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Abstract: Tunneling processes in de Sitter spacetime are studied by using the stochastic approach.
We evaluate the Martin-Siggia—Rose—Janssen-de Dominicis (MSR]D) functional integral by using
the saddle-point approximation to obtain the tunneling rate. The applicability conditions of this
method are clarified using the Schwinger-Keldysh formalism. In the case of a shallow potential
barrier, we reproduce the Hawking—Moss (HM) tunneling rate. Remarkably, in contrast to the HM
picture, the configuration derived from the MSRJD functional integral satisfies physically natural
boundary conditions. We also discuss the case of a steep potential barrier and find an interesting
Coleman—de Luccia (CDL) bubblelike configuration. Since the starting point of our analysis is the
Schwinger—Keldysh path integral, which can be formulated in a more generic setup and incorporates
quantum effects, our formalism sheds light on further studies of tunneling phenomena from a
real-time perspective.

Keywords: tunneling; stochastic approach; de Sitter spacetime; MSRJD functional integral

1. Introduction

Tunneling is an important nonperturbative phenomenon in cosmology. Hence, it is
crucial to understand tunneling processes in curved spacetime. In particular, tunneling in
de Sitter spacetime is worth studying in detail. The reason is that the de Sitter spacetime
is the simplest non-trivial curved spacetime. Moreover, the results obtained there can be
applicable to tunneling phenomena during inflation. Since both Minkowski and de Sitter
spacetime have the maximal symmetry, there exist a similarity. Indeed, the Euclidean
instanton method for evaluating the tunneling rate in Minkowski spacetime [1,2] is ap-
plicable to tunneling processes in de Sitter spacetime [3]. However, the extension of the
Euclidean method to the de Sitter spacetime has a difficulty in interpretation. In the case
of the de Sitter spacetime, there are two saddle solutions: Coleman—-De Luccia (CDL) [3]
and Hawking-Moss (HM) instantons [4]. The latter instanton is a homogeneous solution.
Therefore, it is not straightforward to interpret the tunneling rate as that for the tunneling
process from a false vacuum to a true vacuum [5,6].

To circumvent the difficulty, a real-time formalism might be useful. In the case of the
de Sitter spacetime in the flat chart, the stochastic formalism has been used for investi-
gating time evolution of fluctuations during inflation [7,8]. In this formalism, Langevin
equations describe the dynamics of long-wavelength modes. Stochastic noises stem from
short-wavelength quantum modes. The stochastic formalism has also been used to analyze
the tunneling processes in de Sitter spacetime [9-15]. However, most of the previous works
treated only the HM transition by utilizing the Fokker—-Plank (FP) equation for a homoge-
neous scalar field, which can be derived from the Langevin equation. Obviously, the HM
transition cannot describe the bubble nucleation in contrast to CDL tunneling. To describe
the bubble, we have to include the spatial gradient term, and the FP equation becomes a
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functional differential equation instead of a partial differential equation. Hence, at first
glance, it seems difficult to treat the CDL bubble by the stochastic approach. However, we
make an observation that there exists a path integral representation to solutions of the FP
equation. In condensed matter physics, it is called the Martin-Siggia—Rose—Janssen—de
Dominicis (MSR]D) functional integral [16-19].

In this paper, we use the MSR]D path integral formula to study the tunneling processes
on the fixed de Sitter background. The applicability conditions of this method are clarified
based on the Schwinger-Keldysh formalism. We consider a potential V(¢) which has
a local minimum at ¢ = ¢g,jse, @ true minimum at ¢true, and a local maximum at ¢rop
as shown in Figure 1. We use the saddle-point method and evaluate the tunneling rate
by computing the action for the tunneling configurations [20]. We investigate both HM
and CDL tunneling processes. In the case of a shallow potential barrier, the conventional
HM tunneling rate is reproduced. Remarkably, the tunneling configuration in the MSRJD
functional integral method has physically natural boundary conditions in contrast to the
Euclidean method. We then clarify that the HM tunneling rate is the tunneling rate of a
(roughly Hubble sized) coarse-grained patch transitioning from ¢s,jse to ¢rop. In the case
of a steep potential barrier, we find an interesting CDL bubblelike configuration which is
obtained by solving the solution of a scalar field equation in Euclidean anti-de Sitter space
even though we do not work in the imaginary time. Our results show how the bubble
nucleation process could be described in the stochastic approach.

V(¢)

Pralse ¢Iop

Figure 1. The schematic picture of the potential V(¢) which has a false vacuum at ¢ = ¢g,jee, true
vacuum at ¢ = ¢yye and the top of the potential at ¢ = Prop.

This paper is organized as follows. In Section 2, we present the setup and review the
stochastic approach. In Section 3, the MSR]D functional integral is constructed from the
Langevin equations. We also outline the derivation of the MSR]D functional integral starting
from the Schwinger—Keldysh formalism. In Section 4, we apply the MSR]D functional
integral to the case of the shallow potential barrier and study the HM tunneling process. In
Section 5, we consider the case of the steep potential barrier and find the CDL bubblelike
configuration. We derive the tunneling rate using the configuration and compare it with
the one obtained in Section 4. We also compare our results with those in the Euclidean
method. Section 6 is devoted to the conclusion. Some technical details are presented
in appendices.
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2. Stochastic Approach

In this section, we review the stochastic approach [7,8].

2.1. Setup

We consider a real scalar field ¢ in a (3 + 1)-dimensional de Sitter background. The
background geometry is described by the metric

ds? = —dt? + a(t)?dx?® = a(y?)(—dy? + dx?), 1)
with the scale factor 1
ﬂ(t) = th = —Hirl, (2)

where H is the Hubble constant. The action is given by

1. 1
S= /dtd3x a® {24# - Eﬂfz(VCP)z - V(g)|, 3)

where a dot denotes a derivative with respect to t and V(¢) is a potential function. From this
action, the canonical conjugate momentum IT is defined as IT := 43¢ and the Hamilton’s
equations of motion are given by

¢ =a 11, IT=aV%p—a®V'(¢). (4)

2.2. Langevin Equation

First, we divide the quantum fields ¢ and I1into an infrared (IR) part and an ultraviolet
(UV) part, respectively, as

¢=¢r+¢uv, II=IIRr+Ilyy. ()
The UV part is defined as
-k ik-x 1 % —ik-x
povi= [ 2oy 0 Kk~ Ke(0) a0 + afu (e,
d3k 3 . ik-x t .x —ik-x
TMyy = / Ok~ ke(0)a(t) [ (D** + afu (e ], ©)

where uj is a mode function that is specified later, and a; and az are annihilation and
creation operators, respectively. Here, 6(k — k.(t)) is a step function, and k.(t) is the cut-off
scale defined as

ke(t) :=ea(t)H, 7)

where ¢ is a constant. The value of ¢ is discussed later. Substituting Equation (6) into
Hamilton’s Equation (4), we obtain the following equations;

¢r = a Tl + &7, IR = aV2r — V' (¢r) + &7, (8)

where ¢? and ¢! are defined as

3 : .
£ = k1) f gyl = Kelt) e (O + afa)e )
3 H .
g i=ke(t) / (§n§3 6(k — ke(t)) [aka(t)3llk(t)elk'x - aza(t)%;;(t)el’"x} : )

To derive Equations (8) and (9), we assumed that the time evolution of UV modes could be
well approximated by the free theory that is defined around the false vacuum. The mode
function uy (t) introduced in (9) then satisfies the following equation
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fik + 3Hitk + a2k uge + V" (Patse) ke = 0. (10)

From this equation, we see the mode function only depends on k := |k|. Hence, we simply

denote the mode function as u;. Note that this mode function is used for UV modes

k> ke(t).
Let us consider statistical properties of & and ¢!I. The annihilation and creation
operators ay and 4}, satisfy the following commutation relations:

o, ab] = 2m)%6® (k= K'),  [ax, ap) = [a},al] = 0. (11)
Defining the vacuum state |0) as
a,|0) =0, Vk, (12)
we can calculate the one-point and two-point correlation functions of & and &!! as

(01¢%(£,%)[0) =0, (a,p = ¢,1T),
1 5 sin(kc(£)r)

(012" (1, 2)5P(,2')[0) = o ke()ke(t) Wg’xﬁ(f)fs(t— t), (13)
where r := |x — x/|, and
gr(t) =l ()
g (e) = a(t)°fig ()2 : (14)

gM(t) = (8")" = a(t) ux (t)ig (1)

Because of the Wick theorem, all higher correlation functions can be decomposed into
two-point functions. In the stochastic approach, we replace the operator ¢* by the real
random field which has the following statistical properties

¢t x)e =0, (a,p=0,1),

) o _ 1 . Sil’l(kc(t)r)
(E(t,x)EP(, x )>§ = ﬁkc(t)kc(t)z k()

where (- - ) represents an expectation value with the distribution function of ¢*. With this
prescription, Equation (8) can be interpreted as the Langevin equations with the noise ¢*
stemming from quantum fluctuations. Since {* are now regarded as classical variables,
we ignore the imaginary parts of ¢! and ¢''? which come from non-commutativity. Ac-
cordingly, IR variables ¢r and IR are also regarded as classical stochastic variables
in this prescription. The validity of this classical approximation is discussed in the
next section.

Re[g"(1)]é(t — 1), (15)

2.3. Bunch—Davies Vacuum

Now we define the vacuum state |0) by specifying the mode function u;. Equation (10)
is the equation for the mode k > k.. Let us assume that we can ignore the term V" in solving
(10). This can be justified when |V”'| is sufficiently small to satisfy max [ (k. /a)?, H*] > |V"|.
Under this approximation, (10) can be solved as

g = (—kn)? |C1HY (k) + CHP (—kn) |, (16)

3 3
2 2
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(2)

where Cj, C; are constants of integration, and ngl) (z), Hy” (z) are Hankel functions. We
choose the Bunch-Davies vacuum, i.e., the vacuum that coincides with Minkowski’s
vacuum at past infinity (7 — —o0) so that

g — Je*ik”, (—kn — c0). (17)

This determines Cy, C, as

/T H

Thus, we obtain the mode function

H 1 ;
= \/Tik ( " 1>e‘lk'7. (19)
To check (17), we used the following formulae
Wy J2 (L 1),k @y J2 (L )\,
H% (z) = — (iz 1)6 , H% (z) = —\ 5 1)e " (20)

Substituting (19) into (14) and using (7), we obtain

H2y? _ _
o0 = (1) = gl (e )

TIIT — kc — Ha3 . (21)

From (8), we have to scale g as ¢?? — ¢#9, "1 — ¢ /(H24%) and g1 — ¢#1/(Ha®)
in order to compare these quantities. Then, ¢?? and ¢! become dominant for the case
e < land € > 1, respectively.

