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Professeur, CNRS, École Normale Supérieure de Lyon,
Laboratoire de Physique

Rapporteur

Bert Vercnocke

Assistant professeur, KU Leuven, Institut de Physique Théorique Rapporteur
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There’s only one direction in the faces that I see
Its upward to the ceiling, where the chamber’s said to be.
Like the forest fight for sunlight, that takes root in every tree.
They are pulled up by the magnet, believing they are free.
The carpet crawlers heed their callers.
We’ve got to get in to get out,
We’ve got to get in to get out.

Genesis, The Carpet Crawlers
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Chapter 0

Introduction

Foreword

In science, the Universe defines what can be governed univocally through fundamental laws. In that
sense, our notion of Universe has never stopped growing through the centuries. In ancient times, it was
very limited in space and time by the theory of the five classical elements, earth, water, air, fire and
aether, and by geocentricism. Thanks to countless breakthroughs, such as the Newton’s laws, Kepler’s
laws, Maxwell theory, Mendelëıev’s classification, etc., our Universe has evolved to describe the atom
scale to the solar-system scale. Each step forward has always been made possible by exploiting singular
behaviours lying at the edge of our prevailing conception of the Universe. Those singular behaviours
have been either observed through experiments or have emerged from theoretical divergences from
previous prevailing theories. In physics, new theories always arise by including the essential degrees of
freedom needed to resolve singularities.

In the 20th century, the list of fundamental elements and the four fundamental interactions compos-
ing the Universe were well-established. On one side, the Standard model unified the electromagnetic,
weak and strong interactions at high energy within a quantum-field-theory framework. It described
with great success the dynamics of the elements under those interactions at any scale where gravity
is negligible. On the other side, the gravitational interaction was captured as a spacetime deforma-
tion in General Relativity from the scale of the atom to the size of the observable universe. Inspired
by the Standard model, the notion of a theory of everything unifying all interactions at high energy
emerged. This requires to quantize gravity into a theory of Quantum Gravity. However, due to the
geometric nature of gravity, direct quantization has faced major issues. String Theory is a quantum
theory of gravity based on the classification of the fundamental elements as extended objects in higher
dimensions such as strings.

Unifying General Relativity and Quantum mechanics is not a theorist’s fantasy. Even if both
frameworks have been experimentally tested with great precision in their domains of validity, the
picture of the Universe remains scattered and their incompatibility gives rise to unsolved paradoxes.
First, from observation, the matter well-described by those theories accounts only for 15% of the
overall density and 68% of the energy allowing the expansion of the Universe to accelerate is unknown.
Their names, dark matter and dark energy, are the only characteristics widely shared by the scientific
community. Second, the understanding of our world is limited by the scales where the theoretical
description breaks down. If the Standard model is naturally protected from divergences, General
Relativity is not. General Relativity has two inherent singular behaviours delimiting the edge of the
Universe as we know it today. First, the initial singularity, or big bang, corresponds to the furthest
spacetime slice when the Universe was Planck size. Second, the theory contains also “black-hole-type”
singularities where the curvature of spacetime diverges under strong deformations of compact masses.
Those two singularities lie at the common theoretical border between General Relativity and Quantum
Mechanics and must be resolved by a quantum theory of gravity. Because time travel back to the first
nanoseconds of our Universe is not yet planned, black holes are the main theoretical and experimental
laboratory for testing quantum theories of gravity such as String Theory.

1
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Black-hole mystery

Black holes were first predicted theoretically before being recently observed via gravitational-wave
detection [1] or via direct observation [2]. They are supposed to be produced by the gravitational
collapse of supermassive stars. In General Relativity, stationary black holes are described as a compact
mass and charge inducing a spacetime singularity and an angular momentum rotating the spacetime.
The singularity is dressed by a null hypersurface, called the event horizon delimiting two regions:
the interior of the black hole and the exterior. In the interior, nothing, not even light, can escape
and the black hole is purely absorbing. Therefore, for a distant observer, a black hole is completely
characterized by its three macroscopic quantities. However, black holes behave as black bodies. Their
entropy, or Bekenstein-Hawking entropy is proportional to the area of the horizon and they have a
temperature. A semiclassical computation by Hawking suggests that this temperature is accompanied
by a thermal radiation until complete evaporation.

We did not go into details for the first description, but let us now develop the three main puzzles
of black-hole physics:

• The black-hole entropy:

The entropy of a black hole is enormous, of the order of its mass squared in Planck-length unit. As
for any entropic object, a microscopic description in terms of large degeneracy of states should exist.
The “eS” microstates should be related via statistical ensemble to the macroscopic description of black
holes in General Relativity. It is naively questionable whether General Relativity can also provide a
description of those microstates. The no-hair theorem stipulates that a black hole is uniquely defined
by the external quantities and all other information thrown inside is lost. This forms a no-go theorem
for constructing non-trivial horizon-scale structures within General Relativity.

Therefore, a quantum theory of gravity must provide the degrees of freedom that are necessary to
describe the microstate nature of black holes.

• The information loss:

Black-hole evaporation gives rise to a conceptual conflict between Quantum Mechanics and General
Relativity. A black hole can be produced by the gravitational collapse of a pure state whereas it ra-
diates only thermal mixed states. Thus, the unitarity principle of Quantum Mechanics is apparently
undermined by gravity. Two choices are at hand: either one can construct quantum gravity without
the unitarity cornerstone of Quantum Mechanics as Hawking suggested, or one can construct a uni-
tary quantum gravity theory and find a process by which information can escape from a black hole.
The latter is usually the preferred scenario for most quantum theories of gravity and addressing the
information loss puzzle is a major challenge for their consistency.

• The central singularity:

The sun does not collapse under its own weight thanks to nuclear reactions in its nucleus. The stability
of the sun can be modelled by activating the right degrees of freedom within General Relativity. The
black-hole singularity results from the lack of quantum degrees of freedom and should be replaced
by considering quantum corrections. The main question is to determine at which scale from the
singularity the classical picture starts to break down. This issue is also closely related to the question
of the microstate structure. Indeed, if this structure can have a geometrical meaning, it is supposed to
naturally solve the singularity.
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Figure 1: The regimes of parameters in String Theory (the graph is taken from [5]).

The approach of String Theory

Since the 60s, String Theory has been a very promising candidate for a theory of Quantum Gravity.
Its progressive development over the years has provided a powerful framework for understanding the
nature of black holes. String Theory is based on the existence of Supersymmetries relating fermions
and bosons. This allows for the non-trivial connection between the spacetime symmetry of the Poincaré
group and the internal gauge symmetries of the other interactions. The consistency of the theory fixes
the total number of spacetime dimensions at 10 or possibly 11. Let us stick to the ten-dimensional String
theories for the sake of clarity. The six extra-dimensions must form a relatively small compact manifold
in order to match our four-dimensional everyday world. Moreover, a point particle in four dimensions
can now have a non-trivial geometry along the extra dimensions. The fundamental string is the most
primitive one but higher-dimensional objects such as branes also exist. A string is described by its string
length, ls, and its string coupling, gs. Interactions between strings defines two-dimensional surfaces,
called world-sheets, which obviate the usual local singularities of particle scattering in quantum field
theories. Thus, String Theory is UV complete. Moreover, String Theory requires the presence of a
spin-2 field, the graviton, and thus incorporates General Relativity at low energy. On the other side,
the Standard-model gauge groups and their associated matter contents can also be encompassed within
String Theory even if there is no special requirement to have the specific SU(3)× SU(2)× U(1).

In String Theory, fundamental objects are represented as branes interacting with open or closed
strings. Supersymmetric configurations of N branes have the great advantage of having moduli-free
quantities such as their entropy for instance. Thus, those quantities can be obtained for any values
of gs that are suitable for the computation. Two regimes are particularly interesting (see Fig.1.1).
Both are at gs � 1 where stringy corrections are negligible and where the Newton constant, G, is
negligible. The Supergravity regime is at large gsN . This corresponds to have fixed “G.M”, the
branes backreact and deform the spacetime (see Fig.1.1). At low gsN , the branes do not backreact
and are heavy static objects with weakly-coupled open strings stretched between them. The physics
of the branes is given by a free field theory. Thus, a supersymmetric brane bound state has two
equivalent descriptions in two apparently different frameworks. This is what guided the discovery of
the AdS/CFT correspondence. The correspondence had initially established a link between weakly-
coupled Super Yang-Mills at gsN � 1 to AdS5 gravity at gsN � 1 [3] before being considerably
enriched (see [4] for a review).

Thus, String Theory offers a consistent framework of Quantum Gravity for answering the black-hole
mystery. We briefly review the state-of-the-art and the remaining open questions in the following:



0. Introduction 4

• The black-hole entropy:

One of the most important achievements of String Theory is the construction of the microscopic
degrees of freedom of supersymmetric black holes as bound states of strings and branes at very low
string coupling.

This was first achieved for the supersymmetric two-charge system. It was initially derived in
the F1-P frame where the system corresponds to a large number N of fundamental strings F1 with
momentum P on them. At low gsN , the entropy results from the different ways in which the momentum
can be distributed among the harmonics of the strings. Each microstate has a well-defined and unique
representation. The entropy can be calculated exactly via the Cardy’s formula within the underlying
CFT. At large gsN , the configurations collapse to a point and their microscopic structures disappear
by forming a two-charge black hole. The black hole does not have enough types of charges to support a
macroscopically non-vanishing horizon area. However, it has been argued by Sen [6] and confirmed by
Dabholkar [7] that stringy corrections to the horizon area give a Bekenstein-Hawking entropy exactly
equal to the entropy obtained at low gsN .

Strominger and Vafa extended Sen’s conclusions to the supersymmetric three-charge system [8].
They worked in the D1-D5-P frame where the system corresponds to one-dimensional branes D1 with
five-dimensional branes D5 sharing a common compact direction and momentum charges P1. Similarly,
at low gsN , each brane bound state is identifiable and the entropy is obtained via Cardy’s formula.
By increasing gsN , the branes backreact and deform their six-dimensional transverse space. At large
gsN , the supergravity framework contains the six-dimensional supersymmetric black-string solutions.
The black string can be dimensionally reduced to the five-dimensional supersymmetric black hole or
D1-D5-P black hole. The derivation of its horizon area exactly matches the microscopic result.

Those outstanding results showed that black holes are formed by brane bound states. At the “no-
gravity” point of the moduli space, their microscopic degrees of freedom are manifest. They correspond
to configurations of branes with weakly-coupled open strings stretched between them. However, their
fate once gravity is turned on is still subject to debate. Do the microstate structures fall behind the
horizon and essentially disappear from the view of distant observers? Or are they still manifest through
non-trivial horizon-scale physics? Let us admit that the latter scenario could give us more confidence
in resolving the two next black-hole puzzles.

The second scenario has been proposed by Mathur and is known as the Fuzzball proposal [9]. The
proposal stipulates that, in the classical regime, there exist “eS” horizonless non-singular solutions
that resemble a black hole from afar but differ in the vicinity of the horizon. Based on this statement,
the classical black-hole solution corresponds to the average description of a system of solutions which
match the black-hole geometry outside the horizon but cap off as “fuzzy” smooth geometries in the
infrared (see Fig.1.2). Such solutions obviously cannot exist in classical General Relativity; one needs
objects which grow and do not collapse as gravity increases and such objects are provided within String
Theory [10].

Starting once again with the two-charge system, the “eS” F1-P singular solutions can be dualized
into “eS” D1-D5 solutions, called wiggly Supertubes [11–14]. In this frame, the singularity is resolved
by being mapped to a Kaluza-Klein monopole. Each solution is horizon-free and develops a specific
smooth geometry close to the would-be horizon. Thus, the microstate structure of the two-charge black
hole is still visible in the supergravity regime and the microstates are all represented as non-singular
smooth geometries.

To be validated, the proposal must successfully address the three-charge system. The microstate
geometry program was developed to accomplish this vast task. Since then, many supersymmetric

1The F1-P system considered by Sen can be dualized to the D1-D5 system. In that sense, the
Strominger-Vafa black hole is adding another type of charge to the Sen black hole.
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(a) Classical black hole. (b) Fuzzball.

Figure 2: The Fuzzball proposal and the schematic description of the two-dimensional
embedding of the classical black hole as an average description of “eS” smooth fuzzballs.

smooth horizonless three-charge solutions have been constructed as we will see in detail in the main
parts of the thesis (see [15,16] for reviews).

• The central singularity:

The discovery of the microscopic degrees of freedom of black holes is an important achievement,
but it does not provide any insight regarding the information loss paradox or the resolving of the
singularity. Those questions can only be addressed in the classical regime.

A preliminary step is to elucidate at which scale the classical picture of black hole breaks down. For
most quantum systems, the classical description is reliable up to Planck scale, lP ∼ 10−35m. One can
naturally think that the description of black holes in General Relativity is valid until a Planck distance
from the singularity [17]. In that regard, the microstate structure should be confined below this scale.
Another approach, related to the Fuzzball proposal, is to conjecture that a highly-entropic quantum
system has a reliable classical description up to a scale of Nα lP . For instance, the scale of reliability of
the two-charge F1-P system is N1/3lP [9]. Moreover, all the three-charge smooth horizonless solutions
differ from the black-hole geometry at Planck’s length from the horizon. Although their description
as black-hole microstates is still subject to discussions, they show at least that the singularity can
be resolved much further than the Planck’s length. Moreover, String Theory is dotted with many
well-known examples where singularities are resolved at large scales such as Polchinski Strassler [10],
Klebanov-Strassler [18] or the LLM geometries [19]. Therefore, it can be confidently stated that the
effects of quantum gravity can occur at macroscopic distance from the classical singularity and possibly
at the horizon scale.

• The information loss:

The last statement helps considerably to resolve the paradox of the information loss. In the original
Hawking calculation, the radiation is emitted in the vicinity of the horizon, in the vacuum, away from
the location of the black-hole singularity. The Hawking quanta can not easily carry information from
the interior. However, if the near-horizon geometry should be replaced by some fuzzy structures, the
radiation can carry information about the microstates and can be unitary [20].

Once again, this is still at the level of a postulate and explicit computations and evidence are
needed. Moreover, other scenarios have developed unitary mechanisms allowing information to escape
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or partially escape without the need for fuzzballs. One can refer non-exhaustively to the soft hair on
black holes [21] or to the information recovery from double-trace deformations [22].

However, the most naive scenario, that consists in quantum corrections to the semiclassical Hawk-
ing’s computation, has been excluded. Indeed, Hawking’s computation is based on quantum field
theories on a classical curved background. In [20], it has been shown that quantum corrections on the
near-horizon region of black holes cannot completely restore unitarity.

A curious reader may also wonder why the failure of unitarity is not considered a plausible sce-
nario. String Theory is a quantum theory of gravity that naturally preserves unitarity. In addition,
the AdS/CFT correspondence provides a direct counterexample. Indeed, asymptotically AdS black
hole must have a dual description within a unitary conformal field theory. In that sense, any physical
process must be unitary.

All those arguments and new open questions represent a major step further in our understanding of
black holes. However, they were conducted in the context of supersymmetric and extremal solutions.
They must be considered as guidelines for addressing similar issues to non-supersymmetric and non-
extremal solutions, which are much less understood.

Contributions and Organization of the Manuscript

This thesis addresses black-hole physics through the lens of the fuzzball proposal and the microstate
geometry program. The major part of the discussion will be conducted in the low-energy limit of String
Theory, that is in Supergravity. We will self-consistently introduce and review the works [23–29] that
we hope have given more weight to the proposal.

The thesis is made up of three main parts. Part I introduces the basic materials and gives a
review of the microstate geometry program. Part II gathers the works [23, 24, 26–28] which aimed
at constructing new classes of smooth horizonless geometries, supersymmetric or non-supersymmetric
ones. Finally, Part III tackles deeper questions related to the black-hole puzzles discussed above [25,29].

In the first chapter, we introduce basic notions of General relativity leading to the construction of
black holes. We also discuss the laws of black-hole thermodynamics. We describe their properties and
their paradoxes in slightly more details than in the present introduction.

In Chapter 3, we review the supergravity frameworks used in this thesis. We self-consistently
start with the “mother” theory in eleven dimensions and the ten-dimensional type IIA and type IIB
Supergravities. We review the different dualities that relate them. We aim to construct three-charge
solutions valid in the same regime as the five-dimensional black hole or six-dimensional black string.
We construct five- and six-dimensional ungauged Supergravities by dimensional reduction of type IIB
and eleven-dimensional Supergravities.

In Chapter 4, we derive the equations of motion for supersymmetric solutions in five and six dimen-
sions. We give the brane-bound-state pictures of those solutions from an eleven- and ten-dimensional
perspective. We show that the three-charge supersymmetric black-hole solutions coexist with smooth
horizonless solutions that resemble the black holes up to the horizon scale. In particular, we review
the construction of smooth bubbling solutions in five dimensions and Superstrata in six dimensions and
describe them as brane bound states in eleven and ten dimensions. In the last section of this chapter,
we briefly discuss the non-supersymmetric solutions. We first detail the properties of the Cvetic-Youm
black hole and its near-horizon extremal Kerr geometry. Then, we construct the family of almost-BPS
bubbling solutions.
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According to the fuzzball proposal, those smooth solutions must be viewed as black-hole mi-
crostates. The “Holy Grail” of the microstate geometry program is to construct “eS” such solutions
or, in the first instance, to construct very large classes of them.

Chapter 5 is devoted to the smooth bubbling solutions in five dimensions at gsN � 1. First
of all, we show that a class of such solutions has peculiar properties that have not been noticed so
far. It is well-known that brane bound states can decay at walls of marginal stability by changing the
background at large distance. For instance, a brane configuration can perfectly live in an asymptotically
flat background but a change to asymptotically AdS3 can make the configuration disappear. Obviously,
a black hole is independent on the asymptotics in which it is embedded. Typical black-hole microstates
must then share this characteristic. We show that some bubbling solutions are still highly dependent
on the asymptotic background, even when the solutions develop a very long throat. In a second
section, we construct the largest known family of smooth bubbling solutions [23]. Such a construction
is complicated to achieve due to the hardly-manageable regularity constraints governing bubbling
solutions. Then, by analyzing the properties of this family, we show that bubbling solutions can
have an arbitrarily low angular momentum [24]. Before this work, it was commonly thought that
such solutions were almost-maximally spinning and that Superstrata were the only known microstate
geometries with low angular momentum.

In Chapter 6 we construct the “eS” brane bound states of a specific brane system at gsN � 1 [26].
We consider the system with pure D6-D2-D2-D2 charges. At large charges, this system corresponds to
a black hole dual to the D1-D5-P black hole. With pure charges, that is charges equal one, the number
of states is microscopically 12. We construct the 12 brane bound states in the Coulomb branch as
bubbling solutions. For large charges, they might describe “near-horizon limit” of fuzzballs. Thus, for
this specific low-charge example, we show that the “eS” states of a “primitive” three-charge black hole
are recovered as fuzzball-like states.

In Chapter 7, we review a crucial step forward in the construction of “the most general” single-
mode Superstratum [28]. We use a hybrid of the original superstratum mode [30] and the supercharged
mode [31] to construct single-mode Superstrata that still have free classical moduli after fixing the
asymptotic charges of the system. We show that those hybrid modes are the elementary building
blocks of generic multi-mode Superstrata parametrized by arbitrary functions of three independent
variables. These multi-mode Superstrata form the largest family of solutions to the Einstein’s equation
ever constructed.

In Chapter 8, we build the first family of smooth bubbling microstate geometries that are asymp-
totic to the near-horizon region of extremal five-dimensional Kerr black holes [27]. Nearly extremal
Kerr black holes were observed in the sky. This work represents an important advance towards de-
scribing the microstate structure of observable black holes.

The strategy of the microstate geometry program is not only about recovering the phase space with
smooth horizonless solutions in the black-hole regime. First, it is crucial to examine how it clarifies
the information loss paradox. Second, microstate geometries are also very useful tools for testing and
learning about AdS/CFT correspondences in various dimensions.

Chapter 9 investigates the implication of microstate geometries in the context of the AdS2/CFT1

correspondence [25]. The extremal supersymmetric three-charge black holes develop an AdS2 near-
horizon limit. However, any finite-energy perturbations in global AdS2 destroy either the ultraviolet
(UV) or the infrared (IR). This unusual feature led the community to think that holography in AdS2 is
subtle and very different from other AdSD+1/CFTD correspondences. That is, understanding quantum
gravity in asymptotically AdS2 spacetimes is crucial. We show that the microstate geometries have a
“near-horizon” limit similar to that of the black hole. This leads to asymptotically AdS2 geometries
which cap off smoothly in the IR. These geometries satisfy the zero-angular momentum conjecture
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according to which any typical black-hole microstates in five dimensions must have one zero angular
momentum out of two. Moreover, we argue that all the ground states of a non-trivial CFT1 must
have dual geometries which break conformal invariance in the IR. In other words, the geometries must
cap off like fuzzballs. A corollary is that uncapped Poincaré AdS2 is not dual to any ground state of
a non-trivial CFT1. From this statement, we argue that the AdS2/CFT1 correspondence follows the
usual holographic philosophy. We show that the geometries dual to the CFT1 ground states support
an infinite tower of non-supersymmetric excitations thanks to the presence of an IR cap. Thus, the
work of [25] gives the beginning of a proof for the fuzzball proposal. It does not show that all “eS”
black-hole microstates are fuzzballs. It shows that, if the CFT1 that gives rise to the black-hole entropy
is not trivial, the “eS” ground states are dual to geometries that end with a cap in the IR.

In Chapter 10, we study the scattering process in microstate geometries by computing boundary-
to-boundary scalar Green functions [29]. This helps to elucidate how unitarity is restored and how
information escapes from black-hole backgrounds. It is commonly accepted that black holes are very
chaotic objects due to a large number of microstates. For the D1-D5-P black hole, when a scalar
wave is emitted from the boundary, the Green function decays exponentially over time as the wave is
absorbed by the hole. Then, after a long period of time, it is expected that the microstate structure
will begin to influence the physics: the Green function increases again and reaches a plateau with large
random fluctuations. This long period is of the order of N1N5 for a D1-D5-P black hole where N1

and N5 corresponds to the number of D1 and D5 branes respectively. In this chapter, we develop a
brand-new technique that allows to compute Green functions in arbitrarily-complicated asymptotically-
AdS backgrounds. We apply this technique to a specific family of Superstrata. We show that the
response function of a probe scalar, in momentum space, is essentially given by the pole structure of
the cap modulated by the black-hole response function. In position space, this translates into a sharp
exponential black-hole-like decay at short time followed by evenly spaced “echoes from the cap,” with
period ∼ N1N5. Those echoes differ from the sporadic expectations. This is mainly due to the fact
that we are probing only one highly-coherent microstate geometry with a specific highly-redshifted
AdS3 cap. Thus, considering an ensemble of microstates should average slightly-different echoes and
gives the expected random fluctuations. Nevertheless, this is the first computation in the black-hole
regime showing how non-trivial structure at the horizon-scale allows the information to escape in a
unitary process.

We join in the Appendix all the additional materials of the different chapters. The appendixes are
classified according to the chapters they correspond to.

In the last chapter, we briefly take stock of what has been done in this thesis. We also sketch few
open questions that we would like to explore in the near future.



Chapter 1

Introduction en Français

En science, l’Univers définit ce qui peut être gouverné de façon univoque par des lois fondamentales.
En ce sens, notre notion d’Univers n’a jamais cessé de crôıtre au cours des siècles. Dans l’Antiquité,
elle était très limitée dans l’espace et dans le temps par la théorie des cinq éléments classiques, la terre,
l’eau, l’air, le feu et l’éther, et par le géocentrisme. Grâce à d’innombrables percées, telles que les lois de
Newton, les lois de Kepler, la théorie de Maxwell, la classification de Mendelëıev, etc., notre Univers a
évolué de l’échelle atomique celle du système solaire. Chaque pas en avant a toujours été rendu possible
par l’exploitation de comportements singuliers à la limite de notre conception dominante de l’Univers.
Ces comportements singuliers ont été observés à travers des expériences ou ont émergé de divergences
théoriques par rapport aux théories existentes. En physique, de nouvelles théories surgissent toujours
en incluant les degrés de liberté essentiels et nécessaires pour résoudre les singularités.

Dans le 20ième siècle, la liste des éléments fondamentaux et les quatre interactions fondamentales
composant l’Univers étaient bien établies. D’un côté, le modèle standard a unifié à haute énergie les
interactions électromagnétiques, faibles et fortes dans un cadre de théorie des champs quantiques. Elle
a décrit avec grand succès la dynamique des éléments sous ces interactions à n’importe quelle échelle
où la gravité est négligeable. D’un autre côté, l’interaction gravitationnelle a été capturée comme une
déformation spatio-temporelle de l’échelle de l’atome à la taille de l’univers observable. Inspirée par
le modèle Standard, la notion d’une théorie du tout unifiant toutes les interactions à haute énergie a
émergé. Il faut pour cela quantifier la gravité dans une théorie de la gravité. Cependant, en raison de
la nature géométrique de la gravité, la quantification directe a été confrontée à des problèmes majeurs.
La théorie des cordes est une théorie quantique de la gravité basée sur la classification des éléments
fondamentaux en objets étendus dans des dimensions supérieures comme les cordes.

L’unification de la Relativité Générale et de la Mécanique Quantique n’est pas le fantasme de
théoriciens. Même si les deux cadres ont été testés expérimentalement avec une grande précision dans
leurs domaines de validité, l’image de l’Univers reste limitée et leur incompatibilité donne lieu à des
paradoxes non résolus. Tout d’abord, d’après les observations, la matière bien décrite par ces théories
ne représente que 15% de la densité globale et 68% de l’énergie permettant à l’expansion de l’Univers
d’accélérer est inconnue. Leurs noms, matière noire et énergie noire, sont les seules caractéristiques
largement partagées par la communauté scientifique. Deuxièmement, la compréhension de notre monde
est limitée par les échelles où la description théorique cesse d’être valide. Si le modèle Standard est
naturellement protégé des divergences, la Relativité Générale ne l’est pas. La Relativité Générale a
deux comportements singuliers inhérents qui délimitent le bord de l’Univers tel que nous le connaissons
aujourd’hui. Premièrement, la singularité initiale, ou big bang, correspond au moment la plus éloignée
lorsque la taille de l’Univers était de l’ordre de l’échelle de Planck. Deuxièmement, la théorie contient
aussi des singularités de type “trou noir ” où la courbure de l’espace-temps diverge sous de fortes
déformations de masses compactes. Ces deux singularités se situent à la frontière théorique commune
entre la relativité générale et la mécanique quantique et doivent être résolues par une théorie quantique
de la gravité. Parce que le voyage dans le temps jusqu’aux premières nanosecondes de notre Univers
n’est pas encore planifié, les trous noirs sont le principal laboratoire théorique et expérimental pour

9
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tester les théories quantiques de la gravité comme la théorie des cordes.

Le mystère des trous noirs

Les trous noirs ont d’abord été prédits théoriquement avant d’être observés récemment par détection des
ondes gravitationnelles [1] ou par observation directe [2]. Ils sont censés être produits par l’effondrement
gravitationnel d’étoiles supermassives. Dans la Relativité Générale, les trous noirs stationnaires sont
décrits comme une masse et une charge compactes induisant une singularité spatio-temporelle et un
moment angulaire induisant une rotation de l’espace-temps. La singularité est habillée d’une hyper-
surface nulle, appelée horizon des événements, délimitant deux régions : l’intérieur du trou noir et
l’extérieur. A l’intérieur, rien, pas même la lumière, ne peut s’échapper et le trou noir est purement
absorbant. Par conséquent, pour un observateur éloigné, un trou noir est complètement caractérisé
par ses trois grandeurs macroscopiques. Cependant, les trous noirs se comportent comme des corps
noirs. Leur entropie, ou entropie de Beckestein-Hawking, est proportionnelle à la surface de l’horizon
et ils ont une température. Un calcul semi-classique mené par Hawking suggère que cette température
est accompagnée d’un rayonnement thermique jusqu’à évaporation complète.

Nous avons été vague dans la description, nous allons maintenant développer les trois principales
énigmes de la physique des trous noirs :

• Le paradoxe de l’entropie:

L’entropie d’un trou noir est énorme, de l’ordre de sa masse au carré. Comme pour tout objet en-
tropique, une description microscopique en termes de grande dégénérescence d’états devraient exister.
Les micro-états “eS” doivent être reliés via un ensemble statistique à la description macroscopique
des trous noirs dans la Relativité Générale. On peut näıvement se demander si la Relativité Générale
peut aussi fournir une description de ces micro-états. Le “no-hair theorem” stipule qu’un trou noir est
défini de façon unique par les quantités externes et que toutes les autres informations qui y sont jetées
sont perdues. Ceci forme un “no-go theorem” pour construire des structures non triviales à l’échelle
de l’horizon à l’intérieur de la relativité générale.

Par conséquent, une théorie quantique de la gravité doit fournir les degrés de liberté nécessaires
pour décrire la nature microétatique des trous noirs.

• Le paradoxe de l’information:

L’évaporation des trous noirs donne lieu à un conflit conceptuel entre la Mécanique quantique et la
Relativité générale. Un trou noir peut être produit par l’effondrement gravitationnel d’un état pur
alors qu’il ne rayonne que des états mixtes thermiques. Ainsi, le principe d’unitarité de la Mécanique
Quantique est apparemment miné par la gravité. Deux choix s’offrent à nous : soit on peut construire
la gravité quantique sans la pierre angulaire de l’unitarité de la Mécanique quantique comme l’a suggéré
Hawking, soit on peut construire une théorie de la gravité quantique unitaire et trouver un processus
par lequel l’information peut sortir d’un trou noir. Ce dernier scénario est généralement le scénario
préféré pour la plupart des théories quantiques de la gravité et le fait de s’attaquer au paradoxe de
l’information est un défi majeur pour leur consistence.

• La singularité centrale:

Le soleil ne s’effondre pas sous son propre poids grâce à des réactions nucléaires dans son noyau. La
stabilité du soleil peut être modélisée en activant les bons degrés de liberté en relativité générale. La
singularité du trou noir résulte de l’absence de degrés quantiques de liberté et devrait être remplacée
par la prise en compte des corrections quantiques. La question principale est de déterminer à quelle
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échelle de la singularité l’image classique commence à ne plus être valide. Cette question est également
étroitement liée à celle de la structure des micro-états. En effet, si cette structure peut avoir un sens
géométrique, elle est censée résoudre naturellement la singularité.

L’approche de la Théorie des Cordes

Depuis les années 60, la théorie des cordes est un candidat très prometteur pour la gravité quantique.
Son développement progressif au fil des ans a fourni un cadre puissant pour comprendre la nature
des trous noirs. La théorie des cordes est basée sur l’existence de supersymétries entre les fermions
et les bosons. Cela permet la connexion non triviale entre la symétrie spatio-temporelle du groupe de
Poincaré et les symétries internes de jauge des autres interactions. La cohérence de la théorie fixe le
nombre total de dimensions spatio-temporelles à 10 ou peut-être 11. Tenons-nous en aux théories des
cordes à dix dimensions pour plus de clarté. Les six dimensions supplémentaires doivent former une
variété compacte relativement petite afin de ne pas être en contradiction avec notre monde quotidien
en quatre dimensions. De plus, une particule ponctuelle en quatre dimensions peut maintenant avoir
une géométrie non triviale le long des dimensions supplémentaires. La corde fondamentale est la plus
primitive mais il existe aussi des objets de plus grande dimension tels que membranes. Une corde est
décrite par sa string length, ls, et son string coupling, gs. Les interactions entre les cordes définissent
des surfaces bidimensionnelles, appelées “world-sheets”, qui évitent la présence de singularités locales,
singularités coutumières dans les théories quantiques des champs habituelles. Ainsi, la Théorie des
Cordes est naturellement “UV complete”. De plus, la Théorie des cordes requiert la présence d’un
champ de spin 2, le graviton, et incorpore ainsi la Relativité Générale à basse énergie. De l’autre côté,
les groupes de jauges du modèle standard et leur contenu de matières peuvent également être inclus dans
la théorie des cordes même s’il n’y a pas d’exigence spéciale pour avoir le groupe SU(3)×SU(2)×U(1).

Dans la Théorie des cordes, les objets fondamentaux sont représentés par des membranes interagis-
sant avec des cordes ouvertes ou fermées. Les configurations supersymétriques de N membranes ont
le grand avantage d’avoir des quantités invariantes selon leurs modules comme l’entropie par exemple.
Ainsi, ces quantités peuvent être obtenues pour toute valeur de gs qui convient le mieux au calcul.
Deux régimes sont particulièrement intéressants (voir Fig. 1.1). Les deux sont à gs � 1 où les “stringy”
corrections sont négligeables et où la constante de Newton, G, est négligeable comme dans la limite
classique de la Relativité Générale. Le régime de supergravité est de gsN . Cela correspond à avoir fixé
“G.M”, les membranes réagissent en retour et déforment l’espace-temps (voir Fig.1.1). À gsN faible,
les membranes n’influencent pas leur environnement et sont des objets statiques lourds dont des cordes
ouvertes faiblement couplées sont tendues entre elles. La physique des membranes est donnée par une
théorie de champ libre. Ainsi, les micro-états de systêmes supersymétriques de membranes ont deux
descriptions équivalentes dans deux cadres apparemment différents. C’est ce qui a guidé la découverte
de la correspondance AdS/CFT. La correspondance avait initialement établi un lien entre des théories
de Super Yang-Mills faiblement couplés à gsN � 1 à des théories de gravité AdS5 à gsN � 1 [3] avant
de s’enrichir considérablement (voir [4] pour un aperçu).

Ainsi, la théorie des cordes offre un cadre cohérent de gravité quantique pour répondre au mystère
du trou noir. Nous passons brièvement en revue l’état de l’art et les questions en suspens dans ce qui
suit :

• Le paradoxe de l’entropie:

L’une des réussites les plus importantes de la Théorie des cordes est la construction des degrés micro-
scopiques de liberté des trous noirs supersymétriques en tant qu’états liés de cordes et de membranes
à très faible couplage.

Tout d’abord, cela a été fait pour le système supersymétrique à deux charges. Il a été initialement
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Figure 1.1: Les régimes de paramètres en théorie des cordes (le graphique est tiré de [5]).

dérivé dans le cadre F1-P où le système correspond à un grand nombre N de cordes fondamentales
F1 avec des momentum modes P sur elles. A gsN faibles, l’entropie résulte des différentes manières
dont les modes P peuvent être répartis entre les différentes harmoniques des cordes. Chaque micro-
état a une représentation bien définie et unique. L’entropie peut être calculée exactement à l’aide
de la formule de Cardy dans la CFT sous-jacente. À gsN large, les configurations s’effondrent en
un point et leurs structures microscopiques disparaissent en formant un trou noir à deux charges.
Le trou noir n’a pas assez de types de charges pour soutenir un horizon d’air non-nul. Cependant,
Sen [6] et Dabholkar [7] ont montré que les “stringy” corrections à l’horizon donnent une entropie de
Bekenstein-Hawking exactement égale à celle obtenue à gsN faible.

Quelques années plus tard, Strominger et Vafa ont étendu les conclusions de Sen au système su-
persymétrique à trois charges [8]. Ils ont travaillé dans le cadre D1-D5-P où le système correspond
à des membranes unidimensionnelles D1 avec des membranes à cinq dimensions D5 partageant une
direction compacte commune et des charges de momentum P1 De même, à gsN faible, chaque état lié
au membrane est identifiable et l’entropie est obtenue par la formule de Cardy. En augmentant gsN ,
les membranes déforment leur espace transversal de six dimensions. À gsN large, la théorie de su-
pergravité contient les solutions de “cordes noires” supersymétriques à six dimensions. La corde noire
peut être réduite dimensionnellement à un trou noir supersymétrique à cinq dimensions autrement
appelé trou noir D1-D5-P. L’air de son horizon des événements correspond exactement au résultat
microscopique.

Ces résultats remarquables ont montré que les trous noirs sont formés par des états liés de mem-
branes. À l’“orbifold point”, leurs degrés de liberté microscopiques sont manifestes. Ils correspondent
à des configurations de membranes avec des cordes ouvertes faiblement couplées. Cependant, leur
sort une fois que la gravité est activée fait toujours l’objet de débats. Les structures des micro-états
disparaissent-elles derrière l’horizon et d’effaçent-elles radicalement de la vue des observateurs éloignés
? Ou se manifestent-elles encore à travers une physique non-triviale à l’échelle de l’horizon ? Admet-
tons que ce dernier scénario pourrait nous donner plus de confiance pour résoudre les deux prochaines
énigmes des trous noirs.

Le second scénario a été soutenu par Mathur et la formulation de la “proposition de Fuzzball”. [9].
La proposition stipule que, dans le régime classique, il existe “eS” solutions non singulières sans horizon
qui ressemblent à un trou noir de loin mais qui diffèrent à proximité de l’horizon. Sur la base de cette

1Le système F1-P considéré par Sen peut être dualisé au système D1-D5. En ce sens, le trou noir
Strominger-Vafa ajoute un autre type de charge au trou noir Sen.
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(a) Trou noir classique. (b) Fuzzball.

Figure 1.2: La proposition Fuzzball et la description schématique de l’intégration bidi-
mensionnelle du trou noir classique en tant que description moyenne des fuzzballs lisses
“eS”.

affirmation, la solution de trou noir classique correspond à la description moyenne d’un système de
solutions qui correspondent à la géométrie du trou noir à l’extérieur de l’horizon, mais qui se terminent
par des géométries lisses dans l’infrarouge (voir Fig.1.2). De telles solutions ne peuvent évidemment pas
exister dans le contexte de la Relativité Générale classique; car cela demande des objets qui grandissent
et ne s’effondrent pas à mesure que la gravité augmente et de tels objets sont fournis par la Théorie
des cordes [10].

De nouveau, en commençant par le système à deux charges, les “eS” solutions singulières F1-
P peuvent être dualisées en “eS” solutions D1-D5, appelées Supertubes. [11–14]. Dans ce cadre, la
singularité est résolue en étant mappée en un monopôle Kaluza-Klein. Chaque solution est sans horizon
et développe une géométrie lisse spécifique proche de l’eventuel horizon. Ainsi, la structure de micro-
états du trou noir à deux charges est encore visible dans le régime de supergravité et les micro-états
sont tous représentés comme des géométries lisses non singulières.

Pour être validée, la proposition doit aborder avec succès le système à trois charges. Le programme
de recherche, “programme de géométrie des micro-état”, a été développé pour accomplir cette vaste
tâche. Depuis lors, de nombreuses solutions à trois charges sans horizon régulières et supersymétriques
ont été construites, comme nous le verrons en détail dans les parties principales de la thèse (voir [15,16]
pour des revues).

• La singularité centrale:

La découverte des degrés microscopiques de liberté des trous noirs est une étape importante, mais
elle ne donne aucune idée à propos du paradoxe de la perte d’information ou de la résolution de la
singularité. Ces questions ne peuvent être traitées que dans le régime classique.

Une étape préliminaire consiste à élucider à quelle échelle l’image classique du trou noir n’est plus
valide. Pour la plupart des systèmes quantiques, la description classique est fiable jusqu’à l’échelle
de Planck, lP ∼ 10−35m. On peut naturellement penser que la description des trous noirs dans la
Relativité Générale est valable jusqu’à une distance de Planck de la singularité [17]. À cet égard, la
structure du micro-état devrait être limitée en dessous de cette échelle. Une autre approche, liée à
la proposition de Fuzzball, consiste à supposer qu’un système quantique hautement entropique a une
description classique fiable jusqu’à une échelle de Nα lP . Par exemple, l’échelle de fiabilité du système
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F1-P à deux charges est de N1/3lP [9]. De plus, toutes les solutions sans horizon lisse à trois charges
diffèrent de la géométrie du trou noir à la longueur de Planck de l’horizon. Bien que leur description
en tant que micro-états à trous noirs fasse encore l’objet de discussions, ils montrent au moins que la
singularité peut être résolue beaucoup plus loin qu’à une distance de Planck de l’horizon. De plus, la
Théorie des cordes est parsemée de nombreux exemples bien connus où les singularités sont résolues
à grande échelle comme Polchinski Strassler [10], Klebanov-Strassler [18] ou LLM géométries [19].
Par conséquent, on peut affirmer en toute confiance que les effets de la gravité quantique peuvent
se produire à une distance macroscopique de la singularité classique et éventuellement à l’échelle de
l’horizon.

• Le paradoxe de la perte d’information:

Le dernier énoncé aide considérablement à résoudre le paradoxe de la perte d’information. Dans
le calcul original de Hawking, le rayonnement est émis à proximité de l’horizon, dans le vide, loin de
l’emplacement du trou noir. Un quanta d’Hawking ne peut pas facilement transporter l’information
de l’intérieur. Cependant, si la géométrie proche de l’horizon doit être remplacée par des structures
de type fuzzball, le rayonnement peut transporter des informations sur les micro-états et peut être
unitaire [20].

Encore une fois, ceci est encore au niveau d’un postulat et des calculs et des preuves explicites
sont nécessaires. De plus, d’autres scénarios ont développé des mécanismes unitaires permettant à
l’information de s’échapper ou de s’échapper partiellement sans avoir besoin de fuzzballs. On peut se
référer de manière non exhaustive aux “soft hair” des trous noirs [21] ou à la récupération d’information
par des déformations de type double-trace [22].

Cependant, le scénario le plus näıf, qui consiste en des corrections quantiques au calcul de Hawking
semi classique, a été exclu. En effet, le calcul de Hawking est basé sur des théories de champs quantiques
dans une géométrie courbe. Dans [20], il a été démontré que les corrections quantiques dans la région
de l’horizon des trous noirs ne peuvent pas restaurer complètement l’unitarité.

Un lecteur curieux peut aussi se demander pourquoi des défauts de l’unitarité ne sont pas con-
sidérés comme un scénario plausible. La théorie des cordes est une théorie quantique de la gravité qui
préserve naturellement l’unitarité. En outre, la correspondance AdS/CFT fournit un contre-exemple
direct. En effet, asymptotiquement, le trou noir AdS doit avoir une double description dans le cadre
d’une théorie de champ conforme unitaire. En ce sens, tout processus physique doit être unitaire.

Tous ces arguments et toutes ces nouvelles questions ouvertes représentent un grand pas en avant
dans notre compréhension des trous noirs. Cependant, elles ont été menées dans le contexte de solutions
supersymétriques et extrêmes. Elles doivent être considérées comme des lignes directrices pour aborder
des questions similaires à celles des solutions non supersymétriques et non extrêmes, qui sont beaucoup
moins bien comprises.

Contributions et Organisation de la Thèse

Cette thèse porte sur la physique des trous noirs à travers la proposition de fuzzball et du programme de
géométrie des micro-états. La majeure partie de la discussion se déroulera dans la limite de basse énergie
de la théorie des cordes, c’est-à-dire en supergravité. Nous présenterons et examinerons de manière
consistentes les travaux [23–29] que nous espérons avoir donné plus de poids à cette proposition.

La thèse se dcompose en trois parties principales. La partie I présente les matériaux de base et donne
un aperçu du programme de géométrie des micro-états. La partie II rassemble les travaux [23,24,26–28]
qui visaient à construire de nouvelles classes de géométries sans horizon lisse, supersymétrique ou non
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supersymétrique. Enfin, la partie III aborde des questions plus profondes liées aux énigmes des trous
noirs discutées ci-dessus [25,29].

Dans le premier chapitre, nous introduisons les notions de base de la relativité générale menant
à la construction de trous noirs. Nous discutons également des lois de la thermodynamique du trou
noir. Nous décrivons leurs propriétés et leurs paradoxes un peu plus en détail que dans la présente
introduction.

Dans le chapitre 2, nous passons en revue les théories de supergravité utilisés dans cette thèse.
Nous commençons par la théorie de la ”mère” en onze dimensions et les supergravités de type IIA et
IIB en dix dimensions. Nous passons en revue les différentes dualités qui les relient. Notre objectif
est de construire des solutions à trois charges dans le même régime que le trou noir à cinq dimensions
ou l’anneau noir à six dimensions. Nous construisons des supergravités non jaugées à cinq et six
dimensions par réduction dimensionnelle du type IIB et des supergravités à onze dimensions.

Dans le chapitre 3, nous dérivons les équations du mouvement pour les solutions supersymétriques
en cinq et six dimensions. Nous donnons les représentations de ses solutions à onze et dix dimensions.
Nous montrons que les solutions de trous noirs supersymétriques à trois charges coexistent avec des
solutions régulières sans horizon qui ressemblent aux trous noirs jusqu’à l’échelle de l’horizon. En
particulier, nous passons en revue la construction de solutions régulières en cinq dimensions et en six
dimensions et les décrivons en onze et dix dimensions comme des états liés de membranes. Dans la
dernière section de ce chapitre, nous abordons brièvement les solutions non supersymétriques. Nous
détaillons d’abord les propriétés du trou noir Cvetic-Youm et sa géométrie proche de l’horizon de type
extrême Kerr. Ensuite, nous construisons la famille des solutions “almost-BPS”.

Selon la proposition de fuzzball, ces solutions régulières doivent être considérées comme des micro-
états de trous noirs. Le “Saint-Graal” du programme de géométrie des micro-états est de construire
“eS” solutions de ce type ou, dans un premier temps, d’en construire de très grandes classes.

Le chapitre 4 est consacré aux solutions “bubbling” régulières en cinq dimensions à gsN � 1. Tout
d’abord, nous montrons qu’une classe de telles solutions a des propriétés particulières qui n’ont pas été
remarquées jusqu’à présent. Il est bien connu que les états liés de membranes peuvent se désintégrer
à des murs de stabilité marginale en changeant la géométrie à large distance. Par exemple, une
configuration de membranes peut parfaitement vivre dans une géométrie asymptotiquement plat mais
un changement vers asymptotiquement AdS3 peut faire disparâıtre la configuration. évidemment, un
trou noir est indépendant de l’asymptotique dans laquelle il est incrusté. Les micro-états typiques
de trous noirs doivent alors partager cette caractéristique. Nous montrons que certaines solutions
“bubbling” sont encore très dépendantes du fond asymptotique, même lorsque les solutions développent
une très longue gorge. Dans une deuxième section, nous construisons la plus grande famille de solutions
de “bubbling” régulières [23]. Une telle construction est compliquée à réaliser en raison des contraintes
de régularité difficilement gérables des solutions de “bubbling”. Ensuite, en analysant les propriétés
de cette famille, nous montrons que les solutions “bubbling” peuvent avoir un moment angulaire
arbitrairement faible [24]. Avant ces travaux, on pensait généralement que ces solutions tournaient
presque de façon maximale et que les Superstrata étaient les seules géométries de micro-états connues
à faible moment angulaire.

Dans le chapitre 5 nous construisons les “eS” états liés de membranes d’un système de membrane
spécifique à gsN � 1 [26]. Nous considérons le système avec des charges pures D6-D2-D2-D2-D2-D2.
Pour des valeurs de charges plus élevées, ce système correspond à un trou noir dual au trou noir D1-
D5-P. Avec des charges pures, le nombre d’états est microscopiquement de 12. Nous construisons les
12 états liés de membranes dans le régime de Coulomb en tant que solutions “bubbling”. Dans le cas
de larges charges, ils pourraient décrire la ”limite proche de l’horizon” des fuzzball. Ainsi, pour cet
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exemple spécifique de faible charges, nous montrons que les “eS” états d’un trou noir “primitif” à trois
charges sont récupérés.

Dans le chapitre 6, nous passons en revue une étape cruciale dans la construction du Superstratum
monomode ” le plus général ”, cité dans [28]. Nous utilisons un hybride du mode superstratum
original [30] et du mode “supercharged” [31] pour construire des Superstrata à un mode qui ont
encore des modules libres après fixation des charges asymptotiques du système. Nous montrons que
ces modes hybrides possèdent toutes les caractéristiques nécessaires pour être les éléments constitutifs
élémentaires des superstructures à plusieurs modes génériques fluctuant en fonction de trois variables
indépendantes.

Dans le chapitre 7, nous construisons la première famille de géométries de micro-états “bubbling”
régulières qui sont asymptotiques à la région proche de l’horizon des trous noirs extrêmes de Kerr à
cinq dimensions [27]. Des trous noirs Kerr presque extrêmes ont été observés dans le ciel. Ce travail
représente un progrès important dans la description de la structure des micro-états de trous noirs
observables.

La stratégie du programme de géométrie des micro-états ne consiste pas seulement à construire
l’espace des états avec des solutions sans horizon régulières dans le régime du trou noir. Premièrement,
il est crucial d’examiner comment il clarifie le paradoxe de la perte d’information. Deuxièmement, les
géométries de micro-états sont également des outils très utiles pour tester et apprendre les correspon-
dances AdS/CFT dans différentes dimensions.

Le chapitre 8 examine l’implication des géométries des micro-états dans le contexte de la cor-
respondance AdS2/CFT1 [25]. Les trous noirs supersymétriques à trois charges développent une
limite AdS2 dans la région de l’horizon. Cependant, toute perturbation d’énergie finie dans AdS2

détruit soit l’ultraviolet (UV), soit l’infrarouge (IR). Cette caractéristique inhabituelle amène la com-
munauté à penser que l’holographie dans AdS2 est subtile et très différente des autres correspondances
AdSD+1/CFTD. Autrement dit, il est crucial de comprendre la gravité quantique dans des espaces-
temps asymptotiques AdS2. Nous montrons que les géométries des micro-états suivent une limite
”proche de l’horizon” semblable à celle du trou noir. Ceci conduit à des géométries asymptotiquement
AdS2 qui se terminent de maière régulière dans l’IR. Ces géométries satisfont à la conjecture du moment
angulaire zéro selon laquelle tout microétat typique de trou noir en cinq dimensions doit avoir un de
ses deux moments angulaires nul. De plus, nous soutenons que tous les états de base d’une CFT1 non
triviale doivent avoir des géométries duales qui cassent l’invariance conforme dans l’IR. En d’autres
termes, les géométries doivent être de type fuzzball. Un corollaire est que AdS2 n’est dual à aucun
état de base d’une CFT1 non-triviale. De cette déclaration, nous soutenons que la correspondance
AdS2/CFT1 suit la philosophie holographique habituelle. Nous montrons que les géométries duales
aux états de CFT1 soutiennent une tour infinie d’excitations non supersymétriques grâce à la présence
d’un cap dans l’IR. Ainsi, le travail de [25] donne le début d’une preuve pour la proposition fuzzball.
Il ne montre pas que tous les “eS” micro-états de trous noirs sont des fuzzballs. Il montre que, si la
CFT1 qui donne lieu à l’entropie du trou noir n’est pas triviale, les “eS” états de base sont duals aux
géométries qui se terminent par un cap dans l’IR.

Dans le chapitre 9, nous étudions le processus de diffusion des ondes dans les géométries de micro-
états en calculant les Green functions scalaires [29]. Cela permet d’élucider comment l’unitarité est
rétablie et comment l’information s’échappe des micro-états de trous noirs dans le régime des trous
noirs. Il est communément admis que les trous noirs sont des objets très chaotiques en raison du grand
nombre de micro-états. Pour le trou noir D1-D5-P, lorsqu’une onde scalaire est émise à partir des bords
de la géométrie, la Green function décroit exponentiellement au fil du temps à mesure que l’onde est
absorbée par le trou. Puis, après une longue période, on s’attend à ce que la structure des micro-états
commence à influencer : la Green function augmente à nouveau et atteint un plateau avec de larges
fluctuations sporadiques. Cette longue période est de l’ordre de N1N5 pour un trou noir D1-D5-P
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où N1 et N5 correspondent respectivement au nombre de membranes D1 et D5. Dans ce chapitre,
nous développons une toute nouvelle technique qui permet de calculer les Green functions dans des
géométries arbitrairement compliqués asymptotiquement AdS. Nous appliquons cette technique à une
famille spécifique de Superstrata. Nous montrons que la “fonction de réponse” d’une onde scalaire est
essentiellement donnée par la structure de pôles du cap par la fonction de réponse du trou noir. En
coordonnées spatialles, cela se traduit par une forte décroissance exponentielle à court terme suivie
d’échos uniformément espacés venant du cap, toutes les périodes ∼ N1N5. Ces échos diffèrent des
attentes sporadiques. Ceci est principalement dû au fait que nous ne sondons qu’une seule géométrie
de micro-état hautement cohérente avec un cap AdS3 spécifique. Ainsi, si l’on considère un ensemble
de micro-états, on obtient une moyenne d’échos légèrement différents et on obtient les fluctuations
sporadiques attendues. Néanmoins, il s’agit du premier calcul dans le régime du trou noir montrant
comment une structure non triviale à l’échelle de l’horizon permet à l’information de s’échapper dans
un processus unitaire.

Dans le dernier chapitre, nous faisons brièvement le point sur ce qui a été fait dans cette thèse.
Nous esquissons également quelques questions ouvertes que nous aimerions explorer dans un proche
avenir.



Part I

Black holes and their microstates in
Supergravity
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Chapter 2

Black holes in General Relativity and
black-hole thermodynamics

Formulated by Einstein in 1915 [32], General Relativity (GR) is the theory of space, time and grav-
itation based on differential geometry. Its eminent breakthrough is to describe spacetime as a four-
dimensional manifold which can be deformed by whatever fields in the background. The dynamics of
the deformation is captured by the Einstein-Hilbert action relating the Riemann curvature tensor to
the energy-momentum tensors of the fields. GR has been an incredibly efficient framework to describe
the structure of spacetime from the scale of an atom-length (∼ 10−10 m) to the scale of the universe
(∼ 1025 m). The first developments of GR have been lead with great success, even with too great
success, to the description of highly-energetic astrophysical objects and phenomena as Quasars, X-ray
sources, gravitational lensing, gravitational waves and many others. However, the most remarkable
GR outcome is in the prediction of two different singular behaviours inherent of spacetime which must
be resolved by theories beyond GR:

• First, the prediction of the initial singularity or Big Bang. The expanding nature or the de Sitter
nature of our universe leads to a point in the far past at the edge of the validity of GR where the
size of universe matches the size of an atom.

• Second, the prediction of the black-hole singularity from the tragic fate of gravitational collapse
of massive stars.

This thesis principally aims to detail some progresses in the understanding of the second type of
singularity within the framework of String Theory. In this chapter, we introduce the reader to some
basic notions of black-hole physics in General Relativity (GR) in four-dimensions. This is essential to
have them in mind for the overall discussion. Interested readers are greatly advised to browse through
the high-quality books [33,34].

2.1 Black holes in General Relativity

In GR, a black hole is produced by gravitational collapse of matter characterized by a spacetime
singularity separated from the rest of the universe by an event horizon from which no information
can escape. The presence of a horizon makes a stationary solution to be uniquely defined by its
macroscopical quantities which are the mass, charge and angular momentum. This uniqueness theorem
is a corollary of the “no-hair theorem”. This reduces the number of GR black holes to four categories:

- The Schwarzschild black hole (M,Q = 0, J = 0).

- The Kerr black hole (M,Q = 0, J).

- The Reissner-Nordström black hole (M,Q, J = 0).

- The Kerr-Newman black hole (M,Q, J).
19
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We first review the Einstein-Hilbert action and how it leads to the Schwarzschild and the more-general
Kerr-Newman solutions. Second, we discuss the thermodynamical description of black holes.

2.1.1 The Einstein-Hilbert action

The key element of GR is to describe gravity as a geometric property of spacetime. The spacetime is
a four-dimensional Riemannian manifold defined by its metric tensor gµν , µ, ν = 1, 2, 3, 4. It can be
deformed in presence of matter fields characterized by their energy-momentum tensors, Tµν , following
the principle of least action of the Einstein-Hilbert action1

SEH =

∫
d4x

√
−det g

[
1

16πG4
R − LM

]
, (2.1.1)

where G4 is the four-dimensional Newton constant, R is the Ricci scalar, and LM is a Lagrangian
depending on the nature of the matter fields. The principle of least action leads to the Einstein
equation

Rµν −
1

2
gµν R = 8πG4 Tµν , (2.1.2)

where Tµν is the energy-momentum tensor of the matter fields defined by

Tµν ≡ −
2√
−det g

δ
(√
−det gLM

)
δgµν

. (2.1.3)

In what will follow, we will be interested in GR with vaccum Tµν = 0 or in GR coupled to an
electromagnetic gauge field Aµ, Tµν = Fµρ Fν

ρ − 1
4gµν Fρσ F

ρσ.

2.1.2 The Schwarzschild black hole

The first black hole solution was found by Schwarzschild in 1916. It is a stationary vacuum solution
to Einstein equation with a spherically symmetric mass distribution of mass M . The four-dimensional
metric is

ds2 = −
(

1− 2G4M

r

)
dt2 +

(
1− 2G4M

r

)−1

dr2 + r2 dΩ2
2 , (2.1.4)

where dΩ2
2 is the metric of the round two-sphere. The origin, r = 0, is the singularity of the black

hole where the curvature becomes infinite. The Schwarzschild radius rH = 2G4M corresponds to a
coordinate singularity and the curvature is finite at this location (see Fig. 2.1a for the two-dimensional
picture of the geometry). The surface r = rH is the event horizon where t goes from a time-like
coordinate for r > rH to a space-like coordinate r < rH and reversely for r. Moreover, a straightforward
computation of radial null geodesics shows that the light-cones close up when approaching the horizon.
A black hole is made of a singularity and a horizon, the horizon delimits two distinct regions: the
interior and the exterior of the black hole. By studying geodesic motion in the background one can
show that the black hole is purely absorbing and nothing can escape from the interior to the exterior.

2.1.3 The Kerr-Newman black hole

The most general stationary axially symmetric black hole solution in GR with a non-vanishing mass
M , angular momentum J and charge Q is the Kerr-Newman black hole. The spacetime metric is

ds2 = − ∆− a2 sin2 θ

Σ
dt2 − 2a

r2 + a2 −∆

Σ
sin2 θ dtdφ +

Σ

∆
dr2

+ Σ dθ2 +
(r2 + a2)2 − a2∆ sin2 θ

Σ
sin2 θ dφ2 ,

(2.1.5)

1We have chosen the cosmological constant to be zero.
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(a) Schwarzschild black hole (b) Kerr-Newman black hole

Figure 2.1: Schematic description of the two-dimensional embedding of black holes in
GR.

where we have defined

Σ ≡ r2 + a2 cos2 θ ,

∆ ≡ r2 − 2MG4 r + Q2G4 + a2 ,

a ≡ JM−1 .

(2.1.6)

The electromagnetic gauge field is

Aµ =

(
Q
√
G4

r

Σ
, 0, 0,−aQ

√
G4

r sin2 θ

Σ

)
. (2.1.7)

Like the Schwarzschild solution, Σ = 0 corresponds to a ring-like curvature singularity. Moreover, there
are two coordinate singularities corresponding to the locations where grr diverges. This determines
two three-surfaces of constant r delimited by an outer horizon, r+, and an inner horizon r−

r± ≡ G4M ±
√
G2

4M
2 −G4Q2 − a2 . (2.1.8)

The Kerr-Newman solution is extremal if those two radii coincide G2
4M

2−G4Q
2− a2 = 0. If G2

4M
2−

G4Q
2 − a2 < 0, there is no horizon and the singularity is naked which is in violation of the cosmic

censorship conjecture [35]. Another point of interest is where gtt vanishes. This corresponds to the
radius2

rE+(θ) ≡ G4M +
√
G2

4M
2 −G4Q2 − a2 cos2 θ . (2.1.9)

This defines a stationary limit surface usually called ergosurface and the region r+ < r < rE+ is usually
referred as the ergosphere. The ergosurface delimits the radius where the time Killing vector, ∂t, goes
from time-like for r > rE+ to space-like for r < rE+ (see Fig. 2.1b). Hence, no physical trajectory can
remain stationary within the ergosphere in any time-independent coordinate system.

2.2 Black hole thermodynamics and Hawking radiation

General Relativity conveys the idea that black holes are purely absorbing objects and any inherent
structure inside the event horizon cannot be accessed from a distant observer. There exists only one

2We take only the largest root of gtt since the other one lies inside the horizon.
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state for a given mass, angular momentum and charge. However, in the early 70s, Bekenstein and
Hawking showed that black holes behave as thermodynamical objects. The word “behave” is carefully
chosen in a sense that a black hole is not described as a gas in a room but a strong analogy and
a one-to-one map between the classical thermodynamics and the black-hole thermodynamics can be
made.

2.2.1 The laws of black hole thermodynamics

Classically, a black hole cannot emit anything and the mass only increases. This led Bekenstein to give
a thermodynamic interpretation by suggesting that [36]

dM = TdS , (2.2.1)

where T is the black hole temperature and S its entropy. The temperature can be classically computed
by requiring that the “Euclideanized” metric is regular at the horizon. Concretely, it requires to take
the near-horizon limit of the Euclidean metric and read the periodicity of the Euclidean time required
by the absence of conical defect

ds2|θ=φ=0 ∝ dr2 + r2

(
2π

β
dτ

)2

,

where β ≡ T−1. For a Schwarzschild and a Kerr-Newman black hole, we have

TSch =
1

8πMG4
, TKN =

r+ − r−
4π (r2

+ + a2)
,

where r± are the inner and outer horizons of the Kerr-Newman black hole (2.1.8). By integrating
(2.2.1), we obtain

SSch = 4πM2G4 , SKN = π (r2
+ + a2) .

For both solutions, the entropy can be written as a function of the horizon area, A,

S =
A

4G4
. (2.2.2)

This relation is the Bekenstein-Hawking entropy formula. It is universally valid for an arbitrary black
hole with a large area in D dimensions by replacing the four-dimensional Newton constant, G4, by the
D-dimensional equivalent, GD. This leads also to associate to the temperature a universal geometric
property at the horizon called surface gravity, κs:

T =
κs
2π

. (2.2.3)

Moreover, Penrose suggested a classical process which allows to extract rotational energy of a black
hole [37]. This modifies the expression (2.2.1) to the first law of black hole thermodynamics

dM =
κs

8πG4
dA + Ω dJ + ΦdQ , (2.2.4)

where Ω is the angular velocity and Φ is the electrostatic potential. The second law states that the
horizon area can never decrease

dA ≥ 0,

in analogy with the positive variation of entropy for thermodynamical objects. Finally, the third law
stipulates that it is impossible to reduce κs to zero by physical process in finite time.
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2.2.2 Hawking radiation

From a thermodynamical point of view, an object at finite temperature emits thermal radiation until
it evaporates. For a black hole, a radiation will necessarily imply a loss of mass and so a decrease of its
horizon area which is in violation of the second law. Thus, the classical description should break down.
This led Hawking to consider quantum corrections at the vicinity of the horizon. The Hawking’s semi-
classical computation consists in computing quantum-pair creation in classical curved background [38].
Broadly speaking, one part of the pair can be absorbed by the black hole whereas the other part will
escape as a physical on-shell particle. From an outside observer, the black hole behaves as a black
body emitting thermal radiation at the temperature computed earlier.

To reconcile Hawking radiation and the second law of black hole thermodynamics, the generalized
second law states that

dStot = dSemit + dSBH ≥ 0 .

The GR picture which claims that nothing can escape from an event horizon is undermined by
quantum effects. Moreover, as a finite black body, black hole should evaporate in finite time. Because
black hole can be produced by a gravitational collapse of a pure state whereas it only radiates thermal
mixed states, Hawking argued that pure states can evolved into mixed states in a quantum gravity
theory. This would imply that the unitary property of quantum mechanics should break down when
gravity is considered. This is referred as the information loss and depicts one of the great conflict
between General Relativity and quantum mechanics.

This chapter should be considered as a technical complement to the Introduction. We have detailed
the prevailing pictures of black holes and we refer the reader to the Introduction for the enunciation
of the three main black-hole mysteries that result from these descriptions.



Chapter 3

Supergravity

In 1967, the Coleman-Mandula theorem [39] gave hard time to the unification of quantum mechanics
and gravity by proving the impossibility of connecting in a non-trivial way the Poincaré group (space-
time symmetries) with internal symmetries (gauge symmetries) into a Lie algebra. A loophole was
given by considering Lie superalgebra by adding generators of a symmetry, called supersymmetry, re-
lating the bosons and fermions of the theory. Since then, supersymmetry is considered a key ingredient
for a quantum theory of gravity.

Supergravity is based on the gauge principle of local supersymmetry and gives a supersymmetric
theory of gravity. It arises as the low-energy limit of Superstring Theory and is then a UV complete
theory. There exist different types of String Theory in ten dimensions: the type I, type IIA, the type
IIB, and the heterotic string theories. The second superstring revolution has unified those theories in
a mother theory in eleven dimensions, the M-theory. The low-energy limit of M-theory is the eleven-
dimensional Supergravity. All other supergravity theories can be obtained by dimensional reduction
and dualities. In this chapter, we review the supergravity frameworks necessary for this thesis. We
self-consistently starts with the eleven-dimensional, type IIA and type IIB theories and discuss the
methodology to construct simple classical solutions in Section 3.1. We then review the duality and
dimensional-reduction rules which relate them in Section 3.2. In Section 3.3, we review the N = (1, 0)
six-dimensional ungauged Supergravity and N = 2 five-dimensional ungauged Supergravity.

3.1 Supergravity frameworks

3.1.1 Eleven-dimensional Supergravity

Eleven-dimensional Supergravity has the largest number of spacetime dimension for a supergravity
theory and was initially constructed by Cremmer, Julia and Scherk [40]. This theory has one super-
symmetry (N = 1) and 32 supercharges carrying an index in the 32-dimensional spinor representation
of SO(1, 10) [41] (see [42] for more details). The theory contains the following massless fields, all in
the supermultiplet of the graviton:

• A spin-2 gravitational field g with 44 degrees of freedom in the traceless symmetric tensor repre-
sentation of SO(9).

• A Majorana spinor gravitino Ψ with 128 degrees of freedom in a vector-spinor representation of
SO(9).

• A three-form gauge field A3 and its field strength F4 = d11A3 with 84 degrees of freedom in the
rank-three antisymmetric tensor representation of SO(9).

One can now wonder what types of objects can source the fields. The gravitational field captures
the dynamics of the spacetime. The off-diagonal terms with a leg along time are scalar fields sourced
by momentum charges P whereas the spatial cross-terms are vector fields sourced by Kaluza-Klein
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monopoles (KKm).
By analogy with electromagnetism, The field F4 can be sourced by magnetic charges. The electric field
is conveniently studied by dualizing into a seven-form:

F7 = ?11F4 −
1

2
A3 ∧ F4 .

In this context, the field F7 can be sourced by electric charges. The magnetic and electric charges
are obtained from the flux-integral of F4 and F7 over the boundary of a five-dimensional and eight-
dimensional volume. Each volume defines a transverse worldvolume of a two-dimensional brane config-
uration (M2) or a five-dimensional brane configuration (M5). In other word, the gauge field A3 couples
electrically to M2-branes and magnetically to M5-branes.

The dynamics of the background in the bosonic sector is given by the following action

(16πG11)S11 =

∫
d11x

√
−g R − 1

2

∫
F4 ∧ ?11F4 +

1

6

∫
A3 ∧ F4 ∧ F4 , (3.1.1)

where ?11 is the Hodge dual with respect to the eleven-dimensional space and the eleven-dimensional
Newton constant is given according to the eleven-dimensional Planck length as

16πG11 = (2π)−1 (2πl
(11)
P )9 . (3.1.2)

In comparison with the Einstein-Hilbert action (2.1.1), the first integral is the purely gravitational term
and the second corresponds to the Lagrangian of the matter fields. In eleven-dimensional Supergravity,
supersymmetry requires that the only bosonic field is a three-dimensional gauge field. This field is the
analogue of the electromagnetic gauge field in four dimensions. The third integral does not contain
the metric and is topological. It is the Chern-Simons term required by supersymmetry. In the next
chapter, we will see how crucial this term will be to construct smooth black-hole-like geometries,
obviating the GR no-go theorem to construct non-singular structure at the horizon scale.

3.1.1.1 Solutions of the equations of motion

In this thesis, we are interested in constructing supergravity solutions which have the same charges,
mass and angular momenta as a black hole. This obviously requires to solve the equations of motion.
The Einstein-Maxwell equations of the eleven-dimensional supergravity action are given by

Rµν −
1

12

(
F4µρστ F4ν

ρστ − 1

12
gµν F

2
4

)
= 0 ,

d11 ?11 F4 +
1

2
F4 ∧ F4 = 0 .

(3.1.3)

Their compact forms hide a very complex structure since the Einstein equations are second-order
coupled non-linear differential equations. Finding solutions directly is a lost cause. An easier way is
to look for solutions which preserve some of the supersymmetries. Such solutions will saturate the
Bogomol’nyi-Prasad-Sommerfield bound (BPS) [43, 44] and have then a mass equal to the sum of its
charges. The number of unbroken supersymmetries is encoded in a set of 32-component Killing spinors
εi which obey the supersymmetric transformation rules

δeAµ = ε̄i ΓA Ψµ ,

δA3µνρ = −3 ε̄i Γ[µν Ψρ] ,

δΨµ = ∇µεi +
1

288

(
Γµ

νρστ F4νρστ − 8 Γρστ F4µρστ

)
εi ,

(3.1.4)
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where we have defined the eleven-dimensional vielbeins eA according to the gravitational field and the
SO(1, 10) Minkowski metric as

gµν dx
µdxν = ηAB e

AeB ,

the 32×32 gamma matrices Γµ and their antisymmetric products

Γµ1µ2...µn = Γ[µ1Γµ2 . . .Γµn] ,

and ∇µ is the covariant derivative. We look for classical configurations. This means that the expecta-
tion value of the fermionic fields should be zero (otherwise, a Lorentz symmetry would not conserve the
vacuum). Thus we assume that the gravitini is frozen, the supersymmetric variations (3.1.4) reduce to
δΨµ = 0. This led to a simpler first order equation. The second step consists in working with bosonic
quantities quadratic in εi called bilinears: ε̄iΓµ1...µnε

j . The simplest non-zero bilinear is

Kµ = ε̄i Γµ ε
i , (3.1.5)

where the indices i are contracted. A rather technical algebraic computation, using Fierz identity
and δΨµ = 0, shows that K is either a time-like or a null Killing vector. If it is time-like and the
equation δΨµ = 0 is satisfied, all the components of the Einstein equations of motion are satisfied.
If it null, all the components except the 00 component are satisfied [45]. Consequently, solutions of
eleven-dimensional Supergravity which preserve Killing spinors εi, where K is time-like, are obtained
by solving the following first order equations

d11 ?11 F4 +
1

2
F4 ∧ F4 = 0 ,

∇µεi +
1

288

(
Γµ

νρστ F4νρστ − 8 Γρστ F4µρστ

)
εi = 0 .

(3.1.6)

In order to get familiar with the construction of supersymmetric solutions, we discuss the solutions
of coincident M2-branes, solutions of coincident M5-branes and the extension to an intersection of
three orthogonal stacks of M2-branes. They are the basic ingredients of the three-charge black hole
solutions and three-charge bubbled solutions. We parametrize the eleven-dimensional space with the
Cartesian coordinates (t, x1, x2 . . . , x10).

• A basic example: a configuration of M2-branes.

We consider a stack of M2-branes at the same locus along the directions (t, x1, x2). The SO(1, 10)
symmetry group is broken into SO(1, 2) × SO(8). As explained in the previous section, the three-
form gauge field is electrically sourced along dt ∧ dx1 ∧ dx2. The Ansatz which is consistent with the
symmetry is

ds2
11 = Z

‖
M2(r)

(
−dt2 + dx2

1 + dx2
2

)
+ Z⊥M2(r)

(
dx2

3 + . . .+ dx2
10

)
,

F4 = d
(
Z

(e)
M2(r)

)
dt ∧ dx1 ∧ dx2 ,

(3.1.7)

where r is the radial coordinate of the eight-dimensional transverse space and Z
‖ /⊥ / (e)
M2 (r) are scalar

warp factors. The stack of branes is at r = 0. The supersymetric equation of motion in (3.1.6) implies,
when µ = M = 0, 1, 2,1

∂M ε = 0 , Z
(e)
M2(r) = Z

‖
M2(r)

3
2 ,

(
1 + Γ012

)
ε = 0 , (3.1.8)

and when µ = 3, 4, . . . , 10

Z
‖
M2(r)

−1 = Z⊥M2(r)
2 , ε = Z

(e)
M2(r)

1
6 ε0 , (3.1.9)

1We drop the index “i” of the Killing spinors for readability.



3. Supergravity 27

where ε0 are constant spinors. Then, the Maxwell equation in (3.1.6) implies

?8d8 ?8 d8

(
Z

(e)
M2(r)

−1
)

= 0 ,

where d8 and ?8 are the exterior derivative and the Hodge dual with respect to the eigth-dimensional
transverse flat space. Thus, we define the scalar warp factor ZM2(r) as

ZM2(r) ≡ Z
(e)
M2(r)

−1 = Z
‖
M2(r)

− 3
2 = Z⊥M2(r)

3 .

The metric and the field strength give

ds2
11 = ZM2(r)

− 2
3
(
−dt2 + dx2

1 + dx2
2

)
+ ZM2(r)

1
3
(
dx2

3 + . . .+ dx2
10

)
,

F4 = d
(
ZM2(r)

−1
)
dt ∧ dx1 ∧ dx2 .

(3.1.10)

The solution is associated to a constant Killing spinor and to a warp factor which satisfy(
1 + Γ012

)
ε0 = 0 ,

?8d8 ?8 d8 ZM2(r) = 0 ,
(3.1.11)

The first equation is just a projection equation: half of the components of ε0 must be set to zero
whereas the other half remain free. Thus, the solution preserves 16 supersymmetries of the 32 initial
ones. They are denoted as 1/2-BPS solutions. The second equation is simply a harmonic equation
over an eight-dimensional base space which is sourced at the brane locus. Generic solutions are

ZM2(r) = 1 +
αM2

r6
.

The coefficient αM2 can be related to the electric M2-charge, QM2 from the flux-integral of the magnetic
field strength over the boundary of an eight-dimensional volume transverse to the branes

QM2 =

∫
S7
∞

F7 = 6 Area(S7)αM2 . (3.1.12)

Moreover, αM2 can be related to the number of M2-branes, NM2, through the generic asymptotic
expansion of the tt metric component for Np p-branes of tension Tp in D dimensions [46]

gtt = −1 +
16πGDNp Tp

(D − 2)Area(SD−p−2)

1

rD−p−3
. (3.1.13)

The tension of a M2-brane is TM2 = 2π
(

2πl
(11)
P

)−3
. From the large-distance behavior of the metric

(3.1.10), this gives

αM2 = 32π2l
(11)
P

6
NM2 . (3.1.14)

As advertised in the preamble of the chapter and in the Introduction, Supergravity is the low-energy
limit of String Theory. One can illustrate this fact and the validity of the supergravity description
using our simple example. The Ricci scalar of the metric (3.1.10) gives

R = − 6α2
M2

(r6 + αM2)
7
3

∼
r→0
−6 (αM2)

− 1
3 ∝

(
l
(11)
P

6
NM2

)− 1
3

. (3.1.15)

Consequently, the curvature becomes very large at the origin for small l
(11)
P

6
NM2 and stringy excitation

starts to be non-negligible. The validity of the classical description requires to have a large number of
branes NM2 � 1.
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• A basic example: a configuration of M5-branes

We consider now a stack of M5-branes at the same locus along the direction (t, x1, . . . , x5). We then
assume a symmetry SO(1, 5) × SO(5). The M5-branes magnetically source the gauge field, this is
better suited to a dual perspective. The Ansatz is then

ds2
11 = Z

‖
M5(r)

(
−dt2 + dx2

1 + . . .+ dx2
5

)
+ Z⊥M5(r)

(
dx2

6 + . . .+ dx2
10

)
,

F7 = d
(
Z

(m)
M5 (r)

)
dt ∧ dx1 ∧ . . . ∧ dx5 ,

(3.1.16)

where r is now the radial coordinate of the five-dimensional transverse space. The equations of motion
(3.1.6) are solved following the same arguments as before. The solution is determined by an unique
warp factor, ZM5(r) and constant Killing spinors ε0

ds2
11 = ZM5(r)

− 1
3
(
−dt2 + dx2

1 + . . .+ dx2
5

)
+ ZM5(r)

2
3
(
dx2

6 + . . .+ dx2
10

)
,

F7 = d
(
ZM5(r)

−1
)
dt ∧ dx1 ∧ . . . ∧ dx5 ,

(3.1.17)

which satisfy the following equations (
1 + Γ012345

)
ε0 = 0 ,

?5d5 ?5 d5 ZM5(r) = 0 ,
(3.1.18)

The solution is also 1/2-BPS and ZM5(r) is a harmonic function of the five-dimensional base space

ZM5 = 1 +
αM5

r3
.

The coefficient αM5 is related to the magnetic M5-brane charge, QM5 from the flux-integral of the
electric field strength over the boundary of a five-dimensional volume

QM5 =

∫
S4
∞

F4 = 3 Area(S4)αM5 . (3.1.19)

The tension of a M5-brane is TM5 = 2π
(

2πl
(11)
P

)−6
. We apply (3.1.13) with the large-distance behavior

of the metric (3.1.17),

αM5 = πl
(11)
P

3
NM5 .

• A basic example: M-brane intersection

An interesting extension of the previous solutions is to consider different stacks of M-branes at the
same location. This is a foretaste of generic 1/8-BPS three-charge solutions and of the construction
of the STU model. Let us consider three orthogonal stacks of M2 branes, along (x1, x2), (x3, x4) and
(x5, x6). The spacetime symmetry is broken into SO(2)1,2 × SO(2)3,4 × SO(2)5,6 × SO(2)7,...,10 which
leads to the Ansatz

ds2
11 = −Z‖(r̂) dt2 + Z

‖
1 (r̂)

(
dx2

1 + dx2
2

)
+ Z

‖
2 (r̂)

(
dx2

3 + dx2
4

)
+ Z

‖
3 (r̂)

(
dx2

5 + dx2
6

)
+ Z⊥(r̂)

(
dx2

7 + dx2
8 + dx2

9 + dx2
10

)
,

F4 = d
(
Z1(r̂)−1

)
dt ∧ dx1 ∧ dx2 + d

(
Z2(r̂)−1

)
dt ∧ dx3 ∧ dx4 + d

(
Z3(r̂)−1

)
dt ∧ dx5 ∧ dx6 ,

(3.1.20)

where r̂ is the radial coordinate of the four-dimensional transverse space to the branes. As before, we
decompose the supersymetric equation (3.1.6) along the time coordinate, the two-cycles wrapped by
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the branes and the transverse space. This leads to express the metric deformations according to the
electric sources, ZI , I = 1, 2, 3, and to identify constant Killing spinors ε0:

Z‖(r̂) = (Z1(r̂)Z2(r̂)Z3(r̂))−
2
3 , Z⊥(r̂) = (Z1(r̂)Z2(r̂)Z3(r̂))

1
3 ,

Z
‖
I (r̂) =

|εIJK |
2

(
ZJ(r̂)ZK(r̂)

ZI(r̂)2

) 1
3

, ?4d4 ?4 d4 ZI(r̂) = 0 , I = 1, 2, 3 ,(
1 + Γ012

)
ε0 =

(
1 + Γ034

)
ε0 =

(
1 + Γ056

)
ε0 = 0 ,

(3.1.21)

where εIJK is three-dimensional Levi-Civita symbol. The projection relations imply that there are
only four Killing spinors and that the solution is indeed 1/8-BPS. The metric and the field strength is
then given by2

ds2
11 = − (Z1Z2Z3)−

2
3 dt2 + (Z1Z2Z3)

1
3
(
dx2

7 + dx2
8 + dx2

9 + dx2
10

)
+

(
Z2Z3

Z2
1

) 1
3 (
dx2

1 + dx2
2

)
+

(
Z1Z3

Z2
2

) 1
3 (
dx2

3 + dx2
4

)
+

(
Z1Z2

Z2
3

) 1
3 (
dx2

5 + dx2
6

)
F4 = d

(
Z1
−1
)
dt ∧ dx1 ∧ dx2 + d

(
Z2
−1
)
dt ∧ dx3 ∧ dx4 + d

(
Z3
−1
)
dt ∧ dx5 ∧ dx6 .

