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Introduction

The goal of a particle physicist is to describe the laws of nature at the most fun-
damental level. Currently our best understanding is summarized by a theory
called The Standard Model (SM). This theory describes all the elementary par-
ticles we currently know exist and their interactions. It gets extensively tested
by experiments conducted at particle colliders, such as the Large Hadron Col-
lider (LHC). The LHC accelerates beams of protons close to the speed of light
and lets them collide to search for new fundamental particles or interactions.
Even though the data from particle colliders seems to be well described by
theory predictions based on the SM, we know that it is not complete: The-
oretically, the SM still needs to be unified with gravity. Phenomenologically,
the SM does not explain the matter-antimatter asymmetry, the dark matter
holding around 85% of the mass in the universe, or dark energy that seems to
cause our universe to expand. As we do not know where to look for answers
yet, our best chance is to search for deviations between theory en experiment,
which might indicate new physics. Current discrepancies between the SM and
experiment are at most 4.2σ (muon g-2) or 3.2σ (violation of lepton flavor) [4].
As potential signs of new physics are very small, it becomes unavoidable to
resort to precision physics. To match the ever increasing precision in experi-
ments, theoretic predictions are required to reach higher accuracy as well. The
work presented in this thesis aims to conduct more precise theoretical calcula-
tions and develop tools that serve this goal.

In the first chapter we describe the framework which we use to perform
precision calculations. It starts in section 1.1 with an introduction of Quan-
tum Chromodynamics (QCD). This is the sector of the SM which is most
prominent in collisions at the LHC as it is essential to describe quarks and
gluons that the colliding protons consist of. Furthermore, the dynamics of
cross sections is highly affected by QCD corrections due to the large size of the
coupling between quarks and gluons, which is why QCD is often referred to
as the theory of the strong interactions. Although more in-depth discussions
can be found in textbooks, we review the concepts necessary for the research
in this thesis: renormalization, the energy dependence of the strong coupling
constant, the soft and collinear limit, and the appearance of large logarithms



2 Introduction

in cross-section calculations. In section 1.2, we introduce Soft Collinear Ef-
fective Theory (SCET), an effective field theory that describes the infrared
limit of QCD. In the last section of this chapter, we discuss the collimated
sprays of particles called jets. These objects are a prominent feature of QCD
and are copiously produced at hadron colliders. In particular we will discuss
jet algorithms, which make it possible to bridge the gap between theory and
experiment.

The three chapters that follow are dedicated to new research: In chapter 2,
we use the method of geometric subtraction to automatize the calculation of the
one-loop jet functions. We have created the GOJet Mathematica-package:
a numerical implementation of this method. In chapter 3, we consider the
azimuthal decorrelation between a vector boson and a jet in pp collisions. The
success of the work described there rests upon the use of the recoil-free Winner-
Take-All jet algorithm. We will discuss the advantages of this particularly neat
setup and present results with higher accuracy then previously possible. In
chapter 4, we extend our set of tools with track functions. These objects allow
us to construct observables for charged particles only, exploiting the higher
angular resolution with which these can be measured at the LHC.



1
Theoretical background

The Standard Model (SM) is built on symmetry considerations: it is con-
structed to be invariant under the SU(3)c×SU(2)L×U(1)Y gauge group. The
SU(3)c sector, corresponding to the invariance under SU(3) gauge transforma-
tions, is also known as Quantum Chromodynamics (QCD). QCD describes the
behaviour of quarks and gluons. Because QCD is not involved in electroweak
symmetry breaking and mixing, it can be seen as a stand alone theory that
takes a prominent role in many scattering processes. Due to the large cou-
pling, perturbative corrections that follow from QCD are the most dominant
and shall be the focus of this thesis. We will start with a short review on the
basic concepts of QCD in section 1.1. As in any Quantum Field Theory we
start with the Lagrangian. We will then investigate the ultraviolet and in-
frared divergences that show up in perturbative calculations and discuss how
to deal with them. The infrared behaviour of QCD is essential in determining
the perturbative corrections to leading order physics. In section 1.2 we will set
up an effective field theory that is particularly good at describing the infrared
regime of QCD: Soft Collinear Effective Theory. Finally, in section 1.3 we shall
discuss an interesting phenomena that emerges from QCD: jets. Jets arise from
final state quarks or gluons that emit radiation in the infrared regime. Jets
will play a central role throughout this thesis. This section focusses on the
formation of jets and how this understanding leads to the description of jets
used in particle physics.

1.1 Quantum Chromodynamics

QCD is the fundamental field theory of the strong interactions between quarks
and gluons. This chapter will give a short overview of the main aspects of
QCD. We will start with a discussion of the QCD Lagrangian in section 1.1.1.
Considering perturbative corrections introduces divergences in both the high
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and low energy limit. However, it is clear that processes that involve QCD are
not divergent by itself. In section 1.1.2 we setup the renormalization framework
to deal with ultraviolet divergences and in section 1.1.3 we describe the impli-
cations for the strong coupling constant. Finally, in section 1.1.4 we discuss
the infrared limit of QCD. This chapter is based on [5–8].

1.1.1 QCD Lagrangian

QCD describes the dynamics of the fundamental particles: quarks and gluons.
The force that governs the interactions between these fields is known as the
strong force. The theory is invariant under the non-abelian gauge group SU(3).
The internal degree of freedom of the QCD fields that transforms under these
transformations is called color. The quarks are described by Dirac spin-1/2
fields ψ(x) that transform under the fundamental representation of SU(3) as

ψ(x)→ U(x)ψ(x), (1.1)

where U(x) are unitary matrices with unit determinant in SU(3) corresponding
to gauge transformations. They can be written as

U(x) = exp [iφa(x)ta] , (1.2)

where φa(x) is an arbitrary function of the spacetime coordinates and ta are
the generators in the fundamental representation of SU(3). The generators
form a basis of traceless hermitian 3× 3 matrices. Note that we have adopted
the notation where summation over repeated indices is always implied. The
non-abelian nature of SU(3) is reflected by the non-zero commutation relation
of these generators [

ta, tb
]

= ifabctc, (1.3)

where the coefficients fabc go by the name of structure constants. The gener-
ators in a general representation r are normalized as

Tr
[
tart

b
r

]
= Trδ

ab. (1.4)

By convention, the fundamental representation has TF = 1
2 . The Casimir

operator, defined as tartar , commutes with all generators of SU(3) and therefore
yields1 ∑

a

((tr)
a(tr)

a)ij = Crδij , (1.5)

1As a result of Schur’s lemma
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The invariants in SU(3) that correspond to the fundamental en adjoint repre-
sentations are CF = 4

3 and CA = 3 respectively.
To describe the dynamics of the quark fields we need a kinetic term. How-

ever, such a term would not be gauge invariant due to the appearance of the
derivative on the quark field. We therefore define the covariant derivative

Dµ = ∂µ − igsAµ, (1.6)

where gs is the strong coupling constant that will determine the interaction
strength between quarks and gluons. The spin-1 gauge fields Aµ(x) describe
the gluons and transform as

Aµ(x)→ Uadj(x)Aµ(x) = U(x)AµU
†(x) +

i
gs
U(x)

[
∂µU

†(x)
]
, (1.7)

where Aµ(x) are matrices in colorspace that can be decomposed into a linear
combination of the generators

Aµ(x) = Aaµ(x)ta, a = 1, . . . , 8. (1.8)

The kinetic term for the gauge field can be constructed by considering the
fieldstrength tensor Gµνa , defined by

Gaµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (1.9)

The final term will lead to interactions between gluon fields, which is specific
to non-abelian theories.
The complete QCD Lagrangian, invariant under SU(3) transformations and

conserving parity and time-reversal, is found to be [9]

LQCD = −1

4
Gµνa Gaµν +

∑
f

ψ̄f (iγµDµ −mf )ψf + Lgf + Lgh, (1.10)

where γ are the Dirac matrices, f denotes the quark flavour of the quark and
mf the corresponding quark mass. As far as we know now from experiments
there are six flavours, of which 3 are extremely light and often considered
massless for practical purposes. The two-point function for the gluons that
follows from the QCD Lagrangian contains an ambiguity in terms of a gauge
parameter, analogous to the photon propagator in QED. This can be solved
by a gauge fixing procedure, which leads to the second to last term in (1.10).
One specific choice is the covariant gauge

Lgf = − 1

2ξ
(∂µA

µ
a) (∂νAaν) , (1.11)
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where ξ is a free parameter. In this thesis we use ξ = 1, which is known as
the Feynman-’t Hooft gauge. Gauge-fixing introduces unphysical gluon states,
corresponding to time-like and longitudinally polarized propagation. These
degrees of freedom are cancelled by adding ghost and anti-ghost fields, ca and c̄a
respectively, which are anti-commuting scalar fields transforming in the adjoint
representation of SU(3). The ghost fields are unphysical by construction, as
they violate the spin–statistics theorem: ghosts are complex scalar fields (spin
0), but they anti-commute. The ghost fields may therefore never appear as
external states in matrix elements. Their only role is to cancel the unphysical
polarizations of gluons appearing in loop contributions. The ghost dynamics
is described by the Fadeev-Popov Lagrangian

Lgh = (∂µc̄a)D
ab
µ cb = (∂µc̄a)

(
δab∂µ − gsfabcAµc

)
cb. (1.12)

The QCD Lagrangian can now be used to generate Feynman rules in the
quantized theory. These can in turn be used to calculate physical observables
by considering the different contributions from Feynman diagrams, following
the standard QFT techniques. Contributions from loop integrals will suffer
from ultraviolet divergences. In the next section we will discuss how to deal,
with them with the knowledge that our final prediction should not be divergent.

1.1.2 Renormalization of QCD

Ultraviolet divergences (UV) appear from the momentum integrals in virtual
corrections. A renormalization procedure provides a systematic way to remove
the UV divergences. In short, this is done by exploiting freedom to (re)define
the parameters in the Lagrangian. This is motivated by realizing that the
parameters in the Lagrangian differ from physical constants, due to loop cor-
rections. For example, the coefficient mf does not correspond to the measured
fermion mass, as it receives contributions from loop diagrams at higher orders
in perturbation theory. It would therefore be more convenient to absorb the
divergent part of such corrections by redefining our set of parameters.
To be able to remove the divergences from Feynman diagrams we first need

to identify them. There are many ways to make the UV divergences explicit.
The most abrupt one being the introduction of an ultraviolet cutoff Λc to stop
the loop momentum from reaching infinity. The divergences would then show
up in the final answer in the limit Λc →∞. This method is not very practical
as it breaks translation invariance of the integral as well as gauge invariance,
since we constrain the partial derivative (in the covariant derivative) but not
the gauge field. The most successful scheme is dimensional regularization [10,
11]. The loop integrals are UV divergent in four spacetime dimensions, while
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dimensional regularization uses d = 4 − 2ε dimensions to regulate the loop
integrals ∫

d4p

(2π)4
→
∫

ddp

(2π)d
. (1.13)

The UV divergences will now show up as 1/ε poles in the ε → 0 limit, which
can explicitly be seen when evaluating the following representative integral in
d-dimensions:

I(d, 2) =

∫
ddq

(2π)d
1

(q2 +m2)2
=

i
16π2

Γ(ε)

(
m2

4π2

)−ε
, (1.14)

where the i is a result from Wick rotating the q0 into the complex plane to
avoid the poles in the denominator. The series that will make the poles in ε
appear should maintain the mass dimension [mass]−2ε of the expression. This
is done with the introduction of the renormalization scale µ, a parameter with
mass dimension one,

I(d, 2) =
iµ−2ε

16π2
Γ(ε)

(
m2

4π2µ2

)−ε
,

≈ iµ−2ε

16π2

(
1

ε
− log

(
m2

4π exp−γE µ2

)
+O(ε)

)
. (1.15)

It is important to keep in mind that cross sections should not depend on the
value of µ, since it is an unphysical parameter.
Dimensional regularization does not only regulate the divergences resulting

from high loop momenta, but also divergences resulting from small loop mo-
menta manifest themselves as 1/ε poles. When dealing with scaleless integrals
the UV and IR poles cancel each other, and therefore scaleless integrals vanish
in dimensional regularization. (An integral is considered scaleless when the
integrand scales homogeneously under rescaling of the loop momenta.) An
example of such an integral is [12]∫

ddq

(2π)d
1

q4
=

iµ−2ε

16π2

(
1

εUV
− 1

εIR

)
= 0. (1.16)

Now that the UV divergences manifest themselves as poles, they can be re-
moved by adding a counterterm to the Lagrangian. This counterterm is not
unique and can also include finite terms, which is reflected by the possibility
to redefine our artificial renormalization scale µ. In this thesis we will use
the modified minimal subtraction (MS) scheme [13, 14]. Inspired by equation
(1.15), µ is rescaled such that

µ̄2 = 4πe−γEµ2, (1.17)
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subtracting the log(4π)− γE terms in addition to the 1/ε pole.
Even though UV divergences will always cancel in physical observables, it is

useful to implement these counterterms at the level of the Lagrangian. This
is the procedure known as renormalization, which makes the theory UV finite.
The counterterms are absorbed in the parameters and fields. Explicitly, the
bare parameters are rescaled in terms of renormalized ones by

mf = mR
f Zm, gs = µεgRs

√
Zα, (1.18)

where the superscript R indicates the set of renormalized quantities. The extra
factor µε had to be introduced to keep the renormalized coupling constant
dimensionless. Similar relations can be written down for the fields

ψ =
√
Zψ ψ

R, Aµa =
√
ZAA

Rµ
a , ca =

√
Zc c

R
a . (1.19)

These factors of Z can now be fixed order by order by demanding that they
produce the counterterms needed to cancel the UV divergences, i.e. they have
the following structure

Zk = 1 +
∞∑
n=0

(αs
4π

)n
Znk , (1.20)

where αs ≡ g2
s/4π is known as the strong coupling. The gauge fixing parameter

is renormalized such that the gauge fixing term (see equation (1.11)) will not
produce any counterterms, meaning ξ = ZAξ

R (due to renormalization of the
gauge fields). At leading order no renormalization is needed, as there are no
UV divergences and the bare quantities will indeed correspond to the physical
ones. This is reflected by Zk = 1 at O(α0

s). Calculating the higher order
contributions to the quark self-energy, gluon self-energy and the quark-gluon
vertex is enough to fix all renormalization constants at the corresponding order.
For example, rewriting the gluon field strength in terms of the renormalized
fields, we find

−1

4
GµνG

µν = −ZA
1

4
GRµνG

Rµν

= −(1 + δAA)
1

4
GRµνG

Rµν , (1.21)

where the δAA denotes the counterterm that cancels the UV divergences in the
gluon self-energy. Performing the calculation of the gluon self energy, where
we include all one particle irreducible bubble diagrams,

iδabΠµν(p) = iδab(p2ηµν − pµpν)Π(p2), (1.22)

= + + ,
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using that the gluon self-energy is transverse, i.e. Πµν(p)pµ = 0. Performing
the loop integrals in d = 4 − 2ε dimensions and expanding around the limit
ε→ 0, we find [5]

Π(p2) =
αs
4π
e−εL

[
CA

(
ξ

2

1

ε
− 13

6

1

ε
− 9ξ2+18ξ+97

36

)
+nfTF

(
−4

3

1

ε
− 20

9

)]
,

(1.23)

where L = ln
(

−p2

4πµ2e−γE

)
. The minimal subtraction, cancelling only the poles,

leads to

ZA = 1 +
αs
4πε

[(
13

6
− ξ

2

)
CA −

4

3
nfTF

]
+O(α2

s). (1.24)

The MS scheme is now easily recovered by rewriting µ in terms of µ̄ in the
final result. To extract the remaining renormalization constants at O(αs) we
have to construct counterterms for the quark self-energy and the quark-gluon
vertex at one loop

=⇒ δψψ =
1

ε

αs
4π
CF
(
4m− /p

)
, (1.25)

+ =⇒ δψψ̄g = −1

ε

αs
4π

(
CF +

3+ξ

4
CA

)
.

Noting that

δψψ = (1− Zψ)/p+ (1− ZψZm)m, δψψ̄g = 1− ZαZψ
√
ZA, (1.26)

allows us to determine to the renormalization constants. In appendix all ZRi
are given in MS.
The renormalized constants in the Lagrangian can be used to derive physical

predictions beyond leading order. The measurable calculations, collectively
known as observables O (e.g. cross sections), thus have to be expressed in
these renormalized parameters. At this point it is clear that the renormalized
quantities will depend on the introduced renormalization scale µ. However,
the final predictions may not and thus

µ
d

dµ
O(µ, αs(µ),mf (µ)) = 0, (1.27)

up to corrections beyond the order that one is working. This property leads to
differential equations that connect these renormalized quantities for different
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values of µ. The corresponding evolution is described by an evolution kernel
U that connects the observable at different renormalization scales

O(µ, αs(µ),mf (µ)) = U(µ, µ0)O(µ, αs(µ0),mf (µ0)), (1.28)

where the value at some reference scale µ0 is extracted from experiment. These
kernels depend on the observable O and obey

U(µ0, µ0) = 1, U(µ, µ1)U(µ1, µ0) = U(µ, µ0), (1.29)

and their action is known as the Renormalization Group (RG). Equation
(1.27) is an example of a Renormalization Group Equation (RGE). For a
deeper understanding of the RGE’s let us consider the gluon n-point function
G

(n)
g (p, αs,mf ). Renormalizing this bare Green’s function gives

G(n)
g (p, αs,mf ) = ZnA(αRs )G

(n)
g,R(p, αRs (µ),mR

f (µ)), (1.30)

where all renormalization factors indirectly depend on µ through αs(µ) (see
e.g. (1.24)). The RGE for the gluon n-point function then reads[

µd

dµ
+
µ dαs

dµ

∂

∂αs
+
µdmf

dµ

∂

∂mf
+
n

2

µ d lnZA
dµ

]
G(n)
g (p, αs(µ),mf (µ)) = 0,

(1.31)

where all the constants are renormalized but the index R is dropped for sim-
plicity. The quantities

γA(αs(µ)) =
d lnZA
d lnµ

, γmf (αs(µ)) =
d lnmf

d lnµ
, (1.32)

are known as anomalous dimensions. The explicit dependence of the strong
coupling constant on µ is described by the beta function

β(αs, ε) =
µ dαs(µ)

dµ
. (1.33)

The RG has an important role in the calculations of observables in particle
physics. In this thesis it will be used to perform resummation, a procedure that
will allow us to include large contributions from higher orders. We will e.g. use
resummation in section 3.4 for our study of the azimuthal angle between a
vector boson and a jet in pp collisions.
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1.1.3 Strong coupling constant

The strong coupling constant αs controls the strength of the interaction be-
tween quarks and gluons. It is actually not a constant, but varies due to its
dependence on µ, as described by the beta function in equation (1.33). As
was true for the renormalization constants themselves, the beta function is
calculated order by order. To extract the beta function we use the fact that
the bare αs does not depend on the renormalization scale. Combined with
αbares = µ2εαsZα (see equation (1.18)), this leads to

µ
dαbares

dµ
= 0 = µ2εZα(αs, ε)

(
β(αs, ε) + 2εαs + αs

d lnZα(αs, ε)

d lnµ

)
, (1.34)

where the indices R and the explicit dependence on µ are dropped from the
renormalized strong coupling constant. Since the renormalization group equa-
tion involves finite Green’s functions and parameters, it is clear that the beta
function should be finite when taking the limit ε→ 0. The other 1/ε poles in
(1.34) must cancel, which we make explicit by writing

Zα(αs) = 1 +
∞∑
ν=1

c(ν)(αs)

εν
, (1.35)

where c(ν)(αs) are still all order expressions that follow from renormalization.
Equation (1.34) now leads to(

2εαs +
∞∑
ν=1

αsc
(ν)(αs)

εν
+ β(αs, ε) + β(αs, ε)

dc(ν)(αs)

dαs

1

εν

)
= 0, (1.36)

where αs is the renormalized quantity with implicit µ dependence. The beta
function can be determined from the finite terms in this equation by re-
substitution. The perturbative form of the beta function is thus

β(αs, ε) = −2εαs −
α2
s

4π

∑
n=0

βn

(αs
4π

)n
. (1.37)

The state of the art accuracy for the beta function includes calculations up
to five-loops [15]. To find β0, we can substitute the renormalization factor Zα
(see equation (1.168) in appendix 1.4) in (1.36) to find

β0 =
11

3
CA −

4

3
nfTF . (1.38)
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Taking the limit ε → 0, the analytical solution for αs in terms of β0 is given
by

αs(µ) =
αs(µ0)

1 + β0

2παs(µ0) ln µ
µ0

. (1.39)

Because β0 is positive this shows that the value of αs is decreasing as µ grows.
In the limit µ → ∞ its strength will eventually go to zero, which is a phe-
nomena called asymptotic freedom. This explains why we can think of quarks
and gluons as free particles at sufficiently high energies. At low energies the
coupling gets so strong that perturbation theory fails and quarks en gluons
experience confinement: They cannot be taken apart and are stuck together
in hadrons, the objects we actually collide and detect. The energy scale at
which our perturbative understanding of QCD fails completely is known as
the Landau pole

µpole = µ0 exp

[
− 2π

β0αs(µ0)

]
. (1.40)

At this order, with nf = 5 and α(MZ) = 0.1179, the pole is found at µpole = 87
MeV and provides a rough estimate for the scale at which we find confinement2.
The running of αs has been tested extensively [16], see figure 1.1. In the
calculation of physical quantities, αs will be evaluated at the typical energy
scale Q of the process, which is shown on the horizontal axis in figure 1.1.

1.1.4 Infrared limit of QCD

Apart from the UV divergences, QCD also suffers from divergences in the low-
energy regime. These infrared (IR) divergences cannot be removed from the
theory at the level of Feynman diagrams. When calculating cross sections the
IR divergences arise from the phase-space integrals in real radiation matrix
elements, but also from the loop integrals in virtual corrections. Eventually
IR divergences cancel in the total cross section order by order in perturbation
theory when sufficiently inclusive initial and final states are considered, which
is known as the KLN theorem [17–19]. To understand where this cancellation
of the IR poles comes from, consider additional final state radiation that does
not carry energy or goes exactly in the same direction as the particle it radiates
from. As it is impossible to differentiate between final states with or without
this extra radiation, we have to include all these energy-degenerate final states.
This realization leads to the cancellation of IR poles.

2We say ‘rough’ as it will still receive higher order corrections.
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Figure 1.1 Evolution of the strong coupling constant as a function of the en-
ergy scale Q. Various experiments (colored errorbars) are included to validate
the analytic predictions (black curve). The strong coupling constant becomes
large for small energies and small for large energies, corresponding to confined
and asymptotically-free quarks at the two ends of the energy spectrum respec-
tively. This figure was taken from the Particle Data Group Collaboration [16].

As a concrete example, consider the cross section for e+e− → γ∗ → hadrons.
At lowest order there is no extra radiation, see figure 1.2, and IR divergences
are absent. At the next order we need to consider the two corrections given in
figure 1.3 to include the radiation of a virtual and real gluon.
Calculating the contributions to the cross section we find

σ
(1)
virtual = σ(0) 8

3Γ(1− ε)

(4πµ2

Ecm

)ε(
− 2

ε2
− 3

ε
+ π2 − 8 +O(ε)

)
,

σ
(1)
real = σ(0) 8

3Γ(1− ε)

(4πµ2

Ecm

)ε( 2

ε2
+

3

ε
− π2 +

19

2
+O(ε)

)
, (1.41)

where σ(0) follows from the born-level diagram,

σ(0) =
4π

3Ecm
αsNc

∑
q

e2
q . (1.42)
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Figure 1.2 The born matrix element for e+e− → γ∗ → qq̄.

Figure 1.3 The radiative (left) and virtual (right) QCD corrections to the
leading order process for e+e− → γ∗ → qq̄. The diagram with a gluon radiating
from the other leg is not shown explicitly, but has to be taken into account in
the total cross section.

Here Nc is the number of colors, the sum over q includes all quark flavors with
electric charge eq. The 1/ε poles in equation (1.41) are IR divergences, which
cancel when summing the virtual and real contribution:

σ(e+e− → γ∗ → hadrons) = σ(0)
(

1 +
αs
π

)
+O(α2

s). (1.43)

The kinematic configurations where these poles arise are described by the
collinear and soft emissions. The single poles in 1/ε correspond to either a
collinear or a soft emission and the double poles arise from kinematic regions
where particles become soft and collinear at the same time. To validate this
statement, let us consider the radiation of a gluon of one of the quark legs. In
a massless theory this gives

∼ /p+ /k

(k + p)2
=

/p+ /k

2EkEp(1− cosθ)
, (1.44)

where the striped blob presents the rest of the scattering process. The kine-
matics of the internal propagator leads to singularities when the emitted gluon
carries no energy or propagates in the exact same direction as the quark,
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i.e. E → 0 or θ → 0 respectively3. This result is universal, as the appear-
ance of these IR divergences does not depend on the interactions prior to this
emission. Note however that for massive particles the collinear singularities
are replaced by logarithms of the ratio Q/mass (which still cancel between
real and virtual contributions). As there is no suppression of these low-energy
emissions, we expect them to dominate scattering processes. This is exactly
what we observe in high-energy collisions in the form of collimated sprays of
particles called jets. These imprints of the IR limit of QCD will be discussed
in section 1.3. Furthermore, the enhancement of soft and collinear radiation
allows us to use SCET as an effective field theory to describe their effect in
high energy collisions, which shall be discussed in section 1.2.
In this thesis we are particularly interested in proton-proton collisions, as

this is studied at high energies at the LHC. Whenever we consider a process
with initial protons we cannot describe the initial state with perturbation the-
ory. Instead we perform the perturbative calculation with initial quark and/or
gluons. The extraction of a parton from a parent hadron is a non-perturbative
process described by the parton distribution function (PDF). An explicit cal-
culation of their partonic counterparts vanishes in dimensional regularization
as a result of scaleless integrals, and we conclude that the partonic PDF con-
tains both UV and IR divergences. The KLN theorem cannot guarantee IR
finite cross sections when we consider incoming protons, but the remaining IR
poles of the partonic calculation cancel exactly against the ones in the PDF.
A common perspective is that the IR divergences are absorbed by the PDF
such that it has an explicit UV divergence, which can be remedied by renor-
malization. The PDFs depend on the energy scale of the collision, which is
described by the RGE known as the DGLAP equation [20–22]. The PDFs are
non-perturbative objects and therefore need to be extracted from experiment.
We saw in equation (1.43) that the cross section e+e− → γ∗ → hadrons

was indeed free of IR divergences. Generally, IR poles cancel between real and
virtual contributions for inclusive processes. These kind of processes include all
possible final state radiation and no cuts on particle properties were introduced.
For measurements on the final state, we have to make sure that the cancellation
of IR poles remains intact. Observables that do not spoil the convergence
due to uncancelled IR poles are called infrared-and-collinear (IRC) safe. This
means that the observable is not sensitive to soft emissions or to collinear
splittings,

O({pi}, k1, k2) = O({pi}, k1 + k2) for ~k1 ‖ ~k2

O({pi}, k) = O({pi}) for ~k → 0 (1.45)
3It turns out that once the whole interaction is considered, only the limit in which the
gluon becomes soft produces a singularity, which is not clear from equation (1.44).
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where O represents some measurement on the final state. Examples of IRC safe
quantities include event-shapes, e.g. thrust [23], energy-energy correlators [24]
and jet cross sections using a well-defined jet algorithm [25]. Jets and jet
algorithms shall be discussed in section 1.3.

1.1.5 Appearance of large logarithms

IRC safe observables are free of IR divergences. Generally speaking, cross
sections have the following perturbative structure

σ = σ(0) +
αs
4π
σ(1) +

(αs
4π

)2
σ(2) + . . . . (1.46)

Predictions for the cross section that include all contributions up to some order
in αs are referred to as fixed order (FO) predictions. In particular, predictions
that only include σ(0) are leading order (LO) predictions, predictions that also
include σ(1) are called next-to-leading (NLO) predictions, and so on. Terms
with a higher power of αs are increasingly more difficult to calculate, due to
the increasing number of diagrams and the complicated divergence structure.
Luckily for us, each subsequent term in the perturbative series is less important
as long as αs � 1.
There is one caveat: The cancellation of the IR poles between real and vir-

tual contributions in IRC safe observables may still introduce large logarithms.
These logarithms grow in size in the collinear and/or soft limit, spoiling the
convergence of perturbation theory. Scattering processes usually depend on
multiple energy scales and the soft and collinear limits of QCD lead to loga-
rithms that depend dimensionless ratios of these energy scales. Consider the
dimensionless variable y, the cumulative distributions R is then defined by

R =

∫ y

0
dy′

1

σ0

dσ

dy
= 1 +

αs
4π
R1 +

(αs
4π

)2
R2 + . . . . (1.47)

Each order in αs is schematically given by

Rn =

2n∑
m=0

cn,mL
m +D(y), (1.48)

where c are constants, L = ln y, and D(y) refers to terms that vanish when
y → 0. We immediately see the divergence that arises in the y → 0 limit. The
perturbative predictions for the cross section therefore become less reliable as
y becomes smaller and will eventually break down completely. The regime
in which this happens is called the resummation regime. In this regime we
may not truncate our prediction at some fixed order. It is however possible to
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regain the predictive power by including all order logarithmic contributions.
One might be tempted to start by including the largest logs at each order first,
then the next-to-largest, and so forth. Even though this method systematically
includes contributions with the same scaling, i.e. αs ln2(y) is considered to have
the same scaling as α3

s ln4(y), this is nowadays not the preferred way to include
higher order logarithms. As established by the CTTW convention [26, 27],
it is convenient to define the accuracy at which logarithms are included in
exponentiated form. We therefore write the cumulative cross section R as

R(y) = C(αs) exp Σ +D(αs, y),

= C(αs) exp
{αs

4π

[
c12L

2 + c11L+ c10

]
+
(αs

4π

)2[
c23L

3 + c22L
2+c21L+ c20

]
(1.49)

+
(αs

4π

)3[
c34L

4 + c33L
3+c32L

2 +c31L+c30

]
+ . . .

}
+D(αs, y),

LL + NLL + N2LL + N3LL + . . .

where C is independent of logarithms and can be expanded in αs,

C(αs) = 1 +
αs
4π
C1 +

(αs
4π

)2
C2 + . . . (1.50)

Assuming that L ∼ α−1
s we see that each column has uniform scaling. The

logarithms in the first column are referred to as leading logarithms (LL), the
second next-to-leading logarithms (NLL), etc. In this thesis we refer to NkLL
accuracy when including logarithms up to the corresponding column.
The structure in (1.49) is naturally found when we use a separation of scales

to calculate the cross section. In chapter 1.2 we will introduce a particular
framework in which this factorization of scales is achieved. Concretely, the
cross section is written as a product (or convolution) of ingredients involving
a single scale. Each element of this factorized cross section has its own RG
evolution. The trick is then to evaluate each ingredient at the energy scale
where its logarithms vanish and use the RG to evolve all ingredients to a
common energy scale (remember we can only choose one µ). This procedure
is known as resummation and the potentially large logarithms can then be
included at the desired accuracy.

1.2 Soft-Collinear Effective Theory

The most general theory to describe physical phenomena is often very com-
pact, but it can be challenging to use it to make predictions with high pre-
cision. In these cases physicists resort to an effective theory, which describes
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the dominant physics at the desired energy scale. For example, the elliptic
orbits of planets are much easier to calculate in Newtonian gravity than Gen-
eral Relativity. To describe the trajectory of planets while taking all details
of general relativity into account is overkill. Newton’s law of gravitation had
been accepted for more than two hundred years as a valid description of the
gravitational force before it was understood as a simplification of the underly-
ing theory of General Relativity. The intuitive idea behind effective theories is
thus that you can make reliable predictions without needing the full underlying
theory. In a sense we want to think of an effective field theory as the simplest
framework that captures the essential physics. In quantum field theory we
exploit this idea to construct effective field theories (EFTs). In particular we
will use Soft-Collinear effective theory (SCET) to make precise predictions for
the effects of QCD radiation in high energy collisions at the LHC.
This chapter will start with a general introduction to effective field theories

in section 1.2.1. The rest of the chapter will focus on introducing SCET, the
effective theory we will use throughout this thesis to make precise predictions in
high energy collisions. First, we will discuss in section 1.2.2 the relevant degrees
of freedom. In section 1.2.3 the SCET Lagrangian will be introduced and in
section 1.2.4 we explore its symmetries. Lastly will focus on the factorization of
the contributing degrees of freedom in section 1.2.5, using an explicit example.
This chapter is based on the lecture notes and material in [28–31].

1.2.1 Effective field theories

EFTs are a tool to describe physical phenomena, taking only the relevant
degrees of freedom into account. EFTs are constructed in such a way that
they exhibit a systematic expansion and a procedure to include higher order
corrections. This is done by introducing a small expansion parameter λ that
is often defined as the ratio between two energy scales, known as the power
counting parameter. Effective field theories are therefore most useful when
there is a large separation between the energy scale of interest and the energy
scale of the underlying dynamics. In this case effects of the neglected degrees
of freedom are small enough to make precise predictions, as λ will be small.
The full theory can be expanded in λ up to the desired order of precision. The
Lagrangian of the full theory can thus be written as

Lfull =
∑
n

L(n)
EFT, (1.51)

where n labels the expansion order in the small parameter λ.
The Lagrangian that describes the EFT is constructed in two main steps.

First we need to determine the low energy degrees of freedom and write down
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all possible operators that respect the symmetries of the full theory. The EFT
exhibits the same symmetry properties as the underlying full theory. However,
the EFT can have additional symmetries that appear due to expanding. The
second step is to determine the coefficients of these operators. If the underlying
theory is known, but overly complicated for low-energy calculations, one can
employ the top down approach. The coefficients in the EFT Lagrangian are
then fixed by a procedure we call matching. This is done by calculating a
(simple) observable in both the full theory and EFT, demanding that the low
energy limit of the full theory gives the same results as the EFT. On the
other hand, if the high-energy theory is not known, the coefficients in the
EFT Lagrangian need to be fixed by comparing to experiments (bottom-up
approach).
To see how this procedure works, let us consider an illustrative example

where the Lagrangian of the full theory is given by

Lfull =
1

2
(∂φ)2 − 1

2
mφ2 +

1

2
(∂ρ)2 − 1

2
Mρ2 + gφ2ρ, (1.52)

where φ is a light scalar field with mass m and ρ is a heavy scalar field with
mass M . These two fields are coupled by a 3-particle vertex with strength g.
In situations where the energy is not high enough to produce heavy particles,
we can construct an effective theory that only considers the φ as external
particles. To construct this EFT we consider only φ as a dynamical field
(degree of freedom). The Lorentz invariant operators we can write down that
obey φ→ −φ (a symmetry of equation (1.52)) are

LEFT =
1

2
(∂φ)2 − 1

2
mφ2 − C4

4!
φ4 +

C6

6!M2
φ6 + . . . (1.53)

TheWilson coefficients Cn are the dimensionless constants of the corresponding
operators with mass dimension n that can be fixed by matching. A priori the
6-dimensional operators that include derivatives φ2�φ (e.g. φ2�φ2, φ�φ3, etc.)
must also be included in equation (1.53), but using the equations of motion
up to O(M−4) they have all been traded for φ6. The 4-point amplitude in the
effective theory is given by

iMEFT = −iC4. (1.54)

The Wilson coefficients C4 can now be determined by comparing to the cal-
culation of the 4-point correlation in the full theory, expanded in the small
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parameter λ = m2/M2.

iMfull = −ig2

(
1

s−M2
+

1

t−M2
+

1

u−M2

)
,

= i
g2

M2

(
3 +

s+ t+ u

M2
+
s2 + t2 + u2

M4
+ · · ·

)
,

= i
3g2

M2
+O(λ), (1.55)

where we used that the momenta of the incoming particles are ∼ m2 for
the energies we are looking at. Matching this expansion to (1.53) sets C4 =
−3g2/M2. In this example we have Cn = 0 for all n > 4 Wilson coefficients,
since the only interaction in the full theory is φ2ρ. If one would try to perform
the matching for C6 for example, all the contributions to the 6-φ correlation
function will be reducible to diagrams with C4 vertices.
To summarize, let us repeat that the EFTs simplify the calculation by dealing

with one scale at a time and including only the relevant interactions. These
simplifications allow us to include higher orders in perturbation theory.

1.2.2 SCET degrees of freedom

SCET is the effective theory for infrared (IR) limit of QCD [32–36]. The
main difference between SCET and the example in the previous section is the
nature of the degrees of freedom of the EFT. The dynamical fields in SCET
are the IR degrees of freedom of QCD, while effective interactions describe
high-energy QCD (as well as the rest of the SM). SCET is a top-down EFT
where off-shell contributions are removed from the full theory, but not fields.
As a consequence SCET contains multiple fields that are defined for the same
particle, which are required to cleanly separate momentum scales. To construct
the SCET Lagrangian we first need to identify and isolate the dominant degrees
of freedom (or modes).
Energetic collisions at particle colliders will produce a lot of soft and collinear

radiation. This IR radiation plays a crucial role in measurements at the LHC,
impacting our understanding of the underlying physics. Both the soft and
collinear particles live in the infrared, and are the desired degrees of freedom
(or modes) in SCET. The relevant degrees of freedom, effective operators and
power counting parameters depend on the process and measurement at hand.
Before we proceed, let us introduce light-cone coordinates.
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Light-cone coordinates

Light-cone coordinates constitute a natural basis for the four momenta of par-
ticles whose energy is much larger than their mass. It is therefore convenient
to describe the collinear and soft degrees of freedom that dominate high energy
collisions using these coordinates.
The basis of this coordinate system is set by two light-like basis vectors n

and n̄ that satisfy

n2 = n̄2 = 0 and n · n̄ = 2. (1.56)

Obviously this set of auxillary vectors is not unique. An explicit set of light-like
vectors that satisfy these equations is given by

nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). (1.57)

Any 4-vector pµ can now be represented in light-cone coordinates as

pµ =
n̄µ

2
p+ +

nµ

2
p− + pµ⊥, (1.58)

where the plus, minus and perpendicular component are

p+ ≡ n · p = p0 − p3, p− ≡ n̄ · p = p0 + p3 and pµ⊥ ≡ (0, p1, p2, 0).
(1.59)

To study the degrees of freedom it is useful to introduce the following notation

pµ = (p+, p−, ~p⊥), (1.60)

where the last entry is the two-dimensional Euclidean perpendicular momen-
tum. Using the (+ − −−) metric in Minkowski space, the product of two
vectors pµ and qµ in light-cone coordinates is

p · q =
1

2

(
p+q− + p−q+

)
− ~p⊥ · ~q⊥, (1.61)

which in particular leads to p2 = p+p− − p2
⊥.

Modes in SCET

As mentioned before, the degrees of freedom needed to set up SCET depend
on the measurement. To illustrate how to choose the appropriate degrees of
freedom, let us consider the example of dijet production e+e− → qq̄. At lowest
order in electroweak corrections this process is mediated by an off-shell photon
(or Z-boson) with momenta qµ = (Q, 0, 0, 0) in the CM frame. The produced
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q and q̄ will eventually result in collimated spray of particles that fly in the
initial direction of these to partons. These objects are called jets and we will
discuss them further in section 1.3. Momentum conservation forces these jets
to be back to back at leading order. We choose our light-cone coordinates
such that one of the jets points in the n-direction with momentum pµn and
the other in the n̄-direction with momentum pµn̄. Each jet will carry roughly
half the energy of the mediating photon. The large momentum component,
which will point along the direction of flight, will therefore be of the order of
Q, so p−n ∼ p+

n̄ ∼ Q. At higher orders the jets are allowed to carry transverse
momentum p⊥ due to radiation. To ensure that the jets are indeed a collection
of collimated particles, the transverse momentum should be parametrically
smaller then the large energy component. Using the on-shell condition and
ignoring quark mass effects, we find the scaling of the collinear modes:

pµc ∼ Q(λ2, 1, λ), (1.62)

where λ = ∆/Q � 1, where Q is referred to as the hard scale and ∆ is
determined by the measurement. If we want our EFT to work, ∆ should be
parametrically smaller then Q to retain collinear scaling and larger then ΛQCD
to ensure jet formation (otherwise the jet consists of only one or a few hadrons).
Simply measuring the invariant mass m2

J of the jet would set λ =
√
mJ/Q.