2.4. Reduced Langevin Equation

Let us focus on physics at the super-horizon scales by taking ¢ < 1 and assume a
shallow potential so that we can use the massless approximation to evaluate the noise
correlations. In this setup, we can use (21), from which we find that ¢## becomes dominant.
We then ignore the noise for momentum &'!. We also ignore the gradient term in (8) because
we focus on the physics at super-horizon scales. Since the potential is assumed to be
shallow, the time variation in ¢ (t) is then very small. Therefore, we may integrate the
second equation of (8) as

a
IR ~ ——V'(¢r). (22)
Substituting this relation into the first equation of (8), we obtain

=~ LR e, 23)

where the two-point correlation function of ¢ is given at the leading order by

’ in(k,
(€7t x)E7(F,x)) = f?fo(kcr)é(t —t), jolker) := Snk(cr o

(24)

Equation (23) is the Langevin equation with the noise correlation (24) derived in [8].
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3. Path Integral Formalism for the Stochastic Approach

In this section, we introduce a path integral approach for the Langevin equation
following [21]. From now on, we replace the IR field and its conjugate momentum as
(1R, TIIR) — (¢, I1c). As we see in Section 3.2, this notation corresponds to the Keldysh
basis. In Section 3.2, we provide a first-principle derivation of the stochastic approach
based on the Schwinger-Keldysh formalism following [22,23]'. We briefly show the sketch
of the derivation in the main text, and details of derivations are given in Appendix A.

3.1. MSR]D Functional Integral Representation
3.1.1. Zero-Plus-One-Dimensional Theories

Equation (23) can be regarded as the equation determining the position of a par-
ticle ¢(t) with the white noise ¢? defined by Equation (24). For k.r < 1, we have
sin(kcr)/ (kcr) ~ 1 as a good approximation. Let us discretize the field and noise as
¢c(t) — @i, EP(t) — §§P, (i € Z). Then, Equation (23) reads

el V(i) 9\ _
X =g ¢1_1+At<3H éi)O, 25)

where At is the temporal discretization interval. Note that the discretization (25) is called Ito
discretization”. Denoting a solution of (23) by ¢.[¢], the expectation value of an observable
(O)¢ can be formally expressed as

ox
5.
where D¢, := [];d¢; is the functional measure, 6(¢. — ¢c[¢]) := [1; 6(¢; — ¢i[E]), and
|6X/0¢c| is the determinant of {dX;/J¢;}. When we choose the above discretization (25),

0X /¢, becomes a triangular matrix with a unit in the diagonal components, i.e., the
functional determinant is unity. Thus, substituting (25) into (26), we obtain

(©Olge())e = [ Dy Olg <1‘[5<4>, ¢11+At(V3ﬁ‘)—g?>)>. @)

g

(5(X)> . (26)

(©lgelt))e = [ Do-Olgd (oge — e = [ o0l g

Representing the delta functions in terms of a Fourier integral and taking the continuum
limit, we obtain the following path integral representation

O R R T

After averaging over the noise assuming Gaussian statistics, we obtain the Martin-Siggia—
Rose-Janssen—de Dominicis (MSR]D) functional integral

V! H? .
De= /D Pc, §) O[¢c] exp [/dt (up (cpc 3(193 )) — 8712('1)2)} (29)

Putting O[¢p:] = (¢ — ¢c(t)) and taking the boundary conditions ¢.(t') = ¢. and
¢c(t) = ¢pc, we obtain the transition probability p(¢., t|¢L, ')

Do D= L V(¢
p(ge,tlpl ) = /q) s (4>c,4>>exp[ / dt<z¢<¢c+ 3(1‘5)) Sﬂch )} (30)

Finally, introducing new variables I, := i), we obtain the “phase space” path integral

Pc(t)=¢c
pgatight) = |

DT exp | [ dHlilage—HgTL)|, 6D
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where we defined the Hamiltonian as

V' (¢c) H® )
H(¢pe, I1p) 1= ———TIp — =11} . 2
We emphasize that this is just a change of integration variable, not the Wick rotation. A
set of saddle-point equations is defined as the Hamilton equations for the Hamiltonian
defined above.

3.1.2. Three-Plus-One-Dimensional Theories

Let us consider the case of the full Langevin Equations (8), (13) and (21). When the
space is discretized, (8) can be seen as the dynamics of many body particles. Thus, the
procedure in the previous subsection can be utilized. Taking the continuum limit, we obtain
the following expression which is analogous to (30),

e(tx)=¢e(x)
PO ) = [ D (e 1)

X exp {i / d*x (Hch)C — ¢alle — H(pe, I, Pa, HA))} ) (33)

We define the Hamiltonian H(¢., I, pa, 1) as

H(ge T g, Tla) =138 — (@92 — V() )9
- ;Zﬁ/d‘lx’xa(x)G"‘ﬁ(x, x')Xg(x'), (34)

where the Greek indices a, B = (¢, IT) label the A fields as (Xy, X11) = (ITp, —¢a), and G*#
denotes the correlations of noises:

G*(x,2') = (g (1)EP ()¢, (35)

where the RHS is given in (15). We use the formula (33) in Sections 4.2 and 5. Note that we
have not changed the integration variables as (¢, I1p) — (—ipp, —ilIn).

In Sections 4 and 5, we take the initial state and the final state to be the false vacuum
and the field configurations after tunneling (true vacuum or bubble), respectively.

3.2. Transition Probability from the Schwinger—Keldysh Formalism

In the above prescription, we treat IR fields (¢r, IT[r) as classical stochastic variables.
To quantify the validity of this approximation, we derive the stochastic approach from the
first principles based on the Schwinger—Keldysh formalism. Note that we use the label “IR”
for IR fields in this subsection following the notation adopted in Appendix A.

Suppose that the system is in the false vacuum |¥¢,s) at the past infinity t = —oo,
and it evolves into a certain quantum state [{¢'R(T,x) },cp) at the final time t = T, where
[{¢™R(T, x) }xep) is an eigenstate of an IR field $'R(x) at spatial points x in the domain D
with an eigenvalue ¢'R(T, x). Here, $'R(x) is an IR field in the Schrédinger picture®. The
transition probability p for this process is given by

PUA™(T, ) xen) = | (™ (T, ) el Ut ~0) Fiase)| (36)

where U(t,t') describes the unitary time evolution from #' to t. The RHS is the Fourier
component of the generating functional Z[J'R] for IR fields, and we have



Universe 2024, 10, 292

8 of 33

, (37)
{JR(T,y)=0}y¢p

({(PIR(T x) }xeD H /d]IR (T, x) ]IR( )] —iJR(T,x)¢pR(T x)

xeD

where the generating functional Z[J'®(T)] is defined by

ZIR(T)] = T

(T, —00) [Fhatse) (Yeatse] UT (T, —00) He”m”'xwm”"‘)] . (38

We can evaluate Z[J'R(T)] nonperturbatively in the IR sector based on the method de-
veloped in [22,23]. Our strategy is that we integrate out UV sector k > k.(t) perturbatively
in nonlinear couplings to obtain Z[J'™R(T)]. This is analogous to tracing out environmental
degrees of freedom to evaluate the reduced density matrix for the system under considera-
tions. Each step we take can be summarized as follows:

1. First, we derive a path integral representation of Z[J'R(T)]. We then split the integra-
tion variables into UV fields and IR fields such that the integration contour of UV
variables of ¢ is closed; see discussions around Equation (A4) for more details®.

2. We perform the integration over UV variables and evaluate an IR effective action, the
so-called Feynman—Vernon influence functional [25] perturbatively.

3. We substitute the obtained expression of Z[J'*(T)] into (37), giving rise to the path
integral expression for the transition probability p.

Technical details are shown in Appendix A. At step 2, we assume that the quantum state
for nonzero modes is given by the Bunch-Davies vacuum state for a free field defined
around the false vacuum, and that the exact zero mode provides a non-fluctuating classical
background field configuration ¢ = ¢g,se.

In this way, we can obtain the path integral expression for the probability p as

p({¢"™(T, %) }xep) / D(¢R, o, TR, TIR) € 8[Chin]8[Cini] - (39)

Here, 6[C;n] and 6[Ciy;] fix the boundary conditions of the path integral at the final time
and the initial time, respectively:

3[Chin) == TT 0(92"(T, %) = ¢™(T,x)) [ [6(¢X(T, ), (40a)
xeD y
1n1 = H o ( (Pfalse) (HER(_OOI x )) 5[Cdetail] ’ (4Ob)

where 6[Cetail] is not relevant for the main points here, and we define it in Appendix A. A
term S may be understood as an IR effective action,

§ = [ b [IIRGR — gIRIIR — H(lR, 1R, gIf, 11R) — o] (41a)
SHi=a <t>[ (P + (¢R/2)) = V(PR = (91/2) = V' ()9 | + 0Hrigher . (41)

where H is given in (34). § Hpjgher denotes the higher-order terms in the coupling constant.
Note that Equation (39) allows us to understand the transition probability p in terms of the
stochastic dynamics: this point is discussed in Appendix A.3.

Validity of Equation (33)

Now, we find that S coincides with the term in the exponent of (33) up to the term 6H.
Hence, (39) shows that the result (33) in the previous section can be justified from the first
principles when the term 6 H is negligible. Suppose that the potential V (¢) is sufficiently flat
in the regime of interest such that the perturbation theory works when integrating out UV
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modes. In this case, we can systematically calculate é Hyigher perturbatively, and we have
OHpigher = 0 at the leading order. We set 6 Hpjgher = 0 in the present analysis. We should
keep in mind however that the nonperturbative physics at UV scales k > k.(t) = ea(t)H is
lost by setting  Hpjgher = 0. From this viewpoint, we should choose ¢ as large as possible.

