fields.

The charged currents are given by

Lcc = − g√
2
[ēLγµνLW−

L,µ+ν̄LγµeLW+
L,µ+ēRγµνRW−

R,µ+ν̄RγµeRW+
R,µ]. (5.36)

The following table (5.3) summarizes the neutral current interactions:

ēLeL ν̄LνL

ZL g(cos θW − 1
2
sec θW ) −1

2
g sec θW

ZR −1
2
g′ tan θW −1

2
g′ tan θW

A g sin θW

Table 5.3: Couplings of the LH leptons to the neutral gauge bosons.

Table 5.4 gives similar results for the RH lepton doublet. The way to read
the tables is as follows. Consider the first line of the upper table. It has only
one entry, − g√

2
, which is to say that the corresponding interaction term is

− g√
2
ēLγµeLW−

L,µ. From the coupling of Aµ with the charged leptons we see
that g sin θW can be identified with the electromagnetic coupling e, as in the
standard model.

ēReR ν̄RνR

ZR
g2−g′2

2g
tan θW −1

2
g′ cot θW

ZL −g sin θW tan θW

A g sin θW

Table 5.4: Couplings of the RH leptons to the neutral gauge bosons.
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CHAPTER 6

The LRSM and reality

In the previous chapter we described in some detail the left-right symmetric
model. It is of course important to know whether the parameters in the
model can be chosen in a way that the correct values of, for example, the
lepton and gauge boson masses are produced by it. If possible, this should
happen in a natural way. The term natural can be interpreted in different
ways. Firstly, an example of an unnatural situation is one in which some
parameters need to be chosen extremely accurately, for example the value of
the sixth decimal is of crucial importance, is considered unnatural. In other
words, finetuning is most undesirable. Secondly, dimensionless parameters
should be roughly of order 1. If it needs to have a small value to fit the
model to reality, one should look for approximate symmetries in the theory
with the property that if the parameter goes to zero, the symmetry becomes
exact. The latter interpretation is sometimes referred to as ’naturalness in
the sense of ’t Hooft’.

6.1 An Estimate of VEV’s

6.1.1 Values

We will now make a very straightforward estimate of vL, R, and κ2
+ := κ2+κ′2.

In doing so a value is found for the Dirac and Majorana Yukawa couplings
(f and h, respectively). An important role in this argument is played by
the seesaw relation which follows directly from the minimization of the Higgs
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potential (see appendix C):

vLvR = γκ2
+ with γ :=

β1κκ′ + β2κ
2 + β3κ

′2

(2ρ1 − ρ3)κ2
+

(6.1)

Below, γ will be a free parameter on which some of the quantities of interest
turn out to depend. Besides (6.1), we will use the following relations (to be
found in section 5.5):

mν = 2hvL − (f1κ + f2κ
′)2

2hvR

me = f1κ
′ + f2κ (6.2)

The made assumptions are: (i) κ′/κ ¿ 1; (ii)f := f1 ≈ f2; (iii) the two
terms in mν are both more or less equal to mν .

From the W boson mass (≈ 80 GeV) and its formula in the LRSM (5.26)
we find that κ ≈ κ+ ≈ 200 GeV. Another numerical input is me = 0.5 MeV
and lastly, we estimate mν ≈ 1 eV, so that in the following calculation both
terms occurring in mν will be taken of the order of 1 eV.

With assumptions (i) and (ii) we see that f1κ + f2κ
′ ≈ f1κ

′ + f2κ ≈ fκ
and from the electron mass formula it follows that f = me/κ+ ≈ 3 × 10−6.
Setting the two terms in mν to ∼ 1 eV (assumption (iii)) gives the final
ingredient to express all the unknowns in terms of κ+, me, mν and γ. Table
6.1 shows the values of vR, vL and h for some values of γ:

vL =
mνκ+

me

√
γ ≈ 4

√
γ × 10−4 GeV

vR =
meκ+

mν

√
γ ≈ √

γ × 108 GeV

f = 2h
√

γ =
me

κ
≈ 3× 10−6

mN = 2hvR =
m2

e

mν

≈ 3× 102 GeV (6.3)

6.1.2 Discussion

From the previous chapter we know that vR sets the mass scale of the RH
gauge bosons. Direct experimental searches for these heavy extra gauge
bosons has resulted in a lower bound of1 MWR

