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Motivated by the problem of the evolution of bulk gravitational waves in Randall-Sundrum 
cosmology, we have developed a characteristic numerical scheme to solve 1 + 1  dimensional 
wave equations in the presence of a moving timelike boundary. This code has been used to 
predict the spectral tilt of the stochastic gravitational wave background in brane cosmology 
for a variety of higher-dimensional (i.e. 'bulk') initial conditions. Here, we give a qualitative 
picture of how gravitational waves behave in the braneworld scenario, and summarize some 
of our main results. 

1 Randall-Sundrum cosmology 

It is well known that the Randall-Sundrum (RS) braneworld model 1 is in excellent agreement 
with general relativity at low energies. This is the principal appeal of the model; it is one of the 
only examples of a scenario involving a large extra dimension that entails no serious conflicts 
with general relativity. However, this means that one needs to consider high energy or strong 
gravity scenarios to properly test the model. One possibility is to examine the high energy epoch 
of braneworld cosmology, where exact solutions of the 5-dimensional field equations are known. 
Well-understood braneworld phenomena include a modified cosmic expansion and early times 
and 'dark radiation' effects, whereby the Wey! curvature of the bulk projected on the brane acts 
as an additional geometric source in the Friedmann equation. 

But if one wants to move beyond the exact description of the background geometry in 
these cosmological models, there are significant technical difficulties. A cosmological brane is 
essentially a moving boundary in a static 5-dimensional background - anti-de Sitter space in the 
RS model ( cf. Fig. 1) - so perturbations are described by bulk wave equations with boundary 
conditions enforced on a non-trivial timelike surface. While it is possible to make some analytic 
progress when the brane is moving 'slowly' 2,3,4, the more interesting case of a fast-moving, 
high-energy brane remains impervious to such treatment. 
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(a) Conformal diagram of RS bulk geometry (b) The computational domain Q 

Figure 1: Conformal diagram (a) illustrating the causal structure of a braneworld model of the early universe. In 
this plot, the three 'ordinary' spatial dimensions have been suppressed; hence, the brane is represented by a simple 
timelike trajectory. An initial purely-de Sitter inflationary phase is followed by a 'Friedmann', or high-energy 
radiation, phase. Our code assumes that the gravitational wave content of the model is known on the initial null 
surface Eu, and then calculates the field amplitude throughout the spacetime region n. The region is shown in 
a conventional spacetime diagram on the right (b). Superimposed on n is a (particularly coarse) example of the 

computational grid we use to discretize and solve the master wave equation. 

The purpose of this work is to present a new numeric algorithm to solve wave equations in 
the presence of a moving boundary. For the sake of simplicity, we restrict ourselves to a class 
of wave equations and boundary conditions that correspond to tensor, or gravitational wave 
(GW), perturbations. This is not the first attempt to deal with these equations numerically: 
previous efforts include pseudo-spectral 5•6•7 and direct evolution 8•9•10•11•12 methods using various 
null and non-null coordinate systems in which the brane is stationary. Unfortunately, not all 
of these algorithms agree with one another. In particular, Hiramatsu et al. 6 predict a fl.at GW 
background spectrum at high frequencies, while Ichiki and Nakamura 8 predict a red spectrum. 
These two groups have very different prescriptions for setting initial conditions in the bulk, and 
it used to be unclear whether this was the source of tension between the two results. However, 
with our new code we have been able to definitively state that both initial conditions lead to a 
fl.at spectrum, provided that the energy scale of brane inflation is sufficiently high. Furthermore, 
we have shown have a much wider class of initial conditions can lead to the same result; implying 
that a fl.at GW background is a somewhat generic prediction of this class of braneworld models. 
For a comprehensive account of how these conclusions are obtained, the interested reader should 
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consult Seahra.13 

2 Numeric Method 

The problem of predicting the propagation of a GW mode with 3-dimensional wavenumber k in 
this model can be reduced to solving the wave equation [ a2 a2 15 ] 

at2 - az2 + E. (2 + E. ) + 4z2 'lj! (t, z) = 0, ( 1 )  

on n. Here, E *  i s  a dimensionless parameter that represents the density of  brane matter normal­
ized by the brane tension when the mode re-enters the Hubble horizon, 1f! is a master variable 
governing tensor perturbations, and f .:S 0.1 mm is the curvature scale of the bulk. Assuming 
radiation-domination, the brane's trajectory is given by the Friedmann equation 

(2) 

where an overdot indicates a derivative with respect to conformal time. The wavefunction 1f! 
satisfies the following boundary condition on the brane: 

(3) 

where n is the brane normal. To complete the specification of the problem, we need to set initial 
data on the an- hypersurface. This surface is located in spacetime by demanding that the 
perturbation wavelength be so times the horizon size at the epoch when an- crosses the brane. 

To solve for 1f! numerically, we take inspiration from well established techniques in black 
hole perturbation theory. We discretize the computational domain as shown in Fig. l (b) ; the 
evolution of 1f! over a given cell is obtained by integrating the wave equation over the 'finite 
element' and applying the divergence theorem. Because the individual elements are based on 
the characteristics of the wave equation ( 1 ) ,  we obtain a fast, accurate, and stable numeric 
algorithm. 

3 Results 

In Fig. 2, we show the result of a typical simulation of the GW amplitude. One can see how 
the value of the perturbation is frozen on the brane until it re-enters the horizon, as in 4-
dimensional theory. After horizon re-entry, some of the GW energy is radiated away into the 
bulk, and at late times the perturbation on the brane decays as l/a as usual. In Fig. 2 (b) , 
we show what the brane signal would be if one ignored the bulk and evolved the GWs as in 
ordinary general relativity. We see that the '5-dimensional' simulation result shows a suppressed 
late-time amplitude compared to the reference curve, reflecting the GW energy loss into the bulk 
that occurs at horizon crossing. Knowledge of the ratio between the simulation and reference 
amplitudes R as a function of the observed mode frequency I can be directly translated into a 
prediction for the spectral energy density nGw of the GW background today13: 

n R2 { 54.9 ,  
GW IX (f )  

36.4(/ / lc)4f3' 
_5 0.1 mm ( ) 1/2 

I c � 3.3 x 10 
--£-

Hz. (4) 

Our simulations show that as long as so � 100, R IX (f / lc)-2!3 for I � le and 'reasonable' 
initial data; i.e., field configurations that do not vary too quickly along Eu. On the other hand, 
we have found R � 1 for I .:S le in all cases. Hence, a fiat GW spectrum is recovered for all 
frequencies. 
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HKT formulation 
h(E,) = l , h, (E,) = 0 

4-dimensional 

(a) Bulk profile 
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Figure 2: Results of a typical numeric simulation using the initial conditions favoured by Hiramatsu et al. On 
the right, we have drawn what the brane GW signal h,.r would be if the bulk were neglected; i.e., if one solved 

the 4-dimensional master equation with a modified expansion rate given by (2). 
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