Even after setting d Hpjgher = 0, we have nonzero 6H. In the classical approximation,
we may regard the A-variables (¢}, TTIR) as tiny quantities and keep only the terms which
are linear in the A-variables in S, leading to 0 H ~ 0. In the case ¢ < 1, this approximation
would work thanks to the squeezing of quantum fluctuations at super-horizon scales.
However, it is more subtle if we can set H = 0 in the case ¢ = 1. We revisit this issue in
Section 5.

4. Hawking-Moss Tunneling

In this section, we discuss the Hawking—Moss (HM) tunneling from the perspective of
the MSR]D functional integral. We calculate the tunneling rate defined by (31) and (33) in
Sections 4.1 and 4.2, respectively.

Hereafter, for the numerical calculations, we consider the potential [26] in Figure 2;

V()
4 2

=]
(=]

1.0

21e

-1.5

Figure 2. The potential of (42) for various B’s. From top to bottom, the curves correspond to
B =0,0.25,05,0.75,1.

2

V(p) =& (¢ a2+ Liag? —3p -2, @)

for which the derivative with respect to ¢ is given by a simple form

V(@) =g (¢ —a)(p+a)(p+ap). (43)
For this potential, we have ¢pe = —&, Prrue = « and Prop = —pa. The dimensionless
parameter B must be 0 < 8 < 1, otherwise ¢ = —a is not a false vacuum. The potential at

each point takes the following values:

48020t 2,4
Via)=0, V) =-PEC vip)=8Ta-pPerp. @
The height of potential barrier AV between the false vacuum and the true vacuum is

AV = V(—Ba) — V(—a) = %(1—[5)3(%[% (45)
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The mass of fluctuations around a given point ¢ is

V(9) = 0282 [3(9/ ) +2B(¢/n) — 1] . (46)
In our analysis, we work in the quantum field theory on the fixed de Sitter background.

This assumption is valid when the condition max[|V(—a)|, |[V(—Ba)|, |V (x)|] < 3M§1H2
is satisfied. This is always satisfied when the following condition is imposed

3¢M 2 via0 \’
H< 2 PI(H> z2.9><1012GeV< 8 >< 140) , (47)

2 qu 112 x 1074 ) \ ga/H

where we use 0 < B < 1 and choose parameters (g,gx/H) = (1.12 x 107%,1/140) as a
benchmark point for later convenience. This shows that we can ignore the backreaction
consistently with the weak coupling ¢ <« 1, provided that H is well below the Planck
scale My, ~ 2.44 x 10'® GeV. Note that under this condition, our discussion below is
also applicable in the case of a quasi de Sitter background. However, it is non-trivial to
generalize our analysis to the case when a non-negligible backreaction on H exists. This is
because it is necessary to extend the first-principle derivation of the stochastic approach
to account for the backreaction. This is in itself an interesting issue which we leave for
future work.

4.1. The Case for the Reduced Langevin Equation

Let us start from the simpler formula (31). Hamilton’s equations for the Hamiltonian
H(¢¢, 1) defined in (32) are given by

Vi) H
Pe="3H a2
1 Vee)

There exist many Hamiltonian flow lines in phase space (¢, Iy ) that represent the solution
of Hamilton’s equations as shown in Figure 3. Each flow line can be specified by the value
of the Hamiltonian since it is conserved on the given flow line. In the Figure 3, there are
two important flow lines corresponding to H(¢.,I15) = 0. Since the Hamiltonian is the
quadratic polynomial of ITy, there are two I, satisfying H(¢c, ITp) = 0:

872

In the case of ITp = 0, Equation (48) reduces to

. _ V(o)
b == - (50)
Similarly, in the case of ITy = — %V’ (¢c), Equation (48) reduces to
o Viee)
$e = 3H (51)

These two flow lines have three intersections which correspond to the false vacuum, the top
of the potential hill and the true vacuum from left to right. On the flow line with IT =0,
the false and true vacuums are stable and the top of the potential is unstable, while on
the flow line with ITy # O, the stability is reversed. The different signs of the potential
forces account for the reverse of the stability at the intersections. We see that the tunneling
configuration exists; starting from the false vacuum (¢, ITp) = (—a,0), going to the top of
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the potential (¢, [1p) = (—PBa,0) through the flow line with IT5 # 0 and finally going to
the true vacuum through the flow line with IT, = 0.

allp

Figure 3. The Hamilton flow for (48) with &« = H, g = 0.4 and 8 = 0.1. The solid lines correspond to
H(¢¢,II5) = 0. From left to right, the intersections of the solid lines correspond to the false vacuum,
the top of the potential hill and the true vacuum.

We numerically solve the second equation with the initial conditions ¢.(#') = —a and
switch to the first equation when the field reaches the top of potential ¢ () = —pa. Thus,
we obtain the tunneling configuration in Figure 4.

bc

a

1.0+

05}

-1.04

Figure 4. The tunneling configuration for the homogeneous fields is plotted for § = 0.1 and
ag/H = 1/10. We choose the initial condition as ¢:(1071°) /& = —1 + 1075 and solve the second
equation of (50). When ¢/« reach the top of potential ¢./a = —p, we switch to the first equation of
(50) with the initial condition ¢ /a = — +107°.
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Now, we evaluate the transition probability (31) by substituting the above tunneling
configurations. The action in (31) can be calculated without concrete solutions for ¢;

f H 87'[2 t . , . 87'[2
I= /t’ dt[IIpde — H(¢pe, IIp)] = 3R /t’ dtp V' (¢pc) = —ﬁAV, (52)

where t, is the time at which ¢, reaches the top of the potential, and AV is the difference of
energy density between the top of the potential and the false vacuum. The trajectory from
the top of the potential to the true vacuum does not contribute to the transition probability
because H(¢.,I1y) = 0 and ITp = 0 on its trajectory. Thus, the transition probability of the
tunneling can be evaluated as

/ 872
pla, t| —a,t') ~exp | — WAV . (53)

This shows a complete agreement with the result of the HM instanton on the fixed back-
ground [27].

Comments on this result are in order. It is pointed out in [27] that when the potential
V(¢) has several degenerate local maxima, all of them yield the same tunneling action in
the Euclidean method, despite differing distances from the false vacuum. In our formalism,
however, a transition to a distant maximum is described by a saddle-point solution that
passes through all the intermediate maxima, and the transition probability is given by the
product of the factors on the RHS of (53) for each maximum. The aforementioned subtlety
is absent in our formalism.

Since the analysis in Section 4.1 is based on (23) describing the stochastic dynamics of
the IR field ¢, at a single spatial point, Equation (53) calculates the tunneling probability
at a single spatial point, not on the whole universe’. Hence, physically speaking, (53)
provides the tunneling probability of a coarse-grained patch with a physical radius (eH) .
This point also becomes manifest in Section 4.2.

4.2. The Case for the Full Langevin Equation

Next, we evaluate the tunneling rate based on the formula (33). An advantage of (33)
is that one can discuss various non-trivial dynamics in the whole universe covered by the
flat chart in principle.

In the previous section, we focused on the dynamics at a single spatial point and found
the HM tunneling process as a non-trivial solution of Hamilton’s equations. In this section,
we discuss the corresponding process in the global picture based on (33) by identifying
a non-trivial configuration that satisfies Hamilton’s equations in a good approximation.
We then reproduce the result (52). We also estimate the characteristic time scale of the
tunneling. In Section 4.2.1, we remark some technical complications that arise in the
global picture.

We start with simplifying the expression (33). As discussed in Section 2, G¢ becomes
dominant, and the other terms can be neglected for ¢ < 1in (34). Under this approximation,
the exponent of the integrand of (33) is linear in ¢». We can then perform the path integral
[ D¢y in (33), yielding the product of delta functions [T, 6 (I1. — aV2¢c + a®V’(¢)). These
delta functions give an equation of motion for I'l; and eliminate the path integral [ DIL.
We solve this equation as T1, ~ —a3V’(¢.)/3H, ignoring the spatial gradient and the time
variation in ¢.. Furthermore, we change the integration variable as IIy — —ilI, in (33).
Consequently, (33) reduces to

/<Pc(t/x)—</>c(X)

Do T exp | [ (g~ Hima(g 1) |, 59
Pe (' ,x)=¢c(x)

p(¢e(x), tlpe(x), ') ~

where the Hamiltonian Hyyy is defined as



Universe 2024, 10, 292 13 of 33
, H3
Hum(¢e, I1p) == —*V (¢e)Ta = g5 TIaTIa, (55)
and T1, is given by
d’k 4% H? ‘
= [ &3 jo(ke(t —’Ht,’:/i——ét—tﬂt, x|
J & dolbke(t) e~ T0a6,2) = [ 555 T 50t~ tTIa (1 K)e (56)
Here, we define t; by the condition k.(t;) = k. Hamilton’s equations are
. 1, H3
$e = —ﬁv (¢c) — RHA' (57a)
. 1

Here, the term I, (¢, x) on the LHS of (57b) is defined as the Fourier transform of ITx (¢, k)
ie., ITz(t x) := (2r) 73 [ d3k 1 (t, k)e’**. The same rule applies to other IR variables in
the real space as in Equation (A24). Intuitively, this is because the stochastic formalism
is formulated in the momentum space, and its Fourier transform provides the stochastic
formalism in the real space; see Appendix A for more details.