> 720 GeV, [21]. A second

1This result holds under the conditions that mN ¿ MWR
and that the model has a

(pseudo) manifest LR symmetry. The first is obviously met with in this numerical analysis,
and so is the second as follows from as follows from the reality of κ and κ′ [22].
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γ vR (GeV) vL (eV) h

1 1× 108 4× 105 1× 10−6

10−1 3× 107 1× 105 4× 10−6

10−2 1× 107 4× 104 1× 10−5

10−4 1× 106 4× 103 1× 10−4

10−6 1× 105 4× 102 1× 10−3

10−8 1× 104 4× 101 1× 10−2

Table 6.1: The values of some key parameters are dependent on γ.

lower bound was obtained by considering the KL − KS mass splitting, re-
sulting in MWR

> 1.6 TeV. With vR as in (6.3) the mass of WR is well above
these lower bounds. As for the other parameters: vL is small enough not to
disturb the value of ρew := M2

WL
/(MZ cos θW )2 = (κ2

+ + 2v2
L)/(κ2

+ + 4v2
L). It

should be within 1% of unity, implying vL < 14 GeV [22].
Looking at table 6.1 shows that all values of γ between 10−8 and 1, and

perhaps an even wider range, give acceptable results regarding the bounds
given above. However, as said earlier, extremely small values (i.e. ¿ 1) for
dimensionless parameters are considered unnatural. In this respect, there
appears to be a conflict between γ and h. A value of γ close to 1, requires
h to be 10−6. At the value γ = 10−4 both parameters are of the same order
of magnitude and the extra gauge bosons are around 106 GeV, which is still
two orders of magnitude above the energies at which LHC will be operating
(14 TeV [24]).

Note that the mass of the heavy neutrino turns out to be 3 × 102 GeV
and is independent of γ. Now the work done in section 5.6 pays off. From
equation (5.36) we can see it is not likely that the heavy neutrino, which is
predominantly RH up to a tiny admixture of the LH neutrino, is produced
in charged current processes at LHC because of the exchange of a heavy
WR (’new’) gauge boson. In discussing the massive eigenstates of the gauge
boson mass matrix we ignored the fact that (mostly) right handed charged
bosons contain a tiny fraction of the LH SU(2) boson. However, the mixing
angle is of the order (MWL

/MWR
)2 [20] so that also the exchange of WL

is suppressed. The RH neutrino also does not couple to2 ZL implying a
suppression of the pair production of two RH neutrinos. All this may seem
somewhat pessimistic, but in principle it will be possible to produce the RH
neutrino so therefore one may expect it to happen.

2Here the same holds: the massive neutral mass eigenstates are mostly left (right) with
a tiny admixture of right (left).
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In section 4.1 we touched the subject of neutrinoless double beta decay.
We saw the ’standard diagram’ which relates the amplitude of the process to
the Majorana mass of the neutrino. It was noted that the decay could also
take place with the exchange of some heavy scalar. In the model here under
consideration we indeed have a scalar at our disposal capable of producing
lepton number violating processes : δL. In the appendix to [22] we see that
its mass is of the order vR. Figure 6.1 shows the Feynman diagram of the
process.

Figure 6.1: Feynman diagram of neutrinoless double beta decay mediated by
the heavy scalar ∆L.

We would like to estimate the ratio of this contribution and the one from
figure 4.2. We do not need to bother with the common features but with
the differences of the diagrams. Therefore from figure 6.2 we should consider
the WW∆- and ∆ee-vertices and the ∆-propagator. The first vertex comes
from tr(Dµ∆)†(Dµ∆) and from equations (5.9) and (5.22) it can be seen
that it gives a factor (in magnitude) vL. The second vertex is produced by
the Yukawa coupling, given in equation (5.6), and gives hee. Finally, the
propagator is just 1/m2

∆, since the energies involved are much lower than
m∆. We conclude that the magnitude of the relevant part of figure is

M∆ =
hvL

m2
∆

Turning to the amplitude of figure 4.2, we see that the relevant part
consists of twice a Wνe-vertex, a mass insertion mν and two light-neutrino
propagators with momentum, say, p. The vertex gives a factor g/

√
2 (see

table section 5.6) and the propagator 1/p. All in all, for the relevant part of
figure 4.1 we find

Mν =
g2mν

2p2

A short note is in place here. In the literature it is often said that the
diagram is proportional to the effective Majorana mass, usually denoted by
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mββ (for example [25]). If one deals with the three generation case correctly,
the MNS-matrix starts to play a role. There will be a diagram for each of
the three light neutrinos (νi) and for both vertices in each diagram there
is a factor UMNS

ei so that summing up the diagrams (ie. summing over i)
we automatically encounter the quantity mββ :=

∑
i(U

MNS
ei )2mνi

. It is this
quantity that can be inferred from experiments.