(3.1.22)

Each warp factor is determined by a harmonic equation on the four-dimensional transverse space which
can be sourced only at the brane locus r̂ = 0. Thus,

ZI(r̂) = 1 +
αI
r̂2
, I = 1, 2, 3 .

The coefficient αI is related to the electric charge of the corresponding stack of M2-branes, QI , from
the flux-integral of the magnetic field strength over the boundary of the eight-dimensional volume
transverse to the branes. This leads to the same computation as for a single stack of M2-branes:

αI = 32π2l
(11)
P

6
NI , I = 1, 2, 3 , (3.1.23)

where NI is the number of M2-branes in the Ith stack.

There are other possible BPS solutions that belong to the class of intersecting branes, which can be
derived by suitably composing with the solutions above. In Section 3.3.1, we will discuss the general
solutions of an arbitrary number of stacks of M2-branes and M5-branes with additional KKm and
P charges within the dimensional reduction to N = 2 five-dimensional Supergravity. The stacks of
M2-branes and M5-branes will be wrapping appropriate two-cycles and five-cycles in order to preserve
4 supercharges. Before going into that discussion, let us review the two other supergravity frames used
in this thesis and their duality relations.

3.1.2 Type IIA and IIB Supergravity

The ten-dimensional type IIA and type IIB supergravity theories were discovered in the eighties by
Schwarz and West for IIB [47–49] and Romans for IIA [50]. Type IIA (resp. type IIB) has N = (1, 1)
(resp. N = (2, 0)) supersymmetries with opposite chirality (resp. same chirality). Both theories have
16 real supercharges corresponding to two Majorana-Weyl spinors. The bosonic degrees of freedom
can be decomposed in a Neveu-Schwarz Neveu-Schwarz sector (NS-NS) and a Ramond-Ramond (R-R)
sector. Their field content in the NS-NS sector is identical:

• A spin-2 gravitational field g.

2We omit the “(r̂)” for readability.
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Theory M IIA IIB

Fields A3 B2 C(1) C(3) C(5) C(7) B2 C(2) C(4) C(6)

Electric M2 F1 D0 D2 D4 D6 F1 D1 D3 D5

Magnetic M5 NS5 D6 D4 D2 D0 NS5 D5 D3 D1

Table 3.1: Branes and gauge fields in eleven-dimensional and ten-dimensional supergrav-
ity theories. We have omitted the field C(0) (resp. C(8)) which couples electrically (resp.
magnetically) to D(-1)-branes and magnetically (resp. electrically) to D7-branes. They
are special and required a particular treatment.

• An antisymmetric two-form gauge field B2 and its three-form field strength H3 = d10B2.

• A scalar field Φ called dilaton.

The R-R sector contains antisymmetric p-form gauge fields, C(p), and their field strengths F (p+1),
p ≤ 8. Type IIA contains the forms with p odd whereas type IIB contains the p even.

As the eleven-dimensional Supergravity, the gravitational field gives rise to the spacetime metric.
The off-diagonal terms with a leg along time are sourced by P waves whereas the spatial off-diagonal
vector fields corresponds to KKm charges. The value of the dilaton at the boundary encodes the
string coupling through the relation eΦ∞ = gs. Furthermore, type IIA and IIB supergravity theories
have a larger number of type of gauge fields compared to eleven-dimensional Supergravity. This also
enlarges the number of classical objects which couple to them. The NS-NS gauge fields will couple with
objects related to strings with NS boundary conditions whereas the R-R gauge fields will couple with
objects related to Dirichlet boundary condition. Following the same arguments as in Section 3.1.1,
the NS-NS gauge field, B2, couples electrically to a fundamental strings (F1) and magnetically to a
five-dimensional branes called NS5-branes. The R-R gauge field, C(p), couples electrically to D(p− 1)-
branes and magnetically to D(7− p)-branes. A Dp-brane traces out a p+ 1 dimensional worldvolume
in space-time. By simple inversion, a D(3+ q)-brane, −4 ≤ q ≤ 4, induces an electric charge in C(4+|q|)

and a magnetic charge in C(4−|q|). This leads to the duality rules

F̄ (5+|q|) = ?10F̄
(5−|q|) , −4 ≤ q ≤ 4 , (3.1.24)

where we have defined

F̄ (p) =

{
F (p) +H3 ∧ C(p−3) if p ≥ 3

F (p) if p < 3
. (3.1.25)

The duality relation fixes entirely the C(4+|q|) gauge fields. In the Table 3.1, we have summarized the
fundamental electric-magnetic elements in the ten-dimensional and eleven-dimensional Supergravities
and their couplings with the gauge fields.

The bosonic sector of the ten-dimensional action can be decomposed naturally as follows

S10 = SNS + SR + SCS . (3.1.26)

The NS-NS part is common to type IIA and type IIB

(16πG10)SNS =

∫
d10x

√
−g e−2Φ (R + 4 d10Φ ∧ ?10d10Φ) −

∫
e−2ΦH3 ∧ ?10H3 , (3.1.27)

where the ten-dimensional Newton constant is given according to the string length ls and the string
coupling as

16πG10 = (2π)−1 g2
s (2πls)

8.
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The contributions differ for the R-R and for the Chern-Simons terms

(16πG10)SIIA
R = −

∫
F (2) ∧ ?10F

(2) + F̄ (4) ∧ ?10F̄
(4) , (16πG10)SIIA

CS = −
∫
B2 ∧ F (4) ∧ F (4) ,

(16πG10)SIIB
R = −

∫
F (1) ∧ ?10F

(1) + F̄ (3) ∧ ?10F̄
(3) +

1

2
F̄ (5) ∧ ?10F̄

(5) ,

(16πG10)SIIB
CS = −

∫
C(4) ∧H3 ∧ F (3) .

(3.1.28)

The NS-NS and R-R parts of the action are the extension of the Einstein Hilbert action (2.1.1). The
NS-NS action, (3.1.27), contains the purely gravitational term

√
−gR, the Lagrangian of a massless

scalar field Φ and the Lagrangian of a two-form gauge fields whereas the R-R actions, (3.1.28), contain
several Lagrangian of interacting p-form gauge fields. One notices a slight difference in the purely
gravitational term which is a consequence of the choice of metric frame. The actions are written in
the string frame. The Einstein frame, characterized by a term

√
−gE R, is obtained by rescaling

gEµν = e
Φ
2 gµν .

In type IIB Supergravity, the self-duality of the five-form field strength F̄ (5) which couples electrically
and magnetically to D3-branes is required in addition to the equations of motion.

• Supersymmetric solution example: a stack of Dp-branes

In a similar fashion to M-brane solutions, one can derive the background and the fields sourced
by a stack of coincident Dp-branes in type II Supergravity. We consider the Cartesian coordinates
(t, x1, . . . , x10). The SO(1, 9) symmetry is broken into SO(1, p) × SO(9 − p). The solutions can be
obtained from the type IIA or type IIB action assuming that the solution preserves Killing spinors and
working with the bilinears. They can be also derived by performing a sequence of duality transforma-
tions from the M-brane solutions that we will review in the next section. The Ansatz for the gauge
fields and the metric in the string frame is

ds2
10 = Z

− 1
2

Dp

(
−dt2 + dx2

1 + . . .+ dx2
p

)
+ Z

1
2
Dp

(
dx2

p+1 + . . .+ dx2
10

)
,

e2Φ = Z
3−p

2
Dp , B2 = 0 ,

C(p+1) = −
(
Z−1
Dp − 1

)
dt ∧ dx1 ∧ . . . ∧ dxp , C(p′) = 0 , p′ 6= p+ 1, 7− p ,

(3.1.29)

The solution is a 1/2-BPS solution of the Einstein equation if it satisfies the Maxwell equation which
reduces to a Laplace equation in the 9− p transverse space

?9−pd9−p ?9−p d9−p ZDp = 0 , =⇒ ZDp = 1 +
αDp
r7−p ,

where r is the radial coordinate of the transverse space. The supergravity charge αDp can be related to
the number of Dp branes by integrating the flux on a boundary of the transverse space as for M-branes.
The end result gives

αDp = (4π)
5−p

2 Γ

(
7− p

2

)
l7−ps gsNDp .

Once again, one can evaluate the regime of validity of the supergravity description. The geometry
is singular at r → 0 and then the geometry cannot be reliable everywhere. By computing the Ricci
scalar, one can check that if one wants the geometry to be trustable for r & ls, we need αDp r

p−7 ∼ 1.
This requires gsNDp � 1 as advertised in the Introduction of the thesis.

In the next section, we review the dualities existing between supergravity theories and the Kaluza-
Klein dimensional reduction. This will allow to connect type IIA and type IIB to the mother eleven-
dimensional Supergravity and to have a precise one-to-one map connecting the different ingredients of
Table 3.1.
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3.2 Dualities and dimensional reduction

During the “second superstring revolution” [51], the various string-theory frames were unified by new
equivalences, called dualitites. Nowadays, those dualitites are very useful to relate theories and spectra
of very different appearance at various limits (as strong-weak dualities). In this section we review the
Kaluza-Klein reduction, the T-duality and the S-duality. We also review the generalized spectral flows,
which are not dualities but transformations built on dualities and which allow to relate very different
spectra of solutions.

3.2.1 Kaluza-Klein reduction

A one-dimensional Kaluza-Klein compactification is the compactification of a (D + 1)-dimensional
theory on a product spacetime MD+1 =MD × S1, where S1 is a compact circle along a coordinate
y with the periodicity y ∼ y + 2πRo. Fields of the lower dimensional theory arise from harmonic
expansion on S1 of the various higher-dimensional fields. In a Kaluza-Klein compactification, one
keeps the entire infinite set of harmonic modes, which describe both massless and massive fields in
D dimensions. For the purpose of this thesis, we consider that the fields at higher dimensions are
independent of y and then that the harmonic expansion reduces to the massless modes. Moreover, for
readability, we focus on the eleven-dimensional Supergravity. Generalization to arbitrary dimensions
with arbitrary y-independent gauge fields can be found in [52].

We consider eleven-dimensional Supergravity with a compact 11th dimension, y, with a radius
Ro = gs ls where gs and ls are the string coupling and the string length respectively3. The choice of
radius is motivated to make a concrete relation between type IIA and eleven-dimensional Supergravity,
especially by relating the Newton constants

G11 = 2πRoG10.

We decompose the bosonic fields along y as

ds2
11 = e−

2Φ
3 ds2

10 + e
4Φ
3

(
dy + C(1)

)2
,

A3 = C(3) + B2 ∧ dy ,
(3.2.1)

where the decomposition has been arranged to have a lower-dimensional theory with the field content of
type IIA Supergravity. Remind that C(5) and C(7) are obtained from the duality relation (3.1.24). One
can draw the map from the objects in eleven-dimensional supergravity to type IIA objects depending
if they have a leg along y or not. We outline the KK reduction on the gauge fields and on the objects
in the following:

Objects FieldsTheory

M

yKK red.

IIA D6 KKm D4 NS5 F1 D2 D0 P

KKm M5 M2 P

y y y y y y y y

C(1) Φ g10 B2 C(3)

g11 A3

y y y y y

where the blue arrows with “y” correspond to the reduction of objects or fields with no legs along y
whereas the red arrows with “y” correspond to objects or fields with a leg along y. The remaining R-R
gauge fields are obtained from the duality relations (3.1.24).

3The size of the circle gives rise to only one degree of freedom since ls = g3
s l

(11)
P .
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3.2.2 T-duality

T-duality is a symmetry which maps the string spectra of different string theories into each other,
in particularly the string spectrum of type IIA String Theory to the string spectrum of type IIB
String Theory. If we consider type IIA and type IIB with a compact circle of radius RA and RB
respectively. The fundamental strings F1 wrapping the circle are quantized in unit of RA/B l

−2
s whereas

the momentum waves P are quantized in (RA/B)−1. Thus, by mapping

RA
ls

=
ls
RB

,

the quanta of fundamental string of type IIA gets map into the quanta of momentum wave of type IIB
and inversely. T-duality is then a strong coupling - weak coupling duality: it maps a stringy regime
when RA/B � ls to low-energy regime RB/A � ls.

A similar reasoning applies to D-branes. If a Dp-brane is wrapped along the circle, it T-dualizes into
a D(p− 1)-brane whereas if it is not, it T-dualizes into a D(p+ 1)-brane. We then have the following
mapping:

ObjectsTheory

IIB

yT-duality

IIA P F1 KKm NS5 D0 D2 D4 D6

F1 P NS5 KKm D1 D3 D5

y y y y y y y y y y y y

where we have used the same convention for the arrows. To compute the effect of a T-duality along y
on the fields, it is convenient to decompose them in the following forms

ds2
10 = ĝµν dx

µdxν + gyy (dy +Aµdx
µ)2 ,

B2 = B̂2 + Bµy dx
µ ∧ (dy +Aµdx

µ) ,

C(p) = Ĉ(p) + C(p−1)
y ∧ (dy +Aµdx

µ) .

(3.2.2)

The T-dualized fields that we note with “ ˜ ” are given by the Buscher’s rules [53]

ds̃2
10 = ĝµν dx

µdxν + g−1
yy (dy +Bµydx

µ)2 ,

e2Φ̃ = g−1
yy e

2Φ ,

B̃2 = B̂2 + Aµ dx
µ ∧ dy ,

C̃(p) = C(p)
y + Ĉ(p−1) ∧ (dy +Bµydx

µ) .

(3.2.3)

3.2.3 S-duality

The S-duality is constructed in type IIB String Theory as a Z2 symmetry of the fields. It flips the
dilaton and interchanges R-R and NS-NS fields as follows

Φ → −Φ , gµν → e−Φgµν , B2 → C(2) , C(2) → −B2 , (3.2.4)

with all the other F̄ (p) unchanged. The transformation of the dilaton actually shows, when evaluated
at the boundary, the nature of the S-duality: it is actually a weak coupling - strong coupling which
maps

gs →
1

gs
.
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Moreover, S-duality relates type-IIB objects as:

ObjectsTheory

IIB

S-duality

IIB P KKm F1 D1 D5 NS5 D3

P KKm D1 F1 NS5 D5 D3

3.2.4 Generalized spectral flows

Generalized spectral flows are not duality transformations. Even if they allow to move from a spectrum
of solutions to another, the map can lead to very different types of solutions. Generalized spectral flows
can be constructed in various formulations whom several will be discussed in this thesis. One of their
primary construction uses sequences of T-dualities, S-dualities and shifts of coordinates. The S-dualities
make the construction naturally defined in type IIB. However, according to the duality rules detailed
above, it can be translated into any frame by adding an initial T-duality or KK-reduction. Let us
consider type IIB Supergravity with 6 compact directions and let us denote two of them as y and ϕ.

- The first type of generalized spectral flow is a simple shift of coordinates which we denote “s”,
ϕ→ ϕ+ γ y, where γ is a constant.

- The second type of generalized spectral flow consists in a a S-duality, a T-duality along y followed
by a shift of ϕ → ϕ + γ y, a T-duality back along y and finally a S-duality. We usually denote
such a transformation as “STsTS”.

- Using the previous notation, the third generalized spectral flow can be denoted as a T4STsTST4

transformation where the “T4” refers to four T-dualities on the four other compact directions.

In the main parts of the thesis, we will have direct illustrations of possible effects of spectral flows on
supergravity solutions.

3.3 Compactification to lower dimensions

In this thesis, we will construct and study classical solutions in five or six dimensions. Even if our at-
tempts will concentrate on solutions with four unbroken supersymmetries as the three-charge 1/8-BPS
black hole, we will also construct eight-supercharge solutions and non-BPS solutions. Five-dimensional
Supergravities arise as dimensional reduction of eleven-dimensional Supergravity on a Calabi-Yau three-
fold whereas six-dimensional Supergravities are obtained from ten-dimensional Supergravities, as type
IIB, on a Calabi-Yau two-fold. The truncated fields from ten or eleven dimensions give rise to a large
variety of field contents in six or five dimensions (for a very general discussion see [54]). For the pur-
pose of the thesis, we consider only consistent truncations which lead to specific contents that we are
interested in. In particularly, we are interested in N = 2 five-dimensional Supergravity coupled to nV
vector multiplets with nV ≥ 2 and in N = (1, 0) six-dimensional Supergravity coupled to nT tensor
multiplets with nT ≥ 1. Both frameworks have 8 supercharges in total. In this section, we briefly
review their field contents and how they arise from dimensional reduction of type IIB Supergravity or
eleven-dimensional Supergravity.
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3.3.1 Five-dimensional N = 2 Supergravity

Five-dimensional N = 2 Supergravity coupled to nV vector multiplets with nV ≥ 2 has the following
bosonic-field content:

• A gravitational field g.

• nV + 1 U(1) vector gauge fields AIµ and their field strengths F I = d5A
I . One is coming from

the graviton multiplet and is usually referred as the “graviphoton” and the others come from the
extra vector multiplets.

• nV + 1 scalars XI in the symmetric space SO(1, 1)× (SO(1, nV )/SO(nV )).

It results from compactification of eleven dimensional Supergravity on a Calabi-Yau three-fold C6

[55]. The bosonic fields in eleven dimensions are the gravitational field and the three-form gauge
potential {gMN , A3MNR} as detailed in Section 3.1.1. We assume that the fields are independent on
the coordinates of C6 and then only the zero modes will contribute to the KK reduction. Those zero
modes correspond to the harmonic forms on C6. Let us recall that a Calabi-Yau three-fold is uniquely
defined by the non-zero Hodge numbers (h(1,1) = h(2,2), h(2,1), h(0,0) = h(3,0) = h(3,3) = 1) and the
intersection numbers CIJK , with I, J,K = 1, . . . h(1,1) (see table below). The number of independent
harmonic n-forms on a Calabi-Yau m-fold is given by the Betti numbers,

bn =
∑
p+q=n

h(p,q) = bm−n . (3.3.1)

Therefore, C6 contains h(1,1) independent two-forms and four-forms. The number of independent
harmonic three-forms is 2(h(2,1) + 1), the number of zero-forms and six-forms is one and there is no
one-forms and five-forms. We only consider vector descendants and then freeze all degrees of freedom
coming from h(2,1). If we call DI the h(1,1) independent two-forms, the structure constants is the
volume of the product of three:

CIJK ≡
∫
C6
DI ∧DJ ∧DK . (3.3.2)

We denote the compact coordinates with Latin letters (a, ā = 1, 2, 3) and the five-dimensional coordi-
nates with Greek letters (µ = 1, . . . , 5). According to the number of independent forms on C6, three
scalars correspond to the volume of C6, V6, and to the two gauge field components, A3abc and A3µνρ.
They belong to the universal hypermultiplet. Each of the nV + 1 = h(1,1) independent two-forms gives

a vector, AIµ ∼ A3µab̄. They are associated to the scalars arising from the gravitational field, XI ∼ gab̄.
Those scalars determine the size of the two-form inside C6. Because we have turned off all hypermul-
tiplet degrees of freedom, the Calabi-Yau volume deformation is set to zero and V6 is constant. The
volume cannot be zero, this implies that one of the vector multiplet belongs to the gravity multiplet
of five-dimensional N = 2 Supergravity and the nV others are additional vector multiplets. Moreover,
the fixed volume constrains the metric on C6 and the nV + 1 scalars must satisfy4

1

6
CIJK X

IXJXK = 1 =⇒ XI =
1

6
CIJK X

JXK . (3.3.3)

The intersection constants induce non-trivial gauge coupling from the Chern-Simons term in the
eleven-dimensional action ∫

A3 ∧ F4 ∧ F4 ∼ CIJK

∫
AI ∧ F J ∧ FK .

We summarize the compactification descendants in the following table:

4We have consider everything in unit of V6 which is equivalent to take V6 = 1.
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Hodge diamonds of C6: Harmonic forms: Fields {gMN , A3MNP }:

1

0 0

0 h(1,1) 0

1 h(2,1) h(1,2) 1

0 h(1,1) 0

0 0

1

V6, 1 scalar

Ø

Ø

(A3abc, A3abc̄, gab), (2, h(2,1), h(2,1)) scalars

(A3µab̄ , gab̄), (h(1,1), h(1,1)) vectors, scalars

Ø

A3µνρ, 1 scalar

six-forms

five-forms

four-forms

three-forms

two-forms

one-forms

zero-forms

The compactification can be also described from a brane point of view by translating the “form
language” to a “cycle language”. We decompose C6 in h(1,1) = nV +1 two-cycles wrapped by M2-branes
and their transverse four-cycles wrapped by M5 branes. The M5-branes are five-dimensional extended
objects and have one remaining leg in the five-dimensional space inducing fluxes. The stacks of branes
are smeared in their transverse directions inside C6. They source specifically the three-form gauge field
A3 which the KK reduction leads to the nV + 1 U(1) gauge fields AI . The sizes of the cycles are the
free moduli giving rise to the scalars XI .

Finally, one can write down the five-dimensional action for the bosonic fields [56,57]

(16πG5)S5 =

∫
d5x
√
−g R − QIJ

∫ (
F I ∧ ?5F

J − d5X
I ∧ ?5d5X

J
)

+
CIJK

6

∫
AI ∧ F J ∧ FK ,

(3.3.4)
where the coupling QIJ depends on the scalars via [56,57]

QIJ =
9

2
XIXJ −

1

2
CIJKX

K , (3.3.5)

the structure constants are required to satisfy the constraint

CIJKCJ ′(LMCPQ)K′δ
JJ ′δKK

′
=

4

3
δI(LCMPQ) , (3.3.6)

and the five-dimensional Newton constant is given according to the eleven-dimensional one as

G5 = V−1
6 G11 . (3.3.7)

The two first integrals in (3.3.4) correspond to the five-dimensional Einstein-Hilbert action coupled
to nV + 1 scalar fields and nV + 1 U(1) gauge fields with a non-trivial coupling constant. The third
integral is the purely topological Chern-Simons integral. This term makes the difference from a purely
GR description and gives hope for constructing solutions with non-trivial structure at the horizon scale.

As we will derive in detail in the next chapter, this action contains 1/8-BPS three-charge five-
dimensional solutions. Constructing supersymmetric solutions in this framework is similar to the
eleven-dimensional framework discussed in Section 3.1.1.1. If one assumes that some of the super-
symmetries are preserved and that the bilinear, Kµ (3.1.5), is a time-like Killing vector, a first order
differential equation guarantees that the Einstein equations are satisfied. The remaining equation is
the Maxwell equation for the gauge fields. This issue will be addressed in the next chapter.

3.3.2 Six-dimensional N = (1, 0) Supergravity

Six-dimensional N = (1, 0) Supergravity coupled to nT tensor multiplets has the following bosonic
fields coming from the graviton multiplet and the nT extra tensor multiplets [58–61]:
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• A gravitational field g.

• nT + 1 two-form gauge fields BI
µν and their field strengths GI = d6B

I .

• nT + 1 scalars vI in the coset space SO(1, nT )/SO(nT ). It is convenient to associate them into a
SO(1, nT ) matrix with constraints:

S =

(
vI

xMI

)
, I = 0, . . . , nT , M = 1, . . . , nT ,

vIv
I = 1 , vIvJ − xMI xMJ = ηIJ , vIxMI = 0 ,

(3.3.8)

where the scalar indices, I or J , are raised by the SO(1, nT ) Minkowski metric in light-cone
coordinates with the mostly-minus signature,

η =



0 1 0 . . . 0

1 0 0 . . . 0

0 0 −1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1


. (3.3.9)

This choice of scalar basis may seem awkward from what can be found in the literature where the
usual Minkowski metric diag(1,−1, . . . ,−1) is used. However, it will be motivated later as the right
choice to relate spectra of BPS solutions in N = (1, 0) six-dimensional Supergravity to BPS solutions
in N = 2 five-dimensional Supergravity. The scalars are involved in the tensor dynamics through the
metric

MIJ =
(
ηSTSη

)
IJ

= vIvJ + xMI x
M
J = 2 vIvJ − ηIJ ,

which dictates the twisted self-duality conditions of the tensors

MIJG
J = ηIJ ?6 G

J . (3.3.10)

This implies that the tensor vIG
I is self-dual and then belongs to the gravity multiplet whereas the

nT tensors xMI G
I are anti self-dual and then belong to the nT tensor multiplets. The different number

of self-dual and anti self-dual tensors (except for nT = 1) implies that there is no Lorentz-invariant
lagrangian formulation. However, one can write down a “pseudo-action” [59,61]

(16πG6)S6 =

∫
d6x
√
−g

(
R − ηIJ ∂µv

I∂µv
J − 1

3
MIJ G

I
µνρG

J µνρ

)
, (3.3.11)

As it has been discussed for five-dimensional Supergravity, one may wonder how six-dimensional N =
(1, 0) Supergravity results from compactification of ten-dimensional Supergravity on a Calabi-Yau two-
fold. By contrast with the family of Calabi-Yau three-folds, K3, T4 and their orbifold limits are the only
examples of compact Calabi-Yau two-folds. Different six-dimensional Supergravities can be obtained
from compactification of type IIA, type IIB or even type I or heterotic Supergravitites [62–66] (for a
review see [67]). Moreover, for the six-dimensional Lagrangian to be anomaly-free, hypermultiplets and
vector multiplets need to be turned on and their numbers must satisfy an algrebraic condition. We will
not go into such details and consider only consistent truncations that contain only tensor multiplets
in addition to the gravity multiplet.

Let us consider type IIB Supergravity on T4 or K3. The bosonic fields are the gravity field gMN ,
the R-R zero-form and the dilaton (Φ, C(0)), the NS-NS and R-R two-forms (B2, C

(2)) and the R-R
four-forms C(4)5. We assume that they are independent on the transverse space. Only the zero modes
which correspond to harmonic forms on T4 or K3 are involved in the KK reduction. Their numbers
are fixed by the Hodge numbers.

5One does not need to consider C(6) and C(8). They are fixed by the duality rules (3.1.24).
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• On T4: A four-torus has h(0,0) = h(2,2) = h(2,0) = 1, h(1,0) = h(2,1) = 2 and h(1,1) = 4 (see the
table below). The numbers of independent harmonic n-forms are given by the Betti numbers
(3.3.1). Thus, T4 contains one zero-form and one four-form. The number of one-forms and three-
forms is four each while the number of two-forms is six. We focus on the fields corresponding
to two-forms and to scalars from the six-dimensional perspective. In six dimensions, two-forms
must have a (anti) self-dual field strengths. Therefore, one must count the self-dual and anti
self-dual components of the two-form descendants. The components of B2 and C(2) with legs
on the six-dimensional space can be decomposed in one self-dual two-form and one anti self-dual
two-form each. Their components on T4 induce 2×6 scalars. The number of scalar descendants
and two-form descendants of C(4) follows the number of harmonic zero-forms and two-forms of T4

respectively. They give rise to one scalar, three self-dual two-forms and three anti self-dual two-
forms. The remaining scalars come from (Φ, C(0)) and the ten scalars of the metric on T4. The
total count gives then 5 anti self-dual two-forms, 5 self-dual two-forms and 25 scalars. The gravity
multiplet contains the 5 self-dual two-forms while the tensor muliplets contain one anti self-dual
two-form each. This corresponds to N = (2, 2) six-dimensional Supergravity with SO(5, 5) global
symmetry. Moreover, if one considers the T4 to be “rigid” in a sense that we consider only the
harmonic four-form and the harmonic zero-form of T4. Then, C(4) induces only scalars and the
compactification leads to N = (2, 2) six-dimensional Supergravity with SO(2, 2) global symmetry.
The compactification on a rigid T4 is sufficient to study six-dimensional solutions with not more
than two extra tensor multiplets.

We summarize the tensor and scalar descendants from the compactification in the following table:

Hodge diamonds T4: Harmonic forms: Fields {gMN ,Φ, B2, C
(0), C(2), C(4)}:

1

2 2

1 4 1

2 2

1

(V4, C
(4)
abcd) 2 scalars

gab 4 scalars

(C
(4)

µνab̄/b
), (C

(2)

ab̄/b
, B2ab̄/b, gab̄) (3+, 3−) tens., 16 sca.

. . .

(C
(2)
µν , B2µν), (Φ, C(0), C

(4)
µνρσ) (2+, 2−) tens., 3 sca.

four-forms

three-forms

two-forms

one-forms

zero-forms

where n± gives the number of self-dual (resp. anti self-dual) corresponding tensors.

One way to have less than N = (2, 2) supersymmetries is to consider orbifold limits of T4, as
T4/Z2 ' T2 × T2. Only one combination of the left-moving and the right-moving supercharges
is preserved by the choice of orientation [64–66]. We can also consider consistent truncation of
the field contents. Roughly speaking, this consists in freezing all but one self-dual two-forms by
carefully fixing their associated scalars in the scalar moduli space (see for instance Appendix B
of [68] for an example of truncation to SO(1, 2)). Thus, six-dimensional N = (1, 0) Supergravity
with nT ≤ 5 extra tensor multiplets can be obtained from consistent truncation of type IIB
Supergravity on T4.

Moreover, the BPS solutions can be interpreted as brane bound states of type IIB. For instance, the
BPS solutions with nT = 2 correspond to D1 branes wrapping a one-curve in the six-dimensional
space with momentum charge P along this curve and to D5 branes wrapping the same curve and
T4.

• On K3: The compactification on K3 is similar and only the numbers of descendants differ. The
Hodge numbers of K3 are h(0,0) = h(2,2) = h(2,0) = 1, h(1,0) = h(2,1) = 0 and h(1,1) = 20. Thus,
the KK reduction of C(4) induces 22 two-forms of which 3 are self-dual and 19 are anti self-dual.
The gravity multiplet contains 5 self-dual two-forms, while we have 21 tensor muliplets with one
anti self-dual two-form each. This corresponds to N = (2, 0) six-dimensional Supergravity with
SO(5, 21) global symmetry.
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Once again, one can reduce supersymmetry to N = (1, 0) Supergravity coupled to nT ≤ 21 tensor
multiplets by considering orientifold K3 or by consistent truncation of the field content.

The relation between type IIB and six-dimensional Supergravity allows to derive the six-dimensional
Newton constant from the ten-dimensional one:

G6 = (V4)−1G10 . (3.3.12)

We now have settled all the frameworks needed to construct classical solutions. This is the subject
of the next chapter.



Chapter 4

Classical solutions in Supergravity

We work in the context of the supergravity theories reviewed in the previous chapter to construct
classical solutions describing black holes, black strings and smooth geometries.
In Section 4.1, we will work in the context of N = 2 five-dimensional Supergravity equivalently seen
as eleven-dimensional Supergravity on a Calabi-Yau three-fold. We show that the equations of motion
of BPS solutions have a linear structure that allows to construct large classes of BPS supergravity
solutions. We exploit the symplectic structure of the solutions to derive symplectic transformations
corresponding to generalized spectral flows and gauge transformations. They allow a wide spectrum
of solutions to be explored. We construct the well-known 1/8-BPS three-charge black hole in five
dimensions, or BMPV black hole, and show that the spectrum contains also multicenter solutions
which look like the BMPV black hole but caps off smoothly in the IR. The main features of the
geometries that replace the singularity are topologically non-trivial cycles called bubbles maintained
by fluxes. We will also discuss the two-charge 1/4-BPS round Supertubes which are singular from the
five-dimensional perspective but smooth in six dimensions.

In Section 4.2, we work in the context of N = (1, 0) six-dimensional supergravity equivalently
seen as a consistent truncation of type IIB Supergravity on a Calabi-Yau two-fold. We first derive
the equations of motion of BPS solutions which are slightly more complex in that it can depend non-
trivially upon the extra direction. They can be decomposed in a first layer of equations with a linear
structure and a second layer with quadratic source terms. We review the basic construction of the
D1-D5-P 1/8-BPS black string dual to the BMPV black hole and the two-charge Supertubes with
arbitrary shapes. Finally, we discuss the construction of supergravity Superstrata. Superstrata are
smooth solutions of the equations of motions that can have same mass, charges and angular momenta
as the D1-D5-P 1/8-BPS black hole. They are obtained by generating momentum charge P on specific
two-charge Supertubes.

In Section 4.3, we discuss an extension to non-supersymmetric solutions in five or six dimensions.
First we review the construction of the non-BPS three-charge over-rotating Cvetic-Youm black string
in six dimensions. Then, we review a class of non-BPS smooth solutions called almost-BPS solutions.
Supersymmetry is broken in a subtle way and the almost-BPS equations of motion are “similar” to
the BPS equations in five dimensions.

4.1 BPS solutions in five dimensions

4.1.1 Generic BPS solutions

We consider N = 2 five-dimensional Supergravity coupled to nV extra vector multiplets. We use
the conventions detailed in Section 3.3.1. The dynamics of solutions of the action given in (3.3.4) is

40
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governed by the following Einstein-Maxwell-scalar equations [69]

Rµν + QIJ

(
∂µX

I∂νX
J + F Iµρ F

J
ν
ρ − 1

6
gµν F

I
ρσ F

Jρσ
)

= 0 ,

d5

(
QIJ ?5 F

J
)

+
1

4
CIJK F

J ∧ FK = 0 ,

−d5 ?5 d5XI +

(
CIJKXLX

K − 1

6
CILJ

)(
FL ∧ ?5F

J − dXL ∧ ?5dX
J
)

= 0 .

(4.1.1)

4.1.1.1 BPS equations of motion

As with supersymmetric solutions in eleven-dimensional Supergravity, we solve the Einstein equation
by turning off the gravitini Ψµ and by assuming that the BPS solutions preserve Killing spinors with
a time-like bilinear Kµ = ε̄Γµε. The supersymmetry transformation leads to a first order differential
equation [70,71]

δΨµ = ∇µε +
1

8
XI

(
Γµ

νρ − 4 δνµ Γρ
)
F Iνρ ε = 0 , (4.1.2)

where Γµ are the 8 × 8 Gamma matrices and ∇µ is the covariant derivative in five dimensions. The
time-like Killing vector K gives the time direction and one can build all the vielbeins from the other
non-zero bilinears. The Ansatz that is consistent with the structure of the equations of motion consist
in decomposing the metric and the U(1) vector gauge fields as follows

ds2
5 = −H−2 (dt+ ω)2 + H ds (B)2 ,

F I = d5A
I = d4

(
XI H−1 (dt+ ω)

)
+ ΘI ,

(4.1.3)

where ΘI , ω and H are two-forms, a one-form and a scalar on B respectively. We use the notation
d4 and ?4 for the exterior derivative and the Hodge dual on B and we conveniently define the nV + 1
warp factors

ZI = HXI =⇒ H =

(
1

6
CIJK ZIZJZK

) 1
3

. (4.1.4)

The gravitino variation and algebraic conditions obtained from Fierz identities imply that B is a Ricci-
flat and Kähler manifold (hyper-Kähler), ΘI is self dual and that [69]

d4ω + ?4d4ω = ZI ΘI .

This condition corresponds to the geometric requirement that the two angular momenta in the four-
dimensional base space must be equal to preserve supersymmetry (when ZI ΘI = 0). The left-hand
side corresponds to the rotation of the spacetime whereas the right-hand side is, by analogy with
electromagnetism, the “Poynting vector” of the charges.
These conditions are sufficient to ensure that the solutions preserve at least 4 of the 8 supersymmetries
of N = 2 five-dimensional Supergravity which corresponds to 1/8-BPS solutions in eleven dimensions.
Moreover, the Bianchi identities for the gauge fields require

d4F
I = 0 =⇒ d4ΘI = 0 .

The remaining equation is the Maxwell equation for the nV + 1 gauge fields in (4.1.1).

To summarize, supersymmetric solutions in N = 2 five dimensional supergravity coupled to nV
extra gauge fields with structure constant CIJK are determined by nV + 1 couples of electric warp
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factors and magnetic self-dual two-forms (ZI ,Θ
I), an angular-momentum one-form ω, and a hyper-

Khäler manifold B as follows

ds2
5 = −

(
1

6
CIJK ZIZJZK

)− 2
3

(dt+ ω)2 +

(
1

6
CIJK ZIZJZK

) 1
3

ds (B)2 ,

F I = d4A
I = d4

(
Z−1
I (dt+ ω)

)
+ ΘI .

(4.1.5)

The dynamics of the fields is captured by the first layer of BPS equations

?4 d4 ?4 d4 ZI =
1

2
CIJK ?4

(
ΘJ ∧ΘK

)
, d4ΘI = 0 , ?4ΘI = ΘI , I = 1, . . . nV + 1 , (4.1.6)

and the second layer of BPS equations determining the angular-momentum one-form

d4ω + ?4d4ω = ZI ΘI . (4.1.7)

The term ?4

(
ΘJ ∧ΘK

)
in the first layer comes directly from the Chern-Simons term in the action

(3.3.4). This allows the fields to be electrically sourced by magnetic fluxes without adding singular
charges. As announced in the previous chapter, the presence of Chern-Simons terms and non-trivial
spacetime topology will avoid the ‘no-go’ theorem that excludes non-singular soliton solutions in four
dimensions.

4.1.1.2 Four-dimensional Gibbons-Hawking space

As already said, supersymmetry imposes B to be hyper-Khäler. In this thesis, we will consider only
three types of base manifold: flat space, Taub-NUT space, and the more general Gibbons-Hawking
space. Those four-dimensional hyper-Khäler manifolds are the unique manifolds with a triholomorphic
Killing vector ∂ψ, i.e. a Killing vector that preserves the hyper-Khäler structure. The metric is a S1

fibration along ψ over a flat R3 and is determined by a harmonic function V and a one-form A as
follows [72,73]

ds (B)2 = V −1 (dψ +A)2 + V
[
dρ2 + ρ2

(
dϑ2 + sin2 ϑ dφ2

) ]
,

?3d3A = d3V ⇒ ?3d3 ?3 d3V = 0 ,
(4.1.8)

where d3 and ?3 denotes the exterior derivative and the Hodge dual on the three-dimensional base
space. We have introduced the spherical system of coordinates (ρ, ϑ, φ) of R3. The harmonic function
V can be sourced at different centers on the base space. We use the notation

?3d3 ?3 d3V =
n∑
j=1

qj δ
(3) (~ρj) ,

where ~ρj is the vector distance from the jth center on R3 and qj its charge. The generic solutions are

V (~ρ) = h∞ +

n∑
j=1

qj
ρj
, A =

n∑
j=1

qj cosϑj dφ , (4.1.9)

where (ρj , ϑj , φ) is the shifted spherical coordinates around the jth center. The choice of V (~ρ) gives
different possible geometries:

• Flat R4:
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If we consider

V (~ρ) =
1

ρ
, A = cosϑ dφ , (4.1.10)

the four-dimensional base space is trivially flat (see Fig.4.1)

ds (B)2 = ds
(
R4
)2

= dr̂2 + r̂2
(
dθ̂2 + sin2 θ̂ dϕ2

1 + cos2 θ̂ dϕ2
2

)
, (4.1.11)

where (r̂, θ̂, ϕ1, ϕ2) are the usual spherical coordinates of R4. They are related to (ρ, ϑ, φ, ψ) by

ρ =
r̂2

4
, ϑ = 2 θ̂ , ψ = ϕ2 + ϕ1 , φ = ϕ2 − ϕ1 . (4.1.12)

• Taub-NUT space:

If we consider

V (~ρ) = 1 +
1

ρ
, A = cosϑ dφ , (4.1.13)

the four-dimensional base space is Taub-NUT. It is a special type of U(1) fibration over R3 [74, 75].
At large distance, the S1 radius stabilizes and the space is asymptotically S1 × R3. At the origin, the
singularity of V (~ρ) is not a spacetime singularity: the S1 pinches off smoothly and gives a flat R4. For
arbitrary ρ, we usually say that the geometry takes a “cigar” form which grows with ρ (see Fig.4.1).

• Generic Gibbons-Hawking space:

The general form of Gibbons-Hawking metric given by (4.1.9) is a generalization of a Taub-NUT space
(see Fig.4.1). At large distance, the S1 radius either stabilizes if h∞ 6= 0 and gives S1 × R3 or grows
with ρ if h∞ = 0 and is asymptotically a discrete Z|∑ qj | quotient of R4. For the latter case, we usually

impose the full R4 which requires
n∑
j=1

qj = 1 . (4.1.14)

At the center loci, the S1 fiber pinches off as in Taub-NUT. There is no spacetime singularity but

conical defect can occur. If we define the local spherical coordinates, (r̂(j), θ̂(j), ϕ
(j)
1 , ϕ

(j)
2 ), according to

ψ and to the local R3 coordinates as

ρj =
(r̂(j))2

4
, ϑj = 2 θ̂(j) , ψ = qj

(
ϕ

(j)
2 + ϕ

(j)
1

)
, φ = ϕ

(j)
2 − ϕ

(j)
1 ,

we recover locally the flat R4 metric

ds (B)2 ∼ qj

(
dr̂(j)2 + r̂(j)2

(
dθ̂(j)2 + sin2 θ̂(j) dϕ

(j)
1

2
+ cos2 θ̂(j) dϕ

(j)
2

2
))

.

The angles are identified as ϕ
(j)
1/2 = 1

2

(
ψ
qj
∓ φ

)
, so their periodicities are not 2π: we have a discrete

Z|qj | quotient of R4. This quotient is smooth if and only if

qj ∈ Z , j = 1, . . . , n . (4.1.15)

The repetitively-shrinking S1 forms topologically non-trivial two-cycles called bubbles. Those bubbles
will allow fluxes wrapping them which will induce charges from the three-dimensional point of view as
we will see when constructing smooth solutions.

However, the sign of qj can be either positive or negative which drastically changes the sign of the
signature of the metric. This is a feature of an ambipolar metric. We will see in concrete examples
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V (~ρ) = h∞ +
∑n

j=1
qj
ρj

qj ∈ Z

Gibbons-Hawking

V (~ρ) = 1 + 1
ρ

Taub-NUT

V (~ρ) = 1
ρ

Flat R4

Figure 4.1: The three four-dimensional hyper-Khäler manifold considered and their
topology.

how the full five-dimensional metric keeps a constant signature.

As a remark, unlike the three-dimensional base space of GR, a four-dimensional space induces two
rotations, one for each R2 factor. The motion of stationary classical solutions will then be determined
by two “left” and “right” conserved angular momenta associated with the angles ψ and φ and noted
JL and JR in the thesis.

4.1.1.3 ψ-independent solutions

Now, we have all the ingredients to solve the BPS equations. We assume that the vector fields and
the angular-momentum one-form preserve the ∂ψ Killing vector of the four-dimensional base space.
This extra assumption restricts the spectrum of BPS solutions studied. However, this has the benefit
to have relatively user-friendly BPS equations while maintaining a very large space of solutions. We
proceed step by step to find generic solutions to (4.1.6) and (4.1.7).

• The self-dual magnetic two-forms ΘI :

First, we define the vielbeins of the Gibbons-Hawking space

e0 = V −
1
2 (dψ +A) , ea = V

1
2 dxa , a = 1, 2, 3 , (4.1.16)

where xa, a = 1, 2, 3, are the cartesian coordinates of the flat R3 base space. A basis of self-dual
two-forms is

Ωa = e0 ∧ ea + εabc e
b ∧ ec , a = 1, 2, 3 . (4.1.17)

With the Ansatz
ΘI = ∂a

(
V −1KI

)
Ωa , (4.1.18)

the Bianchi identities (4.1.6) transform into harmonic equations on R3:

d4ΘI = 0 =⇒ ?3d3 ?3 d3K
I = 0 =⇒ KI = kI∞ +

n∑
j=1

kJj
ρj
. (4.1.19)

Thus, the self-dual two-forms, ΘI , are obtained from nV + 1 magnetic harmonic functions, KI , which
are sourced by magnetic dipole charges kIj at the centers. When embedded in eleven dimensions, those
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charges have a good understanding as M5-brane charges. As it has been argued in Section 3.3.2, the
magnetic contribution of the gauge fields results from M5-branes wrapping nV five-cycles described
as four-cycles inside T6 and one non-trivial closed curve in the five-dimensional space. Thus, the
computation of the flux integral of the eleven-dimensional field strength, F4, around each center and
over the five-dimensional boundary transverse to the M5-branes relates the magnetic dipole charges
kJj to the number of M5-branes at the jth center. This implies that the kJj are quantized. Moreover,
the magnetic sources are singular from the three-dimensional base-space perspective but they actually
correspond to charges dissolved in fluxes along the non-trivial closed curve of the Gibbons-Hawking
space.

• The warp factors ZI :

The magnetic dipole charges source quadratically the electric warp factors (4.1.6). More concretely,
the electric charges are induced by the magnetic fluxes. It is then possible to have asymptotically
charged solutions without explicit sources, i.e. singularities. This is the key point for the construction
of smooth geometries in five-dimension Supergravity. The equations for the warp factors are solved
with the Ansatz

ZI = LI +
CIJK

2

KJKK

V
=⇒

(4.1.6)
?3d3 ?3 d3 LI = 0 =⇒ LI = lI∞ +

n∑
j=1

lIj
ρj
. (4.1.20)

The warp factors have a magnetic and an electric contribution. The electric part is given by the
harmonic function, LI , sourced by the electric charges lIj at the centers. Those charges are described

as M2-brane charges when embedded in eleven dimensions. Each charge lIj is related to the number of

M2-branes at the jth center and is consequently quantized.

• The angular-momentum one-form ω:

We decompose the one-form ω along the U(1) ψ-fiber as follows

ω ≡ µ (dψ +A) + $ (4.1.21)

where $ is a one-form on R3. The second layer of BPS equations (4.1.7) splits in two pieces. The first
piece is solved by considering

µ =
M

2
+
KILI
2V

+
CIJK

6

KIKJKK

V 2
=⇒

(4.1.7)
?3d3 ?3 d3M = 0 =⇒ M = m∞ +

n∑
j=1

mj

ρj
.

(4.1.22)
Once again, the angular-momentum charges in M can be described in eleven-dimensional Supergravity.
From the dictionary drawn in Section 3.1.1, this momentum charges are KKm charges and are then
quantized. The second piece is determined by the following equation

?3 d3$ =
1

2

(
V d3M −M d3V + KI d3LI − LI d3K

I
)
. (4.1.23)

This equation defines a symplectic structure for the BPS equations. It can be made explicit by defining
a 2nV + 4-dimensional vector of harmonic functions, Γ, and a symplectic product

Γ ≡
(
V,K1, . . . ,Knv+1;L1, . . . , Lnv+1,M

)
≡ Γ∞ +

n∑
j=1

Γj
ρj
,

〈A,B〉 ≡ A0B0 −A0B
0 + AIBI −AIBI , A,B ∈ R2nV +4 ,

(4.1.24)

where Γ∞ defines the background moduli of the solution and the Γj define the charge vectors at the
jth center. The equation for $ is then

?3 d3$ =
1

2
〈Γ, d3Γ〉 (4.1.25)
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This equation is left unsolved for the moment since it strongly depends on the center configuration.

• Regularity:

The solutions derived above do not necessarily correspond to physical solutions. The equation (4.1.25)
induces an integrability condition imposed by requiring that d3

2$ = 0 which implies 〈Γ, d3
2Γ〉 = 0.

This leads to n equations referred as the Denef equations or bubble equations [76, 77]

n∑
j=1

〈Γi,Γj〉
ρij

= 〈Γ∞,Γi〉 , i = 1, . . . n , (4.1.26)

where ρij are the distance between the ith center and the jth center in the three-dimensional base space
ρij = |~ρi − ~ρj |. The last physical condition to satisfy is the absence of closed time-like curves (CTC’s)
by requiring that there is a well-defined global time function [78,79]

I4 ≡
CIJK

6
ZIZJZK V − µ2V 2 ≥ |$|2 , (4.1.27)

where I4 is referred as the quartic invariant. A necessary condition is to have I4 ≥ 0. This can be
subsumed into

ZIV ≥ 0 , I = 1, 2, 3 , (4.1.28)

which only guarantees that CIJK
6 ZIZJZK V ≥ 0. This usually seems sufficient. Indeed, one wants to

construct classical solutions in the black hole regime where the cosmic censorship bound is satisfied.
In addition to Denef equations, this generally implies that µ and $ decay faster than the warp factors
as large distance and have smaller poles at the centers.

The regularity conditions drastically constrain the geometry of the center configuration and the
phase space of the charges. The positivity of the quartic invariant has been the main obstacle to the
construction of a phase space of parameters defining regular multicenter solutions. Without parameter
space, it is very complicated to study their overall properties as the behavior of their conserved charges.
In Chapter 5, we review the work done in [23,24] where a well-defined procedure was used to construct
large families of regular four-center solutions and to study their properties.

To summarize, BPS solutions in five dimensions with ∂t and ∂ψ as Killing vectors have a metric
and U(1) gauge fields of the form of (4.1.5). They are uniquely defined by a set of 2nV + 4 harmonic
functions Γ = (V,LI ;K

I ,M). The vector Γ is sourced by integer charges at given centers in the three-
dimensional base space. From an eleven-dimensional perspective, the charges at the center arise from
from KKm and P charges in the five-dimensional space, M2-branes wrapping two-cycles in T6, and
from M5-branes wrapping five-cycles with four components in T6 and one in the base space:

Γj =
(
qj , k

1
j , . . . , k

nv+1
j ; l1j , . . . , l

nv+1
j ,mj

)
←
(
KKm,M51, . . . ,M5nv+1; M21, . . . ,M2nv+1, P

)
(4.1.29)

As we will see, those solutions can describe five-dimensional three-charge black holes, circular black
rings and round Supertubes as well as smooth bubbling solutions and arbitrary superposition of these
objects. Before deriving explicit solutions, we first exploit the symplectic structure to construct sym-
plectic transformations which allows to go from one spectrum of BPS solutions to another by simple
linear transformations. Then, we will apply the construction above for specific values of nV . We first
discuss the STU model corresponding to nV = 2 before considering an extra species, nV = 3.
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4.1.1.4 Symplectic transformations

Any vector of harmonic functions defines a solution, and any linear transformation, Γ′ = GΓ with
G ∈ GL(2nV + 4,R)1, maps a solution of the BPS equations to another solution. A special subgroup
of these transformations is Sp(2nV + 4,R), corresponding to linear transformations that preserve the
symplectic product and, therefore, leave the Denef equations invariant. Among all possible Sp(2nV +
4,R) transformations, the most attractive are those that also leave the function I4 invariant. We are
interested in two subgroups with these characteristics [80]:

• Generalized spectral flows:

In Section 3.2.4, we have broadly described three types of sequences of S-dualities, T-dualities and
coordinate transformations, referred as generalized spectral flows, in ten-dimensional Supergravity.
One can dualize the five-dimensional solutions above into ten-dimensional Supergravity by simply
considering their embeddings in eleven dimensions on C6 and by compactifying along one closed curve
of the C6. The dual solutions will be embedded in type IIA on S1×C4 where generalized spectral flows
can be applied. The coordinate transformation will then consist in a shift ψ → ψ + γ y where ψ is the
Gibbons-Hawking fiber coordinate and y is the coordinate along S1. From the different choices of closed
curves and from the three types of generalized spectral flows available, the generalized spectral flows
induce nV + 1 independent transformations from the perspective of the five-dimensional solutions [81].
Those transformations are linear transformations of Sp(2nV + 4,R) defined by nV + 1 constant shifts
γI as [82]

V −→ V + γIKI − 1

2
CIJK γ

IγJLK +
1

6
CIJK γ

IγJγKM ,

LI −→ LI − γIM ,

M −→ M ,

KI −→ KI − CIJK γ
JLK +

1

2
CIJK γ

JγKM .

(4.1.30)

One can straightforwardly check that those transformations belong to Sp(2nV + 4,R). Moreover, even
though they act non-trivially on ZI and µ, one can check that I4 remains invariant under the action
of (4.1.30).

• Gauge transformations:

Gauge transformations leave the physical properties of the solution unchanged and their sole effect is
a gauge transformation of the vector fields. They are a reflection of the fact that the construction of
solutions in terms of 2nV +4 harmonic functions contains redundancies. There are nV +1 independent
gauge transformations (one for each vector) parametrized by gI , acting as

V −→ V ,

LI −→ LI − CIJK g
JKK − 1

2
CIJK g

JgKV ,

KI −→ KI + gIV ,

M −→ M − gILI +
1

2
CIJK g

IgJKK +
1

6
CIJK g

IgJgKV .

(4.1.31)

One can straightforwardly check that ZI , ΘI , $ and µ are invariant and therefore the quartic
invariant as well. There is one additional subgroup of Sp(2nV + 4,R) that leaves I4 invariant that

1To preserve the quantization of the charges, one should reduce to GL(2nV +4,Q) or even GL(2nV +
4,Z).
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involves rescalings of the harmonic functions, but since we are not going to make use of this type of
transformations we refer the interested reader to [80].

4.1.1.5 nV = 2, the STU model

The N = 2 five-dimensional Supergravity coupled to two extra gauge fields, referred as the STU model,
corresponds to the minimum gauge fields in order to construct three-charge solutions. The model can
be embedded in eleven-dimensional Supergravity on T6 = T2 × T2 × T2 where the T2 are orthogonal
between each other. Each T2 and its transverse T4 = T2 × T2 can be wrapped by M2-branes and
M5-branes respectively. The resulting five-dimensional theory contains three vector gauge fields with
the structure constant

CIJK =

∫
T6

Vol
(
T2
I

)
∧Vol

(
T2
J

)
∧Vol

(
T2
K

)
= |εIJK | ,

where εIJK is the three-dimensional Levi-Civita symbol. One can trivially check that this satisfies the
constraint (3.3.6).

We consider that the four-dimensional space is a generic Gibbons-Hawking space There exist n
centers on the three-dimensional base space carrying Gibbons-Hawking charges. The five-dimensional
metric and the U(1) gauge fields (4.1.5) give

ds2
5 = − (Z1Z2Z3)−

2
3 (dt+ µ (dψ +A) +$)2 + V −1 (Z1Z2Z3)

1
3 (dψ +A)2

+ V (Z1Z2Z3)
1
3

[
dρ2 + ρ2

(
dϑ2 + sin2 ϑ dφ2

) ]
,

F I = d3

(
Z−1
I (dt+ µ (dψ +A) +$)

)
+ ΘI ,

(4.1.32)

The BPS solutions are uniquely determined by an eight-dimensional vector of hamonic functions Γ =
(V,K1,K2,K3;L1, L2, L3,M). The harmonic functions source (ZI ,Θ

I) (4.1.20), µ (4.1.22) and $
(4.1.25).

In Section 3.3.1, we have detailed how N = 2 five-dimensional Supergravity arises from eleven
dimensions. Let us now go backwards and give the description of the STU solutions as brane bound
states in type IIA, IIB and eleven-dimensional Supergravitites. This requires the use of the dualities
detailed in Section 3.2. These descriptions provide a complete understanding of the nature of the eight
harmonic functions. In the following paragraphs, we give a non-exhaustive list of brane bound states
corresponding to BPS solutions of the STU model. All solutions derived until now have been assumed
to have ψ-independent gauge fields. With the exception of the D0-D2-D4-D6 frame, the metric and
the fields in the various duality frames are still valid for ψ-dependent fields.

• The STU model in eleven-dimensional Supergravity.

As explained in Section 3.3.1 and in (4.1.29), the warp factors are sourced electrically by M2-
branes and magnetically by M5 branes. The five-dimensional transverse space carries KKm charges
corresponding to the Gibbons-Hawking charges and P charges giving rise to the angular momenta.
The eleven-dimensional metric and the four-form field strength F4 are similar to the intersecting-brane
example in Section 3.1.1.1:

ds2
11 = − (Z1Z2Z3)−

2
3 (dt+ µ (dψ +A) +$)2 + (Z1Z2Z3)

1
3

[
V −1 (dψ +A)2 + V ds(R3)2

]
+

(
Z2Z3

Z2
1

) 1
3 (
dx2

1 + dx2
2

)
+

(
Z1Z3

Z2
2

) 1
3 (
dx2

3 + dx2
4

)
+

(
Z1Z2

Z2
3

) 1
3 (
dx2

5 + dx2
6

)
F4 = F 1 ∧ dx1 ∧ dx2 + F 2 ∧ dx3 ∧ dx4 + F 3 ∧ dx5 ∧ dx6 .

(4.1.33)
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The charge vectors Γj , that give the supergravity charges at the centers of the three-dimensional base
space (4.1.24), can be related to M-brane, KKm or P charges in eleven dimensions by integrating
appropriately the fluxes in the vicinity of the centers. This gives

Γj =
(
qj , k

1
j , k

2
j , k

3
j ; l

1
j , l

2
j , l

3
j ,mj

)
←
(
KKm,M51,M52,M53; M21,M22,M23, P

)
(4.1.34)

The STU solutions describe bound states of M2-branes, M5-branes, P and KKm charges in eleven
dimensions. Each center on the three-dimensional base space can carry a KKm charge, three magnetic
M5-brane charges, three electric M2-brane charges and one momentum P charge (see Table 4.1).

• The STU model in type IIA and type IIB Supergravity.

One can perform a KK reduction to type IIA Supergravity. The reductions along one of the six-
torus directions will produce identical solutions by permutation of the vector fields. However, the
solutions also have a U(1) isometry along ψ. The KK reduction along ψ is then also feasible. Thus,
one can obtain two different descriptions depending on whether we reduce along ψ or x6. The former
gives type IIA on T6 while the latter gives type IIA on S1 × T4. Furthermore, one can apply a bunch
of T-dualities to go to different frames. In the thesis, we are interested in two frames: the D1-D5-P
frame in type IIB and the D0-D4-F1 frame in type IIA.

- Type IIA on T6 from M/Sψ:

We consider a Kaluza-Klein reduction along ψ. Following the reduction rules in Section 3.2.1, the
metric and fields (4.1.33) leads to the following system of relations for the ten-dimensional metric
(in the string frame), dilaton, the R-R and NS-NS gauge fields [83]:

ds2
10 = −

(
Z1Z2Z3V − µ2V 2

)− 1
2 (dt+$)2 +

(
Z1Z2Z3V − µ2V 2

) 1
2 ds(R3)2

+
(
Z1Z2Z3V

−1 − µ2
) 1

2

[
Z−1

1

(
dx2

1 + dx2
2

)
+ Z−1

2

(
dx2

3 + dx2
4

)
+ Z−1

3

(
dx2

5 + dx2
6

)]
,

e−2Φ =
Z1Z2Z3

(Z1Z2Z3V −1 − µ2)
3
2

, (4.1.35)

B2 =

(
K1

V
− µ

Z1

)
dx1 ∧ dx2 +

(
K2

V
− µ

Z2

)
dx3 ∧ dx4 +

(
K3

V
− µ

Z3

)
dx5 ∧ dx6 , (4.1.36)

C(1) = A − µ
(
Z1Z2Z3V

−1 − µ2
)

(dt+$) ,

C(3) = C
(3)
1 ∧ dx1 ∧ dx2 + C

(3)
2 ∧ dx3 ∧ dx4 + C

(3)
3 ∧ dx5 ∧ dx6 ,

where we have defined

C
(3)
I ≡ −dt+$

ZI
+

(
KI

V
− µ

ZI

)
A+ wI ,

and wI are one-forms on the three-dimensional base space

ΘI = d3

(
KI

V
(dψ +A) + wI

)
.

The two other R-R gauge fields, C(5) and C(7), are obtained using the electric-magnetic duality
(3.1.24). Moreover, according to KK-reduction rules, the brane bound states (4.1.34) reduce to(

KKm,M51,M52,M53; M21,M22,M23,P
) KKSψ←→

(
D6,D41,D42,D43; D21,D22,D23,D0

)
(4.1.37)
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The STU solutions describe bound states of D0-D2-D4-D6 branes in type IIA on T6. Each center
on the three-dimensional base space can carry a D6 charge, three magnetic D4-brane charges,
three electric D2-brane charges and one momentum D0 charge.

Notice that now the base space is three-dimensional. The angular momentum associated to ψ has
been dualized into a D0 charge (JL) and the four-dimensional solutions have only one angular
momentum, JR.

- Type IIA on S1 × T4 from M/Sx6 :

The KK reduction along x6 transforms the eleven-dimensional bound states (4.1.34) into(
KKm,M51,M52,M53; M21,M22,M23,P

) KKSx6←→
(
KKm,D41,D42,NS53; D21,D22,F13,P

)
(4.1.38)

The metric, the NS-NS and R-R fields are [83]

ds2
10 = − 1

Z3

√
Z1Z2

(dt+ µ (dψ +A) +$)2 +
√
Z1Z2

[
V −1 (dψ +A)2 + V ds(R3)2

]
+

√
Z1Z2

Z3
dy2 +

√
Z2

Z1
(dx2

1 + dx2
2) +

√
Z1

Z2
(dx2

3 + dx2
4) ,

e−2Φ =
Z3√
Z1Z2

, B2 = −A3 ∧ dy , C(1) = 0 , (4.1.39)

C(3) = A1 ∧ dx1 ∧ dx2 +A2 ∧ dx3 ∧ dx4 .

We have noted y instead of x5 to make the S1 fiber manifest and we remind that the AI are the
vector fields associated to the field strength F I in five dimensions

AI = −dt+ ω

ZI
+
KI

V
(dψ +A) + wI , F I = d5A

I .

Thus, the STU solutions correspond to bound states of electric D2-D2-F1 branes and magnetic
D4-D4-NS5 branes in type IIA on S1 × T4.

- Type IIA on S1 × T4 from M/Sx6 + Tx1Tx2 :

In addition, we apply two T-dualities along x1 and x2. According to KK-reduction rules, the
bound states of branes are transformed into(

KKm,M51,M52,M53; M21,M22,M23,P
) KKSx6←→
Tx1Tx2

(
KKm,D61,D22,NS53; D01,D42,F13,P

)
(4.1.40)

The metric and NS-NS and R-R fields are2

ds2
10 = − 1

Z3

√
Z1Z2

(dt+ µ (dψ +A) +$)2 +
√
Z1Z2

[
V −1 (dψ +A)2 + V ds(R3)2

]
+

√
Z1Z2

Z3
dy2 +

√
Z1

Z2
(dx2

1 + dx2
2 + dx2

3 + dx2
4) ,

e−2Φ =
Z

1
2
2 Z3

Z
3
2
1

, B2 = −A3 ∧ dy , F (2) = −F 1 , (4.1.41)

F (4) = −
(

Z5
2

Z3
1Z

2
3

) 1
4

?5 (F 2) ∧ dy ,

Thus, the STU solutions describe bound states of electric D0-D4-F1 and dipole moments corre-
sponding to D6-D2-NS5 branes in type IIA on S1 × T4.

2We decide to write the R-R fields using their field strengths since the computation of the gauge fields
require more work. We refer the interested reader to the Appendix A of [83] for more details.



4. Classical solutions in Supergravity 51

- Type IIB on S1 × T4 from M/Sx6 + Tx1Tx2Tx5 :

We perform one last T-duality along y = x5. This dualizes the solutions to a bound states of
branes in the D1-D5-P frame:(

KKm,M51,M52,M53; M21,M22,M23,P
) KKSx6←→
Tx1Tx2Tx5

(
NS5,D51,D12,KKm3; D11,D52,P3,F1

)
(4.1.42)

In string frame, the metric, the NS-NS and R-R fields are [83]

ds2
10 = − 1

Z3

√
Z1Z2

(dt+ µ (dψ +A) +$)2 +
√
Z1Z2

[
V −1 (dψ +A)2 + V ds(R3)2

]
+

Z3√
Z1Z2

(
dy +A3

)2
+

√
Z1

Z2
(dx2

1 + dx2
2 + dx2

3 + dx2
4) ,

e−2Φ =
Z2

Z1
, B2 = 0 , F (1) = 0 , F (5) = 0 , (4.1.43)

F (3) = −
(

Z5
2

Z3
1Z

2
3

) 1
4

?5 F
2 − F 1 ∧ (dz −A3) ,

Thus, the STU solutions describe bound states with D1, D5 and P charges and dipole moments
corresponding to D5, D1 and KKm charges in type IIB on S1 × T4.

We have summarized the dual bound states of branes which are related to the STU model in Table
4.1. Even if the model is constructed from the minimum number of vector fields, the spectrum of STU

Charges

Frame
M on T6 IIA on T6: M/Sψ IIA on T4 × S1: M/Sx6

Electric: l1 - l2 - l3 M2 - M2 - M2 D2 - D2 - D2 D2 - D2 - F1

Magnetic: k1 - k2 - k3 M5 - M5 - M5 D4 - D4 - D4 D4 - D4 - NS5

Momentum: m P D0 P

GH: q KKm D6 KKm

Charges

Frame
IIA on T4 × S1: M/Sx6 + Tx1Tx2 IIB on T4 × S1: M/Sx6 + Tx1Tx2Tx5

Electric: l1 - l2 - l3 D0 - D4 - F1 D1 - D5 - P

Magnetic: k1 - k2 - k3 D6 - D2 - NS5 D5 - D1 - KKm

Momentum: m P F1

GH: q KKm NS5

Table 4.1: Brane interpretation of a charge vector in the STU model in dif-
ferent duality frames. The coordinate of the eleven-dimensional space on T6 is
(t, ρ, ϑ, φ, ψ, x1, x2, x3, x4, x5, x6). We have used the notations Txi for a T-duality along
xi whereas M/Sxi corresponds the KK reduction along the xi direction.

solutions remains rich. We review the BMPV black hole [84] and the family of bubbling multicenter
geometries [79,78,85,15] in Section 4.1.2 and 4.1.3 respectively.
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4.1.1.6 nV = 3, an extra species

In this section, we consider three extra vector fields. The third extra species will have a crucial
role in building superstratum solutions in N = (1, 0) six-dimensional Supergravity. As the previous
section, we start with eleven-dimensional Supergravity on T6. We define the coordinates of T6 as
(x1, x2, . . . , x6). We start first with three transverse T2, and the fourth two-cycle has legs inside one
of the T4 appropriately chosen to satisfy (3.3.6). We define the following volume two-forms

D1 = x1 ∧ x2 , D2 = x3 ∧ x4 , D3 = x5 ∧ x6 , D4 = x1 ∧ x3 + x2 ∧ x4 . (4.1.44)

This implies that the only non-zero components of the structure constants are

C3JK =


0 1 0

1 0 0

0 0 −2

 =⇒ CIJK
6

ZIZJZK = Z3

(
Z1Z2 − Z2

4

)
. (4.1.45)

Assuming that the four-dimensional space is Gibbons-Hawking and that the solutions preserve the
∂ψ Killing vector of the base, BPS solutions of N = 2 five-dimensional Supergravity coupled to
three vector fields are uniquely determined by ten-dimensional vectors of harmonic functions in R3,
Γ = (V,K1,K2,K3,K4;L1, L2, L3, L4,M). Such solutions can be also described as brane bound states
in type IIA, type IIB and eleven-dimensional Supergravities by performing a sequence of duality trans-
formations as it has been done for the STU model.

4.1.2 Three-charge supersymmetric black hole

The 1/8-BPS five-dimensional rotating black hole with a macroscopic horizon or BMPV black hole [84]
has three types of electric charges QI , a non-vanishing SU(2)L angular momentum JL, no SU(2)R
angular momentum and no magnetic charges. The solution can be embedded in eleven-dimension
Supergravity on T6 = T2×T2×T2 with three types of M2-branes wrapping the 2-tori and gravitational
wave charges P inducing the rotation. This solution is most simply described within the STU model
with a flat R4 base space. The single-center solutions are determined by the following harmonic
functions3

V =
1

ρ
, LI = 1 +

QI
4 ρ

, KI = 0 , M =
JL
4 ρ

. (4.1.46)

In the R4 spherical coordinates (4.1.12), the warp factors, the angular momentum one-form and the
magnetic two-forms are

ZI = 1 +
QI
r̂2

, ω =
JL
r̂2

(
sin2 θ̂ dϕ1 + cos2 θ̂ dϕ2

)
, ΘI = 0 . (4.1.47)

This solution trivially satisfies the Denef equations (4.1.26) and the absence of CTC’s (4.1.27) is
guaranteed if

J2
L < Q1Q2Q3 . (4.1.48)

This corresponds to the cosmic censorship bound for three-charge supersymmetric solutions. The
five-dimensional metric and the field strengths are

ds2
BMPV = − (Z1Z2Z3)−

2
3

(
dt+

JL
r̂2

(
sin2 θ̂ dϕ1 + cos2 θ̂ dϕ2

))2

+ (Z1Z2Z3)
1
3

[
dr̂2 + r̂2

(
dθ̂2 + sin2 θ̂ dϕ2

1 + cos2 θ̂ dϕ2
2

)]
,

F I = d3

(
Z−1
I (dt+ ω)

)
,

(4.1.49)

3The non-zero constant terms in the harmonic functions have been set to one since they can be
absorbed by a coordinate transformation.
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The metric is asymptotic to five-dimensional flat Minkowski for r̂ � {Q1, Q2, Q3}. The near-horizon
geometry is obtained by taking the limit r̂ � {Q1, Q2, Q3}. The geometry is AdS2 × S3 and the
event horizon is at r̂ = 0. The ADM mass of the solution, given by the asymptotic expansion −gtt =
1 − 2

3
M
r̂2 + O

(
r̂−4
)
, is

M = Q1 + Q2 + Q3 ,

which saturates the BPS bound as expected. The solutions are extremal and have zero temperature.
However this does not mean that it is not entropic. The entropy can be derived from the Bekenstein-
Hawking formula

S =
AH
4G5

.

The area of the event horizon is given by the area of the three-sphere Sθ̂ϕ1ϕ2 at r̂ = 0. We get

AH =

∫
S3|r̂=0

Vol(S3) = 2π2
√
Q1Q2Q3 − J2

L ⇒ S =
π2

2G5

√
Q1Q2Q3 − J2

L .

Let us consider the non-rotating solutions, JL = 0, for simplicity. From an eleven-dimensional perspec-
tive, the supergravity charges can be related to the M2-brane charges and to the number of M2-branes
wrapping the transverse 2-tori as it has been done in Section 3.1.1.1 for M-brane examples. We remind
that the five-dimensional Supergravity has been obtained by requiring that the volume of the trans-
verse T6 is constant (3.3.3). Its area is not necessary one and adds a contribution to the area of the
horizon computed in five dimensions. Thus, we consider the metric of the solutions when embedded
in eleven dimensions (4.1.33). We define the length of the closed one-curve along xi as Li. Thus, the

eleven-dimensional area of the horizon, A
(11)
H is given by

A
(11)
H = AH

∫
T6

Vol(T6) = AH

6∏
i=1

(2πLi)

The number of M2-branes can be read off by integrating the magnetic gauge field strength over a
surface that surrounds the M2-branes as in Section 3.1.1.1. We obtain

Q1 =
l
(11)
P

6

L3L4L5L6
N1 , Q2 =

l
(11)
P

6

L1L2L5L6
N2 , Q3 =

l
(11)
P

6

L1L2L3L4
N3 ,

where NI is the number of M2 branes wrapping the Ith 2-torus. From the expression of the Newton
constant (3.1.2), the entropy in eleven dimensions is

S =
A

(11)
H

4G11
= 2π

√
N1N2N3 . (4.1.50)

The entropy neither depends on the transverse space nor on the Planck length and is then moduli-free.
The first property implies that the entropy is invariant under compactification and T-dualities on the
T6. For instance, we perform the duality chain detailed in Section 4.1.1.5: a KK reduction along x6 and
three T-dualities along x1, x2 and x5. The dual solution of the BMPV black hole is a D1-D5-P black
hole in type IIB on S1×T44. The metric, the NS-NS and R-R fields are given in (4.1.43). The entropy
is identical with now N1 → N1, N2 → N5 and N3 → NP . In the supergravity regime, the microstate
structure encoding the entropy is not manifest. However, as advertised in the Introduction, one can
use the invariance under the string coupling to “turn off” gravity and describe the physics of the brane
bound states at weak coupling where the microstate structure is explicit, gsN � 1. This is the open
string - closed string duality. The open-string description corresponds to the AdS3×S3 near-horizon

4Section 4.2.2 will be devoted to the description of the 1/8-BPS three-charge black hole in the D1-
D5-P frame.
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limit of the D1-D5-P supergravity solutions. The closed-string description is a two-dimensional CFT
given by the shared circle of the D1 branes and the D5 branes and the time direction valid at weak
coupling (zero gravity). At this regime, the microstates are well-known and are simply given by the
different ways the momentum charge P can be partitioned on the D1-D5 strings. The entropy is given
by the Cardy’s formula [8] and exactly matches the supergravity result. The match of the entropy is
a consequence of the non-renormalization of protected quantities by supersymmetry.

4.1.3 Smooth multicenter bubbling solutions

All BPS solutions in five dimensions with no magnetic charges lead to singular solutions of the type
studied above. One can add centers and species of vector fields, one can change the base space to
a Gibbons-Hawking space, this will not resolve the singular electric sources. Another way to think
about this is that, in black-hole physics and in holographic renormalization group flows, singularities
arise when one does not include the essential degrees of freedom needed to resolve singularities. The
microstate geometry progamme exists because String Theory and Supergravity have enough degrees
of freedom to resolve black-hole singularities. In the present discussion, these degrees of freedom
are exactly allowing magnetic fluxes on the non-trivial two-cycles induced by the Gibbons-Hawking
topology (see Fig.4.1). Let us consider the most general asymptotically flat 1/8-BPS solution in the
STU model. We consider n centers in the three-dimensional base space sourcing the Gibbons-Hawking
function V , the electric an magnetic harmonic functions, LI and KI , and the momentum harmonic
function M as follows

V =

n∑
j=1

qj
ρj
, LI = 1 +

n∑
j=1

lIj
ρj
, KI =

n∑
j=1

kIj
ρj
, M = m∞ +

n∑
j=1

mj

ρj
, (4.1.51)

The constant terms, i.e. the background vector Γ∞ = (0, 0, 0, 0; 1, 1, 1,m∞), have been chosen to have
an asymptotically flat geometry. One could have started with a generic point in the background moduli
space. However, this specific choice is more convenient to read off the conserved charges and to match
the asymptotics to the BMPV solution.

We assume that the charge vectors Γj and the center configuration satisfy the Denef equations
(4.1.26) and the no-CTC condition (4.1.27). A straightforward consequence of the Denef equations is
that

m∞ = −
n∑
j=1

(
k1
j + k2

j + k3
j

)
. (4.1.52)

The five-dimensional metric and the field strengths are given by

ds2
5 = − (Z1Z2Z3)−

2
3 (dt+ µ (dψ +A) +$)2 + V −1 (Z1Z2Z3)

1
3 (dψ +A)2

+ V (Z1Z2Z3)
1
3

[
dρ2 + ρ2

(
dϑ2 + sin2 ϑ dφ2

) ]
,

F I = d3

(
Z−1
I (dt+ ω)

)
+ ΘI ,

(4.1.53)

where the quantities above have been derived from the harmonic functions in Section 4.1.1.2. We now
consider the interesting regime of parameters in which the inter-center distance is much smaller than
the underlying charges:

ρij � O
(
qj , l

I
j , k

I
j

)
.

This assumption has implications in the Denef equations. We define the aspect ratios between the
centers, dij = O(1), and the overall scale of the center configuration, λ� 1, as ρij = λ dij . The Denef
equations require at leading order in λ that

n∑
j=1

〈Γi,Γj〉
dij

= O(λ) , i = 1, . . . n , (4.1.54)
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The family of solutions which satisfies the limit λ → 0 are called scaling solutions [85–87]. Those
solutions have the particularity that their cluster of centers shrinks to zero size from a three-dimensional
perspective. However, as the points get closer and closer the throat becomes longer and longer, and the
proper size in five dimensions of the various cycles supported by flux at the bottom of the throat stays
finite in physical units [85, 86]. For those solutions, the relevant quantities have three behaviors. In
the UV region, they converge to constant values and the five-dimensional spacetime is asymptotically
flat Minkowski. In the intermediate region where they behave as “ρ−1”, the solution will be a S3

fibration over an AdS2 throat. More specifically, the UV region and the intermediate region together
approximates the geometry of a BMPV black hole whose the mass, the charges and angular momenta
are functions of the charges at the centers. In the IR region, the bubble structure shows a resolution of
the black-hole-type singularity via the blow up of topologically non-trivial two-cycles that are supported
against collapse by fluxes (see Fig. 4.2b).

4.1.3.1 The asymptotic geometry

We start with the simplest limit: ρ & O
(
qj , l

I
j , k

I
j

)
� ρij . In this regime of parameter, we have5

ZI ∼ 1+
QI
ρ
, ω ∼ JL + JR cosϑ

ρ
dψ+

JR + JL cosϑ

ρ
dφ , ΘI = O(ρ−2) , V ∼ 1

ρ
, (4.1.55)

where

QI =
n∑
j=1

lIj + CIJK

n∑
(i,j)=1

kJi k
K
j ,

JL =
1

2

n∑
j=1

mj +
1

2

n∑
(i,j)=1

lIi k
I
j +

CIJK
6

n∑
(i,j,k)=1

kIi k
J
j k

K
k ,

JR =
1

2

∣∣∣∣∣∣
∑
i<j

〈Γi,Γj〉 ρ̂ij

∣∣∣∣∣∣ =
1

2

∣∣∣∣∣∑
i

〈Γ∞,Γi〉 ~ρi

∣∣∣∣∣ = O(λ) , ρ̂ij ≡
~ρi − ~ρj
|~ρi − ~ρj |

(4.1.56)

Thus, the scaling solutions approach the BMPV solution (4.1.47) at large distance taking into ac-
count the change of coordinates from the Gibbons-Hawking coordinates (ρ, ϑ, φ, ψ) to the spherical
coordinates (r̂, θ̂, ϕ1, ϕ2) of R4 (4.1.12). We use carefully the word “approach” because the angular
momentum JR is not exactly zero but negligible.

Note that the asymptotic geometry depends on the background moduli Γ∞ (4.1.24) or in other
words to the choice of constant terms in the harmonic functions (4.1.51). If one adds a “1” in V for
instance, the five-dimensional metric will be asymptotically R1,3 × S1. If one removes all the constant
terms in the harmonic function, that is Γ∞ = 0, a quick analysis of the metric shows that the solutions
are asymptotic to AdS2 × S3, that is to the near-horizon geometry of a BMPV black hole. In this
latter limit, JR = 0, which matches the black hole result. Other kinds of asymptotics can be built up
that way. However, this is not a free change. Indeed, the Denef equations relate the configuration of
centers and their charges to the background moduli. Transforming the background changes the center
configuration while the charge must remain fix. The section 5.1 will be dedicated to this issue.