Equation (57) admits a trivial configuration ITx(t,k) = 0 under which we have
Hym =0, and (57a) becomes ¢ = —V'(¢.)/(3H), describing the standard classical
time evolution. Now, we are interested in the non-trivial configuration which satisfies
(57). In the previous section, we focused on the non-trivial dynamics at the single spa-
tial point x = xo and it was found that the tunneling configuration was obtained by

IA(t, x0) = —3 H4 v (¢c(t,x0)). This configuration can be naturally extended to the one in
the global picture by considering the following configuration

87 —ik-
Iz (t k) = —@v (¢c(t, xg))e k>0, (58)
From now on, we show that this configuration satisfies a set of Hamilton Equations (57) in
a good approximation. For this configuration, we have

alt %) = — SV (et 30)) £ 1), (59%)
(1a(t,2) = SV (et 20t 30) 51, (590)
(8, 3) = SV (et x0)ioke(0)), (59)

where 7 1= |x — xq|, and f(r;t) := (271)~2 [ A3k O(kc(t) — k) e’ (*=%0). The functions
jo(kc(t)r) and f(r;t) rapidly oscillate for r > k:1(t). Hence, they exponentially decay
to zero after they are smeared over the Hubble time: for instance, jo and f becomes the
smooth function after the suitable coarse-graining as®

time c.g. r c
jolke()r) =<8 W(r;t) := /dt'w(t/,t)jo(kc(t’)r) ~ {(1) E” i I;C_lggi ,

time c. 3 2 r ~1
Frt) —<&, We(r;t) /dt w(t', ) f(r;t) ~ {SC(W(M ) Erilzcligi (60)

Here, we perform the smearing by using a window function w(#, t) which is approximately
constant in the domain |t — /| < H~! while it exponentially decays to zero at |t — t/| >>
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H~!. We also impose the normalization condition [dtw(t,t) = 1. We can choose
w(t',t) = Hn Y2 exp[—H?(t — t')?] for example. Note that the property (60) is based
on the behavior jo(k.r) ~ 1 and f(r;t) ~ k3 /(67%) for r < k! and the rapid oscillations
of jo(kcr) and fo(r; t) for r > k; 1. Hence, the property (60) is robust against the choice of
w(t',t).

Therefore, substituting Equations (59c) and (60) into Equation (57a) and performing
the smearing in time, we obtain

Belt,%) = = 52 [V/(9e(t,2)) = 2V (91, 30) ke (1) 61a)

time c.g. {—V( do(t,x))/(BH) (r>>kZ1(t))

)/
V! (¢c(t,x0))/(BH)  (r < kZ1(8) (61b)

This exhibits the non-trivial dynamics only in the domain r < k. lie,a coarse-grained
patch centered at a point xy with a physical radius (eH)~!. Here, we used ¢.(t,x) ~
¢c(t,x0) for r < kZ1(t). In the second line, it is assumed that V’(¢.(t, xp)) does not can-
cel the rapid oscillations of jy(kc(#)r) so that their product V'jy decays exponentially at
r > k! after the suitable smearing. This assumption is valid thanks to the approximate
constancy of super-horizon fluctuations ¢.(t, k) over the Hubble time: ¢.(t, k) ~ ¢.(t, k)
for |t — /| < H™!. Adopting the same assumption, from (59a) and (59b), we also obtain
the smeared expressions of T and IT, which turn out to satisfy (57b) under the con-
dition (57a). Hence, we conclude that (59) describes a non-trivial saddle-point solution
in a good approximation. Furthermore, after the smearing, we can find Hypy ~ 0 for
that configuration.

Now, we use the configuration (58) or (59) to obtain the tunneling configuration shown
in Figure 4 again. We can calculate the action for this tunneling configuration similarly to
(52). By substituting the exact expressions (59) and (61a), we obtain”

H3 ty 3 =
IZ_R/N dt/d XTIz (t 2)TTa (1, x)
87(2 rty t
e [ a v PO [t n) )
82 b 82
=351 J, dt e (t, x0) V' (¢e(t, x0)) = WAV' (62)

In the first line, we used (57a) to eliminate ¢, from the integrand. In the second line, we
substituted the concrete configurations (59). In the third line, we used (61a) and performed
the spatial integral as [ d3x jo(kc(t)r) f(r;t) = 1. Thus, we reproduced the previous result
(52). Our analysis confirms that (62) gives the tunneling probability of a coarse-grained
patch with a physical radius (eH) !

It is worth mentioning the time scale of the HM tunneling. We may naively calculate

the typical time scale of the HM tunneling as t, — ' = [, <P4; :fe

argument of the field is suppressed. However, this integral is in general divergent since
V' = 0 at both ends of the integral. In the vicinity of the domain where V' = 0, we expect
that the quantum fluctuations of the field would play an important role. Since the typical
size of quantum fluctuations accumulated over the Hubble time is H/(277), we may define
the regulated quantity ty as

Prop— 1 3H
b = / dpe —r (63)
¢false+% (pc V/(¢C)

and we expect that fiyy would correctly characterize the typical time scale of the HM
tunneling. In particular, for our potential (42), we have

deo. V?H ik Here, the spacetime
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_ 3H 3+B - Tmsm|] 1 2
tHM72g2a2(1+/§) (1_ﬁ>log1 H/2na logl—l—Hl/Zi T (9((H/go¢)). (64)

Since we have (H/ga)? ~ (H*/V")y. <4 <grop > 1 for the shallow potential, we conclude
that the time scale of HM tunneling is much longer than the Hubble time.

4.2.1. Remark

So far it has been found that starting from (33), the configuration (58) approximately
solves Hamilton’s Equation (57) and reproduces the previous result (52) when it is substi-
tuted into the action. There is actually an important reason behind why we should choose
the configuration (58) to evaluate the HM tunneling process.

To see this, it is important to realize an important difference between the current
Hamilton Equation (57) and the previous one (48); the equation for ¢. now contains Iy
rather than II,. Due to this difference, the structures of Hamilton’s Equation (57) are
understood as follows;

*  The equation for ¢ (57a) is determined once I1, is specified;

e TIA(t, x) is understood as initial conditions for (57b) since ITx(#, x) contains only the
boundary modes satisfying k = k(t). Hence, I (¢, x) is obtained by solving (57b) for
a given I, under the condition (57a).

On top of that, substituting Hamilton’s equation for ¢, into the action, we can rewrite the
first line of (62) as

1t d3k H?
[=—5 [, dt [ Gy Tl R)Ia(t, —k) 0t 1) (©9)

The RHS depends only on the value of I, (¢, k)| k=k.(t)- Hence, we can evaluate the tunnel-
ing action once I, is specified, provided that (65) or equivalently (33) is reliable.

We claim that (33) is valid when I1y is chosen so that ITx (# > #, k) becomes a smooth
function in time. Otherwise, it is not justified to ignore the higher-order corrections 6 Hyigher
which are neglected in (33). Intuitively, this states that the perturbation theory tends to be
broken down around exotic configurations. When I, is a smooth function, we can relate
I1, to I, after the suitable smearing in time:

time c.g.
E—

TIA(t, x) /dgx’HA(t,x’)W(|x —x|;t) ~ VIIa(t, x). (66)
Here, we also used ITx (t,x) ~ TT5(t, &) for |x — x’| < k-!and defined V := (471/3)k-3(t) ~
[ d3x' W(|x — ¥'|;t). We then require that Hamilton’s equation for IT5 (57b) is satisfied
in a good approximation to ensure the validity of (33). This constrains the choice of TT,.
Indeed, the configuration (58) approximately solves (57b) and satisfies the smoothness and
henceforth (66) after the smearing. This would be the reason why our analysis with (58)
based on (33) can reproduce the correct result.

4.3. On the e-Independence of the Hawking—Moss Tunneling

In Sections 4.1 and 4.2, the tunneling probability of a coarse-grained patch with a
physical radius (eH) ! is calculated. Our results coincide with the HM tunneling and are
independent of «.

The e-independence of the results would be a consequence of the scale independence
of the dynamics of light scalar fields at super-horizon scales. To see this, it is useful to
notice that a coarse-grained patch of physical radius (eyH) ! at a time t = T expands
to a patch of larger physical radius (e;H) ™! at a later time t = T + 6t > T with &y =
€1 exp[—Hdt] < &1 < 1. The value of the IR field does not evolve from t = T to T + dt
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because the fluctuations of a light scalar field at super-horizon scales are approximately
time-independent,

3 ‘ 3 4
/ (;nk)?, e (t, k)R 0 (ke (1) — k) ~ / én];g, dc(t + 0t k)e**0(ke(t) — k), (67)

unless 6t is much longer than H~!. Hence, we can relate the coarse-grained dynamics of
different ¢ < 1 by considering the time shift t — t + 5t with the value of the IR field being
kept fixed. This means that the tunneling probability from ¢ = ¢r,1se t0 Prrue 0f a patch
with physical radius (¢H)~! should be independent of e.

5. Coleman-de Luccia Tunneling

In the previous section, the result of the HM instanton was reproduced by using (33).
We expect that the Formula (33) can describe not only the HM tunneling but also the CDL
tunneling. In other words, we expect a flow line starting from the false vacuum to the
bubble configurations as illustrated in Figure 5. In this section, we concretely show an
interesting configuration by following the prescription in the previous section.

P (x)

(¢£alse (X), 02

> Pe(x)

N

(¢2"*Pe(x),0)

Figure 5. A schematic picture of Hamiltonian flows in the “field” phase space. We expect a flow line
which starts from the false vacuum (left intersection) and reaches the bubble configuration (right
intersection) through a nonzero ¢, (x) path.

5.1. Coleman—de Luccia Bubble Solution

In the Euclidean method, the CDL instanton is dominant rather than the HM instanton
when the potential barrier is steep [28-31]. By taking € > 1, we can study nonperturbative
physics at sub-horizon scales such as the formation of a bubble. In this case, G''' becomes
dominant and the other noises can be ignored in (34). Under this approximation, the
exponent of the integrand of (33) is linear in IT5. We can then perform the path integral
[ DI, in (33), yielding the product of delta functions [, J(¢c — a °I1:). These delta
functions eliminate the path integral [ DIL®. Furthermore, we change the integration
variable as ¢p — —i¢p in (33), leading to

P~ /9(470 Pn) exp U d*x (“3%4% - HCDL(<PCI¢A))} (68)

with appropriate boundary conditions; we consider bubble configurations as boundary
conditions later. Here, the Hamiltonian Hcpy, is defined by

3
Hep (9c,9a) = — (492 = aV/(90) ) o — - 0a (50 (), (69)
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with

4
Balt)i= g b [ kel ) ga ). 70

We would like to find the appropriate configuration ¢, which describes the tunneling
process. Following the choice made in Section 4, let us suppose that the appropriate choice
is given by the configuration for which the Hamiltonian (69) vanishes:

Pa(x) =0, =2(a2V2p. — V'(¢0)) - (71)

Note that this condition is imposed up to the suitable smearing in time because ¢, (¢, x)
includes only the boundary Fourier mode k = k.(t). As discussed in Section 4.2.1, ¢
becomes sufficiently smooth for the appropriate ¢ ,, and hence we also suppose

2
Ba~ 5 9a(x) 72

after the suitable averaging over the Hubble time, similarly to (66). We use the relation
(72) to evaluate the action later. This would work at least for the purpose of estimating
the action.