Realizing that in the approximation we made earlier hvL ≈ mν , and
leaving out g and factors of two, we find the ratio

M∆

Mν

≈ p2

m2
∆

.

It is reasonable to take p in the range of the energy electrons emitted in the
decay process. A value around 1 MeV [23] gives the ratio the extremely small
value of 10−11, indicating that contributions from decay via the alternative
channel can be completely ignored.

6.2 Alternative approaches

The values found in the previous section imply the masses of the extra gauge
bosons to be extremely high; around 108 GeV. If this is the case there is no
chance to detect them in the near future. Therefore, reasonable effort has
been put in trying to lower the value vR.

One way to achieve this is to take the β parameters in the Higgs small,
or zero. In that case equation (6.1) allows the product vLvR to be much
smaller, or zero. But since the β-terms in the potential are allowed by the
gauge and parity symmetry, it would be strange to just suppress them or set
them to zero. It would be more natural to impose an extra symmetry on the
Lagrangian that causes this to happen.

A simple example is to demand invariance under ∆L → ∆L and ∆R →
−∆R. The good thing is it excludes the β terms (βi = 0), the bad thing
is that Majorana mass terms are no longer allowed. At first sight only the
RH Majorana mass seems to be forbidden but the parity symmetry carries
this over to the LH mass term. Some authors try to achieve the goal by a so
called horizontal symmetry.3 The idea is that the β’s will be suppressed by
powers of some small quantity. The mass scale of the RH gauge bosons can
be brought down to detectable values.

3For a treatment of embedding this in a LRSM: [26] or for a more general treatment
[27].
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CHAPTER 7

Conclusion

We started with the observation that in the standard model the right handed
neutrino is completely redundant. The combination of describing the neu-
trino as a massless particle and the V-A nature of the weak interaction are
enough to ensure this.

The introduction of the right handed neutrino is as vital for the possibility
of a Dirac mass, as is it is for the implementation of the seesaw mechanism.
The seesaw mechanism is the name of the process in which the interplay of
a large Majorana mass for the right handed neutrino and a small Dirac mass
ensure the appearance of one heavy and one light Majorana neutrino. As
this is considered a very realistic scenario for small masses, the introduction
of the right handed neutrino seems inevitable.

This can be done within the context of the standard model by simply
adding to the Lagrangian the field’s kinetic terms, a Majorana mass term
and the correct Yukawa coupling (4.12) for producing the Dirac mass. It
turns out that the right handed neutrino must be a singlet under the local
symmetry group standard model, hence the often used ’sterile neutrino’. The
problem of this approach is that there is no hint whatsoever to the order of
magnitude of MR. A second method to produce a mass for the neutrino,
a Majorana mass for the left handed field this time, is by adding a triplet
scalar field. In this scenario there is no need for a right handed neutrino,
excluding a seesaw scenario and with that any explanation of the smallness
of the masses.

It was decided to study the a left right symmetric model in more detail.
It obviously offers room to the right handed neutrino and by some sense it
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provides an explanation of the parity violation of the weak interactions. Fur-
thermore, it has the pleasant property that a seesaw mechanism more or less
automatically arises, encompassing both of the above mentioned scenarios
for obtaining neutrino masses.

For this to work properly it was found that the extra gauge bosons have
the somewhat disturbingly high mass of 103− 105 TeV, and all bounds from
experiments seem to be fulfilled. The high value for the mass is disturbing
in the sense that any chance of detection in the near future is excluded. The
most important assumptions that were made are the β and rho parameters
in the scalar potential are of order unity so that the relation vLvR = κ2

+ was
to be fulfilled. Much lower values of the extra bosons can be achieved by
forcing the β parameters to be small. People have achieved this by adding
additional symmetries to the left-right symmetric model.