We also need to include a soft mode to have all the necessary degrees of
freedom, which is homogeneous. Depending on the observable this soft mode
can either have soft or ultra-soft scaling:

pµs ∼ Q (λ, λ, λ) ,

pµus ∼ Q
(
λ2, λ2, λ2

)
, (1.63)

where the pµus and pµs scalings correspond to theories known as SCETI and
SCETII, respectively. To justify the soft scaling let us return to our e+e− → qq̄
example and assume the measurement of the azimuthal decorrelation θ between
the two jets (defined such that the back to back situation at leading order
has θ = 0). For small angles this is closely related to the relative transverse
momentum between the two jets, i.e. p⊥ ∼ θQ. The only way soft radiation can
contribute to this offset is when the transverse component of the soft mode has
the same scaling as the collinear one. Thus we end up with a SCETII scaling,
where soft modes scale as pµs in equation (1.63). Let us now consider the
hemisphere mass in e+e− → qq̄ instead. The hemisphere mass is defined as
the invariant mass of all particles in one (of the two) hemispheres, defined by
a half "sphere" centred round the n-direction. Without loss of generality let
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us pick n in the direction of q. The hemisphere mass m2
n is then defined by

m2
n =

(∑
i

pµi

)2
, (1.64)

where the sum on i runs over all particles in the hemisphere. Radiating only
a single soft gluon from the quark would lead to

m2
n = (pµn + pµus)

2 = p2
n + p2

us + 2pn · pus. (1.65)

Clearly collinear radiation contributes to our measurement as almost all mo-
menta is carried by the jet. The hemisphere mass is therefore of the same
order as the jet invariant mass, so m2

n ∼ p2
n,⊥ ∼ λ2. The individual terms in

equation (1.65) should all contribute at this precision or less. Since the scaling
of the collinear radiation is fixed by equation (1.62), pn · pus = p−n p

+
us + . . .

dominates, leading to the ultrasoft scaling (see pµus in equation (1.63)). This
is thus an example of SCETI.
The way soft and/or collinear modes contribute depends on the observable,

the details of which determine the relative scaling of the degrees of freedom.
The two most used versions of SCET are SCETI and SCETII. The former is
used when measurements involve the small light-cone momentum component
along preferred collinear directions, while the latter is used for observables
that include momentum components perpendicular to such directions. These
collinear directions are often those of the beams or of outgoing sprays of par-
ticles, called jets.

1.2.3 SCET Lagrangian

The detailed derivation of the SCET Lagrangian can be found in [32–35], or
in dedicated lecture notes like [30,37]. Here we will merely show the resulting
SCET Lagrangian and briefly describe how to obtain it. We will refer to the
SCETI Lagrangian as the SCET Lagrangian, as is common in literature. The
SCETII Lagrangian, where the ultrasoft modes are replaced by soft modes, can
be found obtained by lowering the virtuality of the collinear modes [38,39]. The
big difference is that the ultrasoft fields can interact with all other modes, while
the soft fields will at leading power not interact with collinear fields due to its
harder scaling. Though we will only discuss the SCETI Lagrangian, keep in
mind that the SCETII Lagrangian can still be obtained from the results.
The leading-power SCET Lagrangian is compactly presented by its three

sectors:

L(0)
SCET = L(0)

nξ + L(0)
ng + L(0)

us . (1.66)
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The L(0)
nξ term describes propagation of collinear quark fields and their interac-

tions with ultrasoft and collinear gluons. The L(0)
ng term describes propagation

of the collinear gluon fields and their interactions with the ultrasoft gluons.
The sector containing the collinear quarks is obtained from the fermionic QCD
Lagrangian, described by interacting Dirac spin-1/2 fields,

LψQCD = iψ̄ /Dψ. (1.67)

We will go through the procedure of building the SCET Lagrangian for this
particular sector in steps with some detail. The other two terms in equation
(1.66) follow using the same techniques and we therefore only briefly discuss
the result.

Step 1: Splitting the fields into their (ultra)soft and collinear parts

The first step is to identify the field components with distinct scaling, which
is related to the established modes in the previous section. Let us first split
the quark field into a collinear piece and an ultrasoft piece.

ψ = ψc + ψus. (1.68)

Here we have suppressed the position dependence of the fields for brevity, and
will do so throughout this chapter.
As we are deriving the collinear quark part of the SCET Lagrangian, it is

convenient to make a preliminary expansion to show that the soft and collinear
quarks do not interact with each other and can be dropped. The Lagrangian
reads

Lψ = i
(
ψ̄us /Dψus + ψ̄us /Dψc + ψ̄c /Dψus + ψ̄c /Dψc

)
, (1.69)

where we have used equation (1.71) to make the decomposition of the quark
field. Ultrasoft and collinear phase space respectively yield λ−8 and λ−4 scal-
ing; the former compensates for the higher suppression of ultrasoft fields and
saves interactions among only such fields. Terms mixing ultrasoft and collinear
fields receive the collinear enhancement λ−4 and can therefore be dropped from
the leading order Lagrangian. The only interesting term besides the purely ul-
trasoft interactions is

Ln = ψ̄c i /Dψc = iψ̄c
(
/n

2
in ·D +

/n

2
in̄ ·D + i /D⊥

)
ψc, (1.70)

where we have written the covariant derivative into the light-cone basis for
future convenience. The kinetic ultrasoft term is part of L(0)

us and will be
discussed later.
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Depending on their orientation with respect to the collinear direction, the
spin components of collinear fields turn out to scale differently. For this reason
we separate the collinear quark field further,

ψc = (Pn + Pn̄)ψc ≡ ξ̂n + φn̄, (1.71)

where we used projection operators defined as

Pn =
/n/̄n

4
and Pn̄ =

/̄n/n

4
, (1.72)

which obey the relations P 2
n = Pn and P 2

n̄ = Pn̄. Their effect on the collinear
quark field is defined by the identities4

Pnξ̂n = ξ̂n, Pn̄φn̄ = φn̄ and Pnφn̄ = Pn̄ξ̂n = 0. (1.73)

To determine the relative scaling of the constructed constituents of the fermion
field we will take a closer look at the two-point functions. Starting with the
ultrasoft quark fields we find:

〈0|T{ψus(x)ψ̄us(0)} |0〉 =

∫
d4puse

−ipus·x i/pus
p2
us + iε

∼ λ6, (1.74)

leading to the scaling ψus ∼ λ3. We can do the same for the two components
of the collinear quark field.

〈0|T{ξ̂n(x)
¯̂
ξn(0)} |0〉 = 〈0|T{Pnψc(x)ψ̄c(0)Pn̄} |0〉 ,

=

∫
d4pce

−ix·pc i
p2
c + iε

p−c /n

2
∼ λ2, (1.75)

〈0|T{φn̄(x)φ̄n̄(0)} |0〉 = 〈0|T{Pn̄ψc(x)ψ̄c(0)Pn} |0〉 ,

=

∫
d4pce

−ix·pc i
p2
c + iε

p+
c /̄n

2
∼ λ4, (1.76)

where we have used the anti-commutation relation for gamma matrices {γµ, γν} =
2ηµν and the powercounting for momenta in the light-cone basis in equation
(1.56) to arrive at the final propagator scaling. The parametric scaling for the
collinear quark field components is thus ξ̂n ∼ λ and φn ∼ λ2.
Now that we have separated the spinor components of the fermion field, we

still have to do the same for the gauge fields. Again, we split the collinear from
the ultrasoft

Aµ = Aµn +Aµus. (1.77)

4The identities for the conjugate fields can be obtained using P̄n = Pn̄, e.g. φ̄n̄Pn̄ = 0.
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Here our task of determining the scaling is simpler. The covariant derivative
in the Dirac Lagrangian in equation (1.67) dictates that the momenta and
the gauge field should scale the same way. We can therefore immediately
determine the scaling of the collinear and ultrasoft gluon field by looking at
the corresponding modes in equations (1.62) and (1.63):

Aµn ∼
(
λ2, 1, λ

)
, Aµus ∼

(
λ2, λ2, λ2

)
. (1.78)

Step 2: Integrating out non-dynamical fields

Next, we substitute the decomposition from equation (1.71) in equation (1.70).
Note that D still contains both collinear and ultrasoft gluons in this equation.
Anti-commutation relations for the gamma matrices and the identities for light-
cone basis vectors in equation (1.56) allow us to drop some terms and we find
that the collinear Lagrangian reads

Ln = i
(

¯̂
ξn
/̄n

2
n ·Dξ̂n + φ̄n̄ /D⊥ξ̂n +

¯̂
ξn /D⊥φn̄ + φ̄n̄n̄ ·Dφn̄

)
. (1.79)

We see that each term in this Lagrangian has the same power counting and
we can therefore not use power counting arguments to drop terms in favour of
others.
The scaling of the collinear modes in equation (1.62) together with the Dirac

equation in light-cone components,(
/np− + /̄np+ + /p⊥

)
u(p) = 0, (1.80)

dictate that /nu(pn) ∼ λ and /̄nu(pn) ∼ 1, where u(p) is the QCD spinor. This
means that Pn selects the leading spin component of external fermion states.
The spin components of the φn̄ field are thus suppressed on external, on-shell
states. We will therefore not treat φn̄ as a dynamical field in our Lagrangian
and integrate it out, but it still contributes to the Lagrangian via the resulting
effective interactions. In practice this is done using the leading order equations
of motion for φn̄,

δLn
δφn̄
− ∂µ

δLn
δ∂µφn̄

= 0, (1.81)

leading to

φn̄ =
1

n̄ ·D
/D⊥

/n

2
ξ̂n. (1.82)
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Inserting this in the Lagrangian yields

Lnξ = i ¯̂ξn
(
n ·D + /D⊥

1

n̄ ·D
/D⊥

)
/n

2
ξ̂n, (1.83)

which now only contains dynamical SCET fields. Note that at this point we
have separated the ultrasoft from the collinear quark fields and showed that
there are no interactions between the two at leading order. No further expan-
sions have been performed yet and the Lagrangian above thus still describes
the collinear QCD Lagrangian.

Step 3: Performing a multipole expansion

At this stage, we could use the relative scaling of the fields in position space
to start expanding subleading terms away. However, in QFT we prefer to
use momentum-space Feynman rules. However, the Fourier transform of the
derivative of a collinear field, which appears in the Lagrangian,∫

d4x
[
∂µξn(x)

]
eip·x =

∫
d4x(−ipµc )ξn(x)eipc·x, (1.84)

could reinstate subleading terms through the small momentum components of
the collinear momentum pc. It would therefore be preferable to carry out the
expansion step directly in momentum space, such that the need for further ex-
pansion is avoided. To serve this purpose we use the so-called label formalism.
We start by defining ξ̃n(p) as the Fourier transform of ξ̂n(x)

ξ̃n(p) =

∫
d4xeip·xξ̂n(x). (1.85)

The conventions we use for the Fourier transform are given in appendix A. We
now separate the large and small part of the momenta by introducing

pµ = pµl + pµr with pl ∼ (0, 1, λ), pr ∼ (λ2, λ2, λ2). (1.86)

The large label momentum pl has the small light-cone component in it’s scaling
set to zero, and the residual momentum describes a perturbation around the
large momentum of order λ2. The residual momenta will be treated as a
continuous quantity, whereas the label momenta is discrete5. The collinear
momenta contain both label en residual components, whereas soft momenta

5By combining label and residual momenta, all momenta are continuous in actual calcula-
tions.
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only consist of a residual component. The phase space integration changes
accordingly

collinear:
∫

d4pc →
∑
pl 6=0

∫
d4pr, (1.87)

ultrasoft:
∫

d4pus →
∫

d4pr. (1.88)

The ultrasoft momenta have pl = 0 and therefore this is excluded for the
integral over the collinear momentum to avoid double counting. It is useful to
change notation of our collinear quark to make the discrete nature of the label
momentum apparent, i.e.

ξ̃(p)→ ξ̃pl(pr). (1.89)

By Fourier transforming only the residual momenta back to position space we
create a hybrid field that contains the label momenta in momentum space and
the residual momenta in position space

ξn,pl(x) =

∫
d4pre

−ipr·xξ̃n,pl(pr). (1.90)

The relation to the hatted collinear quark field we introduced in equation (1.71)
is given by

ξ̂n(x) =
∑
pl 6=0

e−ipl·xξn,pl(x). (1.91)

The decomposition into label and residual momenta leads to some statements
about label conservation of our hybrid field ξn,pl(x): First, interactions with
ultrasoft particles do not change the label momenta of collinear fields. Sec-
ond, interactions between collinear particles will change their label momenta.
And last we note that only a hard (external) interaction can couple fields with
different collinear directions, such that the collinear label n is preserved. The
example in equation (1.84) showed the need for a new procedure when deal-
ing with derivatives. To make derivatives on fields consistent with the label
formalism, we define the label momentum operator Pµ

Pµξn,pl(x) = pµl ξn,pl(x) and Pµξ†n,pl(x) = −pµl ξ
†
n,pl

(x), (1.92)

and introduce the notation

Pµ =
(
0, P̄,P⊥

)
, (1.93)
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where P̄ = n̄ · P ∼ 1 and P⊥ ∼ λ. The action of the partial derivative on the
hatted collinear field, shown in equation (1.84), is found to

i∂µξn(x) =
∑
pl 6=0

e−ipl·x
(
pµl ξn,pl(x) + i∂µr ξn,pl(x)

)
,

= e−iP·x
∑
pl 6=0

(
Pµ + i∂µr

)
ξn,pl(x), (1.94)

where partial derivative ∂µr acting on the hybrid field is now only sensitive to
the residual momenta. Finally, we can use the label momentum operator to
rewrite ξ̂n(x) in equation (1.91) a bit further to obtain

ξ̂n(x) = e−iP·xξn(x), (1.95)

where ξn(x) =
∑

pl 6=0 ξn,pl(x) is used to simplify the notation. For field prod-
ucts we have

¯̂
ξn(x)ξ̂n(x) = e−iP·xξ̄n(x)ξn(x), (1.96)

where the label operator is understood to act on both fields. Consequently,
this phase factor encodes conservation of label momenta.

Step 4: Constructing the leading order Lagrangian

After rewriting our quark and gluon fields in their collinear and ultrasoft coun-
terparts, deriving their distinct scaling, and setting up the label formalism, it
is now time to isolate the leading interactions for the collinear quark sector.
Using the hybrid fields the Lagrangian is given by

L(0)
n = ie−ix·P ξ̄n

(
in ·D + i /D⊥

1

in̄ ·D
i /D⊥

)
/̄n

2
ξn, (1.97)

where the derivative operators read

in ·D = i∂+
r + gA+

n + gA+
us,

in̄ ·D = P̄ + ∂−r + gA−n + gA−us,

iDµ
⊥ = Pµ⊥ + ∂µr,⊥ + gAµn⊥ + gAµus⊥, (1.98)

where we used the notation in equation (1.60) to denote different components
of the fields. After expanding the operators up to leading order we arrive at
the final result

L(0)
nξ = ie−ix·P ξ̄n

(
in ·Dn + i /Dn⊥

1

in̄ ·Dn
i /Dn⊥

)
/̄n

2
ξn, (1.99)
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where we have defined the collinear covariant derivatives in which the O(λ2)
terms are expanded away

in ·Dn ≡ i∂+
r + gA+

n + gA+
us,

in̄ ·Dn ≡ P̄ + gA−n ,

iDµ
n⊥ ≡ P

µ
⊥ + gAn⊥, (1.100)

where n ·Dn = n ·D as no terms are expanded out in this case. After these
manipulations all terms in L0

nξ now have the same λ0 scaling. To arrive at the
SCETII Lagrangian the soft gluon fields would be dropped from the collinear
covariant derivatives, as the interaction between a soft and two collinear par-
ticles would spoil the collinear power counting.
Starting from the gluon QCD Lagrangian, and following the same steps as

in the quark case, the leading power collinear gluon SCETI Lagrangian is

L(0)
ng =

1

2g2
Tr
{

[iDµ
n, iDnµ]2

}
+

1

ξ
Tr
{

[iDµ
us, Anµ]2

}
+ 2Tr

{
c̄n[iDµ

us, [iDnµ, cn]]
}
,

(1.101)

where ξ is the gauge fixing parameter and c are the ghost fields, which find
their origin in the covariant gauge in (1.11). The components of the derivative
Dn at leading power are given in equation (1.100) and the components of its
ultrasoft analogue that only includes ultrasoft gauge fields are

in ·Dus = i∂+
r + gA+

us, in̄ ·Dus = P̄ and Dµ
us,⊥ = Pµ⊥. (1.102)

The ultrasoft sector of the SCET Lagrangian is simply obtained by a copy
of the original QCD Lagrangian where every field is replaced by its ultrasoft
counterpart. We already saw that the decomposition of the quark field in
equation (1.68) naturally led to the kinetic term for ultrasoft quarks. None of
the original terms drop out upon expanding, due to the homogeneous nature
of these ultrasoft modes.

L(0)
us = ψ̄usi/Dusψus −

1

4
(Gaus,µν)2− 1

2ξus
(∂µrA

a
us,µ)2 + ∂µr c̄

a
usDabus,µcbus, (1.103)

where Gaus,µν is the field strength tensor that only contains ultrasoft gauge
fields. The ξus is the gauge fixing parameter for the soft sector, unless stated
otherwise we use ξus = 1. Note that Dµus denotes the unexpanded ultrasoft
covariant derivative:

Dµus = ∂µr − igAµus. (1.104)
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To describe events involving multiple well-separated directions, SCET intro-
duces a different set of dynamical collinear modes for each of those directions.
This goes beyond the dijet example we discussed in section 1.2.2, where two
back-to-back collinear directions were needed. Interactions between different
collinear sectors will have hard scaling. For this reason, these interactions
are always integrated out and show up through operators describing the hard
scattering with a corresponding hard matching coefficient. Additional collinear
sectors are therefore introduced by simply adding a copy of the collinear sector
to the Lagrangian, as it also contains the interactions with the ultrasoft gluons.

1.2.4 Symmetries of SCET

In Quantum Field Theories the Lagrangian is often built on underlying symme-
tries. In this section we will explore the symmetries of the SCET Lagrangian
and how we can exploit them to make invariant building blocks, which natu-
rally constrain the effective operators. These effective operators describe the
interactions of our dynamical degrees of freedom in SCET with the rest of the
SM. The SCET Lagrangian at tree level was directly obtained from QCD at
tree level. There are a few symmetries that SCET directly inherited, like par-
ity, and charge conjugation. In addition QCD also has gauge invariance and
Lorentz symmetry, however they look somewhat different in SCET. In this
section we discuss both, starting with reparametrization invariance, which is
related to Lorentz symmetry.
By fixing the reference vectors n and n̄ in equation (1.57), the original

Lorentz symmetry is broken. However, this freedom is now captured by the
reparameterization invariance of these basis vectors. This is known as reparametriza-
tion invariance (RPI). There are three types of RPI transformations under
which the basis vectors still keep their defining properties in equation (1.56).
Each of them takes n and n̄ to an equally valid set of light-cone coordinates,

I :

{
nµ → nµ + δµ⊥
n̄µ → n̄µ

II :

{
nµ → nµ

n̄µ → n̄µ + εµ⊥
III :

{
nµ → eαnµ

n̄µ → e−αn̄µ

(1.105)

where δ⊥, ε⊥ and α are parameters, for which n · δ⊥ = n̄ · δ⊥ = n · ε⊥ =
n̄ · ε⊥ = 0. The scaling of these parameters is such that they do not spoil the
power counting: δ⊥ ∼ λ, ε⊥ ∼ 1 and α ∼ 1. Constructing SCET operators
is now constrained by RPI and in particular they can only appear in three
combinations

(A · n) (B · n̄) ,
A · n
B · n

,
A · n̄
B · n̄

, (1.106)
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where Aµ and Bµ are arbitrary operators built from SCET fields. Another
reparameterization invariance was introduced with the decomposition into la-
bel (pl) and residual momenta (pr). We are free to split the total into pl and
pr in different ways as long as it maintains their relative power counting. This
is evident by the invariance under the following transformation

Pµ → Pµ + βµ, ∂µr → ∂µr − βµ, (1.107)

where β ∼ λ2. Invariance requires

Pµ + i∂r, (1.108)

to be grouped together for collinear fields. It is important to note that in-
variance under any of the discussed reparametrizations links different orders
in power counting.
The general gauge transformations inherited from QCD mix fields with dis-

tinct power counting. In practical terms such a transformation could turn
ultrasoft gluons into collinear gluons, which we do not allow in our EFT. The
gauge transformations in SCET are found in the same way as we found our
Lagrangian: we have to make a decomposition based on power counting. This
results in two kinds of gauge transformations: collinear and ultrasoft. They
are

Un(x) = exp[iαanta] and Uus(x) = exp[iαausta], (1.109)

where αaus is a real function with a = 1, . . . , 8. They are defined as the subset
of gauge transformations where ∂µUus(x) ∼ λ2 and ∂µUn(x) ∼ (λ2, 1, λ). The
dynamical SCET fields transform under these gauge transformations according
to

collinear:


ξn(x) → Un(x)ξn(x)

Aµn(x) → Un(x)Aµn(x)U †n(x) + i
gUn(x)Dµ

usU
†
n(x)

ψus(x) → ψus(x)

Aµus(x) → Aµus(x)

(1.110)

and

ultrasoft:


ξn(x) → Uus(x)ξn(x)

Aµn(x) → Uus(x)Aµn(x)U †us(x)

ψus(x) → Uus(x)ψus(x)

Aµus(x) → Uus(x)Aµus(x)U †us(x) + i
gUus(x)∂µr U

†
us(x)

(1.111)
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The collinear gauge transformations do not act on the ultrasoft particles, since
these particles cannot resolve the fast local changes induced by Un(x). Oppo-
sitely, the collinear fields are affected by ultrasoft transformations, consistent
with their contact term in the collinear Lagrangian. However, these trans-
formations do not include the partial derivative for the collinear gauge field,
reflecting the fact that they see it as a smooth change in the background [35].
If we were to introduce more collinear sectors to match the collinear directions
of a collision, we have to introduce a separate RPI for each ni sector. Further-
more, each collinear field will have its own gauge transformation generated by
Uni , which only operate in their own collinear sector.
In order to construct gauge invariant building blocks, we introduce the

collinear Wilson line

Wn ≡ P exp
{
ig
∫ 0

−∞
ds n̄ ·An(x+ sn̄)

}
, (1.112)

where P denotes the path ordering. In terms of label momenta, the collinear
Wilson line can be defined by

iD−nWn = (P− + gA−n )Wn = 0, (1.113)

which leads to the identities

iD−n = WnP−W †n and
1

iD−n
= Wn

1

P−
W †n. (1.114)

The Wilson line transforms under both ultrasoft and collinear gauge transfor-
mations

Wn(x)
collinear−−−−−→ Un(x)Wn(x),

Wn(x)
soft−−→ Uus(x)Wn(x)U †us(x), (1.115)

where the ultrasoft transformations mirror the ones for a single collinear gluon
field and the collinear transformations follow from (1.113).
The collinear Wilson line naturally appears when constructing effective op-

erators. As an example let us go back to dijet production. In full QCD this
process would be induced by the current,

JQCD,µ
qq̄ = ψ̄Γµψ, (1.116)

where Γµ describes the EW coupling to a photon or vector boson. In SCET
the corresponding current at tree level is

J
(0),µ
qq̄ = ξ̄nΓµi ξn̄. (1.117)
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Now we can consider the situation where we radiate a gluon from one of the
external quarks. Without loss of generality we assume the q̄ is radiating. In the
SCET language we see that this is reconstructed by attaching a soft, n̄-collinear
or n-collinear gluon to the n̄-collinear quark. The first two are reproduced by
the SCET lagrangian. However, attaching a n-collinear gluon to the n̄-collinear
quark spoils the powercounting of the quark-line and takes the internal quark
off-shell. Therefore it is integrated out, leading to the (new) effective operator

Jµ,1qq̄ = ξ̄n

[
−gA−n
q−

]
Γµi ξn̄. (1.118)

We can repeat this process by considering additional gluon radiation, which
would introduce a new effective operator at each step. However, it is more con-
venient to construct an operator that contains all the leading power corrections
by default. This is summarized by

〈0| JQCD,µ
qq̄ |0〉 = C 〈0| Jµqq̄ |0〉 , (1.119)

where we take the appropriate limit on the LHS. Iteratively using the result
for additional gluon radiation in equation (1.118) and summing over all per-
mutations we find the SCET operator for an arbitrary number of n-collinear
gluons

J
(n),µ
qq̄ = ξ̄n

[ ∑
perms

(−g)m

m!

A−n (q1)× . . . A−n (qm)

q−1
(
q−1 + q−2

)
. . .
(∑m

i=1 q
−
i

)]Γµi ξn̄, (1.120)

where the order m denotes the number of gluons radiated with incoming mo-
mentum qi and each gluon field needs to be understood as A−n = Aa,−n Ta.
The addition of any number of additional collinear gluons is then expressed by
Jµqq̄ =

∑∞
m=0 J

(m),µ
qq̄ = ξ̄nWnΓµξn̄, where Wn is the collinear Wilson line found

in equation (1.112). The same can be argued for the attachment of n̄-collinear
gluons to the n-collinear quark line, which results in an n̄-collinear Wilson line.
The resulting current is therefore given by

Jµqq̄ =
∞∑

m=0,n=0

J
(m),µ
qq̄ = ξ̄q,nWnΓµW †n̄ξq̄,n̄. (1.121)

The Wilson lines incorporate all possible additions of collinear gluons to the
leading order SCET current and restore gauge invariance of the operator. In
general, the gauge transformation properties allow us to construct collinear
gauge-invariant building blocks,

χn = W †nξn, Bµ
n,⊥ =

1

g

(
1

P̄
W †n

[
Dµ
n⊥, n̄ ·Dn

]
Wn

)
and Pµn⊥, (1.122)
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where the P̄ only acts inside the outer brackets. The quark jet field χn showed
up in the derivation of the current above and the gluon jet field Bµ

n,⊥ is the
gluon analogue. The fields ξn and An can only appear in hard scattering
operators through these gauge invariant building blocks.

1.2.5 Factorization in SCET

The collinear and ultrasoft fields in the SCET Lagrangian are still coupled
through the appearance of the ultrasoft covariant derivative appearing in the
collinear quark and gluon Lagrangians, given by equation (1.99) and (1.101)
respectively. The main power of SCET lies in the possibility to completely
separate collinear from ultrasoft fields by making appropriate field redefinitions
[40,41], known as the Bauer-Pirjol-Stewart (BPS) field redefinitions [42]. The
factorization of soft and collinear fields at the level of the Lagrangian is an
essential ingredient to derive factorization theorems for numerous processes.

Soft-collinear factorization

Let us first introduces the ultrasoft Wilson line Yn, given by

Yn(x) ≡ P exp
{
ig
∫ 0

−∞
ds n ·Aus(x+ sn)

}
, (1.123)

where P denotes path ordering. Ulltrasoft Wilson lines are unitary operators
and vanish under the ultrasoft covariant derivative, i.e.

Y †nYn = 1 and in ·DusYn(x) = 0. (1.124)

In analogy to the collinear Wilson line, the ultrasoft Wilson line includes all
possible ultrasoft gluon radiations from a collinear particle. Motivated by the
fact that collinear particles will always be accompanied by a haze of soft gluons
we transform the SCET fields as

ξn,pl → Ynξn,pl

Aµn,pl → YnA
µ
n,pl

Y †n

Wn → YnWnY
†
n

cn,pl → Yncn,plY
†
n (1.125)

which are known as the BPS field redefinitions. Note that the transformation
of the collinear Wilson line directly follows from the transformation of the
collinear gluon field. The BPS transformation of the ghost field is included for
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completeness, as we will only describe the decoupling in the collinear quark
sector in detail.
Let us now investigate what happens to the collinear quark Lagrangian when

we implement the redefinitions in equation (1.125). We start with the La-
grangian in equation (1.99) and use the first identity in equation (1.114) to
rewrite it as

L(0)
nξ = e−iP·xξ̄n

[
iD+

us + gA+
n +

(
/P⊥ + g /An⊥

)
Wn

1

P−
W †n

(
/P⊥ + g /An⊥

)] /̄n
2
ξn,

(1.126)

whereDus is defined in equation (1.102). Performing the BPS field redefinitions
in equation (1.125) dresses the collinear quark and gluon fields with ultrasoft
Wilson lines. They cancel everywhere except for the term that includes the
ultrasoft derivative. Here we exploit the second identity in equation (1.124),
which leads to

iD+
us = Yni∂+

r Y
†
n , (1.127)

similar to the identity in equation (1.114) for the collinear Wilson line. Com-
bining equation (1.127) with the BPS field redefinition of ξn,pl then also for the
first term results in the cancellation of the ultrasoft Wilson lines. Summarizing
this discussion: performing the BPS field redefinitions and using the identity
in equation (1.127), yields

L(0)
nξ → e−iP·xξ̄n

[
i∂+
r +gA+

n +
(
/P⊥+g /An⊥

)
Wn

1

P−
W †n

(
/P⊥+g /An⊥

)] /̄n
2
ξn,

(1.128)

where the ultrasoft gluons completely disappeared. This decoupling is also
found in the collinear gluon Lagrangian upon using BPS field redefinitions.
Clearly the interactions with the ultrasoft sector did not vanish into thin air.
The BPS transformations effectively move the interactions between collinear
fields and ultrasoft gluons into the currents describing the hard scattering, as
the redefinition of the field has to be implemented everywhere. For the dijet
example we discussed previously this results in [35]

Jµqq̄ = ξ̄nWnΓµW †nξn̄ →
[
ξ̄nWn

]︸ ︷︷ ︸
n̄-collinear

[
Y †nYn̄

]︸ ︷︷ ︸
ultrasoft

Γµ
[
W †n̄ξn̄

]︸ ︷︷ ︸
n−collinear

, (1.129)

where we see our first example of factorization at the level of the operator.
After the decoupling the operator is decomposed into the product of collinear,
ultrasoft and anti-collinear fields.
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Hard factorization

We have introduced all necessary degrees of freedom in SCET to describe the
infrared behaviour of QCD. The Wilson coefficients of the scattering operators
we can construct in SCET contain the residues of the degrees of freedom that
were integrated out (see equation (1.119)). In a sense the hard factorization
is therefore automatic for SCET, where we match to full QCD through a
convolution between the operators and the Wilson coefficient. The Wilson
coefficient will depend on the large momenta, as it encodes the high-energy
dynamics of QCD. It is therefore constructed from the large component of the
label operator P−ni , where i indicates the inclusion of all collinear directions.
As it is an operator by itself in label momentum space, the convolution over
new label momenta ωni is introduced. The dijet current in equation (1.121),
which includes two collinear directions, then gives

Jµqq̄ =

∫
dωndωn̄Cqq̄(wn, wn̄)χ̄nδ(ωn − P̄†n)Y †nYn̄Γµδ(ωn̄ − P̄n̄)χn̄, (1.130)

where we have used that P̄n = n̄ · Pn and P̄n̄ = n · Pn̄. In this example there
are only two collinear directions. In general, multiple collinear directions can
be included by using χni,ωi = δ(ωi − P̄i)χi.
At this point we have introduced all the tools to completely separated the

soft, collinear and hard degrees of freedom. We will now discuss how to fac-
torize the cross section in the example of e+e− → qq̄ scattering. The cross
section for this process, which is related to the squared transition amplitude
by integrating over all intermediate states, is

σ =
∑
~n

dijet∑
X

(2π)4δ4(q − PX)
∑
i=v,a

L(i)
µν 〈0| J

ν†
i,qq̄ |X〉 〈X| J

µ
i,qq̄ |0〉 . (1.131)

The current Jµi,qq̄ generates a qq̄ pair along a specific ~n direction. To calculate
the cross section we must therefore sum over all final state (back-to-back)
directions. The Dirac delta function ensures momentum conservation, as qµ is
the momentum sum of the incoming leptons and PµX the momentum sum of the
outgoing particles in stateX. The sum is restricted to dijet configurations. The
leptonic tensor Liµν describes the production of the intermediate boson (Z∗,
γ∗) from the initial e+e− pair. To correctly describe the process we need to
include both the vector and axial currents, indicated by the sum over i. They
are given by equation (1.130), with Γµv = γµ and Γµa = γµγ5 for the vector
and axial current respectively. The fact that the SCET fields are completely
decoupled on the level of the Lagrangian, implies that the Hilbert space is also
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factorized. For our example this means∑
ni=n,n̄

L(0)
niξ

+ L(0)
nig + L(0)

us (1.132)

⇒
dijet∑
X

|X〉 〈X| =
∑
Xn

∑
Xn̄

∑
Xus

|Xn〉 〈Xn| ⊗ |Xn̄〉 〈Xn̄| ⊗ |Xus〉 〈Xus| .

The collinear and ultrasoft fields now only live within their respective sectors
and the factorization of operators therefore directly translates to factorization
theorems for cross sections:

σ =
∑
~n

∫
dωndωn̄dω′ndω′n̄C(ωn, ωn̄)C∗(ω′n, ω

′
n̄)LµνΓµijΓ

ν
kl

×
∑
Xn

∑
Xn̄

∑
Xus

(2π)4δ4(q − PXn − PXn̄ − PXus)

× 〈0| δ(ω′n − P̄n)(χn)cj |Xn〉 〈Xn| (χ̄n)dkδ(ωn − P̄†n) |0〉

× 〈0| (χ̄n̄)ai δ(ω
′
n̄ − P̄

†
n̄) |Xn̄〉 〈Xn̄| δ(ωn̄ − P̄n̄)(χn̄)fl |0〉

× 〈0| T̄{(Y †n̄ )ab(Yn)bc |Xus〉 〈Xus|T{(Y †n )de(Yn̄)ef} |0〉 , (1.133)

where a, b, c, d, e, f are color indices and i, j, k, l are spin indices and the sum
over all of these indices is implicit. The sum over the axial and vector contribu-
tions is left implicit through the unspecified Dirac structures Γ, but note that
only axial-axial and vector-vector contributions are possible. Color and spin
indices are still contracted between different sectors. However, in SCET each
sector contribution to the cross-section must separately be a spin and color
singlet. We thus need to rearrange the color and spinor indices so that they
are fully contracted within each of the n-collinear, n̄-collinear, and soft product
of matrix elements. The color indices are easily untangled by the restriction
that each sector should be a color singlet. This leads to

〈0| (χn)cj |Xn〉 〈Xn| (χ̄n)dk |0〉 =
δcd

Nc
〈0| (χn)bj |Xn〉 〈Xn| (χ̄n)bk |0〉 , (1.134)

that will let the ultrasoft Wilson lines contract among themselves, leading to
the matrix element

〈0|Tr
[
T̄{Y †n̄Yn}T{Y †nYn̄}

]
|0〉 . (1.135)

The restriction that each sector should be a spin singlet is accomplished by
using the spin Fierz identity, which allows us to write any expression of the form
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ψ̄1Aψ2ψ̄3Bψ4 as ψ̄1Cψ4ψ̄Dψ or a sum of such terms, were C,D are matrices
from the same basis. Explicitly, for our matrix element this yields

〈0| χ̄n̄Γµχnχ̄nΓνχn̄ |0〉 =
∑
A,B

CµνAB 〈0| χ̄nFAχn |0〉 〈0| χ̄n̄FBχn̄ |0〉 , (1.136)

with CµνAB = 1
4Tr [ΓµFAΓνFB] . The basis {F} is given by the 16 Dirac bilinears

expressed in light-cone coordinates. The possible combinations we need are
given by the SCET Fierz formula [43,44],

1⊗ 1 =
1

2

[
/̄n

2
⊗ /n

2
+

(
−/̄nγ5

2

)
⊗
(
/nγ5

2

)
+

(
−/̄nγ⊥α

2

)
⊗
(
/nγα⊥

2

)]
, (1.137)

Note that in deriving this formula we started with the complete basis, i.e. in-
cluding combinations like 〈0| χ̄nγ5χn |0〉 and 〈0| χ̄n̄ /̄n2χn̄ |0〉. However, these
terms vanish due to the properties in equation (1.56). The only surviving
terms are summarized by equation (1.137), which is valid when the identity
matrices are inserted so that the n̄ terms on the RHS appear between χn and
χ̄n and the n terms between χn̄ and χ̄n̄. Demanding parity invariance of the
collinear matrix elements implies that matrix elements where an extra γ5 or
γ⊥ is inserted vanish. It is important to note that the axial vector current has
exactly the same decomposition as the vector current, just the constants CAB
will differ.
After rearranging both the color and spin indices the collinear matrix ele-

ments in (1.133) read

〈0|
/̄n

4Nc

[
δ(ω′n − P̄n)χn

]
|Xn〉 〈Xn|

[
χ̄nδ(ωn − P̄†n)

]
|0〉

× 〈0|
[
χ̄n̄δ(ω

′
n̄ − P̄

†
n̄)
]
|Xn̄〉 〈Xn̄|

/n

4Nc

[
δ(ωn̄ − P̄n̄)χn̄

]
|0〉 , (1.138)

where the label operators are understood to work on the fields between the
square brackets. We can use momentum conservation to let them work on the
state instead

δ(ω′n + P̄n) |Xn〉 = δ(ω′n + p−Xn) |Xn〉 ,
〈Xn| δ(ωn + P̄†n) = 〈Xn| δ(ωn + p−Xn). (1.139)

The product of these delta functions does not contain any operators anymore
and can be rearranged as δ(ωn + ω′n)δ(ωn + p−Xn). A similar analysis can be
done for the n̄-collinear sector. The integrals over ω′ and ω̄′ now set ω′ = ω
and ω̄′ = ω̄. Applying the color and spin Fierz and rearranging the delta
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functions to perform the integrals over de primed variables, we find that the
cross section in equation (1.133) now reads [45]

σ =K0

∑
~n

∫
dωndωn̄|C(ωn, ωn̄)|2

∑
Xn

∑
Xn̄

∑
Xus

(2π)4δ4(q−PXn−PXn̄−PXus)

×〈0|
/̄n

4Nc
χn|Xn〉〈Xn| χ̄nδ(ωn−P̄†n)|0〉〈0| χ̄n̄ |Xn̄〉〈Xn̄| δ(ωn̄−P̄n̄)

/n

4Nc
χn̄ |0〉

×〈0| T̄{Y †n̄Yn} |Xus〉〈Xus|T{Y †nYn̄} |0〉 , (1.140)

The constant K0 is a remnant from the spin Fierz and is given by

K0 =
∑
i=a,v

L(i)
µνTr

[
Γµi
n̄

2
Γνi
n

2

]
. (1.141)

To evaluate the integrals in light-cone coordinates the momentum conserving
delta functions have to be split accordingly,

δ4(q − PXn − PXn̄ − PXus) = 2δ(Q− p−Xn)δ(Q− p+
Xn̄

)δ2(p⊥Xn + p⊥Xn̄),

= 2δ(Q− P̄n)δ(Q− P̄n̄)δ2(P⊥n + P⊥n̄ ), (1.142)

where the extra factor 2 arises when we switch to light-cone coordinates.
The combined momentum of the e+e− pair in the center of mass frame is
q = (Q,Q, 0) when using light-cone coordinates. Note that in this discussion
the label and residual momenta have been recombined, leading to continuous
integrals and delta functions. Equation (1.140) can be further simplified to

σ =NcK0 |C(Q,Q)|2
∑
~n

∫
d2ω⊥

× (2π)2
dijet∑
Xn

〈0|
/̄n

4Nc
χn(0)|Xn〉〈Xn| δ2(ω⊥ − P⊥n )χ̄n(0)δ(Q− P̄†n) |0〉

× (2π)2
dijet∑
Xn̄

〈0| χ̄n̄(0) |Xn̄〉〈Xn̄| δ2(ω⊥ + P⊥n̄ )δ(Q− P̄n̄)
/n

4Nc
χn̄(0) |0〉

× 1

Nc

dijet∑
Xus

〈0| T̄{Y †n̄Yn}(0) |Xus〉〈Xus|T{Y †nYn̄}(0) |0〉 , (1.143)

where we explicitly showed the position dependence of the fields and used that∫
dωnδ(Q− P̄n)δ(ωn − P̄n) =

∫
dωnδ(Q− P̄n)δ(Q− ωn), (1.144)
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to evaluate the integral over ωn. A similar manipulation can be done for ωn̄.
The Wilson coefficient in (1.143) needs to be determined by matching to

QCD. Due to RPI invariance, the Wilson coefficients can only depend on the
specific combination ωn · ωn̄ = Q. Furthermore, we saw in equation (1.144)
that momentum conservation forces ωn and ωn̄ to be equal to the invariant
mass Q of the e+e− pair. The Wilson coefficient is independent of the Dirac
structure Γi, and is given by [46]

Cqq̄(Q
2, µ) = 1 +

αsCF
4π

[
− log2

(
−Q2

µ2

)
+ 3 log2

(
−Q2

µ2

)
− 8 +

π2

6

]
+O(α2

s).