In principle, we do not need to use the estimate (72) in evaluating the action since it is
determined once ¢, is specified based on the analogous logic discussed around (65). For
this purpose, we need to specify the configurations {¢a(t, k)|s— (s } in momentum space
which result in the sufficiently smooth ¢, that solves the Hamilton equations. It is not easy
to find such appropriate configurations precisely, however. Hence, we leave a more careful
analysis on the choice of ¢, for future work. In this study, instead, we focus on how we
can proceed with the analysis for the given configuration (71) while adopting the estimate
(72) and how the bubble nucleation process could be described in the stochastic approach.

Using the relation (72), the Hamiltonian (69) and the configuration (71) become

2
HepL ~ — (ﬂvquc - 113V’(¢c))4>A - %ﬂ?@bi , (73)
Pa(x) =0, — 7 (@ 2T~ V'(90)). 74)

Hamilton’s equations under the constraints (74) give the following equation of motions for ¢,:

$e +3Hpe = —(V'(pc) —a >V2¢c), (pa =0),

fet3HB = V!(90) —a Ve, (pa= g @2V~ VI9O)). (75)

Similar to the previous case (50), the signs of the potential term and the gradient term
are flipped in the equation of motion with the non-trivial ¢ # 0. Hence, we can expect
the tunneling process to be realized. From (68), we find that only the solutions satisfying
¢a # 0 contribute to the action. Then, we focus on the second equation in (75).

Interestingly, this equation is the classical equation of motion in the Euclidean anti-de
Sitter (AdS) space which is defined by the embedding equation

~ X5+ X3+ X3+ X3+ X = -H? (76)
in five-dimensional Minkowski spacetime
ds? = —dX§ +dX} +dX3 +dX3 +dXj. (77)

In fact, the d’Alembert operator 97 + 3Hd; + a2V can be obtained from the following
induced metrics;
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1
H2172

ds? = dt* + e*Hldx® = (dy? + dx?) = H™2(dp? + sinh? pdO?) , (78)
where dQ? := dQ% + sin? 91d9§ + sin? 6, sin? 92d9§ and0 < p <00, 0<0; <0< <m
and 0 < 03 < 271. The second metric is that in the Poincaré coordinates and the third one is
that in the global coordinates. The explicit coordinate transformations are given by

2,2 -2

X = 1" +x"+H™ —g! cosh p,

2 =1
Xy = —32117 =H! sinh p sin 87 cos 6,
X, = _);_2[’7 = H!'sinh psin 6; sin 6, cos 63,
X3 = _?117 =H! sinh p sin 61 sin 6, sin 03,

1m2 1422 H2
Xy = im—x——iy = H 'sinhpcos ;. (79)

For later convenience, we derive the relation between (1,7 := |x|) and (p, 07) as

1 1 sinh p sin 67

—Hy = , =H - . 80
T= cosh o — sinh p cos 6, ! cosh p — sinh p cos 0; (80)

From this, we can check that a point (17,7) = (—H™1,0) is mapped to p = 0 for any
6, € [0, 7]. Except for this, there is one-to-one correspondence between points in the
(n,7)-plane with 7 < 0 and r > 0 and points in the (p, 61)-plane withp > 0and 0 < 6; < 7.
On a constant-7 slice in the (1, r)-plane, the value of p for a given spatial point r is given by

20,2 4 42
0= arccosh<;H(;7_—;:7)H>. (81)

This function increases monotonically in r for a given 7 in the region r > 0.
From the global coordinate (78), we see the Euclidean AdS spacetime has O(4) sym-

metry. Hence, we assume that the field ¢, depends only on p. Thus, the second equation of
(75) reads

¢ 3 dpe _ V'(¢c)
dp?  tanhp dp H?2

(82)

Note that this is the same equation utilized in the Euclidean method [3,5]. Imposing the
boundary conditions [1,3]

. dec
lim ¢, = —a, —— =0, 83
p—roo (PC dp p=0 ( )

we obtain the bubble solutions as shown in Figure 6. Note that the latter condition ensures
the continuity of 9, ¢ (7, 7) and 8%4)6(17, r) at (Hy, Hr) = (—1,0).
It is useful to fit the bubble configurations by the following fitting function (Figure 6);

¢c(p) = —atanh pu(p — p), (84)

where y and p represent the thickness and the position of the bubble wall, respectively.
Note that for 2 0.6, the deviation from the true vacuum at p = 0 becomes significant [26],
and the fitting (84) becomes bad.
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numerical

----- fitting
05|

101

Figure 6. The tunneling configuration for the inhomogeneous field. The solid curve is the numerical
solution for B = 0.5 and ag/H = /140. We took the initial conditions as ¢;(1071%)/a = 1 —
4.98284 x 102 and ¢.(1071%) /& = 0. The dashed curve is the fitting function (84) where y = 7.32515
and p = 0.34397.

We also have to examine the boundary conditions in the Hamilton flow. As in the case
of HM tunneling, we expect several intersections where ¢ = 0 (Figure 5). Since we have
the concrete ¢ (74) and the bubble configurations (84), it is possible to obtain the curves in
the (7, 7)-plane on which ¢, = 0. Using (74) and (75), such curves are given by

F(p,r) = 93pe — ;am 0. (85)

Note that this is equivalent to solving a’zvngc — V'(¢c) = 0. Substituting (74) into (85)
and using the fitting formula (84), we find four solutions which are expressed as four lines
in the (7, r)-plane; two of them are placed at 7 = —oo with fixed r and r = co with fixed
1. These correspond to p = co where ¢ = —a (Figure 6). Also, we numerically find other
two non-trivial hypersurfaces (Figure 7a). It can be seen that one of the curves is totally
spacelike but another is partially timelike. Thus, it seems natural to take the 7 = —oo curve
as an initial time slice on which ¢ is a false vacuum and a totally spacelike non-trivial curve
as a final time slice on which the bubble is nucleated. We denote the region between the
two spacelike curves as 2.

As a matter of fact, the configurations on the final time slice has a bubble. It can be
checked as follows; the value of ¢, at the origin exceeds the top of the potential hill. In the
case of Figure 7a where we set (8,ag/H) = (0.5,1/140), we have ¢./a ~ —0.1 > —0.5 =
—BatHr =0,Hy ~ —0.7.
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Figure 7. (a): The two non-trivial curves on which (85) is satisfied. We inserted the mesh to confirm

whether the curves are spacelike or timelike. It can be seen that the upper line is spacelike but the

lower one is partially timelike. (b): The integration region for (86). There is another spacelike curve at

7§ = —oo. (c): The two non-trivial curves in (p, 61) plane. (d): The integration region for (86) in the
(p,61) plane. All plots are with f = 0.5 and ag/H = /140.

Now, we can evaluate the action for the bubble configurations for X (Figure 7b,d). We
use the fitting function (84) for the numerical integration.

I~ /Z d4x[—a3gbA (¢C+3H¢C) —HCDL}

67
- /Z dpd6,d6,d6s

sin? 6 sin stinh3p

(cosh p — sinhp cos 07)

2 2
o)

> . B 2 2
o A / dpd6; sin? 0ysinh®p | (S — coshpcosfi) "9 e (86)
H2?e Jx (cosh p — sinhp cos 6 ) dp
2
sinhp — cosh p cos 64 sin? 0; o,
+<3 : 2
coshp —sinhpcosty  tanh p(cosh p — sinhp cos #;)* | 9p

24—, _
= (P
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In the second line, we used Hcpry = 0, (74) and (75). Also, we performed a coordinate
transformation (t,7) — (p,61). In the third line, the following relations were used

C20¢c(p) . 2009¢c(p) _ .0 e inho — 9 (p)
p o = uan ap = 2H*(cosh p — sinh p cos 67) (sinh p — cosh p cos 6 ) P
and
Pocle) o 20
o = H [(smhp—coshpcos()l) 302
sinh p — cosh p cos 61 ) (cosh p — sinh p cos 6 T i 0 fap Pe(p)-

Here, the partial differentiation with respect to # was taken while keeping r constant.

5.2. Discussions
5.2.1. Appropriate Choice of ¢

Since our results (86) depend on ¢, we need to choose some specific value of ¢ to predict
the tunneling rate. We emphasize that the ¢ dependence does not imply the pathology of
our result. Rather our results should depend on € because the nonperturbative effects from
the UV modes are missed in our formalism, as discussed in Section 3.2. We then choose ¢
as large as possible to evaluate the tunneling rate.

Our analysis is valid only when the value of ¢ lies in a certain range. Below, we briefly
discuss necessary conditions for ¢ to justify our analysis.

Lower Bound on ¢

We need to choose a sufficiently large ¢ so that IR fields can describe the bubble
configuration. This imposes that (¢H) ! should be smaller than the typical physical size
of the bubble or the bubble wall. This condition is satisfied by taking ¢ 2 u for our
parameter choices.

Upper Bound on €

Our analysis is based on Equation (33), which is invalid when the quantum fluctuations
of IR fields are too large. This imposes an upper bound on ¢ because the size of the
fluctuations in ¢, at the scale k ~ k.(t) is proportional to e:

& A Y2 ks eH
Oclir, = [ / 2y 5<1n(k/kc<t>>><|¢<t,k>M SEA_ @)

where we assumed (k./a)? > V" (¢.)” and approximated ¢ as a massless scalar field.
As discussed in Section 3.2, (33) is justified when the term JH is negligible. Then, we
define the ratio Q of the term §H to the final term on the RHS of (73) as'”

:;7-[2 " 2;724) — 4)(
¢ — 76"[(a 2v2¢57[//(¢€))

6H
H2ea3¢3 / (67)

4

Q:—‘

and we impose Q < 1. In the second equality, we used 6H = (a°/24)V"'(¢.)¢3. Similarly
to (87), we can estimate the size of the quantum fluctuations of a’2V2¢. Then, we estimate
Q at a large ¢ as Q ~ g?ae/H, where we also used |V"(¢.)| ~ g%« for |p.| < a. The
condition ¢ < H/(g?«) follows from Q < 1.
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Summary

In summary; it is necessary to choose ¢ satisfying the following condition to justify our

analysis,
1.12 % 104> ( \/140>

USeSemax:=H/ (gzoc) =~ 755 x < (88)

g gu/H
This suggests that, at least when g is sufficiently tiny, we can reliably choose a large €. Note
that we cannot make the action I given in (86) arbitrarily small even if we take emax — o
in the free-theory limit ¢ — 0; for e = emax, we have I|e—¢,,, ~ —g '(ga/H)3I(1,p).
Roughly speaking, the small ga/H corresponds to the bubble radius being larger than the
Hubble radius. Since we are interested in the bubble being smaller than the Hubble radius,
gu/ H cannot be taken small arbitrarily.