4.1.3.2 The smooth cap and the Gibbons-Hawking centers

In the IR region ρ = O(ρij), the harmonic functions have order-one poles. To have a smooth geometry,
the warp factors and µ must be regular everywhere. Around the jth center, the regularity of ZI fixes

5We remind that the Gibbons-Hawking space requires that
∑n
j=1 qj = 1.
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the electric charges lIj and the regularity of µ fixes the momentum charges mj as follows6

lIj = −1

2
CIJK

kJj k
K
j

qj
, mj =

1

12
CIJK

kIj k
J
j k

K
j

q2
j

. (4.1.57)

This implies also that $ is regular. This type of center is called a three-charge Gibbons-Hawking center.
They are locally 1/2-BPS7 and source the charge vector Γj as follows

Γj =

(
qj , k

1
j , k

2
j , k

3
j ; −

k2
jk

3
j

qj
, −

k1
jk

3
j

qj
, −

k1
jk

2
j

qj
,
k1
jk

2
jk

3
j

q2
j

)
. (4.1.58)

Thus, unlike the BMPV solution, the product Z1Z2Z3 and the angular momentum one-form is
“harmless” where the harmonic functions diverge and the topology is given by the Gibbons-Hawking
base space that we have studied in Section 4.1.1.1. The five-dimensional spacetime is locally a smooth
discrete Z|qj | quotient of R1,4 at each center.

As a remark, the regularity (4.1.57) can only be achieved by turning on dipole charges in KI as
expected. By focusing on the constraint on the electric charges lIj and comparing to the structure of
the Maxwell equation (4.1.6)

?4d4 ?4 d4 ZI =
1

2
CIJK ?4

(
ΘJ ∧ΘK

)
,

we notice that ?4

(
ΘJ ∧ΘK

)
has been fixed to cancel the electric singularity. This term comes directly

from the Chern-Simons term of the five-dimensional action (3.3.4). As advertised, the Chern-Simons
term is the key ingredient that obviates the GR ‘no-go’ theorem and that allows non-trivial structure
at the scale of the horizon. If one does not impose the regularity condition (4.1.57), the solution is
multi-centered singular black holes.

As detailed in Section 4.1.1.1, the Gibbons-Hawking base space is ambipolar and one can wonder
how the five-dimensional space keeps its (−,+,+,+,+) signature all over the space. This is a conse-
quence of the no-CTC’s inequalities (4.1.28). Thus, the absence of closed time-like curves requires that
the warp factors flip sign when the Gibbons-Hawking metric changes signature. According to (4.1.53),
the signature of the five-dimensional solutions remains constant.

Let us make a step back and determine what has been achieved so far. In General Relativity, all
classical solutions which look like a black hole from the horizon scale to infinity are necessary black holes
themselves or multi-centered black holes as a consequence of the no-hair theorem. In the framework
of five-dimensional Supergravity and its dual frames, we have shown that supersymmetric black-hole
solutions with a macroscopic horizon area and smooth horizonless solutions coexist in the same regime
of parameters (see Fig.4.2). The latter look like a black hole from above the horizon scale. However,
they cap off smoothly at the horizon scale thanks to magnetic charges that prevent the structure to
collapse (see Fig.4.2b). The main question is if they do account significantly in the entropy computed

in the closed-string description S ∼
√
N1N2N3 − J2

L. Unfortunately, no direct computation has been

performed so far in that direction but general arguments tend to the negative answer as a consequence
of the highly-isometric nature of the solutions. Nevertheless, smoothness should be only imposed in the
D1-D5-P frame where the microscopic brane-bound-state counting is performed. One can expect that
our requirement of smoothness in five dimensions is too rigid and that six-dimensional Supergravity
contains less isometric smooth solutions that account more in the entropy.

6These regularity conditions are actually valid for smooth BPS multicenter solutions with an arbitrary
number of vector fields.

7They preserve 16 supercharges.
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(a) BMPV black hole (b) Smooth bubbling geometry

Figure 4.2: Schematic description of the two-dimensional embedding of a BMPV black
hole and a smooth bubbling geometry.

The Gibbons-Hawking centers are the only centers that are regular from a five-dimensional per-
spective. In Section 4.1.1.5, we have discussed several dual frames containing the STU model. When
the solutions are uplifted to ten dimensions, other types of regular centers exist. The two-charge
Supertubes are brane bound states carrying two electric charges, a magnetic charge and one angular
momentum [88–90]. They are 1/4-BPS objects8, and their angular momentum is fixed by regularity.
In the next subsection, we will decribe the two-charge supertube solutions in the context of the STU
model. The isometric nature of the model restricts the solutions to the “round” supertubes whereas it
has been shown that supersymmetry is preserved for arbitrary shapes [91,89]. Moreover, the counting
of “wiggly” supertubes reproduces exactly the entropy of the two-charge system as already said in
the Introduction [92,11–14]. Furthermore we will see that the “wiggly” supertubes are the foundation
stones of Superstrata.

4.1.3.3 Two-charge round Supertube

Round supertubes were initially introduced in the context of type IIA Supergravity as D2-branes with
a compact direction, carrying F1 and D0 charges (4.1.41). Translated into the STU language, the F1
and D0 induce two electric charges l1 and l2 and the D2 induces a dipole magnetic charge k3. The
regularity of the ten-dimensional geometry imposes a non-zero angular momentum m sourced by a P
charge:

m =
l1 l2

k3
. (4.1.59)

As it has been explained in Section 4.1.1.5, those 1/4-BPS brane bound states in type IIA on S1 × T4

are well-described as supergravity solutions within the STU model (4.1.41). However, for a reason
that will become evident when we construct Superstrata, we will review the construction of two-charge
round supertubes in the D1-D5-P frame (4.1.43).

• The two-charge round-supertube center:

In the D1-D5-P frame, a two-charge round Supertube is sourced electrically by D1-branes wrapping
the transverse S1 and D5 branes wrapping S1×T4. The magnetic charge is induced by a KKm charge

8The Supertube preserves 16 supercharges and is locally 1/2-BPS but the R4 base space breaks half
of the supersymmetries.
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while the angular momentum is induced by a F1 charge. We recall the six-dimensional part of the
metric (4.1.43)

ds2
6 = − 1

Z3

√
Z1Z2

(dt+ ω)2 +
√
Z1Z2

[
V −1 (dψ +A)2 + V ds(R3)2

]
+

Z3√
Z1Z2

(
dy +A3

)2
,

A3 = −dt+ ω

Z3
+
K3

V
(dψ +A) + w3 ,

(4.1.60)

According to the preamble, a supertube center is given by the following charge vector in the STU
model

Γ
(3)
S =

(
0, 0, 0, k3; l1, l2, 0,m

)
. (4.1.61)

The linearity of the BPS equations allows us to consider the supertube center in flat R4 with no other
centers. Considering more centers will just add linear contributions to the harmonic function and will
not affect the regularity of the solution around the supertube locus9. Thus, the single supertube center
is determined by the following eight harmonic functions10

V =
1

ρ
, L1 = 1 +

l1

ρS
, L1 = 1 +

l2

ρS
, L3 = 1 , K1 = K2 = 0 , K3 =

k3

ρS
, M = −k3 +

m

ρS
,

(4.1.62)
where ρS is the distance from the supertube center in the three-dimensional base space. The Denef
equations (4.1.26) fixes the supertube radius which we call a

a =

√
l1l2

k3
. (4.1.63)

To check regularity along the Supertube one must inspect potential singularities along the (dψ + A)2

fiber. This leads to the condition

lim
ρS→0

ρ2
S

[
Z3K

32 − 2µV K3 + Z1Z2V
]

= 0 =⇒ m =
l1 l2

k3
. (4.1.64)

This condition makes the six-dimensional metric regular. In the vicinity of the supertube center the
geometry is a S3 fibration along (ϑ, φ, ψ) over AdS3 given by (ρ, t, y). Notice that, unlike Gibbons-
Hawking center, the ψ-circle does not pinch off at the round-supertube locus and has a fixed radius.
If we add an arbitrary number of Gibbons-Hawking centers, the round Supertube represents a round
circle wrapping the ψ-fiber as depicted in Fig.4.3. A similar picture can be drawn in flat R4: instead
of bubbles the ψ-fiber does not stop growing and the round Supertube stands at a distance a from the
origin of R4.

Moreover, one may consider two other centers which are identical to (4.1.61) by permutation of the
vector fields:

Γ
(1)
S =

(
0, k1, 0, 0; 0, l2, l3,

l2l3

k1

)
, Γ

(2)
S =

(
0, 0, k2, 0; l1, 0, l3,

l1l3

k2

)
. (4.1.65)

The centers are singular in the D1-D5-P metric above. However, permuting similarly the vector fields
in the metric (4.1.60) leads to regular frames. For instance, permuting the label 1 ↔ 3 in (4.1.60),

gives a D1-D5-P frame in which the supertube center Γ
(1)
S is regular. Concretely, when we dualized

the eleven-dimensional frame on T6 = T2 × T2 × T2 to the type IIB D1-D5-P frame, we discriminated

9This will also divide by two the number of unbroken supersymmetries.
10We have chosen the constant terms in order to obtain an asymptotically flat solution. A different

choice will not affect the supertube regularity.
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Figure 4.3: The round Supertube from the perspective of a four-dimensional base space
with arbitrary many Gibbons-Hawking centers.

between the undistinguishable two-tori11. Indeed, the KK reduction along a one-curve of one two-
torus makes the corresponding vector field be “magnetically” sourced by a KKm charge. There are
three possible choices of torus, therefore there exist three different D1-D5-P frames. Each frame has
their own regular round Supertube. Thus, in the STU model, there are three species of two-charge
Supertubes given by (4.1.61) and (4.1.65). Each one is regular in the specific D1-D5-P frame where
their magnetic charge corresponds to a KKm charge of the base.

• Spectrally-flowed Supertube:

An interesting property of round Supertubes is that they can be mapped to Gibbons-Hawking
centers by generalized spectral flows (4.1.30) and reciprocally. In the STU model, there are three
generalized spectral flow transformations given by three constants γI . We perform the following trans-
formation(

0, 0, 0, k3; l1, l2, 0,
l1l2

k3

)
−→

(γ1,γ2,γ3)=
(

0,0, q
k3

)
(
q,−q l

2

k3
,−q l

1

k3
, k3; l1, l2,−q l

1l2

k32 ,
l1l2

k3

)
(4.1.66)

One can check that the resulting charge vector satisfies the smoothness conditions of a Gibbons-
Hawking center (4.1.57). One also find a sequence of generalized spectral flows transforming a generic
Gibbons-Hawking center (4.1.58) to a round Supertube. Therefore, the equations that determine the
smoothness of a Supertube in six dimensions are related by spectral flow to the smoothness conditions
of a usual bubbling solution in five dimensions. This is trivial for the Denef equations and the CTC
condition (4.1.26) and (4.1.27) as they are invariant under spectral flows but this is less trivial for the
supertube regularity (4.1.64).

4.2 BPS solutions in six dimensions

The five-dimensional smooth solutions described in the previous section have a tri-holomorphic U(1)
isometry. This isometry has the advantage to make simpler equations of motion, but in return, they
are too rigid to account significantly for the entropy of the three-charge black hole. It should only
be in six dimensions that the solutions would be complex enough to describe a significant phase
space of black hole microstates due to the dependence along the extra dimension. However, the price
to pay is to have more complicated equations. In this section, we derive the equations of motion of

11The two-tori in the eleven-dimensional frame are undistinguishable in a sense that they map to each
other under permutation of the vector fields.
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solutions with unbroken supersymmetries in six-dimensional N = (1, 0) Supergravity coupled to tensor
multiplets [59–61, 93, 94] and detail a linear procedure to solve them [95–97]. We review the D1-D5-P
black-hole in this framework and we finally construct the superstratum solutions [30, 98–101, 31, 28].
They are obtained by generating momentum charges on two-charge wiggly Supertubes.

4.2.1 Generic BPS solutions

We start by considering N = (1, 0) six-dimensional Supergravity coupled to nT extra tensor multiplets.
We use the conventions detailed in Section 3.3.2. The dynamics of the solutions of the action given in
3.3.11 is governed by the following Einstein-Maxwell-scalar equations [59,61]12

Rµν + ∂µv
I∂νvI − MIJ G

I
µαβG

J
ν
αβ

= 0 ,

xMI d6 ?6 d6v
I + 4xMI vJ G

I ∧ ?6G
J = 0 ,

d6G
I = 0.

(4.2.1)

One also needs to add the self-duality condition and the SO(1, nT )/SO(nT ) constraint on the scalar:

MIJG
J = ηIJ ?6 G

J , vIv
I = 1 . (4.2.2)

4.2.1.1 BPS equations of motion

We derive the BPS equations. This essentially works in two steps as we have done before. We first
derive all the conditions from the conservation of supersymmetries. This allows to simplify the form of
the fields and to satisfy automatically all, or all but one, Einstein equations13. And second, we derive
the BPS equations from the remaining equations.

• Supersymmetry and self-duality:

We assume that the solutions preserve Killing spinors. In six dimensions, spinors are Majorana-Weyl
and then are in pairs. The gravitini and tensorini variations lead to first-order differential equations [60]:

∇µεi +
1

4
vIG

I
µνρ Γνρ εi = 0 , (4.2.3)

xMI ∂µv
IΓµ εi +

1

6
xMI G

I
µνρ Γµνρ εi = 0 , (4.2.4)

where Γµ are the 8× 8 Gamma matrices. We construct the bilinear one-form

Kµ = ε̄i Γµε
i . (4.2.5)

The indices are contracted as symplectic Majorana spinors χi = εij χj , where εij is the rank-two
Levi-Civita tensor. A rather technical algebraic computation, using the Fierz identity and (4.2.3),
shows that K is a null Killing vector [60]. This defines a null coordinate u and its associated vielbein
e+, K = ∂u. All the fields are independent of u. We also define the hypersurface nowhere tangent
to K by its normal vector e−: K.e− = 1. The metric decomposes as a two-dimensional space over a
four-dimensional base space defined by the vielbein em, m = 1, 2, 3, 4 as

ds2
6 = 2 e−e+ − δmn e

men .

12We used the self-duality condition to simplify the equations. This also reduces the usual Maxwell
equations for the tensor fields to the Bianchi identity.

13As we have discussed in the context of eleven-dimensional Supergravity, one component of the
Einstein equation might remain unsolved.
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The most general Ansatz leads to [60]

ds2
6 =

2

H
(dv + β)

(
du+ ω +

1

2
F (dv + β)

)
− H ds (B)2 , (4.2.6)

where ds (B)2 is the metric of the base space B, F and P are scalars on B, ω and β are one-forms on
B. This corresponds to

e+ = H−1 (dv + β) , e− = du+ ω +
1

2
FH e+ .

We use the Cartesian coordinates, xm, on B. If we work now with the other non-zero three-form
bilinears ε̄iΓµνρε

j , one can show that the base space B must be almost hyper-Khäler, that is the three
anti self-dual two-forms,

JA ≡ 1

2
JAmn dx

m ∧ dxn , (4.2.7)

satisfy the algebraic condition and the differential equation

JA
m
p J

Bp
n = εABC JC

m
n − δABδmn , d4J

A = ∂v
(
β ∧ JA

)
. (4.2.8)

We have defined d4 as the exterior derivative on B. It is convenient to introduce the KK covariant
differential operator D as

DΦ ≡ d4Φ − β ∧ Φ̇ ⇒ d6Φ = DΦ +He+ ∧ Φ̇ , (4.2.9)

where the dot “ ˙ ” means ∂v. Finally, one can manipulate the tensorini equation using the self-duality
relations and the supersymmetry condition on B to rewrite the tensor fields [60,61,95,93,94]

GI =
1

2

[
?4

[
D
(
vIH

)
+ vIH β̇

]
+ e+ ∧

[
vIH2Ψ− 1

2v
I (Dω − ?4Dω) + ĜI

]
+ vIH−1 e− ∧ Dβ − e+ ∧ e− ∧

[
vI
(
H−1DH + β̇

)
−DvI

] ]
,

(4.2.10)

where we have introduced

Ψ ≡ 1

8
εABCJAmnJ̇Bmn J

C , ĜI ≡
(
GI+mn − vI vJ GJ+mn

)
em ∧ en . (4.2.11)

The self-duality conditions on the tensors and on JA imply

?4 Dβ = Dβ , ?4DĜI = DĜI , ?4Ĝ
I = ĜI , vIĜ

I = 0 , ?4Ψ = −Ψ. (4.2.12)

One can show, using the integrability conditions, that the scalar equation (4.2.1) is satisfied if the
supersymmetric equations, (4.2.3) and (4.2.4), and the Bianchi identites are satisfied [60,93,94]. More-
over, all but the “++” components of the Einstein equation (4.2.1) are satisfied because the bilinear
K is null. The equations of motion for BPS solutions reduce to

R++ = − ∂+v
I∂+vI + MIJ G

I
+abG

J
+
ab
,

d6G
I = 0 ,

MIJ G
J = ηIJ ?6 G

J ,

vIv
I = 1 .

(4.2.13)

• Bianchi identity:



4. Classical solutions in Supergravity 62

We substitute the expression for GI (4.2.10) in the Bianchi identities. This leads to two sets of
equations:

d4

(
vIHΨ + G+I

)
= ∂v

[
β ∧

(
vIHΨ + G+I

)
+ ?4

(
D
(
vIH

)
+ vIHβ̇

) ]
,

D ?4

[
D
(
vIH

)
+ vIHβ̇

]
= −G+I ∧ Dβ ,

(4.2.14)

where we have defined the nT + 1 self-dual two-forms

G+I ≡ 1

2
H−1

[
vI (Dω + ?4Dω + FDβ) + 2ĜI

]
. (4.2.15)

• Einstein equation:

The Einstein equation requires some work. After simplification, we obtain [60,61,93,94]

?4D ?4

(
ω̇ +

1

2
F β̇ − 1

2
DF

)
= −2

(
ω̇ +

1

2
F β̇ − 1

2
DF

)m
∂v (βm) +

1

2
Hhmn∂2

v (Hhmn)

+
1

4
∂v (Hhmn) ∂v (Hhmn)− 1

8
H−2 (2Dω + FDβ)2

+
1

8

(
2HΨ−H−1 (Dω − ?4Dω)

)2
(4.2.16)

−1

2
H−2 ηIJ Ĝ

I
mnĜ

J mn − ηIJH2∂vv
I∂vv

J ,

where hmn is the metric on B in Cartesian coordinates,

ds(B)2 = hmn dx
mdxn .

The natural way to solve the equations (4.2.14), (4.2.15) and (4.2.16) is first to choose an almost
hyper-Khähler four-dimensional base and its fibration vector β, giving hmn and the two-form Ψ, then
to solve the equations for vIH, G+I , F and ω and. As it has been shown in [95, 96], the complicated
form of the equations can be simplified to equations where a linear structure is manifest. For that
purpose, we define

ZI ≡
√

2 ηIJ v
JH , ΘI ≡

√
2
(
vIHΨ + G+I

)
, G(I) ≡

√
2GI . (4.2.17)

We choose the same notations as the electric gauge fields and the magnetic two-forms in five dimensions
on purpose. We will see later that they have the same properties and under certain assumptions, the
six-dimensional BPS solutions can be compactified into a five-dimensional BPS solutions. We also
assume that the labelling given by “I” goes like I = 1, 2, 4, 5, . . . , nT + 2 for the same reason. With
these definitions, the scalar constraint, vIv

I = 1, and the tensor fields translate into14

P ≡ H2 =
1

2
ηIJZIZJ = Z1Z2 − 1

2 Z
2
4 − 1

2 Z
2
5 − . . .− 1

2 Z
2
nT+2 ,

G(I) =
1

2

[
ηIJ ?4

[
DZJ + ZJ β̇

]
− d6

(
ηIJZJ
P

(du+ ω) ∧ (dv + β)

)
+ (dv + β) ∧ΘI

]
.

(4.2.18)

In order to have the usual (−,+,+, . . . ,+) signature for the six-dimensional metric (4.2.6), we set

H = −
√
P .

The equations that determine the four-dimensional base geometry are called the zeroth layer of BPS
equations. They involve the metric on B, and the one-form β as follows

JA
m
p J

Bp
n = εABC JC

m
n − δABδmn , DJA = β̇ ∧ JA , ?4Dβ = Dβ . (4.2.19)

14We recall that we have chosen a basis of scalar vI of SO(1, nT ) with the light-cone metric η (3.3.9).
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The equations (4.2.14) and the self-duality of the two-forms give the first layer of BPS equations15

ηIJD ?4

[
DZJ + ZJ β̇

]
= −ΘI ∧ Dβ ,

ηIJ ?4 ∂v

[
DZJ + ZJ β̇

]
= DΘI − β̇ ∧ΘI ,

?4

[
ΘI − ηIJZJ Ψ

]
= ΘI − ηIJZJ Ψ .

(4.2.20)

The last two equations result from inverting (4.2.15) and from introducing (ZI ,Θ
I) in the Einstein

equation (4.2.16) [95]. They are called second layer of BPS equations:

Dω + ?4Dω + FDβ = ηI
J ZJ ΘI − 2H2Ψ ,

?4D ?4

(
ω̇ +

1

2
F β̇ − 1

2
DF

)
= −2

(
ω̇ +

1

2
F β̇ − 1

2
DF

)m
∂v (βm) +

1

2
Hhmn∂2

v (Hhmn)

+
1

4
∂v (Hhmn) ∂v (Hhmn)− ηIJH

2

2
∂v

(
ZI
H

)
∂v

(
ZJ
H

)
− 1

2
?4

[
ηIJ

(
ΘI − ηIKZK Ψ

)
∧
(

ΘJ − ηJLZL Ψ
)

+H2Ψ ∧Ψ − 2Ψ ∧ Dω
]
.

(4.2.21)

Note that the first layer is linear in ZI and ΘI and that the second layer is linear in F and ω with
quadratic sources. Thus, once the base geometry and its fibration vector β are fixed, the first layer
fixes the nT + 1 scalars and two-forms (ZI ,Θ

I) and then the second layer fixes the six-dimensional
background geometry (F , ω).

• The BPS equations with a base space independent on v:

All the six-dimensional BPS solutions we study in this thesis have a v-independent base geometry. Thus,
the four-dimensional base space is hyper-Khäler. This drastically simplifies the layers of equations.
The zeroth layer becomes

JA
m
p J

Bp
n = εABC JC

m
n − δABδmn , d4J

A = 0 , ?4d4β = d4β . (4.2.22)

The first layer is

ηIJD ?4 DZJ = −ΘI ∧ d4β , ηIJ ?4 DŻJ = DΘI , ?4ΘI = ΘI . (4.2.23)

As for the second layer, by noticing that hmnhmn = 4, we have

Dω + ?4Dω + Fd4β = ηI
J ZJ ΘI ,

?4D ?4

(
ω̇ − 1

2
DF

)
=

ηIJ

2

[
∂2
v (ZIZJ) − ŻI ŻJ

]
− ηIJ

2
?4

(
ΘI ∧ΘJ

)
.

(4.2.24)

As a remark, if we assume that the full solution is independent of v. The first and second layers
correspond to the BPS equations of solutions in five-dimensional Supergravity coupled to nT + 1 extra
vector multiplets, (4.1.6) and (4.1.7). This requires identifying (Z3,Θ

3) as (−F/2, d4β), rescaling all
(ZI ,Θ

I) → (ZI ,Θ
I)/
√

2 for I ≥ 4 and the non-zero five-dimentional structure constants CIJK is
determined according to ηIJ as follows

C3JK = ηJK and cyclic permutations with J,K = 1, 2, 4, . . . , nT + 1 . (4.2.25)

15To obtain those equations, we recall that the contraction of a self-dual and an anti self-dual two-forms
vanishes.
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Thus, the spectrum of v-independent BPS solutions of six-dimensional Supergravity with nT extra
tensor multiplets maps to the spectrum of BPS solutions of five dimensional Supergravity with nT + 1
extra vector multiplets. The map can be achieved by KK reduction along v. However, it is not a
one-to-one map due to the strong constraint on the structure constants. Generic five-dimensional BPS
solutions cannot be mapped to v-independent six-dimensional solutions with only tensor multiplets.
This constraint has a clear picture from the eleven-dimensional perspective. We have shown that five-
dimensional Supergravity arises from eleven-dimensional Supergravity on a Calabi-Yau three-fold C6.
The choice of structure constants (4.2.25) translates into that C6 has a T2 factor, C6 = T2×C4 where C4

is a Calabi-Yau two-fold. Under this assumption, one can perform a KK reduction on a one-curve of
T2 and a sequence of T/S-dualities to type IIB on S1×C4. The dualized solutions will be embedded in
six-dimensional Supergravity with only tensor multiplets. An example of sequence has been detailed in
the context of the STU model in Section 4.1.1.5. An extension to solutions with four vector multiplets
(nT = 2) can be found in [102]. On the contrary, a generic C6 can induce non-trivial vector multiplets
and hypermultiplets from the six-dimensional perspective.

To conclude, we derived the equations of motion of BPS solutions of N = (1, 0) six-dimensional
Supergravity coupled to nT extra tensor multiplets. We also considered the BPS solution with a v-
independent hyper-Khähler base. In the next subsection, we investigate the solutions with nT = 2 and
we detail their description in type IIB Supergravity.

4.2.1.2 Solutions with two extra tensor multiplets

The BPS solutions that we will consider in this thesis have a v-independent four-dimensional hyper
Khäler base space and are embedded in N = (1, 0) Supergravity coupled to two extra tensor multiplets.
In this section, we just specify the results obtained for generic number of extra tensor multiplets and
consider nT = 2. We also discuss the description of the solutions as ten-dimensional solutions in the
D1-D5-P frame. To have a consistent notation with the BPS solutions in five dimensions discussed in
Section 4.1, we rescale the scalar metric η as follows

η → η =


0 1 0

1 0 0

0 0 −2

 . =⇒
(4.2.18)

P = Z1Z2 − Z2
4 (4.2.26)

We recall the expressions for the six-dimensional metric and the three extra tensor fields

ds2
6 = − 2√

P
(dv + β)

(
du+ ω +

1

2
F (dv + β)

)
+
√
P ds (B)2 ,

G(I) =
1

2

[
ηIJ ?4 DZJ − d6

(
ηIJZJ
P

(du+ ω) ∧ (dv + β)

)
+ (dv + β) ∧ΘI

]
.

(4.2.27)

As already said, the BPS equations split into three layers. The zeroth layer requires that B is hyper-
Khäler and d4β is self-dual. The first layer gives the dynamics of the electric-magnetic pairs (ZI ,Θ

I),
I = 1, 2, 4,

∗4DŻ1 = DΘ2, D ∗4 DZ1 = −Θ2 ∧ d4β, Θ2 = ?4Θ2,

∗4DŻ2 = DΘ1, D ∗4 DZ2 = −Θ1 ∧ d4β, Θ1 = ?4Θ1, (4.2.28a)

∗4DŻ4 = DΘ4, D ∗4 DZ4 = −Θ4 ∧ d4β, Θ4 = ?4Θ4,

while the second layer determines the angular-momentum one-form ω and the warp factor F as follows

Dω + ∗4Dω + Fdβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4,

∗4 D ∗4
(
ω̇ − 1

2
DF

)
= ∂2

v(Z1Z2 − Z2
4 )− (Ż1Ż2 − Ż2

4 )− 1

2
?4 (Θ1 ∧Θ2 −Θ4 ∧Θ4). (4.2.29)
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The equations are non-linear first or second order differential equations. However, they can be tackled
through a linear process by fixing the pairs (ZI ,Θ

I) with the first layer and consider them as quadratic
sources for (ω,F) in the second layer.

In Section 3.3.2, we have discussed how BPS solutions of N = (1, 0) six-dimensional Supergravity
with 2 extra tensor multiplets are obtained by dimensional reduction and consistent truncation of type
IIB Supergravity on a Calabi-Yau two-fold, particularly on a rigid T4. Such solutions in type IIB
Supergravity are described by the following Ansatz [96,97]16

ds2
10 =

√
Z1

P1/4

[ √
Z2

P1/4
ds2

6 +
P1/4

√
Z2

ds(T4)2

]
,

e2Φ =
Z2

1

P
,

B2 = −Z4

P
(du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ4 ,

C(0) =
Z4

Z1
,

C(2) = −Z2

P
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + δ1 ,

C(4) =
Z4

Z2
Vol(T4)− Z4

P
δ1 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β) ,

C(6) = Vol(T4) ∧
[
−Z1

P
(du+ ω) ∧ (dv + β) + a2 ∧ (dv + β) + δ2

]
.

(4.2.30)

The Ansatz introduces one-forms, a1, a2, a4, two-forms, δ1, δ2, δ4, and a three-form, x3, all on B. These
quantities may depend on the coordinates of B and on v. The truncation is hidden in the Ansatz by
fixing some coefficients according to ZI and P. The six-dimensional tensor fields (4.2.27) descend from
the NS-NS and R-R gauge fields, they can be easily read by identifying

G(2) = d6C
(2) , G(4) = d6B2 , Vol(T4) ∧G(1) = d6C

(6) .

This also allows to relate a1, a2, a4, δ1, δ2 and δ4 to β and ΘI ,

ΘI = DaI + δ̇I .

The three-form x3 is fixed by requiring C(4) to have a self-dual field strength.

The solutions correpond to D1-branes wrapping the S1 inside the (u, v) surface sourcing electrically
Z1 and magnetically Θ2 (G(2)), to D5-branes wrapping S1×T4 and sourcing similarly Z2 and Θ1 (G(1))
and to P momentum charge along S1 sourcing F and β. The warp factor Z4 is an “auxillary” field which
will play a crucial role in the smoothness of the solutions. The solutions can also have KKm charges
corresponding to the two left and right five-dimensional angular momenta. As matter of notations, we
introduce the coordinate y along the S1 and Ry its radius. We fix the time direction as follows17

u ≡ t− y√
2
, v ≡ t+ y√

2
. (4.2.31)

16The uplift to type IIB can be done exactly the same way for v-dependent basis.
17The metric on the (u, v) surface is invariant under coordinate redefinition

u = u′ + U(x, v′) , v = v′ + V (x) ,

if one rescales F and ω appropriately. One can then choose many different forms of u and v as functions
of t and y.
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The D1, D5 and P charges are denoted by Q1, Q5 and QP respectively. They are derived from the
asymptotic behaviors of the fields18

Z1 ∼ (cst) +
Q1

r̂2
, Z2 ∼ (cst) +

Q5

r̂2
, F ∼ (cst)− 2QP

r̂2
. (4.2.32)

The left and right angular momenta are denoted by JL and JR. They are obtained from the asymptotic
behavior of ω and β but they are obtained differently depending on the coordinate system. As usual,
the macroscopic conserved charges are related to the integer multiples of the elementary D1, D5 and
P charges, N1, N5 and NP , and to the quantized angular momenta jL and jR by flux integrations

Q1 =
(2π)4gs(α

′)3

V4
N1 , Q5 = gsα

′N5 , Qp =
(2π)4g2

s(α
′)4

V4R2
y

NP ,

JL/R =
(2π)4g2

sα
′4

V4Ry
jL/R =

Q1Q5

RyN1N5
jL,R ,

(4.2.33)

where V4 is the volume of T4.

The equations of motion of these BPS solutions in type IIB on rigid T4 have been computed in [96].
They lead to the three layers of BPS equations we derived in the context of N = (1, 0) six-dimensional
Supergravity (4.2.28) and (4.2.29).

Now that everything is settled, one can think about finding solutions to the layers of BPS equations.
Despite the linear structure and the assumption of a v-independent base space, the solutions have not
yet been solved in a general form as it has been done for 1/8- or 1/4-BPS solutions in five dimensions.
Before 2015 [30], the known solutions were the most trivial, such as the solutions uplifted from five
dimensions or the two-charge solutions. In this category, we have already studied the BMPV black hole
in Section 4.1.2, the smooth multicenter solution in Section 4.1.3 and the round two-charge Supertube
solution in 4.1.3.3. As a warm-up, in the next section, we study the supersymmetric six-dimensional
black string solutions dual to the BMPV black hole and equivalently seen as the 1/8-BPS D1-D5-P
black hole of type IIB on S1×T4. In Section 4.2.3, we study the 1/4-BPS Supertubes in six dimensions
and in type IIB. Based on the pioneer works [103,96,97,30], a generating-technique has been developed
to build large families of three-charge 1/8-BPS solutions depending on v and the four coordinates of
B. We detail their construction in Sections 4.2.3 and 4.2.4.

4.2.2 Supersymmetric black string and the BTZ black hole

The BPS equations of six-dimensionalN = (1, 0) Supergravity contain the supersymmetric black-string
solution that is dual to the BMPV black hole. Even if the BMPV black hole is already discussed in
Section 4.1.2, the six-dimensional uplift has an important role in this thesis, and therefore it is worth
writing the solution here and its picture in type IIB on S1 × T4 where the torus is much smaller than
the one-sphere. The solution needs only one extra tensor multiplet but we will work in the context
of two extra tensor multiplets to be consistent with the overall discussion. The four-dimensional base
space is flat R4 (4.1.12),

ds (B)2 = ds
(
R4
)2

= dr̂2 + r̂2
(
dθ̂2 + sin2 θ̂ dϕ2

1 + cos2 θ̂ dϕ2
2

)
.

We consider that the black string is located at the origin of the spherical coordinate system of R4.
The black string has three electric charges QI , no magnetic dipole charges and one non-zero angular

18We remind that r̂ is the radial coordinate of R4 (4.1.12). The fields behave as r̂−2 compared to ρ−1

in the STU model because ρ corresponds to the radial distance of the R3 part of the base space.
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momentum only, JL. The six-dimensional metric and the tensor gauge fields (4.2.27) are determined
by the following fields

Z1 = 1 +
Q1

r̂2
, Z2 = 1 +

Q5

r̂2
, Z4 = 0 , F = −2QP

r̂2

ω =

√
2 JL
r̂2

(sin2 θ̂ dϕ1 + cos2 θ̂ dϕ2) , β = 0 , Θ1 = Θ2 = Θ4 = 0 .

(4.2.34)

The horizon is at r̂ = 0 and has a S1 topology. As with the BMPV black hole, the solution has no
CTC if the cosmic censorship bound is satisfied

Q1Q5QP − J2
L =

(
(2π)4g2

sα
′4

V4Ry

)2 (
N1N5NP − j2

L

)
≥ 0 .

From the type IIB Ansatz (4.2.30), the singularity is all along the transverse S1 and the solution
corresponds to the D1-D5-P rotating black hole on S1 × T4. The Bekensktein-Hawking entropy is
computed via the area of the transverse space at r̂ = 0 and this gives the same moduli-free entropy as
the BMPV solution

S = 2π
√
N1N5NP − j2

L .

The six-dimensional solution is asymptotically R1,4 × S1,

ds2
6 ∼ −2 du dv + ds (B)2 .

In the IR, r̂ .
√
Q1/5, the metric tends to

ds2
6 ∼

√
Q1Q5

[ (
dr̂BTZ
r̂BTZ

)2

− r̂2
BTZ dt

2 + r̂2
BTZ dy

2 +
Q1Q5QP − J2

L

Q1Q5
(dt+ dy)2

+ dθ̂2 + sin2 θ̂

(
dϕ1 −

JL
Q1Q5

(dt+ dy)

)2

+ cos2 θ̂

(
dϕ2 −

JL
Q1Q5

(dt+ dy)

)2
]
,

(4.2.35)

where we have introduced r̂BTZ ≡ r̂√
Q1Q5

. We recognize a S3 fibration over an extremal Banados-

Teitelboim-Zanelli (BTZ) black hole [104]. The three-dimensional black hole is characterized by its
AdS radius, `AdS , and the left and right temperatures

`AdS = (Q1Q5)
1
4 , TL =

Ry
2π

√
Q1Q5QP − J2

L

(Q1Q5)3/4
= `AdS

√
N1N5NP − j2

L

2πN1N5
, TR = 0 . (4.2.36)

A BTZ geometry has an AdS3 region at r̂BTZ & T 2
L where the y-circle grows as a function of r̂BTZ .

Then, for r̂BTZ . T 2
L, the y-circle stabilises to a radius (2πTL)2 and the geometry is AdS2 × S1 until

r̂BTZ = 0 where the horizon stands.

For asymptotically-flat D1-D5-P black hole, if QP ∼ {Q1, Q5}, the AdS3 × S3 region has zero size
and the overall solution goes directly from the flat asymptotics to the AdS2×S1×S3. The interesting
regime of parameters is when QP � {Q1, Q5} where the geometry contains all the characteristic of a
BTZ×S3 throat.

One could have also restricted the D1-D5-P black hole to its decoupling limit by removing the “1”
in the definition of the fields (4.2.34) which would have transformed (4.2.35) into a strong equality.
The six-dimensional part of the asymptotically-AdS3 D1-D5-P rotating black hole is a S3 fibration
over a BTZ black hole.
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4.2.3 Two-charge Supertube

In Section 4.1.3.3, we reviewed the construction of the 1/4-BPS two-charge Supertubes in the context
of the STU model. The angle independence restricted the solutions to the round ones. Supertubes can
have arbitrary shape and they reproduce exactly the entropy of the D1-D5 system [92, 11–14]. More
intriguingly, all solutions are smooth in this D1-D5 frame with an AdS3 × S3 × T4 geometry at the
supertube locus.

The two-charge solutions have been initially constructed in the F1-P frame (4.1.41) [105, 90]. The
entropy results from the different ways the momentum can be distributed among the various harmonics
of the string. A specific supergravity geometry is parametrized by a curve gA(v′) describing its profile
in the eight-dimensional transverse space to the string. In this frame, the solutions have no macroscopic
horizons and have a singularity corresponding to the string source, which is understood to be a physical
source in the theory.

A sequence of S/T-dualities map the solutions to D1-D5 bound states [106,107]. The string source
is mapped to a KKm source, which is a smooth gravitational solution with a topological twist as
illustrated in Section 4.1.3.3 for round Supertubes. In this frame, the “auxiliary” profiles gA(v′) do
not have any direct geometric meaning but the solutions can be derived with the same intuition. In
this thesis, we focus on the subclass of D1-D5 solutions with rigid T4, and then are invariant under
the rotations of T4. Moreover, we also construct the solution from a flat base, B = R4. Under this
assumption, the most general two-charge configuration is given in terms of five functions: four gm(v)
corresponding to the F1 profile in R4 and one extra function, denoted g5(v), describing the F1 profile
in a particular direction of T4 that plays a special role in the sequence of dualities relating the F1-P
and D1-D5 frames. The parameter along the curve is v′ and has a periodicity L = 2πQ5

Ry
. This class of

two-charge solutions is written in terms of the Ansatz (4.2.30) and (4.2.27), taking

Z2 = 1 +
Q5

L

∫ L

0

1

|xm − gm(v′)|2
dv′ , Z4 = −Q5

L

∫ L

0

ġ5(v′)

|xm − gm(v′)|2
dv′ ,

Z1 = 1 +
Q5

L

∫ L

0

|ġm(v′)|2 + |ġ5(v′)|2

|xm − gm(v′)|2
dv′ , d4γ2 = ?4d4Z2 , d4δ2 = ?4d4Z4 ,

A = −Q5

L

∫ L

0

ġn(v′) dxn

|xm − gm(v′)|2
dv′ , d4B = − ?4 d4A ,

β =
−A+B√

2
, ω =

−A−B√
2

, F = 0 , Θ1 = Θ2 = Θ4 = 0 ,

(4.2.37)

4.2.3.1 Retrieving the round-supertube solution

The round Supertube, derived within the STU model in Section 4.1.3.3, is obtained by taking a circular
string profile in the plane (x1, x2) and the other components of the profile are set to zero:

g1(v′) = a cos

(
2π v′

L

)
, g2(v′) = a sin

(
2π v′

L

)
, (4.2.38)

where a is a free real parameter that gives the radius of the Supertube from a four-dimensional per-
spective. It is more convenient to work with the spheroidal coordinates that split the two plans (x1, x2)
and (x3, x4) of the base as follows

x1 + ix2 =
√
r2 + a2 sin θ eiϕ1 , x3 + ix4 = r cos θ eiϕ2 . (4.2.39)

They are related to the spherical R4 coordinates (r̂, θ̂, ϕ1, ϕ2) that we have already introduced by

r̂2 = r2 + a2 sin2 θ , r̂ cos θ̂ = r cos θ .



4. Classical solutions in Supergravity 69

The locus r = 0 describes a disk of radius a parameterized by θ and ϕ1 with the origin of R4 at
(r = 0, θ = 0) while the tube lies at the perimeter of this disk (r = 0, θ = π/2). With these coordinates,
the flat R4 metric is

ds(B)2 = (r2 + a2 cos2 θ)
( dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θ dϕ2

1 + r2 cos2 θ dϕ2
2 , (4.2.40)

We also introduce the distance to the origin of R4

Σ ≡ r2 + a2 cos2 θ . (4.2.41)

The fields (4.2.37) give

Z1 = 1 +
Q1

Σ
, Z2 = 1 +

Q5

Σ
, Z4 = 0 ,

ω =
Ry a

2

√
2 Σ

(sin2 θ dϕ1 + cos2 θ dϕ2) , β =
Ry a

2

√
2 Σ

(sin2 θ dϕ1 − cos2 θ dϕ2) ,

F = 0 , Θ1 = Θ2 = Θ4 = 0 .

(4.2.42)

The relation between the radius Ry, the two charges QI and the parameter a is

Ry =

√
Q1Q5

a
. (4.2.43)

This relation is equivalent to the regularity condition imposed by the Denef equation in the STU model
(4.1.63). One can push the parallel a little further by changing to the Gibbons-Hawking system of
coordinates. We find that the electric charges, l1 and l2, and the magnetic dipole charge k3 introduced
in (4.1.61) are related to the two charges QI and Ry as

l1 =
Q1

4
, l2 =

Q5

4
, k3 =

Ry
2
.

The magnetic dipole charge is only given by the radius Ry since it corresponds to a KKm charge in
this frame.

4.2.3.2 An example of wiggly Supertube

There is a large diversity of supertube string profiles. In this thesis, we focus on the two-charge
configurations that have a circular profile in R4, but can have a non-trivial g5(v′) component on T4:

g1(v′) = a cos

(
2π v′

L

)
, g2(v′) = a sin

(
2π v′

L

)
, g5(v′) = − b

k
sin

(
2π k v′

L

)
, (4.2.44)

where b is an extra real coefficient and k is a positive integer. The profile induces the following fields

Z1 =
R2
y

Q5 Σ

[
a2 +

b2

2
+
b2

2

(
a2 sin2 θ

r2 + a2

)k
cos(2kϕ1)

]
, Z4 =

Ry b

Σ

(
a2 sin2 θ

r2 + a2

) k
2

cos(kϕ1) ,

Z2 =
Q5

Σ
, β =

Ry a
2

√
2 Σ

(sin2 θ dϕ1 − cos2 θ dϕ2) , ω =
Ry a

2

√
2 Σ

(sin2 θ dϕ1 + cos2 θ dϕ2) ,

F = 0 , Θ1 = Θ2 = Θ4 = 0 ,

(4.2.45)

where we are restricting to the decoupling region and hence have dropped the “1” in Z1 and Z2. It
is fairly straightforward to check that the ten-dimensional geometry is asymptotically AdS3 × S3 × T4

under the change of coordinates

ϕ̃1 = ϕ1 −
t

Ry
, ϕ̃2 = ϕ2 −

y

Ry
, (4.2.46)
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where t and y are related to u and v in (4.2.31). This corresponds to a boost along ϕ1 and a spectral
flow transformation on ϕ2. The relation between the parameters a, b, the charges QI , and the S1

radius Ry is now

Ry =

√
Q1Q5

a2 + b2

2

. (4.2.47)

We note the appearance of a non-trivial, ϕ1-dependent Z4, in addition to a ϕ1-dependent deformation
in Z1 at second order in b. The function Z2 remains unchanged. It is also very interesting to note
that the combination Z1Z2 − Z2

4 is deformed at order b2, but the form of the ϕ1-dependent terms in
Z4 and Z1 is such that Z1Z2−Z2

4 is ϕ1-independent. This cancelation is called coiffuring. As a result,
the six-dimensional metric does not depend on ϕ1. This is very similar to the mechanism that plays a
central role in obtaining neutral black hole microstate geometries [108] and smooth “coiffured” black
rings [109].

4.2.3.3 The CFT description

For the moment, we have restrained the discussion of brane bound states to a supergravity description.
The geometries we have constructed have an AdS3 × S3 × T4 decoupling limit. According to the
AdS/CFT duality, they admit a dual description in terms of a two-dimensional superconformal field
theory (SCFT), commonly called the D1-D5 CFT, with a large central charge [110,111]

c = 6N ≡ 6N1N5 .

We will be very brief in the description of the D1-D5 CFT since we only want to sketch the overall
picture and understand how the CFT description can help us generate three-charge solutions from
two-charge seeds with known CFT duals. We refer the interested reader to the exhaustive discussion
in [30] that we summarize here.

The D1-D5 CFT has N = (4, 4) supersymmetries, a SL(2,R)L × SL(2,R)R symmetry and a R-
symmetry SO(4)R ' SU(2)L × SU(2)R. The anomaly-free part of the small superconformal algebra
contains a finite number of generators. The SU(2) factors give algebra with bosonic generators {J i0, J̃ i0},
i = {±, 3}, and correspond to rotations of S3 in the gravity side. The SL(2,R) algebra are generated
by the bosonic operators {L0, L±1, L̃0, L̃±1}, and correspond to conformal transformations in AdS3.
One can extend these transformations to the full chiral algebra with {J i−n, J̃ i−n, L−n, L̃−n}, n ∈ Z as
discussed, from the gravity point of view, in [112].

At the point of the moduli space where gsN → 0, the D1-D5 CFT is described by a non-linear
sigma model with target space the orbifold (T4)N/SN . This theory splits into two sectors for each
chirality: a Neveu-Schwarz and a Ramond sector, connected by a spectral flow transformation. The R-
R supersymmetric sector of the theory contains the states that are relevant for the statistical ensemble
of states describing the D1-D5-P black hole [113,97].

It is convenient to think of the CFT orbifold point as N distinct strings of length one, on each of
which live four bosons and four fermions. The R-R ground states are formed by joining strings into
strands of arbitrary length by twist operators. Moreover, they can be charged under the R-symmetry
and are eigenstates of (J3

0 , J̃
3
0 ) with half-integer eigenvalues. Each strand of the R-R ground states

then has eigenvalues (j`, j̃`) under the reduction of (J3
0 , J̃

3
0 ) on that strand. To form a ground state,

the only possible quantum numbers are j`, j̃` = −1
2 , 0,

1
2 . We then introduce the ket notation for a

strand
|j` j̃`〉k , j`, j̃` = −, 0,+ ,

where k is the length of the single strand.
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We are interested in the CFT duals of 1/4-BPS geometries determined by a periodic profile gi(v
′) in

R5 which are invariant under T4 rotations. They are R-R ground states and are constructed according
to the following dictionary [114,107,30]:

- The mode numbers of the Fourier expansion of gi(v
′) correspond to the lengths of the strands.

- The different non-zero components, i = 1, . . . , 5, correspond to different quantum numbers j`, j̃`.

- The amplitudes of the Fourier modes are related to the numbers of the corresponding strands.

This can be summarized in the following duality table

g1 + i g2 = a
k e
±i 2π k v′

L ←→
∏
N±±

| ± ±〉k ,

g3 + i g4 = a
k e
±i 2π k v′

L ←→
∏
N±∓

| ± ∓〉k , (4.2.48)

g5 = − b
k sin

(
2π k v′

L

)
←→

∏
Nk

|0 0〉k ,

where N±±, N±∓ ∼ a2 and Nk ∼ b2 are the numbers of | ±±〉k, | ±∓〉k and |00〉k in the configuration
taking into account that the total “strand budget” is limited to N . The CFT duals of the round
Supertube and the round Supertube with a non-trivial profile on T4 studied above are

|round〉 =
∏
N

|+ +〉1 , |round + g5〉 =
∏
N++

|+ +〉1 .
∏
Nk

|0 0〉k , (4.2.49)

For the latter, the “strand budget” constrains N++ and Nk to satisfy

N++ + kNk = N1N5 ≡ N , (4.2.50)

This expression is the CFT dual of the supergravity regularity condition (4.2.47).

Although the regime of validity of the CFT orbifold point, gsN � 1, is far outside the regime where
Supergravity is a reliable approximation, gsN � 1, it remains a very valuable framework for describing
states. In particular, unbroken supersymmetries make certain useful quantities invariant under change
of moduli: the conformal dimensions of states preserving more than four supercharges, their three-
point correlators [115] and four-point correlators with states preserving more than eight supercharges
are protected. The matching of those quantities in the two descriptions gives a non-trivial test for the
AdS/CFT correspondence. Moreover, adding momentum-carrying perturbations to some two-charge
R-R ground states using appropriate generators of the superconformal algebra is well-controlled in
the CFT side. On the gravity side, each CFT transformation is realized by a diffeomorphism that
is non-trivial at the AdS boundary. This program has been initiated in [103] and had brought many
successes in the construction of large families of three-charge smooth six-dimensional solutions since
then [30,98–101,31,28].

4.2.4 Momentum-generating technique

Three-charge solutions can be obtained by adding momentum-carrying perturbations to some two-
charge Supertubes. The Supertube will be called the seed solution. This has the benefit to keep track
of their CFT dual states and also to give important clues for the construction of the geometries in
Supergravity. By acting with chiral algebra generators of the left-moving sector SU(2)L×SL(2,R)L, the
R-R ground states will be excited with P charge and will still preserve four of the eight supersymmetries.
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In this thesis, the seed solutions are the two-charge Supertubes that are invariant under T4 rotations.
However, they are allowed to have a generic Fourier expansion in g5(v′)

g1(v′) + i g2(v′) = a ei
2π v′
L , g5(v′) = −

∑
i

bi
ki

sin
(

2π ki v
′

L

)
. (4.2.51)

According to (4.2.48), their CFT duals at the orbifold point are∏
N++

|+ +〉1 .
∏
i

∏
Nki

|0 0〉ki . (4.2.52)

The momentum pertubations are obtained by applying mi times with J+
−1 and ni times L−1 − J3

−1 on
each |0 0〉ki . In the CFT side, their strand configurations are easy to derive:∏

N++

|+ +〉1 .
∏
i

∏
Nki,mi,ni

(J+
−1)mi

mi!

(L−1 − J3
−1)ni

ni!
|0 0〉ki . (4.2.53)

The product is well-defined because L−1 − J3
−1 and J+

−1 commute. The main goal is to dualize those
pertubations in the gravity side. The cheapest procedure is to translate everything in the NS-NS
sector. The NS-NS generators belong to the anomaly-free part of the small superconformal algebra
and have a simple picture as transformations in AdS3 × S3. In the gravity side, the map from R-R to
NS-NS is done by a coordinate change (4.2.46), while it corresponds to spectral flow using J3 and J̃3

in the CFT:

J+
−1 −→

R→NS
J+

0 ,

L−1 − J3
−1 −→

R→NS
L−1 .

(4.2.54)

The generators of the small algebra correspond to the following transformations in AdS3 × S3

L0 =
iRy
2

(∂t + ∂y),

L±1 = ie
± i
Ry

(t+y)
[
−Ry

2

(
r√

r2 + a2
∂t +

√
r2 + a2

r
∂y

)
± i

2

√
r2 + a2 ∂r

]
,

(4.2.55)

J3
0 = − i

2
(∂ϕ̃1 + ∂ϕ̃2), J±0 =

i

2
e±i(ϕ̃1+ϕ̃2)(∓i∂θ + cot θ ∂ϕ̃1 − tan θ ∂ϕ̃2).

where t and y are related to u and v in (4.2.31). Thus, the solution-generating technique proceeds as
follows in the gravity side:

- Start with a six-dimensional and ten-dimensional specific supertube seed.

- Change coordinates to the NS-NS sector (4.2.46).

- Act on the fields with the NS-NS generators (4.2.55) at linear order.

- Change back the coordinates to the R-R sector.

- Recast the fields into a new Ansatz.

In the next section, we review one of the greatest success of this construction technique, which is the
construction of Superstrata.

4.2.5 Superstrata

Superstrata are 1/8-BPS solutions of six-dimensional Supergravity with 2 extra tensor multiplets or
ten-dimensional type IIB Supergravity with D5-branes wrapping a S1 and an internal rigid T4, D1-
branes wrapping the S1 and left-moving momentum P charges along the common S1. They are con-
structed by performing the momentum-generating technique above on asymptotically-AdS3 Supertubes
corresponding to the string profiles (4.2.51). Their CFT duals at the orbifold point are (4.2.53).
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4.2.5.1 Zeroth-layer and first-layer fields

At linear order in bi, only (Z4,Θ
4) is perturbed by the momentum-generating technique. However,

thanks to the linearity of the first layer of BPS equations (4.2.28), one can reproduce the perturbation
of (Z4,Θ

4) in the pairs (Z1,Θ
2) and (Z2,Θ

1) and keep the zeroth-layer fields β and ds(B)2 unchanged.
Therefore, a very general set of zeroth-layer and first-layer fields is given by the four-dimensional metric
(4.2.40) and [30,98–101]

Z1 =
Q1

Σ
+
∑
i

bki,mi,ni1 z̃ki,mi,ni , Z2 =
Q5

Σ
+
∑
i

bki,mi,ni2 z̃ki,mi,ni , Z4 =
∑
i

bki,mi,ni4 z̃ki,mi,ni ,

Θ1 =
∑
i

bki,mi,ni2 ϑ̃ki,mi,ni , Θ2 =
∑
i

bki,mi,ni1 ϑ̃ki,mi,ni , Θ4 =
∑
i

bki,mi,ni4 ϑ̃ki,mi,ni ,

β =
Ry a

2

√
2 Σ

(sin2 θ dϕ1 − cos2 θ dϕ2),

(4.2.56)

where the bk,m,nI ’s define a set of Fourier coefficients, while z̃k,m,n and ϑ̃k,m,n are respectively scalars and
two-forms with quantum numbers (k,m, n) depending on v and the coordinates of the four-dimensional
flat base space as follows

z̃k,m,n = Ry
∆k,m,n

Σ
cos vk,m,n,

ϑ̃k,m,n = −
√

2 ∆k,m,n

[(
(m+ n) r sin θ + n

(m
k
− 1
) Σ

r sin θ

)
Ω(1) sin vk,m,n

+
(
m
(n
k

+ 1
)

Ω(2) +
(m
k
− 1
)
nΩ(3)

)
cos vk,m,n

]
,

with

∆k,m,n ≡
(

a√
r2 + a2

)k ( r√
r2 + a2

)n
cosm θ sink−m θ ,

vk,m,n ≡ (m+ n)

√
2 v

Ry
+ (k −m)ϕ1 −mϕ2 .

(4.2.57)

The Ω’s are the basis of self-dual 2-forms on the base space. They have been early introduced in the
context of five-dimensional BPS solutions (4.1.17) for generic Gibbons-Hawking base space. In the
spheroidal coordinate system of R4, they give

Ω(1) ≡ dr ∧ dθ
(r2 + a2) cos θ

+
r sin θ

Σ
dϕ1 ∧ dϕ2 ,

Ω(2) ≡ r

r2 + a2
dr ∧ dϕ2 + tan θ dθ ∧ dϕ1 ,

Ω(3) ≡ dr ∧ dϕ1

r
− cot θ dθ ∧ dϕ2 .

(4.2.58)

The complicated dependence on the six-dimensional coordinates shows how non-trivial it would have
been to solve the first layer of BPS equations directly. However, now, it is fairly straightforward to
check that the fields (4.2.57) satisfy the equations (4.2.28)

∗4 D ˙̃zk,m,n = D ϑ̃k,m,n, D ∗4 D z̃k,m,n = −ϑ̃k,m,n ∧ d4β, ϑ̃k,m,n = ∗4ϑ̃k,m,n . (4.2.59)

For the moment, the bk,m,nI are arbitrary. They will be related to each other by coiffuring constraints.
The solutions with several triplets of quantum numbers as in (4.2.56) are called multi-mode Superstrata.
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A very interesting subclass is the solutions with only one triplet of mode numbers (k,m, n) called
single-mode Superstrata. Their first-layer fields are

Z1 =
Q1

Σ
+ b1

Ry
2Q5

z̃2k,2m,2n , Z2 =
Q5

Σ
, Z4 = b4 z̃k,m,n ,

Θ1 = 0 , Θ2 = b1
Ry

2Q5
ϑ̃2k,2m,2n , Θ4 = b4 ϑ̃k,m,n ,

(4.2.60)

Note that we have only excited the pairs (Z1,Θ
2) and (Z4,Θ

4), and that the former has twice the mode
numbers of the latter. As we will see, this choice simplifies the second layer and makes the coiffuring
relatively easy. The modes in (Z1,Θ

2) represent a secondary modes will be fixed by the smoothness of
the supergravity solution.

4.2.5.2 Second-layer fields

The second layer of BPS equations (4.2.29) is sourced quadratically by the first-layer fields. Even if the
homogeneous equations are fairly easy to solve, the source terms that may depend on v and the four
coordinates of R4 make the task of finding generic solutions for the second layer very complex. The
second layer has been generically solved for single-mode Superstrata [30,98]. However, finding generic
solutions for two-mode or multi-mode Superstrata is still work in progess. We will detail a significant
breakthrough in that direction in Chapter 7 [28].

From now on, we restrict the discussion to single-mode Superstrata (4.2.60). The second-layer
sources have both a non-oscillating “RMS” component and an oscillating part that depends only
upon v2k,2m,2n. Experience shows that such oscillating sources generically lead to singular angular
momentum vectors and so we remove these terms by “coiffuring.” That is, the Fourier coefficient of
the oscillating source is proportional to b1 − b24 and so we take:

b1 = b24 . (4.2.61)

The solution for ω and F is now given by the sum of the seed supertube solution (4.2.45) and the
solution for the new pieces19:

ω = ω0 + ω̃k,m,n , F = 0 + F̃k,m,n . (4.2.62)

The equations (4.2.29) for ω̃k,m,n and F̃k,m,n reduce to

d4ω̃k,m,n + ∗4d4ω̃k,m,n + F̃k,m,n d4β =
√

2 b24Ry
∆2k,2m,2n

Σ

(
m(k + n)

k
Ω(2) − n(k −m)

k
Ω(3)

)
,

L F̃k,m,n =
4 b24

(r2 + a2) cos2 θΣ

[(
m(k + n)

k

)2

∆2k,2m,2n +

(
n(k −m)

k

)2

∆2k,2m+2,2n−2

]
, (4.2.63)

where L is the scalar Laplacian on the base space B, L = − ∗4 d4 ∗4 d4:

LF ≡ 1

rΣ
∂r
(
r(r2 + a2) ∂rF

)
+

1

Σ sin θ cos θ
∂θ
(

sin θ cos θ ∂θF
)
. (4.2.64)

Note that these F̃k,m,n and ω̃k,m,n depend on the mode numbers but do not fluctuate themselves:
coiffuring means that the metric only responds to the RMS values of the fluctuating modes.

Since the right-hand side of the first line in (4.2.63) has no component in the Ω(1) direction, we can
set the legs of ω̃k,m,n along dr and dθ to be zero and take:

ω̃k,m,n ≡ µ̃k,m,n (dϕ2 + dϕ1) + ζ̃k,m,n (dϕ2 − dϕ1) , (4.2.65)

19We renamed the seed-solution one-form ω by ω0 for obvious reason of notation.
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for some functions µ̃k,m,n and ζ̃k,m,n. The scalars, µ̃k,m,n and ζ̃k,m,n, can be solved separately by
defining

µ̃Sk,m,n ≡ µ̃k,m,n +
Ry

4
√

2

r2 + a2 sin2 θ

Σ
F̃k,m,n +

Ry b
2
4

4
√

2

∆2k,2m,2n

Σ
, (4.2.66)

Then µ̃Sk,m,n satisfies

L µ̃Sk,m,n =
Ry b

2
4√

2

1

(r2 + a2) cos2 θΣ

(
(k −m)2(k + n)2

k2
∆2k,2m+2,2n +

(nm)2

k2
∆2k,2m,2n−2

)
, (4.2.67)

and ζ̃k,m,n is determined by (sθ = sin θ, cθ = cos θ)

∂r ζ̃k,m,n =
r2 cos 2θ − a2s2

θ

r2 + a2s2
θ

∂rµ̃k,m,n −
r sin 2θ

r2 + a2s2
θ

∂θµ̃k,m,n

+

√
2Ry r

Σ(r2 + a2s2
θ)

[
b24

(
ms2

θ + nc2
θ −

mn

k
cos 2θ

)
∆2k,2m,2n −

a2(2r2 + a2)s2
θc

2
θ

Σ
F̃k,m,n

]
,

∂θ ζ̃k,m,n =
r(r2 + a2) sin 2θ

r2 + a2s2
θ

∂rµ̃k,m,n +
r2 cos 2θ − a2s2

θ

r2 + a2s2
θ

∂θµ̃k,m,n

+
Ry sin 2θ√

2 Σ (r2 + a2s2
θ)

[
b24

(
−mr2 + n(r2 + a2)− mn

k
(2r2 + a2)

)
∆2k,2m,2n

+
a2r2(r2 + a2) cos 2θ

Σ
F̃k,m,n

]
.

(4.2.68)

To solve the equations for F̃k,m,n and µ̃Sk,m,n, we find the generating function F2k,2m,2n that solves the
equation

LF2k,2m,2n =
∆2k,2m,2n

(r2 + a2) cos2 θ Σ
. (4.2.69)

The solution to this problem is given by

F2k,2m,2n = −
j1+j2+j3≤k+n−1∑

j1,j2,j3=0

(
j1 + j2 + j3
j1, j2, j3

)( k+n−j1−j2−j3−1
k−m−j1,m−j2−1,n−j3

)2(
k+n−1

k−m,m−1,n

)2 ∆2(k−j1−j2−1),2(m−j2−1),2(n−j3)

4(k + n)2(r2 + a2)
,

(4.2.70)
where (

j1 + j2 + j3
j1, j2, j3

)
≡ (j1 + j2 + j3)!

j1!j2!j3!
. (4.2.71)

In terms of F2k,2m,2n, the form of F̃k,m,n and µ̃k,m,n for general k,m, n is

F̃k,m,n = 4 b24

[
m2(k + n)2

k2
F2k,2m,2n +

n2(k −m)2

k2
F2k,2m+2,2n−2

]
,

µ̃k,m,n =
Ry b

2
4√

2

[
(k −m)2(k + n)2

k2
F2k,2m+2,2n +

m2n2

k2
F2k,2m,2n−2 −

∆2k,2m,2n

4 Σ

]
(4.2.72)

−Ry
r2 + a2 sin2 θ

4
√

2 Σ
F̃k,m,n +

Ry b
2

4
√

2 Σ
.

In this expression for F̃k,m,n and µ̃k,m,n it should be understood that, when the coefficient of one of
the F functions is zero, the term is zero. The term proportional to b in the last line of (4.2.72) is a
harmonic piece that we can freely add to the solution of the Poisson equation for µ̃Sk,m,n. Once F̃k,m,n
and µ̃k,m,n are determined, ζ̃k,m,n can be found by integrating (4.2.68) on a case-by-case basis. The
coefficient b will be fixed by regularity in the next subsection.
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4.2.5.3 Regularity

Generic solutions to the BPS equations are not necessarily regular. Much of the singular behavior is
already removed by coiffuring the modes in the sources for the second layer. However, there is still a
final step in which harmonic solutions (zero-modes) are chosen so as to cancel any remaining singular
behaviour. Singularities typically occur at the Supertube and where coordinates degenerate. This
means one should start by examining r = 0, θ = 0 where the whole angular S3 shrinks and r = 0,
θ = π/2 at the supertube locus.

Since one does not have the generic form of multi-mode Superstrata, we discuss the regularity of
the single-mode solutions derived above. According to [30,101], to remove the singularities one should
require µ̃k,m,n and ζ̃k,m,n to vanish at r = 0, θ = 0. This fixes the constant, b, in µ̃k,m,n to be

b = b4

[(
k

m

)(
k + n− 1

n

)]− 1
2

, (4.2.73)

and the same condition for ζ̃k,m,n fixes the integration constant of (4.2.68). By examining the metric
near the supertube locus one finds that the regularity condition is identical to the one obtained for the
seed supertube solution (4.2.47):

Q1Q5

R2
y

= a2 +
b2

2
. (4.2.74)

4.2.5.4 Conserved charges

The superstratum solutions described above are asymptotic to AdS3 × S3 from a six-dimensional
perspective. The conserved charges can be extracted from the large-distance behavior of the scalars
Z1, Z2 and Z4 and the one-forms β and ω (4.2.32). The fluctuating modes fall off much faster than
the charge monopoles and so the D-brane charges Q1 and Q5, given by the asymptotic behavior of Z1

and Z2 do not change compared to the seed Supertube.

The momentum charge is derived from the large-distance behavior of F (4.2.32). The left and right
five-dimensional angular momenta of the solutions are computed from the dϕ1dϕ2 component of the
metric which can be obtained by looking at the dϕ1 + dϕ2 legs of the one-form β + ω. We have the
generic expressions

βϕ1 + βϕ2 + ωϕ1 + ωϕ2 ∼
√

2
JL − JR cos 2θ

r2
, (4.2.75)

which gives

JL =
Ry
2

(
a2 +

m

k
b2
)
, JR =

Ry
2
a2 , QP =

m+ n

2k
b2 . (4.2.76)

Finally, one can use (4.2.33) to derive their quantized values. This gives

jL =
N
2

(
a2 +

m

k
b2
)
, jR =

N
2
a2 , NP =

N
2

m+ n

k
b2 , (4.2.77)

where N is defined by

N ≡
R2
yN1N5

Q1Q5
. (4.2.78)

These solutions are in the black-hole regime if the cosmic censorship bound is satisfied N1N5NP −j2
L >

0, which happens if
b2

a2
>

k

n+
√

(k −m+ n)(m+ n)
. (4.2.79)
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Figure 4.4: The six-dimensional geometry of Superstrata

4.2.5.5 The three regions

As already said, the fluctuations modes in the first-layer fields decay much faster than the charge
monopoles. However, they are summed in the second-layer fields, therefore they induce a leading
behavior that results in a left-moving momentum charge and an increase of the left angular momentum.
Moreover, one can show that the subleading contributions are localized at r ∼ a. Thus at r � a the
geometry is determined by the leading behaviors dictated by the conserved charges.

In the regime of parameter where b
a � 1 and a � 1, JR is negligible and the superstratum

geometries approximate the D1-D5-P black-hole geometry (4.2.35) at r � a. In this region, the single-
mode Superstrata are asymptotically BTZ×S3. At r ∼ a, the geometries are deformed by a momentum
wave which depends on v and the four coordinates of the base space. For r � a, the fluctuating modes
are once again subleading and we retrieve the IR geometry of the smooth supertube seed. Thus, in the
IR, the geometry caps off smoothly as AdS3 × S3. We have depicted those three regions in Fig.4.4.

Although it becomes more complicated for multi-mode Superstrata, those features are also present
and the three-dimensional geometry can be decomposed in three pieces: a BTZ region, an intermediate
momentum-wave region and a smooth AdS3 cap.

Superstrata form a large family of solutions which look like the D1-D5-P black hole and which cap
off smoothly in the IR. They determine a large phase space of microstate geometries of the D1-D5-P
black hole.

There are seven free parameters for the single-mode Superstratum: Q1, Q5, k,m, n, a and b and
there are five bulk charges: Q1, Q5, QP , jL and jR as well as the regularity condition (4.2.74), and so
there can be, at most, one free “rational” parameter. Indeed, suppose Q1 and Q5 are fixed, and note
that jR fixes a. The regularity condition (4.2.74) then fixes b, which means that jL fixes m

k and so QP
fixes n

k . Ignoring the issues of rational arithmetic, one can take k to be the remaining free parameter.
Thus, for a given D1-D5-P black hole, single-mode Superstrata describe a one-parameter family of
black hole microstates.

The simplest classes of single-mode solutions that have been studied to date are the (1, 0, n) [99,116,
117, 25, 29], (2, 1, n) [100, 116, 28] and (k, 0, 1) [118] families. They have brought several breakthrough
in our understanding of microstate geometries with the same mass, charges and angular momenta of
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the three-charge supersymmetric black hole.

4.3 Three-charge non-BPS solutions

In the two previous sections, unbroken supersymmetries were used to considerably simplify the search
for classical solutions to Einstein equations. This has led to many breakthroughs in the understanding
of supersymmetric black holes and their microstates in String Theory as brane bound states. However,
to describe realistic solutions, one needs to get away from supersymmetry and extremality. Most of the
solution-generating technique consists of starting with a class of well-known solutions, generally super-
symmetric and extremal, and deforming the geometries with boosts and non-extremal well-controlled
transformations [119–122,113].

In this section, we focus only on some non-BPS solutions and their properties rather than the
techniques used to generate them. In Section 4.3.1, we review the extremal Kerr-Newman black
hole in five dimensions as a six-dimensional non-BPS over-rotating black string in type IIB on S1 ×
T4. In Section 4.3.1, we review the class of smooth almost-BPS solutions. This class of solutions is
the key ingredient of the work [27], that we will discuss in Chapter 6, in which the first family of
smooth bubbling microstate geometries that are asymptotic to the near-horizon region of extremal
five-dimensional Kerr black holes (NHEK) is constructed.

4.3.1 Extremal rotating black holes in type IIB

In this section we briefly review the description of non-supersymmetric three-charge over-rotating
Cvetic-Youm black holes that appear within the low-energy limit of type IIB String Theory compactified
on T4 × S1 [120–122]. We describe their near-horizon or NHEK limit and the more general family of
warped-AdS3 geometries (WAdS3) to which those NHEK solutions belong to [123–127].

4.3.1.1 Non-supersymmetric extremal D1-D5-P black holes

We work in the context of type IIB String Theory on a T4 × S1. We assume that the torus is much
smaller than the one-sphere. As a consequence, the five-dimensional black-hole solutions can be viewed
as six-dimensional black string solutions. We consider a four-parameter family of non-supersymmetric
extremal spinning black holes characterized by a mass M , two SU(2)L and SU(2)R angular momenta
JL and JR and three charges QI , with I = 1, 5, P , as follows

M = 2 r2
H

(
c2

1 + s2
1 + c2

5 + s2
5 + c2

P + s2
P

)
,

JR = 0,

JL = 4 r3
H (c1c5cP + s1s5sP ) ,

QI = 4 r2
H sIcI , I = 1, 5, P,

(4.3.1)

where sI = sinh δI and cI = cosh δi. The Bekenstein-Hawking entropy and the left and right tempera-
tures are

SBH = 2π
√
J2
L −Q1Q5QP = 8π r3

H (c1c5cP − s1s5sP ) ,

TR = 0,

TL =
1

π

√
1− Q1Q5QP

J2
L

.

(4.3.2)

The metric of the six-dimensional black string is [122,123]
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ds2
6 = −

(
1−

4a2c2
P

r̂2 + r2
H

)
dt̂2√
Z1Z5

+

(
1 +

4a2s2
P

r̂2 + r2
H

)
dŷ2

√
Z1Z5

+
8r2
HsP cP

(r̂2 + r2
H)
√
Z1Z5

dt̂ dŷ + (r̂2 + r2
H)
√
Z1Z5

(
r̂2

(r̂2 − r2
H)2

dr̂2 + dθ̂2 (4.3.3)

+ cos2 θ̂ dϕ̂2
2 + sin2 θ̂ dϕ̂2

1

)
+

4r4
H

(r̂2 + r2
H)
√
Z1Z5

(
cos2 θ̂ dϕ̂2 + sin2 θ̂ dϕ̂1

)2

−
8r3
H

(r̂2 + r2
H)
√
Z1Z5

((c1c5cP + s1s5sP )dt+ (s1s5cP + c1c5sP )dŷ)
(

cos2 θ̂ dϕ̂2 + sin2 θ̂ dϕ̂1

)
where

ZI = 1 +
4a2s2

I

r̂2 + r2
H

, I = 1, 5. (4.3.4)

The coordinates (r̂, θ̂, ϕ̂1, ϕ̂2) are the spherical coordinates of the four-dimensional base space and ŷ is
the KK direction. The periodicities of the angles ŷ, ϕ̂2 and ϕ̂1 are20

(ŷ, ϕ̂2, ϕ̂1) =


(ŷ, ϕ̂2, ϕ̂1) + 2π (1, 0, 0)

(ŷ, ϕ̂2, ϕ̂1) + 2π (0, 1, 0)

(ŷ, ϕ̂2, ϕ̂1) + 2π (0, 0, 1)

, (4.3.5)

The geometry is asymptotically R1,4 × S1 and has an event horizon at r̂ = rH .

4.3.1.2 Near-horizon extremal Kerr geometry

The near-horizon geometry of the six-dimensional uplift of the five-dimensional black hole solutions
given in (4.3.3) has been shown to be a near-horizon extremal Kerr geometry (NHEK) [123, 128, 124,
126,127]. It is a squashed S3 fibered over warped AdS3 with specific angle periodicities.

The near-horizon limit is obtained by changing the coordinates as follows

t =
4π ε

S
t̂, ρ =

r̂2 − r2
H

ε
, y =

S

πQ1Q5

(
ŷ − VH t̂

)
,

ψ = ϕ̂2 + ϕ̂1 −
8π r2

H

S
t̂− 4JL

Q1Q5

(
ŷ − VH t̂

)
, φ = ϕ̂2 − ϕ̂1, ϑ = 2 θ̂, (4.3.6)

where VH is the linear velocity VH = −8π r3
H(c1c5sP−s1s5cP )

S . Thus, the periodicities of y, ψ and φ are
given by the following identifications

(y, ψ, φ) =


(y, ψ, φ) + 2π (Ty,−Tψ, 0)

(y, ψ, φ) + 2π (0, 2, 0)

(y, ψ, φ) + 2π (0, 1, 1)

, (4.3.7)

with

Ty ≡
S

πQ1Q5
, Tψ ≡

4JL
Q1Q5

. (4.3.8)

20We have chosen the unit Rŷ = 1.
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By taking the limit ε → 0, the near-horizon metric in terms of the above coordinates leads to a T2

fibration over AdS2× S2

ds2
NHEK =

κ2

4

[
−ρ2dt2 +

dρ2

ρ2
+ γ (dy + ρdt)2 + γ (dψ + cos θdφ)2

+ 2α (dy + ρdt)(dψ + cos θ dφ) + dϑ2 + sin2 ϑ dφ2

]
.

(4.3.9)

where the warp constant factors γ and α and the length κ are given by

γ = 1 +
1

(c2
1 + s2

1)(c2
5 + s2

5)
, α =

1

c2
1 + s2

1

+
1

c2
5 + s2

5

,

κ2 = 2r2
H

√
(c2

1 + s2
1)(c2

5 + s2
5) .

(4.3.10)

This background belongs to the family of deformations of AdS3×S3 into squashed S3 (SqS3) over
warped AdS3 (WAdS3) [129–131]. However, for generic WAdS3×SqS3 backgrounds, the periods Ty
and Tψ (4.3.7) are arbitrary.

One can rewrite the solutions in terms of the SU(2)L-invariant one-forms on S3

σ1 = cosψ dϑ+ sinϑ sinψ dφ , σ2 = − sinψ dϑ+ sinϑ cosψ dφ ,

σ3 = dψ + cosϑ dφ ,
(4.3.11)

and the SL(2,R)L-invariant one-forms on AdS3

w+ = −e−y
(
dρ

ρ
+ ρdt

)
, w− = ey

(
dρ

ρ
− ρdt

)
, w3 = dy + ρdt, (4.3.12)

to make the WAdS3×SqS3 geometry manifests

ds2
NHEK =

κ2

4

(
−w+w− + γ w2

3 + σ2
1 + σ2

2 + γ σ2
3 + 2αw3σ3

)
. (4.3.13)

4.3.2 Almost-BPS solutions

We work in the context of N = 2 five-dimensional Supergravity coupled to two extra vector fields
but the generalization to an arbitrary number of vector fields is fairly straightforward. One can also
consider the uplift to six dimensions as discussed for BPS solutions of the STU model in Section 4.1.1.5.
We start with the same Ansatz for the five-dimensional metric and the field strengths:

ds2
5 = − (Z1Z2Z3)−

2
3 (dt+ µ (dψ +A) +$)2 + V −1 (Z1Z2Z3)

1
3 (dψ +A)2

+ V (Z1Z2Z3)
1
3

[
dρ2 + ρ2

(
dϑ2 + sin2 ϑ dφ2

) ]
,

F I = d5A
I = d3

(
Z−1
I (dt+ ω)

)
+ ΘI ,

(4.3.14)

4.3.2.1 Almost-BPS equations of motion

It was observed in [132] and extended in [133,134,82,135], that a class of non-supersymmetric solutions
of the equations of motion is obtained from the BPS equations by reversing the duality of the ΘI and
of ω relative to the duality of the curvature of the four-dimensional base. That is, one preserves the
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hyper-Khäler metric, ds(B), and the duality of its Riemann tensor but flips ?4 → −?4 in (4.1.6) and
(4.1.7). Therefore, the almost-BPS equations are given by

?4d4 ?4 d4 ZI = −1

2
CIJK ?4

(
ΘJ ∧ΘK

)
, d4ΘI = 0 , ?4ΘI = −ΘI ,

d4ω − ?4d4ω = ZI ΘI .
(4.3.15)

From an eleven-dimensional perspective, the supersymmetry is broken by making incompatible the
supersymmetry preserved by the M-branes with the supersymmetry preserved by the base space (the
KKm charges). Consequently, if the base space is only flat R4 and does not carry KKm charges, the
almost-BPS equations and the BPS equations are actually equivalent.

Even if the structure of the almost-BPS equations seems similar to the BPS equations, the change
of orientation has annihilated the symplectic structure of the equations and generic solutions cannot
be derived. We consider that the base space is Gibbons-Hawking with n centers as described in Section
4.1.1.2. Moreover, we assume that the vector fields preserve the ∂ψ Killing vector of the base. We
define the basis of anti-self dual two-forms as functions of the Gibbons-Hawking vielbeins (4.1.16)

Ωa
− = e0 ∧ ea − εabc e

b ∧ ec , a = 1, 2, 3 . (4.3.16)

With the Ansatz
ΘI = ∂a

(
KI
)

Ωa
− ≡ d3

(
KI (dψ +A) + wI

)
, (4.3.17)

then ΘI is anti-self dual and

d4ΘI = 0 =⇒ ?3d3 ?3 d3K
I = 0 =⇒ KI = k∞ +

n∑
j=1

kJj
ρj
. (4.3.18)

Unfortunately, one cannot go much further. By introducing the functions KI in the almost-BPS
equations and with the decomposition ω = µ (dψ +A) +$, where µ and the one-form $ are functions
on R3, we have

d3 ?3 d3ZI =
CIJK

2
V d ?3 d(KJKK) ,

?3 d3w
I = V d3K

I −KI d3V,

d3 ?3 d3(µV ) = − d3(V ZI) ?3 d3K
I ,

d3(µV ) + ?3d3$ = V ZI d3K
I .

(4.3.19)

Those equations do not admit closed-form solutions and they strongly depend on the center configu-
ration. However, in practice, it is still relatively easy to obtain exact solutions for ZI in a case-by-case
manner. We will solve the equations in Taub-NUT for center configurations with an axial symmetry.

4.3.2.2 Axially symmetric multicenter solutions in Taub-NUT

In this section, we review the solutions derived in [133] for axially symmetric configurations in Taub-
NUT where the centers are denoted by a coordinate aj on the z axis of R3, j = 1...n. We consider the
Taub-NUT at the center of the R3 base space and we use the spherical coordinates (ρ, ϑ, φ):

V = h∞ +
q

ρ
, A = q cosϑ dφ .