(1.145)

In the next subsection, 1.2.5, the matching procedure leading to the result
above is explicitly shown.
The sum over the external states Xn, Xn̄ and Xus in equation (1.144) only

includes kinematics that ensures the dijet configuration. This restriction needs
to be enforced by the measurement, e.g. of the thrust event shape

T = max
t̂

∑
i t̂ · pi
Q

. (1.146)

This is an observable constructed from the momenta pi of the final state par-
ticles projected on the trust axis t̂, chosen in the direction that maximizes the
sum of particle momenta projected along t̂. In dijet-like events the thrust axis
will point along one of the collinear directions as they are back-to-back. With-
out loss of generality we choose it to be n. It is convenient to define τ = 1−T ,
such that τ → 0 corresponds to the dijet region. For small values of τ , the dijet
restriction on the external states is met and the sum over X is unconstrained.
The observable is linear and will receive contributions from each sector, which
can be made explicit by writing

δ(τ − τ̂) = δ(τ − τ̂(Xn)− τ̂(Xn̄)− τ̂(Xus)), (1.147)

with

τ = 1− T =
Q−

∑
i |n · pi|
Q

,

=

∑pz>0
i (p0

i − pzi ) +
∑pz<0

i (p0
i + pzi )

Q
,

=

∑
i min(p+

i , p
−
i )

Q
, (1.148)

where we used that the invariant massQ is given by the sum over the energies of
all final state particles. The soft contributions originate from both hemispheres
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set by our choice of reference vector ~n. These two hemispheres are half spheres
centred around the spatial direction set by ~n and −~n respectively. The soft
contributions in hemisphere a contribute as p+

us,a and from hemisphere b as
p−us,b. Equation (1.147) thus becomes:∫

dp+
n dp−n̄ dl δ(τ − p+

n

Q
− p−n̄
Q
− l

Q
)δ(p+

n −P+
Xn

)δ(p−n̄ −P−Xn̄)δ(l−p+
us,a−p−us,b).

(1.149)

Lastly, as our observable is independent of ω⊥ we can set ω⊥ = 0 and effectively
combining its integral with the sum over ~n leads to∑

~n

∫
ω⊥ =

∫
d2~n, (1.150)

which is an integral over the solid angle of ~n and evaluates to 4π2. After these
manipulations the factorization of the differential cross section is given by

dσ

dτ
= σ0Hqq̄(Q

2, µ)

∫
dl dsndsn̄Jq(sn, µ)Jq̄(sn̄, µ)Sqq̄(l, µ)δ

(
τ− l

Q
− sn
Q2
− sn̄
Q2

)
,

(1.151)

where sn ≡ Qp+
n and sn̄ ≡ Qp−n̄ . The integration over sn and sn̄ instead of

p+
n and p−n is due to RPI-III invariance. The dependence on the energy scale
µ was introduced by renormalizing the operators. The hard function H, jet
function J and the soft function S are given by

Jq(sn, µ) = (2π)3Tr
[
〈0|

/̄n

4Nc
χn(0)δ(sn −QP+

n )δ(Q−P̄n)δ2(P⊥n )χ̄n(0) |0〉
]
,

Jq̄(sn̄, µ) = (2π)3 〈0| χ̄n(0)δ(sn̄ −QP+
n̄ )

/n

4Nc
δ(Q−P̄n̄)δ2(P⊥n̄ )χn̄(0) |0〉 ,

Sqq̄(l, µ) =
1

Nc
Tr
[
〈0| T̄{Y †n̄Yn}δ(l − p+

us,a − p−us,b)T{Y
†
nYn̄} |0〉

]
,

Hqq̄(Q
2, µ) = |Cqq̄(Q2, µ)|2, (1.152)

where C(Q2, µ) for e+e− → qq̄ is given in equation (1.145). For LHC appli-
cations, the jet function needs to include constraints from the clustering of
the collinear particles into jet and we will discuss this in section 1.3. The
factorization formula in equation (1.151) is only valid for small τ .
Deriving a factorization formula for another measurement might include dif-

ferent objects in the final factorization formula. In particular, in proton-proton
collisions the initial states also receive QCD corrections and this leads to ob-
jects we call beam functions. They describe the evolution of a parton that is
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extracted from the proton, as it undergoes collinear splittings before initiat-
ing the hard interaction. The beam function can be matched onto the parton
distribution functions [47–50]

Bi(t, x, µ) =
∑
j

∫ 1

x

dz

z
Iij(t, z, µ)fj

(x
z
, µ
)[

1 +O

(
Λ2

QCD

t

)]
, (1.153)

where the summation over j includes all possible parton flavors and t can be
any variable. The matching coefficients Iij are perturbative objects that at
tree level should be equal to

Iij(t, z, µ) = δijδ(1− z)δ(t), (1.154)

in order to reduce the beam function to the standard parton distribution func-
tions at leading order (assuming t = 0 at leading order).

Matching for dijet production in e+e− collisions

Wilson coefficients are found by calculating simple observables in both the full
theory and the EFT. The desired limit of the full theory should then match
the direct calculation in the EFT. We have seen this for the example with two
scalar fields in 1.2.1. In SCET, matching needs to be performed at each order
in perturbation theory. Beyond tree level the matching procedure will include
integrals over unconstrained loop momenta. The separation between label and
residual momenta complicates this, as label momenta are discrete. The phase
space integrals change accordingly

ILFloop =
∑
pl

∫
ddprf(p+

r , p
−
l , pl⊥)−

∫
ddprf

(0)(p+
r , 0, 0), (1.155)

where LF denotes that this is an integral in label formalism. The final term in
this expression goes by the name of zero-bin subtraction, which avoids double
counting of pl = 0 that is already described by the ultrasoft momenta [51]. The
residual momenta only appears through its p+

r component. We can however
reintroduce the other components as they describe subleading effects to the
label momenta. Specifically f(p+

r , p
−
l , pl⊥) = f(p+

r , p
−
l + p−r , pl⊥ + pr⊥) for all

values of the residual momenta. Using this substitution, the original splitting
into residual and label momentum can be reversed:

ILFloop =
∑
pl

∫
ddprf(p+

r , p
−
l + p−r , pl⊥ + pr⊥)−

∫
ddprf

(0)(p+
r , 0, 0),

=

∫
ddp

(
f(p)− f (0)(p)

)
. (1.156)
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In practice the zero-bin subtraction is achieved by changing the scaling of the
label momentum to match the residual scaling (O(λ2)).
We will now consider our dijet example and explicitly perform the matching

at O(αs). The total amplitude in full QCD is calculated from three Feynman
diagrams, resulting from a loop correction to either of the outgoing fermion
lines and to the vertex. The combined result, calculated in Feynman gauge, is

MQCD =
αsCF

4π

[
−2 log2

(
p2

Q2

)
− 4 log

(
p2

Q2

)
− log

(
−Q2

µ2

)
− 2π2

3

]
J tree
qq̄ ,

(1.157)

where renormalization has been performed and p2 6= 0 is the off-shellness of
external quarks regulating the IR divergences. In SCET we have more dia-
grams contributing to the final amplitude. In analogy with the QCD Feynman
diagrams there are three diagrams that follow from a loop correction to either
of the outgoing collinear fermion lines or the SCET vertex. In addition we
have contributions where a collinear gluon, taken from the collinear Wilson
line, connects with either of the external collinear fields. Performing the loop
integrals in SCET leads to the bare result [32,33,46]

MSCET =
αsCF

4π

[ 2

ε2
+

3

ε
− 2

ε
log

(
−Q2

µ2

)
− 2 log2

(
p2

Q2

)
+ log2

(
−Q2

µ2

)
− 4 log2

(
p2

Q2

)
− 4 log2

(
−Q2

µ2

)
+ 8− 5π2

6

]
J tree
qq̄ , (1.158)

where the ε poles are UV divergences6. Comparing the results in equations
(1.157) and (1.158) we see that IR terms overlap. At tree level the matching is
trivial, since the tree-level diagrams yield the same result in SCET as in QCD.
The bare Wilson coefficient up to O(αs) is thus found to be

Cbar
qq̄ (Q2, ε) = 1 +

αsCF
4π

[
− 2

ε2
− 3

ε
+

2

ε
log

(
−Q2

µ2

)
− log2

(
−Q2

µ2

)
+ 3 log2

(
−Q2

µ2

)
− 8 +

π2

6

]
, (1.159)

which can be normalized by

Cbar
qq̄ (Q2, ε) = Zqq̄(Q

2, ε, µ)Cqq̄(Q
2, µ), (1.160)

6In calculations in dimensional regularization, the zero-bin subtraction effectively converts
1
εIR

divergences in SCET into 1
εUV

divergences, as it is typically a scaleless integral.
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where µ is the renormalization scale and

Zqq̄(Q
2, ε, µ) = 1 +

αsCF
4π

[
− 2

ε2
− 3

ε
+

2

ε
log

(
−Q2

µ2

)]
, (1.161)

containing all the poles resulting from the introduced counterterms. Finally,
the renormalized Wilson coefficient that is determined by matching is given by

Cqq̄(Q
2, µ) = 1 +

αsCF
4π

[
−log2

(
−Q2

µ2

)
+ 3 log2

(
−Q2

µ2

)
− 8 +

π2

6

]
+O(α2

s).

(1.162)

1.3 Jets

Jets are collimated sprays of hadrons that are often found in the detectors at
the LHC. They form whenever energetic quarks or gluons are produced in a
high-energy collision. Jets enter most LHC analyses as part of the signal or
background. The appearance of jets is seen in figure 1.4, which shows the event
display of a collision at the LHC. The notion of jets is used throughout this
thesis, in particular in chapter 2, where we develop a framework to calculate
the contribution of jets to the cross section, including a code that largely
automates this calculation.

1.3.1 Jet formation

Before we start working with jets it is important to understand why they form.
Jets are an emergent phenomena: they do not appear in the QCD Lagrangian
and yet they describe the dynamics we observe at large distances. This means
that there are properties specific to QCD that allow jet formation. When an
energetic parton is produced in the collision it will start radiating. The strong
coupling is at this early stage of event evolution still small enough that we can
use a description in terms of quarks and gluons, but large enough that there
will be a lot of radiation. This rapid increase of particles through radiation
is referred to as the parton shower. There are three main features of QCD
that eventually lead to the jet dynamics as we observe it in our detectors:
The first is the enhancement of soft and collinear emissions, implying a large
probability for particles to be radiated in the direction the initial parton was
going. The second is the asymptotic freedom. For the collimation of particles
it is important that the strong coupling at short distances is actually small.
Too much radiation would repeal the enhancement from collinear emissions,
leading to a spherical event (instead of one with jets). The partons radiate
more as the energy decreases. At large distances the strong interaction gets so
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strong that the behaviour of quarks and gluons is not perturbative anymore,
instead they will be confined together through the process of hadronization.
This brings us to the third reason for jets, which is the existence of light quarks.
In the regime where we have confinement it is energetically unfavourable to
have partons placed at a large distance from each other. There would be a
huge amount of energy stored in the gluon field lines connecting partons at
large distances. The easy transition to a lower energy state by light quark pair
creation, such that only neighbouring pairs are connected, allows particles to
maintain their direction of flight during hadronization. Jets are therefore a
good proxy for the single high-energy partons initiating its formation.
This interplay of QCD dynamics creates the complicated radiation pattern

that is referred to as jets. Jets connect the short distance physics, radiating
quarks and gluons, to the long distance physics, the hadrons that are eventually
detected. While the concept of jets is intuitively clear, a definition is needed
for measurements and calculations.

Figure 1.4 Event display of a lead-lead collision at ATLAS. The formation of
jets is seen as cones in the main figure (and as a narrow stream of particles on
the bottom right of the figure). Source: ATLAS Experiment© 2014 CERN

1.3.2 Jet algorithms

An accurate jet reconstruction is important to study the properties of the
partons produced in the hard scattering. These partons are never directly
observed and we can only study the hadronized states. The definition of a
jet would thus ideally be able to connect the stages of jet formation over
the full energy range. This is however not possible, since the partons that
initiate the jet carry color whereas the hadrons are color neutral. The jet
definition can therefore only describe how particles must be grouped such that
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we can call them a jet. Two important aspects that should be taken into
consideration are jet size and IRC safety. The jet should be large enough
to capture a required amount of non-perturbatively hadronized particles to
accurately make the connection to the underlying partons. However, it should
not be too large as it will capture an excessive amount of radiation from the
underlying event and pile-up, contaminating jet measurements. The statement
that the definition must be IRC safe will ensure the validity of perturbative jet
calculations. The requirements of a jet definition were established in 1990 [52]:
It should be easy to implement in experimental analyses as well as in theoretical
calculations. Also, the definition should be valid at each order in perturbation
theory and should give a finite cross section. This basically ensures IRC safety
of the jet. Lastly, as mentioned before, hadronization should have minimal
impact on the jet.
Jet definitions are split in two parts: the jet algorithm and the recombina-

tion scheme. The former decides whether particles should be grouped together
and the latter dictates how their properties are recombined to determine the
properties of the resulting jet. There is a particular class of jet algorithms
we will use throughout this thesis. This is the class of sequential recombi-
nation algorithms, which try to mimic the parton shower by using pairwise
recombination of particles that are ‘close’ to each other, in the sense that they
are products of a kinematically enhanced splitting (collinear/soft). The most
used sequential algorithms are the generalized-kt algorithms. Starting with the
list of all particles in the final state of the event, a generalized-kt algorithm
constructs a jet by looping over the following steps:

1. Construct the inter-particle distance dij for all particle pairs, defined as

dij = min(p2p
T,i, p

2p
T,j)

∆R2
ij

R2
, (1.163)

where p is a parameter that defines the different algorithms, R is the
chosen jet radius7 and ∆Rij is the geometric distance given by

∆R2
ij = (ηi − ηj)2 + (φi − φj)2 , (1.164)

with η is the pseudorapidity and φ the azimuthal angle around the beam
axis.

2. Construct the beam distance for each particle, defined as

di,B = p2p
T,i. (1.165)

7At the LHC R = 0.4 is often used.
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3. Find the smallest distance from the set {dij , di,B}. If the smallest dis-
tance is an inter-particle distance, the two objects are merged into a single
particle called a ’pseudojet’. If instead the smallest distance is diB, the
corresponding object is removed from the pairwise recombination process
and will be considered a jet.

This procedure will come to a stop once all particles are clustered into jets.
There exist many recombination schemes that can be used to cluster two

particles into a pseudojet in step 3. The easiest is to simply add the four-
momenta of the particles that are being clustered,

pµr = pµi + pµj , (1.166)

where pµr is the four-momentum of the constructed pseudo particle. Another
choice is to add the energies, but let the four-momentum point in the direction
of the hardest particle. This is known as the Winner-Takes-All recombination
and is used in chapter 3, where we study Azimuthal Decorrelation.
The jet algorithm is used on both the experimental and theoretical side.

The freedom to choice the jet radius and algorithm results in many different
observables. This is perfectly consistent as long as the same definition is used
at both ends. The most common choices that can be made for p in (1.163) are
p = −1, 0, 1, but note that the value of p is not restricted. Choosing p = 1 will
lead to the kt-algorithm [53,54]. This algorithm prefers to cluster soft particles
first and as a result is susceptible to the underlying event and pile-up. The
clustering with p = 0 is known as the Cambridge-Aachen algorithm [55, 56].
The momenta of the particles are completely irrelevant in the clusters, as
Cambridge-Aachen selects particles that are close to each other in the η − φ
plane for clustering. This algorithm is particularly useful when studying jet
substructure, as it organizes particles in an angular-ordered tree, which is
convenient for removing sources of contamination from the jet by applying
grooming techniques [57–59]. Finally, p = −1 results in the anti-kt algorithm
[60]. In this case the inter-particle distance is smallest for particles with high
momenta, such that jets form around hard partons. This algorithm produces
almost circular jets with radius R, which has advantages when it comes to
experimental calibration of jets. Anti-kt is less sensitive to contamination from
pile-up and underlying events.
Finally, let us have a closer look at IRC safety of these sequential algorithms.

An additional collinear splitting will produce two particles i and j with dij →
0. Particles resulting from these kinds of splittings will therefore always be
clustered together. An additional soft splitting will either be clustered into
the jet or will form a new jet with zero momentum, either way they will not
alter the clustering into hard jets. We can therefore conclude that sequential
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algorithms are IRC safe by construction, enabling perturbative calculations. It
used to be computationally intensive to carry out the pairwise recombination
on experimental data, but it became the standard in LHC experiments thanks
to the FastJet implementation [61,62].
IRC safe jet algorithms can safely be used in SCET calculations [63, 64], as

they are compatible with powercounting and factorization. The jet function
will be of the form

Jq(ω, s, µ) (1.167)

= (2π)2
∑
X

Tr
[
〈0| n̄

4Nc
χn(0)|X〉 〈X| δ(Q−P̄n)δ2(P⊥n )δ(s−ŝobs)χ̄n(0)|0〉

]
,

where we have reintroduced the final-state X compared to equation (1.152).
The jet function depends on kinematic variables through the measurement
δ(s − ŝobs). In appendix B we provide the techniques to evaluate the jet
function.

Appendices

1.4 QCD renormalization factors

The QCD renormalization factors in the MS read

Z̄A = 1 +
αs
4π

(1

ε
+ ln 4π − γε

)[(13

6
− χ

2

)
CA −

4

3
nfTF

]
+O(α2

s),

Z̄ψ = 1− αsCF
4π

(1

ε
+ ln 4π − γε

)
+O(α2

s),

Z̄m = 1− 3
αsCF

4π

(1

ε
+ ln 4π − γε

)
+O(α2

s),

Z̄α = 1− αs
4π

1

2

(1

ε
+ ln 4π − γε

)(11

3
CA −

4

3
nfTF

)
+O(α2

s). (1.168)

The counterterms for the MS scheme can be recovered from these expressions
as the counterterms in the MS include an extra ln 4π−γε compared to the MS
scheme.





2
Jet Functions

2.1 Introduction

In this chapter we focus on calculating one-loop jet functions, which enter in
resummed cross sections starting at next-to-leading logarithmic (NLL′) accu-
racy. Resummation at NLL′ includes the two-loop cusp anomalous dimension
and one-loop (non-cusp) anomalous dimensions. Jet functions have been cal-
culated for a wide range of observables, including the invariant mass [65–70],
the family of e+e− event shapes called angularities with respect to the thrust
axis [71–73] or Winner-Take-All axis [74, 75], Sterman-Weinberg jets [76, 77],
the cone and the kT family of jet algorithms for exclusive [64, 77] and inclu-
sive [78,79] jet production. Jet functions have also been considered for a range
of jet substructure observables, such as the jet shape [80–82]. In our calcula-
tions we treat quarks as massless and restrict to infrared-safe observables. An
example of a massive quark (initiated) jet function is given in refs. [83,84], and
an example of an infrared-unsafe jet observable is the electric charge of the
jet [85, 86].
We briefly comment on the other ingredients in the factorization: A general

approach to calculating soft functions has been developed in refs. [87–90]. In
particular, the SoftSERVE package [90] provides two-loop soft functions for
processes with two collinear directions (i.e. two jets in e+e− or 0 jets in pp
collisions), and an extension to N jets is in progress [91]. Hard functions can
be obtained from the IR finite part of helicity amplitudes, as long as the color
of the initial (final) particles is not averaged (summed) over, see e.g. ref. [92].
The difficulty in calculating jet functions lies in the phase-space integration,

which depends on the observable. When feasible, an analytic approach is supe-
rior. However, there are observables for which even the one-loop jet function is
highly nontrivial, such as jet broadening [72] and the jet shape [82], for which
fully analytic results are difficult to obtain or have not been obtained yet. The
numerical approach we develop here offers a promising alternative, address-



52 Chapter 2. Jet Functions

ing the collinear and soft divergences in a general way, thereby automating
the calculation of one-loop jet functions for a broad range of observables. At
minimum, our work provides a valuable cross check for analytic calculations.
The poles in the dimensional regulator are obtained analytically, possibly up

to an integral over the azimuthal angle, and depend on the collinear and soft
behavior of the observable. This soft behavior is described by a power law,
and therefore simply characterized by the exponent and coefficient. Extract-
ing these parameters may require solving non-trivial algebraic equations, and
we develop a procedure to simplify this step. The full details/complications
of the measurement only enter in the finite term, which can be integrated
numerically. We have implemented our approach in a Mathematica pack-
age, Geometric One-loop Jet functions (GOJet), which is available online
at https://bitbucket.org/GOJet/gojet/src/master/. GOJet can handle
a large class of infrared-safe observables, including all the observables listed
above.
Using GOJet we provide explicit examples of the method for the angular-

ities with respect to the Winner-Take-All axis, the cone and kT -clustering jet
algorithms and the jet shape. Furthermore we calculate for the first time the
one-loop jet function for angularities with respect to the thrust axis including
recoil. We cross check our result against existing results in the literature for
the specific case of jet broadening [72] and for the case of no recoil [71, 93].
The remainder of this chapter is structured as follows: In section 2.2 we

discuss how we use geometric subtraction to calculate jet functions, including
a simple example. The GOJet package, which provides a Mathematica
implementation, is discussed in section 2.3. In section 2.4, we use our package
to calculate several one-loop jet functions, and we conclude in section 2.5.

2.2 General Method

In section 2.2.1 we will discuss geometric subtraction and how we apply it to
calculate one-loop jet functions. Technical aspects related to the treatment of
Heaviside theta functions in our calculation and infrared safety are discussed
in secs. 2.2.2 and 2.2.3, respectively. We illustrate our method by calculating
the jet function for the e+e− angularity event shapes in section 2.2.4, with
further examples in section 2.4.

https://bitbucket.org/GOJet/gojet/src/master/
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2.2.1 Subtraction scheme

The jet function depends on the flavor i = q, g of the initiating parton and the
jet observable, and has a perturbative expansion in αs

Ji,obs =
∑
n

(αs
2π

)n
J (n)
i,obs . (2.1)

At tree level the jet consists of a single quark or gluon, and in general J (0)
i = 1

in the appropriate units.1 The one-loop contribution is given by the collinear
limit of two final-state partons

J (1)
i,obs =

∫ π

0
dφ

∫ ∞
0

ds

∫ 1

0
dz Qi(s, z, φ)Mobs(s, z, φ) ,

Qi(s, z, φ) =
(µ2eγE )ε
√
π Γ(1

2 − ε)

(
ν

ω

)η Pi(z) (sinφ)−2ε

zε+η(1− z)ε+ηs1+ε
,

Pq(z) = CF

[
1 + z2

1− z
− ε(1− z)

]
,

Pg(z) = nfTR

[
1− 2z(1− z)

1− ε

]
+ CA

[
z

1− z
+

1− z
z

+ z(1− z)
]
. (2.2)

Here s denotes the invariant mass of the two partons, and z and 1 − z the
momentum fractions of the partons. The squared matrix element is contained
in Qi(s, z, φ), with Pi(z) the (sum of) splitting function(s). The calculation is
performed in d = 4− 2ε dimensions and the MS-renormalization scheme with
renormalization scale µ is employed. For certain observables an additional
rapidity regulator η and corresponding rapidity scale ν are required [49, 50,
94–97], which is included in equation (2.2) for generality. This arises when
the collinear and soft functions have the same invariant mass scale µ, with
transverse momentum measurements being the typical example. We will use
the η regulator defined in [94], but at one loop this is essentially equivalent
to almost all other choices. For the extension of equation (2.2) to a two-loop
example, see ref. [98].
The measurement in a jet function can often be written as δ[O− f(s, z, φ)].

To avoid distributions, we require the user to rewrite the measurement as a
Heaviside theta function by integrating, i.e. Θ[O−f(s, z, φ)], where we are now
cumulative in O.2 We therefore assume that the measurementMobs(s, z, φ) is a
Heaviside theta function, which cuts out a certain region of the collinear phase

1An exception is the jet shape, discussed in section 2.4.3, which contains a theta function
that sets it to zero if the recoil from soft radiation is too large.

2Alternatively, one can consider a conjugate space, as was employed in automated calcula-
tions of soft functions [88,89].
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Figure 2.1 For an example of a generic observable the phase space can be
constrained to several representative regions (blue). The collinear singularity
C (red line), soft singularities S0 and S1 (purple lines), and soft-collinear sin-
gularities (black dots) are indicated.

space, as illustrated in figure 2.1 (suppressing φ dependence). An advantage
of cumulative distributions is that they involve logarithms rather than plus
distributions: ∫ tc

0
dt
[θ(t) lnn t

t

]
+

=
1

n+ 1
lnn+1 tc . (2.3)

In section 2.2.2, a technical point related to rewriting measurement delta func-
tions in terms of theta functions will be discussed. There are also measure-
ments that are naturally theta functions. For example, the kT -family of jet
algorithms requires both particles to be clustered into a jet with radius pa-
rameter R, MkT (s, z, φ) = Θ(s ≤ z(1 − z)p2

TR
2), where pT is the transverse

momentum of the jet. In principle these phase-space constraints Mobs can
depend on the azimuthal angle φ as well, but since there is no singularity
associated with the φ integration, we will only include φ when needed.
The jet function in equation (2.2) has divergences as s→ 0 (collinear diver-

gence), and z → 0 and z → 1 (soft divergences), which occur at the phase-space
boundaries in figure 2.1. Infrared-safe observables must always either include
or exclude the entire collinear divergence (the red line in figure 2.1), as will be
discussed more in section 2.2.3. From the point of view of collinear subtraction,
one can consider the jet function (as long as it contains the collinear divergence)
as a collinear counterterm. Different observables can then be viewed as differ-
ent schemes, differing in the extent that soft and soft-collinear divergences are
included in the observable. For instance, region 1 of the generic observable il-
lustrated in figure 2.1 only contains the collinear and part of the soft-collinear
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singularities. By contrast, region 2 only contains part of the soft and none
of the collinear divergence. Region 3 does not contain any soft or collinear
divergent parts of phase space and does therefore not have to be regulated.
Another possibility would be to consider an observable which corresponds to
the complement of region 1, which naively causes problems because it develops
a logarithmic singularity for s → ∞. However, its one-loop jet function is
given by minus the jet function for region 1, because the integral over the full
collinear phase space results in a scaleless integral.
To define a general subtraction scheme for calculating jet functions for

infrared-safe observables, we follow the approach of geometric subtraction [99].
We would like to define a finite part of the jet function as follows:

Finite(J (1)
i,obs) =

[ ∫ π

0
dφ

∫ ∞
Bµ2

ds

∫ 1−A

A
dz Qi→j(s, z, φ)Mobs(s, z, φ)

]
A,B→0

,

(2.4)

where we introduced the dimensionless slicing parameters A and B, that re-
move the soft and collinear divergence, and which we subsequently want to
take to zero. The central idea of geometric subtraction rests on the identity:[ ∫ 1

a
dx

f(x)

x

]
a→0

=
[ ∫ 1

0
dx

f(x)− f(x)Θ(x < a)

x

]
a→0

=

∫ 1

0
dx

f(x)− f(0)Θ(x < a)

x
, (2.5)

where we exploited that a is small on the second line to replace f(x) by f(0) in
the second term. However, the expression on the second line is now regulated
for any 0 < a ≤ 1, leading to a duality between slicing and subtraction schemes.
To obtain the full jet function from the above finite part, counterterms need
to be added to reinstate the part of the integral that is removed by the cuts.
The counterterms generated in this way are added back in integrated form,
regulated dimensionally and if needed also with a rapidity regulator, and may
give a finite contribution to the jet function. While a subtlety arises in general
when different limits do not commute, here we do not face this problem as the
collinear and soft singularities are factorized. For the small A limit in equation
(2.4) we can then straightforwardly apply equation (2.5). However for the
parameter B nothing is gained from this procedure, because the jet function
is already in the limit of small s and the counterterm generated is the original
integral itself.
To obtain a simpler counterterm in the s < B region, we can however use

a simpler observable, which we choose to be the jet mass, as a collinear coun-
terterm. (This was also used in the geometric subtraction scheme [99].) Since
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the region of the s-z plane corresponding to the jet mass is box-shaped, we will
refer to this collinear counterterm as the box. A subtlety now appears due to
the difference of soft and soft-collinear divergences included in the box coun-
terterm and the given observable Mobs, which as discussed above may not be
the same. To deal with this problem we introduce separate soft counterterms
for both the box counterterm and the Mobs term in the region s < Bµ2, as
discussed in detail below.
These considerations lead us to the following final decomposition of the jet-

function into finite and divergent parts:

J (1)
i,obs = Gi,obs,1 +Gi,obs,2 +Gi,obs,3 ,

Gi,obs,1 ≡
∫ π

0
dφ

∫ 1

0
dz

∫ ∞
Bµ2

ds
[
QiMobs−Qi,0Mobs,0Θ(z < A)

−Qi,1Mobs,1Θ(1−z < A)
]

+

∫ π

0
dφ

∫ 1

0
dz

∫ Bµ2

0
ds
[
Qi(Mobs−1)−Qi,0(Mobs,0−1)Θ(z < A)

−Qi,1(Mobs,1−1)Θ(1−z < A)
]
,

Gi,obs,2 ≡
∫ π

0
dφ

∫ 1

0
dz

∫ ∞
0

ds
[
Qi,0Mobs,0Θ(z < A)+Qi,1Mobs,1Θ(1−z < A)

]
,

Gi,obs,3 ≡
∫ π

0
dφ

∫ 1

0
dz

∫ Bµ2

0
ds
[
Qi−Qi,0Θ(z < A)−Qi,1Θ(1−z < A)

]
,

(2.6)

where the arguments s, z, φ are suppressed and A,B are positive real numbers
with A ≤ 1. The first term in Gi,obs,1 corresponds to the finite part defined
in equation (2.4), and the other terms correspond to integrated counterterms.
The box counterterm Gi,obs,3 leads to Mobs → (Mobs − 1) in the box region
s < Bµ2 in Gi,obs,1. It is straightforward to check that the sum of G1, G2 and
G3 is equal to the original one-loop jet function.
The advantage of the above decomposition is that G3 is observable inde-

pendent, G2 only depends on the soft limit of the observable (which can be
encoded by a few parameters at one-loop order, see equation (2.8)) and G1 is
finite. In equation (2.6), Q0 and Q1 denote the soft z → 0 and z → 1 limit of
Q. Explicitly,

Qq,0(s, z, φ) = Qq(s, z, φ)|z→0 = 0 ,

Qq,1(s, z, φ) = Qq(s, z, φ)|z→1 =
(µ2eγE )ε
√
π Γ(1

2 − ε)

( ν
ω

)η 2CF (sinφ)−2ε

(1− z)1+η+εs1+ε
,
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Qg,1(s, z, φ) =
(µ2eγE )ε
√
π Γ(1

2 − ε)

( ν
ω

)η CA(sinφ)−2ε

(1− z)1+η+εs1+ε
= Qg,0(s, 1− z, φ) . (2.7)

Similarly, Mobs,0 and Mobs,1 denote the soft z → 0 and z → 1 limit of the
measurement Mobs. The soft limit can contain multiple boundary conditions
on the phase space, which we account for by writing Mobs,0 and Mobs,1 as a
sum of Heaviside theta functions that constrain the integration over s as a
function of z. Moreover, they will follow a power-law behavior parametrized
by

Mobs(s, z, φ)|z→0 = Θ(Φ)
∑
r

M r
obs

= Θ(Φ)
∑
r

Θ
(c+

0r µ
2

zα
+
0r

− s
)

Θ
(
s− c−0rµ

2

zα
−
0r

)
,

Mobs(s, z, φ)|z→1 = Θ(Φ)
∑
r

M r
obs

= Θ(Φ)
∑
r

Θ
( c+

1r µ
2

(1− z)α+
1r

− s
)

Θ
(
s− c−1rµ

2

(1− z)α−1r

)
, (2.8)

where the sum on r is over different regions (see figure 2.1), and the parameters
ci, αi depend on the observable, and can depend on φ as well.3 We also allow
for a constraint Φ on the azimuthal angle, as will be discussed in section 2.2.3.
Depending on the observable, each soft boundary condition will therefore follow
one out of three distinct behaviors shown in figure 2.1: the upper boundary
of R1 corresponds to α < 0, the lower boundary of R2 to α = 0, the upper
boundary to α > 0 and R3 does not extend into the soft region. Finding
c0,1 and α0,1 can be nontrivial, and we will discuss a strategy to do so for an
involved example in section 2.4.2.
We will now discuss the decomposition in equation (2.6) in more detail,

using the graphical representation in figure 2.2 for the kT algorithm. In order
to get a finite G1 in figure 2.2a, we subtracted the collinear singularity and the
soft singularities. The collinear singularity is removed by the box, replacing
Mobs by Mobs − 1 when s ≤ Bµ2, such that Mobs(s = 0, z, φ) − 1 = 0. The
soft singularities get accounted for by subtracting the z → 0 and/or z → 1
limits of the integrand. Indeed, one can see that in figure 2.2a the blue plusses
and red minuses cancel as z → 1. The resulting integral G1 is now finite. For
general observables, G1 in equation (2.6) may be hard to calculate analytically,
and one has to resort to numerical integration techniques. In the examples in

3In general c0 = c1 and α0 = α1, but we will show examples where this is no longer true
because the observable depends on the azimuthal angle, which differs by π between the
two partons.
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(a) G1: Numerical contribution
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(b) G2: Soft counterterm
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(c) G3: Box counterterm

Figure 2.2 A graphical representation of our subtraction scheme in equation
(2.6). We have only included the soft counterterms for z → 1 for legibility.
Shown are the restrictions on the measurement from the observableMobs (blue
line), the soft limit of the observable Mobs,1 (red line), the box s < Bµ2 (green
line) and the cut on z arising from A (pink line). Blue plus (minus) areas
correspond to positive (negative) contributions of the full integrand Qi, while
red plus (minus) areas correspond to positive (negative) contributions of Qi,1.

section section 2.4, we will use the Cuba implementation of Vegas [100] to
perform the integrations. Convergence problems in the numerical integration
may arise due to the mismatch of the observable and its soft approximation,
which generally can lead to integrable singularities. If these problems are severe
it can help to find an explicit remapping of the counterterm, which decreases
the mismatch between the observable and its soft limit. We present a method
for how this can be achieved with a worked through example in app. 2.B.
Let us now discuss the integrated counterterms. Due to their simplicity,

the counterterms can be calculated analytically, which we discuss for a single
region r in the sum in equation (2.8). Let us first focus on the soft counterterms,
which are contained in G2 shown in figure 2.2b. The soft limits of the integrand
QiMobs are given by Qi,0Mobs,0 and Qi,1Mobs,1, see eqs. (2.7) and (2.8). The
constants ci and αi are user input in our code, see section 2.3. For values
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α 6= 1, no rapidity regulator is needed and η can be set to 0, leading to the
following soft counterterm

Gq,2 =
2CF
ε2

eγEε
√
π Γ(1

2 − ε)

∫ π

0
dφΘ(Φ)(sinφ)−2ε (2.9)

×
[

(c+
1 )−ε

(1− α+
1 )
A−ε(1−α

+
1 ) − (c−1 )−ε

(1− α−1 )
A−ε(1−α

−
1 )

]
,

Gg,2 =
CA
ε2

eγEε
√
π Γ(1

2 − ε)

∫ π

0
dφΘ(Φ)(sinφ)−2ε

×
[

(c+
0 )−ε

(1− α+
0 )
A−ε(1−α

+
0 ) − (c−0 )−ε

(1− α−0 )
A−ε(1−α

−
0 )

+
(c+

1 )−ε

(1− α+
1 )
A−ε(1−α

+
1 ) − (c−1 )−ε

(1− α−1 )
A−ε(1−α

−
1 )

]
.

For α = 1 one needs a rapidity regulator and the corresponding expression is
given in appendix 2.A. The box counterterm G3 in figure 2.2c is given by

Gq,3 = CF I(φ+, φ−; ε)
eγEεB−ε
√
π Γ(1

2−ε)

((4−ε)(1−ε)Γ2[1−ε]
2Γ[2−2ε]

− 2A−ε
)
, (2.10)

Gg,3 = I(φ+, φ−; ε)
eγEεB−ε
√
π Γ(1

2−ε)

((3

2
CA(4−3ε) + 2εnfTR

) (1−ε)Γ2[1−ε]
(3−2ε)Γ[2−2ε]

− 2CAA
−ε
)
.

The integral over φ has been carried out for Θ(Φ) = Θ(φ+ − φ)Θ(φ − φ−)
leading to the function

I(a, b; ε) =

∫ b

a
dφ sin−2ε φ . (2.11)

The evaluation of this integral and its expansion to order ε2 is presented in
app. 2.C.
The chosen subtraction bears fruit in the simplicity of the integrated coun-

terterms. The corresponding Laurent series in ε can be expressed solely in
terms of the Riemann zeta function at integer values, given that only pure
Gamma functions appear. From an analytic point of view, the potentially
more complicated pieces are instead captured in the finite part, which depends
on the details of the observable and can be calculated numerically to arbitrary
high order in ε. Notice that the soft counterterm Gi,2 can give rise to more
complicated integrals if the coefficients c±i depend on the azimuthal angle φ.
One may be able to carry out this integral analytically in certain cases, but
this can certainly not be done in general. This is not a problem, because one
can expand in ε and η before integrating over φ.
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2.2.2 Delta and theta functions

In our subtraction scheme we assume that the observables restrict the integra-
tion to certain regions of phase space via Heaviside theta functions. However,
many observables O are naturally expressed in terms of Dirac delta functions,
requiring one to rewrite it using

δ[O − f(s, z, φ)] = ± d

dO
Θ[±(O − f(s, z, φ))] , (2.12)

where f is a function of the kinematics of the collinear splitting, and possibly
external parameters. The sign ± should be chosen such that the theta function
does not vanish at tree-level, which ensures that the poles are included in the
one-loop jet function. For example, if O ≥ 0 and at tree-level O = 0, one needs
to choose the plus sign in equation (2.12).
In perturbative QCD one often works with the following convention for the

Dirac delta function,

g(0) =

∫ c

0
dx g(x)δ(x) for c > 0 . (2.13)

This differs from the definition given in standard math literature

g(0) =

∫ c

b
dx g(x)δ(x) for c > 0 > b , (2.14)

where the lower boundary bmust be strictly less than zero. If the delta function
that encodes the measurement satisfies equation (2.13), this has implications
for the definition of the Heaviside function on the right-hand side of equation
(2.12). In particular, one must demand then that Θ(0) = 0. To see this,
consider a function g(x) with 0 ≤ x ≤ 1. From

g(0) =

∫ 1

0
dx g(x)δ(x) =

∫ 1

0
dx g(x)

d

dx
Θ(x) = [g(x)Θ(x)]10 −

∫ 1

0
dx

d

dx
g(x)

= g(1)Θ(1)− g(0)Θ(0)− (g(1)− g(0)) = g(0)(1−Θ(0)) , (2.15)

we conclude that Θ(0) = 0. While this is not of much concern when a theta
function is integrated over, there are situations where it must be taken into
account. As an example, the jet shape calculation involves a jet function
describing the energy fraction z inside a cone, see section 2.4.3. Switching to
a cumulant variable for z, we need to choose δ(z − . . . ) = −d/dz[−(z − . . . )],
because 0 ≤ z ≤ 1 and z = 1 at tree-level. If we now want to calculate the
average momentum fraction from the cumulant tree-level result∫ 1

0
dz z δ(z − 1) = −

∫ 1

0
dz z

d

dz
θ(1− z) = −zθ(1− z)|10 +

∫ 1

0
dz θ(1− z)

= 1− θ(0) = 1 , (2.16)
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(a) (b)

Figure 2.3 IR unsafe observables that our code (a) can and (b) can’t handle.

we have to take θ(0) = 0 to find agreement with the direct evaluation using
the delta function.

2.2.3 Infrared safety and limitations on the observable

While so far our discussion was mostly based on the s-z plane, there are observ-
ables which depend also on the azimuthal angle φ. The integration domain is
then parametrized by coordinates (s, z, φ) and IR safety requires the full s = 0
plane to be included or excluded by the observable, i.e. the set of points

{(s, z, φ)|s = 0 , 0 ≤ z ≤ 1 , 0 ≤ φ ≤ π} . (2.17)

However, our method allows for a special class of IR-unsafe observables, where
only subdomains of the collinear plane with the azimuthal angle bounded be-
tween constant values are included/excluded by the observable, i.e.