A few more comments on the e-dependence of our results are in order. Our result
(86) shows that the value of I becomes larger for smaller choice of . This is because
the size of the quantum fluctuations of modes k ~ ea(t)H is proportional to ¢, while the
nonperturbative physics caused by UV modes k > ea(t)H is truncated in our formalism.
However, this interpretation implicitly assumes that the modes k ~ emaxa(t) H are relevant
for the tunneling process. We expect that this is the case because the kinetic energy of the
fluctuations in modes k ~ emaxa(t)H is estimated as (¢maxH )4, which is much smaller than
the height of potential barrier AV ~ ¢2a* for our parameter choices.

By contrast, very short scale physics which is insensitive to the detailed structure of
V(¢) near its origin might be irrelevant for the tunneling process. Hence, we expect that
the tunneling rate converges to some finite value in the limit ¢ — co. It would be interesting
to see whether the tunneling rate converges to a finite value as ¢ increases, and if so, from
which value of ¢ this convergence begins.

5.2.2. Hawking-Moss vs. Coleman—de Luccia

From the Formula (33), we derived the two configurations which describe the tunnel-
ing from the false vacuum to the true vacuum. One is the HM configuration, and the other
is the CDL-like configuration. Using these configurations, we evaluated the probability of
the tunneling. Here, we compare these probabilities. Denoting the action (86) and (52) as
Irubble and iy, the ratio of the two actions is given by

W2H2 7 _ 2 —
v o= e = RIET(p) = £ s e (0P) (89)

For example, if we choose = 0.5 and ag/H = /140 (see Figure 6), the fitting parameters
become p = 7.32515 and p = 0.34397, and the ratio becomes y = 12.9840/¢. For these
parameters, the upper bound of € is given by (88), and then < can be smaller than one for
an appropriately small g. This means that the CDL bubble configuration is dominant rather
than the HM configuration. Results for other parameters are also shown in Table 1.

Table 1. The values of -y for several parameter sets. The first and second ones are potential parameters.
The third one is the initial condition for the equation of motion (82). The fourth and fifth ones are
fitting parameters for (84). The sixth and seventh ones are the numerical results of (89) and (A48).
The last one is the cut-off parameter € for which (89) coincides with (A48).

B g*AH? 1— ¢.(10715)/u u p ey s €x
0.3 80 4.87210 x 107> 6.22563  1.05197  355.089  0.247004  1437.58
04 80 5.20273 x 1073 599645  0.65257  64.1185  0.0909796  704.758

0.5 80 3.89106 x 102 5.63444  0.475247  33.9526  0.0599470  566.376
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Table 1. Cont.
B g*AH? 1— ¢.(10715)/u i p ey +F €x
0.3 140 3.50945 x 1074 8.13990 0.673305 52.2515 0.0486678 1073.64
04 140 8.96003 x 1073 7.82419 0.459659 19.2912 0.0239903 804.123
0.5 140 498284 x 1072 7.32515 0.34397 12.9840 0.0172063 754.606

5.2.3. Comparison with the Euclidean Method

We also computed the CDL action in the Euclidean method (Appendix B) and com-
pared the ratios of the CDL action to the HM action (Table 1). For € > &, our tunneling
process becomes more probable than the one predicted by the Euclidean method. As dis-
cussed in Section 5.2.1, we can consistently choose € > ¢, for certain choices of parameters
(g,&, B). Perhaps our results may indicate the presence of a tunneling process which is
more probable than the Euclidean method.

5.2.4. Bubble Nucleation Hypersurface and the Subsequent Evolution

We found the non-trivial spacelike hypersurface on which the bubble was nucleated
(Figure 7a), where the hypersurface was given by the condition F(7,7) = 0 or equivalently
a-2V2¢. — V'(¢c) = 0. The subsequent evolution was then described by the one shown in
the first line of (75), which is the standard classical equation of motion. The configuration on
the hypersurface gave the initial data for the classical dynamics after the bubble nucleation.

The field value on the spacelike hypersurface does not reach the true vacuum but
rather, it lies between the true vacuum and the top of the potential as mentioned in
Section 5.1. This is possible because the location of the hypersurface is defined by the
condition a=2V2¢. — V'(¢.) = 0, where the gradient force is balanced with the potential
force. Though it is non-trivial to solve the evolution starting from the general spacelike
hypersurfaces, it is desirable to solve it to fully understand the formation of the true-vacuum
bubble in our scenario.

We conclude this section by pointing out that our formalism naturally predicts that
the condition ¢, = 0 (or ¢ = 0 via (72)) defines the hypersurface on which the quantum
dynamics is switched to the classical dynamics and the non-trivial field configuration is
nucleated. This would be the generic prediction of our formalism that holds true once the
appropriate configuration ¢, is specified.

6. Conclusions

We studied the tunneling processes on the de Sitter background by using the stochastic
approach. A novel point is that we applied the MSR]D functional integral to the problem.
In this formalism, the tunneling rate was obtained by evaluating the functional integral
with the saddle-point approximation. Using this method, we investigated both the HM
and the CDL tunnelings.

For the HM case, we first analyzed (31), which is the MSR]D functional integral of the
stochastic Equation (23) on a single spatial point. We succeeded in deriving the tunneling
solution in the “phase space” (Figure 3) which represented the tunneling process from the
false vacuum, through the top of the potential hill, and finally to the true vacuum (Figure 4).
This solution had natural tunneling boundary conditions which could not be obtained from
the Euclidean method. The tunneling rate for this configuration coincided with that of the
HM instanton at the leading order. In Section 4.2, we succeeded in re-deriving this result
starting from (33), which described the stochastic dynamics in the global region covered by
the flat chart. We also estimated the time scale of the HM tunneling as (63), which became
much longer than the Hubble time scale. Our analysis clarified the physical picture of the
HM instanton, i.e., the HM transition probability represents the transition probability of
a coarse-grained patch with a physical radius (¢H)~!. Some technical complications that
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arose in dealing with (33) and the way of handling them were remarked on in Section 4.2.1.
Physically, these complications were due to the spatial correlations of stochastic noises.

For the CDL case, we found the configurations which described the bubble nucleation
process. The tunneling rates for the bubble configurations depended on the cut-off scale
dividing IR and UV fields. We argued that this dependence came from the truncation
of the nonperturbative effects from UV modes. We also discussed the valid choice of
the cut-off scale for which the MSRJD functional integral would be reliable. This consid-
eration was based on the first-principle derivation of the stochastic approach from the
Schwinger-Keldysh formalism. With an appropriate cut-off scale, it turned out that the
CDL tunneling rate was larger than the HM one for the steep potential barrier. However,
as mentioned above (73), it has not yet been investigated if our configuration can really be
used for estimating the tunneling action. This aspect would be important for evaluating the
tunneling action, being left for future work. Nonetheless, we believe that our study clarifies
how we can proceed with the analysis and how the bubble nucleation process could be
described in the stochastic approach; for instance, our formalism can naturally define the
location of the hypersurface on which the quantum dynamics is switched to the classical
dynamics and the non-trivial field configuration is nucleated.

It is interesting to understand the relation between the stochastic approach and the
Euclidean method. We compared the CDL tunneling rate in our method with that in the
Euclidean method and found the former became larger than the latter for the potential
considered with a certain cut-off scale. It would be worth investigating the meaning of this
result. In particular, we need to know a precise relation between the CDL instanton and our
configuration. Intriguingly, our method is also related to that discussed in [32-36], where
the bubble accidentally appears from the initial quantum fluctuations. In our method,
however, we assumed that we could neglect the nonperturbative effects from UV modes,
the quantum component of the potential of the form V"(¢.)¢3, and that the configuration
(74) could be used to estimate the tunneling rate. The first two were summarized into
the term 6H. We also assumed a fixed-background spacetime. The relaxation of these
assumptions would be important to seek the relations among the three methods. It would
also be useful to apply our path integral method to the tunneling in flat space and make a
comparison with the Euclidean method.

Once this relaxation is achieved, it would also be interesting to apply our method to
tunneling phenomena where the backreaction to the background geometry is non-negligible
and make comparisons with recently discussed methods. For instance, the formalism of the
Wheeler-DeWitt equation [37-39] and the tunneling potential [40] must be related to ours
because the HM exponent is reproduced. The tunneling in the black hole spacetime [41,42]
is also interesting. In particular, [42] discussed the HM transition with a black hole from
the viewpoint of the stochastic approach.

Our method using the saddle-point approximation effectively amounts to solving
real-time quantum dynamics, which reduces to Starobinsky’s stochastic approach [7,8]
at leading order when the super-horizon dynamics in the de Sitter space is considered.
However, since our starting point is the Schwinger—Keldysh path integral, which can be
formulated in a more generic setup and incorporates all the quantum effects in principle,
we believe that our formalism sheds light on further studies of tunneling phenomena from
a real-time perspective.

One of the advantages of our method is that it is applicable to a dynamical setup.
The application of our method to the inflation models such as the chain inflation [43] and
the warm inflation [44] is also intriguing. Using our method, we can study the tunneling
process in the inflationary background under dissipation and fluctuations coming from the
circumference. We leave these issues for future work.
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Appendix A. Stochastic Approach from the First Principle

In this section, we evaluate the generating functional for IR fields Z[J'R(T)] defined in
Equation (38) to obtain (39). Note that each step we need to take for evaluating Z[J™*(T)] is
summarized in Section 3.2.

Appendix A.1. Path Integral Representation
A path integral representation of Z[J'}(T)] takes the following standard form,

ZIPR(T)) = [ Dig, ¢, L, L) T (@072
O S [T6(p (T, %) =9 (T, x))¥olgs [ ¥5[0-], (A
X
where ¥y [¢] is an initial wave functional. We specify it more concretely in Appendix A.2.1.

