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Abstract. A variety of lepton flavour violating effects related to neutrino oscillations and
mixings will be systematically discussed in the framework of a minimal S3-invariant extension
of the Standard Model. After a brief review of some results on neutrino masses and mixings, we
will give explicit analytical expressions for the matrices of the Yukawa couplings and the results
of a computation of the branching ratios of some selected flavour-changing neutral current
(FCNC) processes, as well as, the contribution of the exchange of neutral flavour-changing
scalars to the anomaly of the magnetic moment of the muon, in terms of the masses of the
charged leptons and the neutral Higgs bosons. It will also be shown that the S3 × Z2 flavour
symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC
processes in the leptonic sector and give a nearly tri-bimaximal neutrino mixing matrix. The
contribution of the FCNCs to the anomaly of the magnetic moment of the muon is small but
non-negligible.

1. Introduction
The discovery that neutrinos have non-vanishing masses and mix among themselves much like
the quarks do [1–19], brought out very forcefully the need of extending the Standard Model
to accommodate in the theory the new data on neutrino physics in a coherent way, free of
contradictions, and without spoiling the Standard Model’s many phenomenological successes.
At the same time, the number of free parameters in the model had to be drastically reduced to
give predictive power to the theory. These two seemingly contradictory demands are met by a
flavour symmetry under which the families transform in a non-trivial fashion. In the minimal
S3-invariant Extension of the Standard Model [20–26], the concept of flavour and generations is
extended to the Higgs sector in such a way that all the matter fields - Higgs, quark and lepton
fields, including the right handed neutrino fields - have three species and transform under the
flavour symmetry group as the three dimensional representation 1 ⊕ 2 of the permutational
group S3. A model with more than one Higgs SU(2)L doublet has tree level flavour changing
neutral currents whose exchange may give rise to lepton flavour violating processes and may also
contribute to the anomalous magnetic moment of the muon. The phenomenological success of
the model will be tested by verifying that all flavour changing neutral current processes and the
magnetic anomaly of the muon, computed in the S3-invariant extended form of the Standard
Model, agree with the experimental values.
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2. The Minimal S3-invariant Extension of the Standard Model
In the Standard Model analogous fermions in different generations have identical couplings to
all gauge bosons of the strong, weak and electromagnetic interactions. Prior to the introduction
of the Higgs boson and mass terms, the Lagrangian is chiral and invariant with respect to
permutations of the left and right fermionic fields.

The six possible permutations of three objects (f1, f2, f3) are elements of the permutational
group S3. This is the discrete, non-Abelian group with the smallest number of elements.
The three-dimensional real representation is not an irreducible representation of S3. It can
be decomposed into the direct sum of a doublet fD and a singlet fs, where

fs = 1√
3
(f1 + f2 + f3),

fTD =
(

1√
2
(f1 − f2), 1√

6
(f1 + f2 − 2f3)

)
.

(1)

The direct product of two doublets pD
T = (pD1, pD2) and qD

T = (qD1, qD2) may be decomposed
into the direct sum of two singlets rs and rs′ , and one doublet rD

T where

rs = pD1qD1 + pD2qD2, rs′ = pD1qD2 − pD2qD1, (2)

rD
T = (rD1, rD2) = (pD1qD2 + pD2qD1, pD1qD1 − pD2qD2). (3)

The antisymmetric singlet rs′ is not invariant under S3.
Since the Standard Model has only one Higgs SU(2)L doublet, which can only be an S3

singlet, it can only give mass to the quark or charged lepton in the S3 singlet representation,
one in each family, without breaking the S3 symmetry.

Hence, in order to impose S3 as a fundamental symmetry, unbroken at the Fermi scale, we
are led to extend the Higgs sector of the theory. The quark, lepton and Higgs fields are

QT = (uL, dL) , uR , dR ,
LT = (νL, eL) , eR , νR and H,

(4)

in an obvious notation. All of these fields have three species, and we assume that each one forms
a reducible representation 1S ⊕ 2. The doublets carry capital indices I and J , which run from
1 to 2, and the singlets are denoted by Q3, u3R, d3R, L3, e3R, ν3R and HS . Note that the
subscript 3 denotes the singlet representation and not the third generation. The most general
renormalizable Yukawa interactions of this model are given by

LY = LYD + LYU + LYE + LYν , (5)

where
LYE = −Y e

1 LIHSeIR − Y e
3 L3HSe3R

−Y e
2 [ LIκIJH1eJR + LIηIJH2eJR ]

−Y e
4 L3HIeIR − Y e

5 LIHIe3R + h.c.,
(6)

LYν = −Y ν
1 LI(iσ2)H∗SνIR − Y ν

3 L3(iσ2)H∗Sν3R

−Y ν
2 [ LIκIJ(iσ2)H∗1νJR + LIηIJ(iσ2)H∗2νJR ]

−Y ν
4 L3(iσ2)H∗I νIR − Y ν

5 LI(iσ2)H∗I ν3R + h.c.,
(7)

and

κ =
(

0 1
1 0

)
and η =

(
1 0
0 −1

)
. (8)

LYD and LYU have similar expressions to LYE and LYν respectively.
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Table 1. Z2 assignment in the leptonic sector.