{(s, z, φ)|s = 0 , 0 ≤ z ≤ 1 , φ− ≤ φ ≤ φ+} , (2.18)

with 0 ≤ φ− < φ+ ≤ π. This is illustrated in figure 2.3a. An IR-unsafe
observable which is not of this form, and currently not supported by GOJet,
is illustrated in figure 2.3b. Here φ± vary as functions of z across the collinear
plane in such a way that not the full s = 0 plane is included in the integration
domain. For s > 0 the bounds on φ can depend on z. GOJet can also handle
IR-unsafe observables that include just z = 0 and/or z = 1 of the s = 0 plane,
which only require soft counterterms.
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2.2.4 Example: Angularities with the Winner-Take-All axis

We will now illustrate our scheme by considering the family of e+e− event
shapes called angularities [101]

eb ≡
1

Q

∑
i

Ei(sin θi)
1−b(1− | cos θi|)b

θi�1
≈ 2−b

Q

∑
i

Eiθ
b+1
i , (2.19)

parametrized by b4. Here Q is the center-of-mass energy, and the sum runs
over all particles i in the final state with energy Ei and angle θi with respect
to some axis. The final expression is only valid in the small-angle limit, which
is appropriate for the jet function calculation, highlighting that eb probes the
angular distribution with exponent 1 + b > 0. While angles were originally
taken with respect to the thrust axis, we will here use the Winner-Take-All
axis [74]. For the one-loop jet function this axis is simply along the most
energetic particle in the jet, so the only non-zero contribution in the sum on
i in equation (2.19) comes from the least energetic particle, with θi the angle
between the two partons in the jet. Noting that s = 2p1 · p2 = 1

2z(1− z)(1−
cos θ)Q2 ≈ 1

4z(1 − z)θ
2Q2, we obtain the following measurement function for

a cut on the angularity eb ≤ ecb,

Mb(s, z) = Θ
[
z(1− z)Q2

( ecb
min[z, 1− z]

)2/(b+1)
− s
]
. (2.20)

For angularity exponent b < 1, the observable is unbounded from above, similar
to the top curve of region 2 in figure 2.1. In the notation of equation (2.8),
we see that the soft limit of the observable is characterized by c0 = c1 =
Q2(ecb)

2/(b+1)/µ2 and α0 = α1 = 2/(1 + b) − 1. The one-loop contribution to
the jet function is obtained by plugging in these these constants in eqs. (2.9)
and (2.10) to calculate G2, performing the integration over s and z for G1, and
adding these contributions to the box G3. Performing the integration over s
analytically and the integration over z numerically for b = 2, we obtain using
GOJet

J (1)
q,e2 =

αsCF
2π

(
µ2

Q2(ec2)2/3

)ε( 3

2ε2
+

3

2ε
− 1.909961286856877

)
, (2.21)

where we used µ = Q(ec2)1/3 to calculate the constant contribution and re-
instated the logarithmic behaviour afterwards. Our result agrees with the
expression in refs. [74,75] up to order 10−11.5 For b = 0 the rapidity regulator

4Our b is related to the parameter a in ref. [101] by b = 1− a.
5Refs. [74, 75] both use β = 1 + b instead of b, and ref. [74] also removes the 2−b from the
definition in equation (2.19) and takes Q to be the jet energy.
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is required. In that case we find

J (1)
q,e0 =

αsCF
2π

(
2ν

Q

)η( µ2

Q2(ec0)2

)ε( 2

εη
+

3− 4 log 2

2ε
− 1.8693096781349734

)
,

(2.22)

in agreement with ref. [74].

2.3 GOJet Program

The GOJet Mathematica-package automatically performs the subtraction,
given the observable and its soft limit (see equation (2.8)) as input. One
can either let Mathematica perform the numerical integration or choose to
export the integrand. The latter feature may be useful if NIntegrate either has
difficulty converging or is not fast enough. In such cases it can be advantageous
to use algorithms such as Vegas, that are faster due to their implementation
in C++ or Fortran. A general overview of the various functions included in
the package is given in section 2.3.1. A detailed description of their input is
given in section 2.3.2, with a worked-out example in section 2.3.3.

2.3.1 Functions

There are a total of 12 different functions, listed in section 2.3.2, which the
user can access. As indicated by their names half of these are for calculating
gluon jet functions while the other half are for calculating quark jet functions.
Restricting to the former, PolesGluon returns the pole terms in ε and η for
the gluon jet function and GluonJet returns the integrand of the finite terms,
by which we here refer to the ε0η0-term. In addition, GluonJetN performs the
numerical integration over the cube 0 ≤ s, z, φ ≤ 1 of this integrand. This
integration domain is the result of mapping s→ s/(1− s) and φ→ πφ, which
also stabilizes the integration over s. Note that GluonJet also contains the
ε0η0-pieces of the counterterms G2 and G3, which are already integrated over
analytically. For the convenience of the user these pieces are simply added in
integrated form since they are not altered by the trivial numerical integration
over the unit cube.
Let us now discuss the arguments of the functions in general terms. The first

arguments encode the measurement O and its soft limit O0 and O1 corresponding
to the limits z → 0 and z → 1, respectively. The observable should generally
be IR safe, with some exceptions discussed in section 2.2.3. Furthermore, we
require certain restrictions on the form of the soft limits. Specifically, it is not
possible to restrict the φ-integration boundaries via O0 and O1, whose format
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is fixed. It is however possible to apply s, z-independent constraints on the
boundaries of the φ-integration through the separate argument Φ, which are
the same for the finite part as well as the counterterms.
The next set of arguments specify the regularization and IR scheme: the

need of a rapidity regulator or collinear regulator is controlled by the switches
rr and box, respectively. The explicit cut for the soft limits and box is specified
by A and B (see equation (2.6)). The independence of the final result on these
parameters provides a useful cross-check for the calculation. A specific choice of
these parameters can also be used to improve the convergence of the numerical
integration. For the gluon jet function, the number of quark flavors is specified
through the argument nf. The number of colors has been fixed to three, but the
full dependence on the Casimirs can be easily reconstructed from the answer.
The final set of arguments enables the user to specify the integration method
or output format for the integrand.
Finally, we also allow for more complicated observables, where the phase-

space restriction due to the measurement breaks up into more than one region.
The corresponding functions have “Regions" appended to their name, and
contain additional arguments specifying possible dependence on external pa-
rameters in the regions.

2.3.2 Input format

Here we specify the syntax of each of the functions:

GluonJet[O, O0, O1, Φ, rr, box, A, B, s, z, φ, nf, format, file]

GluonJetRegions[R, O, R0, O0, R1, O1, Φ, rr, box, A, B, s, z, φ, nf,
format, file]

GluonJetN[O, O0, O1, Φ, rr, box, A, B, s, z, φ, nf, method]

GluonJetRegionsN[R, O, R0, O0, R1, O1, Φ, rr, box, A, B, s, z, φ, nf,
method]

PolesGluon[O0, O1, Φ, rr, box, A, B, φ, nf]

PolesGluonRegions[O0, O1, Φ, rr, box, A, B, φ, nf]

QuarkJet[O, O0, O1, Φ, rr, box, A, B, s, z, φ, format, file]

QuarkJetRegions[R, O, R0, O0, R1, O1, Φ, rr, box, A, B, s, z, φ,
format, file]

QuarkJetN[O, O0, O1, Φ, rr, box, A, B, s, z, φ, method]

QuarkJetRegionsN[R, O, R0, O0, R1, O1, Φ, rr, box, A, B, s, z, φ,
method]
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PolesQuark[O0, O1, Φ, rr, box, A, B, φ]

PolesQuarkRegions[O0, O1, Φ, rr, box, A, B, φ]

The variables used to describe the input are:

• R: List of lists which contain arguments of Heaviside theta functions
which depend only on external parameters for each region. Regions that
do not depend on external parameters need {1} as input in their respec-
tive position in the list. The number of regions should match with the
lists for O below.

• O: The list of argument(s) of the Heaviside theta function encoding the
bounds imposed by the measurement. More specifically, O contains the
arguments of the Heaviside theta functions Mobs in equation (2.2). For
the case of a single region, the elements of the list correspond to the
arguments of Heaviside theta functions, whose product constrain the
region. In the case of multiple regions, O is a list of lists. The entries
of the outer list correspond to the different regions, each entry is again
a list of constraints containing the arguments of the Heaviside theta
functions M r

obs constraining the particular region. This allows the user
to implement arbitrary sums of products of Heaviside theta functions.

• R1 (R0): List of lists which contain arguments of Heaviside theta functions
which depend only on external parameters for each region in the limit
z → 1 (z → 0). The length of this list is therefore equal to the number of
soft regions that emerge in the soft limit. Regions that do not depend on
external parameters need {1} as input in their respective position in the
list. The number of soft regions can be less than the number of regions,
but should match with the lists for O0 and O1 below. In particular, regions
may merge or disappear in the soft limit. R1 (R0) can also be used in cases
with just one region where there is dependence on external parameters
in the soft limits.

• O1 (O0): List {{c−1 , α
−
1 }, {c

+
1 , α

+
1 }} describing the lower and upper bound-

ary of the region in the limit where z → 1 (and similarly for z → 0), see
equation (2.8). If there is no lower boundary, c−1 is just 0. When consid-
ering multiple regions, O1 (O0) is a list of lists where each region has an
upper and a lower boundary of the aforementioned format.

• Φ: List of arguments of the Heaviside theta functions that impose con-
straints on the azimuthal angle φ, i.e., the input {φ+ − φ, φ − φ−} will
constrain φ− < φ < φ+. In the case of multiple regions that contain
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collinear and/or soft divergences we require the range on φ to be the
same for all regions. (Arbitrary constraints on φ can of course be en-
coded in O; but these are not allowed to survive singular limits; that is
the they should match the boundaries imposed by Φ in these limits; see
section 2.2.3 for more details.)

• rr: Boolean variable specifying whether a rapidity regulator should be
included, which we implemented as

(2(1− z)z))−η (2.23)

This corresponds to the more conventional factor (ν/((1− z)z ω))η, for
the scale choice ν = 1

2ω. The user can always reconstruct the full de-
pendence on the scale ν a posteriori, given the knowledge of the 1/η
pole.

• box: Boolean controlling whether a box is needed to handle the collinear
divergence. It should be included when the region of phase space includes
s = 0 and not otherwise (in line with the restrictions outlined in section
2.2.3).

• A: Real number specifying the region where the soft counterterms are
subtracted. Explicitly, the z → 0 (z → 1) counterterms are subtracted in
the phase-space region where z < A (1− z < A), and therefore 0 < A ≤ 1.

• B: Postive real number specifying the size of the box.

• s: Variable used to describe the invariant mass of the parton that initiates
the jet. In the code we have made this variable dimensionless by rescaling
with the renormalisation scale µ2, i.e., s = s

µ2 .

• z: Variable encoding the momentum fraction z of one of the partons in
the collinear splitting.

• φ: Variable corresponding to the azimuthal angle of the collinear split-
ting.

• nf: Variable specifying the number of (massless) quark flavors. This
variable does not need to be set to an integer, but can be left in symbolic
form.

• format: String specifying the output form of this function. One can
choose between “Mathematica", “Fortran" and “C". Note that when
performing the numerical integration in Fortran or C, the user needs to
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provide a function HeavisideTheta that satisfies Θ(0) = 0, as described
in section 2.2.2. In addition, for exporting to C, one needs to include the
Mathematica header file mdefs.h provided by Mathematica in the
directory6 $InstallationDirectory/SystemFiles/IncludeFiles/C.

• file: String with the filename to which the integrand will be exported.
For an empty string the integrand will be printed to the screen.

• method: This string can specify which method NIntegrate uses in Math-
ematica, and we refer the reader to the Mathematica documentation
for the available options. For an empty string the default method of
NIntegrate will be used.

2.3.3 Example: kT clustering algorithms

To illustrate the use of our code we now calculate the jet function for the
family of kT clustering algorithms. At one-loop order, where there are at most
two particles in the final state, they are clustered into a single jet if the angle
between them is less than the jet radius parameter R, which for the case of an
e+e− collider corresponds to a single region7

s ≤ z(1− z)E2R2 , (2.24)

where E is the jet energy. The z → 0 and z → 1 limits of equation (2.24) are
described by

z → 0 : s = zE2R2 −→ c+
0 = E2R2/µ2, α+

0 = −1,

z → 1 : s = (1− z)E2R2 −→ c+
1 = E2R2/µ2, α+

1 = −1. (2.25)

These are no lower constraints, i.e. c−i = 0. Calculating this observable requires
a box since the s = 0 line is inside the domain of integration. Since αi 6= 1, a
rapidity regulator is not needed. The constraint in equation (2.24) due to the
measurement does not depend on φ, and so we take Φ = {}.
We now calculate the quark jet function. As equation (2.8) is a relatively

simple expression, for which the jet function can be easily calculated analyt-
ically, we will use Mathematica to perform the numerical integration over
the subtracted integral by using QuarkJetN with the the ‘LocalAdaptive’ in-
tegration method. In the following we set µ = ER for simplicity. Note how

6The installation directory can be determined by running $InstallationDirectory in
Mathematica.

7The corresponding result for pp collisions can be obtained by simply replacing the jet
energy E by the jet transverse momentum pT , and R then corresponds to a distance in
(η, φ) instead of an angle.



68 Chapter 2. Jet Functions

this, since the variable s corresponds to s
µ2 , cancels the factor E2R2 in the

obsevable.
In[1]:= O = z(1 − z) − s;

O0 = {{0,0},{1,−1}};
O1 = {{0,0},{1,−1}};
method =“LocalAdaptive";
box = True;
rr = False;
A=0.6;
B=20;

In[2]:= QuarkJetN[O,O0,O1, {}, rr, box,A,B, s, z, phi,method]

Out[2]= −1.2029367022′

In[3]:= PolesQuark[O0,O1, {}, rr, box,A,B, phi]

Out[3]=
4

3ε2
+

2

ε

From this answer it is straight forward to reconstruct that the full color-
dependence of the regulated one-loop quark jet function is given by:

J kTq = CF

(
1

ε2
+

3

2ε
− 0.9022033008

)
. (2.26)

The poles match exactly with the result by [64] and the finite term agrees up
to order 10−6. Similar agreement is found for the gluon jet function:

J kTg = CA

(
0.0422426 +

1

ε2
+

11

6ε

)
− nfTR

(
2

3ε
+ 2.55555

)
. (2.27)

The accompanying Mathematica notebook contains several hands-on exam-
ples to further illustrate the use of the different functions.

2.4 Applications

To validate the method and corresponding code, the jet functions for several
known examples have been checked. Some of these were used throughout the
paper to explain our approach, namely the kT family of clustering algorithms
(section 2.3.3), and angularities with respect to the WTA axis (section 2.2.4).
In addition, we provide results in section 2.4.1 for the cone algorithm and
in section 2.4.3 for the jet shape. The latter is more challenging due to its
azimuthal-angular dependence, which arises because the jet axis is along the
total jet momentum and thus sensitive to recoil of soft radiation. In section
2.4.2 we present, for the first time, the one-loop jet functions for angularities
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with respect to the thrust axis, taking into account recoil. Although for b > 0
this recoil is formally power-suppressed, it can be numerically large [93].

2.4.1 Cone jet

At one-loop order, the condition that both partons are within a cone jet in an
e+e− collisions is that their angle with the jet axis is less than R (for pp7). Since
the jet axis is along the total jet momentum, one simply needs to consider the
angle with the parton that initiates the jet, leading to the following condition

s ≤ E2R2 min
[1− z

z
,

z

1− z

]
. (2.28)

As we focus on the finite term in the jet function, we fix µ = ER finding

J Cone
q = CF

(
1.46711 +

1

ε2
+

3

2ε

)
,

J Cone
g = CA

(
2.23477 +

1

ε2
+

11

6ε

)
− nfTR

( 2

3ε
+ 2.20197

)
, (2.29)

which agrees up to order 10−6 with ref. [64].

2.4.2 Angularities with recoil

In this section we determine, for the first time, the one-loop angularity jet
function that includes the recoil of the thrust axis due soft radiation. While
this recoil is power-suppressed for b > 0, ref. [93] noted that it has a numerically
large effect and presented a factorization framework to include it. The one-loop
jet function we calculate here will start to contribute at NLL′ accuracy. This
should be contrasted with the calculation in section 2.2.4, where we considered
the angularity with respect to the WTA axis. To clearly distinguish these two
cases in the notation, we will use τn instead of eb, where n refers to the thrust
axis.
The setup underpinning our calculation is illustrated in figure 2.4. Here θ is

the angle between the thrust axis ~n and the direction ~n′ of the initial collinear
parton due to the recoil from soft radiation, which is treated as an external
parameter in our calculation. The momenta of the two massless partons in the
jet are denoted by ~p1 and ~p2, where we use (un)primed coordinates to denote
light-cone components with respect to the ~n′ (~n) direction. Explicitly,

p′µ1 = zQ
n′µ

2
+

(1− z)s
Q

n̄′µ

2
+ p′µ1⊥ ≡ p

′−
1

n′µ

2
+ p′+1

n̄′µ

2
+ p′µ1⊥,

pµ1 = p−1
nµ

2
+ p+

1

n̄µ

2
+ pµ1⊥, p±1 = p0

1 ∓ p3
1 , (2.30)
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Figure 2.4 The setup of our calculation. The recoil is quantified by θ.

and similarly for p2. Here we chose nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1),
z is the momentum fraction of the parton, s the invariant mass of the jet,
and Q the center-of-mass energy of the e+e− collision. The expression in the
recoiled frame follows from the definition of z and s through p′−1 = zQ and
s = (p′1 + p′2)2, as well as p′µ1⊥ = −p′µ2⊥ and the on-shell condition p′21 = p′22 = 0.
Note that |p′i⊥|2 = z(1− z)s.
The rotation between the two frames is described by

~p1 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 ~p1
′
, (2.31)

implying |p⊥|2 = |p′⊥|2+θ2(p3
1)2−2θ cosφ′|p′⊥||p3

1| in the small θ approximation,
where φ′ is the azimuthal angle around the ~n′ axis. The large momentum
components are the same in both frames, p−i = p′−i . The expression for the
angularity τn becomes

τn =
1

Q

∑
i

|pi⊥|
(
p+
i

p−i

)b
2

=
1

Q

∑
i

(
|pi⊥|1+b

(p−i )b

)
(2.32)

=
1

(2Q)1+b
z−b
(

4z(1−z)s+(θQ)2z2−4θ Q cosφ′ z
3
2

√
(1−z)s

)1+b
2

+
1

(2Q)1+b
(1−z)−b

(
4z(1−z)s+(θQ)2(1−z)2+4θQ cosφ′(1−z)

3
2
√
zs
)1+b

2
,
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where b > −1. Using the delta function trick (see section 2.2.2), we switch to
a cumulative measurement, writing the observable as

Mobs = Θ[τ cn − τn] . (2.33)

Unfortunately is it not possible to invert equation (2.33) to obtain an analytic
solution for s and subsequently extract the soft limit z → 0. We can, however,
use the power-law ansatz in equation (2.8) to find the soft behavior of the
observable. Since the equation is symmetric in z → 1− z, we focus on finding
the soft behavior in the z → 0 limit. Using

s|z→0 = c0(φ)z−α0µ2 , (2.34)

in equation (2.32) and taking the z → 0 soft limit, we find

τ cn

(2Q

µ

)1+b
= z−b

(
4 c0 z

1−α0 +
(θQ
µ

)2
z2 − 4

√
c0

(θQ
µ

)
cosφ′ z

3−α0
2

) 1+b
2

+

(
4 c0 z

1−α0 +
(θQ
µ

)2
+ 4
√
c0

(θQ
µ

)
cosφ′(z)

1−α0
2

) 1+b
2

.

(2.35)

There is a single solution for s in either of the soft limits and therefore this
observable only has an upper boundary over the full range of b, i.e. c−0 = 0.
The leading terms in equation (2.35) are used to solve for α+

0 and c+
0 , and

differ for −1 < b < 0, b = 0 and b > 0. We will analyze the last case in some
detail and only provide the solutions for the others.
Assuming b > 0, the leading behavior in the z → 0 limit of equation (2.35)

is

τ cn

(2Q

µ

)1+b
= c

1+b
2

0 z−b+(1−α0)(1+b)/2 +

(
θ Q

2µ

)1+b

, (2.36)

and from this we infer

c+
0 =

Q2(τ cn)2/(1+b)

µ2

(
1− k1+b

) 2
1+b , α+

0 =
1− b
1 + b

, (2.37)

where

k ≡ 1
2θ (τ cn)−1/(1+b) . (2.38)

Similarly, for b = 0 we obtain

c+
0 =

Q2(τ cn)2/(1+b)

µ2

1− k2

(2 + 2k cosφ)2
, α+

0 = 1 . (2.39)
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Figure 2.5 The offset between our results for (a) different values of b with
θ = 0 and (b) different values of the recoil parameter k with b = 0 and the
known results from the literature is shown.

For −1 < b < 0 the solution is a bit more difficult and reads

c+
0 =

Q2(τ cn)2/(1+b)

µ2

[
1 + k2 cos 2φ− 2k| cosφ|

√
1− k2 sin2 φ

)]
,

α+
0 = 1 . (2.40)

In order to use GOJet, we rescale s and choose an energy scale µ. To be
able to smoothly turn off the recoil, we choose µ in terms of the angularity,
µ = Q (τ cn)1/(1+b). The only independent variable left is then given by k in
equation (2.38). To be complete we also give the resulting observable input for
GOJet:

O = 1− z−b
(
z(1− z)s+ k2z2 − 2k cosφ′ z

3
2

√
(1− z)s

) 1+b
2

− (1− z)−b
(
z(1− z)s+ k2(1− z)2 + 2k cosφ′(1− z)

3
2
√
zs
) 1+b

2
.

(2.41)

The jet function for θ = 0 (without recoil) was calculated analytically in
refs. [71,93] and we obtain the same results as can be seen in figure 2.5a. The
error bars indicate the uncertainty from our numerical integration. Ref. [93]
includes a zero-bin subtraction [51] to avoid double counting with the soft
function in their factorization, which we do not include. The zero-bin subtrac-
tion depends on the details of the factorization theorem (indeed it vanishes in
ref. [71]), so we do not offer this as a standard functionality of GOJet. The
numerical integration for small values of b is particularly challenging (as can
be seen for b = 1

8), because the sub-leading terms with respect to the leading
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Figure 2.6 The results for the finite part of J 1
q for different values of b as a

function of k.

soft behavior of the observable in equation (2.37) are particularly large in this
case. A more detailed discussion of this issue and a method to cope with it is
presented in app. 2.B. In figure 2.5b we reproduce the known results for b = 0
(broadening) and general recoil [97]. Our new results for general b including
the effect of recoil, are shown in figure 2.6. The error bars are not shown in
this plot as they are negligibly small.

2.4.3 Jet shape

As another nontrivial example, we calculate the jet function for the classic
jet shape observable, reproducing the one-loop result of ref. [82]. The jet
shape describes the average energy fraction zr inside a cone of angular size r
around the jet axis. As in section 2.4.2, recoil from soft radiation displaces
the jet axis from the initial parton by an angle θ. This breaks the azimuthal
symmetry, requiring one to integrate over φ. We have checked that our poles
match exactly with the poles in [82] for all values of θ and r. The difference
between the finite term is always below 0.5%. This has been illustrated in
figure 2.7a for gluon jets and figure 2.7b for quark jets. We note that run time
is not an issue, as less precision is needed in phenomenological results and
the distribution can be interpolated. Our calculation represents the second
independent calculation of this observable and thereby delivers a useful cross
check of the results of ref. [82].

2.5 Conclusions

In this chapter we described our automated approach for calculating one-loop
jet functions, and provide an implementation in the accompanying Mathe-
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Figure 2.7 The offset between our finite result of the (a) gluon and (b) quark
jet function and [82] for several values of θr .

matica package called GOJet. We use geometric subtraction [99] to isolate
the soft and collinear singularities. The collinear counterterm does not depend
on the details of the observable, except that certain observables do not require
it. We find that the soft counterterm depends on the behavior of the observ-
able in the soft limits, which can be described by a power law. While the user
must provide GOJet with this power law as input, we present a strategy to
extract this in a highly nontrivial example. We employed cumulative distribu-
tions, such that observables correspond to integrating over certain regions of
phase space, and thereby avoiding plus distributions. We have demonstrated
our approach by reproducing the known one-loop jet function for a range of
observables, and calculating, for the first time, the jet function for angularities
including recoil. For broadening (b = 0 in our conventions) the effect of recoil
must be kept [72], while for b > 0 it is formally power suppressed but can
be numerically large [93]. For b close to 0, we encountered numerical conver-
gence issues, due to an integrable divergence. We addressed this problem by
substantially improving the counterterm through a remapping.
Our approach focuses on IR-safe observables, and we did not address the IR-

unsafe case. Jet functions containing IR divergences are sensitive to nonper-
turbative physics, and our purely partonic calculation must be supplemented
by a (universal) nonperturbative function that subtracts these divergences. A
prime example is initial-state jets, which are described by beam functions [102].
Beam functions contain infrared divergences, which are removed by matching
onto parton distribution functions, leaving finite matching coefficients.
The automated approach and code presented here provides a very useful

tool, calculating jet functions at one-loop order. Very few two-loop jet func-
tions are known, and an automated approach would allow many resummation
calculations to be extended to NNLL′ or N3LL accuracy. At this order the



2.5. Conclusions 75

singular limits become more complicated, the order of subtractions matter,
and the parametrization of the observable in these limits will no longer be a
simple power law, complicating the counterterms.

Appendices

2.A G2 Subtraction Term for Rapidity Divergences

When the soft limit of the observable scales as 1/z, we need a rapidity regulator
to control the singularities. The resulting expressions for G2 with rapidity
regulator are given by

Gq,2 =
2CF
ε

eγEε
√
π Γ(1

2 − ε)

(
ν

ω

)η ∫ π

0
dφΘ(Φ)(sinφ)−2ε

[
(c+

1 )−ε

η + ε(1− α+
1 )
A−η−ε(1−α

+
1 ) − (c−1 )−ε

η + ε(1− α−1 )
A−η−ε(1−α

−
1 )

]
,

Gg,2 =
CA
ε

eγEε
√
π Γ(1

2 − ε)

(
ν

ω

)η ∫ π

0
dφΘ(Φ)(sinφ)−2ε

[
(c+

0 )−ε

η + ε(1− α+
0 )
A−η−ε(1−α

+
0 ) − (c−0 )−ε

η + ε(1− α−0 )
A−η−ε(1−α

−
0 )

+
(c+

1 )−ε

η + ε(1− α+
1 )
A−η−ε(1−α

+
1 ) − (c−1 )−ε

η + ε(1− α−1 )
A−η−ε(1−α

−
1 )

]
. (2.42)

2.B Counterterm Mapping

In this appendix we discuss how to improve the convergence of the soft subtrac-
tion through a mapping. For simplicity, we consider only the soft singularity
at z = 0, for which the finite term generated by the geometric subtraction is
of the form: ∫ 1

0
dz
[f(z)Θ(O(z))− f(0)Θ(O0(z))

z

]
. (2.43)

Here we suppressed the dependence (and integrals) over s and φ, extracting
the 1/z singularity from the integrand Q, i.e. f = zQ. While this integrand
is by construction integrable, poor numerical convergence may be caused by
mismatch of the observable O and its soft limit O0. This problem can become
particularly severe if O(z) has a fractional power series in z, as we illustrate
below.
To improve the convergence of the integral, we apply the following mapping
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Figure 2.8 The plot shows the observable (blue), its soft approximation in
equation (2.49) (red) and the remapped soft approximation in equation (2.50)
(orange).

(to the counterterm only):

G : z → z + g(z)

1 + g(z)
. (2.44)

This maps the interval 0 ≤ z ≤ 1 onto itself, as long as z + g(z) > 0, and the
subtracted integral will remain the same as long as the function g(z) decreases
faster near z = 0 than z itself, i.e., it satisfies

lim
z→0

g(z)

z
= 0 . (2.45)

Applying this map, we can replace equation (2.43) with:∫ 1

0
dz
[f(z)Θ(O(z))

z
− f(0)Θ(O0(G(z)))

G(z)

∣∣∣∂G(z)

∂z

∣∣∣]. (2.46)

One can now construct the function g(z) to map O0(G(z)) closer to O(z) in
the region z → 0.
For the angularities with recoil in section 2.4.2, we encounter the following

instructive example

O(z) = 1/s− (z(1− z))
b−1
b+1

(zb + (1− z)b)
2

1+b

, (2.47)

which has poor convergence for small positive values of b. Already b = 1/10
yields a sufficiently challenging scenario, for which the power series around
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z = 0 is given by:

O(z) = 1/s− z
9
11 +

20

11
z

101
110 +

90

121
z

56
55 − 60

1331
z

123
110 +

195

14641
z

67
55 − 936

161051
z

29
22

+
5460

1771561
z

78
55 − 35880

19487171
z

167
110 +

255645

214358881
z

89
55 − 1931540

2357947691
z

189
110

− 25922165435

25937424601
z

20
11 − 5136983395938

3138428376721
z

211
110 +O(z2) . (2.48)

It is thus apparent that the leading term approximation

O0(s, z, φ) = 1/s− z
9
11 (2.49)

gives only a poor approximation of the full result. Substituting z = G(z) with

g(z) = z
11∑
i=1

ci z
i

10 (2.50)

into equation (2.49) we can match equation (2.48) by iteratively solving for
the constants ci. This procedure yields:

c1 =
20

9
, c2 =

110

81
, c3 =

220

2187
, c4 = − 385

19683
, c5 =

1232

177147
,

c6 = − 15400

4782969
, c7 =

74800

43046721
, c8 = − 402050

387420489
, c9 =

20906600

31381059609
,

c10 = −345319185959

282429536481
, c11 = −6338162484818

2541865828329
. (2.51)

The resulting curves are plotted in figure 2.8, highlighting the improvement
due to the remapping. A Vegas run using 5 · 109 points for the finite part of
the quark jet function of this observable yields −48.63(2) without the mapping,
while we obtain −48.745(9) after the mapping. The true value is −48.7731,
indicating that the remapped counterterm yields a result significantly closer
to the true value. In both cases it becomes clear that the offset is not com-
pletely covered by the uncertainty. While the remapping may thus improve
convergence, it may not completely solve the issue.

2.C Azimuthal Integral

In this appendix we evaluate the integral

I(a, b; ε) =

∫ b

a
dφ (sinφ)−2ε . (2.52)

One can convert this integral into a Gauss-type hypergeometric integral using
the transformation cosφ = 1 − 2x. However this leads to square roots in
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the denominator which do not naively lead to a polylogarithmic expression.
Instead, one can rewrite the integral as a contour integral in the complex
plane using the transformation z = eiφ, such that

sinφ =
z2 − 1

2iz
, (2.53)

leading to the following representation

I(a, b; ε) = −i

∫ eib

eia

dz

z

(z2 − 1

2iz

)−2ε
. (2.54)

The integrand can be chosen to have branch cuts on the real axis for z < 0
and for z > 1. For 0 < a, b < π, which is the range of physical interest, no
branch cuts are ever crossed.
It is convenient to perform the integral on a contour along the real axis from

0 < z < A with 0 < A < 1, i.e.,

F (A; ε) = −i22εe−iπε

∫ A

0

dz

z

(1− z2

z

)−2ε
. (2.55)

The result can be analytically continued to the case of interest with A = eia.
We then obtain (in essence via the residue theorem)

I(a, b; ε) = F (eia; ε)− F (eib; ε) . (2.56)

While the divergence at z = 0 requires careful treatment, this drops out in
the difference of the two terms in equation (2.56). We performed the integral
using the Maple package Hyperint [103], finding that the integral can performed
order by order in ε in terms of harmonic polylogarithms. This is to be expected,
given that its singularities are located at z = 0,−1, 1. Up to order ε2 we can
express the result in terms of the classical polylogarithms:

I(a, b; ε) =
∞∑
n=0

I(n)(a, b)εn (2.57)
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with

I(0)(a, b) = b− a ,
I(1)(a, b) = 2i Li2(eia)− 2i Li2(eib) + 2i Li2(−eia)− 2i Li2(−eib) + i(a− b)(−a+ π − b)

+ (−2a+ 2b) ln 2 ,

I(2)(a, b) = −2
3 i ln3(eib + 1)− 2i ln2(eib + 1) ln(1− eib)− 4b ln(eib + 1) ln(1− eib)

+ 2i ln2(eia + 1) ln(1− eia) + 4a ln(eia + 1) ln(1− eia)− 2i ln(eib + 1) ln2 2

− 2i ln(1− eib) ln2 2 + 2i ln(eia + 1) ln2 2 + 2i ln(1− eia) ln2 2− 4i Li3(eia)

+ 4i Li3[−(−1 + eia)/(eia + 1)]− 4i Li3[−(−1 + eib)/(eib + 1)] + 2a ln2(eia + 1)

− 2b ln2(1− eib)− 2b ln2(eib + 1) + 4i Li3(1
2 + 1

2e
ia)− 8i Li3[1/(eia + 1)]

+ 4i Li3(1
2 −

1
2e

ia)− 8i Li3(1− eia) + 4i Li3(eib)− 4i Li3(1
2 −

1
2e

ib)

+ 8i Li3(1− eib) + 4i Li3(−eib) + 8i Li3(1/(eib + 1))− 4i Li3(1
2 + 1

2e
ib)

+ 2(b− a) ln2 2 + 2i(a− b)(−a+ π − b) ln 2− 4i ln(eia + 1) ln(1− eia) ln 2

+ (2π − 4a)Li2(−eia) + 1
3 iπ2 ln(1− eia) + 4i ln 2 Li2(−eia)

− 4i ln 2 Li2(eib) + 4i ln(eib + 1)Li2(eib) + 4i ln(1− eib)Li2(eib)

− 4i ln(eia + 1)Li2(eia)− 4i ln(1− eia)Li2(eia) + 4i ln 2 Li2(eia)

+ 1
6(a− b)(3π2 − 6πa− 6πb+ 4a2 + 4ab+ 4b2) + 2

3 i ln3(eia + 1)

+ (−2π + 4b)Li2(eib) + (2π − 4a)Li2(eia)− 1
3 iπ2 ln(1− eib)

+ 4i ln(eib + 1) ln(1− eib) ln 2 + 4i ln(eib + 1)Li2(−eib)

+ 4i ln(1− eib)Li2(−eib)− 4i ln 2 Li2(−eib) + iπ2 ln(eib + 1)

− iπ2 ln(eia + 1)− 4i ln(eia + 1)Li2(−eia)− 4i ln(1− eia)Li2(−eia)

+ 2a ln2(1− eia)− 4i Li3(−eia) + (−2π + 4b)Li2(−eib) . (2.58)

After this article was posted, we were informed that the azimuthal integral
in app. 2.C was evaluated before in terms of so-called Log-sine functions, which
were introduced and studied in [104,105] and have been implemented in a C++
library in [106]. Relations can also be found in these references to convert them
into Nielsen polylogarithms, although not directly into classical polylogarithms
(which is only possible up to order ε2).





3
Azimuthal Decorrelation

3.1 Introduction

The production of a vector boson (V ) in association with a jet is a crucial
process in pp and heavy ion collisions. It is an important background in the
study of Standard Model processes (e.g. to control b-tagging for tt̄ measure-
ments [107]) and the search for physics beyond the Standard Model (see [108]
for a recent review), and a prime channel to study the effects of the quark-gluon
plasma produced in heavy-ion collisions [109–111]. The precise theoretical pre-
diction for such processes relies on advances in both fixed-order calculations
and all-order resummation of large (Sudakov) logarithms. In pp collisions,
the fixed-order calculations of such processes have reached next-to-next-to-
leading order in QCD [112–117], while in the back-to-back limit the Sudakov
logarithms in the total transverse-momentum distribution of V+jet have only
been resummed up to next-to-leading logarithmic (NLL) accuracy [118–120].
The relatively large uncertainties in the resummed result at NLL accuracy (see
the discussion in [120]) is one of the main obstacles to a precise prediction for
processes involving the V+jet channel. In order to match to high-accuracy
fixed-order calculations, one has to extend these resummation techniques to
higher order. Progression to higher order resummation is however difficult due
to intrinsic limitations, such as the presence of non-global logarithms [121].
In [122] a factorization formula was derived for the azimuthal angle between
the boson and jet using the standard energy recombination scheme (see equa-
tion (1.166)). In that case, the recombination procedure is sensitive to recoil
from soft radiation enclosed within the jet boundary. This leads to non-global
contributions to the factorization of the cross section, as soft radiation inside
and outside the jet contributes differently to the measurement.
In this chapter we show how to overcome these limitations using two main

ingredients. First, a recoil-free jet axis, obtained using the Winner-Takes-All
(WTA) recombination scheme [123, 124]. This specific choice of jet axis will
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Figure 3.1 The azimuthal angle between the vector boson (green) and WTA
jet axis (blue) is related to the momentum of the vector boson px,V transverse
to the colliding protons (red) and jet. Collinear initial (purple) and final-state
(blue) radiation and soft radiation (pink) contribute to this measurement.

be discussed in more detail in section 3.1.1. And second, factorization-based
methods from Soft-Collinear Effective Theory (SCET) [33–36, 125]. We show
how these tools allow us to obtain extremely precise predictions by explicitly
calculating the angular decorrelation of Z+jet production [110,126–128] in the
back-to-back limit up to next-to-next-to-leading logarithms (NNLL). We find
that predictions for this observable include linearly-polarized gluon transverse-
momentum-distributions (TMD’s) in the initial and final state. It is the first
time that these contributions need to be taken into account for the final state.
For the initial state this polarization effect arises from spin interference for a
single gluon [129]. In Higgs production there is a similar contribution from lin-
ear polarized gluons, but there it arises from spin interference between multiple
initial-state gluons instead [130].
The outline of this chapter is as follows. In this remaining part of this

introductory section we will introduce the recoil-free Winner-Takes-All axis,
describe the angular decorrelation measurement in detail and discuss the ad-
vantages of angular versus radial decorrelation. In section 3.2 the SCET fac-
torization formula is presented. In particular, we discuss the appearance of the
linearly polarized gluon beam- and jet function. Then we focus on calculating
the jet function in section 3.3 for the Winner-Takes-All algorithm. We consider
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the more general recoil-free pnT scheme during calculation, which produces the
Winner-Takes-All jet function as n → ∞. In section 3.4 we explain how we
can use resummation to improve our predictions in the kinematic region of
small azimuthal decorrelation. In section 3.5, we describe the implementation
of the theoretic framework used to make predictions. Here, we also discuss the
relative contributions of the fixed order and resummed cross section. Finally,
in section 3.6 we will present numerical results and compare with results from
the Pythia parton shower.

3.1.1 Winner-Takes-All jet axis

The recoil-free axis is the prime driver of success for our work. Its unique
ability to separate the effects of soft and collinear radiation reduces the impact
of soft recoil [74]. In general, complications arise when we have to discriminate
between soft radiation inside the jet versus outside the jet boundary. This will
lead to logarithms we refer to as ’non-global’. These non-global logarithms
have the potential to spoil the predictive power of the resummation, as they
involve the same logarithms. Employing a recoil-free axis ensures that the
otherwise problematic non-global logarithms are absent. This allows us to
make predictions for very small angular deviations from - at leading order
- the back-to-back case (see fig. 3.1). The reduced soft sensitivity of this
measurement is also crucial in environments with a lot of contamination, such
as heavy ion collisions. The use of a recoil-free axis in lepton-ion collisions was
proposed in [131]. In this chapter we use a specific recoil free axis, employing
the the Winner-Takes-All (WTA) recombination scheme [123,124].
In section 1.3 we introduced the jet definition, which includes a jet algorithm

and recombination scheme. The recombination scheme dictates how the mo-
menta of the particles are combined into the jet momentum. Using the energy
scheme, see equation (1.166), one simply adds the four-vectors in a pair-wise
recombination (pµr = pµ1 +pµ2 ). As a result the jet axis is aligned with the jet mo-
menta. The vector sum of the momenta of all clustered particles thus directly
leads to the jet axis. This is an example of a recoil-sensitive jet algorithm: soft
radiation in the jet effects the direction of the jet axis. Let us now consider
the WTA recombination scheme, for which the pair-wise recombination gives
massless pseudojets with

pT,r = pT,1 + pT,2,

n̂r =

{
~p1/|~p1| if pT,1 > pT,2

~p2/|~p2| if pT,2 > pT,1
. (3.1)

The T indicates momenta transverse to the beam direction and pµ1 and pµ2 are
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the momenta of the clustered particles (or pseudojets). The summed four-
momenta of the jet constituents and the jet axis will typically not be aligned
when employing the WTA recombination scheme, since the process of pairwise
clustering always aligns the jet axis with the more energetic pseudojet. The
soft emissions are not relevant to the jets constructed with the WTA scheme,
as they do not affect the jet direction and only alter the jet momentum a little.
Soft radiation can therefore only contribute a total recoil to the observable
(because of momentum conservation).
The measurement of the azimuthal angle can for small values be expressed

in terms of the transverse momentum of the jet with respect to the jet axis.
Using the coordinate system in figure 3.1, we only need the x-component of the
transverse momentum of the jet with respect to the jet axis, qx. This variable
describes the offset between the jet axis and the jet momentum. Considering
a single one-to-two splitting in the jet, we find for the WTA algorithm

q̂x =

{
− px

1−z if 1
2 > z > 0

px
z if 1 > z > 1

2

(3.2)

where z and 1 − z are the respective energy fractions of the two particles
compared to the total energy. The two particles must have vanishing total
transverse momentum due to momentum conservation, yielding px,1 = −px,2
in the current axis setup. The WTA algorithm is not the only way to construct
recoil-free jet axis. In setion 3.3 we will employ a more general recombination
scheme. It turns out that this only changes the finite part of the jet function,
and at the end of this section we give explicit results for the WTA case.