We assume that the centers that source the vector fields are all distinct from the Taub-NUT center,
aj 6= 0. The shifted spherical coordinates around the jth center, (ρj , ϑj , φ), are given by

ρj =
√
ρ2 + a2

i − 2ρai cosϑ ϑj = arccos

(
ρ cosϑ− aj

ρj

)
. (4.3.20)
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We proceed step by step by resolving first the magnetic field strengths before the warp factors and the
angular momentum one-form. We end the discussion by deriving the regularity constraints.

• The anti-self dual magnetic two-forms ΘI :

The two-form field strengths, ΘI , are closed and anti-self dual in the Taub-NUT space and have
the generic form given by (4.3.17). For axially symmetric centers, we have

∗3dwI = V dKI −KIdV ⇒ wI =
n∑
j=1

kIj

(
h∞ cosϑj + q

ρ− aj cosϑ

ρj aj

)
dφ . (4.3.21)

• The warp factors ZI :

The warp factors, ZI , are determined by the harmonic equations with quadratic sources (4.3.19).
For axially symmetric centers in Taub-NUT, the generic solutions are

ZI = = LI +
CIJK

2

n∑
j,k=1

(
h∞ +

q ρ

ajak

)kJj kKk
ρjρk

. (4.3.22)

The functions LI are the electric harmonic functions one can freely add to the equations. We use the
same convention as in (4.1.20):

LI = lI∞ +
lI0
ρ

+
n∑
j=1

lIj
ρj
.

• The angular momentum one-form ω:

The last equations in (4.3.19) determine the two components, µ and $, of the angular momentum
one-form, ω. We will use the library of generating functions in Appendix A.1. The source terms are

V ZId3K
I =

∑
j

lI∞k
I
j

(
h∞ s

(1)
j + q s

(2)
j

)
+
∑
j

lIjk
I
j

(
h∞ s

(3)
j + q s

(5)
j

)
+
∑
i 6=j

lIi k
I
j

(
h∞ s

(4)
ij + q s

(6)
ij

)
+
CIJK

2

∑
i,j,k

kIi k
J
j k

K
k

(
h2
∞ s

(7)
ijk + q2 s

(8)
ijk + h∞q s

(9)
ijk

)
.

(4.3.23)

According to the Appendix A.1, we have

µV =
∑
j

lI∞k
I
j

(
h∞ f

(1)
j + q f

(2)
j

)
+
∑
j

lIjk
I
j

(
h∞ f

(3)
j + q f

(5)
j

)
+
∑
i 6=j

lIi k
I
j

(
h∞ f

(4)
ij + q f

(6)
ij

)
+
CIJK

2

∑
i,j,k

kIi k
J
j k

K
k

(
h2
∞ f

(7)
ijk + q2 f

(8)
ijk + h∞q f

(9)
ijk

)
+ M ,

$ =
∑
j

lI∞k
I
j

(
h∞ t

(1)
j + q t

(2)
j

)
+
∑
j

lIjk
I
j

(
h∞ t

(3)
j + q t

(5)
j

)
+
∑
i 6=j

lIi k
I
j

(
h∞ t

(4)
ij + q t

(6)
ij

)
+
CIJK

2

∑
i,j,k

kIi k
J
j k

K
k

(
h2
∞ t

(7)
ijk + q2 t

(8)
ijk + h∞q t

(9)
ijk

)
+ t(10) ,

(4.3.24)

where M is the angular-momentum harmonic function one can freely add to the equation. We use the
same convention as in (4.1.22):

M = m∞ +
m0

ρ
+

n∑
j=1

mj

ρj
.
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The complete expression for µ and $ is then21

µ =
∑
j

lI∞k
I
j

2ρj
+
∑
j

lIjk
I
j

2V ρ2
j

(
h∞ +

q cosϑ

aj

)
+
∑
i 6=j

lIi k
I
j

2V ρiρj

(
h∞ + q

ρ2 + aiaj − 2ajρ cosϑ

aj(ai − aj)

)
+
∑
i,j,k

k1
i k

2
jk

3
k

V ρiρjρk

(
h2
∞ + q2 ρ cosϑ

aiajak
+ h∞q

ρ2(ai + aj + ak) + aiajak
2aiajakρ

)
+
M

V
, (4.3.25)

$ =
∑
j

lI∞k
I
j

2ρj

(
h∞(ρ cosϑ− aj) + q

ρ− aj cosϑ

aj

)
dφ+

∑
j

lIjk
I
j

qρ sin2 ϑ

2ajρ2
j

dφ

+
∑
i 6=j

lIi k
I
j

2(aj − ai)ρiρj

(
h∞(ρ2 + aiaj − (ai + aj)ρ cosϑ) (4.3.26)

− q ρ(ai + aj cos 2ϑ)− (ρ2 + aiaj) cosϑ

aj

)
dφ

+
∑
i,j,k

k1
i k

2
jk

3
k

aiajakρiρjρk

(
q2ρ2 sin2 ϑ

+h∞q
ρ3 + ρ(aiaj + aiak + ajak)− (ρ2(ai + aj + ak) + aiajak) cosϑ

2

)
dφ

+$0 dφ − m0 cosϑ dφ −
∑
j

mj cosϑjdφ .

• The regularity constraints:

The solutions constructed above are regular if:

- The one-form $ does not have Dirac-Misner string and must vanish on the z-axis.

- The metric is regular everywhere.

- The quartic invariant, I4 (4.1.27), must be positive everywhere.

The first condition implies n + 1 algebraic equations. One can make these constraints explicit, for
example, by solving them with respect to the n + 1 variables $0, m0 and mi for i = 1, . . . , n. If one
considers, for definiteness, a configuration in which all the poles ai lie on one side of the Taub-NUT
center (0 < a1 < . . . < an), then the regularity constraints are:

$0 = −q
∑
j

lI∞k
I
j

2aj
− h∞

∑
i 6=j

lIi k
I
j

2(aj − ai)
− h∞q

∑
i,j,k

k1
i k

2
jk

3
k

2aiajak
,

m0 = −q
∑
i

lI∞k
I
i

2ai
− h∞

∑
i

lI0k
I
i

2ai
+ q

∑
i 6=i′,i 6=0

lIi k
I
i′

2ai′(ai′ − ai)
− h∞q

∑
i,j,k

k1
i k

2
jk

3
k

2aiajak
, (4.3.27)

mi =
lI∞k

I
i

2

(
h∞ +

q

ai

)
+
∑
j

1

2|ai − aj |

[
lIjk

I
i

(
h∞ +

q

ai

)
− lIi kIj

(
h∞ +

q

aj

)]

+
h∞q

2

[k1
i k

2
i k

3
i

a3
i

+
|εIJK |

2

kIi
ai

∑
j,k

sign(aj − ai)sign(ak − ai)
d

(J)
j d

(K)
k

ajak

]
(i ≥ 1) ,

Those equations are equivalent to the Denef equations, (4.1.26), for almost-BPS solutions. The require-
ment that the quartic invariant is everywhere positive does not translate in a set of algebraic conditions

21Note that we are using a different convention for the angular-momentum harmonic function compared
to the BPS multicenter solutions (4.1.22). We have removed the factor 2 in the definition of M in µ.
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and must be checked at any point on three-dimensional part of Taub-NUT base space. As their BPS
cousins, this condition makes the task of finding a phase space of regular almost-BPS solutions very
complicated.

Finally, the harmonic functions have order-one poles. The regularity of the five-dimensional metric
and the field strengths (4.3.14) requires that the warp factors ZI and µ are regular. However, we have
restricted the almost-BPS solutions to have a Taub-NUT base. Thus, all the n additional centers do
not have any charge in V . The Gibbons-Hawking charges were crucial to ensure that the BPS solutions
are regular in five dimensions. For a similar reason, our almost-BPS solutions are necessarily singular
at the n centers in five-dimensions. However, the embedding in six dimensions through the sequence of
duality transformations into the D1-D5-P frame (4.1.43) allows the existence of smooth centers. They
are the almost-BPS equivalents of the 1/2-BPS round-supertube centers. The discussion in Section
4.1.3.3 can be identically reproduced in the context of almost-BPS solutions. The smooth almost-BPS
centers in six dimensions carry two electric charges lI , lJ and one magnetic dipole charge kK with I,
J and K all different. Regularity required a non-zero angular momentum m given by the relation

m =
lI lJ

2 kK
. (4.3.28)

The difference of factor 2 compared to the regularity condition of BPS round Supertubes (4.1.59) is
due to the difference of definition of the harmonic part, M , in µ.

4.3.2.3 Generalized spectral flows and gauge transformations

The three generalized spectral flows detailed in 3.2.4 can be translated in the formalism of multicenter
almost-BPS solutions. We consider the embedding of the solutions in the D1-D5-P frame where the
sequence of dualities corresponding to spectral flows can be performed. The metric, the NS-NS fields
and the R-R fields are given in (4.1.43). Let us define the three constant shifts γ1, γ2 and γ3 of the
three types of spectral flows and the following new functions [82,127]

TI ≡ 1 + γIK
I , NI =

CIJK
2

γ2
IZJZK + V T 2

I ZI − 2γIV TIµ, I = 1, 2, 3 . (4.3.29)

We also introduce the short-hand notations T 3 = T1T2T3, N3 = N1N2N3, γ3 = γ1γ2γ3 and Z3 =
Z1Z2Z3. The spectrally flowed six-dimensional metric and the U(1) vector gauge fields are given
by [82]

ds̃2
6 = − 1

Z̃3

√
Z̃1Z̃2

(
dt+ µ̃(dψ + Ã) +$

)2
+

Z̃3√
Z̃1Z̃2

(Ã3 + dy)2

+

√
Z̃1Z̃2

(
Ṽ −1

(
dψ + Ã

)2
+ Ṽ ds(R3)2

)
, (4.3.30)

ÃI = − dt+$

W̃I

+ P̃ I(dψ + Ã) + w̃I ,
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where

Ṽ =
[
T 6V 2 + 8γ3T 3V µ − T 3V (CIJKγJγKTIZI)

+
CIJK

2
γ2
Jγ

2
KT

2
I Z

2
I − CIJKγ

2
IγJγKTJZJTKZK

]1/2

,

Ã = A − γIw
I − CIJK

2
γJγKvI + γ3v0 ,

Z̃I =
NI

Ṽ
, (4.3.31)

µ̃ = Ṽ −2

(
T 3V 2µ− γ3Z3 +

CIJK
2

γJγKZITIV µ−
CIJK

2
γIV TJZJTKZK

)
,

W̃I =
NI

T 3V + CIJK
2 γJγKTIZI − CIJKγIγJTKZK

,

P̃ I =
V ZITIK

I + CIJK
2 γIZJZK − (2TI − 1)V µ

NI
,

w̃I = wI + CIJKγJvK −
CIJK

2
γJγKv0 .

We have defined four magnetic and electric one-forms, vI and v0, determined by the following equations

?3dvI ≡ − dZI +
CIJK

2

(
V d(KJKK)−KJKKdV

)
,

?3dv0 ≡ KIdZI − ZIdKI +
CIJK

6

(
KIKJKKdV − V d(KIKJKK)

)
.

(4.3.32)

Generalized spectral flows produce a non-trivial modification of the functions. However, the
spectrally-flowed solutions still satisfy the regularity conditions. Indeed, the one-form $ is unchanged
that guarantees the absence of Dirac-Misner string at ϑ = 0, π. Moreover, the quartic invariant is pre-
served under spectral flows Ĩ4 = I4. Hence, a regular almost-BPS multicenter solution is transformed
by a generic spectral flows into a regular extremal non-supersymmetric solution.

Furthermore, if the initial almost-BPS solution has a supertube curvature singularity the corresponding
generalized spectral flow transforms the singular local geometries to quotients of R4×S1 [81] as in the
BPS case.

In the context of BPS solutions, the generalized spectral flows were just linear transformations
between solutions of the same class. In the context of almost-BPS, we see that the spectrally-flowed
solution no longer belongs to the same class and has a very different structure. Generalized spectral
flows allow to move to very different spectra of non-BPS solutions. Some of these spectra were studied
in [82]. In this thesis, we will see to what extent they can be used to construct non-BPS solutions
asymptotically NHEK or WAdS3 [27].

4.4 Final comment

In this chapter, we have detailed one of the most important aspect of the microstate geometry program:
exploiting degrees of freedom in Supergravity to build large number of smooth solutions that differ
from the black-hole at the horizon scale.

Over the years, larger and larger families of such solutions have been found for supersymmetric
and extremal black holes, for non-supersymmetric and extremal black holes, as we have reviewed here,
but also non-supersymmetric and non-extremal black holes [136–138].
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There is no guarantee that these solutions are indeed black-hole microstates. Another aspect of
the microstate geometry program is also to address the black-hole paradoxes by considering ensemble
of such solutions, and to see how they fit into various AdS/CFT correspondences.



Part II

Construction of microstate geometries
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Chapter 5

Systematic construction of scaling
multicenter solutions

In the previous chapter, we have detailed the construction of smooth horizonless multicenter 1/8-BPS
geometries in five dimensions that have the same charges an angular momenta as a BMPV black hole
with a macroscopically-large horizon. They were obtained by resolving the black hole singularity via
the blow-up of topologically-nontrivial bubbles that are supported against collapse by fluxes.

Finding a closed form for generic solutions was surprisingly simple thanks to the linearity of the
BPS equations. However, no explicit family of regular solutions have been constructed and only a
few explicit examples are known [85, 139, 99, 23]. This is due to the hardly-manageable regularity
constraints that can be decomposed into four categories:

• The Denef equations (4.1.26).
• The absence of closed timelike curves (CTC) (4.1.27).
• The regularity of the metric at each center in five dimensions (Gibbons-Hawking center) or six

dimensions (Gibbons-Hawking or round-supertube center).
• The scaling condition (4.1.54).

Most solutions one can construct by putting fluxes on a multi-center Gibbons-Hawking (GH) base
have an angular momentum larger than the black hole cosmic censorship bound, J2

L & Q1Q2Q3. This
does not mean that they are irregular but only that they do not a priori correspond to black-hole
microstates. This was first discovered in [77], where it was pointed out that BPS solutions with a large
number of GH centers have angular momenta at and slightly above the cosmic censorship bound. So
far the only solutions corresponding to microstate geometries for black holes with arbitrary-low angular
momentum have been obtained via Superstrata. Since all bubbling solutions have charges dissolved in
fluxes, and since these fluxes have different signs, the most likely outcome of trying to obtain a solution
by putting random values of fluxes on various cycles is a solution with regions of positive and negative
charge densities. Such solutions are not supersymmetric, and imposing a supersymmetric Ansatz on
them gives in general a solution with CTC’s. Furthermore, since the flux on every cycle interacts with
the flux on every other cycle, making sure there are no regions of negative charge density is a very
complicated problem, that has not been solved yet1.

In this chapter, we present two published results [23, 24] and an unpublished result that allowed
a better understanding of the properties of multicenter smooth solutions. The first two belong to the
same project and will be reviewed in Sections 5.2 and 5.3. In [23], a generic recipe was given to construct
the largest known family of scaling regular multicenter solutions with four GH centers. By studying
the large parameter space, it has been shown that generic solutions with four GH centers correspond to
microstate of a black hole with an angular momentum around 99% of its maximal value confirming [77].
The notion of hierarchy of scale between the centers has been introduced: the angular momentum can
be lowered for center configurations divided in several clusters of close centers. Moreover, in [24], a

1In [140] a strategy to solve this problem is proposed.
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similar method applied to smooth solutions with three GH centers and one Supertube showed that
those solutions can have arbitrarily low angular momentum. As explained in the previous chapter,
those solutions are smooth in six dimensions, in the D1-D5-P frame.

These constructions required a good understanding of the structure of the regularity constraints
listed above. The unpublished result is a consequence of this study and is discussed in Section 5.1. Denef
equations give a strong relation between the center configuration, their charges and the background
moduli determining the asymptotics of the solution (4.1.3.1). Depending on the background moduli,
a generic solution may be forced to decay at walls of marginal stability [141] and some D-brane bound
states cease to exist when the asymptotics are changed. A black hole does not have this feature and the
solution is independent of the background. A typical microstate should then share this characteristic.
The standard lore is that families of scaling solutions represent the good candidates to be typical
microstates are also background-independent. We will discuss the limit of this assessment by showing
that configuration with collinear centers might have walls of marginal stability even in the scaling limit.

5.1 Walls of marginal stability of collinear centers in the scaling limit

In this section, we discuss the mathematical structure of Denef equations for BPS solutions with
collinear centers. Collinearity has advantages in many aspects. First, it preserves the U(1) × U(1)
isometry of the GH base space in a sense that the configuration does not break the ϑ/φ-independence2.
This assumption considerably simplifies the resolution of Denef equations since the degrees of freedom
of the configuration (the relative distance on the line between the centers) matches the number of
equations. Second, they do not belong to a strange corner of the phase space of multicenter solutions.
It has been even proven that the index of multicenter solutions is reproduced by counting only collinear
solutions [142].

BPS solutions which do not satisfy scaling conditions have a moduli space divided by walls of
marginal stability that delimit zones where the moduli is incompatible with the set of charges {Γi}
[76, 141]. When crossing a wall, the centers are forced to pair up or to split and the solution changes
drastically. For instance, if one takes the simpliest example of a two-center solution where the Denef
equations reduce to one equation 〈Γ1,Γ2〉 = −〈Γ1,Γ∞〉 × ρ12, the inter-center distance is diverging
when the background moduli is approaching the wall defined by 〈Γ1,Γ∞〉 = 0. Beyond the wall the
two centers merge to a single-center solution Γ1 + Γ2 → Γ = Γ1 + Γ2 [141]. However, it has been
argued that solutions with a scaling limit do not have walls of marginal stability because they are
indistinguishable from a single-center solution and therefore all possible values of moduli at infinity
are available.

We consider a multicenter solution with n centers uniquely defined by n+ 1 symplectic vectors Γi
and Γ∞ (4.1.24). The centers are on the z-axis of R3 and are given by their distance to the origin
ordered as follows

a1 > . . . > an−2 > an−1 > a0 = 0. (5.1.1)

We assume that the solution belongs to a family of scaling solutions. Then, we introduce a scale λ� 1
such that

aj = λ dj , dj = O(1), d1 > . . . > dn−1 > d0 = 0, (5.1.2)

We rewrite the Denef equations by replacing ρij = |ai − aj |

n−1∑
j=0

〈Γi,Γj〉
|ai − aj |

= 〈Γ∞,Γi〉 =⇒
n−1∑
j=0

〈Γi,Γj〉
|di − dj |

= O (λ) i = 1, . . . n , (5.1.3)

2We remind that these are the two spherical angles of R3.
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A direct consequence of the equations is that the background moduli satisfies

n−1∑
j=0

〈Γ∞,Γj〉 = 0 . (5.1.4)

The question we address in this section is: is the solution insensitive to a change of asymptotics Γ∞
like any expected black hole microstates? The standard lore answers yes. It comes from the simple
observation that if ai � 1, an infinitesimal transformation of center positions induces a change of order

one in
〈Γi,Γj〉
|ai−aj | which might annihilate a change of order one in Γ∞. We will rigorously show to what

extent this naive idea is false and to what extent such a solution can be sensitive to the asymptotic.

5.1.1 A change of background preserving the U(1)× U(1) isometry

We want to compute the deformation of the center configuration under a change of background moduli
by keeping the charge vectors fixed. For that purpose, we consider another symplectic vector l̂ of the
same order of magnitude as Γ∞ that defines the direction of the change of background in the eight-
dimensional moduli space. We perform the transformation Γ∞ → Γ∞ + x l̂ where x is a real variable.
The only constraint on l̂ is the same as the constraint on Γ∞:

n−1∑
j=0

〈 l̂,Γj〉 = 0. (5.1.5)

5.1.1.1 Disproof of thee standard lore

In this subsection, we investigate the standard lore stating that any background change can be solved
by infinitely small changes of center positions into the Denef equations. We show that this reasoning
is (unfortunately) wrong. For that purpose, let us assume it is true and consider the following family
of transformations:

Γ∞ → Γ∞ + x l̂

ai → ai (1 + δi (x)) , δi (x) � 1 (5.1.6)

Γi → Γi.

To solve Denef equations, we have n − 1 variables δi for n − 1 independent equations. Therefore, the
system of equations is solvable. We linearize the equations (5.1.3) in terms of the δi, by noticing that

1

ρij
→ 1

|ai − aj |

(
1 +

ajδj − aiδi
|ai − aj |

)
, i 6= j .

At leading-order, in a matrix form we have

M .


δn−1

...
δ3

δ2

δ1
 = x


〈Γn−2, l̂〉

...
〈Γ2, l̂〉
〈Γ1, l̂〉
〈Γ0, l̂〉

 , (5.1.7)
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with

M ≡



Γ01
a1

Γ02
a2

Γ03
a3

. . . Γ0n−1

an−1
n−1∑
j=0

Γ1j

ρ1j

a1
a1−aj −Γ12

ρ12

a2
a1−a2

−Γ13
ρ13

a3
a1−a3

. . . −Γ1n−1

ρ1n−1

an−1

a1−an−1

−Γ21
ρ21

a1
a2−a1

n−1∑
j=0

Γ2j

ρ2j

a2
a2−aj −Γ23

ρ23

a3
a2−a3

. . . −Γ2n−1

ρ2n−1

an−1

a2−an−1

...
. . .

. . .
. . .

...

−Γn−2 1

ρn−2 1

a1
an−2−a1

−Γn−2 2

ρn−2 2

a2
an−2−a2

−Γn−2 3

ρn−2 3

a3
an−2−a3

. . . −Γn−2n−1

ρn−2n−1

an−1

an−2−an−1


≡
[

C1 C2 C3 . . . Cn−1

]
, (5.1.8)

where Ci is the ith column of M . We apply the Cramer formula to solve the system of equations
(5.1.7). We only express δ1 for readability:

δ1 = x
det [Ml]

det [M ]
. (5.1.9)

We obtain Ml from M by replacing C1 by the vector on the right hand side of the equation (5.1.7)
that we denote 〈Γ̂, l̂〉:

Ml ≡
[
〈Γ̂, l̂〉 C2 C3 . . . Cn−1

]

=



〈Γ0, l̂〉 Γ02
a2

Γ03
a3

. . . Γ0n−1

an−1

〈Γ1, l̂〉 −Γ12
ρ12

a2
a1−a2

−Γ13
ρ13

a3
a1−a3

. . . −Γ1n−1

ρ1n−1

an−1

a1−an−1

〈Γ2, l̂〉
n−1∑
j=0

Γ2j

ρ2j

a2
a2−aj −Γ23

ρ23

a3
a2−a3

. . . −Γ2n−1

ρ2n−1

an−1

a2−an−1

...
...

. . .
. . .

...

〈Γn−2, l̂〉 −Γn−2 2

ρn−2 2

a2
an−2−a2

−Γn−2 3

ρn−2 3

a3
an−2−a3

. . . −Γn−2n−1

ρn−2n−1

an−1

an−2−an−1


. (5.1.10)

Furthermore, by performing the column operation C1 → C1 + C2 + . . . + Cn−1 on the first column of
M , the components of the first column become the n− 1 left-hand side of the Denef equations (5.1.3).
So the determinant of M is equal to the determinant of −M∞ where M∞ is given by

M∞ ≡


〈Γn−2,Γ∞〉

...

〈Γ2,Γ∞〉
〈Γ1,Γ∞〉
〈Γ0,Γ∞〉

C2 C3 . . . Cn−1

 =
[
〈Γ̂,Γ∞〉 C2 C3 . . . Cn−1

]
. (5.1.11)

Since ai = O(λ) with λ� 1, all the coefficients of Ci are of order λ−1 while the coefficients of 〈Γ̂,Γ∞〉
or 〈Γ̂, l̂〉 are of order one. Thus, according to (5.1.10) and (5.1.11), the determinant of Ml and the
determinant of M∞ are of the same order of magnitude. Therefore,

δ1 = −x
det
[
〈Γ̂, l̂〉 C2 C3 . . . Cn−1

]
det
[
〈Γ̂,Γ∞〉 C2 C3 . . . Cn−1

] = −x det [Ml]

det [M∞]
= O (1) . (5.1.12)

We repeat the same arguments for each δi and we get with the same conventions:

δi = −x
det
[
C1 . . . Ci−1 〈Γ̂, l̂〉 Ci+1 . . . Cn−1

]
det
[
C1 . . . Ci−1 〈Γ̂,Γ∞〉 Ci+1 . . . Cn−1

] = O (1) . (5.1.13)
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This is in contradiction with the assumption δi � 1 . Thus, the transformation (5.1.6) is not valid:
changing the background moduli changes significantly the positions of the centers even in the scaling
regime.

5.1.1.2 The right transformation

In this section, we describe rigorously how the center positions vary ai → ai(x) under a change of
background Γ∞ → Γ∞ + x l̂ that preserves the axisymmetry of the centers. We only assume that the
positions ai(x) are analytic functions of x and we proceed step by step to obtain differential equations:

Γ∞ + x l̂→ Γ∞ + (x+ dx) l̂, dx� 1

ai(x) → ai(x+ dx) = ai(x)

(
1 +

1

ai(x)

dai
dx

dx

)
(5.1.14)

Γi → Γi.

Now we have an infinitesimally small parameter dx, we can rigorously reproduce the previous arguments

by replacing in all formulas the initial configuration {Γ∞, ai,Γi} by
{

Γ∞ + x l̂, ai(x),Γi

}
and the final

background Γ∞ + x l̂ by Γ∞ + (x+ dx) l̂. We obtain according to (5.1.13):

1

ai(x)

dai
dx

dx = −
det
[
C1(x) . . . Ci−1(x) 〈Γ, l̂〉 Ci+1(x) . . . Cn−1(x)

]
det
[
C1(x) . . . Ci−1(x) 〈Γ,Γ∞〉+ x 〈Γ, l̂〉 Ci+1(x) . . . Cn−1(x)

] dx , (5.1.15)

where Ci(x) is obtained from Ci (5.1.8) by replacing ρij and ai by ρij(x) and ai(x). Finally, this leads
to the following n− 1 differential non-linear equations:

d ln ai
dx

= − Ai(x)

Bi(x) + xAi(x)
, (5.1.16)

where

Ai(x) ≡ det
[
C1(x) . . . Ci−1(x) 〈Γ, l̂〉 Ci+1(x) . . . Cn−1(x)

]
Bi(x) ≡ det

[
C1(x) . . . Ci−1(x) 〈Γ,Γ∞〉 Ci+1(x) . . . Cn−1(x)

]
.

(5.1.17)

Those equations are hard to solve directly. Nonetheless, the scaling-limit assumption ai(x) = O(λ(x))
with λ(x)� 1 greatly simplifies the equations. All the coefficients of Ci(x) are of order λ(x)−1 whereas
the coefficients of 〈Γ,Γ∞〉 or 〈Γ, l̂〉 are of order one. We first remark by performing an operation on
the columns in (5.1.17), that

Ai(x) = A1(x)︸ ︷︷ ︸
O(λ2−n)

+ (−1)i det
[
〈Γ, l̂〉 〈Γ,Γ∞〉 C2(x) . . . Ci−1(x) Ci+1(x) . . . Cn−1(x)

]
︸ ︷︷ ︸

O(λ3−n)

Bi(x) = B1(x)︸ ︷︷ ︸
O(λ2−n)

− (−1)i x det
[
〈Γ, l̂〉 〈Γ,Γ∞〉 C2(x) . . . Ci−1(x) Ci+1(x) . . . Cn−1(x)

]
︸ ︷︷ ︸

O(λ3−n)

.

(5.1.18)

Thus, in the scaling regime:

Ai(x) = A1(x), Bi(x) = B1(x). (5.1.19)
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By replacing everything in (5.1.16) we obtain:

d ln ai
dx

=
d ln a1

dx
, (5.1.20)

and by integrating:
ai(x)

ai(0)
=

a1(x)

a1(0)
≡ f(x). (5.1.21)

We call f(x) the distance factor. This means that the centers change as a compact block and the
aspect ratios do not change at leading order. Furthermore, one can now find f(x) in terms of the initial
center positions, ai = ai(0), the initial background vector, Γ∞, and the charge vectors, Γi. Indeed,
thanks to (5.1.21), we have Ci(x) = f(x)−1Ci where Ci is given in (5.1.8), so Ai(x) = f(x)2−nA1 and
Bi(x) = f(x)2−nB1. Thus, (5.1.16) becomes

d ln f

dx
= − A1

B1 + xA1
, (5.1.22)

which can be easily integrated:

f(x) =
B1

B1 + xA1
. (5.1.23)

To conclude, when a background transformation is performed along the direction l̂ on an initial
solution defined by {ai,Γ∞,Γi} in the scaling regime,

Γ∞ → Γ∞ + x l̂

ai → ai(x) (5.1.24)

Γi → Γi,

a distance factor, ai → ai(x) ≈ f(x) ai, appears given by

f(x) = − xc
x− xc

, (5.1.25)

with

xc ≡ −
det
[
〈Γ,Γ∞〉C2. . . Cn−1

]
det
[
〈Γ, l̂〉C2. . . Cn−1

] = −det [M∞]

det [Ml]
. (5.1.26)

The vectors Ci, 〈Γ, l̂〉 and 〈Γ,Γ∞〉 and the matrices Ml and M∞ are expressed in terms of the initial
{ai,Γ∞,Γi} in (5.1.8), (5.1.10) and (5.1.11).

Surprising as it may seem, the expression (5.1.25) is the equation of a hyperbola. So the positions
of the centers in the three-dimensional base space of the solution are deeply sensitive to modifications
of background. We can distinguish between three different transformations according to the value of
x. We suppose xc > 0 but the statement is identical with xc < 0.

• x < 0:

The distance factor f(x) is below one (yellow part in the illustration Fig.5.1). This is a scaling-like
situation: the transformation Γ∞ → Γ∞+x l̂ makes the inter-center distances decrease by a factor
of f(x). The geometry of the bubbles is compatible with the asymptotics given by Γ∞ + x l̂.

• 0 < x < xc:

The distance factor f(x) is finite but greater than one (blue part in Fig.5.1). This corresponds to
a semi-critical situation. Performing the transformation Γ∞ → Γ∞+x l̂ increases the inter-center
distances. So the geometry of the bubbles is compatible with the behavior of the solution from
far away given by Γ∞ + x l̂. However, moving further the background towards the direction of l̂
makes the distances blow up.
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Figure 5.1: The three different phases of the impact of a background change Γ∞ →
Γ∞ + x l̂ on the geometry of the axisymmetric configuration as a function of x with
xc > 0.

• x = xc and x > xc:

At x = xc, there is a wall of marginal stability (red line in Fig.5.1). At that point, the distance
factor diverges and so the cluster of the centers blows up. Above xc, analytic center positions
{ai(x)} no longer exist.

Thus, along each direction l̂ starting from Γ∞, a wall of marginal stability exists at the location
Γ∞ + xc l̂. We illustrate this result in Fig.5.2 by projecting the eight-dimensional moduli space into a
two-dimensional space. We choose three directions l̂ where det [Ml] = 0 which implies xc →∞ (5.1.26).
Thus, the wall of marginal stability goes to infinity along those directions (see Fig.5.2). We have three
zones that are incompatible with the center configuration of the solution (in red).

It is very hard to predict the behaviors of the walls of marginal stability because they are highly
dependent on the initial center configuration, initial charge vectors and the initial background vector.
The only thing we know is about the origin of the background moduli. First, if we assume Γ∞ = 0,
the equality (5.1.22) gives ∂x ln f(x) = −x−1 which is not integrable. So, no other backgrounds
can be accessed by transformation preserving the U(1) × U(1) isometry. Second, if Γ∞ 6= 0, we
straightforwardly have xc = −1 along the direction l̂ = Γ∞. Thus, Γ∞ + xc l̂ = 0 belongs to a wall of
marginal stability. From a supergravity point of view, this point of the moduli space corresponds to
harmonic functions with no constant terms. According to the discussion in Section 4.1.3.1, the D-brane
bound state is asympotitcally AdS2 × S3 in five dimensions. Thus a corollary of our result is that any
solutions with collinear centers cannot go to their AdS2 limit or move away from their AdS2 limit at
least by preserving their U(1)× U(1) isometry.

One may wonder if the walls of marginal stability can be bypassed by performing a change of
background that breaks one of the U(1) isometry.
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Figure 5.2: A two-dimensional schematic description of the background moduli space of
an initial solution with a background vector Γ∞. The three different possible zones of
background changes are depicted. The red zones correspond to the backgrounds which
are incompatible with the initial charge vectors and center configuration.

5.1.2 A change of background breaking a U(1) isometry

In this Section, we perform a change of background Γ∞ → Γ∞+ l̂ allowing the transformation to break
the axisymmetry. So, the centers can move away from the z-axis and have a non-zero angle ϑj . We
consider the transformations whose only {ϑ1, a2, . . . , an−1} can vary but any other transformation with
one angle and n− 2 distances can be treated in the same way. We do not discuss the transformation
involving more than one angle, because non-diagonal terms δϑiδϑj appear in the linearization of the
Denef equations which makes the problem more difficult without affecting the main result. We consider
the following transformation

Γ∞ → Γ∞ + l̂

ϑ1 → δϑ1, δϑ1 � 1

i 6= 1, ai → ai (1 + δi) , δi � 1

Γi → Γi. (5.1.27)

The inverse inter-center distances transforms as

1

ρij
→ 1

|ai − aj |

(
1 +

ajδj − aiδi
|ai − aj |

)
, i 6= j ,

1

ρi1
→ 1

|ai − a1|

(
1− ai
|ai − aj |

δi −
aia1

2|ai − a1|2
(δϑ1)2

)
, i 6= 1 ,

(5.1.28)



5. Systematic construction of scaling multicenter solutions 96

The linearization of Denef equations is slightly different from the previous section since we need to go
to second order in δϑ1:

Mϑ .


δn−1

...

δ3

δ2

δϑ1
2


=


〈Γn−2, l̂〉

...

〈Γ2, l̂〉

〈Γ1, l̂〉

〈Γ0, l̂〉

, (5.1.29)

with

Mϑ ≡


Γn−2 1

ρn−2 1
3
a1an−2

2

...

Γ21
ρ21

3
a1a2

2

∑
j 6=1

Γ1j

ρ1j
3

a1aj
2

0

−Γn−2 2

ρn−2 2

a2
an−2−a2

...

n−1∑
j=0

Γ2j

ρ2j

a2
a2−aj

−Γ12
ρ12

a2
a1−a2

Γ02
a2

−Γn−2 3

ρn−2 3

a3
an−2−a3

. . .

−Γ23
ρ23

a3
a2−a3

−Γ13
ρ13

a3
a1−a3

Γ03
a3

. . .

. . .

. . .

. . .

. . .

−Γn−2n−1

ρn−2n−1

an−1

an−2−an−1

...

−Γ2n−1

ρ2n−1

an−1

a2−an−1

−Γ1n−1

ρ1n−1

an−1

a1−an−1

Γ0n−1

an−1


. (5.1.30)

We apply the Cramer formula and solve the system of equations (5.1.29):

δk =
det [Mϑk]

det [Mϑ]

δϑ1
2 =

det [Mϑ 1]

det [Mϑ]
,

(5.1.31)

where Mϑk is obtained from Mϑ by replacing its kth column by the vector on the right hand side of
the equation (5.1.29). The operation C1 → C1 + C2 + . . .+ Cn−1 on the first column of Mϑ no longer
makes Denef equations appear. In addition, a straightforward computation leads to

det [Mϑk] = O
(
λ2−n)

det [Mϑ] = O
(
λ1−n) . (5.1.32)

So,

δk = O (λ)

δϑ1
2 = O (λ) .

(5.1.33)

The infinitesimal expansion (5.1.27) is well defined. Nevertheless, notice that if the right hand side of
the second line in (5.1.31) is negative, no real solutions exist for δϑ1 and the transformation (5.1.27)
is not valid. It is hard to predict the sign of this quantity due to the complexity of the matrices Mϑ 1

and Mϑ. However, if one sends l̂→ −l̂, then det [Mϑ 1]→ −det [Mϑ 1] whereas det [Mϑ] remains fixed.
Thus, in one or the other direction along l̂, δϑ1

2 is negative and the transformation is not valid.

Even if the transformation (5.1.27) is not valid, it is complicated to conclude something about
possible walls of marginal stability. Indeed, one can choose a slightly different transformation by letting
another angle to vary and this will give another positivity condition. By allowing the transformation
to break the collinearity, we have many more degrees of freedom than equations and we did not find an
overall criterion to evaluate whether of not the background transformation can be performed. However,
numerical test or concrete examples in Chapter 6 show that it is likely that some changes of background
moduli are subject to walls of marginal stability even if the collinearity of the centers is broken.
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Moreover, these features are really specific to the axisymmetric solutions and this does not apply
to center configurations that do not initially preserve the U(1) × U(1) isometry. For instance, one
can reproduce the computation of this section by assuming that the center configuration is planar.
A transformation of the type (5.1.27) will lead to a result similar to (5.1.33) but with δϑ1 instead of
δϑ1

2. Any change of background can be then compensated by an infinitesimal change of the bubble
geometry in the Denef equations.

Thus, we have shown that BPS solutions with centers on a line are peculiar solutions. Even if
they belong to a family of scaling solutions, they are non-trivially sensitive to the background moduli.
Typical black hole microstates should not be. If one requires that the solutions remain axisymmetric,
there are walls of marginal stability where the D-brane bound states are forced to decay. One of the
U(1) isometry must be broken to bypass those walls but this does not guarantee the existence of the
bound states at any point of the moduli space.

5.2 Systematic construction of a large family of smooth four-center
solutions

In this section, we present a systematic construction of the largest known family of scaling four-
center smooth horizonless solutions that have the same charges as large black holes. Our construction
allows us to easily build scaling four-center BPS solutions with any aspect ratios between the centers.
Moreover, we focus on solutions which are asymptotically R1,4 but the method can be adapted to
any asymptotics. The main idea is to start with BPS solutions with three collinear supertube centers
in Taub-NUT. As we will see, defining a parameter space where those solutions satisfy the Denef
equations, the no-CTC condition and the scaling condition is rather easy. Then, the next step is to
regularize the solutions at the supertube centers. As detailed in Section 4.1.3.3, this can be done by
performing two or three generalized spectral flows (4.1.30). Each generalized spectral flow transforms
a singular magnetic charge of its corresponding species of Supertube to a smooth KKm charge and
then transforms a species of Supertube to a smooth GH center. Thus, with two spectral flows we
obtain a solution with three GH centers and a Supertube. This solution is smooth in the D1-D5-P
frame as explained in Section 4.1.3.3. With three spectral flows, we have a solution of four smooth GH
centers in five-dimensions. Because generalized spectral flows also change the asymptotics, the last step
consists in applying gauge transformations and change of background moduli to have asymptotically
flat solutions.

5.2.1 Three-supertube scaling BPS solutions in Taub-NUT

Let us apply the generic discussion of Section 4.1 to the specific family of three Supertubes in Taub-

NUT. Each Supertube carries a dipole charge kI and two electric charges Q
(I)
j at the centers j 6= I.

Consequently, the eight harmonic functions that characterize such a field configuration are given by

V = h∞ +
q0

ρ0
, KI = αI +

3∑
j=1

kj
ρj
δIj , LI = 1 +

3∑
j=1

Q
(I)
j

4ρj

(
1− δIj

)
, M = m∞ +

3∑
j=1

mj

ρj
. (5.2.1)

We consider axisymmetric supertube configurations. The positions of the supertube centers and the
Taub-NUT center are given by the distances a1, a2, a3 and a0 on the z-axis of the three-dimensional
base space with the same convention as in (5.1.1). The Denef equations can be conveniently written
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as

Γ12

a1 − a2
+

Γ13

a1 − a3
− 4q0

m1

a1
= 4h∞m1 − 4k1 + Q

(2)
1 α2 + Q

(3)
1 α3 ,

Γ21

a1 − a2
+

Γ23

a2 − a3
− 4q0

m2

a2
= 4h∞m2 − 4k2 + Q

(1)
2 α1 + Q

(3)
2 α3 ,

Γ32

a2 − a3
+

Γ31

a1 − a3
− 4q0

m3

a4
= 4h∞m3 − 4k3 + Q

(1)
3 α1 + Q

(2)
3 α2 ,

3∑
j=1

mj

aj
= −m∞ ,

(5.2.2)

where we have introduced the short-hand notation Γij = 〈Γi,Γj〉. Moreover, we want the solutions to
belong to a family of scaling solutions. The aspect ratios, defined in 5.1.2, must satisfy the following
scaling condition

Γ12

d1 − d2
+

Γ13

d1 − d3
− 8q0

m1

d1
∼ 0 ,

Γ21

d1 − d2
+

Γ23

d2 − d3
− 8q0

m2

d2
∼ 0 ,

Γ32

d2 − d3
+

Γ31

d1 − d3
− 8q0

m3

d4
∼ 0 ,

3∑
j=1

mj

dj
∼ 0 ,

(5.2.3)

The regularity of the Supertubes (4.1.59) fixes the angular-momentum charges as follows

m1 =
Q

(2)
1 Q

(3)
1

16k
(1)
1

, m2 =
Q

(1)
2 Q

(3)
2

16k
(2)
2

, m3 =
Q

(2)
3 Q

(1)
3

16k
(3)
3

, (5.2.4)

Moreover, the constant terms αI are constrained by summing the four Denef equations. We want the
minimum number of non-zero constant terms in the K’s3. So we choose

α1 = −2h∞m∞ , α2 = α3 = 0 . (5.2.5)

Denef equations can be easily solved by considering the electric charges Q
(I)
j as variables instead of the

inter-center distances. This drastically simplifies the structure of the equations. The last regularity
condition is the absence of CTC (4.1.27). As already said, this can be reduced to ZIV ≥ 0 , I = 1, 2, 3 ,
for generic solutions in the black-hole regime. By expanding the conditions around each pole and at
the boundary, one can transform those inequalities on a set of algrebraic inequalities on the charges
and dipole charges:

q0
Q

(I)
J

aJ
+

kIkJ
|aI − aJ |

≥ 0 and q0

(
Q

(I)
J

aJ
+
Q

(I)
K

aK

)
≥ 0 , I 6= J 6= K. (5.2.6)

At infinity, this implies that h∞ ≥ 0.

Finally, the last line in (5.2.3) requires that at least one mj is negative and then that a dipole charge
kj is negative. To conclude, we ensure the quartic invariant to be positive everywhere by restricting

q0 to be positive, Q
(I)
j to satisfy the above inequalities and one of the dipole charges, say k2, to be

negative.

3Constant terms in the K’s can induce CTC.
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We delimited a large parameter space of regular three-supertube solutions in Taub-NUT. The

parameter space is specified by seven charge parameters k1, k2, k3, q0,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

and the relative

distance ratios a1
a2

and a2
a3

. The missing point is that they are not smooth neither in five dimensions
nor in six dimensions. This will be fixed using generalized spectral flows in the next subsection.

5.2.2 Microstate geometries from three-supertube configurations

We use generalized spectral flows (4.1.30), gauge transformations (4.1.31), and change of background
moduli to transform the solutions into configurations of three GH centers and one Supertube or into
configurations of four GH centers. The techniques to generate these configurations only differ in the
number of generalized spectral flows. We require the transformed solutions to satisfy the following
conditions:

• The constant terms in V and KI are zero to have asymptotically flat solutions.
• The sum of all charges in V is one.
• The values of the charges and dipole charges are integer.

Our recipe is the following:

1. We choose a value for the seven degrees of freedom of the three-supertube solutions, k1, k2, k3,

q0,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

. We give also a starting value for the aspect ratios between the centers. They

will be modified slightly in the next steps. Remind that we can only obtain scaling solutions if
one of the k’s has a sign different from the other two. We also give a non-vanishing value to h∞,
which is necessary in order to cancel the constant terms of all KI in a later step. Therefore, the
base space is Taub-NUT.

2. We impose the scaling condition (5.2.3) as three exact equations from which we obtain the precise

value of all the Q
(I)
j parameters. Afterwards, we round these values to some close rational numbers

and solve the Denef equations (5.2.2) to determine the positions of the centers a1, a2 and a3. Thus,
(5.2.3) cease to be equalities and become approximations, as intended. The aspect ratios are also
slightly changed compared to their initial values. This step ensures that we construct a scaling
three-supertube solution free of CTC’s.

3. We perform three generalized spectral flows and three gauge transformations (or two generalized
spectral flows and two gauge transformations). We fix the values of the spectral flow parameters
γI by imposing specific integer values of the Gibbons-Hawking charges q1, q2 and q3 (or q1 and q2)
such that

∑
qj = 1. The values of the gauge parameters gI are fixed requiring that the constant

terms in all the functions KI are zero.

At this stage, we have a BPS scaling solution with four Gibbons-Hawking centers (or three
Gibbons-Hawking centers and one Supertube). However, there are still two issues that need to
be fixed. First, the harmonic function V still has a constant term. This means that the four-
dimensional base space is asymptotically R3 × S1 instead of flat R4. Second, all the parameters
of the transformations γI and gI are fixed by polynomial equations, so the resulting charges and
dipole charges of the solution are real numbers. Since they are expected to be quantized when
interpreted in the full context of String Theory, it is crucial that they take integer values.

4. It is not possible to remove the constant in V using transformations that preserve the Denef
equations. We therefore remove it by performing a background-moduli transformation as discussed
in the previous section. The centers are on a line, so they belong to the category where the
transformation can cross a wall of marginal stability. In our construction we will carefully select
the solutions for which it is possible to perform this truncation preserving the axisymmetry of the
center configuration.
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5. We want the monopole and dipole charges to be integer numbers. The first step consists in
obtaining solutions whose harmonic functions have rational poles. For that purpose, we round
the values of the parameters kIj to be rational and obtain all the other charges lIj and mj using
the Gibbons-Hawking condition (4.1.57). Since one can find rational numbers arbitrarily close to
any irrational number, this procedure is guaranteed not to change significantly the properties of
the solution. Hence, we have a fair bit of freedom in rounding the irrational numbers to rational
ones, and we can use it to obtain kIj that have the same denominator. This rounding does not
leave the Denef equations invariant, and we need to solve them again and check the absence of
CTC’s. The second step is to obtain solutions whose harmonic functions have integer poles. We
use the following transformations parametrized by any real numbers {s1, s2, s3},

M → 1

6
CIJKsIsJsKM, LI →

1

2
CIJKsJsKLI ,

V → V, KI → sI K
I , {s1, s2, s3} ∈ R3. (5.2.7)

They preserve the regularity of the solution. Indeed, the regularity of Gibbons-Hawking centers
(4.1.57) or the regularity of the round Supertube (4.1.59) are still satisfied and the Denef equations
and the quartic invariant are multiplied by an overall factor s1s2s3 and (s1s2s3)2 respectively.
Thus, one chooses the three sI to be the smallest integers needed to obtain integer charges from
the rational charges.

6. The factors sI are usually large numbers, so multiplying the harmonic functions LI and M
makes their constant terms very large. Asymptotic flatness of the five-dimensional metric (4.1.32)
demands having the constant terms of all LI equal to one4. To obtain such solutions one again
has to perform a background-moduli transformation on the constant terms of all the LI . We are
in a situation where the background vector shift l̂ is almost collinear to the background vector
Γ∞ in the eight-dimensional moduli space. According to our discussion in Section 5.1.2, such a
change is not critical, and results in a global dilatation of the multicenter configuration. To make
the inter-center distances small again, we simply fine-tune the value of some of the dipole charges
(keeping them integer) to make the solution scale [85].

This method produces asymptotically-flat solutions with four Gibbons-Hawking centers that have
integer charges in the scaling regime (or asymptotically flat solutions with one round Supertube
and three GH centers). Using this systematic procedure we have an “almost” complete map from
three-supertube solutions in Taub-NUT to smooth solutions. By “almost” we consider that some of
the solutions can decay at walls of marginal stability when performing the background transforma-
tions. Moreover, the parameter space is well defined by the set of parameters of the initial solutions

k1, k2, k3,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

, q0, by the aspect ratios between the centers, and by the spectral flow param-

eters giving the GH charges q1 and q2. We remind that the parameters of the initial solutions are
constrained to be CTC-free.

5.2.2.1 Explicit examples

Here we give the explicit form of the harmonic functions characterizing two BPS scaling microstate
geometries: one with four Gibbons-Hawking centers and one with three Gibbons-Hawking center and
a Supertube center. The solutions have been found following the recipe detailed above.

• An example with four Gibbons-Hawking centers:

4Actually only their product has to be equal to one, but this subtlety is not particularly relevant.
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We have chosen the initial parameters to have a particularly low angular momentum for a config-
uration of four GH centers. As we will see in a moment, this requires a large hierarchy of scales in the
inter-center distances and small charges in V .

The solution is determined by the following harmonic functions,

V =
1

ρ0
+

1

ρ1
− 2

ρ2
+

1

ρ3

K1 = −36

ρ0
+

100

ρ1
+

18

ρ2
− 1

ρ3

K2 =
278

ρ0
− 4997

ρ1
− 1702

ρ2
+

220

ρ3

K3 =
344

ρ0
+

342

ρ1
− 2154

ρ2
+

1644

ρ3

L1 = 1 − 95632

ρ0
+

1708974

ρ1
+

1833054

ρ2
− 361680

ρ3

L2 = 1 +
12384

ρ0
− 34200

ρ1
− 19386

ρ2
+

62472

ρ3

L3 = 1 +
10008

ρ0
+

499700

ρ1
− 15318

ρ2
+

8360

ρ3

M = 5981 − 3442752

ρ0
− 170897400

ρ1
+

16497486

ρ2
− 13743840

ρ3
.

(5.2.8)

The bubble equations can be solved numerically for the location of the centers,

a1 = 5.9600 . . .× 10−1 , a2 = 1.1367 . . .× 10−3 , a3 = 7.5586 . . .× 10−6 . (5.2.9)

Performing an asymptotic expansion of ZI and µ we obtain the three electric charges and the angular
momentum of the solution, which can be read from the O(ρ−1) coefficients (4.1.55)5.

Q1 = 1993340

Q2 = 29014

Q3 = 229906

JL = −87655680.

(5.2.10)

The angular momentum is 58% of its maximal value. While this value is not close to 0%, we can
definitely affirm that it is far from 100%. Thus, this microstate geometry corresponds to a rotating
black hole whose angular momentum is significantly below the cosmic censorship bound (4.1.48). The
solution has been constructed thanks to a fine-tuning of the initial parameters following the numerical
analysis that we will review in the next section.

• An example with three Gibbons-Hawking centers and a Supertube:

We build here a solution with one Supertube and three Gibbons-Hawking centers with a very low
angular momentum. The solution has been also found from the coming numerical analysis. As an
illustration, our procedure allows us to fine-tune appropriately the scale difference between the inter-
center distances and the values of the initial charges and dipole charges of the three initial Supertubes.

5We do not write down JR since it is almost vanishing of the order of the inter-center distance.
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We take

V =
1

ρ0
+

1

ρ2
− 1

ρ3

K1 = −114

ρ0
− 5

ρ1
− 110

ρ2
+

115

ρ3

K2 = −111

ρ0
+

4698

ρ2
+

642

ρ3

K3 =
3

ρ0
− 87

ρ2
+

84

ρ3

L1 = 1 +
333

ρ0
+

408726

ρ2
+

53928

ρ3

L2 = 1 +
342

ρ0
+

10

ρ1
− 9570

ρ2
+

9660

ρ3

L3 = 1 − 12654

ρ0
+

381142

ρ1
+

516780

ρ2
+

73830

ρ3

M = −5115 +
37981

ρ0
− 762284

ρ1
+

44959860

ρ2
+

6201720

ρ3
.

(5.2.11)

The bubble equations give the positions of the centers:

a1 = 7.3189 . . .× 10−2 , a2 = 3.6046 . . .× 10−3 , a3 = 9.7241 . . .× 10−5. (5.2.12)

The three charges and the angular momentum are:

Q1 = 462987

Q2 = 442

Q3 = 362992

JL = −16021,

(5.2.13)

giving, as advertised, an angular momentum at 0.17% of the cosmic censorship bound.

5.3 Multicenter solutions with arbitrarily low angular momentum

The method reveals itself as a very powerful tool to study the spectrum of four-center microstate
geometries. This has never been done before for any multicenter solutions with more than two cen-
ters because of the lack of a well-defined parameter space of regular solutions. In this section we
are interested in the angular momentum of the solutions. For that purpose, we define the entropy
parameter,

H ≡
Q1Q2Q3 − J2

L

Q1Q2Q3
, (5.3.1)

which measures how far the microstate angular momentum is below the cosmic censorship bound of
the black hole with the same charges6. We perform a scan of the parameter spaces and try to elucidate
some general properties for multicenter solutions.

We have generated automatically a huge number of regular solutions following the recipe until the
step 3. All the steps coming after do not affect significantly the solutions and are unnecessary for a
numerical analysis.

6Of course, microstate geometries have no horizons and their angular momentum can easily be above
the cosmic censorship bound [77], so the name “entropy parameter” is a bit of a misnomer. We use it
nonetheless because it facilitates the comparison between the microstate geometry and the corresponding
black hole.
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5.3.1 Analysis with four GH centers

We first focus on solutions without scale differences between the inter-center distances:

a1 − a2

a3
≈ 1

a2 − a3

a3
≈ 1.

(5.3.2)

We divided our analysis in three parts, considering the effect of modifying three sets of parameters: the
Gibbons-Hawking charges (q0, q1, q2), the initial supertube dipole charges (k1, k2, k3) and the supertube

charge ratios (
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

). All the details of the numerical analysis can be found in Appendix A.2.

We reach the following conclusions:

• The entropy parameter approaches zero drastically when the absolute value of the Gibbons-
Hawking charges is large. The optimal value we observed for the Gibbons-Hawking charges is
1,1,1 and -2.

• For the initial supertube dipole charges, we observed that configurations with k2 negative and
k1 and k3 positive are the optimal ones. With the two other sign configurations, we did not
find domains of charge ratios with an entropy parameter bigger than 0.1. We also noticed that
the entropy parameter does not depend significantly on k2 and it depends essentially on k1

k3
.

Furthermore, we observed that for any charge ratios one can find a particular dipole ratio k1
k3

where the entropy parameter is maximal and the upper bound seems to be H ∼ 0.3.

• With the optimal configuration of dipole charge signs and Gibbons-Hawking charges, we have
found several domains of charge ratios where the entropy parameter is above 0.2.

Moreover, we performed an analysis to study the impact of the hierarchy of scales. In Figure 5.3, we
show one of the main results of the analysis. It illustrates how the entropy parameter can significantly
increase with the aspect ratios. The entropy parameter is represented with respect to two variables,
one is a charge ratio and the other is the hierarchy parameter m:

a1

a2
≈ 10m ,

a2

a3
≈ 10m. (5.3.3)

The rest of parameters are chosen to optimize the entropy parameter, according to the numerical re-
sults just presented (see Appendix A.2 for more details). The graph shows that when m is around
0 the solutions are near-maximally spinning, with H very close to 0. Furthermore, in all the solu-
tions we examined the entropy parameter increases as the hierarchy between the distances gets more
pronounced, converging toward a value below one. We have confirmed this behavior for several other
domains of the parameter space.

The analysis supports the conclusion that microstate geometries with an angular momentum that
is at a finite fraction of the cosmic censorship bound must have a difference in scale between their
inter-center distances and the lowest possible charges in V .

5.3.2 Analysis with three GH centers and one Supertube

The details of the numerical analysis are in Appendix A.3. We first focus on solutions without scale
differences between the inter-center distances (5.3.2). After scanning relevant domains of the space of
parameters, we have reached the following conclusions when looking for the best value of H:

• The optimal location of the Supertube is the outermost one: (0, 0, a1).
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Figure 5.3: The entropy parameter H as a function of
Q

(3)
2

Q
(1)
3

and the initial hierarchy

parameter m = log10

[
a1
a2

]
= log10

[
a2
a3

]
. The other parameters are fixed to the following

values q0 = q1 = q2 = 1, k1 = −k2 = k3 = 1,
Q

(1)
2

Q
(3)
1

= 0.9 and
Q

(2)
3

Q
(2)
1

= 2.

• The Gibbons-Hawking charges qa should have the smallest possible absolute value, |q2| = |q3| =
|q0| = 1, in agreement with what we found for four GH centers.

• All sign configurations for the initial dipole charges ka appear to be equally favored. We find
that, when k2 is taken negative, the entropy parameter reaches a maximum for a particular value
of k1

k3
, regardless of the values of the other parameters.

• For aspect ratios satisfying (5.3.2), the maximal value of H is around 0.25.

The analysis confirms what we anticipated: When only two generalized spectral flows are performed,
the resulting solutions have lower angular momentum. Thus, one can reach a finite value of H even
without a hierarchy of scales.

We just found in the previous section that hierarchic configurations can improve the value of the
entropy parameter, at least for four GH centers. So we would like to investigate how adding a hierarchy
of scales affects the angular momentum. For that purpose, let us consider the scale m as in (5.3.3). We
can then evaluate the value of the entropy parameter for a large set of solutions with different values

of m and the charge ratio
Q

(2)
3

Q
(2)
1

. The other parameters are fixed to optimal values according to the

analysis performed for m ≈ 0. The result is very surprising. As the value of m increases the value of
the entropy parameter improves significantly and can stay arbitrarily close to H = 1 in a large region
of the moduli space. This maximal value is obtained for m ∼ 1.5, so the hierarchy of scales is not too
pronounced. Unexpectedly, the value of the entropy parameter decreases if we go beyond that optimal
hierarchy, see Fig.5.4.

Solutions with m ∼ 1.5 are non-spinning. Indeed, one can find CTC-free scaling solutions with one
supertube and three Gibbons-Hawking centers for which the spectral flow transformations completely
annihilate the original angular momentum. However, those solutions typically have irrational charges.

To obtain solutions with integer charges and fluxes, one has to round these charges to nearby
rational ones, and this typically brings back some angular momentum. However, the value of this
angular momentum is proportional to the rounding, and hence can be made arbitrarily small by
tightening the rounding. Hence, one can find regular scaling solutions with an entropy parameter
infinitesimally close to one.
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Figure 5.4: Representation of the entropy parameter H as a function of the charge ratio
Q

(2)
3

Q
(2)
1

and the order of magnitude of the inter-center distance ratio. The other parameters

are q0 = q2 = 1, k1 = −k2 = k3 = 1,
Q

(1)
2

Q
(3)
1

= 0.85 and
Q

(3)
2

Q
(1)
3

= 0.009.

5.4 Final comment

In this chapter, we have reviewed works about smooth 1/8-BPS multicenter solutions in the black-hole
regime. First, we have highlighted a strong dependence between the bubbling geometry of scaling
solutions with collinear centers and their background moduli. We have shown that walls of marginal
stability might exist, which is contrary to the properties expected for typical microstates. Second, we
have constructed the largest known family of multicenter smooth microstate geometries from three
Supertubes in Taub-NUT. Thanks to a well-defined parameter space, we have shown that multicenter
smooth solutions in six dimensions can have arbitrarily low angular momentum, which was thought to
be only possible using Superstrata. We have stressed the need for a hierarchy of scales in the center
configuration.



Chapter 6

Counting Multicenter solutions at low
charges

The “Holy Grail” of the microstate-geometry program and the fuzzball proposal is to build “eS”, or
even a significant fraction, of smooth horizonless supersymmetric geometries in the black-hole regime.
In the previous sections, we have constructed many of such solutions. Counting them is an other issue
out of reach.

In this chapter, we review the work of [26] which addresses a less ambitious problem but with
meaningful conclusions. We study the space of BPS states in type IIA String Theory on a T6 =
T2 × T2 × T2 wrapped by one D6 brane and three D2 branes wrapping the a two-torus each. The
configuration is the low-charge equivalent of the non-rotating BMPV1. A microscopic counting showed
that, for this low-charge configuration, the number of ground states is 12 [143–145]. We show that
these 12 states are all recovered as Coulomb branch BPS multicenter bound states, in which each center
preserves 16 supercharges. They are the low-charge equivalent of what might describe “near-horizon
limit” of fuzzballs.

We will describe those 12 multicenter bound states using the STU language of charge vectors, centers
and background vector reviewed in Section 4.1 and the picture in the D0-D2-D4-D6 frame is given in
(4.1.37). In Section 6.1 we will define the problem in detail. In Section 6.2 we give our methodology
for building all multicenter bound states corresponding to the asymptotic pure D6-D2-D2-D2 charges.
Finally, in Section 6.3, we discuss the main features of the 12 solutions, their description within the
quiver-quantum-mechanics framework and the extension of our construction to D-brane bound states
with QD6 = 2.

6.1 Setting the problem

Type II String Theory on a Calabi-Yau three-fold with D-branes wrapped on various cycles has been
an extensively studied for state counting [146, 147, 145, 148]. There are essentially three regimes in
which one can work, depending on the value of gs and the number of D-branes N (see Fig.6.1).

Thus far, we have essentially focused the discussion on the regime of validity of Supergravity,
gsN � 1. The Higgs branch is the one supporting the microscopic single D-brane picture of bound
states and leads to exact results at infinitesimally small gs. By increasing gs, two scenarios are possible.
The first one is that the Higgs-branch states are recovered as single center black hole solutions. The
second possible scenario is that the D-brane charges gather in several centers forming a molecule-like
BPS bound states described by quiver quantum mechanics. We denote this branch as the multicenter

1One can dualize the BMPV solution of the STU model reviewed in Section 4.1.2 in type IIA on T6

(4.1.35). In this frame the D0-charge corresponds to the five-dimensional left-moving angular momentum
JL.
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“Coulomb” branch2. One can still define two regimes inside this branch: the supergravity regime,
valid as long as gsN � 1 which is now familiar to us, and the quiver regime, in which the system is
described by a quiver quantum mechanics3.

gsN
gs = 0 N ∼ 1 gsN � 1

Higgs branch

Microscopic D-brane picture

Multicenter “Coulomb” branch

Quiver multi-particles Supergravity multi-centers

Figure 6.1: The description of a D-brane system in different regimes of parameters where
gs is the string coupling and N is the total number of branes.

The D6-D2-D2-D2 1/8-BPS bound states one wants to describe are determined, in the charge-vector
notation, by the following global charges:

(QD6, Q
1
D4, Q

2
D4, Q

3
D4;Q1

D2, Q
2
D2, Q

3
D2, QD0) = (QD6, 0, 0, 0; 1, 1, 1, 0) , QD6 = 1 or 2 . (6.1.1)

In the Higgs branch, the number of states is 12 and 56 for QD6 = 1 and QD6 = 2 respectively [143–145].
At a generic point of moduli space, the angular momentum of the microscopic D-brane states was found
to be strictly zero4. Motivated by this result at gsN � 1, it was conjectured that typical microstates of
supersymmetric black holes continue to carry zero angular momentum at a generic point of the moduli
space5. The conjecture seems to relegate all smooth horizonless solutions found so far to the rank of
atypicality. We will see in Chapter 9, in full generality, that this is actually not true.

We test the conjecture in the multicenter Coulomb branch by building all the BPS multicenter
bound states with global charges (6.1.1) and by investigating their possible moduli at infinity6. Strictly
speaking, we are in a multicenter Coulomb branch, far from the supergravity regime (gsN � 1) and
one should construct these configurations as solutions of quiver quantum mechanics. However, thanks
to the work done in [76, 149, 150, 87, 151, 141], one knows that the conditions of existence for quiver
BPS multi-particle solutions are exactly the same as the ones for BPS multicenter solutions in the
supergravity picture even if the supergravity solution is not reliable. As long as the geometry is not
considered, the picture of charge vectors located at some centers still holds true for gsN � 1. Thus,
for a counting problem, one can use the STU framework reviewed in Section 4.1.1.5 to build the BPS
solutions and study their general properties.

2The Coulomb branch is not the same as the Coulomb branch obtained by moving the D2 and D6
branes away from each other. We are referring to the multicenter Coulomb branch where the separations
between the centers cannot be modified freely.

3See [87] for an exhaustive description of the different regimes.
4Remind that in the D0-D2-D4-D6 frame, there is only one angular momentum. Compared to our

notation in the STU model, JR is this angular momentum and JL is now a D0-charge.
5Which includes gs.
6Remind that the bakcground moduli given by Γ∞ determines the angular momentum JR (4.1.56).
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In this chapter we will then consider generic 1/8-BPS multicenter solutions with an arbitrary
center configuration. As already said, a state in the STU model is uniquely defined by a set of eight-
dimensional charge vectors Γj and inter-center distances ρij . We first write down all the physical
constraints to construct bound states with the global charges (6.1.1):

• The regularity conditions.
First and foremost, the solutions have to be regular. They must satisfy the Denef equations
(4.1.26) and the absence of CTC (4.1.27).

• The global charges.
Being interested in specific D-brane charge configurations we express the quantized asymptotic D-
brane charges according to the charges at each center [152]. They are derived from flux-integrals
of the R-R gauge field forms C(1) and C(3) and their dual gauge fields C(5) and C(7) (4.1.35):

QD6 =

∫
S2
∞

dC(1) =
∑
j

qj , QID4 =

∫
S2
∞×T2

I

dC(3) =
∑
j

kIj ,

QD0 =

∫
S2
∞×T6

dC(7) =
∑
j

mj , QID2 = CIJK

∫
S2
∞×T2

J×T2
K

dC(5) =
∑
j

lIj .

(6.1.2)

The condition on the charge vectors is then∑
j

Γj = (QD6, 0, 0, 0; 1, 1, 1, 0) , QD6 = 1 or 2 . (6.1.3)

• Physical center configurations.
The inter-center distances that are solutions of Denef equations must correspond to physical sets
of centers. With three centers for instance, the distances must satisfy the triangle inequality.
With more centers, the condition gets more complicated and consists in several triangle and angle
inequalities.

• The types of centers.
We are looking for BPS multicenter solutions with four supercharges, the choice of charge vectors
is restricted to the one that preserves supersymmetry. Following the Bena-Warner ansatz [153],
it is more likely that a system of low or pure D-brane charges (6.1.2) is fully or largely composed
of maximally-supersymmetric BPS objects. The maximally-supersymmetric centers are the two-
charge round Supertubes (4.1.61), the GH centers (4.1.58) and the simple D-brane centers. Since
simple D-brane centers can be obtained from Supertubes by taking some of the charges to be
zero, we will misuse the generic term supertube center, even for these objects.

• The background moduli.
We will construct our solutions at a point of the background moduli space where Γ∞ = 0.
From a supergravity point of view, this corresponds to impose AdS2 asymptotics. This choice is
motivated by the fact that the angular momentum JR is vanishing in this situation (4.1.56) while
other background moduli generally gives in a non-zero value. However, once the solutions are
constructed, we plan to move away from this point by performing background transformations
that we have studied in Section 5.1 and to test the zero-angular-momentum conjecture.

In the next section, we give our methodology to construct the BPS multicenter solutions satisfying
all those constraints.

6.2 Counting zero-momentum multicenter states with pure D2 and
D6 charges

Our approach consists in scanning analytically or numerically all the valid multicenter solutions starting
with the family of three-center solutions then the family of four-center solutions and finally the five-
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center solutions7. The growing complexity of the analysis does not allow to scan solutions with more
than five centers but we have a strong intuition that adding centers increases necessarily the global
D-brane charges of the solution. Thus, if solutions exist, they should consist in few centers. We have
found exactly 12 distinct three-center solutions satisfying all those constraints. This matches exactly
the microscopic counting. Readers interested only in the main ideas of our analysis can skip the next
subsections until Section 6.2.4.

6.2.1 The family of three-center solutions

One needs at least one GH center in the configuration to have a non-zero D6 charge. We divide our
analysis in three subfamilies:

- Solutions with one GH center and two supertube centers.

- Solutions with two GH centers and a Supertube.

- Solutions with three GH centers.

For the first subfamily, an analytic approach is possible. All the details of this analysis are given in
Appendix A.4.1. The main result is that there exist 12 inequivalent solutions in this subfamily. As for
the second and the third families, the number of parameters makes the analytic approach impossible.
However, we have performed an efficient numerical analysis, fully detailed in Appendix A.4.2. We have
scanned a significant part of the parameter space of the solutions by varying each GH charge qj , k

1
j ,

k2
j , k

3
j and supertube charges kj , Q

(I)
j from -500 to 500. We didn’t find any solution satisfying all the

constraints in this domain of values.

In [154], the authors have tackled a similar issue by analyzing the parameter space of three-GH
center solutions whose the total D6 charge is three and the three D2 charges are one. Interestingly, they
have found that the total number of such multicenter solutions is also 12. This is half a coincidence
with our computation. Even if the three-center solutions they study have a larger QD6

8, the form of
their specific solutions are governed by the same type of permutations that gives to the 12 states we
found here.

6.2.2 The family of four-center solutions

A four-center solution has more degrees of freedom than the previous solutions and the constraints are
more complicated to deal with. This makes any analytic investigation very hard to perform. However,
we have done a numerical analysis of the following subfamilies:

- Solutions with one GH center and three supertube centers.

- Solutions with two GH centers and two Supertubes.

- Solutions with three GH centers and a Supertube.

- Solutions with four GH centers.

For each subfamily, we have analyzed a significant part of the parameter space by varying all the
parameters from -10 to 10. The details are given in the Appendix A.5.1. Our final result is that there
are no valid solutions with four centers.

7Two-center solutions with GH centers or supertube centers have 8 remaining supercharges. Hence
they do not correspond to the system we study.

8Total number of microscopic states with QD6 = 3, QID4 = 0, QID2 = 1, QD0 = 0 is actually 208 [145].
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6.2.3 The family of five-center solutions

For five-center solutions, even a scan of the parameter space is complicated. This is principally due
to the number of parameters available and the complexity of the constraints. However, we have been
able to pick randomly a huge number of solutions with the right global D-brane charges and check if
they can satisfy the bubble equations and the absence of closed timelike curves at the same time. We
did not find any. This gives good intuition that no solutions with five centers exist as well.

6.2.4 Summary

We have analyzed analytically and numerically a huge number of BPS multicenter solutions to find
only 12 solutions satisfying all the constraints. This exactly matches the exact counting of the 12
Higgs-branch states [143]. They are all recovered as Coulomb branch multicenter bound states. They
belong to the family of three-center solutions with one GH center and two Supertubes of different
species. The 12 solutions are given in full detail in Table 6.1. Moreover, as explained in Section 6.1,
for most of the solutions found, the two-charge-supertube centers are actually simple fluxed D-brane
centers9. For instance, the six first solutions in Table 6.1 have a GH center and two D4-brane centers
with an induced D2 charge. The six other solutions have one GH center, one two-charge-supertube
center and one simple D2-brane center with an induced D0 charge.

We do not have indisputable arguments that having more centers will not give rise to other valid
solutions but only good intuition. Usually, adding centers increases the global D-brane charges. An-
other difficulty in adding centers follows from the fact that these centers must carry negative D-brane
charges, in order to keep the total D-brane charges intact. However usually centers with negative
D-brane charges are tricky, when it comes to the ZI V ≥ 0, i.e. absence of closed timelike curves. For
these reasons, we can consider our analysis exhaustive even if we have analyzed configuration with few
centers.

6.3 Discussion

6.3.1 Features of the twelve solutions

The 12 solutions found are all BPS three-center solutions formed by one GH center and two other
16-supercharge centers. Although we looked for all possible center configurations, it happens that the
regular solutions we found have their centers lying on a line and hence are all axisymmetric. The
fact that the index is reproduced by counting configurations with collinear centers was also observed
in [142] and, given the very complicated algebra that required our physical solutions to be collinear,
we do not believe this is a coincidence.

We can now investigate what kind of moduli at infinity determined by Γ∞ are compatible with our
multicenter solutions. The fact that microstates of black holes have necessarily zero angular momentum
at any point of the moduli space has been conjectured in [155, 156, 144]. Nevertheless, we will argue
that a single-center black hole does not correspond to any pure state of the CFT1 dual to AdS2 in
the Chapter 9 [25], and the zero-angular momentum assymptotically AdS2 solutions dual to pure
states of the CFT1 will have a non-trivial angular momentum when embedded in asymptotically AdS3

geometries.
We would like to understand whether our 12 multicenter solutions can also develop a non trivial angular

9This means that some of D-brane charges of the two-charge Supertube are zero.
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Table 6.1: The 12 multicenter solutions with global D-brane charges
(QD6, Q

1
D4, Q

2
D4, Q

3
D4;Q1

D2, Q
2
D2, Q

3
D2, QD0) = (1, 0, 0, 0; 1, 1, 1, 0).

N
Charge vectors at each center
Γj = (QD6, Q

1
D4, Q

2
D4, Q

3
D4;Q1

D2, Q
2
D2, Q

3
D2, QD0)j

Center configuration

1

Γ0 = (1, 1, −1, 0 ; 0, 0, 1, 0)

Γ1 = (0, −1, 0, 0 ; 0, 1, 0, 0)

Γ2 = (0, 0, 1, 0 ; 1, 0, 0, 0)

1 0 2

rr

2

Γ0 = (1, −1, 1, 0 ; 0, 0, 1, 0)

Γ1 = (0, 1, 0, 0 ; 0, 1, 0, 0)

Γ2 = (0, 0, −1, 0 ; 1, 0, 0, 0)

1 0 2

3

Γ0 = (1, 0, 1, −1 ; 1, 0, 0, 0)

Γ1 = (0, 0, −1, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, 1 ; 0, 1, 0, 0)

1 0 2

4

Γ0 = (1, 0, −1, 1 ; 1, 0, 0, 0)

Γ1 = (0, 0, 1, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, −1 ; 0, 1, 0, 0)

1 0 2

5

Γ0 = (1, 1, 0, −1 ; 0, 1, 0, 0)

Γ1 = (0, −1, 0, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, 1 ; 1, 0, 0, 0)

1 0 2

6

Γ0 = (1, −1, 0, 1 ; 0, 1, 0, 0)

Γ1 = (0, 1, 0, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, −1 ; 1, 0, 0, 0)

1 0 2
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7

Γ0 = (1, −1, 0, 0 ; 0, 0, 0, 0)

Γ1 = (0, 1, 0, 0 ; 0, 1, 1, 1)

Γ2 = (0, 0, 0, 0 ; 1, 0, 0, −1)

0 1 2

8

Γ0 = (1, 1, 0, 0 ; 0, 0, 0, 0)

Γ1 = (0, −1, 0, 0 ; 0, 1, 1, −1)

Γ2 = (0, 0, 0, 0 ; 1, 0, 0, 1)

0 1 2

9

Γ0 = (1, 0, −1, 0 ; 0, 0, 0, 0)

Γ1 = (0, 0, 1, 0 ; 1, 0, 1, 1)

Γ2 = (0, 0, 0, 0 ; 0, 1, 0, −1)

0 1 2

10

Γ0 = (1, 0, 1, 0 ; 0, 0, 0, 0)

Γ1 = (0, 0, −1, 0 ; 1, 0, 1, −1)

Γ2 = (0, 0, 0, 0 ; 0, 1, 0, 1)

0 1 2

11

Γ0 = (1, 0, 0, −1 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 1 ; 1, 1, 0, 1)

Γ2 = (0, 0, 0, 0 ; 0, 0, 1, −1)

0 1 2

12

Γ0 = (1, 0, 0, 1 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, −1 ; 1, 1, 0, −1)

Γ2 = (0, 0, 0, 0 ; 0, 0, 1, 1)

0 1 2
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momentum when embedded in an asymptotically AdS3 space, or whether they are incompatible with
JR 6= 0. We have discussed in great detail the effect of background transformations on collinear
configurations in Section 5.1. We illustrate the result with our specific examples here.

• Due to the numerous zeroes in the charge vectors, there are many possible Γ∞ that preserve
JR = 0. However, one needs to carefully check that these Γ∞’s do not induce closed timelike
curves. We give the list of possible moduli at infinity compatible with our solutions and preserving
the vanishing-angular momentum. Because all the 12 solutions have similar properties, it suffices
to list the possibilities corresponding to the first solution in the Table 6.1. We list only the
interesting moduli at infinity and their holographic meaning:

- Γ∞ = 0. The 12 bound states are thus holographically dual to the 12 ground states of a CFT1.
In anticipation of Chapter 9, Our results corroborate the conjecture that the “eS” ground
states of a non-topological CFT1 must break conformal invariance [25]. So, all their bulk
duals must have a scale, as it is actually the case for multicenter or superstratum solutions10.

- Γ∞ = (0, 0, 0, 0; 0, 0, 1, 0). The meaning of this choice can be seen only from a six-dimensional
point of view in the dual D1-D5-P frame. In this frame, the solution turns out to be an
asymptotically AdS3 state.

Both kinds of moduli at infinity impose JR = 0 and do not have any impact on the center
configuration.

• There are also moduli at infinity which do not preserve the symplectic products 〈Γ∞,Γj〉 and
therefore give rise to a finite angular momentum, JR, without affecting the D-brane charges.
According to the methodology developed in Section 5.1, this type of background transformation
necessarily breaks the U(1) isometry of the centers. A configuration with 3 centers has two angles
to vary. One can prove that any moduli at infinity which has 〈Γ∞,Γj〉 6= 0 and which does
not induce closed timelike curves is incompatible with our solutions. Our multicenter solutions
illustrate perfectly the background sensitivity of collinear configuration. Therefore, all solutions
are incompatible with having a non-zero angular momentum.

This corroborates in a different regime of gs the zero-angular-momentum conjecture [155, 156, 144].
However, from an holographic point of view, the solutions can be either asymptotically AdS3

11 or
asymptotically AdS2 solutions.

6.3.2 Quantum Effects

Thus far, our analysis has been classical. However the charges considered being small, one might
expect quantum effects to significantly modify our analysis. Of particular interest is the fate of angular
momentum when quantum mechanical effects are taken into account. A classical configuration with
angular momentum J3 is known to furnish a spin J3−1/2 representation of SO(3), when quantum effects
are taken into account [87]. This makes the present case, which corresponds to J3 = 0, particularly
puzzling. Since there is nothing called a spin −1/2 representation, either the angular momentum does
not receive quantum correction in this particular case, or there are no supersymmetric ground states
corresponding to the multicenter configurations carrying classically zero angular momentum.

To settle this question, one must analyse these multicenter configurations quantum mechanically.
The framework for this has been laid down in [87], where it has been shown that such multicenter
configurations (equivalently intersecting D-branes wrapping various cycles of a Calabi-Yau threefold)
are described byN = 4 quiver quantum mechanics. For an exhaustive discussion, we refer the interested
reader to [157,87,141,158,159].

10For multicenter solutions, the scale is determined by the inter-center distances.
11When dualized to the D1-D5-P duaity frame in type IIB.
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Briefly, field content of a quiver quantum mechanics is encoded in a quiver diagram, which has as
many nodes as centers and as arrows between nodes. The jth node corresponds to a vector multiplet
with U(Nj) gauge symmetry, with Nj being determined by the charge vector Γj . For primitive Γj ,
which is the case at hand, one has Nj = 1. Thus we shall restrict to Abelian quivers. For 〈Γj ,Γi〉 > 0,
there are 〈Γj ,Γi〉 arrows stretching from jth node to ith node, each corresponding to a hypermultiplets

in the U(1)×U(1) bifundamental. The dynamics of the fields is captured by a quiver Lagrangian fully
determined by the charge vectors, their intersection products, Fayet-Iliopoulos parameters (henceforth
referred to as FI parameters) and superpotential (when the quiver has loops).

