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TR R U AR AR AT DAAR R b ik /D 5K R AE oy
T WA E. AR T2 E Kk a, HFERk
S A R8s Z B AETERL &, AR SRR EE IR
PR B %) RIS B 8 O LA 5 ol g

B T kA E L AR A, R RS IR
AT FH R A R A 5 AT IR R sl /N LAARFR. 323
B R 4 S 2 T RE R A S 0 o (singular value
decomposition, SVD), T i Z iz Bk XF
— =Mk A%, TTLMBTERR s Fla B0, X
AR D Asa,p . X2 AT 5 S E
o3, AT

Asa,8 = Usa, kM Vi, (47)

Hor, U, VAERRFERE, N Je I 25 5706, 845
ke WORA. B 48AR s Fl o R GMIT, Al 1S

A% s = U\ Vis. (48)
FEARS I S B2 Fi v DL 2 1 75 S, BRI
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H. BRI AL, A2, M HT—IE T 7 5

{6 2 Jm T 4%
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= U3 (M6 Vias A2 0y)
= A AR, (49)
R HLAT A Y i A S AR JR B AL, T
BEGH R FAE. EEXE adB bR C 284,
kAEAR T B a5 bR, E B SRR AT A,
kARBR I B AR . FEFRFEIR S (46) H, B i
LG R4 9 7 3 Y R SE N ZEE A B AR AR,
HIXAWMRIFAESS, R WA TR EE ik
P, TR A I e b R AT R 48 25 54 A 7 5
{E. HEANTEFREE AR LT A 1R SR R 14 4
e RIE AR AT T ik rh, 25 S fE— M
5 IR AT S LR 2R, 4> Anax A
BRI A SE, IRATT EFENT e BIEF5(H. X
A ¢ TR, Bl SEBrit iR e = 1073,
e LR A0 o AR SR R R 25 A AT LIR .

5 18]V b R I AR B AF 7 ik

Strathearn 4§ 20 7£ 2018 4F [ FH #H 4 3k LS
KFR QUAPT BE sk, ORI/ T F7 i
TR AP R A 380 Y i 24 Rt )
A HE [ 2 FUA AT (time-evolving matrix product
operators, TEMPO) /.

AR B Frso-sts2o sk LU R IR SR B

F0:51,82,0 5k S0 st L sk sk (50)

El 5(a) Bk (50) 2L BRI
ik Rk s by, B NE LR RS I AL
AR (40) Z )5, R EAIRIR AR R e 1
AL, Strathearn &5 20 X5 4bh W F| | /A2
(K B e et ] ASUE Bl

350781,827"' ySk+1

Tory i
Sl (] () M [Ty
[ba]7xak, [boloh (51)
TESRCHITTH 1) =P sk il
[br+1]70"° = Ik+1(80, 0)dre.- (52)

Hom < kI, PRI YR 5Ky

[bk+1—m]i231271 :Ik+1—m(3m7 Oém)(S::: 63::,1 ) (53)

M om = ki, A1
[br]srar = K(sk, o)1 (s, ap)dimdsm . (54)

B —HakE A
[Dolas™ = To(sk+1, 8k41)0a0" (55)

X AHFE A Fe ARk AL & 5(b) iRk (55) X
7R B L A LU BRI B AR S AR TR, XA~ 1#
LRGN R B HOA T A T TR 65 S, R 2 S T
TR HE AR, SRR Y 5K £ 38 1508 PR Ry R P e F1
AT

(a) so $1 s Sk

S S S

(b) so s1 Sk+1

Sm Sk
Qg Qg Qi — 1 Q. Q-1 Qg
b1 by +— o — bpy1pm +— - m
T Tm Tk

f

0 1
(c) So S1 Sm Sk Sk+1
é] f t #@_é
«— b |le— ... «— b «— ...
f f
Fle - <« Fle -

5 TEMPO ki —2ik i W& ER  (a) Fikit
B4 M e BRAS R 5 (b) Bk i B9 JE B R BB AT 3R
() BT FR (40) 1Yk HE M 2% R

Fig. 5. An illustration of some tensor networks in TEMPO:
(a) The matrix product states representation of F' tensor;
(b) the matrix product operators representation of B

tensor; (c) the tensor network representation of recursive
relation (40).