The numbers found in the numerical exercise were used to find out to what
extend one should take into account an alternative channel in the process of
neutrinoless double beta decay. A heavy scalar triplet can be produced in
the merging of two ZL bosons and then decay into e+e− (see figure 6.1). It
was found that the contribution of this channel is 10−11 times smaller than
the one depicted in figure 4.2, going through the exchange of a Majorana
neutrino. It is this process that people use to find the so-called effective
mass of the neutrino. Neglecting effects of other channels seems to be well
justified within the set of the assumptions made here.
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APPENDIX A

Pauli and Dirac Matrices

In this appendix the main properties of both the Pauli and Dirac matrices
are listed. The latter are often called gamma matrices.

A.1 Pauli matrices

The famous Pauli matrices are given by

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

These matrices are Hermtitian and obey the multiplication rule σiσj = δij +
iεijkσk so that the matrices τ i := σi/2 satisfy

[τ i, τ j] = iεijkτ k and {τ i, τ j} =
δij

2
.

From σ2σiσ2 = −σi∗ it follows that

σ2σµσ2 = σ̄µ∗ and σ2σ̄µσ2 = σµ∗.

In gauge theories one often encounters the following matrix

Aiτ i =
1

2

(
A3 A1 − iA2

A1 + iA2 −A3

)
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Suppose the real numbers a0, ..., a4 are normalized so that a2
0 + ...+a2

3 = 1
then the Hermicity and the multiplication rule of the Pauli matrices tells us
that

a01 + iaiσ
i =

(
a0 + ia3 a2 + ia1

a2 + ia1 a0 − ia3

)
=: U

is a unitary matrix. In fact, it is the most general 2×2 unitary matrix. From
both expressions for U in the above equations one can see that

σ2Uσ2 = U∗.

This can be found as well by realizing that

σ2

(
a b
c d

)
σ2 =

(
d −c
−b a

)
.

A.2 Dirac matrices

First, define 1

σµ = (1, σi) and σµ = (1,−σi)

With 1 being the 2 × 2 unit matrix. In the so-called chiral basis the Dirac
(or often called ’gamma’) matrices are defined as follows:

γµ =

(
0 σµ

σµ 0

)

Besides these four gamma matrices, people usually define a fifth. Namely

γ5 = iγ0γ1γ2γ3 =

( −1 0
0 1

)

A few rules that are easy to derive:

{γµ, γν} = 2gµν

{γ5, γµ} = 0

γ0γµγ0 = γµ†

Where we use the metric gµν = diag(1,−1,−1,−1).

1This notation is borrowed from [5].
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APPENDIX B

Conventions for Gauge Transformations and Covariant

Derivatives

In this appendix some conventions regarding the signs occurring in the gauge
field transformations and covariant derivatives are stated and motivated.
They are used mainly in section

The following example covers all the cases that are present in this report.
All the fields appearing are possibly matrices, so we must keep an eye on the
ordering. Consider a field φ that transforms like:

φ → UφV† (B.1)

where U and V are elements of some unitary gauge group. We will show that
the covariant derivative

Dµφ := ∂µφ− igAU
µ φ + ig′φAV

µ (B.2)

gives rise to acceptable transformation rules of the gauge fields AU,V
µ when

we demand that this derivative transforms the way φ does:

if (φ,AU,V
µ ) → (UφV†, A

′U,V
µ ) then Dµφ → UDµφV†. (B.3)

Writing out this condition explicitly1 (first the ’if’):

1Notation used: φ′ := UφV and φ,µ := ∂µφ.
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φ′,µ−igA
′U
µ φ′+ig′φ′A

′V
µ = U,µφV†+Uφ,µV†+UφV†

,µ−igA
′U
µ φ′+ig′φ′A

′
µ. (B.4)

Using the ’then’ and the RH side of (B.4) this gives the equality

U,µφV†+Uφ,µV†+UφV†
,µ− igA

′U
µ φ′+ ig′φ′A

′V
µ = U(φ,µ− igAU

µ φ+ ig′φAV
µ )V†.
(B.5)

The terms with the derivative on φ cancel out immediately. Now put in 1 =
U†U = V†V in those places in (B.5) so that φ occurs only in the combination
φ′ = UφV†. Upon regrouping we find

(U,µU† − igA
′U
µ + igUAU

µ U†)φ′ = φ′(−V,µV† − igA
′V
µ + igVAV

µ V†). (B.6)

Since U and V are independent of each other, both sides must be a constant.
The easiest option is zero, yielding the transformation rule2:

A
′U
µ = UAU

µ U† − i

g
(∂µU)U† (B.7)

Using 0 = (V†V),µ = V†
,µV + V†V,µ one arrives at a completely analogous

expression for A
′V
µ .