3.1.2 Observable definition

The pp→ V + jet scattering is illustrated in figure 3.1. The coordinate system
is chosen such that the y-axis is aligned with the transverse component of the
reconstructed jet axis. The azimuthal angle ∆φ denotes the opening between
the vector boson (V ) and the jet (J) in the plane perpendicular to the colliding
beams (labelled a, b), i.e. the x-y plane in our setup. The observable of interest
is the azimuthal decorrelation δφ, which is related to the azimuthal angle by

π −∆φ ≡ δφ = arcsin

(
|px,V |
|~pT,V |

)
≈
|px,V |
|~pT,V |

, (3.3)

such that the back-to-back limit corresponds to δφ→ 0. The azimuthal angle
is thus directly related to the offset qx between vector boson and the recon-
structed jet momentum. Although the azimuthal decorrelation is the observ-
able of interest for this chapter, it is very insightful to contrast it with the
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y

xz

~pT,c

px,c

py,cpy,c

~pT,V

δφ

φc

φij

Figure 3.2 Sketch of the geometry in the transverse plane for the pp→ V +jet
scattering. The angle in between the WTA axis and total collinear momentum
is denoted by φc, where alignment of the two means φc = 0. The angle between
two generic collinear emissions i and j is denoted with φij . Lastly, the angle
δφ denotes our observable of interest: azimuthal decorrelation between boson
and jet. Figure taken from [132].

radial decorrelation. The radial decorrelation is defined as the y component
of the offset between V and J , that is qy, and has a more complicated fac-
torization structure (even for the WTA axis). In what follows we will use the
comparison between qx and qy to emphasize the simplicity of the azimuthal
decorrelation. For this reason we define the dimensionful offset between V and
J as

~qT = ~pT,V + ~pT,J (3.4)

where ~pT,V and ~pT,J are the momenta transverse to the beam direction of V
and J respectively.
Momentum conservation in the x-y plane requires the total transverse mo-

mentum to vanish, as the beams are directed along the z-direction. This leads
to

~pT,a + ~pT,b + ~pT,c + ~pT,S + ~pT,V = 0 (3.5)

with ~pT,V indicates the contribution from the vector boson, ~pT,a and ~pT,b the
collinear radiation off the beams, ~pT,S the overall soft radiation and ~pT,c the
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collective contributions from collinear splittings inside the jet. Even though we
have aligned the y-axis with the jet axes such that px,J = 0, we can still have
a non-zero contribution ∂x,c from collinear radiation inside the jet. As we saw
in the previous section this is because the WTA algorithm does not align the
jet momentum with the collective momentum of the collinear emissions inside
the jet. Using the momentum conservation (3.5), the two components of ~qT
are written as

qx = pV,x qy = pJ,y + pV,y. (3.6)
= −px,a − px,b − px,c − px,S = pJ,y − py,a − py,b − py,c − py,S

The large cancellation between the boson and jet momenta in the radial decor-
relation leads to complications in the factorization compared to the azimuthal
version. To see this explicitly, let us start with the relation between the jet
momentum (pT,J) and the total collinear momentum of the particles in the jet
(pT,c). The components of ~pT,c are given by

px,c = |~pT,c| sinφc py,c = |~pT,c| cosφc

= |~pT,c|φc +O(φ3) = |~pT,c|
(

1− φ2
c

2

)
+O(φ3), (3.7)

where φc is the angle between WTA jet axis and ~pT,c, as illustrated by figure
3.2. The collinear radiation is energetic, and the component transverse to the
beam direction therefore scales as ~pT,c ∼ Q, where Q is the partonic center-
of-mass energy. Considering now the components of pT,J , we find that px,J is
zero in our reference system and py,J is the scalar sum of all particle momenta
inside the jet. For a jet radius R � φc the collinear radiation as well as soft
radiation that ends up inside the jet contributes to the jet momentum in the
y-direction. Summarized, we find:

px,J = 0 and |py,J | =
∣∣∣~pT,J ∣∣∣ =

∑
i∈(s∈J)

|~pT,i|+
∑
i∈c
|~pT,i| (3.8)

To make the large cancellation for the radial decorrelation explicit, we relate
the vector and scalar sum over the collinear radiation, appearing in in px,c
and px,J respectively. The absolute value squared is different for the scalar
and vector sum, as the vector sum depends on the opening angles φij between
pairwise collinear emissions i and j. They are explicitly given by(∑

i∈c

∣∣∣~pT,i∣∣∣)2
=
∑
i∈c
|~pT,i|2 + 2

∑
i,j

|~pT,i| |~pT,j | (3.9)
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and

|~pT,c|2 =
∣∣∣∑
i∈c

~pT,i

∣∣∣2 =
∑
i∈c
|~pT,i|2 + 2

∑
i,j

|~pT,i| |~pT,j | cosφij (3.10)

which yields∣∣∣∑
i∈c

~pT,i

∣∣∣ =
∑
i∈c
|~pT,i| ·

√
1−

2
∑

i<j |~pT,i||~pT,j |(1− cosφij)

(
∑

i∈c |~pT,i|)2
. (3.11)

We are only summing over pairs of collinear particles labelled by i and j. They
are collinear to the same direction and therefore have φij � 1. Expanding in
these small angles yields∣∣∣∑

i∈c
~pT,i

∣∣∣ =
∑
i∈c
|~pT,i| −

∑
i<j |~pT,i||~pT,j |φ2

ij

2
∑

i∈c |~pT,i|
+O(φ4

ij). (3.12)

We can now revisit equation (3.6). We first focus on the x-direction, for
which momentum conservation dictates that

qx = −px,a − px,b − px,S − |~pT,c|φc +O(φ2) (3.13)

For our SCET setup we need to determine the scaling of the included modes.
As was already clear from the contributions to ~qT , there are three collinear
modes and a soft mode. The relative scaling of these modes was discussed in
section 1.2.2. The modes need to contribute equally to our observable and we
therefore find that contributing modes for the azimuthal decorrelation scale as

pa ∼ Q(1, φ2
c , φc), pb ∼ Q(φ2

c , 1, φc),

pS ∼ Q(φc, φc, φc), pc ∼ Q(1, φ2
c , φc)J , (3.14)

where the subscript J refers to a scaling compared to the jet direction, i.e.
pµ = (n̄J · p, nJ · p, p⊥)J with nJ pointing in the direction of the jet axis.
The relative scaling of the modes corresponds to a SCETII situation. This
could be expected as a transverse momentum measurement is a known SCETII

observable. We will now focus on the y component of ~qT . As we are looking
at the same process, the radial decorrelation also receives contributions from
three collinear modes and a soft mode. Their contributions to qy are given by

qy = −py,a−py,b︸ ︷︷ ︸
beam functions

+
∑

i∈(s∈J)

|pT,i| − py,S︸ ︷︷ ︸
soft function

+
∑
i∈c
|~pT,i|

φ2
c

2
+

∑
(i<j)∈c |~pT,i||~pT,j |φ2

ij

2
∑

i∈c |~pT,i|︸ ︷︷ ︸
jet function

,

(3.15)
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We first note that the power counting of the collinear mode is the same as for
the azimuthal decorrelation. It is determined by the component transverse to
the jet axis, which scales as O(φc). The difference however lies in the scaling
of the remaining modes. Equation (3.15) shows that in order to have an equal
contribution to the radial decorrelation as the collinear jet mode, the transverse
components py,a, py,b and py,S must scale as O(Qφ2

c). The scaling of the modes
for the radial decorrelation is thus given by

pa ∼ Q(1, φ4
c , φ

2
c), pb ∼ Q(φ4

c , 1, φ
2
c),

pS ∼ Q(φ2
c , φ

2
c , φ

2
c), pJ ∼ Q(1, φ2

c , φc)J . (3.16)

This is a non-trivial combination of SCETI and SCETII . Looking at pa, pb and
pS we would expect a SCETII situation, but the relative scaling between the
jet and the soft modes indicates a SCETI situation. Another observation we
can make is that the radial decorrelation requires us to differentiate between
soft radiation inside and outside the jet, as can be seen in equation (3.15).
This reintroduces non-global logarithms.
The azimuthal decorrelation is our preferred observable as it is much simpler:

the non-global logarithms are absent and the relative scaling of the necessary
modes leads to an observable with SCETII characteristics only. Having deter-
mined the contributing modes and their scaling in equation (3.14), we will now
discuss the factorization of the azimuthal decorrelation.

3.2 Factorization

The Born cross section has three partonic channels (see figure 3.3). At NLO we
need to consider QCD corrections for each of them. Corrections that involve
initial or final state radiation are described by soft and collinear modes in
SCET. Hard radiation, producing an extra jet, is not allowed since δφ � 0.
Hard virtual corrections to the born cross section are included in fthe matching
to QCD.

3.2.1 Factorization formula

The factorization formula we present in this section is valid for δφ � 1. We
furthermore assume δφ � R such that collinear radiation will always end up
inside the jet. We will use the WTA recombination scheme to reconstruct the
jet axis, ensuring the absence of non-global logarithms.
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Figure 3.3 Partonnic channels that contribute to the V + jet production at
leading order for proton-proton collisions. Note that one also has to include the
diagrams where quarks are replaced by anti-quarks and vice versa (i.e. reverse
the arrow).

The factorization formula can be derived using the procedure outlined in
section 1.2.5 using the measurement in equation (3.13). The result is

dσ

dqx dpT,J dyV dηJ
(3.17)

=

∫
dpx,a dpx,b dpx,c dpx,S δ

(
qx + px,a + px,b + px,c + px,S

)
×
∑
ijk

Hij→V k(pT,J , yV − ηJ)B̃i(xa, px,a)B̃j(xb, px,b)J̃k(px,c)S̃ijk(px,S , ηJ),

where the dependence on the renormalization scale is suppressed. The variables
pT,V and yV are the transverse momentum and rapidity of the boson, respec-
tively. The pseudo-rapidity of the jet is denoted by ηJ . The sum over i, j, k
run over the partonic channels that produce a energetic vector boson and jet in
the hard scattering processes (see figure 3.3). The hard kinematics is encoded
in the hard function H. Collinear radiation of the initial and final state con-
tribute to the qx measurement through the beam functions B̃ and jet function
J̃ respectively. The B̃ are standard transverse-momentum-dependent beam
functions, where we measure only one component. The J̃ will explicitly be
calculated in section 3.3 and it is the first time that also linear polarizations
appear for the final state. Contribution from soft radiation is described by the
soft function S̃. The tilde on top of these functions is added to indicate the
dependence on momentum variables (instead of the Fourier conjugate variable
we use later). The Bjorken variables xa and xb are determined by the boson
and jet kinematics,

xa =
1√
s

(
eηJpT,V + eyV

√
p2
T,V +m2

V

)
,
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xb =
1√
s

(
e−ηJpT,V + e−yV

√
p2
T,V +m2

V

)
. (3.18)

At this point it is important to discuss some differences to the factorization
for thrust in equation (1.151). To obtain any factorization theorem Fierz iden-
tities are needed to disentangle the color and spin contractions between the
different sectors. In the example for thrust in 3.2 we were only dealing with
quarks. However, in this factorization gluons also participate. Disentangling
the spin contractions leads to a so-called linearly-polarized contribution from
gluon beams and jets. The linear polarizations for gluons are accompanied by
a corresponding change to the hard function H. The contributions from linear
gluon polarizations will be discussed in section 3.2.2.
We can eliminate the convolution in the above factorization formula by

switching to the impact parameter variable bx, which is the Fourier conjugate
of qx,

dσ

dqx dpT,J dyV dηJ
(3.19)

=

∫
dbx
2π

eibxqx
∑
ijk

Hij→V k(pT,V , yV −ηJ)Bi(xa, bx)Bj(xb, bx)Jk(bx)Sijk(bx, ηJ)

The factorization formula in impact parameter space thus has a product form.
In general, the factorization in b-space leads to logarithms that depend on the
renormalization scale(s). It is therefore easy to determine the natural scale
of the factorization ingredients. In momentum space the natural scales need
to be determined from for distributions, which is much harder [133]. We will
therefore proceed with the calculation in impact parameter space and only at
the end perform the Fourier transformation back to momentum space.

3.2.2 Contribution of linear gluon polarization

The broken rotational symmetry around the beam axis forces us to include
linearly polarized beam and jet functions in the factorization theorem at NLO
when producing electroweak vector bosons with non-zero virtuality. Interest-
ingly, the linearly-polarized contributions enter the cross section already at
NLO, instead of NNLO for Higgs production [130, 134–136]. Furthermore, it
is to our knowledge the first time a linearly-polarized jet function appears.
If the partonic cross section includes a final state gluon the initial Lorentz

contractions between the jet- and beam function can be disentangled using
projection operators. Specifically, we can write

HµνJ
µν = HLJL +H⊥J⊥ (3.20)
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where we used the (orthogonal) projection operators

Pµν⊥ = − 1

d− 2
gµν⊥ = − 1

d− 2

[
gµν − 1

2
(nµJ n̄

ν
J + nνJ n̄

µ
J)

]
,

PµνL =
1

(d− 2)(d− 3)

(
gµν⊥ −

bµ⊥b
ν
⊥

|b⊥|2
(d− 2)

)
, (3.21)

to define

HL = (d− 2)(d− 3)PµνL Hµν , JL = PµνL Jµν ,

H⊥ = (d− 2)Pµν⊥ Hµν , J⊥ = Pµν⊥ Jµν . (3.22)

The measurement of the transverse component bx (or qx) thus allows for this
linear polarization. A similar decomposition holds for initial state gluons, for
which the projection operators read

PµνT = − 1

d− 2
gµν⊥ = − 1

d− 2

[
gµν − 1

2
(nµn̄ν + nν n̄µ)

]
,

PµνL =
1

(d− 2)(d− 3)

(
gµν⊥ −

bµT b
ν
T

|bT |2
(d− 2)

)
, (3.23)

where bT is perpendicular to the beam axis (and b⊥ perpendicular to the jet
axis).

3.3 Jet function for general recoil-free axis

The jet function that appears in the factorization formula in equation (3.19)
can be calculated in perturbation theory.

Ji = J
(0)
i +

αs
4π

J
(1)
i + . . . , (3.24)

with J
(0)
i (bx) = 1. The NLO jet function J

(1)
i is given by

J (1)
q (bx) = 8π

(
µ2eγE

4π

)ε∫ 1

0
dx

∫
dd−2p⊥
(2π)d−2

1

|p⊥|2
Pq(x)e−ibxq̂x , (3.25)

for quarks, and

J µν
g

(1)(bx) = 8π

(
µ2eγE

4π

)ε∫ 1

0
dx

∫
dd−2p⊥
(2π)d−2

1

|p⊥|2
Pµνg (x)e−ibxq̂x , (3.26)

for gluons. The curly J indicates that we assumed δφ� R, and therefore did
not need to impose the jet boundary as a constraint. These jet definitions are
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obtained by evaluating the jet function matrix elements, which for the quark
case is given in equation (1.167). The detailed calculation is given in appendix
B. For the gluon case in particular there are two polarizations possible, since we
are measuring transverse momenta. As was already discussed in the previous
section, the gluon jet function decomposes as

J µν
g (b⊥, µ) = (d− 2)PµνL JLg (b⊥, µ) + (d− 3)(d− 2)Pµν⊥ J⊥g (b⊥, µ), (3.27)

The transverse and linearly projection projectors Pµν⊥ and PµνL are given in
equation (3.21), and JLg (b⊥, µ) and J⊥g (b⊥, µ) are defined in equation (3.22).
The q̂x in equations (3.25) and (3.26) is understood as the operator that picks
out the x-component of the transverse momentum for final state radiation,
after clustering. For the WTA q̂x is given by equation (3.2). In this section
we will calculate the jet function for the more general recoil-free pnT scheme.
The clustering of two particles (or pseudojets) with momenta pi and pj are
recombined into pr as follows

pT,r = pT,i + pT,j , (3.28)
φr = (pnT,iφi + pnT,jφj)/(p

n
T,i + pnT,j),

yr = (pnT,iyi + pnT,jyj)/(p
n
T,i + pnT,j),

where pT is the transverse momentum with respect to the beam axis, φ the
azimuthal angle around the beam and y the rapidity. For n ≥ 1, the recom-
bined direction will be closer to the harder particle, due to the factors pnT,i.
In particular, for values bigger then one the effects of soft radiation are power
suppressed. Due to this recoil safety the factorization theorem provided in
section 3.2.1 is valid for all n > 1. It should be mentioned at this point that
changing n will therefore not alter the pole structure of the jet function: renor-
malization leads to a finite cross section and as the other ingredients in the
factorization do not depend on n, changing it can only change the finite part
of the jet function. We will revisit this point during the calculation. Note that
equation (3.28) produces the WTA recombination in (3.1) in the limit n→∞.
In order to implement the recoil-free pnT recombination in the calculation for

the jet function, we have to know the constraints it imposes on the measure-
ment. Restricting ourselves to the limit δφ � R we know that two collinear
particles are well inside the jet. The azimuthal angle φ is related to the offset of
the jet in the x direction. We have chosen our coordinate system in such a way
that the x-direction is perpendicular to the beams and jet. The total momen-
tum in the x direction is zero by momentum conservation: px = px,i = −px,j .
For small angles we can write φi =

px,i
pT,i

, where pT,i is the momentum transverse
to the beam. The jet is a boost invariant object (as are the other constituents
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in the factorization theorem). For this reason we carry out the calculation for
ηJ = 0, in which situation the transverse momentum pT,i can be related to
the energy of the particle p−i /2, which is constructed using the light-like four
vector nJ , yielding

φi =
px,i
pT,i

=
2px,i

p−i
. (3.29)

We have now expressed φ using momentum components in the jet coordinate
system. The total transverse momentum in the x-direction is given by

px,r = φrpT,J (3.30)

The recombination of the azimuthal angle in equation (3.28) now dictates that

px,r =
(pT,1)n

px,1
pT,1

+ (pT,2)n
px,2
pT,2

pnT,1 + pnT,2
pT,J

ηJ→0
=

(
p−1
2

)n
2px
p−1
−
(
p−2
2

)n
2px
p−2(

p−1
2

)n
+
(
p−2
2

)n p−J
2

=
xn−1 − (1− x)n−1

xn + (1− x)n
px, (3.31)

where in the last step we used that p−1 = xp−J , p
−
2 = (1−x)p−J and pT,J = p−J /2.

The measurement qx exactly picks up the recombined momentum and we write

q̂x = x̃px, (3.32)

where we conveniently introduced

x̃ =
xn−1 − (1− x)n−1

xn + (1− x)n
. (3.33)

We are now ready to start the jet function calculation. Starting from equa-
tion (3.25) we find

J
(1)
i = 8π

(
µ2eγE

4π

)ε∫ 1

0
dx

∫
dd−2p⊥
(2π)d−2

1

|p⊥|2
Pi(x)e−ix̃bxpx , (3.34)

where i is the initiating parton (note that it can also be a linearly polarized
gluon). To evaluation of J

(1)
i involves the two integrals

I1(x̃bx) ≡
∫

dd−2p⊥
(2π)d−2

eix̃ bxpx

|p⊥| 2
=

1

4π
(πx̃2 b2x)εΓ(−ε),

I2(x̃bx) ≡
∫

dd−2p⊥
(2π)d−2

p2
xe

ix̃ bxpx

(|p⊥| 2)2
=

1

8π
(2ε+ 1)(πx̃2 b2x)εΓ(−ε). (3.35)
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This leads to

J (1)
q = 2

(
µ2b2xe

γE

4

)ε
Γ(−ε)

∫ 1

0
dxPq(x)x̃2ε,

J T
g

(1)
= 2

(
µ2b2xe

γE

4

)ε
Γ(−ε)

∫ 1

0
dxPg(x)x̃2ε, (3.36)

for the quark and transverse polzarized gluon jet. The splitting functions Pi(x)
are given in equation (2.2). These integrals cannot be evaluated analytically
for general n, but one can however find analytic results for specific values of
n. The linear gluon polarization gives1

J L
g

(1)
= 4π

(
µ2b2xe

γE

4

)ε 2(4TFnf − (d− 2)CA)

(d− 2)(d− 3)

×
∫

dxx(1− x)
(
I1(x̃bx)− (d−2)I2(x̃bx)

)
(3.37)

which is finite at this order since(
I1(x̃bx)− (d−2)I2(x̃bx)

)
=

1

4π
+O(ε). (3.38)

This was expected, as the tree level contribution vanishes for the linear polar-
ization. We find that J L

g
(1) does not depend on n. Using d = 4 − 2ε and

expanding in ε, it evaluates to

J L
g

(1)
=− 1

3
CA +

2

3
nfTF . (3.39)

Let us now revisit the integrals in equation (3.36). First, we focus on the
pole structure. The integrals in equation (3.36) leads to poles for x → 1 and
x→ 0. For n > 1 we find that x̃ is finite in these limits,

lim
x→1

x̃ = 1 and lim
x→0

x̃ = −1 (3.40)

and will therefore not alter the pole structure by its presence. The jet function
renormalization and the anomalous dimensions are thus valid for any value
of n > 1, and can be calculated once. For n ≤ 1 the jet is no longer recoil-
free. These cases have a the different pole structure and the factorization will
therefore be different as well. The only pole in ε comes from Γ(−ε) and does
not depend on x. We may therefore first expand in ε before evaluating the
integration over x.(

µ2b2xe
γE

4

)ε
Γ(−ε)x̃2ε = −

(
1

ε
+ Lb + 2 log(|x̃|)

)
+O(ε). (3.41)

1See appendix B for more details, here we used b⊥ = (bx, 0).
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where Lb = log(µ2b2xe
2γE/4). This leaves us with the following two integrals

IAi =

∫ 1

0
dxPi(x) =

∫ 1

1
2

dx(Pi(x) + Pi(1− x)),

IBi =

∫ 1

0
dxPi(x) log(|x̃|), (3.42)

for i = q, g⊥, such that

J
(1)
i = −2

(
1

ε
+ Lb

)
IAi − 4IBi . (3.43)

In IBi all divergences are regulated (as long as n > 1) by the addition log(x̃),
hence this is a finite contribution dependent on n. In the integral IAi however,
not all divergences are regulated, and we are forced to introduce a rapidity
regulator. We choose the η regulator [50,94](

ν

ωJ

)
1

(1− x)η
(3.44)

with ωJ = 2pT,J . This shall eventually give 1/η poles for η → 0, replacing the
pole at x→ 1. Focussing on the pole structure first, IAq and IAg⊥ evaluate to

IAq = CF

(
1 + Lb

(
3 + 4 log

ν

ωJ

)
+

4Lb
η

+
4

ηε
+

3 + 4 log ν
ωJ

ε

)
,

IAg⊥ = CA

(
Lb

(
11

3
+ 4 log

ν

ωJ

)
+

4Lb
η

+
4

ηε
+

11
3 + 4 log ν

ωJ

ε

)

+ nfTF

(
2

3
− 4

3
Lb −

4

3ε

)
. (3.45)

The poles give us direct access to the jet renormalization factors. They read

Zq = 1 +
αs
4π
CF

(
4Lb
η

+
4

ηε
+

3 + 4 log ν
ωJ

ε

)
, (3.46)

Zg⊥ = 1 +
αs
4π

(
1

η
CA

(
4Lb +

4

ε

)
+

1

ε
CA

(
11

3
+ 4 log

ν

ωJ

)
− nFTF

4

3ε

)
.

The finite contributions to the jet function depend on n through IBi and are
given by

J (1)
q |finite = CF

(
1 + Lb

(
3 + 4 log

ν

ωJ

))
− 4IBq = CFJCF |finite. (3.47)
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for the quark-initiated jet and

J ⊥
g

(1)|finite = CALb

(
11

3
+ 4 log

ν

ωJ

)
+ nfTF

(
2

3
− 4

3
Lb

)
− 4IBg⊥

= CAJCA |finite + nfTFJTF |finite (3.48)

for the gluon-initiated jet with transverse polarization. We are particularly
interested in finite contributions for the WTA recombination, which yield

JCF |finite,WTA = 7− 2

3
π2 − 6 log 2,

JCA |finite,WTA =
131

18
− 2

3
π2 − 22

3
log 2 + Lb

(11

3
+ 4 log

ν

ωJ

)
,

JTF |finite,WTA = −17

9
+

8

3
log 2− 4

3
Lb. (3.49)

The results for the numerical evaluation of the jet constants in equation (3.39),(3.47)
and (3.48) are shown as a function of n in figure 3.4.

Figure 3.4 The finite contributions J |finite at Lb = 0 to the linearly polarized
gluon (blue), transversely polarized gluon (yellow) quark (red) jet function are
shown as a function of n. The dashed line in the same color represents the WTA
limit. The vertical dashed line at n = 1 shows a singularity: the point at which
the jet function is no longer recoil free (and needs a different renormalization).

3.4 Resummation

The factorization theorem in (3.19) enables the resummation of large loga-
rithms by separating the physics at different scales. We evaluate each ingre-
dient at its natural scale, such that they don’t involve large logarithms, and
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use the ingredients’ RG equations to evolve them to a common scale, thereby
resumming the logarithms of δφ. The collinear (beam and jet) and soft in-
gredients in equation (3.19) have the same virtuality and are only separated
in rapidity. This requires a rapidity regulator, for which we have adopted the
η-regulator [50,94], leading to rapidity divergences of 1/η and a corresponding
evolution in the rapidity renormalization scale ν that sums (large) rapidity
logarithms. The natural for the ingredients in (3.19) are:

µH ∼ νB ∼ νJ ∼ pT,V ∼ mV ,

µB ∼ µJ ∼ µS ∼ νS ∼ 1/|bx| . (3.50)

Generally, the RG equations for a function F are given by

d

d lnµ
F (µ) = ΓFµF (µ),

d

d ln ν
F (ν) = ΓFν F (ν) (3.51)

where Γ is known as the anomalous dimension. This multiplicative form of
the RG equation only holds in impact parameter space for our factorization
ingredients, and the anomalous dimensions for the beam, jet and soft function
will depend on bx. The anomalous dimension is often split in a cusp and a
non-cusp contribution:

d

d lnµ
F (Q2, µ) = Γcusp

F log
Q2

µ2
+ γF (3.52)

where the Q can in general be any kinematic variable. The cusp anomalous
dimension shows up due to the appearance of double poles in the calculations
of the bare ingredients. The anomalous dimensions can be extracted from
these direct calculations, as renormalization removes the poles. For example, in
section 3.3 we calculated the quark jet function, which led to the pole structure
given in equation (3.46). Up to two loops, the anomalous dimension of the jet
function is given by

Γ
Ji
µ = 2CiΓcusp(αs) log

ν

ωJ
+ γ

Ji
µ ,

Γ
Ji
ν = CiΓcusp(αs)Lb +

(αs
4π

)2
[
β0

2
CiΓ

cusp
0 L2

b − Ci
γν1
2

]
+O(α3

s), (3.53)

where the color factor Ci for parton i is CF for a quark or antiquark and CA for
a gluon (independent of its polarization). From Zq we can read off that Γcusp

q =
4αs/(4π), γµq = 6αsCF /(4π) and γν1 = 0 atO(αs)

2. The anomalous dimensions
2The values of γν1 and Γcusp in (3.53) do not require knowledge of the initiating parton,
which is reflected by the extraction of the color factor Ci.
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(cusp and non-cusp) for the other partons are included in appendix 3.A. The
anomalous dimensions for the gluon jet are independent of the polarization.
This can be argued as follows: the anomalous dimensions of the hard Wilson
coefficients are independent of the gluon spin degrees of freedom. At leading
power, the same is true for the soft anomalous dimension. Consistency then
implies that the anomalous dimensions of the gluon jet are the same, i.e. also
independent of spin.
We will now summarize the anomalous dimensions for the other ingredients

in our factorization. Note that all values for the cusp and non-cusp anomalous
dimensions are summarized in appendix 3.A for convenience. Starting with
the hard function it does not depend on ν and the the µ anomalous dimension
is given by

Γ
Hij→V k
µ = Γcusp(αs)

(
Ci ln

û2

p2
T,V µ

2
+ Cj ln

t̂2

p2
T,V µ

2
+ Ck ln

p2
T,V

µ2

)
+ 2
(
γg(αs) + 2γq(αs)

)
+O(α3

s) , (3.54)

where we have conveniently used that there are always two (anti-)quarks and
one gluon contributing to the process. The mandelstam variables ŝ, t̂ and û de-
pend on kinematic quantities and are given in equation (3.63). The anomalous
dimension of the beam function is the same as for the jet function in (3.53),
with the replacement by ωi = n̄i ·pi (see equation (3.67)). The natural rapidity
scales of the jet and beam function are νi = ωi, with i = a, b, J . Note that
the anomalous dimensions of the gluon beam function are spin independent,
by the same reasoning we followed for jets below equation (3.53). Lastly, the
soft anomalous dimensions up to two-loop level are

Γ
Sijk
µ (αs)= Γcusp(αs)

[
(Ci+Cj+Ck) ln

µ2

ν2
−Ci ln

αjiαik
αjk

−Cj ln
αijαjk
αik

(3.55)

−Ck ln
αikαkj
αij

]
+(Ci+Cj+Ck)γ

S(αs)+O(α3
s),

Γ
Sijk
ν (αs)= −(Ci+Cj+Ck)

(
Γcusp(αs)Lb+

(αs
4π

)2[β0

2
Γcusp

0 L2
b−

γν1
2

])
+O(α3

s),

with αij = (ni · nj)/2.
The all-order resummation formula can be written as

dσresum
dqx dpT,V dyV

=
∑
ijk

∫ ∞
0

dbx
π

cos(bxqx)
∏
a=ijk

(νS
νa

)ΓBaν (µB)
exp

(∫ µB

µH

dµ

µ
Γ
Hij→V k
µ (αs)

)
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×Hij→kV (pT,V , yV − ηJ , µH)Bi(x1, bx, µB, νi)Bj(x2, bx, µB, νj)

×Jk(bx, µB, νk)Sijk(bx, µB, νS) , (3.56)

which describes the evolution of all ingredients from their natural scales to a
common scale, effectively predicting large logarithmic contributions at higher
orders in αs.

3.5 Implementation

In the next section we will show results for the cross section at NNLL ac-
curacy. This requires the ingredients in equation (3.19) at one-loop order,
their anomalous dimensions at two-loop order [137–142], the cusp anomalous
dimension at three-loop order [137, 143] and the beta function at three-loop
order [144, 145]. Furthermore, most of the ingredients for N3LL resummation
are available. The only missing ingredients to extend the precision to this order
are the one-loop linearly polarized hard function and the linearly polarized jet
function at two-loop order.
In this section we first provide the one-loop ingredients for resummation.

Then we introduce the b∗ prescription to avoid the Landau singularity in
the Fourier transformation back to momentum space. Finally we discuss the
matching to MCFM to correctly describe the cross section in the region where
δφ becomes large.

3.5.1 One-loop ingredients

For our NNLL predictions we need the hard function at one-loop order [146,
147], and a new contribution multiplying the linearly-polarized gluon beam [148]
and jet functions. The hard function for the process ij → kV is given by

Hij→kV =
p2
T

8πs2ζ1ζ2
|Mij→kV |2 (3.57)

with the Born level matrix elements as

|M qq̄→gV |2 =
16π2αsαeme

2
f

(
N2
c − 1

)
N2
c

t̂2 + û2 + 2ŝm2
V

t̂û
(3.58)

|M qg→qV |2 = −
16π2αsαeme

2
f

Nc

ŝ2 + t̂2 + 2ûm2
V

ŝt̂
, (3.59)

|MqgL→qV |
2 =

32π2αemαse
2
f

Nc

ûm2
V

ŝt̂
, (3.60)

|Mqq̄→gLV |
2 = −

32π2αemαse
2
f (N2

c − 1)

N2
c

ŝm2
V

ût̂
(3.61)
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Here ŝ, t̂, û are the partonic Mandelstam variables, m2
V is the off-shellness of

the photon, αem is the electromagnetic coupling constant and ef is the elec-
tric charge of a quark with flavor f . For the Z boson we can use the usual
replacement

e2
f →

(
1− 2 |ef | sin2 θW

)2
+ 4e2

f sin4 θW

8 sin2 θW cos2 θW
. (3.62)

The Mandelstam variables in the hard function can be expressed in terms of
kinematic variables as

ŝ = m2
V + 2p2

T,V + 2pT,V

√
m2
V + p2

T,V cosh(ηJ − yV ) ,

t̂ = −p2
T,V − pT,V

√
m2
V + p2

T,V exp(ηJ − yV ) ,

û = −p2
T,V − pT,V

√
m2
V + p2

T,V exp(yV − ηJ) . (3.63)

The corresponding expressions for the one-loop corrections can be found in
the appendix of [147], where in our case we use bT = (0, 1, 0, 0). As described
in (3.20), HL gets accompanied by one linearly-polarized gluon beam or jet
function. Since these start at order αs, we only need the LO results for HL.
Up to order α2

s, the soft function Sijk can be determined from the standard
TMD soft function S [141,142,149]. Similar to [150], our observable is perpen-
dicular to the boost, so only the rapidity regulator is affected by such a boost
(see e.g. [87]), yielding

S
(1)
ijk(bx, ηJ , µ, ν) = −

∑
i<j

Ti ·TjS
(1)
(
bx, µ, ν

√
ni ·nj/2

)
, (3.64)

S
(2)
ijk(bx, ηJ , µ, ν) = −

∑
i<j

Ti ·TjS
(2)
(
bx, µ, ν

√
ni ·nj/2

)
+

1

2

[
S

[1]
ijk(bx, ηJ , µ, ν)

]2
,

where S = 1 + αs/(4π)S(1) + . . . with

S(1)(bx, µ, ν) = −2L2
b + 8Lb ln

µ

ν
− π2

3
, (3.65)

with Lb = ln(µ2b2xe
2γE/4). The color factors are Tq ·Tq̄ = 1

6 and Tq ·Tg =
Tq̄·Tg = −3

2 , and na·nb = 2, na,b·nJ = 1∓ tanh ηJ . The contribution involving
exchanges between three Wilson lines vanishes due to color conservation [151].

The beam functions describe the transverse momentum of the colliding hard
parton with respect to the beam axis due to collinear initial-state radiation.
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Its definition was given in (1.153) of the introduction. They have a pertur-
bative matching onto PDFs, and the matching coefficients Iij are known at
two-loop [135, 140, 142, 152–156] and three-loop order [157–159]. In equation
(3.19), we only probe the x-component of the transverse momentum. As az-
imuthal symmetry is broken, we get a linearly-polarized contribution, which
encodes the effect of a spin-superposition of the gluon extracted from the pro-
ton. This linear polarization was not taken into account in previous studies
of the azimuthal angular decorrelation and is an NLO effect, as the linearly
polarized beam functions start at O(αs). The matching coefficients, including
the linearly polarized one, are given by

Iqq(z, bx, µ, ν) = δ(1−z) +
αs
4π

[
CFLb

(
3 + 4 ln

ν

ω

)
δ(1−z)− 2pqq(z)Lb

+ 2CF (1−z)
]

+O(α2
s),

ITgg(z, bx, µ, ν) = δ(1− z) +
αs
4π

[
Lb

(
β0 + 4CA ln

ν

ω

)
δ(1− z)− 2pgg(z)Lb

]
+O(α2

s),

Iqg(z, bx, µ, ν) =
αs
4π

[−2pqg(z)Lb + 4TF z(1− z)] +O(α2
s),

ITgq(z, bx, µ, ν) =
αs
4π

[−2pgq(z)Lb + 2CF z] +O(α2
s),

ILgg(z, bx, µ, ν) = −αs
4π
CA

4(1− z)
z

+O(α2
s),

ILgq(z, bx, µ, ν) = −αs
4π
CF

4(1− z)
z

+O(α2
s), (3.66)

with

ωi = n̄i · pi = xiEcm , (3.67)

and the splitting functions pij are the regularized splitting functions, which
enter in the DGLAP equation for parton distribution functions.
The jet function describes the offset of the WTA axis with respect to the

jet momentum. The advantage of this recoil-free axis was discussed in section
3.1.1. We recalculated the jet functions [160, 161] using the η-regulator and
extended it to general recoil free axis. We used δφ � R, which removes
all dependence on the jet radius. In this limit the momentum of the initial
parton is contained in the jet, which simplifies its expression. The calculation
was shown in section 3.3, with a first calculation of the gluon jet function
with linear polarization. Writing Ji = 1 + αs/(4π)J [1]

i + . . . , the one-loop
contributions are given by equation (3.39), (3.47), (3.48) and here summarized
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for convenience

J (1)
q (bx, µ, ν) = CF

[
Lb

(
3 + 4 ln

ν

ωJ

)
+ 7− 2π2

3
− 6 ln 2

]
,

J (1)
g (bx, µ, ν) = CA

[
Lb

(11

3
+4 ln

ν

ωJ

)
+

131

18
− 2π2

3
− 22

3
ln 2
]

+ TFnf

[
−4

3
Lb −

17

9
+

8

3
ln 2
]
,

J L
g

(1)
(bx, µ, ν) = −1

3
CA +

2

3
nfTF . (3.68)

with ωJ = 2pT,J .

3.5.2 b∗ prescription

We choose to eventually evaluate our prediction for µ = µB. However, at very
large values of bx (corresponding to small pT,V ) the scale µB hits the Landau
pole, see equation (1.40). To avoid this unphysical behaviour we apply the b∗

prescription [48]

b∗ = |bx|/
√

1 + b2x/b
2
max , (3.69)

with bmax = 1.51/GeV. The natural scales are then chosen as

µH =
√
m2
V + p2

T,V , µB = νS = 2e−γE/b∗, νa = ωa = n̄a · pa , (3.70)

and evolved to the common scale (µB, νs) using the resummation formula in
equation (3.56). This setup allows us to transform back to momentum space,
avoiding the Landau pole.

3.5.3 Large δφ limit

The resummation formula we provided in section 3.4 describes the back-to-
back region where δφ is small. It will however fail to produce the correct result
at the other end of the spectrum. If δφ is not small, the factorization formula
receives large corrections of powers δφ. A correct prediction for large δφ is
provided by fixed-order calculations, that do include these power corrections.
Note that in this regime one has to worry less about large logarithmic con-
tributions ∼ ln δφ. We use MCFM [162, 163] to calculate the NLO results for
qq → V + jet.
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We employ the so-called additive matching scheme σA together with a tran-
sition function t(δφ). The differential cross section is then given by

dσ (NLO + NNLL) =[1−t(δφ)] dσA(NLO + NNLL)+t(∆φ)dσ(NLO), (3.71)

where σA has an additive construction given by

dσA(NLO + NNLL) = dσ(NNLL) + dσ(NLO)− dσ(NLO singular)︸ ︷︷ ︸
dσ(NLO non−singular)

. (3.72)

where dσ(NNLL) is exactly given by (3.56), the NLO singular refers to the
O(αs) contribution of the resummed prediction and dσ(NLO) refers to the
fixed order calculation in QCD. The NLO non-singular distribution is given by
the difference between NLO and NLO singular results. It should be clear that
this contribution goes to zero for small δφ. In some sense σA already accom-
plishes the transition from the resummation to the fixed order regime by itself,
as equation (3.72) reduces to the fixed order calculation in the large δφ limit.
However, the highly oscillating Fourier transform makes the prediction σA by
itself unstable. These numerical problems are solved with the introduction of
a transition function t(δφ) with t(0) = 0 and t(π) = 1 [164]. The transfor-
mation function reduces and eventually stops resummation for increasing δφ.
In this region the resummed prediction is then simply replaced by the NLO
prediction, as can be seen in the last term of equation (3.71). The MCFM
NLO prediction is calculated directly in momentum space, and does not suffer
the same numerical instabilities as our factorized prediction.

3.6 Results

Linearly-polarized contributions are not visible in the fixed-order cross section
differential in δφ. The linearly polarized contributions are constant, as can be
seen for the jet in equation (3.39). The Fourier transformation to momentum
space will therefore only contribute at qx = 0. We provide evidence for con-
tributions from linearly-polarized gluon beam and jet functions in Fig. 3.5, by
showing the difference between the cumulative cross section obtained using our
factorization in (3.19) and MCFM at NLO [162, 163], with a cut δφ < δφcut.
This difference should vanish in the limit δφcut → 0, but only does so when
the linearly-polarized gluon beam and jet functions are included. The left
panel shows the contribution involving qq PDFs, which only involves linearly-
polarized beam functions, and in the right panel we focus on the nf -dependent
contribution from qq̄ PDFs, to provide evidence for a nonzero contribution
from linearly-polarized jet functions.
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Figure 3.5 Difference between the singular cross section in equation (3.19) and
the cross section from MCFM at NLO with a cut δφ < δφcut. Shown are the
contribution from qq (left) and qq̄ (right) PDF flavors. Jets are identified using
the anti-kT algorithm with R = 1 and the leading jet fulfills pT,J > 60GeV
and |ηJ | < 2. In the right plot we only consider NLO corrections proportional
to nf . The difference between the singular and full NLO only vanishes if linear
polarizations are included.