I TR ARGEAT T THI A T A s R LA FIAE R ofe
S IR PR AT 2T AR R R RS, S N 5
PV RS L. fA7 5 PR e gl R R AR A R
FF A TR RS R B R I A5G &R (40) o]
AN AR PR BURAT VR 2R PR BUAS 1, L
K 5(c). anitl, 5520 HIHE R AR RYIB IH C R
IFAE BB Z i N R AR 500k, UREAS B e
F ik AR R RAE AL

FEX AN A, TS ER AT LURI T AR G eR &0
FIRY P o] BRI A R P8 P oA Dl 2 e it 22 A5
R4 FE LG 1) QUAPTL B9k — 3, HUE i 7e ik
I AR R RS R 3R . 45 8 T B4 Akimax Z
Ji, KA B AT, UL (41) 2. (B Aknex =
2, \NHIIR 2 AL N = 4 25 (15K 5 W 2% UL ] 6.
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Fig. 6. Tensor network of N =4 steps evolution.

TEMPO 53k a] DI — R 55 17 R Ge ik
17 S HAUERS BT a8, RIAS 2 1 Tz i e H
FHUAT R Y EZ R . T8 B AR 258 1 SRR [20]
B S PR N -3 (8RR A A
17 7. R -3 I f) A AR R 22 FLOE
Z S TCRR R OCH, By LOZ I A e R e 2
FHAE & AR LA 8] T RECS A S AT &
AYARAZ AL, [R5 T M B e FE R T
. 2019 4%, Jorgensen 1 Pollock™ i F i F2 5k
i (process tensor, PT) 451 T — R0 BY 11 E
TR G IR PR ik 127 125 B DK R AR
SRR AT R, DR R R T8 R A el
7 B (quantum regression theorem, QRT)[25152),
2020 4F-, Jorgensen F1 Pollock[! ¥ 55 £% o & 7 1=
(transfer tensor method, TTM)PY 3 T 318
SEEX PR BL. Popovic 45 79 ¥ 2021 4E6F58 T
RS D I G T ] . Fux 55 P9 7R
2021 42— FhaE S IR Al Rk AR G iy s U4
POk, JFTE 2022 ARRFSE T A BERE S R
SRARG T APV IR) B 7. Gribben %5 P8 78 2021 4F
Bt RARE RGN PR FEA , IEAE 2022 4R6 TE
MPO SR 2 2 MR R PY. Ye Fil Chan &)
TE 2021 AEWFSE T A R0 T IO SENRZ PR Y 7 1 D)
2 A3 k. Chiu %5 61 78 2022 4£:4% TEMPO &
22 0 FH 3 Mg B3 AR B 1 AL . Otterpohl 45 92 78
2022 AFHRT T H Jié-3% A1 B B BRGEUAH . Bosel6?)
FE 2022 AEHRT T 52 Mz bR 1Y 7K 5 28 54 . B
FE 2023 4R IHE T i RE AL R B4 5L A GG o
0B JRK TEMPO k) B R S i 1y
TR L 540, AT TR A — B An T
R G EE T T H AL (open quantum systems
in python, OQuPy).

6 HE-mETHA
SR (182 €6 FBUAR R TEMPO S0

THASE R, % BT 1 F ie-J (o FH8, KRS
ey 25 i ity
Hg = ?&1, (56)

A, ASEPIRESLIE] B 2 o BE . PRI AR 5 T Y ey
T

IA{EZZwki)}LZJk, ﬁSE:&zZVk([;L+Bk)~ (57)
k k

Ho 6, 6 2 WL RAE . 25 BRI BE 2 i, HL
PREL (4) AT HIEA:

J(w) = dwe=w/w, (58)
o we SRR AT SHL. TERIRIN Z, & REeab
T EER Fs, B

5,(0)) =1, ps= bO 99
(6.0) = 1, Ps—<0 0>. (59)

LW S M w. =35, IWET =01, BfEEK 5t =
0.05, N OQuPy THALR % %2 (6. (1)) 3l 1%
AL

K7 Fs R ESHE G X = 0.0815 ML T, (6.(1)) 78
AR Akmax T ACIE DL, E SR G5 0L T,
(6-(t) N 1 FFIR AT IR . 7 Akmax = 105575
FITENL, B & pY AR SRl oe Bk gD HEE R S5 A5
GERAAZE LR, Y Ak BTG KB, 294
R ) IR AR BB A5 . mT L
F 2 Akmax = 30 1 Akimax = 40 FTEILE AR H 1.

ANF R G-I A R T Y (6. (1)) BT AL TS
HLUNE 8 IR, X LM S HO Akmay = 100, .48

1.0

—— Ak = 10
— Akpax = 20
A —— Ay = 30
051 Ak = 40
= of | \ .
b
—0.5F
10 . . .
0 5 10 15 20

t

BT (6(0) FERIA Abma F AL
Fig. 7. Dynamics of (6 (t)) with respect to different Akmax -
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JERE T S AR SR B B R OCHE. ML 8 AT AR H, Y
A= 0. LS AL I, (0. (1)) 22 LI A IR 5.
AL THORAARS A = 0.4, (6.(1) FIRGTH K,
HEB TRy, AR, =108,
(6-(t)) B ARG EAE— D TE E A, XXV A H iE-B
o TR SR AR AR AR . ST AR AR v] LS 2 S
R [1, 6, 64, 65]. X A EEZ I, 0RBLI
[ RS, (0.(t)) 1202 M i 2] %, k21X
NEEIFARBE AL S WUZAHAE . Strathearn %5 PO 1A
IRk T I BOA AR 2 JE R TC 55 K Y G L,
I 2R FHAU G W 5 A5 3R AZ R BUW AL