Each of the 12 solutions corresponds to a three node Abelian quiver. For each quiver, we define
the unique triplet of integer intersection product (a, b, c) ≡ (〈Γi,Γj〉, 〈Γj ,Γk〉, 〈Γk,Γi〉) where i, j, k
are three different integers between 0 and 2 in order to satisfy a ≥ b > 0 and c > 0. Each quiver
has a closed loop and (a, b, c) satisfies the three triangle inequalities, a + b ≥ c and permutations.
Three-nodes quivers have been extensively studied in the literature, particularly the ones with a closed
loop [87, 141, 158, 159], for non-zero FI parameters. However we have vanishing FI parameters, which
makes a lot of difference. In the following we analyze the relevant quiver.

All 12 solutions correspond to (a, b, c) = (2, 1, 1) or some permutations thereof. Thus, the quiver
under discussion is the following

1

1 1

YX

C1, C2

. (6.3.1)

The D-term equations read as follows

|X|2 − |C1|2 − |C2|2 = 0

|Y |2 − |X|2 = 0 (6.3.2)

−|Y |2 + |C1|2 + |C2|2 = 0 .

Following [158], we assume a generic cubic superpotential

W = wiXY Ci , (6.3.3)

which gives the following F-term equations

wiY Ci = 0, wiXCi = 0, XY = 0 .

The last equation requires either X or Y to vanish. But the second D-term equation implies that
both X and Y vanishes. The remaining D-term equations imply Ci = 0. Thus, the moduli space is a
single point and hence furnishes a spin 0 representation of Lefschetz SU(2). Thus we indeed have one
quantum ground state with vanishing angular momentum. It is interesting to note that the vacuum
preserves U(1)× U(1).

In order to decide whether this should be counted as pure-Higgs state or not, it is instructive
to briefly describe the similar computation carried out in [158], but with non-zero FI parameters.
After one of the three variables has been set to zero, in order to satisfy F-term equations, the D-
term equations define a product of two projective spaces and the remaining F-term equation define a
complete intersection manifold in this product of projective spaces. The Betti numbers of the complete
intersection manifold, can be read out from those of the ambient space, except middle cohomology,
where there can be extra states called “pure-Higgs states”.
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In the present case, the FI parameters are zero and then the projective space collapses to a point.
Consequently, the cohomology of the ambient space consists of a single state, which lies in the middle
cohomology. So it is not very clear whether to count this state as pure-Higgs or not. We have however
showed that each of the 12 quivers has only one ground state which hopefully leave the total of 12
states as expected from [143,144].

The argument for general (a, b, c) is not very different as discussed in Appendix A.7.

6.3.3 The solutions with QD6 = 2

As it has been done in [144], one can extend our construction to compute the number of BPS states
in supergravity framework with global D-brane charges:

QD6 = 2, QID4 = 0, QID2 = 1, QD0 = 0 (6.3.4)

The index is known to be 56 for these charges [145, 144]. We have been able to find only 18 BPS
bound states formed by three centers similar to the ones described in Section 6.2 and 12 BPS unbound
states formed by four axisymmetric centers. The special aspect of those 12 unbound states is that
one of the centers does not interact with the other centers and can be placed anywhere on the axis
of the center configuration. We did not consider these solutions because they are similar to the “real
Coulomb” branch where the centers can move freely. Since we did not count the unbound Coulomb-
branch configuration with non-interacting D6 center and three D2 centers, we are not counting these
unbound states either. The charge vectors of the 18 three-center bound states are given in Table A.1
in the Appendix A.6.

One can also describe the 18 states as three-node quivers with a closed loop and vanishing FI
parameters. The only difference is that for QD6 = 2, 9 solutions are given by the triplet (a, b, c)=(3,2,1)
and the 9 others give (a, b, c)=(3,1,2) (see Table A.1). This does not affect our general argument
discussed in Appendix A.7. Each quiver has only one ground state which keeps the total of 18 states.

Our present construction technique does not allow easily to go beyond the multicenter solutions with
GH centers or supertube centers and to find the 38 missing states. This will require more work in
future projects. However, one can already have an idea of where these states may come from:

• Adding extra gauge fields and preserving the U(1)×U(1) isometry of the base space. Following
[160, 161], one can add for example a fourth massless abelian gauge field to the configuration,
which corresponds to changing the fluxes on the T6. The solutions will be slightly more complex
but they will remain U(1)×U(1) invariant and one may hope, along the line of [142], that these
will contribute to the index.

• Constructing configurations which break the U(1)×U(1) isometry. Such objects may include
wiggly Supertubes [139] or superstratum configurations [30,99]. In four dimensions, these solutions
give rise to KK modes along the two U(1) fibers of the base space and do not correspond to
supergravity solutions.

6.4 Final comment

In this chapter, we have investigated the space of states of one or two D6 branes with pure D2-D2-D2
branes (6.1.1).

For QD6 = 1, we have found exactly 12 BPS multicenter bound states. We have confirmed the counting
from a quiver description by showing that the corresponding 12 quivers have only one supersymmetric
ground state each. In this instance, all the microscopic D-brane states are recovered as BPS multicenter
bound states and no single-center state should exist. This conveys the idea that BPS multicenter



6. Counting Multicenter solutions at low charges 116

microstates which are types of fuzzballs in the macroscopic regime do not correspond to a peculiar
part of the overall space of states of a certain D-brane system. Furthermore, we have shown that the
12 multicenter solutions carry necessarily zero angular momentum at this point of the moduli space
giving greater weight to the zero angular momentum conjecture. From a supergravity point of view,
this means that they are incompatible with having flat asymptotics.

For QD6 = 2, only 18 BPS multicenter bound states have been found. We expect more multicenter
solutions to exist. Indeed, our construction essentially focuses on U(1)×U(1) invariant centers carrying
16-supercharges. One can expect, for configurations with more than pure D-brane charges, that less-
isometric solutions exist. Such centers may be more exotic and less supersymmetric, such as wiggly
Supertubes. Nevertheless, the 18 solutions found also confirm the zero angular momentum conjecture.



Chapter 7

The ultimate single-mode
Superstratum

The construction of superstratum states in the CFT requires the generators of the “small,” anomaly-
free N = 4 superconformal algebra act on a particular “length-k” strand in the NS-NS ground state
of the D1-D5 CFT. This technique generates a non-vanishing momentum P charge. In Section 4.2.4,
we restricted the generators to the left-moving sector of the SCFT and to the bosonic generators as it
has been done in the pioneer works [30, 98–101]. However, the left-moving sector of the small SCFT
contains also fermionic generators that can be used as bosonic operators by acting twice [31]. The
fermionic operators of interest in the NS-NS sector are G+A

−1/2 where A = 1, 2 is the index for an

SU(2)B group related to the internal manifold. By acting with G+1
−1/2G

+2
−1/2 on the two-charge seed

solutions, the states are “supercharged” and momentum charge is generated [31]. We introduce then a
fourth quantum number q of excitation modes associated to these generators. This quantum number
is limited to 0 or 1 due to the fermionic nature of the generators. In the NS-NS sector, the single-mode
superstratum states are then given by

|k,m, n, q〉NS =

(J+
0 )m(L−1)n |O−−〉k , q = 0

(J+
0 )m−1(L−1)n−1

(
G+1
− 1

2

G+2
− 1

2

+ 1
kJ

+
0 L−1

)
|O−−〉k , q = 1 ,

(7.0.1)

where n ≥ 1 and k > 0, k−q ≥ m ≥ 1. The generators 1
kJ

+
0 L−1 were introduced to make the operators

commute. The first line in (7.0.1) corresponds to the original superstratum modes constructed in
Section 4.2.5 while the second line is the supercharged modes constructed in [31]. In the gravity side,
the duals of the pair of fermionic generators are slightly more complicated than diffeomorphisms on
AdS3×S3 and correspond to modifications of the Killing spinors on AdS3×S3×T4. We will not review
the fermionically generating technique here and refer the interested reader to [31] for an exhaustive
discussion. In Section 7.1, we simply review the essential elements of the single-mode supercharged
Superstrata in six-dimensions Supergravity.

For the rest of the chapter, we will review the work [28] and the construction of the most general
“single-mode” superstratum using supercharged excitation modes. That is, we will make a “hybrid” of
the original single-mode superstratum, dual to |k,m, n, q = 0〉NS, and the supercharged superstratum
state, dual to |k,m, n, q = 1〉NS:

|k,m, n, q = 0〉NS ⊗ |k,m, n, q = 1〉NS.

This will still be a “single-mode” superstratum as it depends only on one Fourier mode. However
the two distinct states enter the supergravity through different tensor structures in Θ4 and thus are
represented by two distinct Fourier coefficients. As we will see, these two tensor structures are extraor-
dinarily miscible and their combined back-reaction remains relatively simple.

We denote those modes as the “most general” single-modes since they appear to have the right
form to be the essential building blocks for the construction of multi-mode Superstrata, unlike the

117
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original single-mode Superstrata. More specifically, we will show that including the supercharged
(q = 1) superstratum modes leads us to introduce new “leading” and “secondary” Fourier modes into
the supergravity solution. In particular, the additional secondary Fourier coefficients allow us to solve
the essential coiffuring constraints and leave us with precisely the correct set of free leading Fourier
coefficients, bki,mi,ni,qi , that are the duals of the freely choosable Nki,mi,ni,qi in the CFT (4.2.53). We
thus have exactly the right number of free parameters to describe a generic multi-moded superstratum
that is a function of three independent variables and is dual to a generic state of the form (4.2.53).
This echoes the fact that the original single-mode Superstrata have no free moduli once smoothness is
imposed, the remaining parameters are completely determined by the bulk thermodynamic variables:
the charges and the angular momenta of the system. Our new “hybrid” single-mode superstrata have
a modulus that varies the amount of each species of states.

7.1 Supercharged Superstrata

We now review the supergravity solutions for supercharged Superstrata recently obtained in [31]. Our
discussion will closely parallel that of Section 4.2.5, but all the “supercharged” quantities will be
denoted with a “ ̂ ” as opposed to a “ ˜ ”’ .

7.1.1 The first layer

The non-trivial excitations in the first layer of the BPS system now have the form:

ẑk,m,n = 0 , ϑ̂k,m,n =
√

2 ∆k,m,n

[
Σ

r sin θ
Ω(1) sin vk,m,n +

(
Ω(2) + Ω(3)

)
cos vk,m,n

]
, (7.1.1)

where ∆k,m,n and vk,m,n are defined in (4.2.57) and the self-dual basis, Ω(i), i = 1, 2, 3, is defined in
(4.2.58). It is elementary to check that these modes satisfy the first layer of BPS equations (4.2.28):

D ϑ̂k,m,n = 0, ϑ̂k,m,n ∧ d4β = 0, ϑ̂k,m,n = ∗4ϑ̂k,m,n . (7.1.2)

This new fluctuating structure is remarkably simple. Indeed, one should note the orthogonality in the
middle equation of (7.1.2) allows one to take ẑk,m,n = 0 in solving the first layer of the BPS equations.

Moreover, the exterior products ϑ̃k,m,n ∧ ϑ̂k,m,n and ϑ̂k,m,n ∧ ϑ̂k,m,n are “self-coiffuring” in that the
oscillations cancel and the only residual part are the RMS values of the excitations. This will be
important in the “hybrid superstrata,” discussed in Section 7.2. We also note that the expression for
ϑ̂k,m,n is precisely the coefficient of mnk in ϑ̃k,m,n (see (4.2.57)). This was important for orthogonalizing
and mixing the original and supercharged superstrata states in the dual CFT. For rather similar
reasons, this observation will play an essential role in Section 7.4, where we show how to coiffure
generic, multi-mode superstrata.

The field content of the first layer of the supercharged superstratum is1:

Ẑ1 =
Q1

Σ
, Θ̂2 = c2

Ry
2Q5

ϑ̂2k,2m,2n , Ẑ2 =
Q5

Σ
, Θ̂1 = 0 ,

Ẑ4 = 0 , Θ̂4 = c4 ϑ̂k,m,n .

(7.1.3)

In analogy with the original superstrata, we have introduced a secondary mode in Θ̂2. However, as we
described above, the supercharged modes are “self-coiffuring” and so we will ultimately set c2 = 0. On
the other hand, such a term will be essential once in the hybrid superstratum solutions.

1Compared to [31], we have replaced {m + 1, n + 1} → {m,n} and we have added a
√

2 factor to
make the comparison with the original superstratum solution on an equal footing.
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7.1.2 The second layer

As with the original superstrata, one expects the sources of the second layer of BPS equations to have
an RMS part and an oscillating part that depends upon v2k,2m,2n. However, because Ẑ4 = 0 and Θ̂4 is

“self-coiffuring,” there are no terms that depend on v2k,2m,2n generated by Ẑ4 and Θ̂4. Thus the only
oscillating source is proportional to c2 and so we take:

c2 = 0 . (7.1.4)

The solution for ω and F is given by the sums of the seed supertube solutions and the solution for the
new pieces:

ω = ω0 + ω̂k,m,n , F = 0 + F̂k,m,n . (7.1.5)

The equations (4.2.29) for ω̂k,m,n and F̂k,m,n reduce to:

d4ω̂k,m,n + ∗4d4ω̂k,m,n + F̂k,m,n d4β = 0,

L F̂k,m,n =
4 c2

4

(r2 + a2) cos2 θΣ
[ ∆2k,2m,2n + ∆2k,2m+2,2n−2 ] , (7.1.6)

As in Section 4.2.5.2, one can solve directly the equation for F̂k,m,n using the generating function
Fk,m,n, (4.2.70). As for ω̂k,m,n, we define

ω̂k,m,n ≡ µ̂k,m,n (dϕ2 + dϕ1) + ζ̂k,m,n (dϕ2 − dϕ1) . (7.1.7)

By shifting µ̂k,m,n

µ̂Sk,m,n ≡ µ̂k,m,n +
Ry

4
√

2

r2 + a2 sin2 θ

Σ
F̂k,m,n , (7.1.8)

we have

L µ̃Sk,m,n =
Ry c

2
4√

2

∆2k,2m+2,2n + ∆2k,2m,2n−2

(r2 + a2) cos2 θΣ
. (7.1.9)

In terms of F2k,2m,2n, (4.2.70), the form of F̂k,m,n and µ̂k,m,n is

F̂k,m,n = 4 c2
4

[
F2k,2m,2n + F2k,2m+2,2n−2

]
, (7.1.10)

µ̂k,m,n =
Ry c

2
4√

2

[
F2k,2m+2,2n + F2k,2m,2n−2,

]
−Ry

r2 + a2 sin2 θ

4
√

2 Σ
F̂k,m,n +

Ry c
2

4
√

2 Σ
,

where the term proportional to c is a harmonic piece that we can add to the solution of the Poisson
equation for µ̂Sk,m,n and will be fixed by regularity in the next sub-section. Then, ζ̃k,m,n is determined
by integrating (sθ = sin θ, cθ = cos θ)

∂r ζ̂k,m,n =
r2 cos 2θ − a2s2

θ

r2 + a2s2
θ

∂rµ̂k,m,n −
r sin 2θ

r2 + a2s2
θ

∂θµ̂k,m,n −
√

2a2Ry r (2r2 + a2)s2
θc

2
θ

Σ2(r2 + a2s2
θ)

F̂k,m,n ,

∂θ ζ̂k,m,n =
r(r2 + a2) sin 2θ

r2 + a2s2
θ

∂rµ̂k,m,n +
r2 cos 2θ − a2s2

θ

r2 + a2s2
θ

∂θµ̂k,m,n

+
Ry a

2r2(r2 + a2) sin 2θ cos 2θ√
2 Σ2 (r2 + a2s2

θ)
F̂k,m,n.

(7.1.11)
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7.1.3 Regularity and conserved charges

The smoothness of supercharged solutions closely follows that of the original superstrata and are
detailed in Section 4.2.5.3. The scalar µ̂k,m,n must vanish at (r = 0, θ = 0) which requires that

c = c4
k√

mn(k −m)(k + n)

[(
k

m

)(
k + n− 1

n

)]− 1
2

. (7.1.12)

Moreover, the absence of singularity at (r = 0, θ = π/2) relates the charges of the solution to the
Fourier coefficients

Q1Q5

R2
y

= a2 +
c2

2
. (7.1.13)

As before, the conserved charges can be extracted from the large-distance behavior of the scalars
Z1, Z2 and F (4.2.32) and the one-forms β and ω (4.2.75). Indeed, from the supercharged analogue of
(4.2.75) we can read off

JL =
Ry
2

(
a2 +

m

k
c2
)
, JR =

Ry
2
a2 , QP =

m+ n

2k
c2 . (7.1.14)

The relations between the conserved charges and the Fourier coefficients of the supercharged super-
strata, a and c, are exactly the same as the ones for the original superstrata (4.2.76) but with b replaced
by c.

7.2 Hybrid Superstrata

As we described in the preamble, constructing multi-mode superstrata affords the possibility of making
microstate geometries with additional moduli that represent the numbers, Nk,m,n,q, of excited strands
with each kind of excitation. In supergravity, these numbers are related, via Nki,mi,ni,qi ∼ (bki,mi,ni,qi)

2,
to the “leading” Fourier coefficients that appear in Θ4. We will investigate generic multi-mode super-
strata in Section 7.4. Here our goal is more modest, but more completely executed: we will combine
the original single-mode superstratum solution, detailed in Section 4.2.5, with the single-mode super-
charged superstratum solution, detailed in the previous section to obtain a hybrid superstratum with
an extra modulus obtained through the independent Fourier coefficients. In Section 7.4, those hybrid
superstrata will prove to be the crucial elementary components to construct multi-mode superstrata.

Combining two single-mode superstrata is straightforward for the first layer of BPS equations
(4.2.28) thanks to linearity but it usually requires a great deal of effort to obtain the explicit solution
to the second layer (4.2.29) because of the quadratic terms that non-trivially mix the modes. However,
as we noted before, the supercharged modes and their original partners are “self-coiffuring” in that
ϑ̃k,m,n∧ ϑ̂k,m,n, is actually independent of v, ϕ1 and ϕ2. This makes the computation, and the resulting
solution, much simpler. In this section, we will obtain explicit solutions for new hybrid single-mode
superstrata with eight parameters: Q1, Q5, k,m, n, a and the Fourier coefficients b4 and c4 of the
superstratum modes. The only constraint on smoothness will be a single equation generalizing (4.2.74)
and (7.1.13). Thus there will be one constraint and five bulk state functions: Q1, Q5, QP , JL and JR
this leaved two variables, which may be thought of as k and the relative magnitude of b4 and c4.

7.2.1 The first layer

The first layer of BPS equations, (4.2.28), is made of linear equations. At this level, pairing two BPS
solutions simply consists in adding both solutions. Thus, our initial Ansatz for the field content is
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simply the sum of (4.2.60) and (7.1.3)

Z1 =
Q1

Σ
+ b1

Ry
2Q5

z̃2k,2m,2n , Θ2 = b1
Ry

2Q5
ϑ̃2k,2m,2n + c2

Ry
2Q5

ϑ̂2k,2m,2n ,

Z2 =
Q5

Σ
, Θ1 = 0 , Z4 = b4 z̃k,m,n , Θ4 = b4 ϑ̃k,m,n + c4 ϑ̂k,m,n ,

(7.2.1)

where the original-superstratum contribution, z̃k,m,n and ϑ̃k,m,n, is given in (4.2.57) and the supercharged-

superstratum contribution, ϑ̂k,m,n, is given in (7.1.1).

7.2.2 The second layer

The quadratic terms in the second layer of BPS equations can induce oscillating parts that depend
only upon v2k,2m,2n, which one wants to cancel to ensure regularity. They come from the original

superstratum, via ϑ̃k,m,n ∧ ϑ̃k,m,n, ϑ̃2k,2m,2n, z̃k,m,nϑ̃k,m,n and z̃2k,2m,2n, from the supercharged super-

stratum, via ϑ̂k,m,n ∧ ϑ̂k,m,n and ϑ̂2k,2m,2n and also from mixed terms, ϑ̃k,m,n ∧ ϑ̂k,m,n and z̃k,m,nϑ̂k,m,n.

As advertised in the preamble, the mixed term ϑ̃k,m,n ∧ ϑ̂k,m,n is intriguingly self-coiffuring. However,

z̃k,m,nϑ̂k,m,n is not. This is why we have reinstated the secondary excitation mode with the Fourier
coefficient c2. Indeed, one can show that the Fourier coefficient of the oscillating sources vanish if

b1 = b24 , c2 = 2 b4 c4. (7.2.2)

One can now solve the second layer in a similar fashion as in Section 4.2.5.2 and 7.1.2. The solution
for ω and F is given by the sums of the supertube solutions and the solution for the new pieces:

ω = ω0 + ωk,m,n , F = 0 + Fk,m,n . (7.2.3)

The equations (4.2.29) for ωk,m,n and Fk,m,n reduce to:

d4ωk,m,n + ∗4d4ωk,m,n + Fk,m,n d4β =
√

2 b4Ry
∆2k,2m,2n

Σ

[(
m(k + n)

k
b4 − c4

)
Ω(2)

−
(
n(k −m)

k
b4 + c4

)
Ω(3)

]
,

LFk,m,n =
4

(r2 + a2) cos2 θΣ

[(
m(k + n)

k
b4 − c4

)2

∆2k,2m,2n (7.2.4)

+

(
n(k −m)

k
b4 + c4

)2

∆2k,2m+2,2n−2

]
,

We can straightforwardly check that taking c4 = 0 or b4 = 0 in the foregoing equations reduces to
the original-superstratum equations, (4.2.63), or the supercharged-superstratum equations, (7.1.6),
respectively. Moreover, one can also note how non-trivial the pairing of the two solutions and its
coiffuring (7.2.2) are. For instance, if one looks to the coefficients in front of the functions ∆ in
the second equation in (7.2.4), one can see that the pairing does not simply consist in adding the
contribution from the supercharged superstratum, which is c2

4, with the contribution from the original
superstratum, which is of the form γ2

k,n,mb
2
4 for some coefficient γk,n,m. The source terms, rather

remarkably, conspire to complete the squares and lead to coefficients of the form (γk,n,mb4 ± c4)2.

To solve the equations, we define, as before:

ωk,m,n ≡ µk,m,n (dϕ2 + dϕ1) + ζk,m,n (dϕ2 − dϕ1) . (7.2.5)



7. The ultimate single-mode Superstratum 122

Then, by shifting µk,m,n

µSk,m,n ≡ µk,m,n +
Ry

4
√

2

r2 + a2 sin2 θ

Σ
Fk,m,n +

Ry b
2
4

4
√

2

∆2k,2m,2n

Σ
, (7.2.6)

we have

LµSk,m,n =
Ry b

2
4√

2

1

(r2 + a2) cos2 θΣ

[(
(k −m)(k + n)

k
b4 + c4

)2

∆2k,2m+2,2n

+
(mn
k
b4 − c4

)2
∆2k,2m,2n−2

]
.

(7.2.7)

Then, ζk,m,n is determined by (sθ = sin θ, cθ = cos θ)

∂rζk,m,n =
r2 cos 2θ − a2s2

θ

r2 + a2s2
θ

∂rµk,m,n −
r sin 2θ

r2 + a2s2
θ

∂θµk,m,n

+

√
2Ry r

Σ(r2 + a2s2
θ)

[
b4

((
ms2

θ + nc2
θ

)
b4 +

(
c4 −

mn

k
b4

)
cos 2θ

)
∆2k,2m,2n

−
a2(2r2 + a2)s2

θc
2
θ

Σ
Fk,m,n

]
,

∂θζk,m,n =
r(r2 + a2) sin 2θ

r2 + a2s2
θ

∂rµk,m,n +
r2 cos 2θ − a2s2

θ

r2 + a2s2
θ

∂θµk,m,n

+
Ry sin 2θ√

2 Σ (r2 + a2s2
θ)

[
b4

((
−mr2 + n(r2 + a2)

)
b4 + (2r2 + a2)

(
c4 −

mn

k
b4

))
∆2k,2m,2n

+
a2r2(r2 + a2) cos 2θ

Σ
Fk,m,n

]
.

(7.2.8)

In terms of F2k,2m,2n, (4.2.70),the form of Fk,m,n and µk,m,n for general k,m, n is

Fk,m,n =4

[(
m(k + n)

k
b4 − c4

)2

F2k,2m,2n +

(
n(k −m)

k
b4 + c4

)2

F2k,2m+2,2n−2

]
,

µk,m,n =
Ry√

2

[(
(k −m)(k + n)

k
b4 + c4

)2

F2k,2m+2,2n +
(mn
k
b4 − c4

)2
F2k,2m,2n−2 −

b24 ∆2k,2m,2n

4 Σ

]
−Ry

r2 + a2 sin2 θ

4
√

2 Σ
Fk,m,n +

Ry B
2

4
√

2 Σ
. (7.2.9)

Then, ζk,m,n can be found by integrating (4.2.68). The coefficient B will be fixed by regularity in the
next subsection.

7.2.3 Regularity and conserved charges

As with the original superstratum solutions, the hybrid solutions must be smooth at the center of space
and at the supertube locus. The conditions are essentially the same as the ones detailed in Section
4.2.5.3. The scalar µ̂k,m,n must vanish at (r = 0, θ = 0) which requires that

B =

(
b24 +

k2

mn(k −m)(k + n)
c2

4

) 1
2
[(

k

m

)(
k + n− 1

n

)]− 1
2

=
√
b2 + c2 (7.2.10)

where b is the individual contribution from the original superstratum part (4.2.73) and c is the in-
dividual contribution from the supercharged superstratum part (7.1.12). Moreover, the absence of
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singularity at (r = 0, θ = π/2) relates the charges of the solution to the Fourier coefficients

Q1Q5

R2
y

= a2 +
b2 + c2

2
. (7.2.11)

From this expression one can easily see what the pairing of the two single-mode superstrata has
produced. The resulting single-mode superstratum has the same integers number k, m and n and has
combined the Fourier coefficients of the two initial solutions, b and c, into one regularity constraint.
Moreover, as we will now describe, the values of the conserved charges are given by the addition of the
two individual contributions of the superstratum modes.

As before, the conserved charges can be extracted from the metric from the large-distance behavior
of the scalars Z1, Z2 and F and the one-forms β and ω. We find

JL =
Ry
2

(
a2 +

m

k

(
b2 + c2

))
, JR =

Ry
2
a2 , QP =

m+ n

2k

(
b2 + c2

)
. (7.2.12)

As in Section 4.2.5.4, the quantized charges are given by:

jL =
N
2

(
a2 +

m

k
(b2 + c2)

)
, jR =

N
2
a2 , NP =

N
2

m+ n

k
(b2 + c2) , (7.2.13)

where N is defined in (4.2.78). All the conserved quantities depend on b2 + c2 only. We define

b ≡ B cosα , c ≡ B sinα (7.2.14)

where α ∈ [0, 2π] and B ∈ R+. All the asymptotic charges are independent of α which corresponds
to an internal degree of freedom. However, α has a great impact on the IR geometry since it is
the “interpolation” parameter between the single-mode original superstratum state at α = 0 to a
single-mode supercharged superstratum state at α = π

2 with non-trivial pairing terms when α is in
between. Thus, this new family of solutions allows one to study a phase space of superposition of
two superstratum states by varying the phase α which have the same macroscopic mass, charges and
angular momenta.

7.3 The (2, 1, n) example

In this section, we illustrate the new type of superstratum solutions with a detailed example: the
(2, 1, n) hybrid. This is, in fact, the first non-trivial family since one must have k ≥ m + 1 ≥ 2 and
n ≥ 1. From here on, we will reparametrize the Fourier coefficients, b and c, with α and B (7.2.14) so
as to make the internal degree of freedom manifest.

The modes and the functions in (4.2.57) are now simply

v2,1,n = (n+ 1)

√
2v

Ry
+ ϕ1 − ϕ2 , ∆2,1,n = (1− Γ) Γ

n
2 cos θ sin θ , (7.3.1)

where we have defined

Γ ≡ r2

a2 + r2
. (7.3.2)
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7.3.1 The metric

The scalar functions P2,1,n, F2,1,n are given by:

P2,1,n =
R2
y

Σ2

(
a2 +

B2

2
− (n+ 1)B2 cos2 α (1− Γ)2 Γn cos2 θ sin2 θ

)
,

F2,1,n =
n(n+ 1)B2

2a2(1− Γ)

n(cosα+

√
n+ 2

n
sinα

)2 (
G(1)
n (Γ) +G(2)

n (Γ) cos2 θ
)

+(n+ 2)

(
sinα−

√
n+ 2

n
cosα

)2 (
G

(1)
n+1(Γ) +G

(2)
n+1(Γ) sin2 θ

) ,
(7.3.3)

where

G(1)
n (Γ) ≡ Γ (1− Γn)− n(1− Γ)

n2(1 + n)2
,

G(2)
n (Γ) ≡ −1− Γ + (1 + n)2 Γn + (1− 2n(n+ 1)) Γn+1 + n2 Γn+2

n2(1 + n)2
,

(7.3.4)

The angular momentum one-form, ω2,1,n, is given by:

ω2,1,n = ω0 +B2

[
cos2 α ω̃2,1,n +

sin2 α

n(n+ 2)
ω̂2,1,n +

sinα cosα√
n(n+ 2)

ωmix
2,1,n

]
, (7.3.5)

where ω0 is the supertube contribution, (4.2.45), while ω̃2,1,n and ω̂2,1,n are, respectively, the individual
contributions from the original superstratum and the supercharged superstratum. There is also a
mixing, ωmix

2,1,n, coming from the interactions between the original and supercharged modes. These are
given by:

ω̃2,1,n =
Ry

2
√

2 Σ

[
Γn+1 (n+ 2− (n+ 1) Γ− (n+ 1) (1− Γ) cos 2θ) cos2 θ dϕ2

+ (2− (n (1− Γ) + 1) Γn − (n+ 1) (1− Γ) Γn cos 2θ) sin2 θ dϕ1

]
,

ω̂2,1,n =
Ry

2
√

2 (1− Γ)2 Σ

[
Γ
(
4− (2 + n (1− Γ))2Γn

) (
cos2 θ dϕ2 − sin2 θ dϕ1

)
(7.3.6)

+ 2n(n+ 2) (Γ− 1)2 sin2 θ dϕ1

]
,

ωmix
2,1,n =

Ry

4
√

2 (1− Γ) Σ

(
2− (n+ 1)(n+ 2) Γn + 2n(2 + n) Γ1+n − n(1 + n) Γ2+n

)
× sin2 2θ ( Γ dϕ2 + dϕ1 ) .

One can easily check that if one takes α = π
2 , then one recovers the fields of the (2, 1, n, q = 1) super-

charged superstratum [31]2 whereas α = 0 gives the fields of the (2, 1, n, q = 0) original superstratum
first constructed in [116]. Taking any value in between gives a non-trivial hybrid of those two solutions.

7.3.2 Limiting geometries

We now consider the interesting regime of parameters in which a2 is much smaller than the underlying
charges:

a2 � {Q1, Q5, QP } =⇒ a2 � B2 . (7.3.7)

2We remind that in our notation the (2, 1, n, q = 1) supercharged superstratum corresponds to the
(2, 0, n− 1, q = 1) solution in [31].
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In this regime, one has an AdS3 at large r (r �
√
QP ), which then transitions to a long extremal

BTZ throat (for
√
na � r �

√
QP ), which ultimately ends with a smooth cap (r �

√
na). We

will essentially focus in the IR and UV limit of the metric. In the previous section we gave all the
pieces of the metric and if one combines them all into the six-dimensional metric (4.2.27), it produces
a very complicated and rather unedifying mess that we will not write explicitly. However, we will look
at some physically interesting regions of the geometry in which the metric simplifies significantly. In
particular, as observed in [25,29], an important part of the physics of the solutions is contained in the
geometry of the cap.

7.3.2.1 The asymptotic geometry

We start with the simplest limit: r �
√
na, in which the metric reduces to:

ds2
asym =

√
Q1Q5

[
dr2

r2
− 4 r2

(2a2 +B2)R2
y

du dv +
2n+ 1

2R2
y

dv2

+ dθ2 + sin2 θ

(
dϕ1 −

dv√
2Ry

)2

+ cos2 θ

(
dϕ2 −

dv√
2Ry

)2 ]
.

(7.3.8)

This is simply a trivial S3 fibration over a red-shifted extremal BTZ geometry (4.2.35). The left and
right temperatures are

TL =

√
n+ 1

2

2π Ry
, TR = 0 . (7.3.9)

in unit of the AdS length ` = (Q1Q5)1/4. Note that the BTZ region is independent of the parameter α.
This parameter represents an internal degree of freedom and does not change the macroscopic charges,
mass and angular momenta of the solutions.

7.3.2.2 The cap geometry

The cap geometry is obtained by taking the limit r �
√
na. We decompose the six-dimensional cap

metric according to the free parameter α as follows

ds2
cap =

√
Q1Q5

[
dr2

r2 + a2
− 2 a2(r2 + a2)

(2a2 +B2)2R2
y

(du+ dv)2 +
2a2 r2

(2a2 +B2)2R2
y

(
du−

(
1 +

B2

a2

)
dv

)2

+ dθ2 + cos2 α dΩ̃2
2

+ sin2 α dΩ̂2
2

+ sinα cosα dΩmix
2

2
]
.

(7.3.10)
where

dΩ̃2
2

= sin2 θ

(
dϕ1 −

√
2 a2

(2 a2 +B2)Ry
(du+ dv)

)2

+ cos2 θ

(
dϕ2 +

√
2 a2 (du− dv)−

√
2B2dv

(2 a2 +B2)Ry

)2

,

dΩ̂2
2

= sin2 θ

(
dϕ1 −

√
2 a2

(2 a2 +B2)Ry
(du+ dv) +

2
√

2B2 r4

n(n+ 2) a4 (2a2 +B2)Ry
dv

)2

(7.3.11)

+ cos2 θ

(
dϕ2 +

√
2 a2 (du− dv)−

√
2B2dv

(2 a2 +B2)Ry
− 2

√
2B2 r4

n(n+ 2) a4 (2a2 +B2)Ry
dv

)2

,

dΩmix
2

2
=

2B2

(2a2 +B2)
√
n(n+ 2)

− sin4 θ

(
dϕ1 +

√
2 r2

a2Ry
dv

)2

+ cos4 θ

(
dϕ2 −

√
2 (a2 + r2)

a2Ry
dv

)2
 .
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The first line of (7.3.10) defines a (hugely red-shifted and boosted) global AdS3. Indeed, the red-shift
in front of the time coordinate is given by:(

1 +
B2

2a2

)−1

=
2 jR
N1N5

. (7.3.12)

The various of dΩ2 terms in (7.3.10) give the metric on the U(1)× U(1) defined by (ϕ1, ϕ2). The ϕ1-
circles and ϕ2-circles universally pinch-off at θ = 0 and θ = π

2 , respectively and so the (dθ, dϕ1, dϕ2)
components describe a squashed S3.

It is remarkable to note that all the off-diagonal components of the metric that mix (dϕ1, dϕ2) with
(du, dv) are independent of θ, and are either constant or depend solely upon r. This means that they
can be reduced to non-trivial Kaluza-Klein massless electromagnetic fields on the three-dimensional
base defined by the AdS3. Thus, the dynamics of the six-dimensional cap metric excitations reduces
to dynamics of the metric and massless vector fields on the three-dimensional base space described
by (r, u, v). For α = 0, the metric of the 3-sphere is reduces to that of the (2, 1, n, q = 0) original
superstratum, dθ2 + dΩ̃2. The S3 is round and the Kaluza-Klein vector fields on the S3 are constant
and so the fibration is trivial. At α = π

2 the solution is purely the (2, 1, n, q = 1) supercharged
superstratum. The S3 is also round but now the fibration is non-trivial in that the vector fields depend
on r. When α takes any other value, the mixed term, dΩmix

2
2
, warps the 3-sphere with, once again,

non-trivial r-dependent vector fields.

The fact that the fibration of the cap metric has the simple Kaluza-Klein structure suggests that
there may be some interesting consistent truncation of the six-dimensional physics of the cap to a
gauged supergravity in three-dimensions. The Kaluza-Klein fields are all of the correct form while the
squashing may reflect the role of a Kaluza-Klein scalar in three dimensions. Similar observations were
made for complete metric of some of the original superstrata constructed in [116].

7.4 Generic multi-mode Superstrata

Here we consider the broad class of multi-mode hybrid superstrata:⊗
i

[
|ki,mi, ni, 0〉NS ⊗ |ki,mi, ni, 1〉NS

]
. (7.4.1)

That is, we will consider the hybrid superstrata of Section 7.2, but now with a superposition of any
set of mode excitations in the first layer. While we will not present the complete solution, we will
examine a potentially dangerous obstruction to making smooth solutions in the second layer of BPS
equations that arises when one restricts purely to the original superstrata. We will also show how the
supercharged modes play a crucial role in getting around this obstruction.

7.4.1 The multi-mode problem

The second layer of BPS equations is:

Dω + ∗4Dω + Fd4β = S1 , ∗4D ∗4
(
ω̇ − 1

2
DF

)
= S2 , (7.4.2)

where the sources are defined by:

S1 ≡ Z1Θ1 + Z2Θ2 − 2Z4Θ4 , (7.4.3)

S2 ≡ ∂2
v(Z1Z2 − Z2

4 )− (Ż1Ż2 − (Ż4)2)− 1

2
∗4 (Θ1 ∧Θ2 −Θ4 ∧Θ4) . (7.4.4)



7. The ultimate single-mode Superstratum 127

Since these sources are quadratic in the fundamental fields of the first BPS layer, the sources will only
involve the interactions between pairs of modes. It therefore suffices to solve this system for the most
general two-mode, hybrid superstratum because one can construct the general mode solution through
superpositions of all the two-mode source interactions.

Recall the definitions of the first-layer modes, (4.2.57) and (7.1.1), that underpin the original and
supercharged superstrata:

z̃k,m,n = Ry
∆k,m,n

Σ
cos vk,m,n,

ϑ̃k,m,n ≡ −
√

2 ∆k,m,n

[(
(m+ n) r sin θ + n

(m
k
− 1
) Σ

r sin θ

)
Ω(1) sin vk,m,n (7.4.5)

+
(
m
(n
k

+ 1
)

Ω(2) +
(m
k
− 1
)
nΩ(3)

)
cos vk,m,n

]
,

and

ϑ̂k,m,n ≡
√

2 ∆k,m,n

[
Σ

r sin θ
Ω(1) sin vk,m,n +

(
Ω(2) + Ω(3)

)
cos vk,m,n

]
. (7.4.6)

The general two-mode, hybrid superstratum has a first BPS layer of the form:

Z1 =
Q1

Σ
+

Ry
2Q5

[
b1 z̃2k1,2m1,2n1 + b2 z̃2k2,2m2,2n2 + b3 z̃k1+k2,m1+m2,n1+n2

]
,

Z2 =
Q5

Σ
, Z4 = b4 z̃k1,m1,n1 + b5 z̃k2,m2,n2 ,

Θ1 = 0 , Θ4 = b4 ϑ̃k1,m1,n1 + b5 ϑ̃k2,m2,n2 + c4 ϑ̂k1,m1,n1 + c5 ϑ̂k2,m2,n2 , (7.4.7)

Θ2 =
Ry

2Q5

[
b1 ϑ̃2k1,2m1,2n1 + b2 ϑ̃2k2,2m2,2n2 + b3 ϑ̃k1+k2,m1+m2,n1+n2

+ c1 ϑ̂2k1,2m1,2n1 + c2 ϑ̂2k2,2m2,2n2 + c3 ϑ̂k1+k2,m1+m2,n1+n2

]
,

7.4.2 The high-frequency sources in the second BPS layer

The sources, (7.4.3) and (7.4.4), contain terms that are products of pairs of oscillating terms. Using
elementary identities, one can rewrite these products in terms of circular functions that involve sums
and differences of the mode numbers. We will define the “high-frequency” and “low-frequency” sources
to be those that result from the addition or, respectively, subtraction of mode numbers. Since one has
k1, k2,m1,m2, n1, n2 ≥ 0, the “high-frequency” sources do indeed have larger mode numbers than their
“low-frequency” counterparts. We will also define the “high-frequency” sources to include the terms
that come from the product of a non-fluctuating term (zero mode-number) with a fluctuating mode.

From a great deal of experience [30,98–100,116,101] we know that the BPS equations for the non-
oscillating sources and the “low-frequency” sources have non-singular solutions that lead to smooth
superstrata. On the other hand, the “high-frequency” sources generically lead to singular solutions of
the BPS equations. We should stress that this statement is not a theorem but reflects the results of
many computations in which homogeneous solutions have been found to cancel putative singularities
in “low-frequency” solutions but no such homogeneous solutions have been found for “high-frequency”
solutions.

In supergravity, the technique of “coiffuring” [161,109,30,101] was introduced to address this issue.
The idea is that “high-frequency” sources that lead to singularities can be combined in such a manner
as to cancel any singularity. In simpler examples, like asymptotically-AdS superstrata, this means
cancelling all of the “high-frequency” sources. In more complicated examples, like asymptotically-flat
superstrata, the high-frequency sources are not completely cancelled but are combined so as to remove
singularities in the solutions.
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Since we are considering asymptotically-AdS superstrata, our goal here is to isolate the “high-
frequency” sources, S̄j , and cancel them completely. It is relatively easy to compute these sources from
(7.4.3) and (7.4.4), and we find:

S̄1 =
Ry
2 Σ

[
(b1 − b24) ϑ̃2k1,2m1,2n1 + (b2 − b25) ϑ̃2k2,2m2,2n2 + (b3 − 2 b4 b5) ϑ̃k1+k2,m1+m2,n1+n2

+ (c1 − 2 b4 c4) ϑ̂2k1,2m1,2n1 + (c2 − 2 b5 c5) ϑ̂2k2,2m2,2n2

+

(
c3 − 2 (b4 c5 + b5 c4)

+
2 b4 b5

k1k2(k1 + k2)
(k1n2 − k2n1)(k1m2 − k2m1)

)
ϑ̂k1+k2,m1+m2,n1+n2

]
, (7.4.8)

and

S̄2 =
4

Ry Σ

[
(m1 + n1)2(b24 − b1) z̃2k1,2m1,2n1 + (m2 + n2)2(b25 − b2) z̃2k2,2m2,2n2

+
1

4
(m1 +m2 + n1 + n2)2(2 b4 b5 − b3) z̃k1+k2,m1+m2,n1+n2

]
. (7.4.9)

The obvious coiffuring identities are

b1 = b24 , b2 = b25 , b3 = 2 b4 b5 , c1 = 2 b4 c4 , c2 = 2 b5 c5 ,

c3 = 2 (b4 c5 + b5 c4) − 2 b4 b5
k1k2(k1 + k2)

(k1n2 − k2n1)(k1m2 − k2m1) , (7.4.10)

which means that all the “high-frequency” sources do indeed vanish.

There are several important things to note at this point. First and foremost, there are still four
free parameters in these solutions: b4, b5, c4 and c5, which correspond to the fundamental, or “leading,”
modes in Θ4 and thus, at linear order, to the four independent sets of CFT states. Next we note that
the expression for c3, (7.4.10), has a term proportional to b4b5 ∼ b3. There is therefore no solution
with all of the cj = 0: the supercharged modes are essential to a non-singular, coiffured solution.

Put differently, there is no way to coiffure a generic set of two-mode superstrata using the original su-
perstratum modes only. The dangerous source term is the one proportional to b4b5 ϑ̂k1+k2,m1+m2,n1+n2

in the last line of (7.4.8). This term comes from the fact the b3 term produces a contribution to

S̄1 that is proportional to (m1+m2)(n1+n2)
k1+k2

ϑ̂ whereas the corresponding b4b5 term is proportional to

(m1n1
k1

+ m2n2
k2

)ϑ̂. There is thus an imperfect cancellation from setting b3 = b4 b5 and the residual part

is proportional to (k1n2 − k2n1)(k1m2 − k2m1)ϑ̂. This term is only non-trivial if neither of (m1,m2)
and (n1, n2) are parallel to (k1, k2). Such generic two-mode solutions of the original superstratum
have not been investigated because they are complicated and there was still this unresolved issue with
coiffuring. As we have seen, the supercharged modes provide an elegant resolution of this issue with
no additional constraints on the fundamental, physical Fourier coefficients.

More broadly, there is now no further obstruction, in principal, to the construction of superstrata
with an arbitrary number of excited modes. As we noted above, the BPS equations have sources
that are quadratic in the fundamental modes and so a generic multi-mode solution will simply result
in a superposition of many two-mode interactions. Thus, in addressing the most general two-mode
problem one has necessarily captured all the pieces of a generic multi-mode solution. The analysis above
therefore shows that, once one includes the supercharged modes, there are no longer any singular “high
frequency” interactions that cannot be coiffured away easily.

If one were to restrict to the original (q = 0) superstrata alone then the most obvious way to remove
the dangerous high frequency sources is to require

(k1n2 − k2n1)(k1m2 − k2m1) = 0 , (7.4.11)
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which restricts the modes to two-dimensional subspaces. Such superstrata are thus restricted to in-
trinsically two-dimensional fluctuations and are consequently restricted in their ability to cover the
dual CFT states. In the hybrid superstrata, we now have unconstrained modes with two families of
unconstrained Fourier coefficients (the b’s and the c’s) which means that the superstratum fluctuations
are described by two generic functions of three variables and can faithfully describe all the coherent
CFT states (7.4.1).

7.5 Final comment

In this chapter, we have reviewed a crucial step further in the construction of the large class of
microstate geometries in six dimensions called Superstrata. We have shown how the supercharged
modes represent an essential missing piece of the puzzle in the construction of supergravity duals
of generic superstratum states. This was put in place by constructing a new version of single-mode
Superstrata called hybrid which still have moduli after the bulk thermodynamic charges are fixed.
We also gave the roadmap for generically solving the second layer of BPS equation for multi-mode
Superstrata which do fluctuate as a function of three independent variables and which have the right
number of degrees of freedom as compared to their CFT duals (4.2.53).



Chapter 8

Microstates of extremal Kerr black
holes

In this chapter, we review the work of [27] and the construction of smooth bubbling microstate ge-
ometries that are asymptotic to the near-horizon region of extremal five-dimensional Kerr black holes
(NHEK). The embedding of these black holes in type IIB Supergravity on S1 × T4 has been discussed
in Section 4.3.1. Their near-horizon geometry is WAdS3×SqS3 (4.3.9) with specific angle periodicities
(4.3.8). Our strategy resembles the construction of the family of smooth BPS microstate geometries
with four GH center in Section 5.2. We will start with a family of three almost-BPS Supertubes
in R4 and we will perform a sequence of generalized spectral flows to transform the asymptotics to
WAdS3×SqS3 in addition to regularizing the IR geometry.

The Kerr/CFT correspondence was first conjectured in [162] and relates the near-horizon geometry
of extremal Kerr black hole (NHEK) to a chiral 2-dimensional conformal CFT whose central charges
are given by the angular momenta of the black hole. This conjecture correctly reproduces via Cardy’s
formula the Bekenstein-Hawking entropy of the black hole. Nevertheless, even if there are several
possible candidates of dual “CFT2” as a dipole CFT [126] or as warped-CFT [163], the Kerr/CFT
holographic dictionary is still poorly understood. Hence, it is very useful to have concrete examples, if
not of the CFT, then of asymptotically NHEK geometries, which are bulk duals of pure CFT states.

8.1 Generating technique

8.1.1 From AdS3×S3 to WAdS3×SqS3

In [127], it has been shown that WAdS3×SqS3 solutions, of which the NHEK spacetime is a particular
example, can be obtained from AdS3×S3 by a specific sequence of supergravity transformations. As
we have seen it already, building asymptotically AdS3×S3 geometries is well-known and one can then
use this result as a cornerstone of our construction.

The sequence of transformations has been exhaustively detailed in [127]. We just give a brief
summary here. The transformations can be seen as a series of ST U transformations or equivalently as a
sequence of three generalized spectral flows detailed in Section 3.2.4. Each spectral flow transformation
is made of a shift ϕ→ ϕ+ γy where y is the S1 coordinate and ϕ is either the Gibbons-Hawking fiber,
ψ, or the φ angle of the R3 base space.

The two possible choices of ϕ differ significantly. If the gravity multiplet of the AdS3×S3 back-
ground has a dual three-form field strength, the ST U transformations associated to this background
(SL(2,R)L×SU(2)L invariant) or the generalized spectral flows along ψ will preserve supersymmetry
and the transformed geometry will remain AdS3×S3. Reversely, if the three-form field strength is
anti self-dual, the ST U transformations associated to this background (SL(2,R)L×SU(2)R invariant)
or the generalized spectral flows along φ will break supersymmetry and will transform the geometry
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Almost-BPS solutions

Supertube bubbles

AdS3×S3

3 generalized

spectral flows

Asymptotically NHEK solutions

Smooth bubbles

NHEK

Figure 8.1: Schematic description of the construction of a family of smooth asymptoti-
cally NHEK solutions from the family of almost-BPS solutions.

to WAdS3×SqS3 (see Section 2.2 of [127] for more details).

Those two possibilities reflect the two types of generalized spectral flows in the context of the STU
model. The BPS generalized spectral flows (4.1.1.4), are related to the angle ψ and are just linear
transformations preserving supersymmetry whereas the almost-BPS generalized spectral flows (4.3.2.3)
correspond to shifts along φ and break supersymmetry. This is the latter transformations which allow
to map an asymptotically AdS3×S3 solutions to an asymptotically WAdS3×SqS3.

Having the same metric is not the only requirement. The periodicities of the angles of the squashed
three-sphere and the angle of the warped AdS3 must have a specific form (4.3.7). Imposing such
periodicities to our solutions has a major impact on the smoothness of the geometry in the IR.

Furthermore, if the initial almost-BPS solution has supertube curvature singularities, the corresponding
generalized spectral flows will transform the singular local geometries to quotients of R4×S1 [81].
Nevertheless, the quotients are not necessarily smooth and conical singularities related to the angle
periodicities can still occur at these locations. Indeed, the NHEK angle periodicities or the WAdS3

angle periodicities (4.3.7) imposed in the UV can spoil the periodicities at the centers where the
three-sphere shrinks and conical singularities can emerge.

8.1.2 The recipe

We sketch the overall idea about our construction of smooth bubbling asymptotically WAdS3×SqS3

or asymptotically NHEK geometries in Figure 8.1. The recipe has the following steps:

• We start with a specific family of almost-BPS solutions. They have four centers, one is the
center of R4 and the three others are two-charge supertube centers of different species. This
choice of solution is just a matter of simplicity since the systematic construction detailed for
supersymmetric solutions in Section 5.2 can be easily extended to almost-BPS solutions. However,
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nothing prevents from taking different almost-BPS configurations. We construct asymptotically
AdS2×S1×S3 solutions where the S1 fibration over AdS2 gives the full AdS3. Moreover, we require
their left and right angular momenta to be zero.

• We perform three generalized spectral flows that transform the UV geometry into WAdS3×SqS3

and preserve the bubble feature in the IR.

• We identify the periodicities at infinity of WAdS3×SqS3 or NHEK and impose the absence of
conical singularities at the centers.

Once all these steps are performed, we obtain a family of smooth bubbling geometries, asymptoti-
cally WAdS3×SqS3 or asymptotically NHEK in type IIB on T4.

We now have all the basic ingredients to construct extremal non-supersymmetric geometries which
cap off smoothly in the IR and are asymptotically NHEK or WAdS3. Before going to the detail of
each step, let us first review the extension of the systematic construction in Section 5.2 to the family
of three two-charge Supertubes in R4 in the almost-BPS context.

8.1.3 The family of almost-BPS three-supertube solutions in R4

We consider the family of almost-BPS solutions with three two-charge Supertubes on a line of a R4 base
space. Remember that almost-BPS solutions have been obtained by imposing an opposite self-duality
between the background and the field strengths. Because the base space is R4, the background is not
oriented and its self-duality is just a matter of choice. Indeed, as it has been shown in [127, 132, 134],
almost-BPS solutions in R4 can be mapped to a BPS solution by interchanging φ↔ ψ. Those solutions
are supersymmetric, but can be constructed either as BPS or as almost-BPS solutions. Does it mean
that our initial family of solutions is ill-chosen? It is not. The generalized spectral flows are the
key element that will differentiate between both orientation. Because, we will need the spectral flows
which break supersymmetry it is more convenient to write the solutions in the almost-BPS language
where the transformations have been explicitly written as a transformation of the harmonic functions
(4.3.31).

Thus, the construction of the initial solutions is just a matter of rewriting carefully the discussion
of Section 5.2 in the context of almost-BPS solutions. We apply the general results obtained in
Section 4.3.2 to our specific family of solutions. We first detail how the gauge fields are sourced by a
configuration of three Supertubes of different species in R4. We then derive the regularity conditions
and show that they can be systematically satisfied.

8.1.3.1 The solution

A type “I” supertube, with I = 1, 5, P , has a singular magnetic source in KI , two singular electric
sources in ZJ and ZK with I 6= J 6= K and one angular-momentum charge in M (4.3.28)1. The
six-dimensional metric and the matter fields are given by (4.1.43). We assume that the R4 center is at
the origin of the space and that a supertube of type 1 is at a second center with coordinate a1 on the
z-axis, a supertube of type 5 is at a third center with coordinate a5 and a supertube of type P is at
a fourth center with coordinate aP . We consider that aI > 0. We use the following notation for the

1In the previous chapters, we have labelled the three vector fields of the STU model by I = 1, 2, 3.
This was motivated by the absence of distinction between them. In this chapter, we work in the D1-D5-P
frame from which the extremal Kerr black hole is constructed. In this frame, the vector fields have a
different nature. In this chapter, we will label the vector fields by I = 1, 5, P to make this distinction
explicit. The map between the two labelling conventions is (1, 2, 3)↔ (1, 5, P )



8. Microstates of extremal Kerr black holes 133

eight harmonic functions2

V =
q

ρ
, M = m∞ +

m0

ρ
+

∑
I=1,5,P

|εIJK |
2

q Q
(J)
I Q

(K)
I

2aIκI

1

ρI
,

K1 = k1
∞ +

a1 κ1

q ρ1
, L1 = l1∞ +

Q
(1)
5

ρ5
+
Q

(1)
P

ρP
, (8.1.1)

K5 = k5
∞ +

a5 κ5

q ρ5
, L5 = l5∞ +

Q
(5)
1

ρ1
+
Q

(5)
P

ρP
,

KP = kP∞ +
aP κP
q ρP

, LP = lP∞ +
Q

(p)
1

ρ1
+
Q

(p)
5

ρ5
,

We have defined on purpose the “effective” dipole charges κI as a function of the charges in KI :
κI = q kI

aI
. Those effective dipole charges were argued to be the local magnetic charges obtained by

integrating the fluxes of the gauge fields around the center [133,135]. Using the expression of the warp
factors (4.3.22), of µ (4.3.25) and $ (4.3.26), we obtain

Z1 =
Q

(1)
5

ρ5
+
Q

(1)
P

ρP
+
κ5κP
q

ρ

ρ5ρP
,

Z5 =
Q

(5)
1

ρ1
+
Q

(5)
P

ρP
+
κ1κP
q

ρ

ρ1ρP
,

ZP =
Q

(p)
1

ρ1
+
Q

(p)
5

ρ5
+
κ1κ5

q

ρ

ρ1ρ5
, (8.1.2)

µ =
∑
I

∑
J 6=I

Q
(I)
J κI
2 q

ρ2 + aIaJ − 2aIρ cosϑ

(aJ − aI)ρIρJ
+
κ1κ5κP
q2

ρ2 cosϑ

ρ1ρ5ρP
+
ρM

q
,

$ =

∑
I

∑
J 6=I

Q
(I)
J κI
2

ρ(aJ + aI cos 2ϑ)− (ρ2 + aIaJ) cosϑ

(aJ − aI)ρIρJ
+
κ1κ5κP

q

ρ2 sin2 ϑ

ρ1ρ5ρP

+$0 dφ−
∑
I

mI cosϑI −m0 cosϑ

]
dφ ,

In order to analyze the spectrally-flowed solutions (4.3.30), we must compute the U(1) vector gauge
fields AI for the initial solutions

wI =

(
κI
ρ− aI cosϑ

ρI
− q kI∞ cosϑ

)
dφ ,

AI = − dt+ µ(dψ + q cosϑ dφ) +$

ZI
+KI(dψ + q cosϑ dφ) + wI .

(8.1.3)

For the same reason, the electromagnetic one-forms v0 and vI involved in the spectral flow transfor-
mations of the gauge fields must be derived. We solve their equations (4.3.32) in the context of our

2We remind that all the constant terms in V and LI have been set to zero to have an asymptotically
AdS2×S1×S3 solution.
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solutions using the library of generating functions in the Appendix A.1:

vI =
|εIJK |

2

[
− q kJ∞kK∞ T (0) + 2 kJ∞κ

K T
(1)
J − 2Q

(I)
J T

(2)
J − κJκK

q
T

(3)
JK

]
,

v0 =
|εIJK |

6

[
q kI∞k

J
∞k

K
∞ T (0) + 6 kI∞Q

(I)
J T

(1)
J − 3 kI∞k

J
∞κK T

(2)
K (8.1.4)

+ 6
κIQ

(I)
J

q
T

(3)
IJ + 3

kI∞κJκK
q

T
(4)
JK +

κIκJκK
q2

T
(5)
IJK

]
.

At this point, we have the full description of the almost-BPS solutions we will use as input for our
construction. In general, most of the solutions in this class are not regular. We investigate the regularity
conditions in the next section after deriving the condition to have AdS3×S3 asymptotics.

8.1.3.2 The regularity conditions and conditions on the asymptotics

• Conditions on the asymptotics

We want to prepare our initial almost-BPS solutions to be asymptotically AdS3×S3. We derive the
conditions to be asymptotic to the specific S1 fibration over AdS2×S3 that gives the full AdS3×S3:

ds2
6∞ ∝ − ρ2dt2 +

dρ2

ρ2
+ (dy + ρdt)2 + dΩ2

3. (8.1.5)

The series expansion of ZI , V and ω involves the constant terms lI∞, the D1, D5 and P charges and
the left and right angular momenta of the solution which we denote as q1, q5, qP , jL and jR:

Z1 ∼
ρ→∞

l1∞ +
q1

ρ
, Z5 ∼

ρ→∞
l5∞ +

q5

ρ
, ZP ∼

ρ→∞
lP∞ +

qP
ρ
,

ω ∼
ρ→∞

jR + jL cosϑ

ρ
dψ + q

jL + jR cosϑ

ρ
dφ, V ∼

ρ→∞

q

ρ
.

(8.1.6)

From the expression of the metric in the six-dimensional frame (4.1.43), we require the constant terms
in the warp factors ZI to be zero. Furthermore, to obtain the specific U(1)-fiber, (dy + ρdt), the right
and left angular momenta must be zero. The AdS2 throat has an infinite length due to the vanishing
constant terms. This means that jR = 0 is straightforwardly satisfied. We obtain jL from (8.1.2):

jL =
2

q

κ1κ5κP
q

+
∑

I 6=J 6=K

Q
(J)
I Q

(K)
I

κI
+

1

2

∑
I 6=J

κIQ
(I)
J

 = 0. (8.1.7)

Our initial almost-BPS solutions must satisfy this equation and have no constant terms in LI before
applying the sequence of generalized spectral flows.

• Absence of Dirac-Misner strings at the centers:

The absence of Dirac-Misner string singularities in $ has been derived in (4.3.27). For our specific
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solutions, this gives one condition on the constant term in $ and four Denef-like equations

$0 = 0

2m0 =
Γ15

a1 − a5
+

Γ1P

a1 − aP
+

Γ5P

a5 − aP
,

q Q
(5)
1 Q

(p)
1

a1κ1
=

Γ15

|a1 − a5|
+

Γ1P

|a1 − aP |
,

q Q
(1)
5 Q

(p)
5

a5κ5
=

Γ51

|a1 − a5|
+

Γ5P

|a5 − aP |
,

q Q
(1)
P Q

(5)
P

aPκP
=

ΓP1

|a1 − aP |
+

ΓP5

|a5 − aP |
,

(8.1.8)

where ΓIJ ≡ κIQ(I)
J − κJQ

(J)
I .

• Absence of closed timelike curves:

The absence of closed timelike curves in the rest of the space requires the positivity of the quartic
invariant I4 (4.1.27). The condition is satisfied with the same arguments as for BPS three-supertube
solutions in Taub-NUT (see Section 5.2.1). We use the condition (4.1.28):

ZIV ≥ 0 , I = 1, 5, p , µ →
ρ→∞

0, (8.1.9)

that requires straightforwardly that m∞ = 0 and that the supertube monopole and dipole charges
satisfy the inequalities (5.2.6) by replacing kI by κI . Thus we take all the supertube electric charges and
q to be positive. Moreover, if the sum of the three last equations (8.1.8) imposes at least one supertube
dipole charge to be negative. Let us consider only one negative charge, say κ5. The conditions (5.2.6)
will just define a significantly large domain of possible values.

In this section, we have described in full detail the family of almost-BPS three-supertube solutions
with a flat R4 base space and with zero left and right angular momenta. We have shown a procedure to
construct systematically bubbling solutions of this type. We expect from Section 8.1.1 that acting with
three generalized spectral flows on those initial solutions will produce smooth bubbling asymptotically
WAdS3×SqS3 or NHEK geometries. We will discuss this construction in the next section.

8.2 Asymptotically WAdS3×SqS3 bubbling geometries

We start with the solutions constructed in the previous section. We will perform three generalized
spectral flows parametrized by the constant shifts γ1, γ5 and γP . Even if the transition from an
AdS3 to a WAdS3 with generalized spectral flows seems to be straightforward from the point of view
of Section 8.1.1, things get more complicated for a bubbling geometry and we will need to massage
the initial solutions and the spectral flows to satisfy different regularity conditions in the UV and IR
geometries:

• The spectrally-flowed UV geometry differs from a WAdS3×SqS3 geometry by the angle periodic-
ities (4.3.7). In Section 8.2.1, we will deal with the spectral flow parameters and the parameters
of the initial solution to get a UV geometry exactly identified as a WAdS3×SqS3 geometry with
the right angle periodicities (4.3.7).
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• The spectrally flowed IR geometry is a smooth bubbling geometry. However, the modification of
the angle periodicities in the UV region changes drastically the periods around the centers where
the S3 shrinks and conical singularities can occur. We will show in Section 8.2.2 that one can still
systematically build geometries where the UV angle periods do not yield to conical singularities.

Several attempts on building bubbling geometries with a NHEK or WAdS3×SqS3 region have been
performed in previous works [164,127]. In [127], only very specific WAdS3 geometries with limited field
contents have been built. Furthermore, in both papers, the NHEK regions were built in the deep IR
and the issue of conical singularities that can occur at the centers was not tackled. Here we give all the
details of the construction of the largest known family of smooth general solutions with a WAdS3×SqS3

UV.

8.2.1 The ultraviolet geometry

We start with a solution of the family of almost-BPS solutions (detailed in 8.1.3) with all the constraints
and regularity conditions satisfied. Thus, the asymptotic behavior of the initial solution is

ZI ∼
qI
ρ
, KI ∼ kI∞ , V ∼ q

ρ
, µ = $ = O(ρ−2), ρ� 1, (8.2.1)

By applying the spectral-flow rules (4.3.31), the spectrally-flowed solution has the following asymptotic
expansion:

Z̃I ∼
q̃I
ρ
, Ṽ ∼ q̃

ρ
, µ̃ ∼ J̃

ρ
, W̃I ∼

χ̃I
ρ
, P̃ I ∼ k̃I∞

Ã ∼
(
Ã(0)
∞ + Ã∞ cosϑ

)
dφ , w̃I ∼

(
w̃

(0)
I∞ + w̃I∞ cosϑ

)
dφ , ρ→∞ ,

(8.2.2)

where each tilded quantity in the right-hand side is a constant that can be derived from (4.3.31) as
a function of the conserved charges of the initial solution (8.2.1). Since these functions are rather
complicated and of minor interest, we did not write them down in their general forms. However,
it is noteworthy that q̃ is generically a square root of a polynomial function. In anticipation of the
constraints demanded by the regularity around the centers, one needs to impose all the quantities to be
at least rational. For that purpose, we fix the polynomial to be a perfect square. Two simple choices
are: γP = 0 and γP = − 1

kP∞
. We have analyzed both possibilities and the second one leads to simpler

solutions. From now on, we suppose that γP = − 1
kP∞

. We define the constants

tI∞ ≡ 1 + kI∞γI . (8.2.3)

Then, we have3
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2q̃ q̃I
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∞ + |εIJK |
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I qJqK
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∞ + q5γ1 t

5
∞

kP∞
, (8.2.4)

w̃I∞ = − |εIJK |
2

[
q kI∞t

J
∞t

K
∞ + 2 qJγK + γJγK

∑
kL∞qL

]
.

3We use tP∞ = 1 + kP∞γP = 0.
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The expressions of w̃
(0)
I∞ and Ã

(0)
∞ remain complicated functions of the charges of the initial solution

and the interested reader can easily compute them from (8.1.3) and (8.1.4). One can check by curiosity
that the asymptotic value of the quartic invariant I4∞ (4.1.27) is indeed preserved

I4∞ = q q1q5qP = q̃ q̃1q̃5q̃P − q̃2J̃2 = Ĩ4∞. (8.2.5)

By inserting (8.2.2) in the spectrally-flowed six-dimensional metric (4.3.30), the WAdS3×SqS3

asymptotic expansion of the metric is explicit

ds2
∞ =

κ2

4

[
−ρ2dτ2 +

dρ2

ρ2
+ γ (dy∞ + ρ dτ)2 + γ (dψ∞ + cosϑdφ)2

+ 2α (dy∞ + ρ dτ)(dψ∞ + cosϑ dφ) + dϑ2 + sin2 ϑ dφ2

]
+ . . . ,

(8.2.6)

where we have defined the six-dimensional coordinates at infinity (τ, ρ, ϑ, φ, ψ∞, y∞) using the initial
coordinates (t, ρ, ϑ, φ, ψ, y) as follows

y∞ ≡
√
I4∞ χ̃P

w̃p∞

(
ψ + Ã

(0)
∞ φ

)
− Ã∞

(
y + w̃

(0)
p∞ φ

)
Ã∞

(
I4∞ − q̃2χ̃P k̃P∞J̃

)
− w̃p∞ q̃2χ̃P J̃

, τ ≡ t√
I4∞

,
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(
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(0)
∞ φ

)(
I4∞ − q̃2χ̃P k̃

P
∞J̃
)
− q̃2χ̃P J̃

(
y + w̃

(0)
p∞ φ

)
Ã∞

(
I4∞ − q̃2χ̃P k̃P∞J̃

)
− w̃p∞ q̃2χ̃P J̃

,

(8.2.7)

and where the warp constant factors, γ and α, and the length, κ, are given by

γ =

(
q̃P
χ̃P

)2
[

1 +
q̃ J̃2

q̃1q̃5q̃P

((
χ̃P
q̃P

)2

− 1

)]
,

α = −
√
I4∞

q̃3 q̃1q̃5q̃P

(
Ã∞

(
k̃P∞ q̃

2
P + χ̃P J̃

)
+ q̃2

P w̃p∞

)
,

κ2 = 4 q̃
√
q̃1q̃5 .

(8.2.8)

The last condition for having WAdS3×SqS3 is on the periods for (y∞, ψ∞, φ)

(y∞, ψ∞, φ) =


(y∞, ψ∞, φ) + 2π (Ty,−Tψ, 0)

(y∞, ψ∞, φ) + 2π (0, 2, 0)

(y∞, ψ∞, φ) + 2π (0, 1, 1)

. (8.2.9)

It is rather complicated to have such periodicities while preserving the usual periods for (y, ψ, φ)

y = y + 2π , ψ = ψ + 4π , (ψ, φ) = (ψ, φ) + (2π, 2π). (8.2.10)

However, one can just reverse the perspective by imposing directly the periods (8.2.9) for (y∞, ψ∞, φ)
and express the corresponding periods of (y, ψ, φ) by inverting (8.2.7). This has the advantage of
adding no new constraints on the parameters of the solution but the main drawback is that this drastic
modification of periods for (y, ψ, φ) can induce conical singularities in the IR wherever the S3 shrinks.
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8.2.2 The infrared geometry

Generalized spectral flows preserve the bubbling feature of the initial solution: the number of centers
and their positions on the R3 base space are straightforwardly preserved. They also preserve all the
conditions for the absence of closed timelike curves as detailed in Section 4.3.2.3. Moreover, they
transform a singular supertube center to a smooth Gibbons-Hawking center. A series expansion of the
spectrally-flowed solution around the center J (where J = 0, 1, 5, P ) gives

Z̃I ∼ z̃IJ , Ṽ ∼ q̃J
ρJ

, µ̃ ∼ µ̃J ρJ , W̃I ∼ χ̃IJ , P̃ I ∼ k̃IJ

Ã ∼
(
Ã

(0)
J + ÃJ cosϑJ

)
dφ , w̃I ∼

(
w̃

(0)
IJ + w̃IJ cosϑJ

)
dφ , ρJ → 0 ,

(8.2.11)

where the tilded quantities in the right-hand sides are constant. It is not necessary for what will follow
to write their complicated dependence on the parameters of the initial solution4. The three noteworthy
points are

- The ratio ÃJ
q̃J

is equal to 1. This is a key feature of an ambipolar Gibbons-Hawking metric.

Indeed, in a generic Gibbons-Hawking metric (4.1.8), the term proportional to cosϑ dφ in A
V must

be exactly cosϑ dφ.

- The quantity k̃pJ ÃJ + w̃pJ is equal to zero. Thus, the U(1) fiber defined by ÃP + dy in (4.3.30)
has no term proportional to cosϑJ dφ when we approach the center J . The local five-dimensional
base space is then an exact direct product of a S1 with a Gibbons-Hawking space.

- All the quantities in (8.2.11) except z̃IJ are rational functions of the initial parameters. This will
be an important ingredient for the local geometry to be a discrete quotient of S1 × R4.

- The warp factors Z̃I do not blow at the centers preventing from spacetime singularities.

We can now use the expansions (8.2.11) and the three remarks above to compute the limit of the
spectrally flowed six-dimensional metric around the center J :

ds2
J = q̃J

√
z̃1J z̃5J

[
−dτ2

J +
dρ2

J

ρJ
+ ρJ

(
(dψJ + (1 + cosϑJ)dφ)2 + dϑ2

J + sin2 ϑJdφ
2
)

+
z̃pJ

q̃J z̃1J z̃5J
dy2
J

]
,

(8.2.12)

where we have defined the six-dimensional local coordinate system (τJ , ρJ , ϑJ , ψJ , φ, yJ) as a function
of the initial coordinates (t, ρ, ϑ, φ, ψ, y):

τJ ≡
t√

q̃J z̃1J z̃5J z̃pJ
, ρJ ≡

√
ρ2 + a2

J − 2aJρ cosϑ , cosϑJ ≡
ρ cosϑ− aJ

ρJ
,

ψJ ≡
ψ + (Ã

(0)
J − 1)φ

q̃J
, yJ ≡ y − t

χ̃pJ
+ k̃pJψ +

(
k̃pJ Ã

(0)
J + w̃

(0)
pJ

)
φ .

(8.2.13)

We recognize a U(1) fiber over a Gibbons-Hawking space. Thus, the local geometry has no curvature
singularity. However, a conical singularity can occur depending on the periodicities of (yJ , ψJ , φ). If
the periodicities were the usual Gibbons-Hawking periods (8.2.10), the base space would be a discrete
Z|q̃J | quotient of S1 × R4. The absence of conical singularity at ρJ = 0 would simply require that
q̃J is integer-valued and would impose some arithmetic constraints on the coefficients involved in

4For the interested reader, they can be easily derived with a calculation software using the transfor-
mation rules (4.3.31) on the initial almost-BPS supertube solution given in (8.1.2), (8.1.3) and (8.1.4)
and then taking the limit ρJ → 0.
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(8.2.13)5. However, the modification of the periodicities at infinity have drastically modified the
periods of (y, ψ, φ) and the smoothness analysis will require the full mathematical machinery that we
briefly detail following [165–167].

Let us first map the Gibbons-Hawking patch of angles (ϑJ , ψJ , φ) to the S3 patch (ϑJ , φLJ , φRJ)
by taking

φRJ =
ψJ
2
, φLJ =

ψJ
2

+ φ . (8.2.14)

The spacelike components of the metric (dtJ = 0) gives the spherically symmetric metric on S1 × R4
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The periodicities of (yJ , φLJ , φRJ) can be read off from the periodicities of (y∞, ψ∞, φ) (8.2.9) with the
sequence of three linear changes of coordinates (y∞, ψ∞, φ)→ (y, ψ, φ) in (8.2.7), (y, ψ, φ)→ (yJ , ψJ , φ)
in (8.2.13) and (yJ , ψJ , φ)→ (yJ , φLJ , φRJ) in (8.2.14). After few lines of computation, the periodicities
translate into the following identifications6

(yJ , φLJ , φRJ) =


(yJ , φLJ , φRJ) + 2π (αA, βA, βA) (A)

(yJ , φLJ , φRJ) + 2π (αB, βB, βB) (B)

(yJ , φLJ , φRJ) + 2π (αC , 1 + βC , βC) (C)

, (8.2.16)

where the coefficients αi and βi are complicated but computable rational functions depending on:

- The parameters of the initial almost-BPS solution.
- The spectral flow parameters γI .
- The periods Ty and Tψ of the angles of the UV WAdS3 (4.3.7).
- The square root of the asymptotic value of the quartic invariant

√
I4∞ (8.2.5).

The local geometry is a discrete quotient of S1 × R4 if αJ and βJ are rational numbers. Thus, all the
initial parameters and

√
I4∞ must be rational7. Choosing the other parameters to be rational is easy.

However, imposing
√
I4∞ to be rational requires a little bit of arithmetic.

Conical singularities only occur at points that are invariant under the operation

AnABnBCnC , (nA, nb, nc) ∈ Z . (8.2.17)

Furthermore, they all arise at ρJ = 0 where φLJ and φRJ are both degenerate, at ϑJ = 0 where φRJ is
degenerate and at ϑJ = π where φLJ is degenerate. The periods of φRJ and φLJ are almost identical
with a difference of 2π for the periodicity C, so if the identifications (8.2.16) at ρJ = 0 do not destroy
smoothness, they will also ensure the absence of singularities at ϑJ = 0 or π .

At ρJ = 0, in order for the shifts φLJ → φLJ+2π and φRJ → φRJ+2π at fixed yJ to be a closed orbit,
any triplet of integers (nA, nB, nC) where yJ → yJ under (8.2.17) must satisfy nAβA+nBβB +nCβC ∈
Z. In more concrete terms, any operation (8.2.17) that leaves yJ invariant, that is to say where
nAαA + nBαB + nCαC = 0, must transform φLJ → φLJ + 2πN and φLJ → φLJ + 2πN ′ where N and
N ′ are both integers. Using simple arithmetic arguments one can show that this is equivalent to prove

5See [137] for examples of this kind.
6For readability, we have dropped the index J referring to the center but the coefficient αi and βi are

not identical for the four centers.
7This means that the entropy of the corresponding black hole given by S = 2π

√
I4∞ belongs to 2πQ.
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the condition for the three sets of integers (0, nB, nC), (nA, 0, nC) and (nA, nB, 0). If the conditions
are satisfied for each set, the action of the quotient is free and the local geometry around the center J
is then a smooth discrete quotient of S1 × R4.

This analysis applies at every center. The total number of smoothness conditions is then 12 (3×4
centers). The number of parameters is still greater than the number of conditions, which gives good
hope to draw a systematic construction procedure.

8.2.3 The construction procedure

We sketch briefly a technical summary of what we have done until now to build asymptotically
WAdS3×SqS3 geometries:

• We start with the family of almost-BPS four-center solutions of three supertubes in R4. Initially,

it is a family of 15 rational parameters : q, Q
(J)
I , κI , aI and kI∞. The regularity of the solution

imposes three bubble equations (8.1.8), the condition on the asymptotics requires jL = 0 (8.1.7)
and the positivity of the quartic invariant I4 is satisfied by imposing all the initial charges and
dipole charges to be positive except one. Furthermore,

√
I4∞ needs to be a rational number

which is not an equation but one can consider that this fixes a parameter. We have consequently
a 10-parameter family of initial almost-BPS solutions.

• After three generalized spectral flows, we have three new parameters γI whose one is fixed to
have rational spectrally flowed charges. Moreover, the periods Ty and Tψ of the angles of the
WAdS3×SqS3 region can also be considered as free parameters.

• We have in total a 14-parameter family of bubbling asymptotically WAdS3×SqS3 geometries.
The smoothness of the geometry in the IR requires 12 arithmetic conditions as discussed in the
previous section. These conditions do not exactly fix parameters so the parameter space of the
resulting family of smooth solutions is complicated to define. However, many solutions can be
easily generated by generating parameters and by checking for each set of parameters if the 12
arithmetic conditions can be satisfied. We give an example of such a solution in the next section.

8.2.4 An explicit example

We construct an explicit example of the procedure discussed above. We picked an almost-BPS three-
supertube solution in R4 giving the solution that we use in the first step of the procedure:

q = Λ , κ1 =
Λ

2
, κ5 = − 2Λ

3
, κP =

Λ

2
, Q

(1)
5 = Λ ,

Q
(1)
P =

2Λ

3
, Q

(5)
1 = Λ , Q

(5)
P = Λ , Q

(p)
1 =

Λ

3
, Q

(p)
5 =

4Λ

3
,

(8.2.18)

where Λ ∈ Q+ is a degree of freedom of the charges that does not compromise the regularity of the
solution and the condition on the asymptotics. We can consider Λ as a free parameter all along the
construction. The coordinates of the three supertube centers on the z-axis are

a1 = 1 , a5 =
36

13
, aP = 24 . (8.2.19)

The solution is asymptotically AdS2×S1×S3, which implies that the center positions are scaling invari-
ant aI → λaI [25]. Consequently, one can freely rescale (8.2.19) to make the inter-center distances as
small as we want.
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We did not fix yet the constant terms kI∞ since they are not involved in the regularity of the solution.
They are actually irrelevant from the point of view of the initial almost-BPS solution since they affect
only the asymptotic values of the gauge, AI , of the solution that can be gauge-fixed to zero. However,
they affect greatly the solutions after spectral flows.

From (8.1.2), one can derive the asymptotic values of the D1, D5, P charges of the initial solution,
the left and right angular momenta and the entropy of the corresponding three-charge black hole

q1 =
4Λ

3
, q5 =

9Λ

4
, qP =

4Λ

3
,

jL = jR = 0 ,

S = 2π
√
I4∞ = 4πΛ2.