We obtain predictions for the LHC with
√
s = 13 TeV, using the factoriza-

tion formula in equation (3.19). Jets are identified by the anti-kT clustering
algorithm with R = 0.5 and the WTA recombination scheme. We use the
CT14nlo parton distribution functions [165]. We show our resummed predic-
tions in figure 3.6 at NLL+NLO and NNLL+NLO order, and compare to the
NLO cross section obtained from MCFM. In the figure we use ∆φ = 180◦−δφ.
For our central curve we take the natural scales in equation (3.70). We estimate
the perturbative uncertainty by varying µB and µH by a factor two around
their central values, taking the envelope of the scale variations. The uncer-
tainty bands of the NLL and NNLL predictions overlap, and are substantially
reduced for the NNLL result in the resummation region ∆φ & 170◦. While
the resummed predictions approaches a constant in the back-to-back limit (far
right of the plot), the NLO prediction becomes unreliable due to unresummed
logarithms. On the other hand, for δφ & 140◦ the fixed-order corrections are
important and (3.19) fails to deliver a correct prediction (towards the left of the
plot). We therefore included the NLO fixed order through additive matching
scheme σadd together with a transition function t(δφ), details of which can be
found in section 3.5.3. Our prediction does not show a Sudakov peak, which
one might expect for a transverse measurement. However, since we are probing
only one component of the transverse momentum it is absent. In figure 3.6
we also compare to Pythia [166], which is a parton shower Monte Carlo that
simulates collisions with LL accuracy. The simulation includes some power
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Figure 3.6 Our resummed prediction for the cross section differential in the
azimuthal angle at NLL+NLO (red) and NNLL+NLO (blue), compared to the
NLO cross section from MCFM (green) and Pythia at hadron level (black).
We used ∆φ = 180◦ − δφ . The lower panel shows the PDF uncertainty.

corrections, hadronization effects and multi-parton interactions. We can in-
clude the O(αs) corrections from the fixed-order by an overall normalization
factor, refered to as K-factor. In the comparison in figure 3.6 we used the
NLO K-factor of 1.6. The difference in shape for ∆φ & 170◦ is not significant,
given the size of the NLL uncertainty band (a reasonable proxy for the Pythia
uncertainty). We have verified that this is not due to multiparton interactions
or hadronization effects, which have a minimal effect on this observable.

3.7 Conclusions

We studied the back-to-back configuration in V+jet production, by including
QCD corrections from the dominant contributions due soft and collinear radi-
ation. The azimuthal angle in combination with the WTA axis ensures non-
global logarithms are absent at leading power, allowing us to obtain resummed
predictions at NNLL accuracy. Many ingredients that go into the (resummed)
factorization formula are already available for an analysis at N3LL. This fac-
torization is checked at NLO by comparing to MCFM, verifying the necessity
of including linearly-polarized gluon beam and jet functions.
The choice of recoil-free axis ensures insensitivity of the observable to soft

recoil effects, hadronization, and the underlying event. This makes the observ-
able attractive experimentally. Our work also serves as a baseline for pinning
down the inner-working of the QCD medium produced in heavy-ion collisions,
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where the use of a recoil-free axis will be even more important to suppress
effects from the huge underlying event background.
In the final chapter of this thesis, section 4.4.2, we shall show from first

principles that the same measurement with solely charged particles in the fi-
nal state has an almost identical distribution, implemented using track func-
tions [167,168]. This makes it possible to exploit the superior angular resolution
of the tracking system (compared to calorimetry). As we shall see, the usage of
a recoil-free jet definition also significantly simplifies the transition to tracks.

Appendices

3.A Anomalous dimensions

This appendix summarizes all the anomalous dimensions needed for this chap-
ter. We start with the beta function, which describes the RG evolution for the
strong coupling constant,

dαs(µ)

d lnµ
= −2εαs + β(αs), β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
. (3.73)

The first three loop orders are given by [144,145]

β0 =
11

3
CA −

4

3
TFnf , (3.74)

β1 =
34

3
C2
A −

20

3
CATFnf − 4CFTFnf ,

β2 =
2857

54
C3
A+
(

2C2
F−

205

9
CFCA−

1415

27
C2
A

)
TFnf+

(44

9
CF +

158

27
CA

)
T 2
Fn

2
f .

The cusp, non-cusp, and rapidity anomalous dimensions are perturbative
functions, and we write their expansion in αs as

Γcusp =

∞∑
n=0

(αs
4π

)n+1
Γn , γiµ =

∞∑
n=0

(αs
4π

)n+1
γin , γν =

∞∑
n=0

(αs
4π

)n+1
γνn.

(3.75)
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The cusp anomalous dimension is, up to three loops, given by [143,169]

Γcusp
0 = 4 ,

Γcusp
1 =

(
268

9
− 4π2

3

)
CA −

80

9
TFnf ,

Γcusp
2 = C2

A

(
490

3
− 536π2

27
+

44π4

45
+

88

3
ζ3

)
+ CFTFnf

(
−220

3
+ 64ζ3

)
+ CATFnf

(
−1672

27
+

160π2

27
− 224

3
ζ3

)
− 64

27
T 2
Fn

2
f . (3.76)

The non-cusp rapidity anomalous dimension is given by [142]

γν1 = 0 , γν1 = −CA
(

128

9
− 56 ζ3

)
− β0

112

9
, (3.77)

where we have made use of its universality, i.e. it is the same for each ingredi-
ent and the color dependence has been extracted.
The other non-cusp anomalous dimension are however different for each fac-
torization ingredient. For the hard function they are given by [137,170–172]

γq0 =− 6CF , (3.78)

γq1 =C2
F

(
−3 + 4π2 − 48ζ3

)
+ CFCA

(
−961

27
− 11π2

3
+ 52ζ3

)
+ CFTFnf

(
260

27
+

4π2

3

)
,

γg0 =− 2β0 = −22

3
CA +

8

3
TFnf ,

γg1 =C2
A

(
−1384

27
+

11π2

9
+ 4ζ3

)
+ CATFnf

(
512

27
− 4π2

9

)
+ 8CFTFnf .

The non-cusp anomalous dimensions for the beam and jet function are given
by [142]

γ
Bq
0 = 6CF ,

γ
Bq
1 = C2

F

(
3−4π2+48ζ3

)
+CFCA

(17

3
+

44π2

9
−24ζ3

)
+CFTFnf

(
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3
− 16π2

9
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,

γ
Bg
0 = 2β0 ,

γ
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1 = C2

A

(
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3
CATFnf − 8CFTFnf . (3.79)

For the soft function they are [142]

γS0 = 0 , γS1 = CA

(
64

9
− 28 ζ3

)
+ β0

(
56

9
− π2

3

)
. (3.80)





4
Track Functions

In particle physics we want to test the Standard Model and search for new
physics by comparing experiment with data. We therefore aim to extend the
level of precision on both sides. On the theory side, we accomplish this by per-
forming higher order calculations and using resummation in regions of phase
space where large logarithms spoil the perturbative nature. On the experi-
mental side, we are constrained by the limits of our detectors. The precision
at which we can measure angles at the LHC is for example limited by the
size of the calorimeter cells. Especially in the collinear limit, where particles
tend to end up in the same cell, this leads to large uncertainties. The way to
improve the accuracy of such measurements is by using data from the track-
ing system. The tracking system is a layer in the detector with the principle
task to provide efficient reconstruction of charged-particle tracks, from which
one can determine the momenta of charged particles, and has superior angular
resolution. It is clear that a theory description to make predictions with only
charged particles in the final state is highly desirable. In this chapter we will
show that we can reach state-of-the-art precision for observables defined on
charged particles only.
Track-based calculations are IRC unsafe and therefore require nonperturba-

tive track functions, which we will introduce in 4.1. In this section we will
discuss the importance of track functions, their properties and how they can
be used to capture the effects of non-perturbative physics of track-based mea-
surements. In section 4.2.1 we will identify the symmetries inherent to track
functions to organize the evolution structure. Using the pure Yang-Mills the-
ory as a toy model, we will show in section 4.2.2 how this symmetry alone fully
fixes the evolution of the track function up to the sixth moment in terms of
the (known) DGLAP splitting kernels. In section 4.2.3 we will present the full
result for the evolution of track functions in a theory where all quarks have
the same track function, where again the structure of the evolution is highly
constrained by symmetry relations. The remaining constants that cannot be
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completely fixed by symmetry will be calculated in section 4.3. We will use two
independent methods, which provides a good check on the validity. Lastly, in
section 4.4 we will obtain results for the Energy-Energy-Correlelator and the
azimuthal decorrelation in pp → Z + jet with tracks. This shows the consis-
tency of track functions beyond the leading order through an explicit O(α2

s)
calculation.

4.1 Introduction to track functions

The tracking system has a superior angular resolution compared to the calorime-
ter. We can exploit this advantage if we focus on observables that are defined
by using only charged particles. The angular resolution is most important
when looking at jet substructure [173–175], for which interest has been in-
creasing ever since the LHC was built. Jet substructure aims to study the
internal kinematic properties of high-Pt jets and search for new physics. The
complex radiation pattern inside jets contains valuable information that can
be used to enhance our understanding of QCD. Since jets describe a collimated
spray of particles, the angular resolution is of utmost importance when study-
ing its substructure. A second advantage of using tracking is that the tracking
system is closest to the interaction point and its data can be used to accurately
reconstruct the primary interaction vertex and secondary vertices from particle
decays. This effectively removes contamination from pile up effects, which are
additional proton-proton collisions that take place in the same bunch crossing.
Increasing the luminosity is therefore less of a problem for track-based mea-
surements. Many jet substructure measurements are performed on charged
hadrons [176–180]
This sounds great and we can even ask the question: "why consider calcu-

lations with data from calorimetry at all?". However, uncharged particles do
not leave any tracks and will only show up in the calorimeter cells. Restricting
to the tracking data is therefore only possible if we consider solely charged
particles in our study. In the literature there has been a lot of work on IRC
safe observables and theoretical predictions can be made using factorization,
e.g. for jet substructure [181]. However, whenever the measurement includes
just a subset of the final state particles, the cross section will have left-over IR
divergences at the partonic level [182,183] and this theoretical framework falls
apart. Track functions solve this issue of uncancelled divergences, such that
the observable is theoretically well defined and we can make precise predictions
to be tested at the LHC.
Track functions are non-perturbative objects by construction. Originally

they were introduced to describe the measurements involving all charged hadrons [167,
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168]. They have been successfully applied in a number of calculations in per-
turbative QCD [2,167,168,184]. One can generalize this notion to other subsets
of hadrons specified by their quantum numbers, e.g. flavor. The formal defi-
nition of a track function for quarks (in light-cone gauge) as a function of the
momentum fraction x transferred into charged particles, Tq(x), is given by

Tq(x) =

∫
dy+d2y⊥e

ik−y+/2 1

2Nc

∑
R,R̄

δ

(
x−

P−R
k−

)
(4.1)

× tr
[
γ−

2
〈0|ψ(y+, 0, y⊥)|RR̄〉〈RR̄|ψ̄(0)|0〉

]
,

and similarly for gluons. Here R denotes the hadrons in the final state be-
longing to the subset, R̄ denotes all other hadrons (the complement), and P−R
is the large light-cone momentum component of R. Despite the fact that we
allow R to be a more general subset of hadrons, we continue to refer to the
object in equation (4.1) as a track function. The hadronization process, for
which our understanding is limited, describes the transition from the highly
energetic partons that exit the hard collision to the lower energic hadrons and
makes sure that we end up with a finite cross section. The track functions
model this hadronization and remove the uncancelled IR divergences at the
partonic level.
Another feature of track functions is that they are independent of the hard

process. This universality can be used to extract track functions once from
some measurement, and use them to make predictions for other observables
defined on tracks. Furthermore, we know that the track functions are normal-
ized such that the integral over all momentum fractions gives one, as expected
by probability conservation, ∫ 1

0
Ti(x)dx = 1. (4.2)

To obtain the track function evolution we can treat the intermediate states
in (4.1) partonically, obtaining the bare track functions. In pure dimensional
regularization all radiative corrections are scaleless and vanish. We therefore
conclude that the bare track function is just a constant to all orders. More
specifically, we know that the bare track function is the renormalized track
function at zeroth order, Ti,bare = T

(0)
i . Another conclusion we can draw from

these scaleless radiative corrections is that the renormalized track functions
beyond leading order only has IR poles. The renormalized track function has
been studied before [167, 168] and T

(1)
i,bare in pure dimensional regularization
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with d = 4− 2ε is given by

T
(1)
i,bare(x, µ) =

1

2

∑
j,k

∫
dz

[
αs(µ)

2π

(
1

εUV
− 1

εIR

)
Pi→jk(z)

]
×
∫

dx1dx2T
(0)
j (x1)T

(0)
k (x2)δ

(
x− zx1 − (1− z)x2

)
, (4.3)

where Pi→jk(z) are the DGLAP splitting functions [20–22]. From this one can
immediately extract the evolution of track functions. In general we expect that
contributions to the RGE at order N are of the form

d

d logµ2
Ti(x, µ) =

∑
i1,i2,...,iN

∫
(ΠN

m=1dxmdzm)γ̃i→i1...iN (z1, . . . , zN )
N∏
m=1

Tim(xm)

× δ(1− z1 − . . .− zN )δ(x− x1z1 − . . .− xNzN ), (4.4)

with i the flavour of the initial parton, x the final momentum fraction that
is converted into tracks, xm the momentum fraction that is transferred into
tracks for each branch m in the splitting, and im the flavour and zm the
momentum fraction of the corresponding branch. The γ̃i→i1...iN (z1, ...zN ) are
general objects that describe the splitting in terms of energy fractions, but
are for the moment left unspecified. As we will see in section 4.1.3, by taking
moments of these objects they can be related to the DGLAP splitting functions.
Although the definition of track functions given in (4.1) is similar to the

better understood case of fragmentation, which describes the energy fraction
of a single hadron, the fact that R is the set of all hadrons of a given property
leads to crucial differences. Concretely, if R consists of all pions in the final
state, a final-state with two pions with momentum fractions x1 and x2 would
give a contribution ∼ δ(x−x1−x2) to the track function, while it would give a
contribution ∼ δ(x−x1)+δ(x−x2) to the pion fragmentation function. Objects
similar to track functions have been studied in the context of jet charge [85,86]
and fractal observables [185]. Due to the fact that they encode correlations
between arbitrary numbers of hadrons, the track functions satisfy complicated
non-linear evolution equations, generated by multiparton splittings. Nothing
is known about the structure of these equations beyond the leading order.
Exploring this will be the subject of this chapter.
Now we know how track functions are defined and where they can be ap-

plied. We will discuss the theoretical implementation of track functions in
calculations of cross sections in section 4.1.1. We will introduce a certain class
of observables (energy correlators) that will only use moments of track func-
tions when restricting the final state to charged particles. Therefore the focus
of the remaining part of this chapter will shift to moments of track functions.
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How these moments are defined will be discussed in detail in section 4.1.2. In
the last part, section 4.1.3, we will make the comparison to the more often
studied case of fragmentation, as a reference for readers that are familiar with
them, but also to make the first statements about the renormalization group
equations for track functions.

4.1.1 How to use track functions

The partonic cross section for an IRC safe observable e is

dσ

de
=
∑
N

∫
dΠN

dσN
dΠN

δ (e− ê(pµi )) , (4.5)

where we use dσN to denote the N -body differential cross section, and dΠN the
N -body Lorentz invariant phase space measure. Here we consider all particles.
As explained in section 4.1, if we would like to select the charged particles that
will be detected by the tracking system at the LHC, we need to use the track
functions. To convert a perturbative calculation to a calculation on tracks, one
must simply attach a track function onto each parton. The observable defined
on tracks is then given by

dσ

de
=
∑
N

∫
dΠN

dσ̄N
dΠN

∫ N∏
i=1

dxiTi(xi)δ (e− ê(xipµi )) , (4.6)

where the σ̄N now denotes the cross section from which the IR divergences are
subtracted. These IR divergences are absorbed by the track functions.
Let us illustrate this for the partonic cross section in e+e− → hadrons at
O(αs), measured on tracks. The partonic cross section e+e− → qq̄g will have
uncancelled IR divergences in the limit where the gluon is collinear to the
final state quark or anti-quark. The convolutions with the LO track functions
are trivial since at the at the partonic level these are just delta functions.
However, e+e− → qq̄ involves an NLO track function, containing all the IR
poles. This matching procedure is schematically shown in figure 4.1, where the
cross section defined on tracks is matched onto track functions.
Until now we have only considered observables which constrain the final

state through a delta function measurement. As seen from (4.6), the constraint
operator ê depends on xi when we consider only tracked particles. As a result
the full functional form of the track function is needed for the calculation.
There is another class of observables where one applies an energy weight-

ing to the final state, called energy correlators [186–193]. They represent an
infinite family of experimentally convenient observables, each of which can be
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Figure 4.1 In this figure we show the correspondence between the three body
partonic matrix element σ3 and the matching coefficient σ̄3 for e+e− → qq̄g.
The dots represents the track functions at tree-level (black) and O(αs) (blue).
The diagrams where the gluon is emitted from the other leg are not shown for
simplicity. Note that the leading order matching, which is not shown here, is
trivial and leads to σ2 = σ̄2. This figure was taken from [167].

expressed in terms of a finite number of energy flow operators. These energy
flow operators are defined as

E(~n) =

∫ ∞
0

dt lim
r→∞

r2niT0i(t, ~rn), (4.7)

where unit vector ~n sets the direction and T denotes the energy-momentum
tensor. When these operators act on a final state X, they ’weight’ the final
state by the energy of all particles going into direction ~n,

E(~n) |X〉 =
∑
i

Eiδ(Ω~pi − Ω~ni) |X〉 , (4.8)

where i runs over all particles in the final state and Ω is the solid angle. The
delta function thus makes sure that the energy of particles is only considered
when they travel in a certain direction n̂. Experimentally this means that
we restrict to particles that hit a specific calorimeter cell. The cross sections
constructed with these energy correlators are weighted cross sections and read

σ =

∫ ∞
0

d4xeiq·x 〈0| O(x)E(~n1) · · · E(~nN )O(0) |0〉 , (4.9)

where N denotes the number of energy deposits we are correlating. The O
are the source operators in QCD which prepare the initial state, e.g. the
electromagnetic current ψ̄γµψ in e+e− → hadrons. These correlations can
be computed in perturbation theory, and are known explicitly for the two
[192, 194–198] and three-point correlator [199]. They have recently received
extensive theoretical interest from a variety of communities [150,184,190–193,
198–204,204–214].
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One of the key benefits of energy correlators is that they enable a simple
incorporation of tracks in perturbative calculations. Let us discuss this with
the relatively simple case where we look at the correlation between two energy
flow operators. This observable is referred to as the Energy-Energy-Correlator
(EEC). The cross section for the EEC as a function of the angular separation
reads

dσ

dχ
=
∑
i,j

∫
dΠN

dσN
dΠN

EiEj
Q2

δ(χ− χij), (4.10)

where Ei and Ej are the energies of final-state partons i and j with angular
separation χij . The modification to only include tracks is achieved by

Ei →
∫

dxixiTi(xi)Ei = Ti(1)Ei, (4.11)

where xi is the energy fraction that is transferred into charged particles. The
Ti(1) is the first moment of the track function, for which the definition can be
found in equation (4.15). The weights for the track EEC are the weights in the
EEC multiplied with the first moment of the corresponding track function. If
we stay away from the collinear limit, i.e. χ > 0, the cross section for the track
EEC as a function of the angular separation reads

dσ

dχ
=
∑
i,j

∫
ΠN

dσN
dΠN

EiEj
Q2

Ti(1)Tj(1)δ(χ− χij). (4.12)

Higher moments of the track functions appear when multiple energy flow opera-
tors are placed at the same parton. These so-called contact terms are necessary
for describing collinear limits. So for the track EEC, the contact term will have
both correlators on the same parton, hence z = 0. This will result in

E2
i →

∫
dxix

2
iTi(xi)E

2
i = Ti(2)E2

i . (4.13)

This statement can be generalized to an N -point correlator, for which one
must consider up to N correlators placed on a single parton. If all correlators
are placed on the same parton, we get the N -th moment of the track function.
We conclude that describing track-based weighted cross sections of N -point
correlators only requires integer moments ≤ N of track functions. As a result,
the resummation of track correlators only requires the renormalization of these
integer moments, which we will focus on. We will see in the following sections
that the renormalization group equations for moments of track functions are
non-linear. However, they are largely fixed by symmetry and can be completely
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Figure 4.2 Triple collinear splittings contributing to the evolution of the track
function moment Tq(3) at next-to-leading order: (a) Tg(1)Tg(1)Tq(1) and (b)
Tg(2)Tg(1). Note that Tq(0) = 1 by normalization.

fixed by looking at the singular behaviour of track cross sections. This will
allow us to perform perturbative calculations involving track information at
high order.
The standard observables, for which the cross section was given in (4.5),

involve the knowledge of an infinite number of energy correlators. The operator
valued δ-function observables can be related to moments after an expansion:

δ(e− ê) = δ(e) + êδ(1)(e) + · · ·+ ên

n!
δ(n)(e), (4.14)

where δ(n)(e) is the n-th derivative of the delta function. This relation suggests
that the weighted observables are the simpler building blocks for the more
traditional δ-function type observables, since any observable that is defined by
specifying its value on the final state involves an infinite number of moments
to define it. It is therefore very natural to study moments of track functions,
before one even considers the full functional form.

4.1.2 Moments of track functions

As discussed in 4.1.1, energy correlators only involve moments of track func-
tions when restricting the final set of hadrons. For this class of observables it
is therefore sufficient to know the evolution equations for moments of the track
functions. To organize the structure of these evolution equations, we note that
track functions measure the energy fraction in all hadrons of a given type. The
more branches are involved, the more non-linear the structure will be. Taking
moments will turn the complicated functional convolution structure in (4.4)
into a product of moments of track functions, which are just numbers. In fig-
ure 4.2 we illustrate this non-linearity by the fact that there is a Ti(m) on each
branch.
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Before we continue, let us define the n-th moment of the track function as

Ti(n, µ) =

1∫
0

dx xn Ti(x, µ) . (4.15)

The track function is normalized such that Ti(0, µ) = 1. In the following we
often suppress the argument µ for brevity. Taking the n-th moment of the
general form of the evolution of the track function function, as shown in (4.4),
we find

d

d logµ2
Ti(n)

=
∑

i1,...,iN

(∫ N∏
m=1

dxmdzmTim(xm)

)
γ̃i→i1...io({zm})δ

(
1−
∑
r

zr

)( N∑
l=1

xlzl

)n
,

=
∑

i1,...,iN

∑
l1+l2+..=n

γ̃i→i1...iN (n; {lj})
N∏
m=1

Tim(lm), (4.16)

where

γ̃i→i1...iN (n; {lj}) =

(
n

l1...lN

)(∫ N∏
m=1

dzmz
lm
m

)
γ̃i→i1...iN ({zm})δ

(
1−
∑
m

zm

)
.

(4.17)

At NLO we are dealing with at most three branches, so we can have at most
a product of three track functions on the right-hand side of (4.16).
The diagonal terms in the evolution of the moments of track functions only

involve a single track function of moment n. This linearity is the same as one
encounters for fragmentation functions, which will be discussed in section 4.1.3.
We will see there that the diagonal terms are given by moments of splitting
functions,

d

d logµ2
Ti(n) = −

∑
jk=q,q̄,g

γjk(n+ 1)Tj(n) + non-diagonal terms, (4.18)

where

γij(n+ 1) = −
∫
Pij(x)xndx, (4.19)

with Pij(x) the DGLAP splitting functions1. The terms that we call non-
diagonal involve multiple track functions for which the sum of their moments
is equal to n. Appendix 4.C provides a list of these γij .

1This is a different notation than in equation (4.3), but it denotes the same object:
Pi→jk(x) = Pki(x).
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Before we continue our discussion about track functions, we will discuss
the better known fragmentation functions [47,215], which describe the energy
distribution of single hadrons, in the next section. They have a long history
in QCD and have been used in precision studies.

4.1.3 Fragmentation functions

Fragmentation functions measure the energy fraction of a single hadron frag-
menting from a quark or gluon. Since they have been studied in much detail,
we can compare them to the track functions to see how (if at all) the evolution
relates. While fragmentation functions have been well tested in higher-order
calculations, track functions have only been investigated at leading logarith-
mic order. In order to firmly establish the track function formalism, we will
compute their renormalization group evolution beyond the leading order in
the coming sections, and furthermore show that these objects absorb the IR
divergences appearing in perturbative calculations at O(α2

s).
Let us first construct the evolution of the fragmentation function in the same

manner as we did for tracks in (4.4). The difference now is that the evolution
is linear. In other words, the evolution of fragmentation only includes terms
with a single fragmentation function, regardless of the order in perturbation
theory:

d

d logµ2
Di(z, µ) =

∫ N∏
m=1

dzmδ
(

1−
∑
r

zr

) ∑
i1,i2,..iN

γ̃i→i1...iN ({z})

×
N∑
l=1

∫
dxDil(x, µ)δ (z − xzl) , (4.20)

where N is the order in perturbation theory and the indices i1 . . . iN denote
flavor. The objects that describe the splitting in terms of the energy fraction,
γi→i1...io({z}), are the same as we encountered in (4.4) for track functions.
However the renormalization group equation of the fragmentation function is
well known and reads

d

d logµ2
Di(z, µ) =

∑
j

Pji(z)⊗Dj(z, µ). (4.21)

This is an all-order expression, where Pji(z) is the DGLAP splitting function.
We can now take the n-th moment of (4.21), to transforms the convolution
into a product in moment space:

d

d logµ2
Di(n) = −

∑
j

γji(n+ 1)Dj(n). (4.22)
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Comparing this to the n-th moment of (4.20), we see that the moments of
splitting functions can be related to γi→i1...io({z}) as

Pji(n) =

∫ o∏
m=1

dzmδ
(

1−
∑
r

zr

) ∑
i1,i2,..io

γ̃i→i1...io({z})
o∑
m

znmδj,im , (4.23)

where Pji(n) ≡
∫
dzznPji(z).

Now that we have this relation between γ̃ and the splitting kernels P , we
can investigate the evolution of tracks a little more. Let us start by looking
at the evolution of the first moment, as shown in (4.18). Here we see a direct
relation with the first moment of fragmentation functions. We conclude that
the evolution of the first moment of track functions is completely determined
by moments of splitting functions:

d

d logµ2
Ti(1) = −

∑
j

Tj(1)γji(2). (4.24)

For higher moments the non-linearity kicks in and we cannot express all anoma-
lous dimensions in terms of moments of splitting functions γij(n). However,
if we only consider diagonal contributions, as we wrote in (4.16), we see that
they are directly related to the moments of splitting functions:

d

d logµ2
Ti(n) = −

∑
j

Tj(n)γji(n+ 1) + non-diagonal terms. (4.25)

It is now clear that the diagonal terms in the evolution, one term for each
flavour, are given by the corresponding moment of the splitting function. This
is an all order statement as well, but keep in mind that for low orders some
of these terms are zero because some flavours cannot yet be produced at that
order.
Lastly, we note that the n-th moment of track functions encodes correlations

between n final state hadrons. Concretely, Ti(n) is related to the n-hadron
fragmentation function [216–218]. This is discussed for n = 2 in [86].
Comparing to the better known fragmentation function we established that

the diagonal terms in the evolution of moments of the track functions are
given by moments splitting functions. For the first moment in particular the
evolution is completely determined by the first moment of splitting functions to
all orders. In the next sections we will focus on the anomalous dimensions that
are not fixed by the comparison to fragmentation. We will start by looking
at the symmetries of the evolution of the track functions to organize their
structure.
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4.2 Symmetries of the track function evolution

The track functions satisfy complicated non-linear evolution equations, gener-
ated by multi-parton splittings, see figure 4.2. This is due to the fact that they
encode correlations between arbitrary numbers of hadrons. Nothing is known
about the structure of these equations beyond the leading order. To organize
their structure, we will identify and use symmetries that the track function
evolution obeys.
If we take a step back and look at fragmentation functions we notice that

their evolution is invariant under scaling, xi → axi with a an arbitrary pa-
rameter. This is a result of the possibility to rescale the energy fractions of
the partons zi, since they are integrated over (see (4.20). Whenever scaling
comes out to play one can restrict to homogeneous relations. For fragmentation
functions we know that the evolution is even linear, see (4.21), so the Mellin
transformation diagonalizes the evolution. Track functions did not inherit this
scale invariance. However, in (4.16) we have already seen that the evolution
of T (n) only involves terms

∏
i T (ni) with

∑
i ni = n. This feature constrains

the evolution of jet functions quite a bit. To further constrain the evolution of
track functions we can use a symmetry they do exhibit: shift symmetry. We
will discuss this in section 4.2.1. In 4.2.2 we will look at the implications on the
evolution of moments of track functions in a simple example with only gluons.
In that section we will define a convenient basis of building blocks which are
invariant under this symmetry. In the section 4.2.3, we will make our setup
more realistic by adding quarks, but still keep the track function the same for
all quark flavours. The completely general expressions are given in appendix
4.E.

4.2.1 Shift symmetry

The fact that track functions measure the energy fraction of all hadrons of a
given type (e.g. charged hadrons) implies that the evolution of track functions
exhibits a symmetry corresponding to energy conservation: it is invariant under
shifts, x→ x+b. The energy fraction that is converted into hadrons of a given
type is given by x =

∑
zixi, where i runs over the final state partons and∑

zi = 1 by energy conservation. The delta function that appears in the
evolution of the track function therefore satisfies the shift invariance:

δ
(
x−

∑
i

xizi

)
→ δ

(
x+ b−

∑
i

(xi + b)zi

)
= δ
(
x+ b−

∑
i

xizi − b
∑
i

zi

)
,

= δ
(
x−

∑
i

xizi

)
. (4.26)
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We can now relate moments of track functions to each other by utilizing this
shift symmetry.

T (n) = 〈xn〉 =

∫
dxxn T (x)

→
∫
dxxn T (x+ b)

=

∫
dx′(x′ − b)n T (x′)

=
∑
m

(
n

m

)
(−1)n−mbn−mT (m), (4.27)

where we suppressed the flavor indices for simplicity. In moment space, this
corresponds to an infinite set of polynomial shift symmetries,

T (0)→ 1,

T (1)→ T (1)− b,
T (2)→ T (2)− 2bT (1) + b2,

T (3)→ T (3)− 3bT (2) + 3b2T (1)− b3,
T (4)→ Ti(4)− 4bTi(3) + 6b2Ti(2)− 4b3Ti(1) + b4,

etc. (4.28)

which severely constrain the form of the evolution. The shift symmetry sug-
gests changing to a basis of central moments σ(n), which are shift invariant by
construction. These are defined as

σ(n) = 〈(x− 〈x〉)n〉, (4.29)

where the notation 〈xn〉 = T (n) is defined in (4.27). To see that this definition
is indeed shift invariant we now perform the shift x→ x+ b in (4.29). Noting
that 〈x+ b〉 is just the same as 〈x〉+ b, as we showed in (4.30), we see that the
shifts cancel:

〈(x−〈x〉)n〉 → 〈(x+b−〈x+b〉)n〉 = 〈(x��+b−〈x〉��−b)n〉 = 〈(x−〈x〉)n〉 . (4.30)

To write the central moments in terms of track functions we use the binomial
expansion in (4.29). This leads to

σ(n) =
∑
m<n

(−1)n−m
(
n

m

)
T (m)T (1)n−m, (4.31)
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with n ≥ 2. For the first five moments, this results in

σ(2) = T (2)− T (1)2,

σ(3) = T (3)− 3T (2)(1) + 2T (1)3,

σ(4) = T (4)− 4T (3)T (1) + 6T (2)T (1)2 − 3T (1)4,

σ(5) = T (5)− 5T (4)T (1) + 10Ti(3)T (1)− 10T (2)T (1)2 + 4T (1)4. (4.32)

For the first moment we cannot construct an invariant this way. We would
need a theory with different flavours to define an object that is shift invariant
by taking the difference between two track functions, such that the shift is can-
celled between them. In the next section, we will demonstrate the implications
of this shift symmetry for a theory that only includes gluons.

4.2.2 Evolution of track functions in a pure gluon theory

We will restrict ourselves to the simplified case with solely gluons. In this case,
the shift symmetry fully predicts the evolution up to the third moment at all
orders. At order α2

s the evolution is even predicted up to the sixth moment.
Since we will be exploiting the shift invariance, it is convenient to write the

evolution in terms of the central moments. The evolution is then found by
following a simple algorithm. The evolution of the first moment is directly
related to the moment of the corresponding splitting function, as we already
discussed in the comparison with fragmentation functions in (4.24). In a theory
with only gluons this implies d

d lnµ2Tg(1) = 0, as there can only appear shift
invariant objects in the evolution. The evolution of the higher moments will
be expressed in terms of the central moments. The total number of moments
of each term in the evolution should be equal by construction. As there is no
object at first moment that is invariant under shifts (this is specific to the pure
gluon case), nothing interesting happens for the evolution of the first three
moments. At the fourth moment we can have contributions from both σg(4)
and σg(2)2, which gives us:

d

d lnµ2
Tg(1) = 0, (4.33)

d

d lnµ2
σg(2) = −γgg(3)σg(2),

d

d lnµ2
σg(3) = −γgg(4)σg(3),

d

d lnµ2
σg(4) = −γgg(5)σg(4) +

∑
i3...iN

γ̃g→ggi3...iN (4; 2, 2, 0 . . . 0)σg(2)2.
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where N is the order of perturbation theory.
When you restrict to NLO, terms involving more than three track functions

are not allowed, since there is a maximum of three branches at this order.
This constraints anomalous dimensions in equation (4.33) and the evolution
can be completely fixed up to the sixth moment. In particular, when looking
at the fourth moment we see that σg(2)2 includes a term Tg(1)4. Inserting
the definition of σg(4) and subsequently the known evolution equations for the
first three moments, we can solve for the constant by requiring that all the
terms including more than three T ’s cancel out. Similar manipulations can
be done to completely fix the evolution at the fifth moment. From the sixth
moment and higher the extra constraints are not enough to completely fix the
evolution. The evolution equations for a pure gluon theory at NLO for the
sixth moment has one unknown constant:

d

d lnµ2
σg(4) =−γgg(5)σg(4)+(−6γgg(3)+8γgg(4)−3γgg(5))σg(2)2, (4.34)

d

d lnµ2
σg(5) =−γgg(6)σg(5)−2σg(2)σg(3)(5γgg(3)−5γgg(4)+γgg(6)),

d

d lnµ2
σg(6) =−γgg(7)σg(6)+γ̃g→ggg(6; 2, 2, 2)(−σg(2)3−σg(3)2+σg(2)σg(4))

+σg(2)3(−15γgg(3)+40γgg(4)−60γgg(5)+48γgg(6)−15γgg(7))

+σg(3)2(−15γgg(3)+20γgg(4)−15γgg(5)+12γgg(6)−5γgg(7)).

As we saw for the pure gluon theory, and will be true in general, the shift
symmetry alone is not enough to determine all the coefficients in the evolution.
In section 4.3.1, we will focus on the missing pieces.

4.2.3 Evolution for quarks and gluons

In the previous section we discussed the general form of evolution equations
for a pure gluon theory. To make the setup more realistic we will now add
quarks, but take the same track functions for all quark flavours. The shift
symmetry implies that the evolution equations can be expressed in terms of
shift-invariant central moments σg(n) and σq(n), as well as a first moment
invariant: ∆ = Tq(1)− Tg(1). The fact we now have an invariant for the first
moment, makes the evolution equations less restrictive. Let us first summarize
how to find the evolution of track functions in terms of central moments now
that we can define an invariant for the first moment. The first step is to define
p(n) that gives the partitions of n. We can then write the general form of the
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evolution in terms of the central moments as

d

d lnµ2
σi(n) =

p(n)∏
m=1

cm
∏
km

σi(km), (4.35)

where km a parameter that runs over the values of the particular partition m
and σi can only denote shift invariant objects, which includes ∆ for the first
moment. The relation between c and γ̃ is found by using the definition of the
central moments in terms of track functions, see (4.32). Let us take n = 4
as an example, for which the number of partitions, p(4), is 5. The possible
partitions are (4), (3,1), (2,2), (2,1,1) and (1,1,1,1). Using equation 4.35 we
then find

d

d lnµ2
σi(4) =

∑
j

− γij(5)σj(4) + cij(3, 1)σj(3)∆ + cijk(2, 2)σj(2)σk(2)

+ cij(2, 1, 1)σj(2)∆2 + ci(1, 1, 1, 1)∆4. (4.36)

The diagonal piece,
∑

j −γij(5)σj(4), is a result from the LO comparison to
fragmentation functions. In the final step one can impose extra constraints
when restricting to a specific order. Meaning, if we constrain to NLO, terms
involving 4 (or more) track functions need to cancel, if we constrain to NNLO,
terms involving 5 (or more) track functions need to cancel, and so forth. As we
saw for the pure gluon theory, and will be true in general, the shift symmetry
alone is not enough to determine all the coefficients in the evolution.
For charged particles we can make use of the fact that Tq = Tq̄. To simplify

the notation, we will define ~σ(n) = (σq(n), σg(n)). Using the shift symmetry
in section 4.2.1, combined with a comparison to the fragmentation function
limit, we obtain

d

d lnµ2
∆ = −(γqq(2) + γgg(2))∆ , (4.37)

d

d lnµ2
~σ(2) = −γ̂(3)~σ(2) + ~c∆2∆2 ,

d

d lnµ2
~σ(3) = −γ̂(4)~σ(3) + ĉσ2∆~σ(2)∆ + ~c∆3∆3 ,

d

d lnµ2
~σ(4) = −γ̂(5)~σ(4) + ĉσ2σ2 ⊗ (~σ(2) · ~σ(2)T )

+ ĉσ3∆~σ(3)∆ + ĉσ2∆2~σ(2)∆2 + ~c∆4∆4 ,

and similarly for the higher central moments. Note that the ⊗ in the evo-
lution of the fourth moment should be read as ĉσ2σ2 ⊗ (~σ(2) · ~σ(2)T )i =
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∑
j,k cijkσ(2)jσ(2)k , where i is the index of ~σ(n) on the LHS. We emphasize

that since this structure is derived from symmetry, it holds to all orders in per-
turbation theory. It is remarkably simple compared to the most general form
of the non-linear evolution, emphasizing the important role the shift symmetry
plays in constraining the evolution. Remarkably, despite the non-linearity of
the equations, shift invariance, combined with the uniqueness of the first three
central moments, forces the evolution of the first three central moments of the
track functions to be the standard DGLAP evolution [20–22, 219], since (at
least for charged hadrons) ∆ = Tq(1)−Tg(1) is suppressed. On the other hand,
unlike the central moments, the moments themselves, Ti(n), exhibit compli-
cated non-linear evolution. The first genuine unsupressed non-linearities in the
evolution of the central moments occur at the fourth moment due to mixings
between ~σ(4) and (~σ(2) · ~σ(2)T ), and similarly at higher moments.
This form of the evolution admits a particularly pleasing interpretation. In a

unitary field theory, the eigenvalues of the γ̂(n) are positive, and monotonically
increasing with n [220, 221]. This implies that all central moments (with the
exception of the mean) of the track functions vanish as the energy is taken to
infinity, as does ∆. Furthermore higher central moments vanish more rapidly.
Therefore the track functions converge to the UV fixed point Ti(x, µ)→ δ(x−
x0). To what extent this limit is relevant for phenomenology may depend on
the subset of hadrons considered, e.g. for charged hadrons ∆ is already small at
rather low scales, as are higher central moments, but σi(2) remains relatively
large for µ = 1 TeV [167].

4.3 Evolution of track functions

Having understood the structure of the evolution equations for the moments
of the track functions, in this section we explicitly compute the remaining
anomalous dimensions for the first three moments at next-to-leading order.
This allows us to to describe three-point correlation functions of energy flow
with only charged particles in the final state, which matches the current state
of the art calculations [199]. In section 4.3.1 we will compute the RGEs of
the track functions by integrating the collinear splitting functions [222–224] to
obtain a jet function for the nth moment of charged particles, differential in the
invariant mass of all particles [98]. This is illustrated in figure 4.2. After the
renormalization of this jet function (which is the same as the renormalization
of the invariant mass jet function [66, 68]), the track function evolution can
be inferred from the remaining IR poles. We will see that the shift symmetry
of the track function evolution equations significantly reduces the required
calculations. In section 4.3.2, we compute all mixing terms separately, as an
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additional check on our calculation, and verified that they respect the shift
symmetry. In section 4.4.1 we then calculate the two-point energy correlation
analytically at order O(α2

s). The IR poles from the partonic correlator give an
independent calculation of the evolution equations, providing a strong check
on the track function formalism at O(α2

s).