We have seen that the three boxed equations are mutually consistent. It
can very well be that other people use different conventions. For example,
replacing g by −g gives the results as in [3]. We can apply the above results
to fields that transform according to the rule: φ → Uφ by leaving out the
V’s and the corresponding gauge fields.

Of special interest are the U(1) transformations. Suppose we have for a
field with charge q

φ → Uφ = e−iqα(x)φ (B.8)

In this case the gauge field is not a matrix so it simply commutes with U
and U†. Applying the rule from (B.7) we find

A
′
µ = Aµ − q

g
∂µα. (wrong!)

This is of course unacceptable. The transformation of the gauge field cannot
dependent on the charge of the field φ. In QED for example, there is one

2Sometimes this is suggestively written as A
′U
µ = U i

g (∂µ − igAµ)U† (See for example
[5]) so that some sort of covariant derivative appears.
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gauge field with one and only one transformation rule. The inconsistency
can be remedied by redefining the coupling constant g. A factor q should
be pulled out: replace g by qg to get this consistent (and acceptable) set of
equations:

φ → e−iqαφ
∣∣∣ Dµφ := (∂µ − iqgAµ)φ

∣∣∣ Aµ → Aµ − 1

g
∂µα (B.9)

The same remark as earlier holds: there are different sign conventions possi-
ble.
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APPENDIX C

The Higgs Potential

In the left-right symmetric model one should write down the most general
Higgs potential in the sense that it is invariant under the symmetries of the
model. In this case SU(2)L × SU(2)R × U(1) and in addition the parity
symmetry operation as described in equation (5.8). The expression

V (φ, ∆L, ∆R) =

−µ2
1[tr(φ

†φ)]− µ2
2[tr(φ̃φ†) + tr(φ̃†φ)]− µ2

3[tr(∆L∆†
L) + tr(∆R∆†

R)]

+λ1[tr(φφ†)]2 + λ2{[tr(φ̃φ†)]2 + [tr(φ̃†φ)]2}+ λ3[tr(φ̃φ†)tr(φ̃†φ)]

+λ4{tr(φφ†)[tr(φ̃φ†) + tr(φ̃†φ)]}

+ρ1{[tr(∆L∆†
L)]2 + [tr(∆R∆†

R)]2}+ ρ2[tr(∆L
2)tr(∆†

L

2
) + tr(∆R

2)tr(∆†
R

2
)]

+ρ3[tr(∆L∆†
L)tr(∆R∆†

R)] + ρ4[tr(∆L
2)tr(∆†

R

2
) + tr(∆†

L

2
)tr(∆R

2)]

+α1{tr(φφ†)[tr(∆L∆†
L) + tr(∆R∆†

R)]}+ α2[tr(φφ̃†)tr(∆R∆†
R) + tr(φ†φ̃)tr(∆L∆†

L)]

+α∗2[tr(φ
†φ̃)tr(∆R∆†

R) + tr(φ̃†φ)tr(∆L∆†
L)] + α3[tr(φφ†∆L∆†

L) + tr(φφ†∆R∆†
R)]

+β1[tr(φ∆Rφ†∆†
L) + tr(φ†∆Lφ∆†

R)] + β2[tr(φ̃∆Rφ†∆†
L) + tr(φ̃†∆Lφ∆†

R)]

+β3[tr(φ∆Rφ̃†∆†
L) + tr(φ†∆Lφ̃∆†

R)] (C.1)

is claimed to be the most general (renormalizable) potential one can think

64



of, consistent with the symmetries [22]. The minimization of this potential
leads to some very interesting relations between the different vacuum expec-
tation values. The procedure, as described in [22] is as follows. Insert in the
potential the vacuum expectation values

〈φ〉 =

(
κ 0
0 κ′

)
and 〈∆L,R〉 =

(
0 0

vL,R 0

)
, (C.2)

which gives Ṽ (vL, vR, κ, κ′) := V (〈φ〉, 〈∆L〉, 〈∆R〉). Written out in full:

Ṽ (vL, vR, κ, κ′) = −µ2
1(κ

2 + κ′2)− 4µ2
2κκ′ − µ2

3(v
2
L + v2

R)

+λ1(κ
2 + κ′2)2 + (8λ2 + 4λ3)κ

2κ′2 + 4λ4κκ′(κ2 + κ′2)

+ρ1(v
4
L + v4

R) + ρ3v
2
Lv2

R

+[α1(κ
2 + κ′2) + 2(α2 + α∗2)κκ′ + α3κ

′2](v2
L + v2

R)

+2[β1κκ′ + β2κ
2 + β3κ

′2]vLvR (C.3)

Note that the left-right symmetry is very clear in this expression. We intro-
duce the notation VvL

= ∂Ṽ /∂vL etc. to denote the first derivatives. The
seesaw relation between the v’s and κ’s mentioned in the main text can be
found by simply computing vRVvL

− vLVvR
. In this particular combination

µ2
3 and all α’s are simultaneously eliminated. This can be understood by

realizing that the terms in (C.3) containing µ2
3 and α’s, all depend on vL,R

through (v2
L + v2

R). Equating this to zero yields:

(2ρ1 − ρ3)vLvR = β1κκ′ + β2κ
2 + β3κ

′2 (C.4)

In the literature people sometimes define the factor1

γ :=
β1κκ′ + β2κ

2 + β3κ
′2

(2ρ1 − ρ3)κ2
+

with κ2
+ = κ2 + κ′2,

so that the seesaw relation (C.4) can be rewritten as

vLvR = γκ2
+. (C.5)

This equation severely suppresses the freedom of choice for the values of vL,R

and κ+. Since vL ¿ κ+ ≈ 200 GeV (see section 6.1), the previous equation
forces vr to some high value.

The Higgs potential is a potential source of CP violation. First of all,
its parameters (such as α, etc.) can have nonzero imaginary parts. This

1If one works in the limit κ À κ′, this reduces to γ = β2/(2ρ1−ρ3), in accordance with
the article of Mohapatra [Phys. Rev D23,165 (1981)].
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is mostly referred to as explicit CP violation. Secondly, if there is no ex-
plicit CP violation and all parameters are real, the vev’s could still acquire
a complex phase. People call this spontaneous CP violation. By appropriate
redefinitions of the fields one can in general choose all vev’s but vL and k2

real. These two should be replaced by vLeiθL and k2e
iθ2 . This leads to two

extra minimalization conditions, leading to the appearance of some sines and
cosines relations such as (C.4). In [22] it is argued that spontaneous CP vi-
olation is excluded in the absence of explicit CP violation, meaning that if
one chooses real parameters in the Higgs Potential the vacuum expectation
values can generally be taken real.
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APPENDIX D

Majorana Equation

It is common to work with the Dirac Lagrangian and its corresponding equa-
tion of motion. But what kind of equation of motion, one with two compo-
nents, do we have for Majorana particles? A good point to start to answer
this question is the Dirac equation

(iγ · ∂ −m)ψ = 0 (D.1)

Now insert a Majorana spinor into the equation (a Dirac spinor with two
identical Weyl spinors, say a). Using the explicit form of the γ’s (see appendix
A) we see two equations (two components each) emerge. They are, however,
connected through complex conjugation and right multiplication with ε =
iσ2. The lower two components of (D.1) read:

iσ · ∂a−mεa∗ = 0. (D.2)

This equation is known as the Majorana equation.
Now we get to the Lagrangian that produces this equation of motion.

Just take the Dirac Lagrangian and write it explicitly in terms of its Weyl
spinors

L = a†σµ∂µa− bT εσµε∂µb
∗ + m(bT εa− a†εb∗) (D.3)

In the case of a Majorana spinor (a = b) this reduces to the Lagrangian that
produces (D.1). To simplify it somewhat, one can transpose the second term
in (D.3), leaving everything unchanged since it is a number, to find that it is

67



identical to the first term. This is not very obvious: one needs to get rid of
the two ε’s in the second term. It can be accomplished by using εσiε = σi∗.
This, together with ε2 = −1, implies εσµε = (−1, σi∗) = −σµ∗. Transposing
removes the star because of the hermicity of the Pauli matrices. All in all we
find:

L = a†σµ∂µa + 1
2
m(aT εa− a†εa∗) (D.4)

where the overall factor of 1
2

is conventional.
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