(8.2.20)

One can now play with the spectral flow parameters γI and the constants kI∞ to generate an
extremal non-supersymmetric smooth asymptotically WAdS3×SqS3 bubbling geometry. We found an
infinite number of such solutions. To give an example, we pick one of these solutions:

γ1 =
1

2
, γ5 = − 1 , γP = − 1 , k1

∞ = − 3

2
, k5

∞ = 3 , kP∞ = 1 . (8.2.21)

We can derive the full geometry by computing the metric and the gauge fields (4.3.30) and (4.3.31).
We will just focus on the WAdS3×SqS3 asymptotic region that is given by
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(8.2.22)

We choose the periodicities of the angles to be8

(y∞, ψ∞, φ) =


(y∞, ψ∞, φ) + 2π

(
24

43
T,− 8

11
T, 0

)
(y∞, ψ∞, φ) + 2π (0, 2, 0)

(y∞, ψ∞, φ) + 2π (0, 1, 1)

, (8.2.23)

where T is a free parameter. For the reader interested in the smoothness of the bubbling geometry
in the IR, the metric and the periodicities of the angles around the centers are given in the Appendix
A.8. We found that the IR bubbling geometry is smooth if and only if T = a

b ∈ Q and b is not divisible
by 2 or 13.

8.3 Asymptotically NHEK bubbling geometries

In the previous section, we have constructed in detail a large family of extremal non-supersymmetric
bubbling solutions that cap off smoothly in the IR and that are asymptotically WAdS3×SqS3. In the
present section, we push a bit further the construction to asymptotically NHEK bubbling solutions.
The path from WAdS3×SqS3 to NHEK requires to relate the WAdS3 region to the near-horizon region
of the over-rotating 5d D1-D5-P black hole detailed in Section 4.3.1. This essentially means that we
have to express the charges, angular momentum and mass of the D1-D5-P black hole in terms of the
parameters of our solutions. Once this is done, we have to impose the NHEK periodicities of the angles

8Many other possibilities were available.
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at infinity (4.3.8) and check the smoothness of the IR geometry as it has been done for asymptotically
WAdS3 geometries in Section 8.2.2. At first sight, this might seem to be a mere formality. However,
the fact that the periods of y∞ and ψ∞ were free parameters for asymptotically WAdS3 solutions
was practical to satisfy the twelve conditions of smoothness at the centers. Now that the periods are
connected to the parameters defining the bubbling geometry, this requires more work.

In this section, we use all the results obtained in the previous section. We have started with
the family of almost-BPS three-supertube solutions in R4 and performed the sequence of generalized
spectral flows detailed in Section 8.2.1 to obtain an asymptotically WAdS3×SqS3 bubbling geometry.
In Section 8.3.1 we will match this asymptotic region to a near-horizon region of an extremal non-
supersymmetric D1-D5-P black hole. We will identify the corresponding periodicities and see how
such solutions can be systematically generated in Section 8.3.2. At the end of the section, we will give
an explicit example of a solution.

8.3.1 Matching the WAdS3 UV geometry to NHEK

After applying the sequence of generalized spectral flows to our family of almost-BPS solutions, the
asymptotic metric is given by (8.2.6) where the constant warp factors γ and α and the length κ are
defined in (8.2.8). We want to relate this geometry to the near-horizon geometry of an extremal non-
supersymmetric D1-D5-P black hole determined by four parameters a, δ1, δ5 and δP and given by the
metric (4.3.9) where γ, α and κ are defined by (4.3.10). We use the three identities between γ, α and
κ to relate a, δ1 and δ5 to the parameters of our solutions and we use the matching of the entropy to
find δP . After few lines of computation, we obtain
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(8.3.1)

where sI = sinh δI , cI = cosh δI and H is defined as
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(8.3.2)

The mass, the D1, D5 and P charges and the left angular momentum of the corresponding Cvetic-
Youm black hole can be derived using (4.3.1). However, the most interesting quantities are the NHEK
periods Ty and Tψ (4.3.8). Using (8.3.1), we can show that they are rational numbers if:

-
√
I4∞ is rational. This is the same condition as the one imposed for asymptotically WAdS3

bubbling geometries.

-
√

H is rational. This is a more complicated condition to satisfy than the previous one. Tricky
arithmetic is required.

Once the matching to NHEK is performed, one can look at the IR bubbling region of our solutions.
The periodicities of the angles around each center depends on Ty and Tψ. Thus the local geometries
are quotients of R4×S1 only if they are rational. Moreover, conical singularities might still occur as for
asymptotically WAdS3 bubbling geometries. We use the same smoothness analysis as in Section 8.2.1
to derive 12 conditions to have smooth discrete quotients on R4×S1 around the centers.
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8.3.2 The construction procedure

The procedure to build smooth asymptotically NHEK bubbling geometries is similar to the one depicted
in Section 8.2.3:

• We start with the family of almost-BPS four-center solutions of three supertubes in R4. Initially,

it is a family parametrized by 15 rational parameters : q, Q
(J)
I , κI , aI and kI∞. We solve the three

bubble equations (8.1.8), jL = 0 (8.1.7) and we require the positivity of the quartic invariant I4

by imposing all the initial charges to be positive except one. Furthermore,
√
I4∞ needs to be a

rational number which fixes a parameter. We have consequently a 10-parameter family of initial
almost-BPS solutions.

• After three generalized spectral flows, we have two more parameters γI(γP is fixed to have rational
spectrally flowed charges). The condition on the periods Ty and Tψ to be rational requires some
arithmetic machinery which fixes 3 parameters (the two remaining spectral flow parameters and
k5
∞).

• We have in total an 8-parameter family of bubbling asymptotically NHEK3 geometries. The
smoothness of the geometry in the IR requires 12 arithmetic conditions. Even if the parameter
space is not easy to determine, we can perform a loop generating technique to build a large number
of such solutions. We give an example of such a solution in the next section.

8.3.3 An explicit example

We construct an explicit example of the procedure discussed above. We choose a smooth almost-BPS
three-supertube solution in R4 satisfying the first point of the procedure:
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(8.3.3)

where Λ ∈ Q+ corresponds to the charge-scaling free parameter. We choose a slightly different charge-
scaling Λ than in Section 8.2.4. They are actually equivalent. The present choice is just more adapted
to the matching with NHEK. The coordinates of the three supertube centers on the z-axis are

a1 = 1 , a5 =
3

14

(
17 +

√
65
)
, aP =

3

4

(
9 +
√

65
)
. (8.3.4)

Once again, the AdS2×S1×S3 asymptotics of the solution allows us to rescale aI → λaI as small as we
want. The irrationality of the inter-center distances does not impact the smoothness of the solution
around the centers.

From (8.1.2), one can derive the asymptotic values of the initial D1, D5, P charges of the solution,
the left and right angular momenta and the entropy of the initial system

q1 =
4Λ2

3
, q5 =

4Λ2

3
, qP = Λ2 ,

jL = jR = 0 ,

S = 2π
√
I4∞ =

8π

3
Λ3.

(8.3.5)

One can now play with the spectral flow parameters γI and the constants kI∞ to generate an extremal
non-supersymmetric smooth asymptotically NHEK3×SqS3 bubbling geometry. This requires

√
H in
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(8.3.2) to be rational. After a rather technical arithmetic computation we found several values for γ1,
γ5 and k5

∞ that lead to rational NHEK periods Ty and Tψ without inducing any conical singularities
at the centers:
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1

3 Λ− 2
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9 Λ− 6

40 Λ2
, γP = − 1 ,

k1
∞ = 2 , k5
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3

2 + 37 Λ

3 Λ− 2
, kP∞ = 1 . (8.3.6)

We can derive the full geometry by computing the metric and the gauge fields (4.3.30) and (4.3.31).
We will just focus on the NHEK asymptotic region that is given by
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(8.3.7)

The NHEK angle periodicities are

(y∞, ψ∞, φ) =
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. (8.3.8)

The asymptotic NHEK region corresponds to the near-horizon region of an extremal Kerr black hole
given by the following mass, angular momenta and charges:

M =
287 Λ2

75
,

JR = 0 , JL =
124Λ3

75
,

Q1 =
16Λ2

15
, Q5 =

16Λ2

15
, QP =

21Λ2

25

(8.3.9)

For the reader interested in the feature of the bubbling geometry in the IR, we gave the local
metrics and the periodicities of the angles around the centers in the Appendix A.9.

For any rational values of Λ, we found a smooth non-supersymmetric extremal geometry which is
bubbling in the IR and NHEK in the UV.

8.4 Final comment

In this chapter, we have constructed a family of smooth bubbling solutions in six dimensions that are
asymptotic to either generic WAdS3×SqS3 or NHEK spacetime. We gave explicit examples of the
construction which can be used for different purposes:

• One can investigate their CFT dual states. They can give some hints on the nature of the CFT2

dual to WAdS3 or the CFT2 dual to NHEK.

• Nearly extreme black hole have been seen in the sky [168]. From an astrophysical point of view,
one can compute the Kerr multipole moments of our solutions to see if there exist deviations
from the Kerr-Newman black hole solution. This could give interesting observable quantities in
order to detect some imprints of the microstate structure of black holes in the gravitational wave
emission after a collision of two black holes.
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Chapter 9

AdS2 Holography: Mind the Cap

One of the most important statement that arised from modern theoretical physics is surely the
AdS/CFT correspondence [3]. The correspondence relates String Theory on D + 1 AdS spacetime
to D-dimensional CFT. It has led to the gravitational-holography field of research and its countless
breakthroughs. If the AdSD+1/CFTD is well-understood for D ≥ 2, less is known for the AdS2/CFT1.
In this chapter, we review the work in [25] that examined in what extend the microstate geometry
program fits in a well-defined AdS2/CFT1 correspondence.

9.1 State of the art and proposal

First, String Theory has had great success in counting the microstates of extremal black holes whose
near-horizon geometries contain a factor that is AdS3 [8, 6, 169] or AdS4 [170, 171], however many
extremal black holes have an AdS2 near-horizon limit that is not contained in a higher-dimensional
AdS space, and the counting of the microstates of these black holes is poorly understood. Furthermore,
many black holes have an AdS3 near-horizon limit and a further AdS2 very-near-horizon geometry
deeper in the infrared. For these black holes, understanding the RG flow between AdS3 and AdS2

remains an important and challenging open problem [172–177].

Second, holography in AdS2 is somewhat subtle: it is well known that the backreaction of finite-
energy excitations in global AdS2 necessarily diverges at one of the two asymptotic boundaries [178,179].
Indeed, much of the recent interest in the Sachdev-Ye-Kitaev (SYK) model and its dual (see for
example [180–184]) is driven by the desire to understand quantum gravity in AdS2. Since global AdS2

has two disconnected boundaries, it appears that its holographic dual should be two copies of a CFT1.1

By contrast, black hole entropy in String Theory is usually accounted for by enumerating bound states
of a (single) system of branes, so one expects there to be an AdS2/CFT1 entropy calculation that
involves counting ground states of a single CFT1 (see for example [173,187]). It does not appear to be
understood in general whether the ground states of the CFT1 preserve or break conformal invariance,
whether the CFT1 is topological, and whether or not one can construct a tower of non-supersymmetric
states above a given ground state.

Third, as it has been already addressed in Chapter 4, five-dimensional supersymmetric black holes
have an AdS2 near-horizon region with JR = 0. For such black holes, according to the zero-angular-
momentum conjecture [156, 144], the only solutions that can be interpreted as pure black hole mi-
crostates (involving no additional degrees of freedom exterior to the black hole) are those that have
zero angular momentum in four dimensions (JR = 0 in five dimensions) and fit in an AdS2 region.

The purpose of this chapter is to address all these three points at the same time. We will first

1See [185,186] for work on the construction of bubbling solutions that are asymptotic to global AdS2.
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review what has been sparsely discussed in the thesis which is the construction of families of smooth
solutions that have an AdS2×M asymptotic region in the UV (allowing also forM to be non-trivially
fibered over AdS2), that end in the IR with a smooth cap, and that have JR = 0. It has been already
discussed for smooth multicenter in five dimensions, one will extend the construction to six-dimensional
smooth solutions as Superstrata. If one reduces these solutions to two-dimensional gravity coupled to
matter, they appear to be geometrically singular. However, this singularity is resolved into smooth
geometry supported by fluxes in five- or six-dimensional Supergravity as detailed in Chapter 4. The
naive two-dimensional geometrical singularity of our solutions enables our solutions to have non-trivial
features in their IR while preserving the AdS2 UV, in contrast to the rigidity of global AdS2 [178,179].
According to the AdS-CFT correspondence, these supersymmetric solutions should be dual to pure
states of (a single copy of) a CFT1.

By contrast, most of the recent attempts to understand quantum gravity in AdS2 involve modifying
the UV (by adding a running dilaton and working in a “Nearly-AdS2” geometry) and preserving the
IR [179,181–184]. Indeed, if one works in two-dimensional theories with relatively simple field content,
modifying the UV is the only option; our solutions require much richer field content from a two-
dimensional perspective, as of course is natural in String Theory.

These two options: either keeping the UV fixed and resolving the IR singularity by brane po-
larization and bubbling (as in Polchinski-Strassler) or keeping the IR fixed and modifying the UV
asymptotics (as in Almheiri-Polchinski), appear to be the only two possibilities to obtain non-trivial
physics in AdS2. Our interest in the present work is in the CFT1 description of asymptotically AdS2

String Theory solutions, rather than irrelevant deformations of such a CFT1. We therefore choose the
Polchinski-Strassler option over the Almheiri-Polchinski one.

Our map also clarifies the relation between deep scaling microstate geometries, the angular mo-
mentum JR, and the discussions of [156, 144]. In particular, the key argument of [156, 144] was that
all the information characterizing the microstates of supersymmetric black holes should fit inside an
AdS2 throat, and everything that does not do so represents degrees of freedom external to the black
hole horizon. Our construction shows that all the information about the topology, fluxes and wiggles
of the scaling black hole microstates constructed thus far passes this criteria. The only information
that does not survive the AdS2 limit is the non-zero JR of the asymptotically AdS3 solutions, which
is proportional to the inverse of the length of the AdS2 throat and thus vanishes in the AdS2 scaling
limit, consistent with the discussions in [156, 144]. The fact that these solutions fit inside an AdS2

region, and that in this limit the angular momentum JR vanishes, indicates that the non-zero JR of
the corresponding asymptotically AdS3 solutions does not come from the structure that replaces the
horizon, but rather from the gluing of the long AdS2 throat to the ambient spacetime.

The presence of a smooth IR cap allows our supersymmetric solutions to support an infinite tower
of non-supersymmetric linearized excitations. These excitations are localized very near the IR cap,
and are normalizable. An important question that remains open is whether or not the backreaction
of these excitations preserves the AdS2 UV asymptotics. One possibility, consistent with the naive
extrapolation of the results of [178, 179] to our capped solutions, is that the backreaction of these
excitations necessarily modifies the AdS2 UV asymptotics, meaning that these excitations are not dual
to any states of the original CFT1. However, since there exist non-supersymmetric black hole solutions
with a finite bulk stress-energy tensor that preserve the AdS2 asymptotics [188], it is possible that the
backreacted non-supersymmetric solutions will also preserve the AdS2 asymptotics, and indeed this
is our expectation. We rather expect that the data that determines whether the UV is modified is
independent of the existence of our excitations, and will discuss this in more detail in Section 9.4.1.

If the backreaction of our time-dependent perturbations preserves the AdS2 UV asymptotics, then
these perturbations should be dual to time-dependent excitations of the CFT1. This in turn indicates
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that this CFT1 has nontrivial dynamics, and hence is not a topological theory. By contrast, if a given
CFT1 has a conformally invariant ground state (which would presumably be holographically dual to
empty Poincaré AdS2), it is necessarily topological. Hence, if the backreaction preserves the AdS2 UV,
this implies that the dual CFT1 does not have a conformally invariant ground state. CFT1 models
that have no conformally invariant ground state have been discussed in [189].

The absence of a conformally invariant ground state would in turn indicate that empty Poincaré
AdS2 cannot be dual to any pure state of the microscopic CFT1 under consideration. From this per-
spective Poincaré AdS2 would have a similar status to Poincaré AdS3, which is also not dual to any
pure state of the D1-D5 CFT, but is a singular geometry that should be rather thought of as an ap-
proximation to a mixed state. The bulk duals of all the pure states of a single CFT1 would therefore
be asymptotically AdS2 states of String Theory with nontrivial (and likely stringy and/or quantum)
physics in the infrared that breaks conformal invariance. If one could prove that there is no conformally
invariant CFT1 ground state, this would establish beyond reasonable doubt that the fuzzball proposal
is the correct description of extremal black holes.

The organization of the chapter is as follows. In Section 9.2.1 we formulate our general AdS2 limit
for smooth horizonless supergravity solutions in five or six dimensions. In Section 9.3 we solve the free
massless scalar wave equation on a class of asymptotically AdS2 Superstrata, finding an infinite tower
of bound-state excitations. Finally, in Section 9.4 we discuss the backreaction of these excitations, their
holographic description, and possible connections with other approaches to AdS2 quantum gravity.

9.2 AdS2 limit of capped solutions of five- and six-dimensional Su-
pergravity

9.2.1 The AdS2 limit

We describe a general limiting procedure to obtain asymptotically AdS2 BPS solutions in five or six
dimensions. Let us recall the metric and field Ansatz for the five-dimensional solutions (4.1.5)

ds2
5 = −

(
1

6
CIJK ZIZJZK

)− 2
3

(dt+ ω)2 +

(
1

6
CIJK ZIZJZK

) 1
3

ds (B)2 ,

F I = d4A
I = d4

(
Z−1
I (dt+ ω)

)
+ ΘI ,

(9.2.1)

and the metric and field Ansatz for six-dimensional solutions (4.2.27)

ds2
6 = − 2√

P
(dv + β)

(
du+ ω +

1

2
F (dv + β)

)
+
√
P ds (B)2 ,

G(I) =
1

2

[
ηIJ ?4 DZJ − d6

(
ηIJZJ
P

(du+ ω) ∧ (dv + β)

)
+ (dv + β) ∧ΘI

]
.

(9.2.2)

Both types of solutions are constructed on a four-dimensional base space B which is asymptotic to
flat R4. We are interested in smooth horizonless solutions, which have non-trivial topological structure
that is controlled by another length-scale, a, and where there is a large hierarchy between the scale a
and the electric charges QI ,

a2 � QI , (9.2.3)

and where the JL angular momentum is inside the regime of parameters where the black hole horizon
is macroscopic,2

J2
L < Q1Q2Q3 . (9.2.4)

2For the six-dimensional solutions, remind that we have used the D1-D5-P label for the charges:
(1, 2, 3)→ (1, 5, P ).
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We first extract the scale a2 from the four-dimensional base metric,

ds (B)2 = a2 d̄s (B)2 ⇐⇒ r̂ = ar̄ , (9.2.5)

where r̂ is the four-dimensional radial coordinate defined in (4.1.11). We will be interested in taking a
limit in which a→ 0 with d̄s (B)2 and QI fixed. The scaling limit we shall derive is closely related to
the families of “scaling solutions” mentioned in previous chapters [85,87], and is also closely related to
other scaling limits considered previously in the literature for brane and black hole solutions (see for
example [3, 172,191–193]).

We require that the scaling limit results in a non-singular solution. Let us derive the implications
of this requirement for the dependence of the ansatz quantities on the parameter a. First, given
the scaling of the base metric with a, (9.2.5), in order to have a finite and non-trivial limit for the
four-dimensional part, as a→ 0 we must have

ZI →
Z̄I
a2

, P → P̄
a4
, (9.2.6)

In the (t)-part or (u, v)-part of the metrics, this implies that we must have

ω → ω̄

a2
, F → F̄

a2
, t =

τ

a2
or u =

ū

a2
, (9.2.7)

where ω̄, F̄ and β are finite and independent of a, and where τ , ū and v are held fixed as we take the
limit.

We can thus define our AdS2 limit on the five- or six- dimensional coordinates by:

r = ar̄ , t = a−2 τ ; a → 0 with r̄ , τ , angles fixed (5d) ,

r = ar̄ , u = a−2 ū ; a → 0 with r̄ , ū , v , angles fixed (6d) .
(9.2.8)

Examining the Ansatz for the vector and tensor fields (9.2.1) and (9.2.2), one requires in addition that
the ΘI are also finite and independent of a. The above behavior of the ansatz quantities then ensures
the finite limit

ds2
5 → −

(
1

6
CIJK Z̄I Z̄J Z̄K

)− 2
3

(dτ + ω̄)2 +

(
1

6
CIJK Z̄I Z̄J Z̄K

) 1
3

d̄s (B)2 , (9.2.9)

F I → d4

(
Z̄−1
I (dτ + ω̄)

)
+ ΘI , (9.2.10)

for the five-dimensional solutions and

ds2
6 → − 2√

P̄
(dv + β)

(
dū+ ω̄ +

1

2
F̄ (dv + β)

)
+
√
P̄ d̄s (B)2 , (9.2.11)

G(I) → 1

2

[
ηIJ ?̄4DZ̄J − d6

(
ηIJZJ
P

(dū+ ω̄) ∧ (dv + β)

)
+ (dv + β) ∧ΘI

]
. (9.2.12)

for the six-dimensional solutions where ?̄4 is the Hodge star with respect to d̄s(B). The limit a → 0
has now been taken, and the solution is independent of a.

9.2.2 Asymptotically AdS2 multicenter solutions

In Section 4.1.3.1, we have already observed that the asymptotics of a BPS multicenter solution is
governed by their background vector Γ∞, that is, the constant terms in the harmonic functions. We
have also noted that taking the limit for which all constant terms vanish corresponds to the limit where
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the geometry is asymptotically AdS2 × S3 and JR = 0. Let us check that the AdS2 limit above is
equivalent.

The requirement on the warp factors (9.2.6) under the coordinate transformation (9.2.8), imposes
the charge vectors and the background vector (4.1.24) to transform as

Γ̄ = a2 Γ ⇐⇒ Γ̄∞ = a2 Γ∞ , Γ̄j = Γj , ρ̄j = a−2 ρj . (9.2.13)

Thus, under the limit a → 0, the constant terms are indeed sent to zero whereas the charges remain
fixed. The right angular momentum of those solutions is given in (4.1.56) and is clearly zero when
Γ∞ = 0. Moreover, the requirement on the three-dimensional distance from the jth center, ρj , implies
that the inter-center distances must be rescaled similarly: ρij = a2 dij where the aspect ratios dij are
held fixed.

As for the regularity conditions, we can easily check that the quartic invariant I4 (4.1.27) is simply
rescaled Ī4 = a8 I4 and the positivity is guaranteed along the transformation. However, in Section
5.1, we examined the impact of a change of background moduli on the center configuration. Even if
one assumes that the initial solution satisfy the scaling condition (4.1.54), the solution can still decay
at walls of marginal stability along the AdS2 limit. However, we showed that this concerned only
solutions with specific center configurations. We will then leave aside this subtlety from now on.

Therefore, microstate geometries at JR 6= 0 are then constructed from an asymptotically AdS2

solution with an identical charge content Γj and aspect ratios between the centers dij (see Fig.9.1). It
is tempting to postulate that for every microstate of the CFT1 there is a corresponding family of CFT2

microstates, parameterized by the quantized value jR
3. It should be understood that this applies to

states with relatively low values of JR, that are dual to solutions with long throats.

Figure 9.1: A schematic pictorial representation of a scaling geometry and the asymp-
totically AdS2 limit. The proper size of the bubbles remains the same as the throat of
the solutions becomes longer [85,86]; the throat becomes infinite in the AdS2 limit.

9.2.3 Asymptotically AdS2 Superstrata

In this section we apply the six-dimensional AdS2 limit defined in Section 9.2.1 to construct families of
explicit supergravity solutions with near-horizon-BTZ×S3 asymptotics, which as described above can
be written as S1 fibered over the near-horizon D1-D5-P solution. We will exhibit an explicit family of
examples that are asymptotically S1 fibered over AdS2×S3.

3Even if one has taken continuous limit, JR is determined by a quantized right angular momentum
in half-integer unit, jR.
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9.2.3.1 Superstrata with a flat base metric

The procedure discussed in Section 9.2.1 is general, and can be applied to all solutions which have the
hierarchy of charges (9.2.3). For concreteness, we will work with the family of superstratum solutions
detailed in Section 4.2.5 for which the zeroth-layer fields, that is the four-dimensional R4 base and its
fibration one-form β, are given in (4.2.40) and (4.2.56). Then, we see that in the limit (9.2.8),

β → β̄ =
Ry√

2 (r̄2 + cos2 θ)
(sin2 θ dϕ1 − cos2 θ dϕ2) , (9.2.14)

which is of order a0, as required. For the four-dimensional flat metric, we obtain

d̄s (B)2 = (r̄2 + cos2 θ)

(
dr̄2

r̄2 + 1
+ dθ2

)
+ (r̄2 + 1) sin2 θ dϕ2

1 + r̄2 cos2 θ dϕ2
2 . (9.2.15)

9.2.3.2 Single-mode Superstrata

We now focus attention further to the original single-mode Superstratum constructed in Section 4.2.5.
We will soon focus for our explicit presentation on solutions that have (k,m, n) = (1, 0, n), however for
the moment, and where it is illuminating, we shall keep (k,m, n) general, to illustrate the generality
of the procedure. Following the general discussion in Section 4.2.5.5, in the regime

a2 � {Q1 , Q5 , QP } , (9.2.16)

we have a BTZ-like near-horizon throat inside AdS3×S3. In order to more easily connect to the
discussion of with the five-dimensional solution, we change the parametrization of (u, v) according to
(t, y) where y is the coordinate of the common S1 of the D1- and D5-branes:

u = t , v = t+ y . (9.2.17)

As already said, this can be achieved from the initial coordinate definition u/v = 1√
2
(t∓y) by constant

shift in F and shift by β in ω [100]. The first- and second-layer fields of asymptotically AdS3 solutions
are given in (4.2.60) and (4.2.72) respectively.

We now take the AdS2 limit of this family of solutions. We will continue to write the general
(k,m, n) expressions for the first-layer data, specializing to (1, 0, n) for the second layer. The phase
vk,m,n is invariant (4.2.57); we define the quantities

Σ̄ ≡ r̄2 + cos2 θ ,

∆̄k,m,n ≡
(

1√
r̄2 + 1

)k ( r̄√
r̄2 + 1

)n
cosm θ sink−m θ , (9.2.18)

ϑ̄k,m,n ≡ −∆̄k,m,n

[(
(m+ n)r̄ sin θ + n

(m
k
− 1
) Σ̄

r̄ sin θ

)
Ω̄(1) sin vk,m,n

+
(
m
(n
k

+ 1
)

Ω̄(2) + n
(m
k
− 1
)

Ω̄(3)
)

cos vk,m,n

]
,

where Ω̄(i) (i = 1, 2, 3) are given by:

Ω̄(1) ≡ dr̄ ∧ dθ
(r̄2 + 1) cos θ

+
r̄ sin θ

Σ̄
dϕ1 ∧ dϕ2 ,

Ω̄(2) ≡ r̄

r̄2 + 1
dr̄ ∧ dϕ2 + tan θ dθ ∧ dϕ1 ,

Ω̄(3) ≡ dr̄ ∧ dϕ1

r̄
− cot θ dθ ∧ dϕ2 .

(9.2.19)
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and we see that in the AdS2 limit,

Ω(1) → a Ω̄(1) , Ω(2) → Ω̄(2) , Ω(3) → Ω̄(3) . (9.2.20)

The “ ¯ ” quantities defined in (9.2.6) for the first-layer data, become

Z̄1 =
Q1

Σ̄
+
b1R

2
y

2Q5

∆̄2k,2m,2n

Σ̄
cos v2k,2m,2n , Z̄2 =

Q5

Σ̄
,

Z̄4 = Ry b
2
4

∆̄k,m,n

Σ̄
cos vk,m,n ,

(9.2.21)

and

Θ̄1 = 0 , Θ̄2 =
b24Ry
2Q5

ϑ̄2k,2m,2n , Θ̄4 = b4 ϑ̄k,m,n . (9.2.22)

The solution to the second layer for general (k,m, n) can be similarly derived by replacing the usual
quantities by their “barred” version (9.2.18). For ease of presentation, at this point we will specialize
to the sub-family (k,m, n) = (1, 0, n), as this will suffice for an explicit family of examples. It is
straightforward to generalize the following discussion to the general (k,m, n) family. The solution to
the second layer for the (1, 0, n) family is [99]4:

F = 1 +
b24

2a2

(
1− r2n

(r2 + a2)n

)
,

ω = ω0 +
b24Ry
2Σ

(
1− r2n

(r2 + a2)n

)
sin2 θ dϕ1 , (9.2.23)

where5

ω0 =
a2Ry

Σ
sin2 θ dϕ1 . (9.2.24)

Applying the AdS2 limit, we have

F̄ =
b24
2

(
1− r̄2n

(r̄2 + 1)n

)
,

ω̄ =
b24
2

Ry

Σ̄

(
1− r̄2n

(r̄2 + 1)n

)
sin2 θ dϕ1 . (9.2.25)

Smoothness of the (1, 0, n) solution (4.2.73) imposes the relation

b = b4 . (9.2.26)

We observe that our AdS2 limit can be described as “dropping the 1” in Z3 = F , and also dropping
the associated supertube component of ω, namely ω0. It is not hard to see that the second layer of
the BPS equations (4.2.29) are still satisfied, precisely because ω0 balances the “1” in Z3. To write the
full metric, we define the following shorthands:

F̄0(r̄) ≡ 1− r̄2n

(r̄2 + 1)n
, F̄1(r̄) ≡ 1− r̄2n

(r̄2 + 1)n+1
,

Λ̄ ≡ Σ̄
√
P̄√

Q1Q5
=

√
1− r̄2n

(r̄2 + 1)n+1
sin2 θ . (9.2.27)

We will write the full metric in two ways. The first is more convenient for displaying the AdS2

asymptotics, the second is more convenient to see the smoothness in the cap. In the first form of the

4We remind that the second-layer fields have been rescaled to redefine the u and v coordinates.
5Remind that ω has been rescaled to redefine (u, v). That is why ω0 does not correspond to the one

computed from the seed Supertube in (4.2.45).
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metric, the square is first completed on the dv terms, as appropriate for a reduction from six dimensions
to five on the v fiber,

ds2
6 = Q1Q5

F̄0(r̄)√
P̄

(
dv

Ry
− 1

F̄0(r̄)

2 dτ

b2Ry
− cos2 θ

Σ̄
dϕ2

)2

− 2

b2
√
P̄

(
1

F̄0(r̄)
+

sin2 θ

Σ̄

)
dτ2

+
√
Q1Q5 Λ̄

(
dr̄2

r̄2 + 1
+ dθ2 +

r̄2 cos2 θ

Σ̄
dϕ2

2

)
+

√
Q1Q5

Λ̄
sin2 θ

(
dϕ1 −

2 dτ

b2Ry

)2

. (9.2.28)

At large r̄, this metric becomes that of the “very-near-horizon” limit of the six-dimensional non-rotating
black string (4.2.35)6, in the form in which the v direction is fibered over the very-near-horizon limit
of the five-dimensional non-rotating supersymmetric (Strominger-Vafa) black hole [172],

ds2
6 =

QP√
Q1Q5

(
dv − r̄2

QP
dτ

)2

− r̄4dτ2

QP
√
Q1Q5

+
√
Q1Q5

(
dr̄2

r̄2
+ dθ2 + sin2 θdϕ2

1 + cos2 θdϕ2
2

)
= −2

r̄2dvdτ√
Q1Q5

+
QP√
Q1Q5

dv2 +
√
Q1Q5

(
dr̄2

r̄2
+ dθ2 + sin2 θdϕ2

1 + cos2 θdϕ2
2

)
. (9.2.29)

We next write the metric in a second form in the squares are completed first on the S3 directions,
demonstrating the smooth shrinking of the remaining directions in the cap. The metric in this form is
given by

ds2
6 = − 2

b2
Λ̄√
Q1Q5

r̄2 + 1

F̄0(r̄)
dτ2 +

√
Q1Q5 Λ̄

(
dr̄2

r̄2 + 1
+ dθ2

)
+

√
Q1Q5

Λ̄
sin2 θ

(
dϕ1 −

2 dτ

b2Ry

)2

+

√
Q1Q5

Λ̄
F̄1(r̄) cos2 θ

(
dϕ2 −

F̄0(r̄)

F̄1(r̄)

dv

Ry
+

1

F̄1(r̄)

2 dτ

b2Ry

)2

(9.2.30)

+
√
Q1Q5 Λ̄

F̄0(r̄)

F̄1(r̄)
r̄2

(
dv

Ry
− 1

F̄0(r̄)

2 dτ

b2Ry

)2

.

At r̄ → 0 we have F̄0(r̄)→ 1, F̄1(r̄)→ 1 and Λ̄→ 1, the geometry is a red-shifted AdS3 × S3 and the
term on the final line combines with the dr̄2 term to describe the smooth shrinking of an S1 at the
center of a local R2.

The AdS2 limit of the matter fields can be similarly derived; since this is a straightforward imple-
mentation of the above procedure, we omit the details.

9.2.3.3 AdS3 and AdS2 perspectives

From the metric (9.2.28) one can read off that in the AdS2 limit the JR angular momentum has gone
to zero, while the solution remains non-trivial. This indicates that the internal structure deep inside
the core of the solutions indeed fits inside the AdS2 throat, while the JR angular momentum does
not survive this limit. Thus for different values of a/b in the starting solution, we have the same
representative in the AdS2 limit.

Let us compare and contrast the above AdS2 limit with a more naive a → 0 limit. If one does
not rescale coordinates as in (9.2.8), but rather holds r, t fixed and sends a → 0, instead of the
superstratum metric (9.2.28) one obtains the extremal black hole solution with a large horizon [99].
This can be interpreted as the solution effectively seen by an observer who remains at a fixed depth

6It corresponds to a non-rotating solutions since for asymptotically-AdS3 (1,0,n) Superstrata, the left

and right angular momenta are equal to JL = JR =
Ry

2
a2 (4.2.76) and then both vanish in the AdS2

limit. However, single-mode Superstrata with quantum number m 6= 0 will have a non-vanishing JL
after the limit.



9. AdS2 Holography: Mind the Cap 154

of the extremal BTZ throat (measured from a fixed reference far from the black hole), while the total
depth of the throat is taken longer and longer.

By contrast, the limit defined above can be interpreted as the solution effectively seen by an observer
deep inside the throat, as the length of the throat is taken longer and longer. From such an observer’s
point of view, the original asymptotic AdS3 region goes to infinity as the limit is taken, such that the
asymptotics of the solution become those given in (9.2.29).

9.3 Excitations of asymptotically AdS2 Superstrata

In this section we show that the asymptotically AdS2 solutions constructed in the previous section
admit an infinite tower of finite-energy non-BPS normalizable excitations. The results in this section
are obtained for the family of (1, 0, n) superstratum solutions, where the wave equation for minimally
coupled massless scalar fields is separable [116]. However, we expect that the existence of towers of
finite-energy excitations is a general feature of all asymptotically AdS2 microstate geometries with a
smooth IR cap. From the perspective of ten-dimensional Type IIB supergravity compactified on T4,
the scalar fluctuations we consider come from traceless deformations of the internal manifold.

Our analysis involves an analytic solution for large n, presented in Section 9.3.3, and a numerical
solution for general n, presented in Section 9.3.4. In Section 9.3.5 we discuss these results from the AdS3

perspective. When glued back to AdS3, these excitations correspond to towers of CFT2 excitations
whose energies are evenly spaced. Interestingly, for the solutions with the longest throats, the gap
between these energies is equal to the smallest possible gap of the dual CFT2.

9.3.1 The minimally coupled massless scalar wave equation

We start by considering the asymptotically AdS3×S3 (1, 0, n) family of superstratum solutions con-
structed in [99] and reviewed in Section 9.2.3.2. In the D1-D5-P duality frame, the Type IIB string-
frame metric is (4.2.30)

ds2
10 =

√
Z1Z2

P
ds2

6 +

√
Z1

Z2
δ

(4)
ij dxidxj , i, j = 1, . . . 4, (9.3.1)

where the six-dimensional metric is given in (9.2.28) and (9.2.30). This choice of family is motivated
by the fact that the wave equation of a massless minimally coupled scalar is separable and the null
geodesic equations are integrable [116]. We consider a scalar deformation of the T4 metric,

δ
(4)
ij dxidxj →

(
δ

(4)
ij + hij

)
dxidxj . (9.3.2)

The equations of motion at first order in hij require that hij is a minimally coupled scalar fluctuation
in six dimensions (see for example Appendix B of [194]), obeying the six-dimensional Klein-Gordon
equation:

1√
−det g

∂M

(√
−det g gMN∂N hij

)
= 0 . (9.3.3)

From a six-dimensional perspective the indices i, j label different scalar fields; we will take any one
of these and denote it as Φ for the rest of the section. One can either directly compute the wave
equation from the asymptotically AdS2 superstratum metric (9.2.28) or use the wave equation for the
(1, 0, n) family of asymptotically AdS3 Superstrata derived in [116], and take the AdS2 limit of this
wave equation. Both methods are equivalent. For later convenience we exhibit here the second method,
recalling the main results of [116] in the process.
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We separate variables as7

Φ = K(r)S(θ)e
i
(

1
Ry

Ω t+ 1
Ry

P v+q1ϕ1+q2ϕ2

)
. (9.3.4)

The frequency of the mode is given by Ω, P is the momentum and q1 and q2 are the quantum numbers
along the S2. In the background of an asymptotically AdS3 (1, 0, n) Superstratum, the wave equation
separates [116] into:

1

r
∂r
(
r
(
r2 + a2

)
∂rK(r)

)
+

(
a2 (Ω + P + q1)2

r2 + a2
− a2 (P + q2)2

r2

)
K(r) (9.3.5)

+
b2Ω

(
a2(Ω + 2P ) + F0(r)(2a2 q1 + (a2 + b2

2 ) Ω)
)

2a2(r2 + a2)
K(r) = mK(r) ,

1

sin θ cos θ
∂θ (sin θ cos θ ∂θ S(θ))−

(
q2

1

sin2 θ
+

q2
2

cos2 θ

)
S(θ) = −mS(θ) , (9.3.6)

where m corresponds to the constant eigenvalue of the Laplacian operator along the S3 which results
in an effective mass in the three dimensional space and where

F0(r) ≡ 1− r2n

(r2 + a2)n
. (9.3.7)

To describe fluctuations of the asymptotically AdS2 Superstrata that we have constructed in Section
9.2.3 we take the same limit as (9.2.8), rescaling Ω appropriately:

r = ar̄ , t =
τ

a2
, Ω = a2Ω̄ ; a → 0 with r̄ , τ , v , P , b , q1 , q2 fixed . (9.3.8)

The scalar wave equation for the mode

Φ = K(r̄)S(θ)e
i
(

1
Ry

Ω̄τ+ 1
Ry

P v+q1ϕ1+q2ϕ2

)
(9.3.9)

of course remains separable in our AdS2 limit. The angular part of the wave equation (9.3.6) remains
the same, and the radial wave equation becomes

1

r̄
∂r̄
(
r̄
(
r̄2 + 1

)
∂r̄K(r̄)

)
+

(
(P + q1)2

r̄2 + 1
− (P + q2)2

r̄2

)
K(r̄)

+
b2Ω̄

(
P + F̄0(r̄)

(
q1 + b2

4 Ω̄
))

r̄2 + 1
K(r̄) = mK(r̄) ,

(9.3.10)

where F̄0(r̄) is defined in (9.2.27). The angular equation (9.3.6) is solvable and there is only one branch
of well-defined solutions:

S(θ) ∝ (sin θ)|q1| (cos θ)|q2| 2F1

(
−s, 1 + s+ |q1|+ |q2|; |q2|+ 1; cos2 θ

)
, (9.3.11)

where s is given by

m = ∆(∆− 2) , s =
1

2

(
|∆− 1| − 1− |q1| − |q2|

)
. (9.3.12)

7Note that this separation ansatz appears slightly different to that of [116], because our six-
dimensional coordinates ({t, v} ≡ {t, t+ y}) are different from those of [116] ({u, v} ≡ 1√

2
{t− y, t+ y}).

For a discussion on these two choices of coordinates, see Appendix B of [98].
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The solution is regular at cos2 θ = 1 if and only if s is a non-negative integer. Consequently, the
angular wave function is regular when

|∆− 1| ≥ 1 + |q1|+ |q2| , q1, q2, ∆, s ∈ Z , s ≥ 0 . (9.3.13)

This significantly constrains the possible values of q1, q2 and ∆. For instance the value ∆ = 1 which
corresponds to tachyonic perturbations of AdS2 (m = −1) is not allowed.

The radial wave equation (9.3.10) does not appear to be analytically solvable for general n. In
what follows we shall therefore use a combination of numerical and analytical arguments to show that
it has an infinite tower of finite-energy normalizable bound-state solutions.

9.3.2 Constructing finite-energy solutions

We perform a change of variables in order to map the infinite radial direction to a segment,

z ≡ r̄2

1 + r̄2
⇐⇒ r̄ ≡

√
z

1− z
, z ∈ [0, 1) . (9.3.14)

The radial wave equation then becomes

∂z (z ∂zK(z)) +
1

4(1− z)

[
(P + q1)2 − 1

z
(P + q2)2

+ b2Ω̄

(
P + (1− zn)

(
q1 +

b2

4
Ω̄

))
− ∆(∆− 2)

1− z

]
K(z) = 0.

(9.3.15)

We first investigate the behavior of the solutions to this equation around the ends of the segment
(z = 0 and z = 1) to check whether there are any obvious restrictions to constructing bound states:

• The value P + q2 gives the centrifugal barrier at the origin (z = r̄ = 0). When P + q2 6= 0, near
z = 0 a solution of (9.3.15) must satisfy

z ∂z (z ∂zK(z)) −
(
P + q2

2

)2

K(z) = 0. (9.3.16)

The only branch of regular solutions is

K(z) ∝ z
|P+q2|

2 ∼
r̄→0

r̄|P+q2|. (9.3.17)

Consequently, regular solutions necessarily go to 0 when r̄ → 0 when the centrifugal barrier is
vanishing. This is expected, since the spacetime caps off smoothly at this location.

• When P + q2 = 0 one must consider the next-to-leading-order term in (9.3.15). The resulting
equation also has a regular branch of solutions at z = 0. The main difference is that these regular
solutions remain finite at z = 0.

• Near z = 1 (at the boundary r ∼ ∞) and for ∆ 6= {0, 2}, Equation (9.3.15) becomes:

∂z (z ∂zK(z)) − ∆(∆− 2)

4 (1− z)2K(z) = 0. (9.3.18)

The branch of non-diverging solutions is

K(z) ∝ (1− z)
1+ν

2 2F1

(ν
2
,
ν

2
; ν; (1− z)

)
∼
z→1

(1− z)
1+ν

2 ∼
r̄→∞

1

r̄1+ν
, (9.3.19)
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with
ν ≡ |∆− 1 |. (9.3.20)

These solutions decay at infinity for any value of ∆. In order to check whether they correspond
to normalizable or non-normalizable modes one has to check whether the energy of this field is
finite. The Hamiltonian density is composed of terms of the form

√
−g gMN ∂MΦ ∂NΦ (no sum

over the indexes). The most important terms when r̄ → +∞ decay as

√
−g gMN ∂MΦ ∂NΦ = O

r̄→∞

(
1

r̄1+2ν

)
. (9.3.21)

From Eq. (9.3.13) we have that ∆ 6= 1 and so ν ≥ 1. Consequently, the scalar field bound states
have finite energy.

• When ∆ = {0, 2}, the behavior of K at z = 1 is dictated by the next-to-leading-order term in
1

1−z of equation (9.3.15). One can show that this equation admits square-integrable finite-energy

solutions when r̄ →∞ that decay as K(r̄) ∼
r̄→∞

r̄−2.

These two steps do not prove the existence of bound-state solutions. However, they are necessary con-
ditions that ensure that there are no remaining obvious obstructions to building bound-state solutions.
When P + q2 6= 0, if we find solutions of (9.3.15) that go to 0 at z = 0 and z = 1, then these solutions
will behave as (9.3.17) and (9.3.19) at the boundaries and will be regular finite-energy excitations.
When P + q2 = 0, we have the same features but K can take a non-zero finite value at z = 0.

9.3.3 Analytic bound-state solutions for large n

We now analytically solve the wave equation (9.3.15) in a (1, 0, n)-superstratum background with
n� 1, in a 1/n expansion. For that purpose, we decompose the wave equation as

L
[
Ω̄
]
K(z) − zn

1− z
E
[
Ω̄
]
K(z) = 0, (9.3.22)

where

L
[
Ω̄
]
≡ ∂z (z ∂z ) +

1

4(1− z)

[(
P + q1 +

b2Ω̄

2

)2

− (P + q2)2

z
− ∆(∆− 2)

1− z

]
,

E
[
Ω̄
]
≡

b2Ω̄
(
4q1 + b2Ω̄

)
16

,

(9.3.23)

and look for regular solutions with

K(0) = const. , K(1) = 0. (9.3.24)

Note that the wave equation given by L[Ω̄] corresponds to the wave equation in a global AdS3

geometry. This AdS3 wave equation is actually the equation we can derive by considering only the
AdS3 cap of the Superstrata. The other term proportional to E [Ω̄] corresponds to the momentum
wave geometry and the junction to the AdS2 region. However, we will postpone the questions related
to the nature of the scattering in the next chapter and we concentrate here only on the existence of
normalizable modes.

The details of the method and the mathematical proof of the 1/n expansion to solve this equation
are given in Appendix A.10. We show there that the only condition for having bound-state solutions is
to impose ∆ 6= 1 as required by (9.3.13). For any other value of ∆, we have found a tower of excitation
modes Kj(z) labeled by a mode number j ∈ N. The large n expansion is valid as long as the mode
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Figure 9.2: Analytic radial wavefunctions at large n for several scalar excitation modes
of an asymptotically AdS2 (1, 0, n) Superstratum with b = 1, n � 1, P = q1 = q2 = 1
and ∆ = 4. The same wavefunctions are plotted as functions of z (left) and r̄ (right),

where z = r̄2

r̄2+1
.

number is smaller than j .
√
n . Thus the

√
n first normalizable modes are given by the AdS3 cap

geometry in the IR of our solutions. The regular solutions of (9.3.22) are

Kj(z) = κj(1− z)
1+|∆−1|

2 z
|P+q2|

2

[
j∑
`=0

(−1)`
(
j

`

)
(j + 1 + |∆− 1|+ |P + q2|)`

(1 + |P + q2|)`
z` +O

(
1

nν

)]
, (9.3.25)

where (k)` ≡
∏`−1
m=0(k+m) and κj is a normalization constant. There are two possible values of Ω̄ for

the function Kj to be a solution of (9.3.22). Both sets of frequencies describe the same wavefunctions,
so as usual we restrict attention to the positive frequencies,

Ω̄j =
2

b2

[
2j + 1 + |∆− 1|+ |P + q2| − (P + q1)

]
+ O

(
1

nν

)
. (9.3.26)

The leading-order term of the 1
n -expansion in (9.3.25) captures all the features of the wavefunction.

It corresponds to the wave computed in the AdS3 cap only. The behaviors at z = 0 and z = 1 depicted
in (9.3.17) and (9.3.19) are explicit in (9.3.25). This proves the existence of solutions regular at both

boundaries. One can re-express the modes Kj in the radial variable r̄ using z = r̄2

r̄2+1
. The mode

profiles are depicted in Fig. 9.2.

The polynomial of order j in (9.3.25) determines the number of oscillations of the wavefunction
(one can explicitly show that the polynomial has exactly j roots in the range 0 < z < 1). Much as for
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Figure 9.3: Numerically obtained radial wavefunctions of the first four excitation modes
of an asymptotically AdS2 (1,0,1) Superstratum with b = 1, P = q1 = q2 = 1 and ∆ = 4,
plotted as functions of z.

solutions to the Schrödinger equation, the lowest mode of the radial wave function has no nodes, the
next one has one node, etc. One can see both from Fig. 9.2 and from the form of the solution that the
excitations are localized in the cap and decay rapidly as one goes up the throat.

Thus, we have shown that in the large n limit, the asymptotically AdS2 (1,0,n)-superstratum
solutions we have constructed support an infinite tower of finite-energy non-BPS excitations. We will
now investigate the same issue for arbitrary n using numerical methods.

9.3.4 Numerical bound-state solutions for arbitrary n

We now describe the main steps of the procedure we use to solve Equation (9.3.15) numerically (using
Mathematica), as follows:

• We fix particular values for {n, P, q1, q2,∆}. The remaining variable is the frequency Ω̄.

• When we imposed directly on K(z) the Dirichlet boundary condition K(0) = K(1) = 0, this
led the numerics to return the trivial solution K(z) = 0 everywhere. To evade this problem,
we instead impose Dirichlet boundary conditions K(0) = 0 and |K(1

2)| = 1. Since we do not
expect the solution to have a node exactly at z = 1

2 , this boundary condition fixes the overall
normalization.

• We then fine-tune the value of Ω̄ to find the values for which K goes to 0 when z → 1.

• For each configuration {n, P, q1, q2,∆} we have studied, we find a discrete set of positive Ω̄ for
which K vanishes at z = 1. This set of positive frequencies Ω̄j characterizes the tower of non-
supersymmetric excitations of our solutions.

We illustrate our procedure with a particular example:8

n = 1 , b = 1 , P = q1 = q2 = 1 , ∆ = 4 . (9.3.27)

The equations governing bound states for this choice of parameters are

∂z (z ∂zKj) −
[

1

z
+

2

(1− z)2
− Ω̄j

4(1− z)
− Ω̄j

4

(
1 +

Ω̄j

4

)]
Kj = 0,

with Kj(0) = Kj(1) = 0.

(9.3.28)

8In principle, the value of b should be chosen to ensure that QP in (4.2.76) satisfies (9.2.16) (recall
a has already taken to zero here), however we shall simply take b = 1 for the purpose of plotting the
results. From (9.3.23) the physics of the modes depends only on the combination b2Ω̄, so one can easily
rescale as desired.
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We apply the procedure detailed above. We find a discrete set of values of Ω̄ for which K(z) is regular
at the boundaries. Figure 9.3 shows the radial wave functions for the first four modes of the tower in
the z-coordinate system.

The plots in Fig. 9.4 show the radial component of the modes in the radial coordinate r̄. Their
features are very similar to the ones found analytically at large n, shown above in Fig. 9.2. In particular,
the energy grows approximately linearly with the mode number and the excitations are localized near
the IR cap and decay very quickly at large r̄, even for high-energy excitations.
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Figure 9.4: Numerically obtained radial wavefunctions of several different excitation
modes of an asymptotically AdS2 (1,0,1) superstratum solution with b = 1, P = q1 =
q2 = 1 and ∆ = 4, plotted as functions of r̄.

Interestingly, the frequencies have approximately the same linear dependence on the mode number,
j, as that found at large n in Eq. (9.3.26) (see Fig. 9.5):

Ω̄j ' 5.97 ( j + 1.67 ), j ∈ N. (9.3.29)

We repeated the numerical procedure for different values of {n, P, q1, q2,∆}, and we obtained similar
results to those shown here.

We thus see that the existence of an infinite tower of excitations can be established analytically at
large n and numerically for finite n. It is remarkable how similar the mode profiles are for large n and
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Figure 9.5: The frequencies of modes with number j, and the linear fitting function given
in (9.3.29).

for n = 1 (compare Fig. 9.2 with Figs. 9.3 and 9.4). It is also interesting that the frequencies depend
linearly on the mode number, both at large n (9.3.26) and at finite n (9.3.29). Despite the rather
complicated form of the equations we are solving, the normalizable modes are essentially determined
by the smooth AdS3 IR cap.

9.3.5 An AdS3 perspective

In previous subsections we studied scalar excitations of asymptotically AdS2 Superstrata. It is also
interesting to solve the wave equation of the corresponding asymptotically AdS3 Superstrata and to
examine the properties of the modes from the perspective of an AdS3 observer. For that purpose, we
consider the family of asymptotically AdS3 (1, 0, n) Superstrata and the wave equation of a scalar field
in this background (9.3.4)–(9.3.6).

9.3.5.1 Excitation modes of asymptotically AdS3 solutions

We recall that the mode profile is

Φ = K(r)S(θ)e
i
(

1
Ry

Ω t+ 1
Ry

P v+q1ϕ1+q2ϕ2

)
, (9.3.30)

where K(r) and S(θ) satisfy the radial and angular equations (9.3.5) and (9.3.6). The solutions of the
angular equation are still given by (9.3.11) and (9.3.12). First, we perform a similar change of variables
in order to map the infinite radial direction to a segment,

ẑ =
r2

a2 + r2
⇐⇒ r = a

√
ẑ

1− ẑ
, ẑ ∈ [0, 1) . (9.3.31)

The radial wave equation (9.3.5) becomes

L̂ [Ω] K(ẑ) − ẑn

1− ẑ
Ê [Ω] K(ẑ) = 0, (9.3.32)
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with the boundary condition K(0) = K(1) = 0, and where we have defined

L̂ [Ω] ≡ ∂ẑ (ẑ ∂ẑ ) +
1

4(1− ẑ)

[(
P + q1 + (1 + b̂2) Ω

)2
− 1

ẑ
(P + q2)2 − ∆(∆− 2)

1− ẑ

]
,

Ê [Ω] ≡
b̂2Ω

(
2q1 + (1 + b̂2) Ω

)
4

,

b̂ ≡ b√
2 a

.

(9.3.33)

This equation looks similar to the radial wave equation in the asymptotically AdS2 background (9.3.22)
and (9.3.23).

As in Section 9.3.3, we take n to be large and work to leading order in 1/n. The only condition for
having finite-energy excitations is to impose ∆ 6= 1. For any other value of ∆, we have found a tower
of excitation modes Kj(ẑ) labeled by a mode number j ∈ N:

Kj(ẑ) = κj (1− ẑ)
1+|∆−1|

2 ẑ
|P+q2|

2

[
j∑
`=0

(−1)`
(
j

`

)
(j + 1 + |∆− 1|+ |P + q2|)`

(1 + |P + q2|)`
ẑ`

+O
(

1

nν

)]
,

(9.3.34)

where (k)` ≡
∏`−1
m=0(k + m) and κj is a normalization constant. The wave function Kj is again a

solution of (9.3.32) for two values of Ω. The tower of positive values of Ω is given by

Ωj =
1

1 + b̂2

[
2j + 1 + |∆− 1|+ |P + q2| − (P + q1)

]
+ O

(
1

nν

)
. (9.3.35)

Furthermore, we have a relation between 1 + b̂2 and the quantized charges of the solution derived in
Section 4.2.5.4

a2 +
b2

2
=

Q1Q5

R2
y

⇒ 1

1 + b̂2
=

a2R2
y

Q1Q5
=

2 jR
N1N5

, (9.3.36)

where N1, N5 are the integer numbers of D1 and D5 branes, and where jR is dimensionless and
quantized in units of 1/2 (so jR = 1/2 corresponds to the solution with the longest throat from the
AdS3 perspective). One can now compute the mass gap, δ, of our perturbations, which is equal to the
smallest excitation energy above the ground state:

δ ≡ min
∆,P,q2,q1

Ω0

Ry
=

4 jR
N1N5Ry

. (9.3.37)

The mass gap was previously estimated by an order-of magnitude calculation in [98] and by an infrared
analysis of the wave equation in [117], where it was also pointed out this gap is of the same order of
magnitude as the smallest mass gap in the D1-D5 CFT.

In fact, for non-BPS excitations of the D1-D5 CFT, the lowest gap in the theory is obtained by
adding one unit of left-moving and one unit of right-moving energy to a ground state in the longest
possible winding sector, of winding N1N5, and is equal to 2

N1N5Ry
. Analytically solving the wave

equation allows us to also pin down the exact coefficient of the bulk mass gap and to find that the
solution with the longest throat has a gap exactly equal to the CFT2 gap in this ‘long string’ sector:

2
N1N5Ry

.

By contrast, the dual CFT states at the orbifold point (4.2.53) have strands of length one, so the
mass gap at the free orbifold point in the moduli space is 2

Ry
. Of course, the gap is not a protected

quantity and so a mismatch is both expected and in line with previous findings [106,98]. However, it is
remarkable that in this example the gap appears to be renormalized by precisely the maximal amount
N1N5. We will examine this issue in more details in the next chapter.
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9.3.5.2 Infinite-throat limit of the excitation modes

We next describe how the perturbations behave as a→ 0, when the length of the AdS2 region increases
indefinitely. First, we rewrite the mode profiles and their corresponding frequencies to make the a-
dependence explicit,

Φj = Kj(r)S(θ) e
i
(

1
Ry

Ωj t+
1
Ry

P v+q1ϕ1+q2ϕ2

)
, (9.3.38)

where

Kj(r) = κj

(
a2

r2 + a2

) 1+|∆−1|
2

(
r2

r2 + a2

) |P+q2|
2

×[
j∑
`=0

(−1)`
(
j

`

)
(j + 1 + |∆− 1|+ |P + q2|)`

(1 + |P + q2|)`

(
r2

r2 + a2

)`
+O

(
1

nν

)]
,

(9.3.39)

Ωj =
a2R2

y

Q1Q5
[ 2j + 1 + |∆− 1|+ |P + q2| − (P + q1) ] + O

(
1

nν

)
, (9.3.40)

and where S(θ) is given as before by (9.3.11) and (9.3.12).
• For an observer at the top of the AdS2 throat, near the AdS2–AdS3 gluing region, the six-dimensional
coordinate system is the original one {r, t, v, θ, φ1, φ2}. The limit a→ 0 is trivial and gives Ωj → 0. This
means that the perturbations seen by such an observer are red-shifted to zero-energy perturbations.
This confirms the point of view that the AdS3 perspective is inappropriate to study asymptotically
AdS2 geometries.
• For an observer at the bottom of the throat, we use the rescaled coordinates (9.2.8): {r̄, τ, v, θ, φ1, φ2}.
In these coordinates, the leading terms in 1/n of the radial parts of the excitation modes are indepen-
dent of a and the frequencies depend on a only through the combination a2 + b2/2 = Q1Q5/R

2
y,

Φ̄j = K̄j(r)S(θ)e
i
(

1
Ry

Ω̄j τ+ 1
Ry

P v+q1ϕ1+q2ϕ2

)
, (9.3.41)

where

K̄j(r̄) = κj

(
1

r̄2 + 1

) 1+|∆−1|
2

(
r̄2

r̄2 + 1

) |P+q2|
2

×[
j∑
`=0

(−1)`
(
j

`

)
(j + 1 + |∆− 1|+ |P + q2|)`

(1 + |P + q2|)`

(
r̄2

r̄2 + 1

)`
+O

(
1

nν

)]
,

(9.3.42)

Ω̄j =
1

a2 + b2

2

[
2j + 1 + |∆− 1|+ |P + q2| − (P + q1)

]
+ O

(
1

nν

)
. (9.3.43)

In the limit a → 0, these expressions correspond precisely to the modes on top of the asymptotically
AdS2 (1, 0, n) Superstrata (9.3.25), (9.3.26). In other words, the perturbations of the asymptotically
AdS3 solutions live in the cap at the bottom of the intermediate AdS2 throat, and when the throat
gets longer and longer they become the perturbations of an asymptotically AdS2 solution as seen by
an observer at the bottom of the infinite throat.

To conclude this section, the solution of the wave equation on the asymptotically AdS3 solutions
raises three interesting points. First, the mass gap of scalar excitations in the bulk is 4 jR

N1N5Ry
. For

the solution with the longest throat, this matches exactly the lowest mass gap of non-BPS excitations
of D1-D5 CFT2, and is N1N5 times larger than the value computed at the free orbifold point of the
moduli space. Second, from the perspective of an observer at the bottom of the AdS2 throat, the tower
of excitations is the same as the tower of excitations on top of a asymptotically AdS2 solution plus
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small corrections. Thus, there is a one-to-one mapping between the excitation modes of asymptotically
AdS3 and the excitation modes of asymptotically AdS2 microstate geometries.

Third, the frequencies of the modes and hence the spacing between different energy levels con-
structed on top of these solutions depend linearly on the mode number, which is quite remarkable
given the intricate form of the equations we solved to obtain these energies. A linear spectrum agrees
with what expects from a CFT2 on a cylinder, and it would be interesting to understand whether this
is a feature of more general superstratum solutions.

We note in passing that it has recently been argued that there is a tension between the fact that
the spacing of excitations above the BPS D1-D5-P asymptotically AdS3 Superstrata with the longest
throats is of order 1

N1N5
, and the fact that energy differences of non-BPS states away from the BPS

bound are generically of order e−S , where S is the entropy9 of the black hole [195]. However, these
two facts are not in any sharp tension: above the many BPS states, different towers of excitations with
spacings of order 1

N1N5
that are not exactly the same will generically give rise to differences in energies

of non-BPS states of order e−S because of the large degeneracy of states. Note that any given pair of
non-BPS states with an energy difference of order e−S could easily lie in different topological sectors
and/or different regions of parameter space, so one should not expect such an energy difference to be
visible in the perturbations of a single microstate geometry.

9.4 Discussion

In this chapter we have constructed two large classes of asymptotically AdS2 supergravity solutions, and
formulated a general procedure to construct even larger classes of such solutions. We have also solved
for a tower of non-supersymmetric excitations above a family of capped asymptotically AdS2 solutions.
Returning to AdS2 holography, we now discuss in detail the implications of our results, especially the
non-supersymmetric bound state excitations we have found, focusing on the key question: What is
their backreaction of these modes, and what does this imply for the dual CFT1?

9.4.1 Backreaction

One possibility is that the backreaction of our modes necessarily modifies the AdS2 UV asymptotics,
and gives rise to “running dilation” or Nearly-AdS2 solutions where the volume of the compact direc-
tions grows in the UV and the AdS2 throat is glued to an AdS3, AdS4, or flat spacetime. In global AdS2

and in simple theories (such as Jackiw-Teitelboim gravity) it has been argued that all finite-energy
perturbations induce a running dilaton that modifies the AdS2 UV asymptotics [178, 179]. However,
our solutions cap off smoothly in the IR, so these arguments do not directly apply.

One might nevertheless imagine that the finite energy of any backreacted solution might mean that
the UV is necessarily modified. However, it is known that there exist time-dependent non-extremal
black hole solutions that have non-degenerate horizons in the IR and remain asymptotically AdS2 in
the UV [188]10. Thus the mere presence of a non-trivial energy-momentum tensor in the bulk is not
enough to destroy the AdS2 UV asymptotics. Indeed, if the backreacted solutions preserve the AdS2

UV, they would be natural candidate microstates of these non-extremal black holes.11

9The entropy of non-BPS D1-D5-P black holes is given by S = 2π
√
N1N5NP − j2

L +

2π
√
N1N5NP̄ − j2

R, where NP = L0 − c/24 and NP̄ = L̄0 − c/24 are the left- and right-moving ex-
citation numbers.

10The arguments of [178, 179] do not apply to these solutions either, because of the presence of a
horizon.

11These black holes can also be obtained from non-extremal asymptotically flat black holes by a similar
limit to that defined in Section 9.2.1.
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Furthermore, if the backreaction of the finite energy bound-state modes necessarily modifies the
AdS2 UV asymptotics, it gives rise to a puzzle: In such a scenario, the resulting finite length of the
AdS2 throat would depend on the energy above extremality, and the natural expectation is that this
dependence should be inverse-linear. That is, from an AdS3 perspective, the lowest state would still
have energy 2

N1N5
, coming from the lowest-energy mode in the longest throat. The next state would

have twice more energy from the perspective of an observer at the bottom of the throat, but the throat
itself would be be shorter by a factor of two because of the inverse-linear dependence on the energy
added. Hence, from the AdS3 perspective the energy of the second mode would be 4× 2

N1N5
, and so

on, leading to a quadratic spectrum of excitations that does not resemble the spectrum of any CFT2

known to us. This conclusion could perhaps be avoided if the dependence of the throat length on the
added energy is sufficiently weak, although we have not managed to construct a credible model for this
possibility.

This puzzle, together with the existence of non-extremal black holes with AdS2 UV asymptotics,
is in our opinion a strong indication that the backreaction does not necessarily modify the AdS2 UV.
We now scrutinize this alternative possibility and show that it passes some basic tests.

First, one should identify the physics that controls whether or not the UV is modified into a throat
of finite length. We propose that generically the throat length should be controlled by a combination
of the overall angular momentum jR and the contributions to jR from the topological bubbles of the
solution. The throat lengths of the asymptotically AdS3 Superstrata studied in the previous section
are indeed controlled by jR, and we have seen that their energy gaps, as well as the difference between
higher energy levels are 4jR

N1N5
. As described in the previous section, this is consistent with D1-D5 CFT

physics.

Before taking the strict AdS2 limit of the deep-scaling solutions studied in this chapter, the long
AdS2 throats and their gluing regions correspond, from an AdS2 perspective, to running-dilaton so-
lutions (where the dilaton encodes the size of a compact space transverse to AdS2). Our method to
construct asymptotically AdS2 solutions has been to scale into a region of parameter space where the
dilaton starts running further and further out in the AdS2 UV, and to take the AdS2 limit which
restricts to a locus in parameter space where the dilaton becomes asymptotically constant.

In this language, one might imagine that introducing a non-supersymmetric perturbation and
keeping all the parameters fixed on this locus in parameter space, may also induce a running dilaton.
However it appears by parameter counting that there should be enough freedom to re-adjust parameters
to compensate the non-supersymmetric contribution to the dilaton equation of motion and re-set the
dilaton to asymptote to a constant value. Hence, both in the black-hole solutions of [188] and in
our solutions, we expect that the parameters that control the running of the dilation in the UV
are independent of the presence of a finite-energy configuration in the IR, and that finite-energy
perturbations are compatible with AdS2 UV asymptotics.

For the above reasons, the working hypothesis we consider for the remainder of our AdS2-CFT1

discussion is that our finite-energy excitations backreact into solutions that preserve the (constant
dilaton) AdS2 asymptotics, and that are dual to time-dependent configurations of the CFT1.

9.4.2 Holographic description of the solutions and excitations

A fascinating question is to investigate whether or not the finite-energy bound state excitations cor-
respond to finite-energy excitations in the dual CFT1. In [177] it was argued that for certain simple
two-dimensional Maxwell-dilaton theories, the holographic stress tensor is identically zero whenever the
UV asymptotics is AdS2, and hence all the constant-dilaton asymptotically AdS2 solutions, including
the time-dependent black holes of [188], have zero energy in the CFT1. Since the CFT1 configurations
corresponding to these black holes have time-dependent VEVs, and since one usually associates time
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dependence with finite energy, this would appear to be a distinctly unconventional property of the
CFT1. However, a priori it does not appear to be ruled out.

Having said this, the asymptotically AdS2 Superstrata descend from string-theory solutions with
nontrivial harmonics along the compact directions and both R-R and NS-NS potentials turned on.
Thus their field content from an AdS2 perspective consists of a large (and possibly infinite) number of
Kaluza-Klein modes, as well as several scalars and vectors, and hence is much more general than the
field content of the solutions considered in [177]. Furthermore, our supersymmetric solutions do not
have an everywhere-constant dilaton as in [177], but a dilaton that asymptotes to a constant. Thus,
computing the holographic stress tensor for our theories may give a different result. A priori it seems
more likely that the finite-energy bound state excitations we construct are dual to finite-energy time-
dependent states of the CFT1. This would fit much better with the expectation that time dependence
corresponds to finite energy, and would indicate that the CFT1 is a more conventional theory.

Another reason to expect that our finite-bulk-energy bound states should be dual to finite-energy
CFT1 states is that we have an infinite tower of finite-energy perturbations on top of a family of bulk
solutions, and we expect to have such a tower of perturbations on top of every such supersymmetric
solution. Hence, if the CFT1 energy of all these modes were zero, there would be a dramatic over-
counting problem of the CFT ground states. Of course one could argue that only eS of these states
are supersymmetric and contribute to the index, while the other states do not, but this would again
be a distinctly unusual situation.

Furthermore, the bulk theory also has an infinite number of black hole solutions, parameterized by
an arbitrary function of one variable [188] and, if these black holes correspond to ensembles of CFT1

zero-energy states, then again there would appear to be a serious overcounting problem of the CFT
ground states.

If the finite-energy bulk perturbations had finite CFT1 energies, this would solve all these problems:
the CFT1 would not have an infinite entropy at zero energy and no states at finite energy, but rather
a finite entropy at each energy level. Furthermore, the entropy at each energy level might be captured
by the non-extremal black holes of [188].

When the holographic CFT1 has a parent holographic CFT2 dual to AdS3, our construction can
used to better understand the relation between the CFT1 and the parent CFT2. The asymptotically
AdS2 solutions constructed in Section 9.2.3 are obtained as a limit of families of asymptotically AdS3

solutions with increasingly longer throats and progressively decreasing JR. The asymptotically AdS2

solutions are formally the JR = 0 members of these families. It is tempting to postulate that for every
microstate of the CFT1 there is a corresponding family of CFT2 microstates, parameterized by the
value of JR. It should be understood that this applies to states with relatively low values of jR, that
are dual to solutions with long throats.

From the perspective of the explicit families of D1-D5 orbifold CFT2 states dual to asymptotically
AdS3 Superstrata (see [99, 101]), the expectation value of JR is given by half the average number of
|+,+〉 Ramond-Ramond ground state strands, so decreasing or increasing JR corresponds to changing
this average. Provided that the number of |+,+〉 strands remains small, this produces a small relative
change in the physics of the other strands of the CFT2. Furthermore, it is tempting to imagine that,
away from the orbifold point, the remaining strands form some kind of effective ‘long string’ that
explains the small gap in the bulk.

One could then think of this one-to-many correspondence between AdS2 and AdS3 microstates,
and our AdS2 limit, as zooming on the information carried by the long string, which is the information
encoding the bulk of the black hole entropy, and ignoring the information from the very small number
of |+,+〉 strands. These strands could then be thought of as principally encoding the information
pertaining to how the AdS2 throat geometry is embedded inside AdS3.



Chapter 10

Scattering from microstate geometries
in the black-hole regime

In the previous chapter, the derivation of normalizable modes in superstratum background within
the black-hole regime opened up several other interesting directions. One of them is the derivation
of the boundary-to-boundary four-point functions, or response functions, in the bulk corresponding to
Heavy-Heavy-Light-Light correlators in the dual D1-D5 CFT.

In the present chapter, we review the work of [29] in which a brand new technique was developed
to compute boundary-to-boundary scalar Green function in a very large class of asymptotically AdSD
background. We apply this technique to (1, 0, n) superstratum solutions. We show that the response
function of a probe scalar, in momentum space, is essentially given by the pole structure of the highly-
redshifted AdS3 cap modulated by the BTZ black-hole response function. In position space, this
translates into a sharp exponential decay at short time followed by evenly spaced “echoes from the
cap,” with period ∼ N1N5.

This work bridges the gap between calculations of CFT HHLL four-point functions and information-
theory-based arguments that the quantum unitarity requires the horizon of black holes to be replaced
by a structure that allows information to escape.

In Section 10.1, we will review the class of boundary-to-boundary Green functions, or response
functions, that are of interest and how they related to two-point functions of the holographic theory.
We reduce the problem to the usual simple recipe that involves solving the scalar wave equation in the
background geometry. We then briefly review the elements of the WKB method and introduce our
hybrid WKB strategy.

In Section 10.2, we implement the hybrid WKB strategy in detail for a range of possible problems
and we then focus on asymptotically-BTZ geometries for which we write the momentum-space Green
function in terms of the corresponding BTZ Green function and the WKB integral that is associated
with the bound-state structure of the background geometry.

In Section 10.3 we quickly review the geometry of (1, 0, n) Superstrata and set up the application
of our hybrid WKB method.

In Section 10.4 we compute the momentum-space Green function for the (1, 0, n) Superstrata and
examine the diverse limits and features of the geometry and how they emerge from the Green function.

In Section 10.5 we examine the position-space Green functions for the (1, 0, n) Superstrata. The ba-
sic goal is to show how to adapt the Fourier transforms that relate position-space and momentum-space
Green functions for AdS3 and extremal BTZ to the corresponding Green functions for Superstrata.

167
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10.1 Holographic response functions

10.1.1 Brief review of holographic correlators

A standard way to compute two-point correlation functions of an operator O in QFT is to couple the
QFT to an external source

∫
JO and compute the response function

〈OO〉 =
δ

δJ
〈O〉J

∣∣∣∣
J=0

, (10.1.1)

where 〈O〉J is the one-point function of the operator O, in the state of interest, in presence of the
source J .

The holographic calculation of the two-point function of an operator O can be performed in an
identical manner, where one uses the holographic dictionary to read off the expectation value of the
operator in presence of the source. Concretely, if one considers the bulk solution for a (free) scalar
field with mass m dual to the boundary operator O, near the AdS boundary (r → ∞) this solution
takes the form

Φ(~x, t; r) = β(~x, t) r∆−d (1 +O(r−2)) + α(~x, t) r−∆ (1 +O(r−2)) , (10.1.2)

where ∆(∆ − 2) = m2l2. The coefficient α is identified with the expectation value of O, while β
corresponds to the source. While α, β are independent as far as the asymptotic equations of motion
are concerned, they become related through a boundary condition in the interior of the spacetime
(e.g. smoothness), which encodes information about the state of the CFT. The holographic two-point
function, (10.1.1), is then δα

δβ . Note that in order to compute two-point functions in the given state, a
linearized analysis of the bulk scalar will suffice. The above discussion applies to 2∆ /∈ Z; the integer
case is more subtle but is also well understood [196].

The above calculation can be performed in either Euclidean or Lorentzian signature. In Euclidean
signature, operators commute, and there is a single two-point function one can define. The dual
boundary condition in the bulk usually corresponds to smoothness in the interior of the geometry. In
Lorentzian signature, several prescriptions are possible, corresponding to the different time orderings of
the operators: retarded, advanced, Feynman, Wightman. In order to compute these various correlators
one can work in a doubled formalism, both in the field theory and on the gravity side. If the supergravity
background is a black hole, one uses the Schwinger-Keldysh formalism on the CFT side and on the
gravity side one uses either the eternal black hole [197] or a doubled time contour [198, 199]. In this
doubled formalism, it has been shown that the choice of sources on both contours precisely selects
infalling boundary conditions at the black hole horizon [200]. The resulting correlator is the retarded
propagator.

When there is no black hole in the bulk, bound states exist and it has been emphasized that
the choice of initial and final conditions of the early and late time slices are important. One may
nevertheless wonder about the result of a non-doubled formalism for the response function, ignoring
said initial and final boundary conditions. In the case of geometries with a smooth interior, the response
function we will obtain is the Feynman propagator, which is just the Wick rotation of the Euclidean
correlator.

10.1.2 Brief review of WKB

For sufficiently complicated geometries, like the Superstratum, one cannot solve the scalar wave equa-
tion exactly and must resort to an approximate technique to obtain the boundary-to-boundary Green
functions or response functions. Here we will describe our broader strategy in adapting WKB methods
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to this purpose. As we will discuss, the naive application of WKB methods is, in fact, poorly suited to
the computation of response functions using (10.1.2)1. However, in this section, we will describe a hy-
brid strategy in which we match WKB approximations onto exact treatments of asymptotic structure.
The result is a far more reliable, controlled and accurate technique for computing good approximations
to response functions. We will apply these ideas to several examples in Sections 10.2 and 10.3. Here we
simply wish to describe the technique and explain how suitably adapted WKB methods can actually
be used to give detailed information about correlation functions.

10.1.2.1 The basics of the WKB method

We are interested in computing the response function in backgrounds which have a separable scalar
wave equation

2Φ = m2Φ , (10.1.3)

so that the non-trivial part of the wave equation is a second order differential equation for the “radial
function,” K(r), of the wave

Φ(t, r, y1, y2, . . .) ≡ Y (y1, y2, . . .) K(r) e−iωt.

Note that we are using ω for the frequency of the mode and not Ω like in Section 9.3. We are using
capital letters Ω and P for the momentum conjugates when dealing with superstratum background
only. For generic background we will use small letters. This will facilitate the discussion.

The function K(r) contains all the details of the geometry from interior structure, r ∼ 0, to the
asymptotic region, r →∞. The next step is to rewrite this as a Schrödinger problem. We rescale K(r)
to a new wave function Ψ(r) ≡ f(r)K(r), for some carefully chosen function f(r). We will furthermore
allow for a change of variables r → x = x(r) (for which we will specify requirements below) so that
the radial equation is reduced to the standard Schrödinger problem:

d2Ψ

dx2
(x) − V (x)Ψ(x) = 0 , (10.1.4)

for some potential, V (x). This potential encodes all the details of the wave, including its energy, mass,
charge and angular momenta. In practice, there can be many ways to reduce a given radial equation
to Schrödinger form, but these choices do not affect the essential physics of the WKB approximation2.

First, for the WKB wave functions, ΨWKB(x), to be good approximations to the exact solutions one
must require that the potential itself does not fluctuate wildly. That is, it should obey the following
condition: ∣∣∣∣V (x)−3/2 dV

dx

∣∣∣∣ � 1 , when V (x) 6= 0 . (10.1.5)

The “boundaries” of the Schrödinger problem depend upon the choice of x(r), but here we assume
that the coordinate x has been chosen so that x→ +∞ corresponds to the asymptotic region, r →∞
and that the other boundary is at x→ −∞. In all of the problems we study, the potential, V (x), will
go to a constant, positive value as x→ +∞:

lim
x→+∞

V (x) ≡ µ2 , µ > 0 . (10.1.6)

This limit defines the parameter µ. For an asymptotically AdS background, we can choose f so that this
parameter is related to the mass of the particle and the dual conformal dimension is µ =

√
1 +m2`2 =

1Note that WKB methods have been used before to compute correlation functions using normalizable
modes.

2However, choosing the reduction to Schrödinger form carefully can make WKB approximation alge-
braically simpler and, in some circumstances, more accurate.
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∆− 1. The shift by 1 is due to the rescaling of the wave function. As mentioned before, we will treat
the case 2µ /∈ Z.

We have now reduced the computation of the response function to the well-understood Schrödinger
problem for which WKB was originally developed. In particular, the solution will break into oscillatory
parts in the classically allowed region where V (x) < 0, and exponentially growing or decaying parts in
the classically forbidden region V (x) > 0. The junctions between these regions, where V (x) = 0, are
referred to as “(classical) turning points” because classical particles do not “penetrate barriers” but
simply reverse course at these turning points. The requirement, (10.1.6), means that classical particles
cannot escape to infinity, which is in accord with the behaviour of massive particles in asymptotically
AdS spaces.

Significantly far from the classical turning points, when (10.1.5) is valid, the solutions, to first order
in WKB, are of the form

Ψ(x) = |V (x)|−
1
4 exp

(
±i
∫
|V (x)|

1
2dx
)
, or Ψ(x) = |V (x)|−

1
4 exp

(
±
∫
|V (x)|

1
2dx
)
, (10.1.7)

respectively. The solutions on the left are oscillating in two possible directions given by the ±i. They
are solutions in regions where V (x) < 0. The solutions on the right are decaying or growing depending
on the ±. They are solutions in regions where V (x) > 0. Since the potential converges asymptotically
to a positive value, the solutions can be decomposed in a basis of growing or decaying solutions. We

will denote them in what will follow as Ψ
grow/dec
WKB .

The non-trivial aspect of the WKB approximation is how to connect the classical, oscillatory
solutions to the decaying and growing solutions at each turning point. This is done by expanding the
potential at those points, x∗:

V (x) = V (x∗) + V ′(x∗) (x− x∗) = V ′(x∗) (x− x∗) . (10.1.8)

One then uses the fact that the Schrödinger problem, with a linear potential, has an exactly-known
solution in terms of Airy functions. The oscillatory and decaying properties of Airy functions are then
matched to the behavior of the corresponding WKB functions in (10.1.7).