4.3.1 Full Track Function Evolution at Next-to-Leading Order

As discussed in section 4.1, calculating the track function directly will result
in scaleless integrals, and will therefore not give us the desired evolution. We
will therefore instead calculate a jet function J(s, x) differential in the total
invariant mass s of the jet and the track fraction x. In this section we will
go through the steps for the quark track function in detail. For the gluon
track function the calculation is similar and can be performed by following the
analogue of the steps discussed here. We will focus on the first three moments,
but it is straightforward to extend the procedure to arbitrary moments. We
will work at NLO accuracy to match state of the art calculations.
Track functions are constructed in such a way that they remove any IR

divergences that may appear by not including the full subset of particles on
the partonic level. In our track jet function, we therefore expect that the
track functions cancel any left over IR divergences after renormalization. In
this subsection we will focus on extracting the evolution for the quark track
function.
To extract the evolution of the quark track function, we start with the quark

track jet function, which can be calculated order by order,

Jq(s, x) = J (0)
q (s, x) +

αs
4π
J (1)
q (s, x) +

(αs
4π

)2
J (2)
q (s, x) +O(α3

s), (4.38)

where the dependence on the renormalization scale µ is left implicit. At lowest
order the calculation is fairly simple since there are no divergences

J (0)
q (s, x) = T (0)

q (x)δ(s). (4.39)

If we go to the first order we see that including only a subset of particles in the
final state results in divergences on the partonic level, which will be captured
by the track function.

J (1)
q (s, x) =T (1)

q (x, µ)δ(s) +
∑
ij

∫
dx1dx2dz1dz2J (1)

q→ij(s, z1, z2)

× T (0)
i (x1)T

(0)
j (x2)δ (x− z1x1 − z2x2)) , (4.40)
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where J (1)
qi is a one loop matching coefficient, which is finite by construction.

Since the second term in this expression is finite, the one loop track function
therefore contains all the poles. We can now continue to O(α2

s)

J (2)
q (s, x) =T (2)

q (x)δ(s) +
∑
ij

∫
dz1dz2dx1dx2J (1)

q→ij(s, z1, z2) (4.41)

× T (1)
i (x1)T

(0)
j (x2)δ(x− z1x1 − z2x2)

+
∑
ijk

∫
dz1dz2dz3dx1dx2dx3J (2)

q→ijk(s, z1, z2, z3)

× T (0)
i (x1)T

(0)
j (x2)T

(0)
k (x2)δ(x− z1x1 − z2x2 − z3x3).

Again the matching coefficients are finite, so the last term in the expression
above does not contain any poles. We can therefore neglect this last term in
our quest to extract the second order quark track function, which only consist
of poles. We calculate the renormalized J (2)

q and subtract the J (1)T (1) terms.
The IR poles that are left over give us the O(α2

s) evolution of T (2)
q . In the

rest of this section we will focus on calculating the evolution for the first three
moments at O(α2

s). We will do this by calculating the renormalized jet function
up to O(α2

s) and then proceed moment by moment to extract the evolution of
the track function.
The bare jet function at O(αs) was introduced in chapter 1.2.5. We now

include tracks by including a T (0)
i for resulting each particle after splitting,

where i matches the flavour. Using the definition in 2.2 and taking the n-th
moment we find

J
(1)
q,bare(s, n) =

−2CFµ
2ε

s1+ε

∫ 1

0
dz

(
1 + z2

1− z
− ε(1− z)

)
eεγE (1− z)−ε

Γ (1− ε)
×

∑
k+m=n

(1− z)kzmT (0)
q (k)T (0)

g (m), (4.42)

where z (1−z) is the energy fraction of the quark (gluon) after the splitting. In
(4.40) we see that the renormalized track functions we want to extract always
come with a δ(s). We can therefore use the expansion in ε and only consider
the δ(s) terms when we want to extract T (1)

q
2. For the first moment we see

that there are only two possibilities for k and m, namely a first moment of the
quark (k = 1 and m = 0) or gluon (k = 0 and m = 1) track function. We

2The series in ε will also give a plus distribution, however this does not contribute a pole.
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therefore have

J
(1)
q,bare(s, 1)|δ(s) =T (0)

q (1)
(γ(0)

qq (2)

ε
+ jqq(1) + ε pqq(1)

)
+ T (0)

g (1)
(γ(0)

gq (2)

ε
+ jgq(1) + ε pgq(1)

)
, (4.43)

where the γij(n) are the moments of splitting functions defined in (4.19) and
the constants jij(n) and pij(n) are listed in appendix 4.D. Similar expressions
can be found for higher moments. The bare jet function at first order for the
second and third moment can be found in appendix 4.D. The first thing to
note is that the ε−1 pole is the n-th moment of the time-like splitting function
(γ(n + 1) by convention). Second, we see that contributions with three track
functions are absent at LO, because we have at most two partons in the final
state.
Equations (4.40) and (4.41) hold for the renormalized track jet function and

the renormalized track function captures all the IR divergences that are left
after renormalization . We remove UV divergences with the modified minimal
subtraction scheme (MS). The renormalization of the track jet function is
the same as for the normal jet function. This is due to the fact that in the
factorization only the jet function contributes to the measurement of x. RGE
consistency then tells us that the UV structure should therefore be unchanged
[98] and the renormalization is given by

Jq(s, x, µ) =

∫ ∞
0

ds′ ZJq(s
′, µ)Jq,bare(s− s′, x) , (4.44)

ZJq(s
′, µ) =

δ(s′) +
αsCF

4π

[
4

ε

1

µ2
L0

(
s′

µ2

)
− δ(s′)

(
4

ε2
+

3

ε

)]
+
α2
sCF

(4π)2

[[
1

µ2
L1

( s′
µ2

)16

ε2
+

1

µ2
L0

( s′
µ2

)(
−16

ε3
− 12

ε2

)
+ δ(s′)

(
8

ε4
+

12

ε3
+

1

ε2

(9

2
− 4

3
π2
)

+
1

ε

(
−3

4
+ π2 − 12ζ3

))]
+ CA

[
1

µ2
L0

( s′
µ2

)(
−22

3

1

ε2
+

1

ε

(134

9
− 2

3
π2
))

+ δ(s′)

(
11

ε3
+

1

ε2

(
−35

18
+
π2

3

)
+

1

ε

(
−1769

108
− 11

18
π2 + 20ζ3

))]
+ TFnf

[
1

µ2
L0

( s′
µ2

)(8

3

1

ε2
− 40

9

1

ε

)
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+ δ(s′)

(
− 4

ε3
+

2

9

1

ε2
+

1

ε

(121

27
+

2

9
π2
))]

+O(α3
s) .

Furthermore, we need to renormalize the strong coupling constant with

Zα = 1− αs
4π

β0

ε
+O(α3

s), (4.45)

with

β0 = −11

3
CA +

4

3
TFnf . (4.46)

Now we use a neat trick: we know that the bare track function is zero be-
yond leading order, since it consists of scaleless integrals. We can therefore
write T (0)

i = Ti,bare. Then, by renormalizing the bare jet function, all the left
over IR divergences in the renormalized jet function will cancel. In this way
we automatically obtain the right-hand side (RHS) of (4.40) and (4.41). The
renormalization factor we introduce for this track function should thus cancel
all divergences. It is exactly this feature that we will use to fix the miss-
ing pieces in the evolution equation. In practice we substitute the following
expression for the first moment

Tq,bare(1) =Tq(1) +
αs
4π

1

ε

(
R(1)
qq (1)Tq(1) +R(1)

qq (1)Tg(1)
)

+
1

2

α2
s

(4π)2

(1

ε

(
R(2)
qq (1)Tq(1) +R

(2)
q̄q (1)Tq̄(1) +R(2)

gq (1)Tg(1)

+R
(2)
Qq(1)TQ(1) +R

(2)

Q̄q
(1)TQ̄(1)

)
+

1

ε2
(· · · )

)
+O(α3

s), (4.47)

where all the track functions on the rhs are renormalized track functions and
the R(m)

ij (n) represent the renormalization factors at order m. The 1/ε2 poles

in (4.47) at O(α2
s) are completely fixed by the O(αs) evolution factors R(1)

ij (1),
and they only function as a check on the procedure, so we will leave them out
for now. The expressions for the second and third moment are similar, but
include mixing terms in alignment with (4.16).
The contribution to the track jet function at order O(α2

s) consists of contri-
butions from purely virtual corrections, real-virtual corrections and corrections
with two real emissions. This calculation can be done analytically, as we will
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Figure 4.3 The NLO splittings contributing to the two loop jet function. The
integrals I schematically denote the integration over the momentum fractions
z1, z2 and z3 with weight za1zb2zc3. Note that the I integrals only represent the
δ(s) contributions, since these are of interest when extracting the evolution of
track functions from the track jet function.

see in section 4.3.2. In this section, however, there is no need to perform the
calculation in detail, since the evolution of the track functions can be fully
extracted from consistency. It is sufficient to write the contributions to the jet
function at order O(α2

s) in integral form. As one can see in figure 4.3 there
are four diagrams that contribute to the quark initiated jets, from which one
of them is a real virtual contribution. Instead of performing the calculation
we will introduce variables that denote the integrals that show up, which are
also introduced in figure 4.3. After the integration over the invariant masses
has been performed, as will become more clear in when we peform the full cal-
culation in in section 4.3.2, the dependency on s is an overall factor −1

ε s
−1−2ε.

As explained before we are only interested in the δ(s) terms and the integrals
I will therefore only include these pieces. The variables of the integrals a, b, c
represent the weighting by the momentum fractions. For example Iqgg[a, b, c]
represents the integrated splitting from a quark in a quark and two gluons,
where the splitting amplitude is weighted by the momentum of the quark z1

and both gluons z2 and z3 as za1zb2zc3,

Iqgg(a, b, c) =

∫
dΦc

3Θ(µ2 − s123)Pq→qgg({s}, z1, z2, z3)za1z
b
2z
c
3. (4.48)

The collinear phase space dΦc
3 is given in (4.57) and the NLO splitting function

in appendix 4.B.
Another feature specific to each integral is its color structure. The real

virtual contribution Iqg has two color structures, namely C2
F and CFCA. The

same color structures show up for the integrated splitting amplitude in the
q → qgg process. In nfIqQQ̄ there is a single color structure nfCFTf . Lastly,
in Iqqq̄ we have the CFTF and CFCA/2. It is convenient to split the integrals
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such that

Iqqq̄ = IqQQ̄ + Iqint. (4.49)

Now it is also clear why we have chosen to extract the color structures with
nf from the integrals in figure 4.3. It enables us to split the calculation in an
nf part and one without. The same could be done for other color structures,
but since in our case it sufficient to only keep track of the nf pieces, we avoid
introducing unnecessary notation.
If we now construct the track quark jet function in terms of these integrals

at order O(α2
s) we find for the first moment

J
(2)
q,bare(1) = Tq(1)

(
Iqg(1, 0)+Iqgg(1, 0, 0)+(1+nf )IqQQ̄(1, 0, 0)+2Iqqq̄(1, 0, 0)

)
+ Tq̄(1)

(
IqQQ̄(0, 1, 0)+Iqqq̄(0, 0, 1)

)
+nf

(
TQ(1)+TQ̄(1)

)
IqQQ̄(0, 1, 0)

+ Tg(1)
(
Iqg(0, 1)+2Iqgg(0, 0, 1)

)
, (4.50)

where the track functions are all bare track functions. The expressions for the
second and third moment can be found in the appendix.
After renormalization we thus have a system of equations which we can

solve for these renormalization factors R order by order, starting with the first
moment. As expected we find that after renormalization the IR poles at order
αs cancel for each moment independently. This just tells us that the general
form of the evolution that we took in equation (4.4) is indeed correct.
As we have seen in (4.24), the evolution of the first moment is completely

fixed by symmetries. However, we can still extract information from the can-
cellation of poles. Namely, instead of calculating the integral expressions in
(4.50), we can infer them from the cancellation of poles. For first moment we
have 5 terms: Tq(1), Tq̄(1), TQ(1), TQ̄(1) and Tg(1). The equations for TQ(1)
and TQ̄(1) provide the same information, as these quarks are interchangeable.
By looking at all terms that are tagged with renormalized quark track function
of a different flavor than the initiating quark, TQ(1), we can infer the integral
IqQQ̄(0, 1, 0). We find that

IqQQ̄(0, 1, 0) =
118

27
TFCF . (4.51)

In the next section we calculate this integral and similar integrals directly, to
check our procedure. Looking at the first moment of the renormalized track
jet function thus only gives us integral expressions of weight 1, meaning is that
the integrals are weighted with either z1, z2 or z3.
Let us now discuss what happens when we go to the second moment. In

(4.37) we see the coefficient ~γδ2 is not known yet. After a basis change to the
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evolution of track functions, this transforms into several unknown constants in
the evolution of the quark and gluon jet functions. From the pole structure in
the diagonal terms of the renormalized track jet function, i.e. terms that come
with Ti(2), we can obtain the expressions for integrals weighted with either
z2

1 , z
2
2 or z2

3 . From the non-diagonal terms, e.g. Tq(1)Tg(1), we can extract the
missing constants. We will elaborate a bit on this procedure for the particular
case of R(2)

QQ̄q
(2). We thus first collect all the 1

ε -terms that are tagged with
TQTQ̄. This gives us

R
(2)

QQ̄q
(2) = −4

(
IqQQ̄(0, 1, 1) + jgq(2)

(
γ(1)
qg (2)− γ(1)

qg (1)
))

= − 17

100
CFTF . (4.52)

In order to obtain the answer we had to calculate IqQQ̄(0, 1, 1), which is an
integral of weight 2 that we did not infer from the diagonal pieces. However,
we can use symmetry to rewrite this integral in terms of ones we do know.
This particular integral is weighted with z2z3. Momentum conservation allows
us to use the identity

z2z3 =
1

2
(−(z1 − z2

1) + (z2 − z2
2) + (z3 − z2

3)). (4.53)

in order to write the weighted integral IqQQ̄(0, 1, 1) in terms of integrals that
are weighted by a single momentum fraction

IqQQ̄(0, 1, 1) =
1

2

(
(IqQQ̄(1, 0, 0)− IqQQ̄(2, 0, 0))− (IqQQ̄(0, 1, 0)− IqQQ̄(0, 2, 0)),

+ (IqQQ̄(0, 0, 1)− IqQQ̄(0, 0, 2)
)

=
197

72
CFTF . (4.54)

This procedure, of extracting R(2)

QQ̄q
(2), can be repeated to completely deter-

mine all unknown coefficients for the evolution of the second moment of the
quark track function.
Going to the third moment there is nothing conceptually different compared

to the evolution at second moment. In particular, the diagonal terms provide
expressions for integrals weighted by a single momentum fraction of weight 3.
Then again we can use momentum conservation to find all integrals of weight 3.
Finally we look at the different diagonal structures and solve for the unknown
coefficients such that the 1/ε terms cancel.
We did not go to higher moments, because for the energy correlator low

moments suffice, but in principle we can proceed systematically to higher mo-
ments. Also, this same procedure is used to fix the evolution of moments of
the gluon track function.
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We have now built a procedure to systematically fix the evolution of the
quark track function, without having to calculate any integrals for the track
jet function at O(α2

s) for the first three moments. We have also performed the
direct calculation of these integrals to check our methods. In the next section
we will explain how this was done.

4.3.2 Direct calculation of the O(α2
s) track jet function

In chapter 1.2.5 we already introduced the jet function. At first order the jet
function is calculated in dimensional regularization by integrating the collinear
matrix element over the two particle phase space [225], see (2.2).
At two-loop order the jet function has contributions from a virtual correction,

a real-virtual correction and two real emissions. The virtual correction is a
scaleless integral and vanishes in dimensional regularization. The contributions
with a real-virtual correction has the same two body phase as in the NLO jet
function, given by

dΦc
2(s, z) = ds dz

[z(1− z)s]−ε

(4π)2−εΓ(1− ε)
. (4.55)

The collinear matrix element has a correction to the splitting function P
(0)
qg ,

namely [226]

P (1)
qg =

(µ2eγE

s

)ε 2g2

(4π)2

π Γ(1− ε)
ε tan(πε)Γ(1− 2ε)

CF

{
(CF − CA)

z(1 + z)

1− z
ε2

1− 2ε

+
[1 + z2

1− z
− ε(1− z)

] [
(CF − CA)

(
1− ε2

1− 2ε

)
+ CF (4.56)

− CA 2F1

(
1,−ε; 1−ε; z

z − 1

)
+ (CA−2CF )2F1

(
1,−ε; 1−ε; z − 1

z

)]}
,

For the contributions from two real emissions we need to consider a three
particle phase space. The collinear phase space for non-identical particles is
given by [227]

dΦc
3 = ds123 ds12 ds13 ds23 δ(s123 − s12 − s13 − s23)

× dz1 dz2 dz3 δ(1− z1 − z2 − z3)

× 4Θ(−∆)(−∆)−
1
2
−ε

(4π)5−2εΓ(1− 2ε)
. (4.57)

Here,

∆ = (z3s12 − z1s23 − z2s13)2 − 4z1z2s13s23 , (4.58)
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with the total invariant mass given by s123 ≥ 0, the invariant mass of partons
i and j by sij ≥ 0 and the momentum fraction of parton i is denoted by
0 ≤ zi ≤ 1. The collinear matrix element is given by

σc3,ijk =
(µ2eγE

4π

)2ε 4g4

s2
123

Pijk , (4.59)

where the LO splitting functions for q → ijk are given in (4.65) of appendix
4.B.
Going back to the track jet function we see that at O(α2

s) we have contribu-
tions where integrals are weighted by momentum fractions. It is exactly this
weighting that makes the integrals easier to compute. Due to the presence of
extra momentum fraction factors, soft divergences are (mostly) eliminated.
The integration over the double unresolved invariant masses can be per-

formed using appendix A in [224].

4.4 Applications

Now that we have expressions for the track function evolution we can start
putting it into practise. We will first calculate the cross section for the two-
point energy correlation using only charged particles in the final state. The
two-point energy correlation (EEC) measurement was already introduced in
(4.10) and describes the correlation between two energy deposits. We saw
that for an energy correlator it is trivial to incorporate tracking information,
since this just rescales the weight function. The collinear limit, where the
angle between the two detectors approaches zero, is of particular interest for
describing the substructure of jets produced at hadron colliders. Furthermore,
we will describe in 4.4.2 how track functions can improve the experimental
accuracy for the azimuthal decorrelation between a vector boson and a jet in
pp collisions. Due to consistency of the factorization theorem derived in 3.2.1,
switching to charged particles will only change the jet function by a finite
amount.

4.4.1 Two-Point Correlations at Next-to-Leading Order.

Having calculated the evolution of track functions at next-to-leading order, we
will now illustrate the consistency of track functions beyond the leading order.
We analytically compute the two-point energy correlation [24,194,195] at order
O(α2

s), with a generic restriction on hadrons. The two-point energy correlator
is characterized by a single angle between the two calorimeter cells, called χ
(see (4.10)). This calculation also illustrates how track functions seamlessly
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mesh with perturbative calculations, as this calculation matches the highest
order available analytically for the two-point energy correlator on all partons.
The two-point energy correlator has been computed analytically at NLO for

both e+e− collisions [196] and Higgs decays [197, 228]. When computed on
all final state particles it is infrared finite to all orders in perturbation theory.
However, when computed in dimensional regularization with d = 4 − 2ε, the
partonic two-point correlator in (4.12) has infrared poles in ε which must be
absorbed into the track function. These poles are uniquely fixed in terms of
the renormalization group evolution of the track function. Since the RG of the
n-th moment of the track function involve mixing with products of all lower
moments, it is convenient to write their RG in an abstract form

d

d lnµ2
~Tn = R̂n ~Tn , (4.60)

where ~Tn is a vector of all possible products of moments of track functions that
have total weight n (e.g. for n = 2, ~T2 = {Tg(2), Tq(2), Tq(1)Tq(1), Tg(1)Tq(1),

Tg(1)Tg(1)}), and R̂n is a matrix, whose perturbative expansion is R̂n =∑
ajsR̂

(j)
n . The IR divergences of the partonic energy correlators follow from

the UV divergences of track functions, which we saw for quarks specifically in
equation (4.47), and in general reads

~Tn,bare =~Tn(µ) + as
R̂(1)

ε
~Tn(µ) (4.61)

+
1

2
a2
s

(
R̂

(2)
n

ε
+
R̂

(1)
n R̂

(1)
n −β0R̂

(1)
n

ε2

)
~Tn(µ)+O(a3

s).

The 1/ε2 poles at two loops are completely predicted from the one-loop renor-
malization, while the 1/ε provide an independent calculation of the NLO RG
evolution, and the universality of the track functions.
To compute the EEC on tracks requires the calculation of the general par-

tonic correlators in equation (4.12), extending the calculation of the EEC
in [196]. To perform this calculation we follow the approach of [196], and
use reverse unitarity [229] to express the phase space integrals for the EEC in
terms of multiloop integrals. These integrals are reduced to master integrals
using LiteRed [230,231] and FIRE6 [232]. The master integrals are found to be
the same as for the standard EEC, and are evaluated by differential equations,
using CANONICA [233] to obtain their canonical form [234]. Master integrals for
the contact terms (δ(χ)) are the same as those for cut bubble integrals, and
can be extracted from [235] and [236]. The final results are written in terms of
classical polylogarithms using HPL [237], and complete analytic results will be
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presented elsewhere. We again emphasize that this perturbative calculation on
tracks matches the state of the art for analytic perturbative calculations of en-
ergy flow observables. This clearly illustrates how important the factorization
property of energy correlator observables in equation (4.12) is for simplifying
the perturbative component of calculations interfaced with tracks.
Extracting the IR poles from the calculation of the partonic correlators, we

find that they exactly match with those predicted by equation (4.61), provid-
ing a strong check on the track function formalism at O(α2

s). Absorbing these
poles into the renormalized track functions, gives an IR finite result for the
EEC computed on any subset of final state hadrons at NLO. In figure 4.4 we
show our results for the EEC on all particles, charged particles, and positively
charged particles, along with a comparison to Pythia [166]. Here we have used
track functions extracted from Pythia [167,168]. In figure 4.5 we compare our
LO and NLO results with DELPHI data [238] for the EEC asymmetry (AEEC),
defined as AEEC(cos(χ)) = EEC(cos(χ))−EEC(− cos(χ)), finding remarkably
good agreement at NLO. The disagreement in the region cos(χ) → −1 is due
to the fact that we have not incorporated resummation. Such resummation
could be included with next-to-next-to-leading logarithm precision using the
factorization of [239] and results reported here, but is beyond the scope of our
current analysis. Although we find this agreement promising, it will be impor-
tant to better understand the details of the experimental analysis of [238] for a
more detailed interpretation of the comparison. This is the first O(α2

s) calcu-
lation of a track-based observable, and we hope that the reduced experimental
uncertainty for track-based observables can enable improved extractions of the
strong coupling constant from event shapes.

4.4.2 Azimuthal decorrelation

In chapter 3 we discussed the azimuthal decorrelation for pp→ Z+ jet. Before
we start discussing the details that lead to a track-based prediction, let us
address a subtlety concernig the factorization theorem in (3.19). At first one
might expect that we could have chosen to keep the cross section differential in
pT,J , instead of pT,V . The recombined jet momentum pT,J will however change
when we restrict ourselves to charged particles. It loses the connection to the
hard kinematics as the neutral particles will not be clustered and therefore
impose a mismatch compared to the hard kinematics. The pT,V will however
not be affected, which makes it the preferred choice.
To exploit the better angular resolution of the inner detectors’ tracking sys-

tem, compared to the calorimetry based jet reconstruction, we switch to a
track-based measurement. Here we identify another advantage of the WTA
axis: since the effect of soft radiation on the jet algorithm is power suppressed,
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Figure 4.4 An illustration of the track function formalism for different subsets
of final state hadrons. Here we show the EEC at NLO as computed on all
particles, on charged particles, and on positively charged particles, as well as
a comparison with the Pythia parton shower.
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Figure 4.5 The EEC Asymmetry (AEEC) on charged particles at LO and
NLO, compared with DELPHI data. Excellent agreement is observed, except
in the region cos(χ)→ −1, where resummation is required.

switching to a track-based measurement only modifies the jet function. (Note
that ηJ does not require a fine angular resolution and is therefore measured
on the full jet.) Consistency of the factorization formula then implies that this
track-based jet function J̄ has the same anomalous dimension as J . We reach
the same conclusion by a direct calculation using track functions [167, 168].
Explicitly, the difference in the one-loop constant for the quark jet function is

J̄ (1)
q = J (1)

q + 4CF

∫ 1

0
dz1

∫ 1

0
dz2 Tq(z1, µ)Tg(z2, µ)

∫ 1

0
dx ln

x

1− x
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× 1 + x2

1− x
(
θ(z1x− z2(1− x))− θ(x− 1

2)
)
, (4.62)

in terms of the track functions Ti(z, µ). The change reflects the possibility of a
hadronization mismatch in the WTA recombination: A losing (in WTA sense)
parton may hadronize into the winning track. The expression for the gluon jet
function involves the appropriate replacement of the splitting functions,

J̄ (1)
g = J (1)

g + 4CA

∫ 1

0
dz1

∫ 1

0
dz2 Tg(z1, µ)Tg(z2, µ)

∫ 1

0
dx ln

x

1− x

×
( x

1−x
+

1−x
x

+ x(1−x)
)(
θ(z1x−z2(1−x))− θ(x− 1

2)
)

+ 4nfTF

∫ 1

0
dz1

∫ 1

0
dz2 Tq(z1, µ)Tq̄(z2, µ)

∫ 1

0
dx ln

x

1−x

×
(

1− 2x(1−x)
)(
θ(z1x−z2(1−x))− θ(x− 1

2)
)
, (4.63)

and there is no modification to the linearly-polarized gluon jet function at
order αs. We have verified using Pythia 8.2 [166] that using tracks only has
a minimal effect on this measurement, see fig. 4.6. For the standard jet axis,
this difference is larger [240]. The conclusions reached here also apply to other
angular measurements, such as in [150,160,161].
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Figure 4.6 Predictions from Pythia for the azimuthal angle between the
vector boson and jet, using all particles (green) or only charged particles (blue
dotted).
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4.5 Conclusion

We have presented a method for computing the next-to-leading order renormal-
ization group equations (RGEs) for moments of track functions, and include
explicit results for the first few moments. The structure of these evolution
equations is highly constrained due to invariance under shift symmetry and
the evolution can be compactly written in terms of shift-invariant combina-
tions of track functions. Even tough shift symmetry does not completely fix
all anomalous dimensions, we presented a method where we consider the track
jet function to completely fix the evolution at NLO.
We have shown that track functions can be applied to make predictions

for the EEC and Azimuthal angle on tracks. Although track functions were
originally introduced to describe the energy fraction of charged final state par-
ticles, they can be used for any other quantum number as well (as long as the
measurement including all final state particles of that observable has a valid
factorization theorem). This opens the door to a wide variety of new calcu-
lations and enables powerful perturbative calculations to also be applied to
obtain predications for certain non-perturbative measurements.
To extend what is done in this thesis, one could go beyond moments by

exploring the full x dependence, which will require plus distributions to handle
soft limits. Furthermore, since O(α2

s) calculations are more and more autom-
atized, it will be important to develop a scheme to implement track functions
in these calculations to extend these predictions to measurements using only
charged particles.

Appendices

4.A Notation

In this chapter we introduced some notation. As a reference we summarize it
here:

• Pji: DGLAP splitting function, appearing in the evolution of fragmen-
tation functions as in (4.20). These do not contain any poles.

• γ: introduced to describe the (diagonal) anomalous dimensions in the
evolution of moments of track functions that are moments of DGLAP
splitting functions, see (4.19).

• Pi→jkl: Splitting function in d-dimensions, from the collinear factoriza-
tion of the squared amplitude. It is used to calculate the jet function at
O(α2

s), showing up in (4.59).



140 Chapter 4. Track Functions

• γ̃: Symbols that are used to schematically denote anomalous dimensions,
as introduced in (4.4). This variable is also used in the moment space
version of the evolution for which one uses the relation in (4.17).

• c: Explicit anomalous dimensions that are not (necessarily) the splitting
functions, used in (4.35).

4.B Splitting Functions

The LO splitting functions for q → ij and g → ij are [219,225]

Pqg(z) = CF

[
1 + z2

1− z
− ε(1− z)

]
,

Pgg(z) = 2CA

[
z

1− z
+

1− z
z

+ z(1− z)
]
,

Pqq̄(z) = nfTR

[
1− 2z(1− z)

1− ε

]
. (4.64)

The LO splitting functions for q → ijk are [222,223]

Pq̄′q′q =CFTF
s123

2s12

[
−[z1(s12+2s23)− z2(s12+2s13)]2

(z1+z2)2s12s123
+

4z3+(z1−z2)2

z1+z2

+(1− 2ε)

(
z1+z2 −

s12

s123

)]
,

Pq̄qq = (Pq̄′q′q+2↔ 3)+P
(id)
q̄qq ,

P
(id)
q̄qq =CF

(
CF −

1

2
CA

){
(1− ε)

(
2s23

s12
− ε
)

+
s123

s12

[
1+z2

1

1− z2
− 2z2

1− z3

− ε
(

(1− z3)2

1− z2
+1+z1 −

2z2

1− z3

)
− ε2(1− z3)

]
− s2

123

2s12s13
z1

[
1+z2

1

(1− z2)(1− z3)
− ε
(

1+2
1− z2

1− z3

)
− ε2

]}
+(2↔ 3),

Pggq =C2
F

{
s2

123

2s13s23
z3

[
1+z2

3

z1z2
−εz

2
1 +z2

2

z1z2
−ε(1+ε)

]
+(1−ε)

[
ε−(1−ε)s23

s13

]
+
s123

s13

[
z3(1−z1)+(1−z2)3

z1z2
−ε(z2

1 +z1z2+z2
2)

1−z2

z1z2
+ε2(1+z3)

]}
+CFCA

{
(1−ε)

(
[z1(s12+2s23)−z2(s12+2s13)]2

4(z1+z2)2s2
12

+
1

4
− ε

2

)
+

s2
123

2s12s13

[
2z3+(1−ε)(1−z3)2

z2
+

2(1−z2)+(1−ε)z2
2

1−z3

]
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− s2
123

4s13s23
z3

[
2z3+(1−ε)(1−z3)2

z1z2
+ε(1−ε)

]
+
s123

2s12

[
(1−ε)z1(2−2z1+z2

1)−z2(6−6z2+z2
2)

z2(1−z3)
+2ε

z3(z1−−2z2)−z2

z2(1−z3)

]
+
s123

2s13

[
(1−ε)(1−z2)3+z2

3−z2

z2(1−z3)
−ε
(

2(1−z2)(z2−z3)

z2(1−z3)
−z1+z2

)
− z3(1−z1)+(1−z2)3

z1z2
+ε(1−z2)

(
z2

1 +z2
2

z1z2
−ε
)]}

+(1↔ 2). (4.65)

The LO splitting functions for g → ijk can be found in [223]. The virtual
correction to the LO splitting function for q → qg, that is needed for NLO jet
function calculations, is given in (4.56).

4.C Moments of splitting functions

The moments of the timelike splitting functions in appendix 4.B are defined in
equation (4.19) and here repeated for convenience:

γij(n+ 1) = −
∫
Pij(x)xndx. (4.66)

These are perturbative objects

γij(n+ 1) =

∞∑
L=0

(αs
4π

)(L+1)
γ

(L)
ij (n+ 1). (4.67)

Explicit calculation yields the NLO results:

γ(1)
gg (2) =nfTF

((200

27
− 16π2

9

)
CA +

260

27
CF

)
,

γ(1)
gq (2) =

(32π2

9
− 568

27

)
C2
F −

376

27
CACF ,

γ(1)
qg (2) =TF

((8π2

9
− 100

27

)
CA −

130

27
CF

)
,

γ(1)
qq (2) =CACF

(
4ζ3 +

1495

54
− 17π2

9

)
+ C2

F

(
−8ζ3 −

175

27
+

2π2

9

)
− 128

27
CFnfTF +

64

27
CFTF ,

γ
(1)
q̄q (2) =CACF

(
−4ζ3 −

743

54
+

17π2

9

)
+ C2

F

(
8ζ3 +

743

27
− 34π2

9

)
+

64

27
CFTF ,
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γ
(1)
q′q (2) =

64

27
CFTF ,

γ
(1)
q̄′q (2) =

64

27
CFTF ,

γ(1)
gg (3) =C2

A

(
−8ζ3 +

2158

675
+

26π2

45

)
+ nnfTF

((3803

675
− 16π2

9

)
CA

+
12839

2700
CF

)
,

γ(1)
gq (3) =

(
−39451

5400
− 7π2

9

)
CACF +

(14π2

9
− 2977

432

)
C2
F ,

γ(1)
qq (3) =TF

(( 619

2700
+

14π2

45

)
CA −

833

216
CF

)
− 8

25
nfT

2
F ,

γ(1)
qq (3) =CACF

(
4ζ3

16673

432
− 43π2

18

)
+ C2

F

(
−8ζ3 +

989

432
− 7π2

9

)
− 415

54
CFnfTF +

4391

5400
CFTF ,

γ
(1)
q̄q (3) =CACF

(
4ζ3 +

8113

432
− 43π2

18

)
+ C2

F

(
−8ζ3 −

8113

216
+

43π2

9

)
+

4391

5400
CFTF ,

γ
(1)
q′q (3) =

4391

5400
CFTF ,

γ
(1)
q̄′q (3) =

4391

5400
CFTF , (4.68)

4.D Moments of track jet functions

In this appendix we give the expressions for moments of track functions up to
O(α2

s). We present only the quark case, as the gluon jet function has a very
similar structure. The bare quark jet function is given by

Jq,bare(n) = Tq,bare(n) + αsJ
(1)
q,bare(n) + α2

sJ
(2)
q,bare(n) +O(α3

s). (4.69)

At order αs the first three moments are

J
(1)
q,bare(1)=Tq(1)

(γ(0)
qq (2)

ε
+jqq(1)+ε pqq(1)

)
+Tg(1)

(γ(0)
gq (2)

ε
+jgq(1)+ε pgq(1)

)
,

J
(1)
q,bare(2)=Tq(2)

(γ(0)
qq (3)

ε
+jqq(2)+ε pqq(2)

)
+Tg(2)

(γ(0)
gq (3)

ε
+jgq(2)+ε pgq(2)

)
,

+Tq(1)Tg(1)
(γ(0)

qq (2)−γ(0)
qq (3)

ε
+jqq(1)−jqq(2)+ε (pqq(1)−pqq(2))

)
J

(1)
q,bare(3) =Tq(3)

(γ(0)
qq (4)

ε
+jqq(3)+ε pqq(3)

)
+Tg(3)

(γ(0)
gq (4)

ε
+jgq(3)+ε pgq(3)

)
,
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+Tq(2)Tg(1)
(γ(0)

qq (3)−γ(0)
qq (4)

ε
+jqq(2)−jqq(3)+ε (pqq(2)−pqq(3))

)
+Tq(1)Tg(2)

(γ(0)
gq (3)−γ(0)

gq (4)

ε
+jgq(2)−jgq(3)+ε (pgq(2)−pgq(3))

)
,

(4.70)

with γij given in appendix 4.C, and

jqq(1) =

(
106

9
− π2

)
CF , pqq(1) =

(
635

27
− 17π2

12
− 28ζ3

3

)
CF ,

jgq(1) = −43

9
CF , pgq(1) =

(
−257

27
+

2π2

3

)
CF ,

jqq(2) =

(
133

9
− π2

)
CF , pqq(2) =

(
1603

54
− 43π2

24
− 28ζ3

3

)
CF

jgq(2) = −16

9
CF , pgq(2) =

(
−181

54
+

7π2

24

)
CF ,

jqq(3) =

(
7717

450
− π2

)
CF , pqq(3) =

(
233977

6750
− 247π2

120
− 28ζ3

3

)
CF

jgq(3) = −517

450
CF , pgq(3) =

(
−7301

3375
+

11π2

60

)
CF . (4.71)

At order α2
s the first three moments are

J
(2)
q,bare(1) =Tq(1)(Iqg(1, 0) + Iqgg(1, 0, 0) + (1+nf )CFTF IqQQ̄(1, 0, 0)

+ 2Iqqq̄(1, 0, 0)) + Tq̄(1)(TFCF IqQQ̄(0, 1, 0) + Iqqq̄(0, 0, 1))

+ nfTFCF (TQ(1) + TQ̄(1))IqQQ̄(0, 1, 0)

+ Tg(1)(Iqg(0, 1) + 2Iqgg(0, 0, 1)),

J
(2)
q,bare(2) =Tg(2)

(
Iqg(0, 2) + 2Iqgg(0, 0, 2)

)
+ Tq(2)

(
Iqg(2, 0) + Iqgg(2, 0, 0) + (1+nf )CFTF IqQQ(2, 0, 0)

+ 2Iqint(2, 0, 0))

+ Tq̄(2)(TFCF IqQQ(0, 2, 0) + Iqint(0, 0, 2))

+ (TQ(2) + TQ̄(2))(nfTFCF IqQQ(0, 2, 0))

+ 2Tg(1)Tq(1)(Iqg(1, 1) + 2Iqgg(1, 0, 1))+2Tg(1)Tg(1)Iqgg(0, 1, 1)

+ 2Tq(1)TQ̄(1)(CFTF (IqQQ̄(1, 0, 1)+IqQQ̄(0, 1, 1))+2Iqint(1, 0, 1))

+ 2Tq(1)(TQ(1) + TQ̄(1))(nfTFCF IqQQ̄(1, 1, 0))

+ 2Tq(1)Tq(1)(CFTF IqQQ̄(1, 1, 0) + Iqint(1, 1, 0))

+ 2TQ(1)TQ̄(1)(nfCFTF IqQQ̄(0, 1, 1)),
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J
(2)
q,bare(3) =Tg(3)(Iqg(0, 3) + 2Iqgg(0, 0, 3))

+ Tq(3)(Iqg(3, 0) + Iqgg(3, 0, 0) + (1 + nf )CFTF IqQQ̄(3, 0, 0)

+ 2Iqint(3, 0, 0))

+ (TQ(3) + TQ̄(3))(nfTFCF IqQQ̄(0, 3, 0))

+ Tq̄(3)(TFCF IqQQ̄(0, 3, 0) + Iqint(0, 0, 3))

+ 3Tg(2)Tq(1)(Iqg(1, 2) + 2Iqgg(1, 0, 2))

+ 3Tg(1)Tq(2)(Iqg(2, 1) + 2Iqgg(2, 0, 1))

+ 3Tq(2)Tq̄(1)(CFTF (IqQQ̄(2, 0, 1) + IqQQ̄(0, 2, 1))+2Iqint(2, 0, 1))

+ 3Tq(1)Tq̄(2)(CFTF (IqQQ̄(1, 0, 2) + IqQQ̄(0, 1, 2))+2Iqint(1, 0, 2))

+ 3Tq(2)(TQ(1) + TQ̄(1))(nfTFCF IqQQ̄(2, 1, 0))

+ 3Tq(1)(TQ(2) + TQ̄(2))(nfTFCF IqQQ̄(1, 2, 0))

+ 3Tq(2)Tq(1)(CFTF (IqQQ̄(2, 1, 0) + IqQQ̄(1, 2, 0))+2Iqint(1, 1, 0))

+ 3TQ(2)TQ̄(1)(nfCFTF IqQQ̄(0, 2, 1))

+ 3TQ(1)TQ̄(2)(nfCFTF IqQQ̄(0, 1, 2))

+ 6TQ(1)TQ̄(1)Tq(1)(nfTFCF IqQQ̄(1, 1, 1))

+ 6Tq(1)2Tq̄(1)(CFTF IqQQ̄(1, 1, 1)+2Iqint(1, 1, 1))

+ 6Tg(1)2Tq(1)Iqgg(1, 1, 1). (4.72)

The constants in J
(1)
q,bare(n) can be obtained from direct calculation and are

given by

uitdrukkingen (4.73)

4.E Evolution of track functions

In this thesis, we presented the results for the NLO evolution of the first three
moments of the track functions under the simplified assumption that Tq = Tq̄,
and that the track functions are equal for all quark flavors. This simplified case
was sufficient to illustrate the structure of the equations, without excessive
notation. In this appendix, we present the complete results in several different
forms. These different forms may be useful for different users, depending on
their particular application.
Although the results can be drastically simplified by working in terms of

shift-invariant central moments, we begin by presenting the results for the
evolution of the standard moments of the track functions. For gluons, we find
that the NLO contribution to the evolution for the first three moments is given
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by

d Tg(1)

d lnµ2
= −γ(1)

gg (2)Tg(1)−
∑
i

γ(1)
qg (2)(Tqi(1)+Tq̄i(1)) , (4.74)

d Tg(2)

d lnµ2
= −γ(1)

gg (3)Tg(2)−
∑
i

γ(1)
qg (3)(Tqi(2)+Tq̄i(2)) (4.75)

+

[
C2
A

(
−8ζ3+

26

45
π2+

2158

675

)
− 4

9
CAnfTF

]
Tg(1)Tg(1)

+
∑
i

[
TF

(
−299

225
CA−

4387

900
CF

)]
Tg(1)(Tqi(1)+Tq̄i(1))

+
∑
i

TF

[(12413

1350
− 52

45
π2
)
CA+

1528

225
CF−

16

25
nfTF

]
Tqi(1)Tq̄i(1),

d Tg(3)

d lnµ2
= −γ(1)

gg (4)Tg(3)−
∑
i

γ(1)
qg (4)(Tqi(3)+Tq̄i(3)) (4.76)

+
[
C2
A

(
24ζ3−

278

15
π2+

767263

4500

)
− 2

3
CAnfTF

]
Tg(2)Tg(1)

+
∑
i

[
TF

(
−46

15
CA−

1727

2250
CF

)]
Tg(2)(Tqi(1)+Tq̄i(1))

+
∑
i

TF

[(14

15
π2− 10318

1125

)
CA−

4544

1125
CF

]
(Tqi(2)+Tq̄i(2))Tg(1)

+
∑
i

TF

[(5321

3000
− 2

5
π2
)
CA+

1523

240
CF−

12

25
nfTF

]
× (Tqi(2)Tq̄i(1)+Tqi(1)Tq̄i(2))

+C2
A

(
−248561

2250
+

194

15
π2−24ζ3

)
Tg(1)Tg(1)Tg(1)

+
∑
i

[
CATf

(23051

1125
− 28

15
π2
)
−CFTf

501

100

]
Tg(1)Tqi(1)Tq̄i(1) .