=/ =T g4x (1% ¢+ — H[¢p*, I1%]) is a Hamiltonian action. After the rotation of the
basis (X1, X_) = (Xc, Xa) = (2455, X4 — X_) with X = ¢, 11, (A1) is written as

Z[™(T / D (e, P, Te, Ty ) €] 95" piSulpegallela] TTo@a(T x)pol¢e,gal. (A2

Here, we defined Sy [¢c, ¢, 1., I1p] :=

(St = SiD)lix, X )s(x.x,) With X = ¢, IT. We also
defined po[@c, Pa] := YolPc + (Pa/2)]¥5[Pc

— (¢a/2)].

Appendix A.2. Nonperturbative Generating Functional for IR Sector

Now, we explain how to calculate Z[J'R(T)] nonperturbatively in the IR sector. This
allows us to capture the nonperturbative physics of the sector k < k.(t). Our strategy is to
split the integration variables into UV modes k > k.(t) and IR modes k < k.(t) for each
time step ¢, and perform the integration over UV variables to obtain Z[J'}(T)]. One may
simply split the integration variables X,(t,k)'!, where X = (¢,I1) and a = (c, A), by the
following replacement in (A2):

XIR(E k) (t> 1)
X, (t, k) — {va(trk) (t<ty), >

where f} is defined by the condition k. (t;) = k. Itis then tempting to perform the integration
over UV variables XYV by using the Schwinger-Keldysh (or closed-time-path) formalism.
However, the expression obtained from (A2) after the replacement (A3) does not have the
product of delta functions [T, 6(¢} " (f — 0T, k)) at the final time t = t; — 0"'%. That is,
the time contour for each UV ¢-variable with modes 0 < k < k.(T) is not closed at the
final time. Hence, the usual Schwinger—Keldysh formalism does not apply for evaluating
the integration over UV variables. To resolve this issue, Refs. [22,23] proposed a new
way of splitting integration variables. The splitting is given by (A3) for X = I, while for
¢-variable, it is defined by the following rule rather than (A3):

R(tk) (> h) PR (t k) (t > t)
%(nkH{c %(t,k)%{q)ijv(tlk) (<t (A4)
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In this replacement (A4), the variables ¢V (, k) are absent while the variables ¢pF (#, k)
are present. Therefore, in the expression obtained from (A2) after the new replacement,
the time contour for every UV ¢-variable including those for modes k with 0 < k < k.(T)
is closed. This allows us to perform the integration over UV variables based on the
Schwinger-Keldysh formalism as we see below. Note that there is no subtlety in the
replacement of integration variables X, (t, k) for a zero mode k = 0 and those for deep UV
modes k > k.(T): in both replacement rules mentioned above, they are simply replaced by
IR variables X!R(t, k) and UV variables XV (t, k), respectively. The time contours for them
are closed thanks to the product of delta functions in the original expression (A2).

After the new replacement, the term Sy [(Pc,gbA,HC,HA] in the exponent of (A2) is

decomposed into three pieces: purely IR terms SIX := Sy[pR, ¢IX, TIIR, TTIR], purely UV
terms S5 := Sy[pPY, o}V, 1YY, I1{V] and the remaining IR-UV mixing terms Spixed:
SH[ch/ ¢a 11, HA] - S}? + S[I—JIV + Smixed - (A5)

In terms of these quantities, Z[J'®(T)] can be formally written as [22,23]

Z[™(T / D(¢R, ¢IR TR TR TR PR SR i
X H ST k) TT o(e(t k), (A6)
k<ke(T) 0<k<ke(T)

where il is the effective action for IR fields,

VY, TIRY) O e TT 8 (14 (k) k) polgl, 98 025, 91, (A7)
k>0
with t¢(k) := min[T, #;]. Here, po [P, pa) = po[¢TY, 9XV; PR, ¢R] due to the replacement of

variables. The IR variables (¢}, ¢X) in the argument of pj contain only a zero mode. Since
the time path for each UV ¢-variable is closed in (A7), we can calculate iI" perturbatively as
usual by writing the connected diagrams with n external IR fields that are connected by UV
propagators. The diagrammatic rules such as vertex factors and symmetry factors follow
the standard rules of the Scheinger—Keldysh formalism for given vertexes in S%V ~+ Smixed-

Interestingly, due to the non-trivial replacement rule (A4), the I1¢ terms in Sy also
contribute to Spixeq [11,22-24]. Referring to such contributions and the remaining terms in
Smixed @S Str and Smix-int, respectively, we have Spnixed = Str + Smix-int With 13

3
Str = /ldt/(;n’;g ) [$R (1, T (1, ) — TR (~k, DY (100)] . (48)

The bi-linear vertexes exist only at the UV—IR transition time f; for given modes with
0 <k <k(T). Physically, these vertexes set the initial fluctuations for such modes in (A6).

Appendix A.2.1. Integrate out Short-Wavelength Modes

Now, we calculate iI" perturbatively by specifying the setup more concretely. We
organize the perturbation theory around the false vacuum state py for which the expectation
value of the zero mode is ¢y15.. We assume that the fluctuations of zero modes are tiny
enough so that the couplings between zero-mode fluctuations and those of nonzero modes
k > 0 are switched off in the past infinity t = —oco. We then take the initial state of nonzero
modes to be the Bunch-Davies vacuum state for a free field, where the time evolution of a
free field is defined by the quadratic action expanded around the homogeneous background
Pfalse- These assumptions can be implemented by writing the initial quantum state as

PO[ EV/ ‘ng; ER/ (PIA ] PBD{ ¢A (Pfalse} 0 [‘PER — Pralses 4)IAR] (A9)
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which is properly normalized as
1=TT [ do (~eo,k) [ dgkY (o0, k) pan g, 48" e
k>0

= [ dgtR(=c0,0) [ dg(~20,0) p0l4!™ — grae, . (a10
eep[pYY, ¥V A Praise) is the den51ty matrix for nonzero modes. An initial state for the zero

mode is given by pg[piR — Praise, Pr], for which we have
(¥(~00) |k = )= [ AP0l9lR — Prae, PPN = e (27°6(0). (AT

Combining this with (¥(—o0)| $(k) |¥(—c0)) = 0 for nonzero modes k > 0, we have

(¥ (—00)| (k) [¥(—00)) = Pratse (277) %6 (k). (A12)

Hence, the VEV of the IR field $'R (¢, x) in the past infinity t = —co is given by Ppace-

The interaction vertexes for calculating iI" are the bi-linear vertexes (A8) and nonlinear
vertexes coming from interacting potential V' (¢). We assume that the potential is sufficiently
flat under the region we are interested in. It is then natural to separate iI" into the leading-
order pieces and higher-order terms in the coupling constant as follows,

= po ¢c ¢falser ¢IAR] ZFLBOeil / d'x tSHhigher

glrlli(>)0 _ /D HUV HUV) IS B freo T Str H§ 4) ( ), ))pBD[ /¢A /47false] (A13)

k>0

Here, S[I-Jl\gree[ uv, ¢UV oy, vy A Praise] is the free part of the Hamiltonian action defined
around the false vacuum as explained above. Higher-order corrections to I in the coupling
constant are represented by the term d Hpjgher, Which can be evaluated perturbatively. We
have Hpjgher = 0 at the leading order.

To calculate 1Fk>0 by writing down the connected diagrams with external IR fields, we
only need to con51der the bi-linear vertexes St given in (A8). The number of diagrams are
only four, and il”ﬁgo can be calculated as [22,23]

im0 = - /dt/dt / Xu(t, k) (1t k) Xp(t, —k)
= 7/d4x/d4x' X,x(x)G”‘ﬁ(x,x’)Xﬁ(x’). (A14)

Here, the Greek indices a, 8 = (¢,I1) label the IR-A fields: (Xg, Xr) = (IIR, —¢X).
Substituting Equation (A13) into (A6), we find

]IR /D HIR HIR> iR ¢C Po[ . (Pfalse,(l) ] SIR+Fk>0 —lfd x‘)thgher
x H S9N T 6oR(t k). (A15)
k<k.(T O<k§kC(T)

Now, we introduce i’y as

oW s~ [ dpfRog[plR — e, glRJe T UF e @0%0) - (a16)
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By definition, we have
[ A0R00[81R — grae, PR eI (4 brie277500)
= [ gl e T ol A5 (IR — gy (27)°6(0) ) (A17)
Substituting (A17) into (A15), we find
Z| ]IR / D ¢£R/ (PIAR, HER, HIAR) PRI 2 (SIR+rk>°+rk et d*x Hpigher
x Kl;{né ($A' (T, K))3(9F (t k) = dratse (271)°5(K)), (A18)

by defining ty|x—g = —oo

Appendix A.2.2. Long-Wavelength Sector

For later convenience, let us focus on the term [ dtITR (¢, k)$R (¢, —k) in SIX. We use
the following trick to perform the integration by parts:

z‘f; A TR (k) IR (£, k)

S(¢A (T, k)) e

T IR (IR
= S(PR(T,K)) [ IR (1 — 0%, o e i or IR

(IR (1 — 0%, k)

. T .
=i fy—o+ ATIR (LK) (= k)

— 5(¢IR(T, k)) /dnﬁR(tk — 0%, k)e S(ITR(#, — 0%,k)). (A19)

Thanks to this trick, (A18) can be written as

/ D(Pt, i, TR, TIY) / DITIR 7™ 1% o1 0T SH,) TTT0 +Tk=0) p—i [ dx SHpigher

S(OR' (T, K))S(B" (1, k) — Pratse (271)°6 (K))S(ITE (1 — 0, K)) , (A20)
k<ke(T)
where DITR := H dITR(t, — 0", k). Below, we simply omit this integration measure to
k<ke(T)

simplify the notation. We also decompose S as SIX = S}{R( ot 8}5(5) up to the boundary
terms, which vanish thanks to the trick (A19) as

SIR /d4 HIR (4)?{ —3HIR) PR (HER —a(t) V2R + a3 (1) V/(¢£R)>} ., (A21)
S = = [ dixad(o) [VOR + (9R/2)) - VIOR ~ (9 /2)) - V(@R)gK] . (a22)