1.0

0.5

(o:(1))

—0.5F

— A=02
— A=04

A=1.0
0 5 10 15 20
t

—-1.0

B8 (62(t)) FEAFIFLA B XTI AL
Fig. 8. Dynamics of (6(t)) with respect to different coup-
ling strength .
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P ER
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<5z ‘e_iHSStf‘ 5z71> <51;1 51;> (61)
A
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(s |

3z71> <31;1 ’feiﬁSSt 51;> ) (62)
SRS E Y RS TR K (s, 5T, 55, -+, 530).
W4 UL, FEFS E MBI (ARG T
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FEAT AT AT AR A <L (3 B
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S5 ST 83 SN
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M EIRTHE AT LA ) X TS [R] A a] 5 8 DGk
PRAL, HE Iz R —AE, HU2 RGBT AN
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F1 PollockPY 7 2019 4E45 Hi AT Soke 52012 pR (25)
PR TS Fm ok, SRIG B R GE AL
BT AR R 0 e [R] SR & 7R R i 7 pR HL
1w, Hal B ket e, RS #HFritaE R
W SRR ] i, LT EAERT R, BT LAABAT T 48
PR LA R A

SCHiK [34]) 75 R FBE-3% (6 FRIR b i) - B AIL
SEIRBG, BT MW R G R 0. AEIZET, f
AR B R R T A M), FR=4

Gz |5y ) = sic [ ) (64)

R4 F ksl T A7 oA 55 A

.+ .+ +
F(sg,81:83, " »8N)
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F S AT IR R, PRI <20 {28 B L g
ps (533 50,0 55,)
= Y F(sg.si.5, Sn)Sk s, (66)
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S0 SN -1

X SRR A5 2] 7 XU IR PR
(6, (t1) 6, (t2)) = trs [ﬁs (sﬁ; Sk s,;)] ) (67)
TE H -3 o BRI R R 4852 3] R 7k
AISREN, IR (6. () MU TR R G . 36
BEME S 200 RGEE AEHL, T UA— MO0 T b2
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X 6., o EMANFERE, ANBRZERIE, B 20K E)
SNSRI, Q EIRB IR, R A7 A 3 1 4K
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SRIFEMRLL, Fo 2R R R FROCHR s L
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=Re (0 (t1) 0= (t2)) - (69)
XA IR PR B U Y, R
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Fig. 9. Correlation function C(to,to +t) with respect to
different Akmax and toB34.
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Abstract

Open quantum systems play an important role in developing quantum sciences, and therefore the study of
corresponding numerical method is of great significance. For the open quantum systems, the quasi-adiabatic
propagator path integral invented in 1990s is one of the few numerically exact methods. However, its
computational complexity scales exponentially with system size and correlation length, and therefore its
application is limited in practical calculation. In recent years, the study and application of tensor network have
made rapid progress. Representing the path integral by tensor network makes the computational complexity
increase polynomially, thus greatly improving the computational efficiency. Such a new method is called time-
evolving matrix product operator. At the very beginning, the reduced density matrix is represented as a matrix
product state. Then the time evolution of the system can be achieved by iteratively applying matrix product
operators to the matrix product state. The iterative process is amenable to the standard matrix product states
compression algorithm, which keeps the computational cost on a polynomial scale. The time-evolving matrix
product operator is an efficient, numerically exact and fully non-Markovian method, which has a broad
application prospect in the study of quantum open systems. For instance, it is already used in the study of the
thermalization, heat statistic, heat transfer and optimal control of the quantum open systems, and conversely it
can be also used to investigate the effect of the system on the environment. In addition, the TEMPO method is
naturally related to the process tensor, and can be used to calculate the correlation function of the system
efficiently. In this article we review this method and its applications. We give a brief introduction of the path
integral formalism of Caldeira-Leggett model. According to the path integral formalism, we demonstrate the
usage of quasi-adiabatic propagator path integral method. we give the basic idea of matrix product states, and
we show how to recast quasi-adiabatic propagator path integral method into time-evolving matrix product
operators method by employing the concept of matrix product states and matrix product operators, and give a
review of its applications. In addition, we use the calculation results of physical quantities, correlation functions
and heat currents in the spin-boson model to illustrate the applications of the time-evolving matrix product
operator method.
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