This is extremely effective at computing bound-state and other “interior” structure but is typically
quite problematic when it comes to asymptotic structure that is essential to the computation of a
response function. Indeed, for large x where V (x) > 0, the physical WKB solution will have the form

Ψphys
WKB(x) = Ψgrow

WKB +AΨdec
WKB = eµx(1 + . . .+ e−2µx + . . .) +A e−µx(1 + . . .) , (10.1.9)

where A is a constant determined by the physical boundary condition at x ∼ −∞. By comparison
with (10.1.2), One can unambiguously identify the coefficient of the growing modes at infinity, β = 1,
however, the identification of the full coefficient of the decaying mode may be hard in practice, since
Ψgrow
WKB may contain a piece. Thus α is very difficult, if not impossible, to extract purely from the WKB

wave-function.

10.1.3 The WKB hybrid technique

There is a very effective way to adapt WKB techniques to the computation of response functions,
and this approach works extremely well for much of the spectrum on Superstrata. For simplicity, we
assume that there is at least one classical turning point where the potential vanishes and that (10.1.6)
is satisfied. Let x+ be the outermost classical turning point, that is, one has V (x+) = 0 and V (x) > 0
for x > x+. The position of x+ depends on the background and on the energy and momenta of the
wave, and, in particular, changes with the energy of the wave3.

3In many applications of the WKB method the energy is included explicitly and the integrals involve
|E − V (x)|. In our formalism, E is absorbed into V (x).



10. Scattering from microstate geometries in the black-hole regime 171

x

V (x)

0

Interior region
Exactly solvable

region

x+

Solvable potential with a
known response function,
Rasymp

WKB
===⇒ Total response function,

Rtot = F (V (x < x+), Rasymp)

V
(x

)

V a
sy

m
p
(x

)

Figure 10.1: Schematic description of the WKB hybrid technique to derive the response
function of a Schrödinger problem given by a potential V (x) in red. The response func-
tion will be a deformation of the “asymptotic” response function given by the solvable
asymptotic potential Vasymp(x) with a term which only depends on the potential in the
interior.

The WKB hybrid technique supposes that there is an asymptotic potential, Vasymp(x), that very
closely approximates V (x) in the region x > x+ and that the Schrödinger problem for Vasymp(x) is
exactly and analytically solvable (see Fig.10.1).

Ψ′′E(x) − Vasymp(x)ΨE(x) = 0 . (10.1.10)

These solutions closely approximate those of the original Schrödinger problem and they can be sep-
arated into distinct and non-overlapping growing and decaying modes, Ψgrow

E and Ψdec
E , normalized

according to
Ψgrow
E = e+µx (1 + . . .) , Ψdec

E = e−µx (1 + . . .) , x→∞ . (10.1.11)

Importantly, Ψgrow
E contains only the “purely growing” mode and has no sub-leading term involving

Ψdec
E since 2µ /∈ Z. In the region x > x+, an approximate solution to the original Schrödinger problem

can now be written as in (10.1.2):

Ψ(x) ≈ βΨgrow
E + αΨdec

E ∼
[
β eµx + α e−µx

]
. (10.1.12)

and, by construction and to the level of approximation of V (x) by Vasymp(x), the response function is
indeed given by α/β. On the other hand, in the WKB formalism, the physical solution at any x takes
the form (10.1.9). The main goal is now to determine α and β in terms of A. This can be easily done
by matching (10.1.9) which captures the inner structure of the wave to (10.1.12) where the response
function can be read, continuously around x+

Ψdec
WKB(x) ≈ a1 Ψdec

E (x) ,

Ψgrow
WKB(x) ≈ b1 Ψgrow

E (x) + b2 Ψdec
E (x) , x ≥ x+ ,

(10.1.13)
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for some coefficients a1, b1 and b2 which will be determined below. Obviously Ψdec
WKB(x) cannot have

term proportional to Ψgrow
E (x). The response function is then given by

RWKB =
α

β
=

a1

b1
A+

b2
b1
. (10.1.14)

The ratio a1/b1 only involves the relative normalizations of ΨWKB and ΨE in the asymptotic region, so
it only depends on the asymptotic potential. The quantity A is determined by the boundary condition
in the deep interior, and will be calculated by WKB approximation. Finally, as we will see below, the
ratio b2/b1 only cares about the matching condition between the exact and WKB wavefunctions in the
region around x+.

In other words, one can use WKB methods to determine the solution in the region x ≤ x+ and then
use the Airy function procedure around x = x+ to match this WKB solution to the exactly solvable
solution (10.1.12) in the region x > x+. This will enable us to use the WKB method to capture all
the interesting interior structure in the region x < x+ and accurately extract the Green function by
coupling this “interior data” to the exactly-solvable asymptotic problem.

In the next section, we will show that the WKB response function, RWKB in (10.1.14), is given by

RWKB =

(
A+

√
3

2

)
e−2I+ −

Ψgrow
E (x+)

Ψdec
E (x+)

, (10.1.15)

where I+ is defined by:

I+ ≡ − µx+ +

∫ ∞
x+

(
|V (z)|

1
2 − µ

)
dz , (10.1.16)

where we have “added and subtracted” µ to the integrand so as to handle the leading divergence in the
integral, since we want to calculate α/β which remains finite. The quantity A encodes the information
about the potential V (x) for x < x+ as well as the physical boundary condition imposed as x→ −∞:

• If V (x) has only one turning point, x+, then one necessarily has V (x) < 0 for x < x+. The
interesting physical boundary conditions are those of a black hole in which the modes are required
to be purely infalling as x→ −∞. We will show that4

A = sign(ω)
i

2
. (10.1.17)

• If V (x) has only two turning points , x− and x+, then one necessarily has V (x) ≥ 0 in the “interior
region,” x < x−. The physical boundary condition as x→ −∞ is that Ψ is smooth in this limit.
These are the conditions relevant to global AdS3 and the (1,0,n)-superstratum background. We
will show that A can be expressed in terms of the standard WKB “bound-state” integral:

A =
1

2
tan Θ , Θ ≡

∫ x+

x−

|V (z)|
1
2 dz (10.1.18)

If the potential has more than two turning points in the inner region, A gets more complicated but
can still be computed as a function of the integrals between successive turning points of the square
root of the potential. The general expression of A for a potential with arbitrarily many turning points
is given in Appendix A.11.

The great strength of the WKB formula (10.1.15) is that it decouples the contribution of the
geometry before the turning point (given by A) from the contribution of the geometry outside the
outermost turning point (given by I+, Ψgrow

E and Ψdec
E ). Since, the wave equation in the geometry

4Remind that ω is the momentum conjugate to time, Ψ(x, t) = Ψ(x)e−iωt.
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beyond the last turning point has been assumed to be solvable, the exact response function in this
background, RE , is known. One can then relate I+, Ψgrow

E and Ψdec
E to this exact response function.

Specifically, the response function in the full background, RWKB, can considered to be a function of
the coefficient A and the response function of the exactly solvable problem determined by Vasymp(x),
RE ,

RWKB = F (RE ,A) . (10.1.19)

In this way we will show that for any asymptotically BTZ metric, like the Superstratum, the response
function is well approximated, when x+ lies in the BTZ region, by an expression of the form:

RWKB ≈ Re
[
RBTZ

E

]
+ 2 sign(ω)A Im

[
RBTZ

E

]
, (10.1.20)

where RBTZ
E is the exactly-known BTZ response function and A is determined by the WKB calculation

in the “inner region,” x < x+. There are some important subtleties in applying this expression,
especially relating to the frequency ranges, pole structure and the validity of the WKB approximation.
We will return to these later. For the moment we simply observe that this formula makes good intuitive
sense: the structure of the interior, represented by A, is carried up the BTZ throat by the BTZ response
function.

We will now give the full derivation of the expressions for RWKB, (10.1.15), for potentials with one
turning point and for the potentials with two turning points. We will then discuss asymptotically BTZ
problems and how the result (10.1.15) can be re-written as (10.1.20). The application of this technique
to the superstratum background is detailed in Section 10.3.

10.2 Details of the WKB analysis

In this section, we explicitly compute the formula of the response function from our hybrid WKB
method, (10.1.15), for potentials with one or two turning points. Then, we focus on backgrounds
which have an extremal-BTZ or a global-AdS3 regions as the superstratum geometries. We will show
the adaptability of our method to compute the response function accurately. This will require to briefly
review the exact computation of the response functions in those two well-known backgrounds [198,199].

10.2.1 Derivation of the response function using hybrid WKB

10.2.1.1 Potentials with one turning point

We consider a Schrödinger equation of the type (10.1.4) satisfying the assumptions detailed in the
previous section with one turning point, x+ (see Fig.10.2). At first order of the WKB approximation,
the generic solution is

Ψ(x) =



1

|V (x)|
1
4

[
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(

+i
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x |V (z)|
1
2dz
)

+ DI
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(
−i
∫ x+

x |V (z)|
1
2dz
)]

, x < x+ ,

dI
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(
V ′(x+)

1
3 (x− x+)

)
+ dI

−Ai
(
V ′(x+)

1
3 (x− x+)

)
, x ∼ x+,

1

|V (x)|
1
4

[
DII

+ exp
(

+
∫ x
x+
|V (z)|

1
2dz
)

+ DII
− exp

(
−
∫ x
x+
|V (z)|

1
2dz
)]
, x > x+,

(10.2.1)

where D
I/II
± and dI

± are constants and Bi and Ai are the usual Airy functions. The usual WKB

connection with Airy functions relates the constants D
I/II
± and dI

± in (10.2.1) via(
dI

+

dI
−

)
≡ e−i

π
4
√
π V ′(x+)−

1
6

(
1 i

i 1

)(
DI

+

DI
−

)
,

(
dI

+

dI
−

)
≡
√
π V ′(x+)−

1
6

(
1 0

0 2

)(
DII

+

DII
−

)
, (10.2.2)
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x+

μ2

x

V(x)

zone I zone II

Figure 10.2: Schematic description of a potential V (x) with one turning point, x+ and
the two zones depending on the sign of V (x). For the illustration, we have considered
that V (x) tends to −∞ at −∞ but it is not necessary for the discussion. Any kind of
behavior is possible as long as V (−∞) < 0.

and hence one obtains (
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+
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−

)
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1
2 e

iπ
4 e−i

π
4

1
2 e
−iπ
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π
4
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DII

+

DII
−

)
(10.2.3)

We define Ψgrow
WKB(x) and Ψdec

WKB(x) to be the WKB solutions that involve exp
(∫ x

x+
|V |

1
2

)
and exp

(
−
∫ x
x+
|V |

1
2

)
at large x. These are obtained by settting, respectively, DII

− = 0 and DII
+ = 1 or DII

− = 1 and DII
+ = 0,

in (10.2.1) and, using (10.2.2), we obtain:

Ψgrow
WKB(x) =


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V (x)
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|V (z)|

1
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)
, x > x+ ,

(10.2.4)

and

Ψdec
WKB(x) =


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1

V (x)
1
4

exp
(
−
∫ x
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|V (z)|

1
2dz
)
, x > x+ ,

(10.2.5)

The response function is given by (10.1.14), where the coefficients a1 and b1, defined in (10.1.13),
are determined using the leading terms in (10.2.4) and (10.2.5) and the normalizations in (10.1.11).
Indeed, one finds:

a1 = µ−1/2 e−I+ , b1 = µ−1/2 eI+ , (10.2.6)
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where I+ is given in (10.1.16). The coefficient b2 can be obtained by evaluating both sides of (10.1.13)
at any finite value of x ≥ x+. It is convenient to evaluate b2 at x = x+. One then obtains:

b2 = a1
Ψgrow
WKB(x+)

Ψdec
WKB(x+)

− b1
Ψgrow
E (x+)

Ψdec
E (x+)

. (10.2.7)

From (10.2.4) and (10.2.5) one finds

Ψgrow
WKB(x+)

Ψdec
WKB(x+)

=
Bi(0)

2 Ai(0)
=

√
3

2
. (10.2.8)

The constant A is determined by the physical boundary condition that the wave must satisfy at
x→ −∞. For one turning point, we can ensure ingoing boundary conditions by choosing the physical
WKB solution to be

Ψphys
WKB(x) ≡ Ψgrow

WKB(x) + sign(ω)
i

2
Ψdec
WKB(x) , (10.2.9)

where ω is the momentum conjugate to time at the horizon. This result corresponds to A = sign(ω) i
2

and observe that, by construction, one has, for x < x+,

Ψphys
WKB(x) = |V (x)|−

1
4 exp

[
sign(ω) i

(∫ x+

x
|V (z)|

1
2dz +

π

4

)]
, (10.2.10)

The important point is that because V (x) < 0 for x < x+, the integral in (10.2.10) is monotonically
decreasing as x increases. Therefore, when this wave-function is multiplied by time-dependent phase,
e−iωt, Ψphys

WKB is a purely “infalling” wave function at x→ −∞. The resulting response function can be
read off from (10.1.14)

RWKB =
1

2

(√
3 + sign(ω) i

)
e−2I+ −

Ψgrow
E (x+)

Ψdec
E (x+)

. (10.2.11)

To illustrate this result, we will consider asymptotically extremal BTZ backgrounds as well as the
exactly extremal BTZ background in Section 10.2.2.

10.2.1.2 Potentials with two turning points

We perform a similar computation by deriving the response function of a Schrödinger equation, (10.1.4),
with now two classical turning points, x− and x+ (see Fig.10.3). In the WKB approximation, the
generic solution consists of the usual growing or decaying exponentials in the regions where V (x) > 0,
oscillatory solutions where V (x) < 0 which are then connected by Airy functions:

Ψ(x) =
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(10.2.12)
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V(x)

zone I zone II zone III

Figure 10.3: Schematic description of a potential V (x) with the two turning points, x−
and x+ and the three zones depending on the sign of V (x). For the illustration, we
have considered that V (x) tends to a constant at −∞ but it is not necessary for the
discussion. Any kind of behavior is possible as long as V (−∞) ≥ 0.
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, (10.2.13)

where

Θ ≡
∫ x+

x−

|V (z)|
1
2 dz . (10.2.14)

There are obvious parallels between these connection formula and those in (10.2.2). The only new
element is Θ, whose origin is the trivial identity:

exp

(
±i
∫ x

x−

|V (z)|
1
2 dz

)
= exp (±iΘ) exp

(
∓i
∫ x+

x
|V (z)|

1
2 dz

)
. (10.2.15)

The connection formulae at x = x+ are simple expressions akin to those in (10.2.2) when the WKB

wave-functions are written in terms of
∫ x+

x |V (z)|
1
2dz, however the expressions in (10.2.13) for Region

II are written in terms of
∫ x
x−
|V (z)|

1
2dz and so (10.2.15) is needed to convert these expressions before

using the simple connection formulae at x+.

The decaying and “growing” WKB modes can now be isolated by setting DIII
+ = 0 or DIII

− = 0,
respectively. Following our hybrid WKB strategy, we again assume that, for x > x+ there is an
exactly-known pair of wave-functions Ψgrow

E and Ψdec
E . As in Section 10.2.1.1, one can match these to

the decaying and growing WKB modes at x+, to arrive at essentially the same results as in (10.2.6)
and (10.2.7).

The physical wave function should be regular in the interior of the geometry and so the physical
wave function should not blow up as x → −∞. This means that Ψphys

WKB is given by (10.2.12) with
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DI
+ = 0 and hence

Ψphys
WKB(x) = cos Θ Ψgrow

WKB(x) +
1

2
sin Θ Ψdec

WKB(x) , (10.2.16)

This gives the response function in (10.1.15) with A = 1
2 tan Θ.

To illustrate this result, we return to the global-AdS3 geometry and compute the response function
via the WKB approximation in Section 10.2.3. We examine the accuracy of the approximation in
Appendix A.12, where we compare it to the exact result.

10.2.2 Response function in asymptotically extremal BTZ geometries

Our main goal is to apply our WKB hybrid technique on asymptotically extremal BTZ geometries,
such as Superstrata. We will be able to relate their response functions to the response function of
an extremal BTZ black hole. This naturally requires a good understanding of the later which we will
quickly review here.

The standard form of the metric outside an extremal BTZ black hole in “Schwarzschild” coordinates
is given by:

ds2 = − `2 f(ρ) dt2 +
dρ2

f(ρ)
+ ρ2

(
dy −

r2
H

ρ2
dt

)2

, f(ρ) =
(ρ2 − r2

H)2

`2ρ2
, (10.2.17)

where the coordinate y is identified as y ∼ y + 2πRy and the AdS length is given by `. This solution

has mass and angular momentum J = M` =
r2
H

4G` . It is more convenient to work in terms of a new
radial coordinate r2 = (ρ2−r2

H), so that r = 0 corresponds to the horizon, and r →∞ is the conformal
boundary and with the null coordinates u = y+ t and v = y− t. The metric in this coordinate system
is given by:

ds2 = r2 du dv + r2
H dv

2 + `2
dr2

r2
. (10.2.18)

The wave equation for a scalar field Φ of mass m2`2 = ∆(∆− 2), with ∆ > 2 can be solved with the
Ansatz

Φ = e−i(ωu+pv)K(r) (10.2.19)

and is given by the Klein–Gordon equation:

1

`2r
∂r
(
r3 ∂rK

)
−
(

∆ (∆− 2)

`2
+

4ωp

r2
−

4ω2r2
H

r4

)
K = 0 . (10.2.20)

For convenience, we set the radius ` to 1 which can be also reabsorbed by scaling (`ω, `p)→ (ω, p).

10.2.2.1 Exact treatment for extremal BTZ black holes

It is easy to see that in terms of a new variable r̃ = 1/r2, this is a confluent hypergeometric equation
whose solutions are Whittaker functions5:

K(r) = c1 M

(
i p

2 rH
,
1

2
(∆− 1) ,

2i ω rH
r2

)
+ c2 M

(
i p

2 rH
,
1

2
(1−∆) ,

2i ω rH
r2

)
. (10.2.21)

5For 2∆ ∈ Z, these two solutions are linearly dependent and it is necessary to use the Whittaker-W
function instead.
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The Whittaker M functions have the virtue of having a simple expansion around the conformal bound-
ary (r →∞):

K = c1

(
2i ω rH
r2

)∆/2

[1 +O(r−2)] + c2

(
2i ω rH
r2

)1−∆/2

[1 +O(r−2)] ,

The response function is given by:

RBTZ =
c1

c2

(
2i ω rH

)∆−1
. (10.2.22)

The ratio c1/c2 is determined by the boundary conditions in the interior. For the BTZ black hole, the
solution must be purely ingoing at the horizon (r = 0).

The expansion of the solution (10.2.21) at r = 0 is more complicated:
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)− ip
2 rH e
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Γ
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1
2(∆ + ip
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)
)

 + c2

(
∆↔ (2−∆)

)
. (10.2.23)

To ensure ingoing boundary conditions at the horizon, the coefficient of e−
irHω

r2 must vanish6 (remember
that the horizon is at r = 0). This leads to the condition

c1
Γ(∆) ei

π
2 ∆ sign(ω)

Γ
(

1
2(∆ + ip

rH
)
) + c2

Γ(2−∆) ei
π
2 (2−∆) sign(ω)

Γ
(
1− 1

2(∆− ip
rH

)
) = 0 . (10.2.24)

Combining this with (10.2.22), we find the holographic “response” in momentum space:

RBTZ(ω, p) = − (−2i ω rH)∆−1
Γ(2−∆) Γ

(
1
2(∆ + ip

rH
)
)

Γ(∆) Γ
(
1− 1

2(∆− ip
rH

)
) . (10.2.25)

This result can be compared to the thermal CFT two-point function (in the appropriate extremal limit).
Ignoring an ∆-dependent factor, which can be absorbed in the normalization of the CFT operator O,
we recognize the retarded propagator with inverse left-moving temperature βL = Ryπ/rH .

The Fourier transformation towards the Green function in position space is sensitive to the pole
structure of (10.2.25). We have given all the details in Appendix A.13.1. Because of the ingoing
boundary conditions, these poles correspond to the quasi-normal mode frequencies of the BTZ black
hole (as opposed to normal modes in horizonless geometries). They are located on the imaginary axis,
spaced by the temperature of the black hole. The fact that they all have positive imaginary part will
single out the retarded propagator in position space.

10.2.2.2 Hybrid WKB for an asymptotically BTZ solution

We now consider the response function for a general, asymptotically extremal BTZ geometry. We
assume that the scalar wave equation closely matches the BTZ wave equation (10.2.20) outside a
certain radius. There are several ways to convert this equation to the standard Schrödinger form
(10.1.4). We choose a version that leads to the simplest mode expansions:

K(r) =
Ψ(r)

r
, x = ln r , x ∈ R . (10.2.26)

6Indeed, close to the horizon of the extremal BTZ geometry, a set of orthogonal Killing vectors is
given by ∂t and ∂v. The conjugate momenta can be read off from (10.2.19): Φ = e−i(2ωt+(p+ω)v) K(r).
Therefore, 2ω is really the momentum conjugate to t near the black hole horizon.
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The Schrödinger potential in the asymptotic region is

V (x) ∼ VBTZ(x) ≡
(
∆− 1

)2
+ 4ωp e−2x − 4ω2r2

H e
−4x . (10.2.27)

This potential approaches (∆− 1)2 at the boundary x ∼ ∞ and so µ = ∆− 1 > 0. The BTZ horizon
would be at x→ −∞. The BTZ potential has a unique classical turning point, x+, given by:

x+ ≡
1

2
ln

[
2

(∆− 1)2

(
|ω|
√
p2 + r2

H(∆− 1)2 − ωp
)]

. (10.2.28)

For general asymptotically BTZ geometries, we consider a regime of ω and p where the outermost
classical turning point of V (x), x+, is inside the BTZ region: V (x) ∼ VBTZ(x), x & x+. This requires
that the energy of the mode is higher than a certain value.

In the inner region, x < x+, the potential can take a very complicated form. As explained in
Section 10.1.3, the relevant quantity to describe the inner region is the quantity A which has different
expressions according to the form of the potential. Wheneven x+ is in the BTZ region, the other
quantities that enter in the WKB hybrid formula for the response function (10.1.15) can be derived
from VBTZ(x). The expression for I+, defined in (10.1.16), is an elementary integral leading to:

e−2I+ = (∆− 1)2−2∆ |ω|∆−1
(
p2 + r2

H (∆− 1)2
)∆−1

2

× exp
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rH
arctan

 rH(∆− 1)√
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H(∆− 1)2 − p

 .
(10.2.29)

For Ψgrow
E (x) and Ψdec

E (x), we simply use the growing and decaying scalar modes in an extremal-BTZ
black hole (10.2.21). In our coordinate system, this gives

Ψgrow
E (x) = (−2i rH ω)

∆
2
−1 e(2−∆)x M
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− i p
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2
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,
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E (x) = (−2i rH ω)−

∆
2 e∆x M

(
− i p

2rH
,
∆− 1

2
,−2i rH ω e

−2x

)
.

(10.2.30)

It should be noted that these functions are actually real for real values of ω, p, rH ,∆ and x. We now
have all the ingredients of (10.1.15), except for A, which depends entirely on the details of the “inner
region”.

As a special case, we can apply our WKB method to the BTZ geometry itself. Indeed, the BTZ
potential only has one classical turning point and so the WKB response function is given by (10.2.11),
and, in particular, we have A = 1

2sign(ω) i in (10.1.15). We therefore conclude that within the validity
of the WKB approximation we must have

RBTZ
E (ω, p) ≈ 1

2

(√
3 + sign(ω) i

)
e−2I+ −

Ψgrow
E (x+)

Ψdec
E (x+)

, (10.2.31)

where RBTZ
E (ω, p) is given by (10.2.25). Taking the real and imaginary parts of this expression, we

arrive at the approximate identities:

√
3

2
e−2I+ −

Ψgrow
E (x+)

Ψdec
E (x+)

≈ Re
[
RBTZ

E

]
,

sign(ω)

2
e−2I+ ≈ Im

[
RBTZ

E

]
, (10.2.32)

where we have used the fact that e−2I+ , Ψgrow
E (x+) and Ψdec

E (x+) are all real. Using these expressions
in (10.1.15) we arrive at the result advertised in (10.1.20) for a generic, asymptotically BTZ response
function, RWKB,
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RWKB(ω, p) ≈ Re
[
RBTZ

E (ω, p)
]

+ 2 sign(ω)A Im
[
RBTZ

E (ω, p)
]
, (10.2.33)

This is our primary result for the general WKB analysis of asymptotically BTZ metrics. This
formula has been computed for 2∆ non-integer but the analytic continuation to integer values of 2∆
is well-defined since we know the expression of RBTZ

E for ∆ integer from the literature. The formula
(10.2.33) is only valid when the largest turning point is inside the BTZ region, in other words, in a
regime of momenta where the waves stop oscillating at a distance which lies inside the BTZ region.

It is also important to note that in deriving (10.1.15), and in particularly in making the identifi-
cations (10.2.32) that led to (10.1.20) crucially requires both ω and p to be real. This will be very
important for understanding the pole structure of the response function.

In addition to obtaining the formula (10.2.33), the application of the WKB technique to the BTZ
metric also illustrates the method very simply and affords us the opportunity to assess the accuracy
of the WKB approximation. Indeed, one can numerically evaluate and compare both sides of the
approximate identities (10.2.32) using (10.2.28), (10.2.29), (10.2.30) and (10.2.25). The details of this
can be found in Appendix A.12.1, where we show that, even for relatively small values of ∆, the
accuracy is within a few percent and that the accuracy greatly improves as ∆ increases.

10.2.3 Model response function in the interior: global AdS3

The superstratum geometries are capped BTZ geometries which are smooth global AdS3 geometries
in the IR. In this section we briefly review the computation of the response function in global AdS3

and we apply our WKB hybrid method to check the suitability of this method to such backgrounds.
The global Lorentzian AdS3 metric of radius ` may be written in the following forms:

ds2 = = − (r2 + 1) dt2 +
`2 dr2

r2 + 1
+ r2 dy2

= − 1

4
(du− dv)2 + r2 du dv +

`2 dr2

r2 + 1
,

(10.2.34)

where 0 ≤ y < 2πRy and u = y + t and v = y − t. The wave equation for a scalar field Φ of mass
m2`2 = ∆(∆− 2) with the Ansatz Φ = e−i(ωu+pv)K(r) is given by the Klein–Gordon equation:

1

`2r
∂r
(
r
(
r2 + 1

)
∂rK

)
−

(
∆(∆− 2)

`2
− (ω − p)2

r2 + 1
+

(ω + p)2

r2

)
K = 0 . (10.2.35)

Moreover, we assume without loss of generality that ∆ > 1. For convenience, we set the radius ` to 1
which can be also reabsorbed by scaling (`ω, `p)→ (ω, p).

10.2.3.1 Exact analysis for global AdS3

The Klein–Gordon equation can be reduced to a standard hypergeometric equation whose solutions
can be written as a linear combination of:

K1(ω, p; r) ≡ r(ω+p) (r2 + 1)
1
2

(ω−p)
2F1

(
1 + ω − 1

2∆ , ω + 1
2∆ , ω + p+ 1 ;−r2

)
, (10.2.36)

K2(ω, p; r) ≡ r−(ω+p) (r2 + 1)
1
2

(ω−p)
2F1

(
1− 1

2∆− p , 1
2∆− p , 1− ω − p ;−r2

)
. (10.2.37)

These functions are defined by their power expansion about r = 0 in which the generic term is r2n±(ω+p),
n ∈ Z, n ≥ 0. It is worth noting that in the neighbourhood of r = 0, the wave equation, (10.2.35),
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becomes, at leading order, the Laplace equation of flat R2,1 written in polar coordinates:

1

r
∂r (r ∂rK) − (ω + p)2

r2
K = 0 . (10.2.38)

It is this equation that fixes the leading powers of r in (10.2.37). The solution that is regular at r = 0
is thus

Kreg(ω, p; r) = Θ(ω + p)K1(ω, p; r) + Θ(−(ω + p))K2(ω, p; r) , (10.2.39)

where Θ is the Heaviside step function.

One can also expand about infinity by using the inversion, r → 1
r , and one finds that an equivalent

basis of solutions is given by:

K̃1(ω, p; r) ≡ r(ω−p+∆−2) (r2 + 1)
1
2

(p−ω)
2F1

(
1 + p− 1

2∆ , 1− ω − 1
2∆ , 2−∆ ;−r−2

)
, (10.2.40)

K̃2(ω, p; r) ≡ r(ω−p−∆) (r2 + 1)
1
2

(p−ω)
2F1

(
p+ 1

2∆ , 1
2∆− ω ,∆ ;−r−2

)
. (10.2.41)

These functions are defined by their expansions as r →∞:

K̃1(ω, p; r) = r(∆−2)
∞∑
n=0

an r
−2n , K̃2(ω, p; r) = r−∆

∞∑
n=0

bn r
−2n . (10.2.42)

Since ∆ > 2, K̃1 and K̃2 purely contain non-normalizable and normalizable modes. Note that if
∆ /∈ N>2 then there can be no mixing of these series and so K̃1 unambiguously represents the purely
non-normalizable mode.

Finally, note that the wave equation (10.2.35) is invariant under (ω, p) → −(ω, p) and one can
use the Euler transformation of the hypergeometric functions to verify that under this transformation
K1 ↔ K2 while the K̃j are individually invariant.

Response functions

To get the boundary-to-boundary Green function, or response function, for AdS3, one should expand
Kreg in (10.2.39) around infinity. In particular, one finds for K1 and K2:

K1(ω, p; r) ∼ r−∆ Γ(1 + ω + p)[
Γ(1−∆)

Γ(1 + p− 1
2∆) Γ(1 + ω − 1

2∆)
+ r2(∆−1) Γ(∆− 1)

Γ(p+ 1
2∆) Γ(ω + 1

2∆)

]
, (10.2.43)

K2(ω, p; r) ∼ r−∆ Γ(1− ω − p)[
Γ(1−∆)

Γ(1− ω − 1
2∆) Γ(1− p− 1

2∆)
+ r2(∆−1) Γ(∆− 1)

Γ(1
2∆− ω) Γ(1

2∆− p)

]
. (10.2.44)

Taking the ratio of normalizable and non-normalizable parts yields to a response function for each of
the solutions

R1(ω, p) =
Γ(1−∆) Γ(ω + 1

2∆) Γ(p+ 1
2∆)

Γ(∆− 1) Γ(1 + ω − 1
2∆) Γ(1 + p− 1

2∆)
,

R2(ω, p) =
Γ(1−∆) Γ(1

2∆− ω) Γ(1
2∆− p)

Γ(∆− 1) Γ(1− 1
2∆− ω) Γ(1− 1

2∆− p)
.

(10.2.45)

The response function for smooth solutions in global AdS3 is therefore:

RAdS3(ω, p) = Θ(ω + p)R1(ω, p) + Θ(−(ω + p))R2(ω, p) . (10.2.46)
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These Green functions are “formal” in that they have poles that require careful interpretation.
First, these functions are infinite when ∆ ∈ N>2. This arises because of the standard degeneration
inherent in Frobenius’ method: the non-normalizable solution is no longer a power series but contains
a logarithmic term that multiplies the normalizable solution. We avoid this issue by taking ∆ /∈ Z,
and then analytically continuing in ∆ when possible.

Second, the response function has also a tower of evenly spaced poles on the real axis corresponding to
the frequencies and momenta where the regular solution (10.2.39) is normalizable. They correspond to
the values where the arguments of the Gamma function in the numerators of (10.2.45) cross a negative
integer value. To make the pole structure more manifest in the formulation of the response function,
it is worth to rewrite RAdS3 in a more compact but non-analytic expression

RAdS3(ω, p) =
Γ(1−∆)

Γ(∆− 1)

Γ(ω̃ + 1
2∆)

Γ(1 + ω̃ − 1
2∆)

Γ(p̃+ 1
2∆)

Γ(1 + p̃− 1
2∆)

, (10.2.47)

where we have defined

ω̃ ≡ |ω + p| − |ω − p|
2

, p̃ ≡ |ω + p|+ |ω − p|
2

. (10.2.48)

Since p̃ is always positive, normalizable modes exist only in the range of frequency and momentum
where ω̃ + 1

2∆ < 0. Those poles follows the following evenly spaced spectrum

|ωj − pj | − |ωj + pj | −∆ = 2 j , j ∈ N , (10.2.49)

Moreover, by anticipating the comparison with the WKB answer, it is also useful to write down RAdS3

in the range where poles exist, ω̃ + 1
2∆ < 0,

RAdS3(ω, p) =
Γ(1−∆)

Γ(∆− 1)

Γ(1
2∆− ω̃)

Γ(1− ω̃ − 1
2∆)

Γ(p̃+ 1
2∆)

Γ(1 + p̃− 1
2∆)

×
[
− sin(π∆) tan

(π
2

(2 ω̃ + ∆ + 1)
)
− cos(π∆)

]
,

(10.2.50)

where the coefficient in front of the bracket is smooth in this range and where the tan term gives the
spectrum.

The more subtle issue is how to integrate around all the poles in the response functions. Fortunately
one can find a very thorough treatment of this issue in [198–200]. This involves careful combinations of
analytic continuation, matching conditions and contour selection. Selecting different contours around
poles either includes or excludes normalizable modes in the solution. This is reviewed in Appendix
A.13.2, where we use a particular contour prescription to relate the formal momentum-space Green
functions derived here to a position-space Green function of interest.

10.2.3.2 WKB treatment

Once again we use the metric (10.2.34) and the wave equation (10.2.35). We rescale the wave-function
and change variable according to:

K(r) =
Ψ(r)√
r2 + 1

, x = ln (r) , x ∈ R , (10.2.51)

and the wave equation takes the Schrödinger form (10.1.4) with

VAdS(x) ≡ e2x

e2x + 1

(
(∆− 1)2 − (ω − p)2 − 1

e2x + 1
+

(ω + p)2

e2x

)
. (10.2.52)
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The boundaries were at r = 0 and at r = ∞ and these are now at x = +∞ and x = −∞, where the
potential limits to µ2 ≡ (∆− 1)2 and (ω + p)2, respectively.

The potential is thus bounded by the value at infinity and the centrifugal barrier at x = −∞
(r = 0). The two turning points, x− and x+, and “classical region” x− < x < x+ only exists if the
middle “energy term” in (10.2.52) is sufficiently negative. More precisely, to have classical turning
points one must have

(∆− 1 + |ω + p|)2 < (ω − p)2 − 1 ⇔ (∆− 1)2 + 4ωp+ 1 < − 2(∆− 1)|ω + p| . (10.2.53)

If this is satisfied, then the two turning points are at real values of x and are given by:

e2x± = − 1

2(∆− 1)2

(
((∆−1)2 +4pω+1)∓

√
((∆− 1)2 + 4pω + 1)2 − 4(∆− 1)2(p+ ω)2

)
. (10.2.54)

The WKB integrals are elementary and we find:

Θ =
π

2

[
−∆ + 1− |ω + p|+

√
(ω − p)2 − 1

]
, (10.2.55)

and

e−2I+ =

(
e2x+ − e2x−

4

)∆−1 (
ex+ − ex−
ex+ + ex−

)(∆−1) ex−+x+

×
(√

ex+ + 1 +
√
ex− + 1√

ex+ + 1−
√
ex− + 1

)(∆−1)
√

(ex++1)(ex−+1)

,

(10.2.56)

As one would expect, (10.2.53) implies that Θ > 0.

The exact asymptotic problem is just the wave equation in the global-AdS3 background and so
Ψgrow
E (x) and Ψdec

E (x) are given by (10.2.41) and (10.2.51):

Ψgrow
E (x) = e(∆−2+ω−p)x (1 + e2x

)(1−ω+p)/2
2F1

(
1 + p− ∆

2
, 1− ω − ∆

2
, 2−∆,−e−2x

)
,

Ψdec
E (x) = e(−∆+ω−p)x (1 + e2x

)(1−ω+p)/2
2F1

(
p+

∆

2
,−ω +

∆

2
,∆,−e−2x

)
.

(10.2.57)

The WKB response function, RAdS
WKB, can be then computed easily from the formula (10.1.15) with

A = tan Θ . This tan Θ term is the only unbounded term and it’s poles correspond to the normalizable
modes, when Θ crosses a value of type π

2 (2k + 1) with k ∈ N. This reproduces very accurately
the spectrum dependence of the exact response function, RAdS3 (10.2.49). Indeed, in the range of
parameters satisfying (10.2.53), we have that ω̃ < 0 and (10.2.50) takes the form

RAdS3 = g1(ω, p) + g2(ω, p) tan ΘE , (10.2.58)

where g1(ω, p) and g2(ω, p) are two non-diverging functions given in (10.2.50) and the exact spectrum
function ΘE is

ΘE =
π

2
[−∆− 1− |ω + p|+ |ω − p|] . (10.2.59)

We see that Θ ∼ ΘE as long as |ω− p| � 1 which is guaranteed from (10.2.53) if we assume that ∆ is
large. Moreover, in Appendix A.12.2 we perform a numerical exploration, using the expressions of I+,
Ψgrow
E and Ψdec

E above, that shows that
√

3

2
e−2I+ −

Ψgrow
E (x+)

Ψdec
E (x+)

≈ g1(ω, p) ,
1

2
e−2I+ ≈ g2(ω, p) , (10.2.60)

which implies
RAdS
WKB ∼ RAdS3 , (10.2.61)

when ∆ is large and when |ω−p| is also larger than ∆−1+|ω+p| (for ∆ ∼ 5 and |ω−p|−∆+1−|ω+p| ∼ 5
the error of the WKB formula is already below 5%). Thus, our WKB technique provides an extremely
accurate approximation to describe AdS-like response function.
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10.3 The (1,0,n) Superstrata

In this section, we briefly review all the features of the metric of the (1,0,n) superstratum solution that
are essential to our computation.

10.3.1 The metric

Asymptotically AdS3, (1, 0, n) Superstrata have been introduced in the previous chapter. The fields
involved in the metric can be derived from the general formulas of Section 4.2.5. In the present work,
we are using the null coordinates

u = y − t , v = y + t .

The six-dimensional metric is [30, 98,99,116]

ds2
6 =

√
Q1Q5 Λ

[
dr2

r2 + a2
− F1(r)

a2(2a2 + b2)2F2(r)R2
y

(
dv − a2(a4 + (2a2 + b2)r2)

F1(r)
du

)2

+
a2r2(r2 + a2)

F1(r)R2
y

du2 + dθ2 +
1

Λ2
sin2 θ

(
dϕ1 +

a2

(2a2 + b2)Ry
(du− dv)

)2

+
F2(r)

Λ2
cos2 θ

(
dϕ2 −

1

(2a2 + b2)F2(r)Ry

[
a2(du+ dv) + b2F0(r)dv

])2
]
,

(10.3.1)

where

F0(r) ≡ 1− r2n

(r2 + a2)n
, F1(r) ≡ a6 − b2(2a2 + b2)r2F0(r) ,

F2(r) ≡ 1− a2b2

2a2 + b2
r2n

(r2 + a2)n+1
, Λ ≡

√
1− a2b2

2a2 + b2
r2n

(r2 + a2)n+1
sin2 θ .

(10.3.2)

This has the form of an S3 fibration, parametrized by (θ, ϕ1, ϕ2), over a 2+1-dimensional base space,
parametrized by (t, u, v). The metric parameters a, b and n are related to supergravity charges,
Q1, Q5, QP , JL and JR or to the quantized charges, N1, N5, NP , jL and jR via (4.2.74), (4.2.76) and
(4.2.77). We consider the solutions which have a long BTZ-like throat. This requires

a2 � {Q1, Q5, QP } ⇐⇒ a � b. (10.3.3)

The longest throat geometry is obtained by taking the minimum value of angular momentum jR = 1
2 .

Henceforth, we consider the solutions with jR = 1
2 , and for such throats one has N1N5 = 1+ b2

2a2 ∼ b2

2a2 .

Thus, one can read off from the metric the two regions of the solutions which are depicted in Fig.4.4:

• The smooth cap geometry: for r .
√
na, the geometry is a S3 fibration over a global AdS3 space

with a highly red-shifted time and a non-zero angular momentum along y ,

ds2
6 =

√
Q1Q5

[
dr2

r2 + a2
− (r2 + a2)

1

a2R2
y

dτ2 +
r2

a2R2
y

(
dy +

b2

2a2
dτ

)2

+ dθ2 + sin2 θ

(
dϕ1 −

dτ

Ry

)2

+ cos2 θ

(
dϕ2 −

dy

Ry
− b2

2a2

dτ

Ry

)2
] (10.3.4)

where τ = (1 + b2

2a2 )−1 t = (N1N5)−1 t. One can check that the local geometry at r ∼ 0 is a
smooth S3 fibration over R1,2.
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• The extremal-BTZ geometry: for r &
√
na, the geometry is S3 fibration over extremal BTZ

ds2
6 =

√
Q1Q5

[
dρ2

ρ2
− ρ2dt2 + ρ2dy2 +

n

R2
y

(dy + dt)2 + dθ2 + sin2 θdϕ2
1 + cos2 θdϕ2

]
(10.3.5)

where ρ = r√
Q1Q5

. The left and right temperatures of the BTZ region are

TL =

√
n

2π Ry
, TR = 0 . (10.3.6)

The overall superstratum geometry is then the combination of a S3 fibration over a BTZ geometry
which ends with a highly red-shifted AdS3×S3. It is then natural to expect that wave perturbations
will combine the features of those both geometries as it will be more precise in the next following
sections.

10.3.2 The massless scalar wave perturbation

We rederived the minimally-coupled massless scalar wave equation (9.3.3) with the definition (u, v) =
(y − t, y + t). The separability allows to expand the eigenfunctions as:

Φ = K(r)S(θ) e
−i
(

Ω
Ry

u+ P
Ry

v+ q1ϕ1 + q2ϕ2

)
. (10.3.7)

Note that we have reestablish the momentum conjugate (Ω, P ) as opposed to (ω, p). The reason for
this will become apparent shortly. The wave equation reduces to one radial and one angular wave
equation. The angular wave equation (9.3.6) and its solutions (9.3.11) are identical here. The radial
equation becomes with the new coordinates:

1

r
∂r
(
r
(
r2 + a2

)
∂rK(r)

)
+

(
a2 (P − Ω + q1)2

r2 + a2
− a2 (P + Ω + q2)2

r2

)
K(r) (10.3.8)

+
b2Ω

(
−2a2P + F0(r)(2a2 (Ω− q1) + b2 Ω)

)
a2(r2 + a2)

K(r) = mK(r) ,

where m corresponds to the constant eigenvalue of the Laplacian operator along the S3 related to the
conformal weight of the wave, ∆, as m ≡ ∆(∆−2). Without loss of generality, we consider that ∆ > 1.
The regularity of the angular wave function constrains the wave quantum number (9.3.13). Moreover,
the regularity of the modes at r = 0 requires [117]:

k ≡ Ω + P ∈ Z . (10.3.9)

According to Section 9.3, the modes are essentially supported and determined by the AdS3 cap geom-
etry. When n is taken to be large, their discrete spectrum is given by (9.3.26)7∣∣∣∣( b2a2

+ 1

)
Ωj − Pj − q1

∣∣∣∣− |Ωj + Pj + q2| −∆ = 2 j , j ∈ N , (10.3.10)

where the index j is the mode number. This corresponds to the spectrum of an AdS3 geometry com-
puted in (10.2.49) with the additional quantum numbers q1 and q2 coming from vector-field reduction
of the S3 and the red-shifted frequency and momentum:

ω =

(
1 +

b2

2a2

)
Ω , p = P − b2

2a2
Ω , (10.3.11)

7Note that this spectrum appears slightly different because of the redefinition {u, v} = {y − t, y + t}
compared to {t, t+ y} in the previous chapter.
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These expressions provide a valuable insight into the physics of the deep Superstrata: their bound-
state excitations (at least at large n) are simply those of a global AdS3 geometry but with a red-shifted
time (10.3.4). Since the Superstratum also asymptotes to a (non-red-shifted) global AdS3 geometry at
infinity one needs to interpolate between these two limits in order to compute the response function.
This requires non-normalizable modes and the high-energy normalizable modes. For that purpose, we
will apply the WKB strategy detailed in Section 10.1.3 and 10.2 and we will find that the interpolation
along the throat is provided by the BTZ response function.

10.3.3 WKB analysis

The first step is to reduce the wave equation to Schrödinger form, just as we did in previous sections.
We first rescale the wave function and change variables:

K(r) =
Ψ(r)√
r2 + a2

, x = ln
(r
a

)
, x ∈ R. (10.3.12)

The radial wave equation gives
d2

dx2
Ψ(x) − V (x)Ψ(x) = 0. (10.3.13)

where V (x) is given by:

V (x) ≡ e2x

e2x + 1

[
(∆− 1)2 − 1

e2x + 1

(
B2 − 1

)
+ e−2xA2 +

e−2x

(e−2x + 1)n+1 C

]
, (10.3.14)

and

A ≡ |Ω + P + q2 | , B ≡
∣∣∣∣Ω(1 +

b2

a2

)
− P − q1

∣∣∣∣ , C ≡ b2

a2
Ω

(
2 (Ω− q1) +

b2

a2
Ω

)
. (10.3.15)

The general form of such potential is depicted in Fig.10.3. In this case we have µ = (∆ − 1) and
V (−∞) = A2.

We define x± as the two turning points of the potential8, V (x±) = 0. Zone II is the classically
allowed region where V (x) < 0 and zone I and III are the classically forbidden regions with positive
potential.

We compute the physical wave function Ψ(x) at leading order in each zone by applying the WKB
approximation as we did for a scalar wave in global AdS3 in Section 10.2.1.2. We impose the regularity
of the solution at x = −∞ (r = 0) and we apply the junction rules with Airy functions to connect the
three parts of the solution at the turning points. Therefore, the WKB approximation gives

Ψphys(x) =



1

|V (x)|
1
4

exp
(
−
∫ x−
x |V (z)|

1
2dz
)
, x < x−,

1

|V (x)|
1
4

cos
(∫ x

x−
|V (z)|

1
2dz + π

4

)
, x− < x < x+,

2 cos Θ

|V (x)|
1
4

[
exp

(∫ x
x+
|V (z)|

1
2dz
)

+ tan Θ
2 exp

(
−
∫ x
x+
|V (z)|

1
2dz
) ]

, x > x+,

(10.3.16)
where the WKB integral Θ is defined in (10.1.18). The validity of the WKB approximation is guaran-
teed when the condition given in (10.1.5) is satisfied. This imposes

|Ω| &
2 a2

b2
and ∆ & 1. (10.3.17)

8If A = 0, then x− = −∞. This does not compromise our discussion in any way since |V (x)|1/2
remains integrable at this location.



10. Scattering from microstate geometries in the black-hole regime 187

From the discrete spectrum of the modes (10.3.10), we expect that the WKB approximation will not
be accurate for the first few modes. We will see how to deal this issue in the next sections. Moreover,
the integral of |V |

1
2 cannot be performed analytically and one needs to divide our computation into

different ranges of frequencies Ω and k = Ω + P to approximate its value.

To apply the WKB technique developed in Section 10.2 one needs to have a good understanding
of the behavior of the superstratum potential, in particular to identify the interior and asymptotic
potentials depending of the range of values of Ω and P . From now on, we will assume for simplicity
that the wave perturbations are independent of ϕ1 and ϕ2 by setting q1 = q2 = 0. The inclusion of
non-zero values of q1 and q2 is fairly straightforward. Moreover, we are interested in superstratum
backgrounds with 1�

√
n� b

a ∼
√
N1N5/jR. This assumption is not necessary for the computation

as it was in Section 9.3.3. It simply allows the geometry to have a large cap region (0 < r <
√
na)

which can support the first few modes.

First, we observe that the term proportional to C in (10.3.14) is the core difference between su-
perstratum potential and that of global-AdS3, (10.2.52). This term is irrelevant as long as e2x . n,
or r .

√
na, which exactly corresponds to the validity of the cap geometry (10.3.4). Above this tran-

sition, there are various possibilities that depend on the values of Ω and P . Before detailing those
possibilities, we define three limits of potential

V cap(x) ≡ e2x

e2x + 1

[
(∆− 1)2 − 1

e2x + 1

((
Ω

(
1 +

b2

a2

)
− P

)2

− 1

)
+ e−2x(Ω + P )2

]
,

V BTZ(x) ≡ (∆− 1)2 +
2b2PΩ

a2
e−2x − b4nΩ2

a4
e−4x ,

V I-B(x) ≡ (∆− 1)2 +
2b2PΩ− a2 ∆(∆− 2)

a2
e−2x − b4nΩ2

a4
e−4x .

(10.3.18)

The potential, V cap(x), is obtained by dropping C, and so:

V (x) ∼ V cap(x) , e2x . n . (10.3.19)

In the range |Ω| . 2
√
na2

b2
, we will show explicitly in Section 10.4.2 that the superstratum potential will

be well approximated by V cap(x) also when e2x & n. Intuitively, this is due to the fact that the bump
induced by the term proportional to C in (10.3.14) is subleading compared to the other terms in this
range of frequency.

In the range |Ω| & 2
√
na2

b2
, we can perform an expansion of the superstratum potential for e2x & n

which gives a BTZ-type of potential (10.2.27)

V (x) ∼ (∆− 1)2 + e−2x[A2−B2 + 1 +C− (∆− 1)2]− e−4x[−B2 + 1− (n+ 1)C− (∆− 1)2] (10.3.20)

By carefully analyzing which terms in the coefficients in front of e−2x and e−4x are leading or subleading
at large b/a and n , we can show that

V (x) ∼ V BTZ(x) , n . e2x and k = Ω + P � 0 ,

V (x) ∼ V I-B(x) , n . e2x and k ∼ 0 .
(10.3.21)

The two first potentials in (10.3.18) can be directly derived by computing the wave equations in
the smooth cap region (10.3.4) and in the extremal-BTZ region (10.3.5). Thus, V cap(x) is the scalar
potential in a global AdS3 background given in (10.2.52) with red-shifted momentum and frequency,

ω =
(

1 + b2

2a2

)
Ω and p = P − b2

2a2 Ω. Similarly, V BTZ(x) matches the scalar potential in extremal BTZ

(10.2.27) with the same red-shifted frequency. However, V I-B(x), where “I-B” means “intermediate
BTZ,” does not correspond to a potential of a specific region in the superstratum background. Thus,
according to (10.3.21), the wave perturbation with k ∼ 0 will feel a potential which differs from the
expectation of the BTZ region of the superstratum background.
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10.4 Response function for (1,0,n) Superstrata

We are interested in computing the response function in (1,0,n)-superstratum solutions with 1�
√
n�

b
a ∼

√
N1N5/jR and with q1 = q2 = 0. For that purpose, we apply the general WKB computation

detailed in Section 10.1.3 to a scalar field perturbation to the superstratum background detailed in
Section 10.3.

10.4.1 Summary of results

We will show that the response function in momentum space has four distinct regimes depending on
Ω and k = Ω + P depicted in Fig.10.4:

• The cap regime. For small Ω, |Ω| . 2
√
na2

b2
, and at any k, the turning points x± are both located

inside the cap (10.3.19), so the wave only sees the cap geometry. The response function is given
by the response function in Global AdS3, RAdS3 (10.2.46), with highly red-shifted frequency and
momentum.

• The BTZ regime. For large Ω, |Ω| & 2
√
na2

b2
, and for k � 0, the outermost turning point is no

longer in the cap region and the wave starts to explore the extremal-BTZ region of the geometry.
The response function in momentum space is a deformation by tan Θ of the response function of
extremal-BTZ, RBTZ (10.2.25), as detailed in Section 10.2.2.

• The intermediate BTZ regime. For large Ω, |Ω| & 2
√
na2

b2
, but for k ∼ 0, the wave differs from the

extremal-BTZ expectation. The response function in momentum space is similar to the one in
the BTZ regime but with a “rescaled” momentum P̂ which differs from P only when |Ω| . a

b :

P̂ ≡ P − a2

2b2 Ω
∆(∆− 2) . (10.4.1)

• The centrifugal barrier regime. When kΩ > 0 and |k| > b2

a2 |Ω|, the centrifugal barrier at the
origin of the space is very high, nothing can penetrate the throat and the potential of the scalar

perturbation is always positive. Correspondingly, there are no bound states. When |Ω| . 2
√
na2

b2
,

this effect is well captured by the response function in global AdS3. However, when |Ω| & 2
√
na2

b2
,

the wave is strongly repulsed outside the BTZ throat which is not captured by the BTZ response
function. In this specific regime, the response function cannot be computed using the WKB
hybrid method. We denote as Rbar(Ω, P ) the response function in this regime.

We will show that in those four regimes we have according to the global-AdS3 response function,
RAdS3(ω, p) (10.2.46), and to the extremal-BTZ response function, RBTZ(ω, p) (10.2.25),

R(1,0,n)(Ω, P ) (10.4.2)

∼


RAdS3( b

2 Ω
2a2 , P + (1− b2

2a2 )Ω) , |Ω| . 2
√
na2

b2
,

Re
[
RBTZ

(
b2 Ω
2a2 , P̂

)]
+ sign(Ω) tan Θ Im

[
RBTZ

(
b2 Ω
2a2 , P̂

)]
, 2

√
na2

b2
. |Ω|, P ∼ Ω,

Re
[
RBTZ

(
b2 Ω
2a2 , P

)]
+ sign(Ω) tan Θ Im

[
RBTZ

(
b2 Ω
2a2 , P

)]
, 2

√
na2

b2
. |Ω|, P � Ω,

Rbar(Ω , P ) , 2
√
na2

b2
. |Ω|, Ω k > 0 , |k| > b2 |Ω|

a2 .

The tan Θ term which captures the microstate structure of the geometry when 2
√
na2

b2
. |Ω| is given

by the IR cap geometry. We will show that

Θ ∼ π

2
[ |γ Ω− P | − δ |Ω + P | − η ] ,

2
√
na2

b2
. |Ω| , (10.4.3)
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Figure 10.4: The four regimes for the (1,0,n)-superstratum response function as a func-
tion of Ω and k = Ω + P . For very small Ω, the wave goes far inside the throat and is
essentially determined by the global-AdS3 geometry at the cap. For larger frequencies,
the wave starts to explore the extremal-BTZ region. The value of k changes only the
centrifugal barrier felt very close to the origin. However, the value k ∼ 0 yields to a
third domain called “intermediate” extremal-BTZ (see subsection 10.4.4).

with γ ∼ b2/a2, δ ∼ 1 and η ∼ |∆ − 1|. This is very close to the same spectrum function which

is included inside RAdS3(2a2 Ω
b2

, P + (1 − b2

2a2 )Ω) when |Ω| . 2
√
na2

b2
and which can be derived from

(10.2.59)

Θ ∼ π

2

[∣∣∣∣( b2a2
+ 1

)
Ω− P

∣∣∣∣− |Ω + P | − |∆− 1|
]
, |Ω| . 2

√
na2

b2
(10.4.4)

In the next subsections, we will show how to obtain the first three lines of (10.4.2) using the hybrid
WKB technique detailed in Section 10.1.3, and from (10.1.15) in particular. The only quantity which
will not be computable with WKB is Rbar(Ω , P ).

The expression for the response function of the Superstratum, (10.4.2), strongly reflects the intuitive
physical picture of the Superstratum. There is an AdS cap at a very high red-shift relative to infinity.
Thus the modes that explore the bottom of the throat produce a response function that looks like that
of global AdS3 but with highly blue-shifted modes relative to the frequencies at infinity. The AdS cap
is connected to the asymptotic region at infinity by a long BTZ throat, and modes that explore this
throat have a response function that is modulated by the BTZ response function.



10. Scattering from microstate geometries in the black-hole regime 190

In this way one will see what appears to be “absorptive behaviour” of the BTZ throat over short time
scales, while over long time-scales one will see strong echoes from the cap, in agreement with unitarity
requirements. Because of the explicit appearance of the BTZ response function, the Superstratum will
also contain information about the left temperature of the extremal BTZ metric. This temperature
governs the decay of the response function over time-scales much less than the echo return-time. We
will discuss the position-space response functions in more detail in Section 10.5.

The remaining part, Rbar(Ω , P ), of the response function is perhaps rather less interesting because
the probe has so much energy and angular momentum that it simply cannot penetrate the throat of
the Superstratum.

Finally we note that the response function has poles in the real (Ω, P )-plane. They appear through
RAdS3 and through tan Θ in (10.4.2) and simply represent the bound states of the cap. Indeed,
because of (10.4.3), these bound states are almost identical to those of a global AdS3. As explained
in the introduction, the Superstratum cannot have quasi-normal modes. On the other hand, the BTZ
response function, (10.2.25), has poles along the imaginary P -axis and these do indeed correspond to
quasi-normal modes. The important point is that even though (10.4.2) involves the BTZ response
function, the poles are specifically excluded because the approximation we made is only valid in the
real (Ω, P )-plane. Thus the BTZ response function merely modulates the amplitude of the response
function and does not (and cannot) introduce imaginary poles.

10.4.2 The cap regime

We consider that |Ω| . 2
√
na2

b2
. The graph in Fig.10.5 shows the superstratum potential V (x) and

the cap potential V cap(x) as a function of x for Ω =
√
na2

2b2
, ∆ = 5 and k = 1. From the figure, the

potentials look very close to each other. More rigorously, we have

δV (x) ≡
∣∣∣∣V (x)− Vcap(x)

Vcap(x)

∣∣∣∣ . ( b2 Ω

a2(∆− 1)

)2 (
1 + e−2x

)−n−2
e−2x , x � x± . (10.4.5)

Consequently, for |Ω| . 2
√
na2

b2
and ∆ large, we have V (x) ∼ Vcap(x) for any x. Moreover, Vcap(x)

is simply the potential of a scalar wave in a red-shifted global AdS3 geometry as explained in the
previous section. Thus one can reproduce the results of the Sections 10.2.3.1 and 10.2.3, where we
have computed the WKB response function in a global AdS3 background and where we have compared
it to the exact function. The WKB computation can be applied only if the potential has classical
turning points which is guaranteed for global AdS3 when (10.2.53) is satisfied. For our red-shifted

AdS3 cap, this translates into the condition that kΩ > 0 and |k| > b2 |Ω|
a2 . Moreover, the WKB

approximation has been shown to be accurate for values of ∆ of order at least slightly higher than one

and for |ω − p| = |(2b2

a2 − 1)Ω− P | � 1. Thus, under all those assumptions and for a2

b2
� |Ω| . 2

√
na2

b2
,

the (1,0,n)-superstratum response function is given by

R(1,0,n)(Ω, P ) ∼ RAdS3

(
2a2 Ω

b2
, P +

(
1− b2

2a2

)
Ω

)
, (10.4.6)

where RAdS3(ω , p) is given by (10.2.46).

One can actually relax the assumptions of validity of this expression. According to (10.4.5), one

should have |Ω| . 2
√
na2

b2
and ∆ large so as to have δV (x) small. The additional requirement that

|(2b2

a2 − 1)Ω− P | � 1 is only necessary for the WKB approximation. Indeed, for |(2b2

a2 − 1)Ω− P | . 1,
the (1,0,n)-superstratum potential is even more closely approximated by the cap potential according
to (10.4.5), and the identification (10.4.6) is thus even more accurate. Thus we have established the
first line of (10.4.2).
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Figure 10.5: The cap regime: The superstratum potential V (x) and the approximated

potential V cap(x) when |Ω| . 2
√
na2

b2
.

For small frequencies, the response function is determined by the red-shifted global AdS3 geometry
at the cap. The spectrum of the normalizable modes is given by the real poles in (10.4.6) which

corresponds to the spectrum of a highly red-shifted global AdS3. This is valid so long as |Ω| . 2
√
na2

b2
,

which corresponds to the
√
n first modes. For higher frequencies, the scalar wave starts to explore the

BTZ region of the geometry and then the response function will differ from the global-AdS3 expectation
as we will discuss in the next sections.

10.4.3 The extremal-BTZ regime

We assume that 2
√
na2

b2
. |Ω| and that P � Ω. As depicted in Fig.10.6, one can show that x+ is

therefore in the extremal-BTZ region, x+ &
√
n. One can then use all the machinery developed

in Section 10.2 by considering VBTZ(x) as the asymptotic potential “Vasymp(x)”. Moreover, VBTZ(x)
corresponds to the potential one can compute in an extremal-BTZ black hole (10.2.18) at the left

temperature TR =
√
n

2π and with a highly red-shifted coordinate u. One can apply the computation in

Section 10.2.2.2 with ω = b2

2a2 Ω ∼ N1N5 Ω/jR, p = P , rH =
√
n and A = tan Θ where Θ is defined in

(10.1.18). The final result for the response function (10.1.20) gives

R(1,0,n)(Ω, P ) ∼ Re

[
RBTZ

(
b2 Ω

2a2
, P

)]
+ sign(Ω) tan Θ Im

[
RBTZ

(
b2 Ω

2a2
, P

)]
, (10.4.7)

where RBTZ(ω, p) is the response function in momentum space of a scalar field in an extremal-BTZ
black hole (10.2.25).

This expression shows how the superstratum response function matches the overall shape of the BTZ

response function but with a deformation term, tan Θ. In the cap regime, |Ω| . 2
√
na2

b2
, Θ is given by

(10.4.4). For 2
√
na2

b2
. |Ω|, finding an analytic expression for Θ is a harder task since the superstratum

potential is no longer well approximated by Vcap(x) or by any other explicitly integrable potential
between the two turning point since x+ &

√
n. We therefore performed a numerical computation of Θ.

Surprisingly, Θ is almost linear as a function of Ω and P as in the global-AdS3 regime (see Fig.10.7 as
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Figure 10.6: The extremal-BTZ regime: the superstratum potential V (x) and the ap-

proximated potential V BTZ(x) when 2
√
na2

b2
. |Ω| and P � Ω.

an illustration). Moreover, this behaviour is similar to (10.4.4) with slightly different coefficients

Θ ∼ π

2
[|γ Ω− P | − δ |Ω + P | − η ] , (10.4.8)

with γ ∼ b2

a2 , δ ∼ 1 and η ∼ |∆ − 1|. The spectrum of the (1,0,n)-superstratum states is then very
close to a linear function of Ω and P , even when the modes start to explore the BTZ throat. We can
expect from those evenly spaced poles in the spectrum that the response function in position space
will be periodic and not sporadic. This difference comes from the highly coherent nature of (1,0,n)
Superstrata which we will comment in more details in Section 10.6.

10.4.4 The intermediate extremal-BTZ regime

When P ∼ Ω and 2
√
na2

b2
. Ω, the superstratum potential is not well approximated anymore by the

BTZ potential since the term a2∆(∆ − 2) is not subleading compared to 2b2PΩ as long as |Ω| . a
b .

We must then consider the “intermediate” extremal-BTZ potential V I-B(x) defined in (10.3.18). We

use “intermediate” since a rescaling P̂ ≡ P + a2

2b2Ω
∆(∆ − 2) converts V I-B(x) to the BTZ potential,

V BTZ(x), with P̂ instead of P . Thus, we can extrapolate easily the WKB computation of the previous

section. For 2
√
na2

b2
. |Ω| with P ∼ Ω, the response function is

R(1,0,n)(Ω, P ) ∼ Re

[
RBTZ

(
b2 Ω

2a2
, P̂

)]
+ sign(Ω) tan Θ Im

[
RBTZ

(
b2 Ω

2a2
, P̂

)]
, (10.4.9)

where Θ is still of the form of (10.4.8) in this regime of parameters. It is only when a
b . Ω that P̂ ∼ P

and that superstratum response function can fully match the BTZ expectation as in previous section.
Thus, our computation indicates an intermediate scale in momentum space, a

b ∼
√
N1N5/jR, from

where the superstratum response function starts to slightly differ from the BTZ expectation. This
scale in position space is t ∼ b

aRy. The superstratum response function will slightly differ from the

BTZ response function at t ∼ b
aRy which is an order of magnitude below the usual scale t ∼ b2

a2Ry for
generic black hole microstate.
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Figure 10.7: The spectrum function determined by the WKB function Θ (10.1.18) as
a function of Ω. The graph in blue corresponds to the numerical value of Θ with the
full (1,0,n)-superstratum potential (10.3.14). The graph in red corresponds to the cap
spectrum given by (10.4.4). The graphs have been computed for ∆ = 3, k = 1, a = 1,
b = 2 103 and n = 750 but different parameters give the same behaviours.

In [117, 118], geodesic motions of probe particles in capped BTZ background have been studied.
The authors showed that a particle dropped from right outside the throat will suffer Planck-scale
tidal forces at a distance r .

√
ab, way above the cap region. However, a similar computation in an

extremal-BTZ geometry gives a constant and small tidal stress. The radial scale for a classical particle
and our frequency scale for a scalar wave can be related by the usual lore that a classical particle lies
where the potential of the wave equals the energy (on-shell condition). This corresponds to the radial
distance where the potential vanishes in our convention and to the classical turning points. In the
present regime of parameters, the turning point, x+ is given by the intermediate-BTZ potential. From
the result (10.2.28), the turning point in the x coordinate, ex = r/a,

x+ =
1

2
ln

[
b2

a2 (∆− 1)2

(
|Ω|
√
P̂ 2 + n(∆− 1)2 − ΩP̂

)]
. (10.4.10)

Thus, for P ∼ Ω ∼ a
b we have

x+ ∼
1

2
ln

[
b

a

]
⇒ r+ ∼

√
ab (10.4.11)

The frequency scale where the scalar waves start to differ from the extremal-BTZ expectation matches
the radial scale where the tidal stresses of classical infalling particles reach the Planck scale.

10.4.5 The centrifugal-barrier regime

The WKB hybrid computation requires the existence of at least one turning point. Our attempts
to extend the technique to strictly positive potentials have either failed or been inaccurate. When
the potential is always positive, there is no classically allowed region and the scalar waves are either
growing or decaying. The physical waves which are smooth at x ∼ −∞ are then necessary growing at
the boundary. As explained in Section 10.1.2.1, the WKB approximation is inefficient to extract the
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Figure 10.8: The centrifugal-barrier regime: the superstratum potential V (x) and the

approximated potential V BTZ(x) when 2
√
na2

b2
. |Ω|, kΩ > 0 and |k| > b2 |Ω|

a2 .

vev part from an only growing wave function. Moreover, this does not mean that the response function
is zero. As an illustration, the scalar wave equation in global-AdS3 has a range of frequencies and
momenta where the potential is strictly positive (10.2.53). However, from a straightforward compu-
tation, the response function, (10.2.46), is not zero or even close to zero in this regime. Nevertheless,
the momentum space response function has no poles in this regime.

The superstratum potential, (10.3.14), has no classical turning point when the centrifugal barrier at
the origin given by A is larger than the penetration parameter given by B. A straightforward analysis
shows that the potential has a large centrifugal barrier and is strictly positive when

kΩ > 0 and |k| > b2 |Ω|
a2

.

For small values of Ω, we have shown that the superstratum potential is well-approximated by
the global-AdS3 cap potential. Thus, the centrifugal-barrier regime is taken into account by the
identification of the superstratum response function to the AdS3 cap response function (10.4.6).

The issue occurs for large Ω, 2
√
na2

b2
. |Ω|, in the BTZ regime. The superstratum potential is

no longer well-approximated by the cap potential and one cannot apply our WKB hybrid method to
extract the response function from the asymptotic BTZ potential. As an illustration, the Figure 10.8
gives the behavior of the potentials in this regime.

However, we have good intuition that the response function in this regime does not have a signif-
icant impact on the physics of wave perturbations in superstratum backgrounds for different reasons.
First, in momentum space, the relevant information is contained in the pole structure of the response
function, particularly in their locations and in their envelops. The centrifugal-barrier regime is essen-
tially characterized by the absence of normalizable modes, i.e. the absence of poles. Thus, it will only
reduce the expected zone where normalizable modes exist. Second, this regime corresponds to very
high momentum k and has a small size in the two-dimensional momentum space given by k and Ω

(Fir.10.4). Indeed, it is delimited by |Ω| & 2
√
na2

b2
∼
√
njR

N1N5
and by the sharp line |k| > b2 |Ω|

a2 ∼ N1N5
jR
|Ω|.

Consequently, we neglect the response function in this regime and have good hope that it does not
compromise the overall understanding of the response function in (1,0,n) Superstratum.
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In the next section, we will discuss the Fourier transform of the response function to position-space.

10.5 Position-space Green functions

We now return to our original goal of assessing to what extent the (1, 0, n) Superstratum differs from
the full black hole ensemble it is part of. While the calculations performed above are most natural in
momentum space, an observer probing the microstate geometry from far away will be more interested
in position space results.

There are many choices of correlation functions in a Lorentzian field theory, including the Feynman,
Wightman, Advanced and Retarded propagators. These represent distinct physical quantities and are
obtained by choosing different time orderings in position space, or by integrating in a particular way
around poles of the momentum space propagator. To clarify the different two-point functions, we
have examined in the Appendix two well-understood examples in some detail: global AdS (Appendix
A.13.1) and extremal BTZ (Appendix A.13.2). In this section, we study the properties position space
propagator in the superstratum background.

10.5.1 Position space Green function in (1,0,n) Superstrata

The momentum space analysis of the superstratum two-point function leads to a rather unwieldy result
(10.4.2), which makes the Fourier transform back to position space cumbersome. In this section, we
sketch the overall profile of the Green function in position space.

There are three relevant time scales. We will argue that for time shorter than
bRy
a ∼

√
N1N5Ry,

the propagator is dominated by the extremal-BTZ response. Beyond that time, up to times of order
b2Ry√
na2 ∼ N1N5Ry/

√
n, the correction from the intermediate regime will change the position space

propagator away from the extremal BTZ expectation. Finally, at a time of order
b2 Ry
a2 ∼ N1N5Ry the

discrete energy spectrum will become significant and will lead to slightly-deformed echoes from the
cap.

First, let us argue that the contribution from tan Θ to the extremal-BTZ response does not drasti-
cally alter the propagator at short time scales. We will model the full propagator in momentum space
as RBTZ(Ω, P ) · g̃(Ω, P )9, where g̃ encodes the modulation from tan Θ. If the spectrum was perfectly

linear, we could choose g̃(Ω, P ) = tan( b
2 Ω
a2 ± P ). The position space propagator is then given by the

convolution

G(u, v) =

∫
dλ dκ

(2π)2
RBTZ(λ, κ) g(u− λ, v − κ) , (10.5.1)

g(u, v) ∝ δ
(
b2

a2 v ∓ u
) ∑

m

δ
(
u+ 2b2

a2 mRy

)
, (10.5.2)

where g is the formal inverse Fourier transform of tan( b
2 Ω
a2 ± P ). This implies that the position space

propagator is periodic in the direction orthogonal to u∓ a2

b2
v, repeating itself whenever u increases with

2b2

a2 Ry, or equivalently after t increases with b2

a2 ± 1 in that direction. After that time, the response is a
perfect echo of the extremal BTZ answer. This was under the assumption that the energy spectrum is
perfectly linear. Since the superstratum spectrum is slightly anharmonic, the consecutive echoes will
instead be slightly more deformed and attenuated. This is represented by the large peak at t ∼ b2/a2

in Figure 10.9.

9One should consider the imaginary part of RBTZ. However, the Fourier transform of the imaginary
part can be obtained from the Fourier transform of the function and its conjugate. One can then consider
RBTZ only for the ease of the discussion.
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According to the second line of (10.4.2), the response is not really that of extremal BTZ, but rather

with the replacement P → P̂ = P − a2 ∆ (∆−2)
b2 Ω

. In the Fourier transform to position space, we can
change basis to get ∫

dΩ dP̂

(2π)2
e−i(Ωu+P̂ v)/Rye

−ia2 ∆(∆−2)v

b2 Ω RBTZ(Ω, P̂ ) . (10.5.3)

Using the expression (10.2.25) for the momentum space BTZ propagator, this integral separates into
the integral over P̂ , which is unaltered, and the integral over Ω∫

dΩ

2π
e−iΩu/Rye

−ia2 ∆(∆−2)v

b2 Ry Ω (−iΩ)∆−1 =

(
−i b2 u

a2 ∆(∆− 2)v

)−∆/2

J−∆

(
2

√
ia2∆(∆− 2)v u

b2R2
y

)
, (10.5.4)

where J−∆ is the Bessel function of the first kind.10 When we expand it for small values of v u, we find

1

Γ(1 + ∆)

(
−u
Ry

)−∆(
1 +

ia2 ∆(∆− 2)v u

(1−∆)b2R2
y

+O(a
2 u v
b2

)2

)
, (10.5.6)

which follows the behavior of the extremal BTZ black hole up to time scales where v u ∼ b2

a2 R
2
y. This

deviation first becomes significant at times of order t = b
a Ry, as depicted by the blue and red lines in

Figure 10.9.

Finally, the response (10.4.2) differs from the extremal-BTZ response whenever |Ω| .
√
na2

b2
. We

can model this in two steps. First the momentum-space BTZ propagator is multiplied by a high-pass

filter such as g̃(Ω, P ) = θ(Ω −
√
na2

b2
) + θ(−Ω −

√
na2

b2
). Second, we add the AdS3 regime of (10.4.2).

The first step is to apply (10.5.1) again, but with

g(u, v) = (2π)2 δ(u)δ(v)− 2

u
sin

(√
na2 u

b2

)
δ(v) . (10.5.7)

The second function is very spread out, but it is also suppressed by n1/4 a/b. Its effect is suppressed by
1/
√
N1N5. To add the AdS3 regime, we add the position space AdS3 propagator with a low-pass filter

g̃ = θ(Ω +
√
na2

b2
) − θ(Ω −

√
na2

b2
), the Fourier transform of which is just the second term of (10.5.7).

All in all, the position space propagator obtained by replacing the BTZ propagator with the AdS3

propagator for energies |Ω| .
√
na2

b2
is

RBTZ(u, v) +
1

π u

∫
dλ

2π

(
RAdS(λ, v)−RBTZ(λ, v)

)
sin

(√
na2(u− λ)

b2

)
. (10.5.8)

The AdS3 response function has the same poles as the tan Θ term, and hence will contribute to the
recurrences (10.5.2).

Notice that RBTZ decays like exp(−∆rH
Ry

v) as long as v . Ry/2,11 whereas the second term in

(10.5.8) is of order n1/4 a/b (v/Ry)
−∆. This is significant, because it means that the second term is

comparable to the first at high temperatures

rH =
√
n ∼ 1

∆
log

(
b2√
na2

)
. (10.5.9)

10This identity follows from the integral representation of the Bessel function,

Jm(x) =
1

2π

∫ π

−π
dτ eix sin τ−imτ , Ω = i

√
a2∆(∆− 2)v

b2 u
eiτ . (10.5.5)

The iε-prescription used for the purpose of this illustration is therefore −iΩ→ −iΩ + sign(u)ε.
11This is where, for large values of rH , the first image in Figure A.10 takes over. For small values of rH ,

the exponential decay lasts as long as rH
Ry
v � 1, but in this regime, it does not become parametrically

small.
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For the superstratum geometry to accurately imitate a black hole at least at times of the order Ry, the
temperature must be small enough that the second contribution in (10.5.8) is negligible. This requires
∆
√
n� log(b2/(

√
na2)).

2π √n

Log(G)

Ry
u


BTZ Region Internediate 

BTZ Region

First AdS Echo 
of BTZ 

a2
b
2

a
b


Figure 10.9: Schematic description of the (1, 0, n)-superstratum Green’s function in po-
sition space (continuous line in blue) and its comparison to the extremal BTZ Green’s
function (dashed line in red). At early times of order Ry, the behavior is very similar to
that in Figure A.10, with polynomial fall off briefly interrupted by singularities at every
∆u = 2π Ry from the light-cone wrapping around the y-direction. (The singularities
are cut off in the picture to clarify their relative weight.) At times of order bRy/a, the
behavior of the superstratum two-point function starts to deviate from that of extremal
BTZ, following (10.5.6). Finally, at times of order b2Ry/a

2, the superstratum Green’s
function features its first significant echo which is absent in BTZ. It is a slightly attenu-
ated and deformed copy of the singularity around u ≈ 0. Ever less significant echos will
follow at times equal to integer multiples of b2Ry/a

2.

10.6 Final comment

This chapter contains the first computation of a correlator of two light operators in a geometry that
has the same asymptotic region and the same throat as an extremal BTZ black hole, but differs from
it at the scale of the horizon.

All the HHLL correlators that have been so far computed in the bulk [201,202,194,203,204] involve
heavy states that are quite far away from the heavy states that one expects to contribute to the entropy
of the BTZ black hole. In “microstate geometry” language, the geometries dual to these states have
shallow throats that do not contain the AdS2 very-near-horizon geometry characteristic of BTZ black
holes. In contrast, the geometries dual to heavy states we consider have an arbitrarily long AdS2

throat, and only differ from the BTZ black hole arbitrarily close to the horizon. This can also be
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seen from the fact that the mass gap of these geometries is the same as the mass gap of the typical
momentum-carrying states of the D1-D5 CFT.

Hence, one expects the HHLL four-point function we compute in the bulk to display thermal
behavior for times smaller than the inverse mass gap, and thus to match the four-point function
computed when the heavy state is taken to be the thermal state (dual in the bulk to the BTZ black
hole). However, for longer times one expects to see non-thermal effects. Note that this expectation
was first spelled out in the CFT, where it was argued that HHLL four-point function computed using
typical heavy states are expected to differ at late times from the four-point functions computed using
the thermal state. Our calculation confirms this from the bulk perspective, and moreover shows that
this late-time non-thermal behavior happens exactly because the geometries dual in the bulk to typical
low-mass-gap CFT states differ from the BTZ black hole at the scale of the horizon.

Seeing thermal behavior in the absence of a horizon appears to be quite counterintuitive, especially
in light of the intuition that thermalization comes from absorption of stuff by the black hole and the
common conceit that only solutions with a horizon can describe typical black hole microstates. Our
result shows that the horizonless microstate geometries with long AdS2 throats give rise, at short
times, to exactly the same thermal behavior one finds in the black hole solution, while avoiding the
information-loss problems associated to the presence of a horizon and restoring the information after
long times.

This being said, the supergravity solutions that we use to compute HHLL correlators are quite far
from the most generic horizonless supergravity solutions one can construct, and hence the late-time
behavior of their correlators, while consistent with information recovery, is also not generic. Indeed,
we have found that after times of order the central charge, N1N5, the two-point function “comes back
from the grave” to a value that is just a tiny bit smaller than its starting value, then decays thermally
again, then comes back from the grave to a tiny smaller value, then decays again, etc.

It would be very interesting to try to extend our calculations to more generic superstrata, and to
see whether one can obtain a behavior at long times that approximates closer thermal behavior. Un-
fortunately, the metric and fields of the most generic superstratum solutions are complicated functions
of five variables ! And while this represents a big achievement for the microstate geometry programme,
computing holographic in such cohomegeneity-five solutions is way beyond the current analytical and
numerical technology (even finding solutions to the wave equation is hard). The solutions we use are
much simpler single-mode (1, 0, n) superstrata, in which the wave equation is separable, and one can
compute two-point functions without resorting to heavy numerics. As we have seen in the paper, even
to compute two-point functions in our geometries we had to develop a new hybrid-WKB technology.
To repeat our calculation for more complicated superstrata one would need to extend this hybrid-WKB
technology to functions of two or more variables, which appears quite challenging.