The results for quarks are slightly more complicated due to the presence of
identical quark contributions. At NLO we find

d Tq(1)

d lnµ2
= −γ(1)

gq (2)Tg(1)−γ(1)
qq (2)Tq(1)−γ(1)

q̄q (2)Tq̄(1) (4.77)

−
∑
i

γ
(1)
Qq (2)

(
TQi(1)+TQ̄i(1)

)
,

d Tq(2)

d lnµ2
= −γ(1)

gq (3)Tg(2)−γ(1)
qq (3)Tq(2)−γ(1)

q̄q (3)Tq̄(2) (4.78)
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−
∑
i

γ
(1)
Qq (3)

(
TQi(2)+TQ̄i(2)

)
+
[(1399

5400
− 7

9
π2
)
CACF−

67

18
C2
F

]
Tg(1)Tg(1)

+
[(
−3023

108
+

34

9
π2−8ζ3

)
CACF +

(3023

54
− 68

9
π2+16ζ3

)
C2
F

− 53

18
CFTF

]
Tq(1)Tq(1)

+
[(14057

216
− 77

9
π2+16ζ3

)
CACF +

(
−14057

108
+

154

9
π2−32ζ3

)
C2
F

− 2803

900
CFTF

]
Tq(1)Tq̄(1)

+
[229

18
CACF +

(2573

72
−4π2

)]
Tg(1)Tq(1)−

∑
i

17

100
CFTFTQi(1)TQ̄i(1)

−
∑
i

[53

18
CFTF

]
Tq(1)

(
TQi(1)+TQ̄i(1)

)
,

d Tq(3)

d lnµ2
= −γ(1)

gq (4)Tg(3)−γ(1)
qq (4)Tq(3)−γ(1)

q̄q (4)T (3)q̄ (4.79)

−
∑
i

γ
(1)
Qq (4)

(
TQi(3)+TQ̄i(3)

)
+
[
−3787

750
CACF−

249

50
C2
F

]
Tg(2)Tg(1)

+
[(7

3
π2− 14161

3000

)
CACF +

(84329

6000
− 26

15
π2
)
C2
F

]
Tg(2)Tq(1)

+
[2327

180
CACF +

(10189

250
− 64

15
π2
)
C2
F

]
Tg(1)Tq(2)

+
∑
i

[
−1448

450
CFTF

]
T (2)
q

(
TQi(1)+TQ̄i(1)

)
+
∑
i

[
−9557

9000
CFTF

]
Tq(1)

(
TQi(2)+TQ̄i(2)

)
+
∑
i

[
− 59

1000
CFTF

](
TQi(2)TQ̄i(1)+TQi(1)TQ̄i(2)

)
+
[(
−353801

3600
+

77

6
π2 − 24ζ3

)
CACF +

(353801

1800
− 77

3
π2+48ζ3

)
C2
F

− 12839

3000
CFTF

]
Tq(2)Tq(1)

+
[(
−369503

3000
+

77

5
π2 − 24ζ3

)
CACF +

(369503

1500
− 154

5
π2+48ζ3

)
C2
F

− 1261

1125
CFTF

]
Tq̄(2)Tq(1)
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+
[(649211

6000
− 139

10
π2+24ζ3

)
CACF +

(
−649211

3000
+

139

5
π2−48ζ3

)
C2
F

− 29491

9000
CFTF

]
Tq̄(1)Tq(2)

+
[(202651

1800
− 43

3
π2+24ζ3

)
CACF +

(
−202651

900
+

86

3
π2 − 48ζ3

)
C2
F

− 137

500
CFTF

]
Tq(1)Tq(1)Tq̄(1)

+
[(97883

9000
− 7

3
π2
)
CACF −

181

150
C2
F

]
Tq(1)Tg(1)Tg(1)

+
∑
i

[
−137

500
CFTF

]
Tq(1)TQi(1)TQ̄i(1).

The expressions for anti-quarks can be obtained by charge conjugation. Here,
γ

(1)
ij (n) are the NLO moments of the timelike splitting function (given in ap-

pendix 4.C), and Q 6= q is used to denote the distinct quark flavors. The
expressions for anti-quarks can be obtained by charge conjugation.
As described in section 4.2.1, when written in terms of standard moments

these equations are highly redundant, due to the presence of the underlying
shift symmetry. When we include all quark flavors we can construct a first
moment invariant for each flavor, ∆i = Tqi(1) − Tg(1). The evolution of the
first three central gluon moments can be written as

dσg(2)

d lnµ2
= −γ(1)

gg (3)σg(2) +
∑
i

{
−γ(1)

qg (3)(σqi(2) + σq̄i(2) + ∆2
qi + ∆2

q̄i) (4.80)

+ TF

[(12413

1350
− 52

45
π2
)
CA +

1528

225
CF −

16

25
nfTF

]
∆qi∆q̄i

}
,

dσg(3)

d lnµ2
= −γ(1)

gg (4)σg(3) (4.81)

+
∑
i

{
−γ(1)

qg (4)(σqi(3)+σq̄i(3)+3σqi(2)∆qi+3σq̄i(2)∆q̄i+∆3
qi+∆3

q̄i)

+ TF

[(
−638

45
+

8

3
π2
)
CA −

3803

250
CF

]
σg(2)(∆qi + ∆q̄i)

+ TF

[(5321

3000
− 2

5
π2
)
CA+

1523

240
CF−

12

25
nfTF

]
× (σqi(2)∆q̄i+σq̄i(2)∆qi + ∆2

qi∆q̄i+∆2
q̄i∆qi)

}
.

This form emphasizes the large redundancy present in the expressions given
in equation (4.74). We emphasize that while it is true that the mixing into
σqi(2) and σqi(3) is governed to all loop order by γ(1)

qg , the fact that the mixing
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into the products σqi(2)∆qi , ∆2
qi , and ∆3

qi are also governed by these same
anomalous dimensions is a coincidence at this order in perturbation theory.
Finally, for the evolution of the quark track functions in terms of shift-

invariant central moments, we have

dσqi(2)

d lnµ2
=−γ(1)

gq (3)σg(2)−γ(1)
qq (3)

(
σqi(2)+∆2

qi

)
(4.82)

−
∑
j

17

100
CFTF∆Qj∆Q̄j

−
∑
j

γ
(1)
Qq (3)

(
σQj (2)+σQ̄j (2)+∆2

Qj+∆2
Q̄j

)
−γ(1)

q̄q

(
σq̄i(2)+∆2

q̄i−2∆qi∆q̄i

)
+

97

54
CFTF

∑
j

∆qi

(
∆Qj+∆Q̄j

)
+

[
2957

108
CACF +

(
2323

54
− 64π2

9

)
C2
F +

(
97

54
− 256

27
nf

)
CFTF

]
∆2
qi

dσqi(3)

d lnµ2
=−γ(1)

gq (4)
(
σg(3)−2σg(2)∆qi

)
(4.83)

−γ(1)
qq (4)

(
σqi(3)−2σg(2)∆qi+3σq(2)∆qi−2∆3

qi)

−γ(1)
q̄q (4)

(
σq̄i(3)+σg(2)∆qi+3σq̄i(2)∆q̄i+3σqi(2)∆q̄i−3σq̄i(2)∆qi

+3∆2
qi∆q̄i−3∆qi∆

2
q̄i+∆3

q̄i

)
−γ(1)

Qq (4)
∑
j 6=i

(
σQj (3)+σQ̄j (3)−σg(2)∆qi+3σQj (2)∆Qj

+3σQ̄j (2)∆Q̄j
− 3(σQj (2) + σQ̄j (2))∆qi

+∆3
Qj+∆3

Q̄j
−3∆qi(∆

2
Qj+∆2

Q̄j
−∆Qj∆Q̄j

)
− 59

1000
CFTF

∑
j

(
σQj (2)∆Q̄j

+ σQ̄j (2)∆Qj− (σQ̄j (2) + σQj (2))∆qi

+∆2
Qj∆Q̄j

+∆Qj∆
2
Q̄j
−∆qi(∆

2
Q̄j

+∆2
Qj )+∆Qj∆Q̄j

)
+

292

75
CFTF

∑
j

(
σqi(2)(∆Qj+∆Q̄j

)+∆2
qi(∆Qj+∆Q̄j

)

−∆qi∆Qj∆Q̄j

)
− 97

18
CFTF

∑
j

(
∆2
qi(∆Qj + ∆Q̄j

)−∆qi∆Qj∆Q̄j

)
− 12929

9000
(nf − 1)CFTF σg(2)∆qi

+

[
29

300
CACF −

29

150
C2
F +

5797

1125
CFTF

]
σqi(2)∆q̄i
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+

[(
−12929

9000
CF +

4648

225
CFnf

)
TF +

(
81443

3000
− 23

15
π2+24ζ3

)
C2
F

+

(
−2163833

18000
+

247

30
π2−12ζ3

)
CACF

]
(σg(2)∆qi + ∆3

qi)

+

[
45253

450
CACF +C2

F

(
662327

3600
− 82

3
π2

)
+

(
23719

4500
CF−

671

18
CFnf

)
TF

]
σq(2)∆q.

This case is notationally more cumbersome than for the gluon evolution due
to the contributions from different quark flavors. As with equation (4.80), this
results exhibits a number of coincidences in the evolution, that will not persist
beyond NLO.





5
Conclusions

The research described in this thesis contributes to the ongoing improvement
in precision for predictions at particle colliders. It uses Soft-Collinear effective
theory (SCET), which provides a framework to derive factorization theorems
for observables, separating soft and collinear radiation effects from the hard
interaction and accounting for their dominant effects at higher orders in the
coupling.
Final-state collinear radiation manifests itself by the existence of jets, which

are collimated sprays of particles. In SCET the contribution of collinear final-
state radiation is described by jet functions. These objects are widely used
and the automation of jet function calculations is a crucial step forward. In
chapter 2, geometric subtraction is used to isolate the soft and collinear sin-
gularities that complicate the direct evaluation of the corresponding integrals.
Defining simple counterterms to subtract the soft and collinear poles from the
calculation allows us to define the finite subtracted jet function. This object
can be evaluated numerically, whereas the divergences are known analytically.
Together they describe the complete jet function. A Mathematica implemen-
tation called GOJet is readily available to calculate one-loop jet functions for
IR-safe observables. Few two-loop jet functions are known, and extending
GOJet to this order would allow for direct increase in accuracy for resummed
predictions of many observables. The difficulties that need to be overcome
arise from the order of subtraction of the collinear and soft singularities, but
also in the parametrization of the observable constraints in these limits (as
they will no longer have a simple power law behaviour).
In chapter 3 we studied the azimuthal decorrelation between a vector boson

and a jet in pp collisions. Factorization for processes with jets at the LHC
generally involve non-global logarithms, that arise from the varying sensitivity
to soft radiation in different regions of phase space. We employ the recoil-free
winner-takes-all jet algorithm to remove the effects of soft recoil on the jet axis,
eliminating the non-global logarithms: the soft radiation does not perceive the
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jet boundary and so there is no need to differentiate between soft emissions
in- or outside the jet. Experimentally, the recoil-free jet definition reduces the
effects of contamination inside the jet, especially from the underlying event.
The predictions for azimuthal decorrelation include contributions from linearly-
polarized gluons in the initial and final state. We show that these polarizations
are necessary by comparing to MCFM NLO predictions. Using the methods of
SCET we then obtain results for the differential cross section in the back-to-
back limit at NNLL accuracy. The robustness of this observable makes it an
excellent candidate to study the dynamics of the QCD medium produced in
heavy-ion collisions, as the WTA axis reduces the effect of underlying events.
Furthermore, the accuracy of this calculation can be extended to N3LL once
the one-loop linearly polarized hard function and the two-loop linearly porized
jet function are calculated.
As the precision of theoretical predictions is rapidly increasing, it is im-

portant to reduce the uncertainties in data analysis as well. To exploit the
superior angular resolution of the tracking system (compared to the calorime-
ter) one must switch to observables defined on charged particles only. However,
these track-based observables are collinear unsafe. In chapter 4 we use non-
perturbative track functions to absorb the uncancelled IR divergences, much
like parton distribution functions do for initial-state radiation. Focussing on
weighted cross sections, the inclusion of tracks only requires moments of track
functions. The evolution for moments of track functions at order α2

s is fixed
by symmetry considerations up to the sixth moment and we validated these
results by direct calculation. We explicitly showed that track functions can
be applied by obtaining predictions for the EEC and the azimuthal angle on
tracks, allowing for more accurate experimental extractions. These examples
imply the utilization of track functions for other known observables, to reduce
the uncertainty of experimental analysis. Until now, track functions were ex-
plicitly used to describe the energy fraction of charged particles. However,
their applications can be extended to a wide variety of new non-perturbative
measurements to include only final state particles with certain quantum num-
bers, as long as there exists a valid factorization theorem for the case where
all final state particles are included. For example, measurements on flavored
(e.g. strange) hadrons allow flavor tagging for nucleon structure studies. This
indicates the bright future of track functions at particle colliders.



A
Fourier transform

The Fourier transform and its inverse can be used to switch between momen-
tum and impact parameter space. In this thesis the following conventions are
used

F (x) =

∫
ddkF̃ (k)e−ik·x,

F̃ (x) =

∫
ddx

(2π)d
F (x)eik·x, (A.1)

such that

δd(x) =

∫
ddk

(2π)d
e−ik·x,

δd(k) =

∫
ddx

(2π)d
eik·x. (A.2)





B
Calculation of jet functions

This section provides the techniques to evaluate the jet function given in equa-
tion (1.167). For convenience we summarize the definition for the jet function
for both quark and gluon initiated jets:

Jq(ωJ , s, µ) (B.1)

= 2(2π)d−1Tr
[
〈0|

/̄n

4Nc
χn(0)δ(ωJ−P̄n)δ(d−2)(P⊥n )δM χ̄n(0)|0〉

]
,

J µν
g (ωJ , s, µ) (B.2)

=
2(2π)d−1

N2
c − 1

ωJ〈0|Baµn⊥(0)δ(p⊥δ(ωJ − P̄n)δ(d−2)(P⊥n )δMBaνn⊥(0)|0〉,

where ωJ = n̄ · pJ . The recombination scheme dependence which determines
how final state partons are clustered is implicit in the measurement δM . The
matrix elements above can be evaluated at order αs to yield an integration
over energy fraction x and invariant mass s, which is the form we employ in
chapter 2.
In this appendix we will explicitly show how to calculate the jet function,

starting from the matrix definition above. The jet function can be calculated
order by order

Ji = J
(0)
i +

αs
4π
J

(1)
i + . . . . (B.3)

At leading order the parton does not radiate. Indeed, the tree level diagram
yields

J
(0)
i = δM,0. (B.4)

where δM,0 is the measurement on a jet of a single parton. To obtain the jet
function at O(αs) we have to evaluate all SCET diagrams that contribute at
this order. The three SCET diagrams that lead to the quark jet function are
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,

where all the lines are collinear. The crosses on the end of the quark line
indicate the SCET jet fields χn, which means that gluon fields that exit from
these crosses are in fact attached to the Wilson line Wn. Evaluating these dia-
grams requires summing over all possible cuts. Due to scaleless loop integrals,
the only non-vanishing contributions are the ones where we cut through the
loop. The SCET feynman rule we need for a gluon taken from a Wilson line,
which becomes apparent upon expanding in g, is given by

= = −g n̄
µta

n̄ · k
. (B.5)

We start by evaluating the diagram on the left. The cut through the loop
introduces the integration over final (on-shell) states and the contraction with
external polarizations and/or spinors. Furthermore we are required to sum
over all spin and color indices.

A =2(2π)(d−1)tr

[
/̄n

4Nc

]
, (B.6)

=− 2g2(2π)(d−1)
∑

s,s′,λ,λ′,c

∫
ddk

(2π)d−1
δ(k2)

∫
ddp

(2π)d−1
δ(p2)

×
∫

ddl1δ
d(l1−k−p)

∫
ddl2 δ

d(l2−k−p)δ(Q− l−1 )δ(d−2)(l1,⊥)

× tr[tata]tr
[
/̄n

4Nc

/l2
l22
γµv̄s(p)vs

′
(p)γν

/l1
l21

]
εµλ(k)ενλ′

∗(k)δM .

The trace over generators simply gives a factor Nc, the sum over color yields a
factor CF , the sum over spins can evaluated using the completeness relations for
spinors and polarization vectors. The integral over k is evaluated by replacing
k = l1 − p and the integral over l2 then sets l2 = l1. This leads to

A =− 2g2

∫
ddp

(2π)d−1
δ((l1 − p)2)δ(p2)

∫
ddl1δ(Q− l−1 )δ(d−2)(l1,⊥)

× 1

l41
tr
[
/̄n

4
/l1γ

µ
/pγµ /l1

]
δM ,



157

where we have used the momentum conserving delta functions to get rid of the
integration over l2 and k. We can evaluate the trace:

tr
[
/̄n

4
/l1γ

µ
/pγµ /l1

]
= −d− 2

4
tr
[
/̄n/l1/p/l1

]
= −(d− 2)(2l−1 p · l1 − p

−l21),

= −(d− 2)(l−1 )2p+, (B.7)

where we already used that the perpendicular component of l1 is zero to avoid
unnecessary terms. We now find

A = 2(d− 2)g2CF

∫
ddp

(2π)d−1
δ(p2)

∫
ddl1
l41

δ((l1−p)2)δ(Q−l−1 )δ(d−2)(l1,⊥)δM

× (l−1 )2p+. (B.8)

For the two remaining integrals we wish to switch to light-cone coordinates.
We therefore rewrite the phase space measure as

ddp =
1

2
dp+dp−dd−2p⊥, (B.9)

and similarly for l1. The delta functions then fix l−1 and l1,⊥ and the resulting
expression reads.

A = 2(d−2)g2CF

∫
dp+dp−

(4π)

∫
dd−2p⊥
(2π)d−2

δ(p+p−−p2
⊥)

∫
dl+1
2
δ((l1−p)2)

p+

l+
δM .

(B.10)

Integration over p+ and l+1 now yields

A = αsCF (d− 2)

∫
dp−

∫
dd−2p⊥
(2π)d−2

1

|p⊥|2
1

(Q− p−)(1 + p−

Q−p− )2
δM . (B.11)

To proceed, we change variables p− = xQ, where x represents the momentum
fraction of the quark after the splitting

A = αsCF (d− 2)

∫
dx

∫
dd−2p⊥
(2π)d−2

1

|p⊥|2
(1− x) δM . (B.12)

At this point it is useful to evaluate the contributions from the other two
diagrams in the same fashion, before we continue. We find that both diagrams
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give the same contribution due to cyclicity of the trace.

B + C = 2(2π)d−1tr

[
/̄n

4Nc

(
+

)]
, (B.13)

= 4g2CF (2π)d−1

∫
ddk

(2π)d−1
δ(k2)

∫
ddp

(2π)d−1
δ(p2)

∫
ddl δd(l−k−p)

× δ(Q− l−)δ(d−2)(l⊥)δM tr
[
/̄n

4

/l

l2
/̄n

k−
/p

]
,

where we have already evaluated the sum over final state configurations. The
trace can be evaluated to

tr
[
/̄n

4

/l

l2
/̄n

k−
/p

]
=

2l−p−

l2k−
=

2p−

l+k−
. (B.14)

Performing the integration over p sets all components of p to l − k. and we
find

B+C

= 4g2CF

∫
ddk

(2π)d−1

∫
ddl δ(k2)δ((l − k)2)δ(Q− l−)δ(d−2)(l⊥)

2(l−−k−)

l+k−
δM .

(B.15)

Switching again to lightcone coordinates (which yields a total jacobian of 1
4)

we continue with

B+C

= 4g2CF

∫
dk+dk−

4π

∫
dd−2k⊥
(2π)d−2

∫
dl+

2
δ(k+k− − k2

⊥)δ((l − k)2)
2(Q−k−)

l+k−
δM ,

= 2g2CF

∫
dk−

4π

∫
dd−2k⊥
(2π)d−2

∫
dl+ δ((Q− k−)(l+ − k+)− |k⊥|2)

2(Q−k−)

l+(k−)2
δM ,

= 2αsCF

∫
dk−

∫
dd−2k⊥
(2π)d−2

1

|k⊥|2
2(Q− k−)

Qk−
δM . (B.16)

Making the replacement k− = Q(1 − x), as k is the momentum of the gluon
which carries a fraction 1− x of the total jet energy, gives

B+C =αsCF

∫
dx

∫
dd−2k⊥
(2π)d−2

1

|k⊥|2
4x

1− x
δM . (B.17)
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Let us now merge the contributions from the three diagrams before we pro-
ceed. Adding equation (B.12) and (B.17) we get

4x

1− x
+ (d− 2)(1− x) = 2

(
1 + x2

1− x
− ε(1− x)

)
= 2Pq(x), (B.18)

where we have used d = 4− 2ε, and find

Jq({M}, µ) = 2αs(µ)µ̄2εCF

∫
dx

∫
dd−2k⊥
(2π)d−2

1

|k⊥|2
Pq(x)δM , (B.19)

where we have renormalized the expression using the MS scheme by changing
αs → αs(µ)µ̃2ε1, with µ̃2ε =

(
µ2γE/4π

)ε. Note that the strong coupling
constant now depends on µ, i.e. αs(µ). This result will be used as the starting
point for jet calculation in chapter 3. In chapter 2 we specifically constrain
ourselves to scalar quantities, for which the constraint δM can be written as
δ(s−sobs). In this case can simplify the expression even more. The integration
over d−2 components of k⊥ is split into an angular integration over d−3 angles
θ1, . . . , θd−3 and an integration over the radius |k⊥|.∫

dd−2k⊥
(2π)d−2

=
1

(2π)d−2

∫
d|k⊥||k⊥|d−3

∫ 2π

0
dθ1· · ·

∫ π

0
dθd−3 sind−4(θd−3),

=
1

(2π)2−2ε

∫
d|k⊥||k⊥|1−2ε(2π)

(
√
π)d−4

Γ(1 + 1
2(d− 4))

,

=
1

(2π)(4π)−ε Γ(1− ε)

∫
d|k⊥||k⊥|1−2ε, (B.20)

using again d = 4 − 2ε. The collinear limit of a two particle final state gives
the invariant mass s = |k⊥|2x(1− x). Switching to the integration over s thus
gives

Jq({M}, µ) =
αsµ̃

2εCF
(2π)(4π)−ε Γ(1− ε)

∫
dx

(1− x)εxε

∫
ds

s1+ε
Pq(x)δ(s− ŝobs(M)),

=
(αs

4π

)
2CF

(
µ2γE

)ε
Γ(1− ε)

∫
dx

(1− x)εxε

∫
ds

s1+ε
Pq(x)δ(s− ŝobs(M)),

(B.21)

where we inserted µ̃2ε =
(
µ2γE/4π

)ε. As a final step we reintroduce the φ
dependence through ∫

dφ sin(φ)−2ε =
Γ(1

2 − ε)
Γ(1− ε)

√
π, (B.22)

1This replacement is valid at O(αs). At higher orders one should use the all order re-
placement, alphas → Zααs(µ)µ̃2ε. The renormalization constant Zα is given in appendix
1.4.
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as some observables impose constraints that break azimuthal symmetry.

Jq({M}, µ) =
(αs

2π

)4CF (µ2γE
)ε

Γ(1
2 − ε)

√
π

∫ π

0
dφ

∫ 1

0
dx

∫ ∞
0

ds

× Pq(x) sin(φ)−2ε

s1+ε(1− x)εxε
δ(s−ŝobs(M)). (B.23)

This is the jet function used in chapter 2.
The gluon jet function can be obtained by following similar steps as outlined

above. The Lorentz structure of the gluon jet function, as it appears in (B.2),
should be maintained. After calculating the contributing Feynamn diagrams
we find that the complete gluon jet function is described by

Jµνg ({M}, µ) = 4αs(µ)µ̃2ε

∫
dx

∫
dd−2k⊥
(2π)d−2

1

|k⊥|2
Pµνg (x)δM (B.24)

where

Pµνg (x, k⊥) = P̂µνgg (x, kT ; ε) + 2nf P̂
µν
qq̄ (x, k⊥; ε) (B.25)

with [223]

P̂µνgg (x, k⊥; ε) = 2CA

[
−gµν

( x

1− x
+

1− x
x

)
− 2(1− ε)x(1− x)

kµ⊥k
ν
⊥

~k2
⊥

]
,

P̂µνqq̄ (x, k⊥; ε) = TF

[
−gµν + 4x(1− x)

kµ⊥k
ν
⊥

~k2
⊥

]
(B.26)

When the measurement δM does not depend on the transverse momentum
there is only one Lorentz structure that can describe the free indices, namely
gµν⊥ . To obtain the contribution we use thed-dimensional average over the
polarizations of the gluon, which is obtained using the transverse projector:

Pµν⊥ = − 1

d− 2
gµν⊥ = − 1

d− 2

[
gµν − 1

2
(nµJ n̄

ν
J + nνJ n̄

µ
J)

]
. (B.27)

Averaging over polarizations then yields

Jg({M}, µ) = 4αs(µ)µ̃2ε

∫
dx

∫
dd−2k⊥
(2π)d−2

1

|k⊥|2
Pg(x)δM (B.28)

with

Pg(x) = 2CA

(
x

1− x
+

1− x
x

+ x(1− x)

)
+ 2TFnf

(
1− 2

1− ε
(1− x)x

)
.

(B.29)
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If the measurement does however involve (one or more components of) the
transverse momentum there is an extra contribution, resulting from the linear
polarization. For this reason it is convenient to Fourier transform the gluon
jet function to impact parameter space

Jµνg (b⊥, µ) =

∫
dd−2p⊥J

µν
g (ω, p⊥, µ)e−ip⊥·b⊥ (B.30)

and write it in terms of polarizations as

Jµνg (b⊥, µ) = (d− 2)PµνL JLg (b⊥, µ) + (d− 3)(d− 2)Pµν⊥ J⊥g (b⊥, µ), (B.31)

where

PµνL =
1

(d− 2)(d− 3)

(
gµν⊥ −

bµ⊥b
ν
⊥

|b⊥|2
(d− 2)

)
. (B.32)

The projectors are defined to be orthogonal, i.e.

Pµν⊥ PLµν = 0, (B.33)

and are normalized such that

Pµν⊥ P⊥µν =
1

d− 2
and PµνL PLµν = 1 =

1

(d− 2)(d− 3)
. (B.34)

The projection operators can be used to extract the contribution of the two
Lorentz structures in the following way

J⊥g = Pµν⊥ Jgµν = 1 +O(αs),

JLg = PµνL Jgµν = O(αs). (B.35)

The linear polarization exists because the collinear gluon splitting is intrinsi-
cally polarized. In most cases however the linear polarization is absent, as it
contributes at a higher accuracy. The linear polarized jet function starts at
O(αs), as shown in equation (B.35), since a non-zero transverse momentum is
needed to have a non-zero contribution from linear polarization. At leading
order there is no transverse momentum and hence the linear contribution van-
ishes. In chapter 3 we calculate the azimuthal angle, which is closely related
to the transverse momentum. Here the linear gluon polarization will in fact
contribute at the level of accuracy we are working (in both jet and beam). It
is useful to already perform the projections to obtain the contributions. The
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transverse contribution was already performed in momentum space, see equa-
tion (B.28). To perform the projection onto the linear contributions, we first
investigate the effect of the polarization on a general structure

PµνL

(
Agµν+B

kµ⊥k
ν
⊥

|k⊥|2

)
=

1

(d−2)(d−3)

(
gµν⊥ −

bµ⊥b
ν
⊥

|b⊥|2
(d−2)

)(
Agµν+B

kµ⊥k
ν
⊥

|k⊥|2

)
,

=
B

(d−2)(d−3)

(
1− (d−2)

(b⊥ · k⊥)2

|k⊥|2|b⊥|2

)
. (B.36)

Projecting out the linear contributions of the gluon splitting function in equa-
tion (B.25) then yields

JLg (b⊥, µ) = 4αs(µ)µ̃2ε 2(4TFnf − (d− 2)CA)

(d− 2)(d− 3)

∫
dxx(1− x) (B.37)

×
∫

dd−2k⊥
(2π)d−2

(
1− (d−2)

(b⊥ · k⊥)2

|k⊥|2|b⊥|2

)∫
dd−2p⊥δM (p⊥)e−ip⊥·b⊥ .

A concrete example that includes linear gluon polarizations is discussed in
chapter 3.



Summary

The research described in this thesis contributes to progress made in the field of
theoretical particle physics. This is an area of physics that aims to understand
the behaviour of the most elementary building blocks of our universe. As
curiosity is something inherent to human kind, this summary is written for the
general audience that may wonder about this topic.

Particle Physics and the Standard Model

For hundreds of years people have understood that matter was built from tiny
building blocks. The Greek philosopher Democritus dared to introduce the
concept of an atom, postulating that there should be an infinite number of
objects, which differ in shape and size. Nowadays we know matter is indeed
made out of atoms. However, these are not the smallest building blocks of
matter. Atoms themselves are made up of a positively charged nucleus sur-
rounded by a cloud of negatively charged electrons. The electron seem to be
point-like, meaning that it is a fundamental particle. The nucleus is in turn
composed of protons and neutrons. As the name suggests the neutrons do not
carry charge, whereas protons are responsible for the positive charge of the
nucleus. The total charge of an atom is zero, meaning that there are as many
protons as neutrons. Even though this seems complicated enough, the protons
and neutrons can be pictured as a soup of the fundamental particles called
quarks and gluons.
The field of particle physics dedicates itself to unravel the fundamental build-

ing blocks and their interactions. Its greatest accomplishment thus far is en-
compassed by the theory we call the Standard Model (SM). It describes all
fundamental particles and their mutual interactions, except gravity. The par-
ticles described by the SM are summarized in figure 1. Ordinary matter is
made of fermions: the quarks, electrons and neutrinos. There are six quark
flavors and six leptons, which can be grouped into three generations. The first
generation includes the up- and down-quark, the electron and the electron neu-
trino. The second generation includes the strange-quark, charm-quark, muon
and muon neutrino. The third and last generation includes the bottom-quark,
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Figure 1 All the fundamental particles in the SM are represented by this
picture. The outer circle includes the twelve elementary particles that make
up matter. These are the leptons and quarks, represented by the black and
grey boxes respectively. There are 6 quark flavors: up (u), down (d), strange
(s), charm (c), bottom (b) and top (t). There are also 6 leptons: electron (e),
muon (µ), tau (τ) and the corresponding neutrino’s ((νe, νµ, ντ ). The four
fundamental force carriers are included in the middle ring. The electromagnetic
force is carried by the photon (γ), the weak force is carried by the Z- and W -
bosons and the strong force is carried by the gluon (g). The center of this
figure is reserved for the Higgs particle. The particles that interact with the
Higgs particle acquire mass. The photon and gluon do not interact with the
Higgs and are therefore massless. The three neutrinos interact weakly with the
Higgs and have a very small mass.

top-quark, tau and tau-neutrino. Each generation is heavier than the last,
with the top quark being the heaviest particle. Then we have the bosons, the
carriers of the fundamental forces. Starting with the best known of four, the
photon is the force-carrier of the electromagnetic force. The Z- and W -boson
are force-carriers for the weak nuclear force. This force is responsible for the
radioactive decay of some atoms, where weak refers to the relatively long time
it takes for such a decay to actually happen. The last force is the strong nu-
clear force, which is passed on by gluons. The constant exchange of gluons
between quarks is what glues them together in formations like a proton. The
remaining particle is the Higgs, which is not a building block for matter, nor
a force carrier. The Higgs is special as it is essential to the process through
which the other particles acquire mass.
The existence of elementary particles and their interactions is tested by
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experiments that let particles collide at very high energies. The world’s largest
and most powerful particle accelerator is the Large Hadron Collider (LHC) at
CERN in Geneva. Here, protons are accelerated until almost the speed of light
and are then violently collided. The experimental particle physicists make it
their quest to reconstruct the details of the collision from the data collected
by the detectors that are placed around the point of collision. All particles
predicted by the SM are found, with the last one being the Higgs particle
in 2012. Even more impressive is that no additional fundamental particles
appeared at all. Besides the fact that it does not incorporate gravity, the SM
fails to explain some of the biggest mysteries in the universe of our time. It
does not explain the fact that there is almost no anti-matter in our universe,
and neither the dark matter and dark energy which together seem to make up
roughly 95% of the universe. The SM is therefore, in spite of its successes,
incomplete and the field of particle physics is actively looking for answers.

Quantum Chromodynamics

The research conducted in this thesis focuses on the strong interactions be-
tween quarks and gluons. These interactions have a great imprint on the
outcome of proton-proton collision at the LHC. The branch of the SM that
describes the strong interactions is called Quantum Chromodynamics (QCD).
Consider first the better known theory of Quantum Electrodynamics, which
describes the interaction between electrically charged particles. Electrically
charged particles interact with each other by exchanging photons. Two posi-
tively or two negatively charged particles repel and particles of opposite charge
attract. The prefix ’Chromo’ in QCD refers to the existence of three kinds of
charges, referred to as colors. The quarks are the matter particles in the SM
that carry color and they interact with each other by exchanging gluons. A
large difference with QED is that the force carriers, the gluons, carry color
themselves and they can therefore interact with themselves. The color charge
of quarks and gluons is completely unrelated to the everyday meaning of color.
The labels red, green, and blue simply got in fashion by the analogy to the
primary colors. A striking characteristic of QCD is that it only allows color-
neutral combinations at distances > 10−15m. Due to this color confinement,
particles that carry color are grouped into color neutral objects called hadrons
and can only be studied indirectly. In particular, a quark and an anti-quark
with opposite color charge combine into mesons, and three quarks with one
red, one green and one blue combine into baryons. Here, we clearly see the
reference to the primal colors: red, green and blue combine to white, which is
considered neutral. A proton is a baryon that contains two up and one down
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quark. However, due to the continuous interactions between quarks and glu-
ons, hadrons are complicated objects that in reality are closer to a constantly
changing soup of various quarks and gluons.

Effective theories, factorization and resummation

In any line of work one has to extend or refine the available set of tools to
improve the product. In theoretical physics we need to extend our calculation
techniques to increase the precision of our SM predictions. In particular we
use so-called effective theories to circumvent complicated calculations.
To understand what an effective theory is, let us consider the theory in-

vented by Enrico Fermi in the 30s. He was investigating beta decay: a type of
radioactive decay in which an atom decays into another atom by emitting an
electron or positron (the anti-particle of the electron). In particular, the beta
decay of a neutron transforms it into a proton by the emission of an electron ac-
companied by an anti-electron neutrino. To explain this process he introduced
the direct interaction between the four leptons. This four-point interaction is
depicted on the left in figure 2. His explanation preceded the current theory
of the weak nuclear force (part of the SM), in which the elementary W -boson
is responsible for the decay. The weak force dictates that a down-quark can
change into an up-quark by emitting a W -boson. The W -boson itself prefer-
ably decays into an electron and anti-electron neutrino. This decay process is
schematically depicted on the right in figure 2.
Looking back, we now know that the decay is explained by the weak inter-

action, and we can interpret Fermi’s theory as an effective theory. Predictions
made with the four-point interaction are however much easier, and still give
a reliable outcome. The predictive power relies on the separation of energy
scales, which is the most important consideration when constructing an effec-
tive theory. In the case of Fermi’s theory this means we have to avoid energies
close to the mass of theW -boson; but for smaller energies Fermi’s theory works
excellently.
To predict the outcome of experiments at particle accelerators we can also

use an effective theory. We use the separation of energy scales to distinguish
particles with different energy and direction. To be more precise, we want
to separate soft interactions (involving particles with little energy), collinear
interactions (between particles that move in the same direction) and hard
interactions (between particles that carry a lot of energy but do not move
in the same direction). The effective theory that accomplishes this is Soft-
Collinear Effective Theory (SCET). Theoretical uncertainties in this theory
are a result of the separation between the energy at which the particles are
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Figure 2 This figure presents two explanations of neutron decay: On the left
we see the decay of an atom by means of a four point interaction between the
neutron, the proton, the electron and the corresponding anti-neutrino. On the
right the neutron decays through the weak force, as explained by the SM. The
down-quark carries negative electric charge and the up-quark positive electric
charge, the weak beta-decay is mediated by theW−-boson, such that the total
charge is conserved. Source: Wikipedia.

collided and the energy at which the measurement is performed. These two
factors are responsible for the validity of our effective theory, which can be
quantified by looking at the corrections to the SCET approximation.
By using SCET we can calculate the contributions from collinear, soft and

hard interactions separately. We call this factorization, as we have split the
complete process into smaller (easier) pieces. We calculate each piece in an
expansion, where we systematically include contributions that involve more
interactions between particles when we go to higher orders. Going to higher
orders is difficult, as one has to take an increasing number of interactions into
account. However, contributions of soft and collinear radiation are enhanced
and should be included to higher orders for precise predictions. This is reme-
died by factorization, which allows you to include the dominant effect of soft
and collinear emissions at higher orders. Each ingredient in the factorization
(soft, collinear, and hard contributions) depends on a specific energy scale.
A circumstantial result of factorization is that each ingredient has an energy
scale for which these dominant effects disappear, the so-called natural energy
scale. We can thus calculate the soft, collinear and hard pieces at their nat-
ural energy scale, such that we do not have to worry about dominant higher
order effects. Since the actual collision just involves one energy scale, we have
to convert all contributions to the same energy afterwards. The procedure
where all natural energy scales are evolved to a common energy scale is known
as resummation. This resummation technique has the ability to predict the
dominant contributions of collinear and soft radiation.
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Research in this thesis

The research described in this thesis aims to increase the theoretical precision
of SM predictions by using SCET. In chapter 2 we focus on jets, which are
collimated sprays of hadrons that are often found in detectors at the LHC.
They form whenever energetic quarks or gluons are produced in high-energy
collisions. Jets thus contain important information about these fundamental
particles and are therefore widely studied objects. In this chapter we provide
an automated calculation technique to calculate the jet contribution to a mea-
surement. In chapter 3 we use SCET to make a prediction for the process
in which two protons collide and produce a boson and a jet. Specifically we
consider the angle between a photon (or Z) and the jet. For situations where
this angle almost becomes straight, i.e. when the photon and the jet are flying
in the exact opposite direction, we find that SCET is particularly useful. In
this limit the resummation is necessary to obtain reliable results, and SCET
provides a framework in which this can be done. In chapter 4 we extend our
set of tools with track functions. The data that experimentalists currently use
from the LHC experiments to compare to theory is limited by the size of the
calorimeter cells. The calorimeter is the part of the detector that measures the
energy and direction of the particles produced in the proton-proton collision.
It would be possible to improve the experimental accuracy by using data from
the tracking system. The tracking system is a layer in the detector with the
principle task to reconstruct the trajectory of electrically charged particles.
The research described in this chapter focuses on the theoretical implementa-
tion of measurements solely based on electrically charged particles. We do this
by using track functions, which describe the fraction of the produced particles
that will leave tracks in the detectors.
The battle to find the first crack of the SM has begun, with the techniques

described in this thesis playing an important part. Will precision physics beat
the SM? Or will it hold its ground, giving us the immense task of explaining
the open questions, related to e.g. dark matter and energy, for which we do
not know where to start?
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