Here, the spacetime argument of IR variables are omitted. We introduce the IR variables
and their time derivatives as

XR(t,x) := / (;i:r];g@(kc(t) — k) X®R(t, k) e'*x, (A23)
XR(t,x) == / (;Z’; 8(ke(t) — k) XIR(t, k) e | (A24)

where X'® represents the IR variables: X'R = (¢[R, ¢IR TTIR, TTIR). Precisely speaking, for
XR = T1IR, we should replace k(t) by k.(t + 07) so that we have k.(t) = katt = t; — 0*.
One may be concerned about the subtlety of the time derivatives ¢!} (¢, x) and TTIR(¢, x)
in (A21): in general we have X'R(t,x) # % (X'R(t,x)), where the LHS is defined by (A24),
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due to the presence of a time-dependent step function. However, there is no subtlety thanks
to the initial conditions for all IR modes k < k.(T) of the form

PR (o k) = Prase(2m)%5(k),  TIR(H —0%,k) =0, (A25)

which are imposed by the delta functions in the final line in (A20). The corresponding
conditions in the real space for all x are

X®R(t,x) = 9 (XR(t,x)) for X® = (¢IR, TI}), (A26a)
PR (—00,x) = Pparse, IIR(—00,x) = 0. (A26b)

To implement these conditions in the path integral, we define §[Cin;] by (40b) with

6[Cdetail} = H H H‘S(XIR(tr x) - at(XIR(t' x))) . (A27)

—o0o<t<T XIR:((]JER,HER) x

We find from Equations (37) and (A20) that the transition probability can be written in
terms of the path integral as

PUS™(T, ) raep) = [ DGR, gl TIR TIR) eSelinsiCanlolCin], (A28)
where §[Cgy,] is defined in (40a), and the term S in the exponent is given by
S= (SR + S +ThY) — / d*x 6 Hiyigher (A29)

which agrees with the definition of S given in (41). When the zero-mode fluctuations are
negligible, we can set I'y_y = 0. This is the setup adopted in the main text. Then, (A28)
coincides with (39).

Appendix A.3. Stochastic Interpretation of the Tunneling

It is useful to see how the stochastic equations emerge as a consequence of perform-
ing the path integral over IR variables nonperturbatively. This leads to the stochastic
interpretation of the tunneling probability. A final result of this section is (A39).

For simplicity, let us ignore higher-order corrections 6 Hyigher for a while. We start by
introducing the auxiliary fields (¢, {1) as

"0t ) [ Dig,, cm) Plgy, aule! @@ 2w (a0

We substitute (A30) into (A20). Then, the exponent becomes linear in ¢} (£, k) or [T (¢, k)
withty <t < T:

Z™(1)] = [ DR ¢l IR TR [ DR [ D(gy, en) Pleg, 2]

x exp{i/_Too dt/(;i;k)g (TR (1, k) £ (1, ) — IR(1, ) L8, %) | @ (ke (1) —k)}

< TT S(eR(T k)P (t k) — drarse (271)°6(k))S(ITX (¢ — 07, k), (A31)
k<ke(T)
where
Lyt k) = @R (t, k) — a2 (DTN (k) — Gp(t, k), (A32a)

Lr(t k) :==TIR(t, k) + a()PPR(t, k) + a> (1) V(o) (1, k) — En(t k) . (A32b)
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Consequently, we can perform the path integral [ D(¢, ITIX), leading to
™y~ T] / dgIR (T, ) ™ [ D(&y, 1) PlEg, . (A%3)
k<kc Ly = Lr =0 & (A25)

Now, we regard auxiliary fields (¢, {11) as noise variables whose correlations are given by

(@t 0 K)) = [ DIEpn) PLEp Sl &alt K)Gp(E, K

i6 i6 (T 4T+ )
X (t, k) 6X5(t, K')

, (A34)
Px=TI=0

where a, B = (¢,11) and (Xy, X11) = (II, —¢'¥) following the notation in (A14). We also
have the corresponding expression in the momentum space. If we ignore Sy ;) and il'y—,
we have

(@t K)Ep(¢,K)) = (270)%5 (k + K')Re [g“ﬁ(t)} S(t—t)5(t—ty). (A35)

Equation (A33) shows that the effective dynamics of IR fields are described by the set of
Langevin equations Ly = L7 = 0 with the initial condition (A25) and the noise correla-
tions (A35).

In the real space, the dynamics is described by the set of Langevin equations,

PR (x) = a2 (O (x) + &g (x), (A36a)
IR (x) = a(t) V2P (x) — V! (¢ (x)) + Eni(x), (A36b)

with the initial conditions (A26) and the noise correlations

(Eu(x)2p(y)) =GP (x,y). (A37)

Equation (A33) takes the following form in the real space:

2] =TT [ dgi(1, 07 # | D(Ey, &) Pleg en (A38)
(A26) & (A36)
Substituting (A38) into (37), we have
PO T 1 0ep) = [ dol(Toy) [T 608 (T3) — (T, )
y x€
x [ D(Egen) Plep e . (A39)
(A26) & (A36)

This expression provides a stochastic interpretation of the transition probability; the dynam-
ics of ¢'R are described by the set of Langevin equations, and the transition probability is
simply understood as the probability to realize the field configuration ¢!R(T, x) = ¢'*(T, x)
in the domain x € D at the final time T starting from the initial configuration ¢R (—oco, x) =
¢ralse- In particular, the set of Langevin equations is given by (8) with the noise correlations
(15) when we ignore the terms (5Hhigher, }5 ()7 and I't—y. Note that such terms simply

correct the Langevin equations'* and do not invalidate the above stochastic interpretation.

Appendix B. Coleman—de Luccia Tunneling in Euclidean Method

In this appendix, we provide the CDL action in the de Sitter background with the
Euclidean method.
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Generally, the ways of Euclideanization for the de Sitter spacetime depend on the
coordinates. In this paper, we discuss the field theory on the metric (1), and then we choose
the following coordinate again'.

1

ds? = ——
H2172

(—dy? + dx?). (A40)

By taking the wick rotation as # — —iT, the coordinate becomes

—ds? = 1

= o (dt? 4 dx?). (A41)

This is the Euclidean AdS space discussed in Section 5, and we can take the global coordinate
—ds* = H™2(dp? + sinh? pdO?). (A42)

We also impose that the field ¢ only depends on p. Therefore, the Euclidean action I¥ and
the equation of motion becomes

IF =272 /0 ” dpsinh® p Lle@p‘P)z - Vlgf) , (A43)
dzi(,b + 3 d‘p —_ V/((P)‘ (A44)

dp? " tanhp dp H2

The second equation is the same as (82), and we can obtain the same bounce solutions
discussed in Section 5. For numerical calculations, we consider the potential (42) and fitting
function (84). Also, we take the following non-dimensionalizations;

¢ = ad, (A45)
V(p) = g2a*V (). (A46)

Therefore, the Euclidean action (A43) becomes

a2 [ . 1, . 202
IE = 2712?/0 dpsinh®p [z(ap<p)2 + gH—2V((p)
2
=22 LT (A47)

H?2
The ratio of the Coleman—de Luccia Euclidean action I{foun < to the Hawking-Moss action

Ity is given by

E TE
_ Ibounce _ H 2 9Ibounce ( A 48)

T T g2 (1B

Notes

For earlier discussions of a stochastic approach based on the Schwinger-Keldysh formalism, see, e.g., [11,24].
Generally, we can choose other discretization like Stratonovich’s discretization. This ambiguity does not affect the result since the
amplitudes of the noise do not depend on fields within the range of our approximation.

®  Precisely, ¢ (x) is defined in terms of the the Schrodinger picture field ¢(k) in momentum space as $®R (x) := [ (;%3 P(k) e**0(k.(t) — k).

We have suppressed the trivial time dependence stemming from the step function.

There is a subtlety that modes satisfying k > k.(T) are initially regarded as the “UV” degrees of freedom (DoFs) while they
become “IR” DoFs due to the accelerating expansion of the spacetime. However, by adopting this splitting procedure, we can use
the Schwinger-Keldysh (or closed-time-path) formalism to evaluate the integration over UV variables first as usual.

This is consistent with the observation made in [6] that an HM solution corresponds to the transition over a region of a Hubble
horizon volume.
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6

Note that this behavior may motivate one to replace the term jj (k¢ (¢)r) in (55) by the step function
jolke(t)r) = 0(1 = ke(t)r). (A49)

This is the approximation adopted in [8].

7 Note that we can also estimate the action I by performing the coarse-graining in time suitably and substituting the smeared

expression of IT, into the action:
2ty 2ty 2
I~ —% /t AV (gelt,%0)) [ gt X)Wy () = —% [ dt gelt,x0)V (gelt,30)) = —%AV,

reproducing the previous result (52). In the first approximate equality, we used Hipy = 0, which is well satisfied after the
smearing. In the second one, we used ¢ (t, x) ~ ¢ (t,x9) for r < k. (t) and the condition [ d>x We(r;t) = 1 which follows from
the definition of Wf. This estimate may be more analogous to the calculation of the action in Section 4.1 since the approximate
locality of the dynamics is restored after the smearing.

8 This is the reason why we illustrate flow lines in the (¢, ¢ )-plane in Figure 5.

? This is compatible with the condition ¢ < a/H when the weak coupling ¢ < 1 is considered.

10 We can also compare 6 H with the second and the third term on the RHS of (73). Such considerations do not change our estimate
of emax in (88).

1 In the main text, we use the notation X () to write variables in momentum space. However, we adopt the notation X(t, k) in
this appendix since we have many subscripts such as c and A.

12 Here, 07 is the infinitesimal time step which is introduced to obtain the path integral representation of the unitary time evolution
as usual.

13 Precisely speaking, we need to perform the UV-IR splitting in the path integral with an infinitesimal discrete time step for
deriving St correctly. After taking the continuum limit, we obtain (A8); see also [23]. Furthermore, the form of Sp,ix-int depends
on the model. In our case, we have

Smpcant = [ d*x[VIOYY + ) = V() - V(gF)
VIO + 95 + V) + VO] gy s 2 gr g g2 (850)

14 For instance, leading-order corrections to the stochastic dynamics at the super-horizon scales are calculated in [22].

15 The analytic continuation of this coordinate is examined in [5].
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