Aside from the study of microstate geometries, the hybrid-WKB technology we have constructed
will have applications in other areas of holography, as it is the only technique that can be used to
compute holographic correlation functions in backgrounds where the wave equation is not solvable
analytically.
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Appendix

A.1 Integration in R3

We use the spherical coordinates (ρ, ϑ, φ) of R3. We consider that there are n centers determined by
a coordinate aj on the z axis. The shifted spherical coordinates around the jth center, (ρj , ϑj , φ), are
given by

ρj =
√
ρ2 + a2

i − 2ρai cosϑ ϑj = arccos

(
ρ cosϑ− aj

ρj

)
. (A.1.1)

In this section, we give the mathematical library of solutions of the following equations

d3f
(a) + ?3d3 t

(a) = s(a) ,

?3d3T
(a) = S(a) ,

(A.1.2)

where s(a) and S(a) are source terms, (f (a), t(a)) are a couple of a scalar and a one-form and T (a) is a
one-form. We consider the following sources:

S(0) ≡ d3

(
1

ρ

)
, s

(1)
j = S

(1)
j ≡ d3

(
1

ρj

)
, S

(2)
j ≡ aj

ρ
d3

(
1

ρj

)
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ρj
d3

(
1

ρ

)
,

S
(3)
ij ≡

ai
ρi
d3

(
1

ρj

)
− ai
ρj
d3

(
1

ρi

)
, S

(4)
ij ≡

(
1− aiaj

ρ2

)
d3

(
ρ

ρiρj

)
,

S
(5)
ijk ≡

(
1

aiaj
+

1

ρ2
− 1

aiak
− 1

ajak

)
ρ

ρiρj
d3

(
1
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)
+

(
1

aiak
+

1
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− 1
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− 1

ajak

)
ρ

ρiρk
d3

(
1

ρj

)
+

(
1

ajak
+

1

ρ2
− 1

aiaj
− 1

aiak

)
ρ

ρjρk
d3

(
1

ρi

)
(A.1.3)

+

(
− 1

ρ2
+

1

aiaj
+

1

aiak
+

1

ajak

)
ρ2

ρiρjρk
d3

(
1

ρ

)
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j ≡ 1

ρ
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1
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+
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+
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+
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+
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+
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The solutions of the equation sourced by S(a) are

T (0) = cosϑ dφ , T
(1)
j = cosϑj dφ , T

(2)
j =

ρ− aj cosϑ

ρj
dφ , (A.1.4)

T
(3)
ij =

ai
aj − ai

ρ2 + aiaj − (ai + aj)ρ cosϑ

ρiρj
dφ , T

(4)
ij =

(ρ2 + aiaj) cosϑ− (ai + aj)ρ

ρiρj
dφ ,

T
(5)
ijk =

ρ3 + ρ(aiaj + aiak + ajak)−
(
ρ2(ai + aj + ak) + aiajak

)
cosϑ

ρiρjρk
dφ .

The solutions of the equation sourced by s(a) are

f
(1)
j =

1

2ρj
, t

(1)
j =

cosϑj
2

dφ , f
(2)
j =

ρ

2ρj
, t

(2)
j =
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2 ajρj
dφ ,

f
(3)
j =

1

2ρ2
j

, t
(3)
j = 0 , f

(4)
ij =

1

2

1

ρiρj
t
(4)
ij =

ρ2 + aiaj − (ai + aj)ρ cosϑ

2(aj − ai)ρiρj
dφ ,

f
(5)
i =

cosϑ

2aiρ2
i

, t
(5)
i =

ρ sin2 ϑ

2aiρ2
i

dφ ,

f
(6)
ij =

ρ2 + aiaj − 2ajρ cosϑ

2aj(ai − aj)ρρiρj
, t

(6)
ij =

ρ(ai + aj cos 2ϑ)− (ρ2 + aiaj) cosϑ

2aj(ai − aj)ρiρj
dφ ,

f
(7)
ijk =
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ρiρjρk
, t

(7)
ijk = 0 , f

(8)
ijk =

ρ cosϑ

aiajakρiρjρk
, t

(8)
ijk =

ρ2 sin2 ϑ

aiajakρiρjρk
dφ ,

f
(9)
ijk =

ρ2(ai + aj + ak) + aiajak
2aiajakρρiρjρk

,

t
(9)
ijk =

ρ3 + ρ(aiaj + aiak + ajak)− (ρ2(ai + aj + ak) + aiajak) cosϑ

2aiajakρiρjρk
dφ . (A.1.5)

One can also add a solution of the homogeneous equation, and we consider a such solution with
components:

f (10) = M , ?3d3t
(10) = −dM , (A.1.6)

where M is a harmonic function that generically can be of the form:

M = m +
m0

ρ
+

n∑
j=1

mj

ρj
. (A.1.7)

The corresponding t(10) is

t(10) = κ dφ − m0 cosϑ dφ −
n∑
j=1

mj cosϑj dφ . (A.1.8)
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Appendix of Chapter 5

A.2 Numerical analysis of the entropy parameter of four-GH-center
solutions

The aspect ratios of the solutions are fixed to:

z1

z2
≈ 102

z2

z3
≈ 102.

(A.2.1)

By generating such solutions using numerics, we want to describe the evolution of the entropy parameter

H as a function of the nine degrees of freedom of the solutions k1, k2, k3,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

, q0, q1 and

q2. We decompose our analysis in three parts. We first analyze the entropy parameter by varying the

initial supertube charges
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

and
Q

(3)
2

Q
(1)
3

, with all the other parameters fixed. Then, we analyze

the entropy parameter when varying q0, q1 and q2. Finally, we analyze the entropy parameter as we
vary the three initial dipole charges k1, k2 and k3.
Each of the graphs is made by generating 2500 solutions following the procedure detailed in Section

5.2.2. Because a configuration of parameters k1, k2, k3,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

, q0, q1 and q2 can give different

four-GH-center solutions, we take the final solution with the highest entropy parameter. Moreover,
for readability reason, we smooth all the discrete graphs we initially obtained to have at the end a
continuous curve.

• The graphs in Fig.A.1 show the variations of the entropy parameter with the three ratios of
supertube charges. The other parameters have been fixed to

k1 = −k2 = k3 = 1,

q0 = q1 = q2 = 1.
(A.2.2)

The entropy parameters can be greater than 15% in many domains of charge ratios and more
than 25% in some small others.

• The graphs in Fig.A.2 illustrate the variation of the entropy parameter as a function of q0, q1

and q2. We suppressed the values zero in the graphs. They correspond to three-GH-center and
one-supertube solutions. The six other parameters have been fixed to

k1 = −k2 = k3 = 1,

9
Q

(1)
2

Q
(3)
1

=
1

2

Q
(2)
3

Q
(2)
1

=
Q

(3)
2

Q
(1)
3

= 1.
(A.2.3)

3
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(a)
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Figure A.1: The entropy parameter H as a function of the charge ratios with q, q1, q2,
k1, −k2 and k3 equal to 1.
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(a) q0 = 1 (b) q0 = 9

(c) q0 = 13 (d) q0 = 20

Figure A.2: The entropy parameter H as a function of the charges of V, q0, q1 and q2

with k1, −k2, k3 are equal to 1 and
Q

(2)
3

Q
(2)
1

= 2,
Q

(3)
2

Q
(1)
3

= 1 and
Q

(1)
2

Q
(3)
1

= 0.9.

However, we observed the same features for different values of charge ratios and dipole charges.
The graphs show that for any value of q0 the entropy is maximum when the absolute values of
the charges are close to one. Furthermore the minimal Gibbons-Hawking charges (1,1,1 and -2)
are the best choice to obtain four-GH-center solutions with low angular momentum. This is an
unexpected feature. Indeed, in the five-center solution of [85], the GH charges are close to each
other and large. Our solutions do not share this feature.

• For the initial supertube dipole charges, we observed that the sign configuration given by (A.2.2)
(k2 negative, k1 and k3 positive) is the optimal one. With the two other sign configurations, we
did not find domains of charges where the entropy parameter is above 0.1. For the rest of the
analysis we focus on configurations with k2 negative and k1 and k3 positive. By doing a quick
analysis, we observed that the entropy parameter does not depend on the absolute value of k2.
The graphs in Fig.A.3 illustrate how the entropy parameter depends on the absolute value of the

dipole charges k1 and k3. We vary also one charge ratio,
Q

(1)
2

Q
(3)
1

, keeping the other parameters fixed:

q0 = q1 = q2 = 1,

1

2

Q
(2)
3

Q
(2)
1

=
Q

(3)
2

Q
(1)
3

= 1.
(A.2.4)

We remark that the entropy parameter depends essentially on the ratio k1
k3

and the entropy is

maximum and far from 0 for one particular value of k1
k3

. We observed the same kind of graph for
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(c)
Q

(1)
2

Q
(3)
1

= 1.8 (d)
Q

(1)
2

Q
(3)
1

= 3.6

Figure A.3: The entropy parameter H as a function of the dipole charges k1 and k3 and

one charge ratio
Q

(1)
2

Q
(3)
1

with q0, q1, q2 equal to 1 and
Q

(2)
3

Q
(2)
1

= 2,
Q

(3)
2

Q
(1)
3

= 1

different values of charge ratios. If one varies the value of
Q

(1)
2

Q
(3)
1

, the particular value of k1
k3

changes

but the maximum value of the entropy parameter remains the same whereas if one varies the two
other charge ratios both change. The maximum value of entropy parameter we observed is 0.3.

To conclude, the numerical analysis shows that there exist large domains of supertube-charge ratios
and supertube dipole charges where the entropy parameter of solutions satisfying (5.3.2) is maximal
and around 0.3. The only necessary conditions to have an angular momentum significantly below the
cc bound is that the Gibbons-Hawking charges must be minimal and the dipole charge configuration
of the generating three-supertube solution must be k1 and k3 positive and k2 negative. Moreover,
increasing the difference in scale between the inter-center distances does not affect how the entropy

parameter varies with k1, k2, k3,
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

,
Q

(3)
2

Q
(1)
3

, q0, q1 and q2. It affects only the maximal value

reachable as it was detailed in Section 5.3.1.
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A.3 Numerical analysis of the entropy parameter of solutions with
one Supertube and three Gibbons-Hawking centers

We proceed the same way to analyse the entropy parameter of solutions with three Gibbons-Hawking
centers and one Supertube. We focus on solutions without scale differences between the inter-center
distances (5.3.2). According to the method used to generate them (see Section 5.2.2), the solutions
depends on eight free parameters and the aspect ratios (5.3.2). We will also decompose our analysis

in three parts. We first vary the initial supertube charges
Q

(1)
2

Q
(3)
1

,
Q

(2)
3

Q
(2)
1

and
Q

(3)
2

Q
(1)
3

, with all the other

parameters fixed. Then, we analyze the entropy parameter as a function of q0 and qJ , where J is 1, 2
or 3 depending on which center is the Supertube. Finally, we vary the three initial dipole charges k1,
k2 and k3. All the graphs have been generated as explained in the previous section.

• First of all, we noticed that the localization of the supertube center compared to the three Gibbons-
Hawking centers has a significant impact on the entropy parameter. The best configuration is
when the Supertube is not located between the Gibbons-Hawking centers. With our conventions,
this means that the supertube center is the first center given by (0, 0, z1). Indeed, we have found
several domains of charges and dipole charges where the entropy parameter is above 0.15 for the
three possible supertube loci. However, we have found that H has much higher values when the
Supertube is located at the first center.

• The graphs in Fig.A.4 give the variations of the entropy parameter with the three initial charge
ratios when the Supertube is located at the first center. We have fixed the other parameters to
be

k1 = −k2 = k3 = 1,

q0 = −q3 = 1.
(A.3.1)

We observe that when the initial charge ratio
Q

(1)
2

Q
(3)
1

is between 0.4 and 1 and when
Q

(3)
2

Q
(1)
3

is small, the

entropy parameter can reach 0.25. This is the upper bound we found for a configuration which
satisfies (A.3.1) and (5.3.2).

• Regarding the variation of the entropy parameter as a function of q0 and q3 (q2 is fixed to
satisfy Σ qa = 1), we have observed the same features as in solutions with four Gibbons-Hawking
centers: the higher the absolute value of the Gibbons-Hawking charges is, the lower is the entropy
parameter. The graph in Fig.A.5 shows the variation of the entropy parameter as a function of
q0 and q3 for solutions satisfying (5.3.2) and with

k1 = −k2 = k3 = 1,

5
Q

(1)
2

Q
(3)
1

= 60
Q

(3)
2

Q
(1)
3

=
1

4

Q
(2)
3

Q
(2)
1

= 1.
(A.3.2)

We have observed similar variations for different initial charge ratios and dipole charges. Thus,
q0 = 1, q2 = 1 and q3 = −1 is the best configuration to optimize the entropy parameter.

• Varying the initial supertube dipole charges, we have again observed exactly the same features
as in solutions with four Gibbons-Hawking centers. The best sign configuration is when k2 is
negative and when k1 and k3 are positive. Moreover, the entropy parameter does not depend
significantly on the absolute value of k2 and it only depends on k1

k3
. It also reaches a maximum

for a particular value of the ratio k1
k3

. The value and the location of the maximum depends on the
values of the supertube charge ratios. The graphs in Fig.A.6 illustrate these conclusions. We built
solutions and computed their entropy as a function of the absolute value of the dipole charges k1
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Figure A.4: The entropy parameter H as a function of the charge ratios with q0, q2, k1,
−k2 and k3 equal to 1.

Figure A.5: The entropy parameter H as a function of the charges of V, q0 and q3 with

k1, −k2, k3 are equal to 1 and
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(a)
Q

(1)
2

Q
(3)
1

= 0.25 (b)
Q

(1)
2

Q
(3)
1

= 0.5

(c)
Q

(1)
2

Q
(3)
1

= 1 (d)
Q

(1)
2

Q
(3)
1

= 1.5

Figure A.6: The entropy parameter H as a function of the dipole charges k1 and k3 and

one charge ratio
Q

(1)
2

Q
(3)
1

with q0, q1, q2 equal to 1 and
Q

(2)
3

Q
(2)
1

= 4,
Q

(3)
2

Q
(1)
3

= 0.06

and k3 and one charge ratio
Q

(1)
2

Q
(3)
1

. The other parameters have been fixed to

q0 = q1 = q2 = 1.

1

4

Q
(2)
3

Q
(2)
1

= 60
Q

(3)
2

Q
(1)
3

= 1.
(A.3.3)

We have analyzed the entropy parameter for charge ratios different from the one above. The
upper bound of all the maxima we observed is 0.25.

The numerical analysis shows that solutions with one Supertube and three Gibbons-Hawking cen-
ters do not need to have a scale difference between the inter-center distances to have an entropy
parameter above 0.1. If one chooses minimal Gibbons-Hawking charges and k2 negative, k1 and k3

positive, one can find domains of parameters where the entropy is around 0.2.
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Appendix of Chapter 6

A.4 Analysis of three-center solutions

A.4.1 Analytic investigation of solutions with two Supertubes and one GH center

We review our method to construct zero angular momentum BPS multicenter solutions with global D0
and D4 charges being 0 and D6 and D2 charges being 1 starting from solutions with two supertube
centers of different species and one GH center.

• We start with the full parameter space of solutions. The GH center is the 0th center with charges
q, κ1, κ2 and κ3. We consider also a two-charge Supertube of species 1 located at the 1st center

with charges k1, Q
(2)
1 and Q

(3)
1 and a two-charge Supertube of species 2 located at the 2nd center

with charges k2, Q
(1)
2 and Q

(3)
2 . The general form of the eight harmonic function is:

V =
q

r0
, M =

κ1κ2κ3

q2 r0
+
Q

(2)
1 Q

(3)
1

k1 r1
+
Q

(1)
2 Q

(3)
2

k2 r2
,

K1 =
κ1

r0
+
k1

r1
, L1 = −κ2κ3

q r0
+
Q

(1)
2

r2
,

K2 =
κ2

r0
+
k2

r2
, L2 = −κ1κ3

q r0
+
Q

(2)
1

r1
, (A.4.1)

K3 =
κ3

r0
, L3 = −κ1κ2

q r0
+
Q

(3)
1

r1
+
Q

(3)
2

r2
.

First, we want to impose the values of the eight global D-brane charges. This reduces the number
of free parameters to two. One can express everything in terms of k1 and k2:

{q, κ1, κ2, κ3} = {1,−k1,−k2, 0}

{Q(2)
1 , Q

(3)
1 } = {1, k1(1 + k1k2)

k1 − k2
} (A.4.2)

{Q(1)
2 , Q

(3)
2 } = {1, k2(1 + k1k2)

k2 − k1
}

• For zero angular momentum three-center solutions, the bubble equations take the following simple
form

Γ01

r01
+

Γ02

r02
= 0 ,

−Γ01

r01
+

Γ12

r12
= 0 ,

−Γ02

r02
− Γ12

r12
= 0 ,

(A.4.3)

10
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which are easily solved by

r02 = −Γ02

Γ01
r01 , r12 =

Γ12

Γ01
r01 . (A.4.4)

We have used the notation ΓIJ = 〈ΓI ,ΓJ〉. We notice that the solutions are invariant under
rescaling of inter-center distances rIJ → λ rIJ . That is why, r01 remains a free parameter all
along the construction.
Furthermore, the solution corresponds to a physical center configuration if and only if it satisfies
the triangle inequality

(r01 + r02 − r12) (r01 − r02 + r12) (−r01 + r02 + r12) ≥ 0

⇐⇒
(

1− Γ02

Γ01
− Γ12

Γ01

)(
1 +

Γ02

Γ01
+

Γ12

Γ01

)(
−1− Γ02

Γ01
+

Γ12

Γ01

)
≥ 0

(A.4.5)

which constrains the two-dimensional parameter space of k1 and k2 significantly.

• The solution must have a positive quartic invariant (4.1.27) to guarantee the absence of closed
timelike curve. One can either use the conjecture in [140] or the condition (4.1.28). Small number
of centers makes the second option to be the simplest. We expand ZIV around each center. We
find that ZIV ≥ 0 imposes

q Q
(1)
2 ≥ 0 , q Q

(2)
1 ≥ 0 ,

q Q
(3)
1 − k1k2

r01
+
q Q

(3)
2 − k1k2

r02
≥ 0 ,

q Q
(3)
1 + k1k2

(
r01

r12
− 1

)
≥ 0 , q Q

(3)
2 + k1k2

(
r02

r12
− 1

)
≥ 0 ,

(A.4.6)

which further constrains the parameter space defined by k1 and k2. We remind the reader that
these conditions are not necessarily sufficient to be free of closed timelike curves. One needs to
check once those conditions satisfied that the quartic invariant is indeed positive.

• Last but not least, one has to impose all the charges in the harmonic functions (A.4.1) to be
integer.

After few simplifications, the equations (A.4.5) and (A.4.6) are satisfied if k1 and k2 satisfy

(k1 > 0 and − 1

k1
≤ k2 ≤ 0) or (k1 < 0 and 0 ≤ k2 ≤ −

1

k1
) or (k1 = 0 and |k2| ≥ 1). (A.4.7)

Requiring each charge of the harmonic functions to be integer restricts (A.4.7) to six possible values
(k1, k2) = {(0, 1), (0,−1), (1, 0), (1,−1), (−1, 0), (−1, 1)}.
We can repeat exactly the same procedure with solutions of two Supertubes of species 1 and 3 and
solutions of two Supertubes of species 2 and 3. By carefully counting the redundancies, we have a
final count of 12 inequivalent solutions. Their charge vectors as well as their center configuration
are given in detail in Table 6.1. Their main and common features are that the center configurations
are axisymmetric with a U(1) symmetry and all centers carry D-brane charges of value -1, 0 or 1.
Moreover, as explained in Section 6.1, for most of the solutions found, the two-charge-supertube centers
are actually fluxed D-brane centers. The six first solutions in Table 6.1 have a GH center and two
D4-brane centers with an induced D2 charge. The six other solutions have one GH center, one two-
charge-supertube center and one simple D2-brane center with an induced D0 charge.
We have carefully checked that the quartic invariant is strictly positive for all solutions found and that
they are not related by gauge transformations.
One can also wonder why we do not consider configurations with two supertube centers of the same
species. This is straightforward to check that such configurations are strictly incompatible with the
global D-brane charges we impose (6.1.1).
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A.4.2 Numerical analysis of solutions with one Supertube and two GH centers
and solutions with three GH centers

We review our numerical method which shows that there exists no valid solutions satisfying (6.1.1)
with one Supertube and two GH centers or with three GH centers. The number of parameters of such
solutions makes an analytic approach difficult. The steps of our numerical analysis were the following:

• First, we start with the most general solutions. The solutions with one Supertube and two GH
centers form a family of 11 parameters whereas the solutions with three GH centers form a family
of 12 parameters.

• We fix 8 parameters by imposing the global D-brane charges (6.1.1).

• We run the other free parameters from -500 to 500. Each value corresponds to one particular
solution. For each one, firstly we check if the solution has integer charges, secondly if the solutions
of the bubble equations can give physical center configurations (A.4.5), and thirdly if the quartic
invariant is positive. Checking the positivity of the quartic invariant is the hardest part. We
have principally used the conjecture postulated in [140]. This conjecture drastically simplifies
the loop computations. It allows to check the positivity of the quartic invariant all over the R3

base space by checking an algebraic condition on a matrix derived from the bubble equations.
This conjecture should work for multicenter solutions with GH centers only. However, one can
mathematically consider supertube center as a limit of a GH center. For instance, one can obtain
(4.1.65) from (4.1.58) by taking the limit ε→ 0 with

qa = −ε k1 , k1
a = k1 , k2

a = εQ(3)
a , k3

a = εQ(2)
a . (A.4.8)

Thus, we can extend the conjecture to our solutions.

We did not find any solutions satisfying all the conditions in the huge range of parameters we have
scanned. Furthermore, from the previous section we have a good intuition that if a solution exists the
charges should be small. Consequently, one can say that our numerical analysis suggests that there is
no solution of three GH centers or one Supertube and two GH centers satisfying (6.1.1).

A.5 Analysis of four-center and five-center solutions

A.5.1 Analysis of four-center solutions

We perform a similar analysis as in Section A.4.2. The main goal is to scan a significant part of the
parameter space looking for BPS four-center solutions satisfying (6.1.1).

• As before, we start with the most general solutions. The solutions with three Supertubes and one
GH center form a family of 13 parameters, the solutions with two Supertubes and two GH centers
form a family of 14 parameters, the solutions with one Supertube and three GH centers form a
family of 15 parameters and the solutions with four GH centers form a family of 16 parameters, .

• We fix 8 parameters by imposing the global D-brane charges (6.1.1).

• We run the remaining parameters from -5 to 5 (the range of values is smaller than in Section
A.4.2 due to the higher number of free parameters). For each value, we check if the solution is a
valid BPS multicenter solution:

- First, we check if all the harmonic-function charges are integer.

- Second, we check if the solution of the bubble equation can give rise to a physical center
configuration. Because we have four centers and not three, this step is more complex than
the one in the previous section. Indeed, we have to check four triangle inequalities as (A.4.5)
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for each face of the tetrahedron formed by the four centers plus an angle inequality at one
vertex of the tetrahedron.

- Third, we check the absence of closed timelike curves as in the previous section.

No solution have been found in the range of values. One can realistically extend this result to all
four-center BPS solutions.

A.5.2 Analysis of five-center solutions

The number of parameters and the complexity of the constraints for five-center configurations make
the numerical scan of the parameter space impossible. However, we have randomly generated some
solutions and checked if they are valid and physical. The main idea is to fix as many parameters
as possible using the equations (the global D-brane charges, the bubble equations) and pick random
values for the other parameters and check if they satisfy all the inequations (the absence of closed
timelike curves, the triangle inequalities etc...). We have generated a significant number (∼ 103) of
five-center solutions focusing on solutions with low charges at the centers , we find no valid solutions.
This tends to argue that no five-center solutions with pure D6 and D2 charges exist.

A.6 Configurations with QD6 = 2

In this section, we give to the interested reader the charge vectors of the 18 three-center solutions with
one GH center and two 16-supercharge centers with global D-brane charges (QD6, Q

1
D4, Q

2
D4, Q

3
D4 ; Q1

D2,
Q2
D2, Q

3
D2, QD0) = (2, 0, 0, 0; 1, 1, 1, 0). They are given in the Table A.1. The center configurations are

axisymmetric and look like

2 rr

with the GH center either in the middle or on the right depending on the solution considered.
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Table A.1: The 18 multicenter solutions with global D-brane charges
(QD6, Q

1
D4, Q

2
D4, Q

3
D4;Q1

D2, Q
2
D2, Q

3
D2, QD0) = (2, 0, 0, 0; 1, 1, 1, 0).

1

Γ0 = (2, 1, 0, −2 ; 0, 1, 0, 0)

Γ1 = (0, −1, 0, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, 2 ; 1, 0, 0, 0)

2

Γ0 = (2, 0, −1, 0 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 0 ; 0, 1, 0, −1)

Γ2 = (0, 0, 1, 0 ; 1, 0, 1, 1)

3

Γ0 = (2, 1, −2, 0 ; 0, 0, 1, 0)

Γ1 = (0, 0, 2, 0 ; 1, 0, 0, 0)

Γ2 = (0, −1, 0, 0 ; 0, 1, 0, 0)

4

Γ0 = (2, 0, −2, 1 ; 1, 0, 0, 0)

Γ1 = (0, 0, 0, −1 ; 0, 1, 0, 0)

Γ2 = (0, 0, 2, 0 ; 0, 0, 1, 0)

5

Γ0 = (2, −2, 0, 1 ; 0, 1, 0, 0)

Γ1 = (0, 2, 0, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, −1 ; 1, 0, 0, 0)

6

Γ0 = (2, 0, 0, −1 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 1 ; 1, 1, 0, 1)

Γ2 = (0, 0, 0, 0 ; 0, 0, 1, −1)

7

Γ0 = (2, 0, 1, −2 ; 1, 0, 0, 0)

Γ1 = (0, 0, 0, 2 ; 0, 1, 0, 0)

Γ2 = (0, 0, −1, 0 ; 0, 0, 1, 0)

8

Γ0 = (2, −1, 0, 0 ; 0, 0, 0, 0)

Γ1 = (0, 1, 0, 0 ; 0, 1, 1, 1)

Γ2 = (0, 0, 0, 0 ; 1, 0, 0, −1)

9

Γ0 = (2, −2, 1, 0 ; 0, 0, 1, 0)

Γ1 = (0, 0, −1, 0 ; 1, 0, 0, 0),

Γ2 = (0, 2, 0, 0 ; 0, 1, 0, 0)

10

Γ0 = (2, 2, −1, 0 ; 0, 0, 1, 0)

Γ1 = (0, −2, 0, 0 ; 0, 1, 0, 0)

Γ2 = (0, 0, 1, 0 ; 1, 0, 0, 0)

11

Γ0 = (2, 2, 0, −1 ; 0, 1, 0, 0)

Γ1 = (0, 0, 0, 1 ; 1, 0, 0, 0)

Γ2 = (0, −2, 0, 0 ; 0, 0, 1, 0)

12

Γ0 = (2, 0, −1, 2 ; 1, 0, 0, 0)

Γ1 = (0, 0, 0, −2 ; 0, 1, 0, 0)

Γ2 = (0, 0, 1, 0 ; 0, 0, 1, 0)
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13

Γ0 = (2, 0, 2, −1 ; 1, 0, 0, 0)

Γ1 = (0, 0, −2, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, 1 ; 0, 1, 0, 0),

14

Γ0 = (2, −1, 2, 0 ; 0, 0, 1, 0)

Γ1 = (0, 0, −2, 0 ; 1, 0, 0, 0)

Γ2 = (0, 1, 0, 0 ; 0, 1, 0, 0)

15

Γ0 = (2, −1, 0, 2 ; 0, 1, 0, 0)

Γ1 = (0, 1, 0, 0 ; 0, 0, 1, 0)

Γ2 = (0, 0, 0, −2 ; 1, 0, 0, 0)

16

Γ0 = (2, 1, 0, 0 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 0 ; 1, 0, 0, 1)

Γ2 = (0, −1, 0, 0 ; 0, 1, 1, −1)

17

Γ0 = (2, 0, 0, 1 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 0 ; 0, 0, 1, 1)

Γ2 = (0, 0, 0, −1 ; 1, 1, 0, −1)

18

Γ0 = (2, 0, 1, 0 ; 0, 0, 0, 0)

Γ1 = (0, 0, 0, 0 ; 0, 1, 0, 1)

Γ2 = (0, 0, −1, 0 ; 1, 0, 1, −1)

A.7 Three-node abelian quiver with general (a,b,c)

The case of a general Abelian 3-node quiver with closed loop and with vanishing FI parameters, is
quite similar to (a, b, c) = (2, 1, 1) . It is described by the following quiver

1

1 1

YβXα

Cγ

, (A.7.1)

with α = 1, . . . , a, β = 1, . . . , b, γ = 1, . . . , c where (a, b, c) is the unique triplet of integer intersection
product (a, b, c) ≡ (〈Γi,Γj〉, 〈Γj ,Γk〉, 〈Γk,Γi〉), i, j, k are three different integers between 0 and 2 in
order to satisfy a ≥ b > 0 and c > 0. The D-term equations are given by

a∑
α=1

|Xα|2 −
c∑

γ=1

|Cγ |2 = 0 (A.7.2)

b∑
β=1

|Yβ|2 −
a∑

α=1

|Xα|2 = 0 (A.7.3)

−
b∑

β=1

|Yβ|2 +
c∑

γ=1

|Cγ |2 = 0 . (A.7.4)

Again, we assume a generic cubic superpotential

W = wαβγXαYβCγ , (A.7.5)

which gives the following F-term equations:

wαβγYβCγ = 0, wαβγXαCγ = 0, wαβγXαYβ = 0 . (A.7.6)

As argued in [158], the solution space consists of 3 chambers, in each of which only one of the three
fields vanishes. However by D-term equations, this also implies vanishing of all three fields. So there
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is only one chamber, consisting a single solution. Again, the solution preserves U(1) × U(1) gauge
symmetry.

We briefly make comparison with [158], which considered same quiver, but with non-zero FI pa-
rameters, and came to rather different conclusions. For non-zero FI parameters, after setting one of
the fields to zero, D-term equations define a product of projective spaces. On the other hand, setting a
field to zero, solves two F-term equations automatically. The remaining one defines a complete inter-
section manifold in the product of projective spaces. Requiring the dimension of this manifold to be
non-negative gives the condition a + b ≥ c + 2 and permutations. When we set the FI parameters to
zero, these projective spaces collapse to a point and so does the intersection manifold. As a result we
do not have any condition on (a, b, c). This is rather puzzling as physically one would have expected to
get some version of triangle inequality. In particular, we would like to understand the Coulomb branch
description of quivers with triangle inequality violating (a, b, c).

Due to the above mentioned differences, the conclusions of [158] do not apply to quivers discussed
in this paper.
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A.8 The example of asymptotically WAdS3×SqS3 bubbling solution

In this section, we examine the IR geometry of the solution constructed in Section 8.2.4. We give the
local S1 × R4 metric (8.2.15) at each of the four centers and the periodicities of the angles.

• At the origin of the space, r ∼ 0:

The local metric is

ds2
0 =

5 Λ2

18

√
7

3

[
dr2

r
+

5632

1575
dy2

0

+ r
(
dθ2 + 2(1 + cos θ) dφ2

L0 + 2(1− cos θ) dφ2
R0

)]
,

(A.8.1)

where y0, φL0 and φR0 are related to the angles at infinity y∞, ψ∞ and φ by

y0 = y∞ +
9

4
(ψ∞ − φ) ,

φL0 =
1

8
(21 y∞ + 31(ψ∞ − φ)) + φ ,

φR0 =
1

8
(21 y∞ + 31(ψ∞ − φ)) .

(A.8.2)

We can read the periodicities from (8.2.23)

(y0, φL0, φR0) =



(y0, φL0, φR0) − 20π T

473
(51, 64, 64)

(y0, φL0, φR0) +
π

2
(18, 31, 31)

(y0, φL0, φR0) + 2π (0, 1, 0)

. (A.8.3)

Using the procedure detailed in Section 8.2.2, this corresponds to a smooth discrete quotient of S1×R4

if b is not divisible by 2 where b is the denominator of the irreducible fraction T = a
b .

• At the second center, r1 ∼ 0:

The local metric is

ds2
1 =

Λ2

23

√
155

2

[
dr2

1

r1
+

15548

837
dy2

1

+ r1

(
dθ2

1 + 2(1 + cos θ1) dφ2
L1 + 2(1− cos θ1) dφ2

R1

)]
,

(A.8.4)

17
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where y1, φL1 and φR1 are related to the angles at infinity y∞, ψ∞ and φ by

y1 = y∞ + ψ∞ −
5

13
φ ,

φL1 =
1

6
(21 y∞ + 31ψ∞ − 23φ) + φ ,

φR1 =
1

6
(21 y∞ + 31ψ∞ − 23φ) .

(A.8.5)

We can read the periodicities from (8.2.23)

(y1, φL1, φR1) =



(y1, φL1, φR1) − 160π T

1419
(3, 32, 32)

(y1, φL1, φR1) +
2π

3
(6, 31, 31)

(y1, φL1, φR1) +
2π

39
(24, 91, 52)

. (A.8.6)

This corresponds to a smooth discrete quotient of S1 × R4 if b is not divisible by 13 where b is the
denominator of the irreducible fraction T = a

b .

• At the third center, r5 ∼ 0:

The local metric is

ds2
5 =

65 Λ2

207

√
11

6

[
dr2

5

r5
+

599081

128700
dy2

5

+ r5

(
dθ2

5 + 2(1 + cos θ5) dφ2
L5 + 2(1− cos θ5) dφ2

R5

)]
,

(A.8.7)

where y5, φL5 and φR5 are related to the angles at infinity y∞, ψ∞ and φ by

y5 = y∞ −
3

61
(3ψ∞ − 13φ) ,

φL5 =
1

32
(21 y∞ + 31ψ∞ − 17φ) + φ ,

φR5 =
1

32
(21 y∞ + 31ψ∞ − 17φ) .

(A.8.8)

Then, we can read the periodicities from (8.2.23)

(y5, φL5, φR5) =



(y5, φL5, φR5) +
320π T

28853
(120,−61,−61)

(y5, φL5, φR5) +
π

488
(−288, 1891, 1891)

(y5, φL5, φR5) +
π

488
(480, 1403, 427)

. (A.8.9)

This corresponds to a smooth discrete quotient of S1 × R4 if b is not divisible by 16 where b is the
denominator of the irreducible fraction T = a

b .

• At the fourth center, rp ∼ 0:

The local metric is

ds2
p =

Λ2

207

√
145

3

[
dr2
p

rp
+

66309

232
dy2
p

+ rp
(
dθ2
p + 2(1 + cos θp) dφ

2
Lp + 2(1− cos θp) dφ

2
Rp

)]
,

(A.8.10)
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where yp, φLp and φRp are related to the angles at infinity y∞, ψ∞ and φ by

yp = y∞ −
21

31
(ψ∞ + φ) ,

φLp =
1

16
(21 y∞ + 31ψ∞ + 15φ) + φ ,

φRp =
1

16
(21 y∞ + 31ψ∞ + 15φ) .

(A.8.11)

Then, we can read the periodicities from (8.2.23)

(yp, φLp, φRp) =



(yp, φLp, φRp) +
640π T

14663
(3,−31,−31)

(yp, φLp, φRp) +
π

124
(336, 961, 961)

(yp, φLp, φRp) +
π

124
(336, 961, 713)

. (A.8.12)

This corresponds to a smooth discrete quotient of S1 × R4 if b is not divisible by 8 where b is the
denominator of the irreducible fraction T = a

b .

Therefore, the IR bubbling geometry is smooth if and only if T = a
b ∈ Q and b is not divisible by 2

or 13.

A.9 The example of asymptotically NHEK bubbling solution

In this section, we focus on the IR geometry of the solution constructed in 8.3.3. We give the local
S1 × R4 metrics (8.2.15) around each of the four centers and the periodicities of the angles.

• At the origin of the space, r ∼ 0:

The local metric is

ds2
0 =

Λ2

240

√
675− 67

√
65

6

[
dr2

r
+

49 (2915 + 259
√

65)

10240
dy2

0

+ r
(
dθ2 + 2(1 + cos θ) dφ2

L0 + 2(1− cos θ) dφ2
R0

)]
,

(A.9.1)

where y0, φL0 and φR0 are related to the angles at infinity y∞, ψ∞ and φ by

y0 = y∞ +
17

7
(ψ∞ − φ) ,

φL0 = − 6 y∞ + 10 (φ− ψ∞) + φ ,

φR0 = − 6 y∞ + 10 (φ− ψ∞) .

(A.9.2)

The periodicities derived from (8.3.8) are

(y0, φL0, φR0) =



(y0, φL0, φR0) + 2π

(
− 33

7 Λ
,
15

Λ
,
15

Λ
,

)
(y0, φL0, φR0) + 2π

(
34

7
,−20,−20

)
(y0, φL0, φR0) + 2π (0, 1, 0)

. (A.9.3)

Using the procedure of Section 8.2.2, this is a smooth discrete quotient of S1 × R4 for any rational Λ.
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• At the second center, r1 ∼ 0:

The local metric is

ds2
1 =

Λ2

420

√
−635 + 123

√
65

2

[
dr2

1

r1
+

289 (2575 + 303
√

65)

47360
dy2

1

+ r1

(
dθ2

1 + 2(1 + cos θ1) dφ2
L1 + 2(1− cos θ1) dφ2

R1

)]
,

(A.9.4)

where y1, φL1 and φR1 are related to the angles at infinity y∞, ψ∞ and φ by

y1 = y∞ +
1

17
(23ψ∞ − 27φ) ,

φL1 = − 6 y∞ − 10ψ∞ + 12φ ,

φR1 = − 6 y∞ − 10ψ∞ + 11φ .

(A.9.5)

The periodicities are

(y1, φL1, φR1) =



(y1, φL1, φR1) − 2π

(
− 27

17 Λ
,
15

Λ
,
15

Λ
,

)
(y1, φL1, φR1) + 2π

(
46

17
,−20,−20

)
(y1, φL1, φR1) + 2π

(
− 4

17
, 2, 1

) . (A.9.6)

This is a smooth discrete quotient of S1 × R4.

• At the third center, r5 ∼ 0:

The local metric is

ds2
5 =

Λ2

560

√
9635− 323

√
65

6

[
dr2

5

r5
+

529 (1215 + 223
√

65)

564480
dy2

5

+ r5

(
dθ2

5 + 2(1 + cos θ5) dφ2
L5 + 2(1− cos θ5) dφ2

R5

)]
,

(A.9.7)

where y5, φL5 and φR5 are related to the angles at infinity y∞, ψ∞ and φ by

y5 = y∞ +
1

23
(ψ∞ + 3φ) ,

φL5 = − 1

21
(6 y∞ + 10ψ∞ + 9φ) + φ ,

φR5 = − 1

21
(6 y∞ + 10ψ∞ + 9φ) ,

(A.9.8)

with the following periodicities

(y5, φL5, φR5) =



(y5, φL5, φR5) + 2π

(
51

23 Λ
,

5

7 Λ
,

5

7 Λ

)
(y5, φL5, φR5) + 2π

(
2

23
,−20

21
,−20

21

)
(y5, φL5, φR5) + 2π

(
4

23
,

2

21
,−19

21

) . (A.9.9)

This corresponds to a smooth discrete quotient of S1 × R4.
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• At the fourth center, rp ∼ 0:

The local metric is

ds2
p =

4 Λ2

9

1

43675 + 5435
√

65

[
dr2
p

rp
+

45 (6145 + 737
√

65)

8
dy2
p

+ rp
(
dθ2
p + 2(1 + cos θp) dφ

2
Lp + 2(1− cos θp) dφ

2
Rp

)]
,

(A.9.10)

where yp, φLp and φRp are related to the angles at infinity y∞, ψ∞ and φ by

yp = y∞ +
3

5
(ψ∞ + φ) ,

φLp = − 6 y∞ − 10ψ∞ − 9φ ,

φRp = − 6 y∞ − 10ψ∞ − 10φ .

(A.9.11)

The periodicities are

(yp, φLp, φRp) =



(yp, φLp, φRp) − 2π

(
3

5 Λ
,
15

Λ
,
15

Λ
,

)
(yp, φLp, φRp) + 2π

(
6

5
,−20,−20

)
(yp, φLp, φRp) + 2π

(
6

5
,−19,−20

) . (A.9.12)

This corresponds to a smooth discrete quotient of S1×R4. Thus, the IR bubbling geometry is smooth
for any rational values of Λ.
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Appendix of Chapter 9

A.10 Analytic solution of the wave equation for large n

In this appendix we give the full mathematical proof of our method to analytically solve the radial
part of the free massless scalar wave equation (9.3.15) in a (1, 0, n)-superstratum geometry with n� 1,
working to leading order in the 1/n expansion. From the outset we impose the condition ∆ 6= 1 as
required by the regularity of the angular wavefunction (9.3.13). For ease of presentation, we consider
P + q2 6= 0. However, one can apply the same method when P + q2 = 0.

We solve for K(z) subject to
K(0) = 0 , K(1) = 0. (A.10.1)

To do so we divide the radial equation in two pieces:

L[Ω̃]K(z) − zn

1− z
E [Ω̃]K(z) = 0 , (A.10.2)

where

L[Ω̃] ≡ ∂z (z ∂z ) +
1

4(1− z)

[(
P + q1 +

b2Ω̃

2

)2

− (P + q2)2

z
− ∆(∆− 2)

1− z

]
,

E [Ω̃] ≡
b2Ω̃

(
4q1 + b2Ω̃

)
16

, (A.10.3)

where we remind the reader that q1, q2 and ∆ are integers.

The strategy will be to exploit the fact that L[Ω̃]K = 0 is analytically solvable, and that the second
term in (A.10.2) can be treated (with some care) as subleading. We make a series expansion in 1/nν ,
where ν ≡ |∆− 1| was defined in (9.3.20),

K(z) = K(1)(z) +
1

nν
K(2)(z) +

1

n2ν
K(3)(z) + . . . ,

Ω̃ = Ω(1) +
1

nν
Ω(2) +

1

n2ν
Ω(3) + . . . .

(A.10.4)

The powers of n in this expansion are chosen so that all Ω(J) and K(J)(z) will turn out to be of order
one when n is large.

We insert this expansion in the wave equation (A.10.2), and we arrange the series expansion in
1/n according to our strategy. That is, we put the leading part of the second term in (A.10.2) on the
right-hand side of the second equation below:

L [Ω(1)]K(1)(z) = 0 , K(1)(0) = K(1)(1) = 0,

L [Ω(1)]K(2)(z) =
K(1)(z)

1− z

(
nν E [Ω(1)] zn − b2Ω(2)(P + q1 +

b2

2
Ω(1))

)
, K(2)(0) = K(2)(1) = 0,

. . . (A.10.5)
22
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and so on at higher order. We will carefully justify this arrangement of terms in what follows.

If one shows that each K(J)(z) and Ω(J) are of order one when n is large, this guarantees that
the series expansion (A.10.4) converges and that the principal features of the solution are captured by
K(1)(z). The expansion is similar in spirit to the WKB approximation.

We will need to treat carefully the first term on the second line of (A.10.5). The main subtlety with
this term is that even though zn � 1 for z ∈ [0, 1), the combination zn

1−z diverges as z → 1. However,

since K(1)(z) satisfies (A.10.5) then it behaves as z → 1 as (9.3.19)

(1− z)
1+|∆−1|

2 . (A.10.6)

Thus for ∆ ≥ 3 and ∆ ≤ −1, the combination zn

1−z K
(1)(z) tends to zero as z → 1. For ∆ = 2

and ∆ = 0, zn

1−z K
(1)(z) tends to a finite value as z → 1 (although the interval where zn

1−z K
(1)(z) is

non-negligible is a set of measure zero in the large n limit). We will carefully analyze the equations
and solutions for general ∆ near z → 1 in what follows.

Derivation of K(1)

Let us solve the wave equation (A.10.5) for K(1)(z) without imposing any boundary condition. There
is only one branch of regular solutions for P + q2 ∈ Z∗:

K(1)(z) = κ(1) z
|P+q2|

2 (1− z)−
∆−2

2 2F1

(
γ − δ

2
,
γ + δ

2
, µ , z

)
, (A.10.7)

with

γ = −∆ + 2 + |P + q2| , δ = P + q1 +
b2Ω

2
, µ = 1 + |P + q2| , (A.10.8)

and where κ(1) is a constant.

• Condition K(1)(1) = 0.

We compute the limit of K(1) (A.10.7) around z = 1 for the allowed values of ∆:

K(1)(z) ∼
z→1

κ(1)


(∆−2) ! Γ(µ)

Γ(µ− γ+δ
2 ) Γ(µ− γ−δ2 )

(1− z)1−∆
2 + O

z→1

(
(1− z)

∆
2

)
, ∆ ≥ −2,

(∆−2) ! Γ(µ)

Γ( γ+δ
2 ) Γ( γ−δ2 )

(1− z)
∆
2 + O

z→1

(
(1− z)1−∆

2

)
, ∆ ≤ −4.

We see that the leading-order terms do not tend to zero as z → 1, while the higher-order terms do.
Thus, we must set the leading order terms to zero. This can be done by arranging a pole in one of the
Gamma functions in the respective denominators:

∆ ≥ −2 ⇒ Γ

(
µ− γ ± δ

2

)
= ±∞ ⇒ −µ+

γ ± δ
2

= j ∈ N ,

∆ ≤ −4 ⇒ Γ

(
γ ± δ

2

)
= ±∞ ⇒ −γ ± δ

2
= j ∈ N . (A.10.9)

Both conditions give the same two towers of permitted values of Ω(1) labelled by j,

Ω
(1)+
j =

2

b2

[
2j + 1 + |∆− 1|+ |P + q2| − (P + q1)

]
,

Ω
(1)−
j = − 2

b2

[
2j + 1 + |∆− 1|+ |P + q2|+ (P + q1)

]
.

(A.10.10)
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As usual we restrict attention to the positive frequencies, Ω
(1)
j = Ω

(1)+
j . Thus, the radial wave functions

are

K
(1)
j (z) = κ

(1)
j (1− z)

1+|∆−1|
2 z

|P+q2|
2

j∑
`=0

(−1)`
(
j

`

)
(j + 1 + |∆− 1|+ |P + q2|)`

(1 + |P + q2|)`
z` . (A.10.11)

• Condition K(1)(0) = 0.

We observe that this condition is automatically satisfied by the radial wave function (A.10.11).

Derivation of K(2)

From now on, K(1) is fixed to be a polynomial function of the tower labelled by j given in (A.10.11).

We must now solve the following differential equation (A.10.5) to find K
(2)
j ,

L [Ω
(1)
j ]K

(2)
j (z) =

K
(1)
j (z)

1− z

(
nν E [Ω

(1)
j ] zn − γ(2)

j

)
,

K
(2)
j (0) = K

(2)
j (1) = 0 ,

(A.10.12)

where for convenience we have defined the constant γ
(2)
j to be

γ
(2)
j ≡ b2Ω

(2)
j

(
P + q1 +

b2

2
Ω

(1)
j

)
. (A.10.13)

This is the more involved step of the method. It is crucial to show that solutions of (A.10.12) do not
diverge at the boundaries and are of order one when n is large. If one of these two conditions is not
satisfied, the expansion (A.10.4) is ill-defined. We use the standard method of variation of parameters

to solve the equation, since we already know that K
(1)
j is a solution to the homogeneous equation. We

find

K
(2)
j (z) = K

(1)
j (z)

∫ z

0
dy

Pj(y)

y
(
K

(1)
j (y)

)2 , (A.10.14)

where Pj is a polynomial defined by

Pj(y) ≡
∫ y

0
dx

(
K

(1)
j (x)

)2

1− x

(
nν E [Ω

(1)
j ]xn − γ(2)

j

)
. (A.10.15)

At first sight, the integral (A.10.14) appears likely to be divergent. Indeed, the polynomial y
(
K

(1)
j (y)

)2

has j+2 distinct roots: a root of multiplicity |P +q2|+1 at 0, a root of multiplicity 1+ |∆−1| at 1, and
j roots of multiplicity 2 between 0 and 1; let us call these intermediate roots α` for ` = 1, . . . , j (see

Eq. (A.10.11)). We will see that assigning a specific value to γ
(2)
j will make the function regular and

bounded everywhere. Before dealing with the regularity issues at each zero, we first rewrite
(
K

(1)
j (z)

)2

in three convenient forms that will be useful in what follows:(
K

(1)
j (z)

)2
= κ2

j (1− z)1+|∆−1| z|P+q2|
j∏
`=1

(z − α`)2

= κ2
j z
|P+q2| (1− z)

∑
`

a` z
`

= κ2
j (1− z)1+|∆−1| ∑

`

b` (1− z)`

(A.10.16)
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where κj is a constant and where the sums on the second and third lines run from 0 to the appropriate
maximum values of `.

• At z = 0

The integral (A.10.14) appears to be ill-defined at z = 0. However, if we compute Pj(y) with the

second formulation of
(
K

(1)
j (z)

)2
in (A.10.16), the regularity of the integral at 0 is explicit. We

integrate (A.10.15):

Pj(y) = κj y
|P+q2|+1

∑
`

a`

(
nν E [Ω

(1)
j ]

n+ |P + q2|+ `
yn −

γ
(2)
j

|P + q2|+ `

)
y`. (A.10.17)

Moreover, the denominator in (A.10.14) is

y
(
K

(1)
j (y)

)2
= κj y

|P+q2|+1 (1− y)1+|∆−1|
j∏
`=0

(y − α`)2. (A.10.18)

By comparing those two expressions, it is straightforward to see that
Pj(y)

y
(
K

(1)
j (y)

)2 takes a finite

value at y = 0 and is integrable at 0. Furthermore, if one takes the limit z → 0 of the differential

equation (A.10.12) one can show that K
(2)
j has a zero of multiplicity |P+q2|

2 at z = 0 exactly as

K
(1)
j .

• At z = α`
Obviously, z = α` is not a zero of Pj(y). So the argument above cannot be used here. However,
around α` we have ∫ z

0

Pj(y)

y
(
K

(1)
j (y)

)2 ∼
z→α`

∫ z

0

dy

(y − α`)2 ∼
z→α`

1

z − α`
,

K
(1)
j (z) ∼

z→α`
(z − α`) .

(A.10.19)

Thus, the product of the two is well-defined and K
(2)
j is well-defined at z = α`.

• At z = 1

Proving the regularity of K
(2)
j around 1 is less straightforward. The most direct argument we

found is the following: we compute Pj(y) using the third expression of (A.10.16) and we prove

that Pj(y) has a zero of multiplicity 1 + ν at 1 for a specific value of Ω
(2)
j (A.10.4). We derive

Pj(y) according to (A.10.16)

Pj(y) = Pj(1) −
∫ 1

y
dx

(
K

(1)
j (x)

)2

1− x

(
nν E [Ω

(1)
j ]xn − γ(2)

j

)
,

= Pj(1) + (1− y)1+ν
∑
`

b′` (1− y)`.

(A.10.20)

where b′` can be computed from b` (A.10.16), E [Ω
(1)
j ], γ

(2)
j and n. Consequently, if we fix Ω

(2)
j to

satisfy Pj(1) = 0, Pj(y) has indeed a zero of multiplicity (1 + ν) at 1 which guarantees that K
(2)
j

takes a finite value. Moreover by expanding (A.10.17) in powers of 1/n we find

Pj(y) ≡ nν E [Ω
(1)
j ] yn+1

∑
α=0

(−1)α

nα
(y∂y)

α


(
K

(1)
j (y)

)2

1− y


− γ(2)

j

∫ y

0
dx

(
K

(1)
j (x)

)2

1− x
,

(A.10.21)
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where (y∂y)
α means we derive and multiply α times. Evaluating this formula at y = 1 shows that

there always exists a unique solution Ω
(2)
j of Pj(1) = 0 and this value is of order one when n is

large and j .
√
n. Furthermore, if one takes the limit of the differential equation (A.10.12) for

this particular value of Ω
(2)
j one can show that the finite value K

(2)
j (1) must be exactly 0 and the

multiplicity of this zero is necessarily 1+ν
2 exactly as it is for K

(1)
j .

Finally, K
(2)
j does not diverge in [0, 1] and it is straightforward from (A.10.17) and (A.10.14) that

K
(2)
j (z) is of order one when n is large.

In a nutshell, we have shown that the second term of the series expansion (A.10.4) is well-defined:

K
(2)
j (z) is regular, K

(2)
j (0) = K

(2)
j (1) = 0 with the same multiplicity as K

(1)
j and Ω

(2)
j and K

(2)
j (z) are

of order one when n is large and j .
√
n.

Higher-order terms

We finally discuss the higher-order terms of the 1
n -expansion {K(3)

j , . . . ; Ω
(3)
j , . . .}. Each term of the

expansion satisfies a differential equation of the form

L [Ω
(1)
j ]K

(J)
j (z) = (. . .) K

(1)
j (z) + (. . .) K

(2)
j (z) + . . .+ (. . .) K

(J−1)
j (z),

K
(J)
j (0) = K

(J)
j (1) = 0.

(A.10.22)

If we know that each function K
(K)
j (z) for K < J is well-defined with zeroes at z = 0 and z = 1 with

multiplicity |p+q2|2 and 1+ν
2 respectively, the same arguments as above can be used to prove that there

exists a value for Ω
(J)
j where K

(J)
j (z) is well-defined with the same kinds of zeroes at z = 0 and z = 1.

To conclude, we have solved the wave equation (9.3.22) in the limit where n is large. We have
expanded the solutions for large n and demonstrated the consistency of this expansion. All the features

of the tower of solutions are captured by the tower of leading-order terms K
(1)
j , as discussed in Section

9.3.3.
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A.11 Potentials with arbitrarily many turning points

We consider a Schrödinger equation of the type (10.1.4) with a potential with arbitrarily many classical
turning points where the potential vanishes. In this section, one will give the expression of the quantity
A which encodes the information about the potential V (x) for x < x+ as well as the physical boundary
condition imposed as x → −∞ in the response function computed from the WKB hybrid technique
(10.1.15):

• If V (x) has an even number, 2k, of turning points, x1, x2 . . . x2k,one necessarily has V (x) ≥ 0 in
the “interior region,” x < x1. The physical boundary condition as x → −∞ is that Ψ is smooth
in this limit. Thus, we have

A = 2
M22

M12
, (A.11.1)

where Mij are the matrix elements of the following matrix

M ≡

(
− sin Θ2k−1 2 cos Θ2k−1

1
2 cos Θ2k−1 sin Θ2k−1

)
.
k−1∏
j=1

(
1
2 e
−Θ2j cos Θ2j−1 e−Θ2j sin Θ2j−1

−eΘ2j sin Θ2j−1 2 eΘ2j cos Θ2j−1

)
, (A.11.2)

with

Θi ≡
∫ xi+1

xi

|V (z)|
1
2 dz . (A.11.3)

The Θ2j with even indexes correspond to the tunnelling factors where the potential is positive
and the Θ2j−1 give the phase factors from the field oscillations. One should order the matrices in

the product according to:
∏k−1
j=1 M

(j) = M (k−1) ·M (k−2) · · · · ·M (1).

• If V (x) has an odd number, 2k−1, of turning points, x1, x2 . . . x2k−1, one necessarily has V (x) < 0
for x < x1. The interesting physical boundary conditions are those of a black hole in which the
modes are required to be purely infalling as x→ −∞. The prescription used for the modes as a
function of the time-coordinate, u, is Ψ(x, u) = Ψ(x)e−iΩu. Thus, we obtain

A = 2
M̄21

M̄11
, (A.11.4)

where M̄ij are the matrix elements of the following matrix

M̄ ≡ − sign(Ω)
k−1∏
j=1

(
2 eΘ2j−1 cos Θ2j −e−Θ2j−1 sin Θ2j

eΘ2j−1 sin Θ2j
1
2 e
−Θ2j−1 cos Θ2j

)
.

(
e−i

π
4 ei

π
4

1
2 e

iπ
4

1
2 e
−iπ

4

)
(A.11.5)

with the same definitions for (A.11.3) and the same matrix product conventions.

27



Appendix of Chapter 10 28

A.12 Comparison of the exact and approximate response functions

A.12.1 The exact and approximate BTZ response functions

The exact response function of a scalar field in an extremal-BTZ black hole for ∆ non-integer has
been computed in Section 10.2.2. We want to check the accuracy of the WKB formula (10.1.15) to
retrieve the response function of an asymptotically BTZ geometry. For that purpose, we compare the
WKB response function computed in a full-BTZ geometry (see Section 10.2.2.2) with its exact result,
(10.2.25), by plotting the error function

Err ≡
∣∣∣∣RBTZ

WKB −RBTZ
E

RBTZ
E

∣∣∣∣ , (A.12.1)

as a function of ω and p for different values of ∆ (see Fig.A.7). From the graphs Fig.A.7, we observe
that the accuracy of the WKB response function depends strongly on the sign of ωp. For positive
values of ωp, the WKB formula is extremely close to the exact result for any values of ∆ whereas for
negative values, larger values of ∆ gives a better accuracy. Moreover, it is really surprising how the
accuracy of the formula does not depend on the order of magnitude of ω and p 1. The only condition
of validity of the formula we derived is that the order of magnitude of ∆ is slightly higher than 1 (for
∆ ∼ 5 the error is already below 5% for any values of ω and p). This is usually required by the WKB
condition on the potential (10.1.5).
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Figure A.7: The error function of the WKB formula (10.1.15), Err (A.12.1), for an
extremal-BTZ geometry as a function of ω, p and ∆. The graph on the left gives Err as
a function of p for different values of ∆ and for ω = 1/2 and rH = 1. The graph on the
right gives Acc as a function of ω for the same values of ∆ and for p = 1/2 and rH = 1.

A.12.2 The exact and approximate AdS3 response functions

Here we check the accuracy of the WKB formula (10.1.15) for global AdS3. The poles of the WKB
response function which give the frequencies and momenta of the normalizable modes are given by Θ
(10.2.55): Θ ∈ π

2 Z. It is straightforward to see that it match the exact spectrum given by (10.2.59) if√
(ω − p)2 − 1 ∼ |ω − p| ⇒ |ω − p| � 1 , (A.12.2)

which is directly satisfies in our regime of parameters (10.2.53) by the common validity condition of
WKB: ∆� 1 .

Moreover, we can also compute the difference between the WKB result and the exact result as a
function of ω and p as we did for BTZ. However, one cannot use the same error function (A.12.1) since

1Usually the WKB approximation works for large values of momentum and frequencies.
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now the response functions have poles and zeroes which are not exactly at the same location. It is
preferable to compare smooth functions with no zero. Thus, we will compare the two exact functions
g1(ω, p) and g2(ω, p), (10.2.58), to their WKB equivalents

gWKB
1 (ω, p) ≡

√
3

2
e−2I+ −

Ψgrow
E (x+)

Ψdec
E (x+)

, gWKB
2 (ω, p) ≡ 1

2
e−2I+ . (A.12.3)

We use a similar error function to (A.12.1)

Erri ≡
gWKB
i − gi

gi
, i = 1, 2 . (A.12.4)

In Fig.A.8, we have plotted Err1/2 for different values of ∆ as a function of ω − p and ω + p. As
for BTZ, the WKB result proves to be highly accurate as soon as ∆ is quite large and when |ω − p| is
also larger than ∆− 1 + |ω + p|. Indeed for ∆ ∼ 5 and |ω − p| −∆ + 1− |ω + p| ∼ 5 the error of the
WKB formula is already below 5%.

0 20 40 60 80 100

-0.06

-0.04

-0.02

0.00

0.02

|ω+p|

E
rr
1

0 10 20 30 40 50 60 70

0.0

0.1

0.2

0.3

0.4

|ω-p|

E
rr
1

Δ  10
3

Δ  28
3

Δ  46
3

Δ  64
3

Δ  82
3

0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

|ω+p|

E
rr
2

0 10 20 30 40 50 60 70

-0.2

-0.1

0.0

0.1

0.2

|ω-p|

E
rr
2

Figure A.8: The error functions of the WKB formula (10.1.15), Err1/2 (A.12.4), for a
Global AdS3 geometry as a function of |ω − p|, |ω + p| and ∆. The graphs on the left
give Err1/2 as a function of |ω − p| for different values of ∆ and for |ω + p| = 1/2. The
graphs on the right give Err1/2 as a function of |ω + p| for the same values of ∆ and for
|ω−p| = 80. Each curve has a sharp ending point which corresponds to the point where
(10.2.53) is not satisfied anymore.

A.13 Position-space Green functions

To clarify the different two-point functions, that is Feynman, Wightman, Advanced and Retarded
propagators, one can obtain from the momentum space propagator, we examine two well-understood
examples in some detail: global AdS and extremal BTZ.

A.13.1 Position space Green’s functions in extremal BTZ

The inverse Fourier transform of the BTZ response function (10.2.25) separates into left-moving and
right-moving part. This is possible because there is no a priori periodic identification of the y-circle,
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neither on the bulk side nor on the boundary side of the duality is it enforced by regularity. The
result is valid for quantized or continuous conjugate momentum. We will therefore perform the inverse
transformation in p and ω independently, and impose spatial periodicity later.

The left-moving part of the propagator (10.2.25) has poles at p = irH(∆+2n)/l with corresponding
residues 2rH (−1)m/(l m!) for m ∈ Z,m > 0. Since they are in the upper imaginary p-plane, these
poles are only picked up by the contour when it is closed in the upper half-plane. This happens only
when v < 0, leading to the retarded propagator:∫

dp

2π
e
−ip v

Ry
Γ(2−∆) Γ

(
1
2(∆ + il p

rH
)
)

Γ(∆) Γ
(
1− 1

2(∆− il p
rH

)
) = θ(−v)

Γ(2−∆)

Γ(∆)

∞∑
m=0

4iπ rH e
rH v(∆+2m)/(l Ry) (−1)m

2πlm! Γ(1−∆−m)

= θ(−v)
2il(1−∆)

rH Γ(∆)
e
rH∆ v
l Ry

∞∑
m=0

(−1)m Γ(1−∆) e
2rH mv
lRy

Γ(m+ 1) Γ(1−∆−m)

= θ(−v)
2il(1−∆)

rH Γ(∆)
e
rH∆ v
l Ry

(
1− e

2rH v
l Ry

)−∆

= − 2il θ(−v)

rH Γ(∆− 1)

[
−2 sinh

(
rH v

l Ry

)]−∆

(A.13.1)

Note that the series that appears is convergent since |e2rH v/(l Ry)| < 1.

For the right-moving part, (−2i ω l rH)∆−1, we can split up the integral in ω > 0 and ω < 0. The
first part gives the integral representation of the Γ function∫ ∞

0

dω

2π
e
−iω u

Ry
(
− 2ilrH ω

)∆−1
=

1

2π
e−i

π
2 (∆−1)(2lrH)∆−1

∫ ∞
0

dω e
−iω u

Ry ω∆−1

=
1

2π
e−i

π
2 (∆−1)(2lrH)∆−1

( iu
Ry

)−∆
Γ(∆) . (A.13.2)

The contribution from ω < 0 gives exactly the complex conjugate of this result. Since it is purely
imaginary for u < 0, the sum is only non-zero for positive u. Putting it all together we get

R(u, v) = − 2i

πl2
(∆− 1)(2l rH)∆ sin(π∆)Θ(u)Θ(−v)

(
u

Ry

)−∆ [
− 2 sinh

(rHv
l Ry

)]−∆

=
2(∆− 1)

πl2
Θ(t)(l rH)∆

([
sinh

(
rHv
lRy

+ iε
)(

u
Ry
− iε

)]−∆
(A.13.3)

−
[
sinh

(
− rHv
lRy

+ iε
)(
− u
Ry
− iε

)]−∆
)
.

In the final step we have rewritten the result as a commutator, to match with the definition of the
retarded propagator.

As we remarked earlier, the BTZ metric (10.2.18) is defined for non-compact y with −∞ < y <∞.
One way to get the position-space Green function for a compactified y-circle, is to sum over images:

Rc(u, v) =
2(∆− 1)

πl2
Θ(t)(l rH)∆

∑
m∈Z

([
sinh(

rH(v−2πmRy)
lRy

+ iε)( u
Ry

+ 2πm− iε)
]−2h

(A.13.4)

−
[
sinh(− rH(v−2πmRy)

lRy
+ iε)(− u

Ry
+ 2πm− iε)

]−2h
)
,

The result (A.13.4) is depicted in Figures A.9 and A.10.

The periodic images give rise to a quite different long-time behavior of the two-point function on
the cylinder, as compared to that on the plane. Their impact is most dramatic in the left-moving
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Figure A.9: Logarithmic densityplot of the two-point function (A.13.4) on a cylinder
(t, y) ∼= (t, y+2πRy) with h = 1 and rH/(l Ry) = π/20 (i.e. βL = 20 and βR →∞). The
two-point function is sharply peaked on the light-cone (yellow), falling off polynomially
in u (green arrows) and exponentially in v (red arrows). When following a light-ray
(e.g. at constant v), the two-point function has peaks with u-periodicity 4πRy whenever
it meets the light-ray going in the other direction. Note that there are no reflecting
boundary conditions in this figure, instead the y-circle is periodic.

section, i.e. when evolving in v while keeping u fixed. This is depicted in the second panel of Figure
A.10 and in Figure A.11. As long as rH

l Ry
v . 1, the two-point function is dominated by the m = 0

image. Afterwards, the m = 0 image decays much faster than the total two-point function, and it is
the “nearest” image (with m ≈ v/2πRy) is dominant.

0 4πRy 8πRy

u

log(G)

0 4πRy 8πRy

v

log(G)

0 4πRy 8πRy

t

log(G)

Figure A.10: Logarithmic plot of the two-point function (A.13.4) with h = 1 and rH
aRy

=

π/8 along three different directions (u, v and t) while keeping the orthogonal direction (v,
u and y, resp.) constant, here: Ry/20. The total value of the two-point function is plotted
(fat, blue) as well as the individual contributions from the m = {0, 1, 2, 3, 4} modes
(increasingly finely dashed lines). In the u direction, the behavior remains dominated
by the m = 0 mode. The other modes appear briefly as poles on the light-cone. The
behavior in the v direction is drastically different. Starting at v of order the inverse
temperature, the m = 0 mode loses dominance to the “nearest” mode. The behavior it t
shares properties of both u and v. The fall-off is exponential between the poles, but the
exchange of dominance between the modes makes the long time behavior polynomial.

This observation can be made a bit more precise by considering when the mth image becomes larger
than the 0th: ∣∣∣sinh( rHl Ry v)u

∣∣∣−∆
<
∣∣∣sinh[ rHl Ry (v − 2πRym)] (u+ 2πRym)

∣∣∣−∆
. (A.13.5)

When rH
l Ry

v � 1, the left-hand side can be approximated by ( rHl Ry v u)−∆, which means that the mth

image only dominates when |v− 2πRym| . |v||u/2πRym|, for small u. This is only true whenever the
left-moving light-ray crosses the right-moving one. In the opposite regime rH

l Ry
v � 1, the exponential

growth of the sinh-function takes over. The equation (A.13.5) reduces to

sinh
∣∣∣ rHl Ry (v − 2πRym)

∣∣∣ < ∣∣∣∣ u

u+ 2πRym

∣∣∣∣ e rHl Ry v . (A.13.6)
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Figure A.11: Logarithmic plot of the two-point function (A.13.4) with h = 1 in the
v-direction with u = Ry/20 held constant. The left-moving temperature is rH

l Ry
= π/20

for the solid blue line and rH
l Ry

= π/40 for the dotted orange line. The exponential fall-off

(linear on this plot) is visible at early times, as long as the m = 0 mode dominates the
propagator. In this regime, the other modes appear only briefly as poles. For v larger
than πβL, the behavior changes drastically. The propagator locally still behaves as an
exponential, but the enveloping curve is polynomial at long times.

This inequality is first satisfied when v is roughly halfway between 0 and 2πRym. In this regime, the
two-point function is always dominated by the closest image. Thus, at long time scales, the behavior of
the two-point function is drastically altered by the compact y-circle: the propagator is not suppressed

as e
−2h

rH
l Ry

v
but roughly as v−2h.

A.13.2 Position space Green’s functions in AdS3

The Fourier transform of the AdS propagators R1 and R2 in (10.2.45) is more complicated because
they have poles on the real ω and p axes. Unlike the BTZ case, the retarded propagator is no longer
singled out by the location of the poles. Instead, there are some rather simple and direct routes to
linking R1 and R2 to various Green functions by altering the contour prescription. We will focus on
retarded two-point functions as before. Extracting the ω-dependent part of R1, we define2:

Ĩ1(ω) ≡ − iΓ(1−∆)
Γ(1

2∆ + ω)

Γ(1− 1
2∆ + ω)

. (A.13.7)

and consider the Fourier transform to position space

I1(u) ≡
∫
dω

2π
e
−iω u

Ry Ĩ1(ω + iε) . (A.13.8)

where we have introduced ε > 0 to make Ĩ1 analytic in the upper complex ω plane. This is the appro-
priate continuation to calculate the retarded propagator, since it makes the inverse Fourier transform
vanish for Re(u) < 0 where the contour can be deformed to Im(ω)→∞. The Γ-function in the numer-
ator has poles at ω = −iε− (1

2∆ +m), with corresponding residues (−1)m/(m!) for any non-negative
integer m. For Re(u) > 0, we can again express it as a sum over the residues:

I1(u) = − i θ(u) Γ(1−∆)

∞∑
m=0

2iπ eiu( 1
2

∆+m+iε)/Ry (−1)m

2πm! Γ(1−∆−m)
(A.13.9)

= θ(u)
[
− 2i sin

(
u

2Ry

)]−∆
.

2The p-dependent part of the response function is identical and the analysis can be done in a similar
way.
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Note that the series is convergent if |eiu/Ry | < 1, which corresponds to Im(u) > 0, or, if one keeps u
real, one must deform u→ u+ iε:

I1(u) = θ(u)
[
− 2i sin

( (u+iε)
2Ry

)]−∆
. (A.13.10)

Up to an overall normalization, this is the left-moving part of the advanced Green function of the CFT
on the cylinder.

Similarly, for the response function, R2, one can make the Fourier transform of

Ĩ2(ω) ≡ − iΓ(1−∆)
Γ(1

2∆− ω)

Γ(1− 1
2∆− ω)

, (A.13.11)

with the same ω → ω + iε. One then finds

I2(u) = θ(u)
[
2i sin

( (u−iε)
2Ry

)]−∆
. (A.13.12)

The shift u→ u−iε arises because the sum over poles only converges if |e−iu/Ry | < 1, which corresponds
to Im(u) < 0. Thus the two response functions only differ by a phase and the space-time iε prescription.
To get the retarded Green function, one simply gives the poles in ω a small, negative imaginary part.

In the foregoing computation, we have taken a liberty by ignoring the periodicity of the y coordinate.
Since this periodicity is fixed by smoothness in the origin of AdS3, we need to redo the computation
more carefully. The Fourier transform of the response function, R1, is, more correctly, given by:

Ifull(t, y) ≡
∞∑

k=−∞

∫
d$

2π
e
− i$t
Ry e

iky
Ry

Γ(1−∆) Γ
(

1
2(∆ + k +$)

)
Γ
(

1
2(∆ + k −$)

)
Γ(∆− 1) Γ

(
1− 1

2(∆− k −$)
)

Γ
(
1− 1

2(∆− k +$)
) ,

(A.13.13)
where $ = (ω − p) is the continuum momentum along t and k = (ω + p) ∈ Z is the discrete Fourier
mode around y.

There are now two sets of poles: $ = ∆ + k + 2m and $ = −∆ − k − 2n, m ∈ Z,m ≥ 0. For
2∆ /∈ Z, these poles never coincide. Moreover at these poles, the denominator always contains a factor
of Γ(1 +k+m), which means that there are only non-zero residues for k+m ≥ 0. Thus the non-trivial
residues separate into positive and negative frequencies: $ = −∆−k−2n < 0 and $ = ∆+k+2m > 0.

A sum over the residues of the poles at $ = ±(∆ + k + 2m) gives

Γ(1−∆)

Γ(∆− 1)

∞∑
k=−∞

∞∑
m=0

(−1)m
Γ(k +m+ ∆)

Γ(m+ 1)Γ(1−∆−m) Γ
(
1 + k +m)

e
±i(∆+k+2n) t

Ry e
iky
Ry (A.13.14)

= e
± i∆t
Ry

[ ∞∑
`=0

Γ(`+ ∆)

Γ(∆− 1) Γ
(
1 + `)

e
± i`(t±y)

Ry

][ ∞∑
m=0

(−1)m
Γ(1−∆)

Γ(m+ 1)Γ(1−∆−m)
e
± im(t∓y)

Ry

]
,

(A.13.15)

where ` = (k + m) and we have used the fact that the residues vanish unless ` ≥ 0. Now use the
identity

Γ(∆ + `) = (−1)`
Γ(∆)Γ(1−∆)

Γ(1−∆− `)
(A.13.16)

to rewrite the sum over residues as

(∆− 1) e
± i∆t
Ry

[ ∞∑
`=0

(−1)`
Γ(1−∆)

Γ(1−∆− `) Γ
(
1 + `)

e
± i`(t±y)

Ry

]

×

[ ∞∑
m=0

(−1)m
Γ(1−∆)

Γ(m+ 1)Γ(1−∆−m)
e
± im(t∓y)

Ry

]
= (∆− 1)

[
∓ 2i sin

( t±(y+iε)
2Ry

)]−∆ [± 2i sin
( t∓(y+iε)

2Ry

)]−∆
(A.13.17)
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This is the standard form of the CFT propagator on the cylinder defined by (t, y), with y ∼= y+2πRy.
Whether one picks up the positive or negative frequency poles depends upon the sign of t in (A.13.13)
and whether one integrates above or below the poles along the real axis (or, equivalently, whether one
shifts the frequencies according to $ → $ ∓ iε). For example, the Feynman propagator is given by
integrating above the positive frequency poles and below the negative frequency poles.

One should note that, in our discussion of the Green functions, we have ignored the Heaviside
functions in (10.2.46) and worked with R1. To get the Feynman propagator from RAdS3 requires a
much more complicated set of contour deformations and analytic continuations. This is discussed in
great detail in [198–200]. The important bottom line here is that the construction of Green functions
in global AdS3 is well-understood and, because the cap of Superstratum is a close approximation to
the global AdS3 with all the concomitant bound states and poles, the construction of Green functions
will follow the same prescriptions that one uses in global AdS3 itself.
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Titre: Les micro-états de trous noirs en Théorie des Cordes: noire est la couleur, régulières sont les géométries?
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Résumé: Les trous noirs sont produits par effondrement
gravitationnel d’étoiles supermassives et contiennent en
leur centre une singularité de l’espace-temps habillée d’un
horizon auquel rien ne peut s’échapper. Ils se situent la
frontière théorique commune entre la Relativité Générale
et la Mécanique Quantique, ce qui en fait le principal lab-
oratoire théorique et expérimental pour tester les théories
quantiques de la gravité comme la Théorie des Cordes.
L’entropie d’un trou noir est énorme, de l’ordre de sa masse
au carré. Comme tout objet entropique, une description
microscopique en termes de dégénérescence d’états devrait
exister. De plus, le trou noir s’évapore par rayonnement
d’Hawking et l’information l’intérieur semble perdue, ce
qui compromet la principe d’unitarité, pierre angulaire de
la Mécanique Quantique.
Par conséquent, la Théorie des Cordes doit fournir les
degrés de liberté nécessaires pour décrire la nature de
micro-état de trous noirs, elle doit également trouver un
mécanisme résolvant la singularité et le paradoxe de la
perte d’information.
Cette thèse porte sur la physique des trous noirs travers le
“fuzzball proposal” et le “microstate geometry program”.
La majeure partie de la discussion se déroulera dans la lim-
ite de basse énergie de la Théorie des Cordes, c’est--dire

en Supergravité. Le “proposal” stipule qu’il existe “eS”
solutions non singulières sans horizon qui ressemblent un
trou noir large distance mais qui diffèrent proximité de
l’horizon. Sur la base de cette affirmation, la solution de
trou noir classique correspond la description statistique
d’un système de solutions qui ont la même géométrie que
le trou noir l’extérieur de l’horizon, mais qui se terminent
par des géométries régulières, dites “fuzzy”. La propo-
sition soulève plusieurs questions : Comment la singu-
larité est-elle résolue ? De telles géométries peuvent-elles
tre construites en Supergravité ? Comment l’information
s’échappe-t-elle de l’ensemble des micro-états ?
La thèse est décomposée en trois parties. La première
partie présente les bases et donne un aperu du “mi-
crostate geometry program”. La deuxième partie re-
groupe cinq travaux qui se consacrent construire de larges
familles de micro-états de trous noirs supersymétriques
ou non supersymétriques. La dernière partie passe en
revue deux travaux. L’un d’eux étudie le processus de
diffusion dans les micro-états. Cela permet d’élucider
comment le principe d’unicité est restaurée et comment
l’information s’échappe des micro-états. La seconde traite
du rôle des micro-états dans le contexte de la correspon-
dance AdS2/CFT1 et donne l’ébauche d’une preuve pour
le “fuzzball proposal”.

Title: Black-hole microstates in String Theory: black is the color but smooth are the geometries?
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Abstract: Black holes are produced by gravitational col-
lapse of supermassive stars and consist of a spacetime sin-
gularity dressed by a horizon from which nothing can es-
cape. They lie at the common theoretical border between
General Relativity and Quantum Mechanics, making them
the main theoretical and experimental laboratory for test-
ing quantum theories of gravity as String theory.
The entropy of a black hole is huge, of the order of its mass
squared. As any entropic object, a microscopic descrip-
tion in terms of large degeneracy of states should exist.
Moreover, black hole evaporates through thermal Hawk-
ing’s radiation and the information in the interior seems
lost, that compromises the unitary principle, a cornerstone
of Quantum Mechanics.
Therefore, String Theory must provide the degrees of free-
dom necessary to describe the microstate nature of black
holes, it must also find a mechanism resolving the singu-
larity and the information loss paradox.
This thesis addresses black-hole physics through the lens
of the fuzzball proposal and the microstate geometry pro-
gram. The major part of the discussion will be conducted
in the low-energy limit of String Theory, that is in Super-
gravity. The proposal states that there exist “eS” hori-

zonless non-singular solutions that resemble a black hole
at large distance but differ in the vicinity of the horizon.
Based on this statement, the classical black-hole solution
corresponds to the average description of a system of so-
lutions which match the black-hole geometry outside the
horizon but cap off as “fuzzy” smooth geometries in the
infrared. The proposal leads to several questions: How
is the singularity resolved? Can “eS” such geometries be
built in Supergravity? How does the information escape
from the ensemble of microstates?
The thesis is decomposed in three parts. The first part
introduces the basic materials and gives a review of the
microstate geometry program. The second part gathers
five works that all consist in constructing large classes of
smooth horizonless microstate geometries of supersymmet-
ric or non-supersymmetric black holes. The last part re-
view two works. One is investigating the scattering process
in microstate geometries. This helps to elucidate how uni-
tarity is restored and how information escapes from black-
hole backgrounds. The second one addresses the role of mi-
crostate geometries in the context of the AdS2/CFT1 cor-
respondence and gives a beginning of proof for the fuzzball
proposal.
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