− +

HS , ν3R HI , L3, LI , e3R, eIR, νIR

Furthermore, we add to the Lagrangian the Majorana mass terms for the right-handed
neutrinos

LM = −M1ν
T
IRCνIR −M3ν

T
3RCν3R. (9)

The extended Higgs sector has three SU(2) doublets, in a reducible representation 1S ⊕ 2
of the flavour group S3. The Higgs potential, invariant under S3, has an additional reflection
symmetry R : Hs → −Hs. and an accidental permutational symmetry S′2: H1 ↔ H2. Hence,
〈H1〉 = 〈H2〉. Then the Yukawa interactions yield mass matrices for all fermions in the theory,
of the general form [20]

M =

 µ1 + µ2 µ2 µ5

µ2 µ1 − µ2 µ5

µ4 µ4 µ3

 . (10)

The Majorana mass for the left handed neutrinos νL is generated by the see-saw mechanism.
The corresponding mass matrix is given by

Mν = MνDM̃−1(MνD)T , (11)

where M̃ = diag(M1,M1,M3).
In principle, all entries in the mass matrices can be complex since there is no restriction coming
from the flavour symmetry S3. The mass matrices are diagonalized by bi-unitary transformations
as

U †d(u,e)LMd(u,e)Ud(u,e)R = diag(md(u,e),ms(c,µ),mb(t,τ)),

UTν MνUν = diag(mν1 ,mν2 ,mν3).
(12)

The entries in the diagonal matrices may be complex, so the physical masses are their absolute
values.

The mixing matrices are, by definition,

VCKM = U †uLUdL, VPMNS = U †eLUνK. (13)

where K is the diagonal matrix of the Majorana phase factors.

3. The mass matrices in the leptonic sector and Z2 symmetry
A further reduction of the number of parameters in the leptonic sector may be achieved by
means of an Abelian Z2 symmetry. A possible set of charge assignments of Z2, compatible
with the experimental data on masses and mixings in the leptonic sector is given in Table 1.
These Z2 assignments forbid the following Yukawa couplings Y e

1 , Y
e

3 , Y
ν

1 and Y ν
5 . Therefore,

the corresponding entries in the mass matrices vanish, i.e., µe1 = µe3 = 0 and µν1 = µν5 = 0.
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3.1. The mass matrix of the charged leptons
The remaining three parameters in the mass matrix of the charged leptons |µ̃2|, |µ̃4| and |µ̃5|
may readily be expressed in terms of the charged lepton masses [22]. The resulting expression
for Me, written to order

(
mµme/m

2
τ

)2 and x4 = (me/mµ)4 is

Me ≈ mτ



1√
2

m̃µ√
1+x2

1√
2

m̃µ√
1+x2

1√
2

√
1+x2−m̃2

µ

1+x2

1√
2

m̃µ√
1+x2

− 1√
2

m̃µ√
1+x2

1√
2

√
1+x2−m̃2

µ

1+x2

m̃e(1+x2)√
1+x2−m̃2

µ

eiδe m̃e(1+x2)√
1+x2−m̃2

µ

eiδe 0


. (14)

This approximation is numerically exact up to order 10−9 in units of the τ mass. Notice that
this matrix has no free parameters other than the Dirac phase δe.

The unitary matrix UeL that diagonalizes MeM
†
e and enters in the definition of the neutrino

mixing matrix VPMNS may be written in the polar form as UeL = PeLOeL [23] where PeL is a
diagonal matrix of phases and the orthogonal matrix OeL can be written as Me, as follows

OeL ≈



1√
2
x

(1+2m̃2
µ+4x2+m̃4

µ+2m̃2
e)√

1+m̃2
µ+5x2−m̃4

µ−m̃6
µ+m̃2

e+12x4
− 1√

2

(1−2m̃2
µ+m̃4

µ−2m̃2
e)√

1−4m̃2
µ+x2+6m̃4

µ−4m̃6
µ−5m̃2

e

1√
2

− 1√
2
x

(1+4x2−m̃4
µ−2m̃2

e)√
1+m̃2

µ+5x2−m̃4
µ−m̃6

µ+m̃2
e+12x4

1√
2

(1−2m̃2
µ+m̃4

µ)√
1−4m̃2

µ+x2+6m̃4
µ−4m̃6

µ−5m̃2
e

1√
2

−
√

1+2x2−m̃2
µ−m̃2

e(1+m̃2
µ+x2−2m̃2

e)√
1+m̃2

µ+5x2−m̃4
µ−m̃6

µ+m̃2
e+12x4

−x (1+x2−m̃2
µ−2m̃2

e)
√

1+2x2−m̃2
µ−m̃2

e√
1−4m̃2

µ+x2+6m̃4
µ−4m̃6

µ−5m̃2
e

√
1+x2m̃em̃µ√
1+x2−m̃2

µ


,

(15)

where, as before, m̃µ = mµ/mτ , m̃e = me/mτ and x = me/mµ.

3.2. The mass matrix of the neutrinos
According to the Z2 selection rule, the mass matrix of the Dirac neutrinos takes the form

MνD =

 µν2 µν2 0
µν2 −µν2 0
µν4 µν4 µν3

 . (16)

Then, the mass matrix for the left-handed Majorana neutrinos, Mν , obtained from the see-saw
mechanism, Mν = MνDM̃−1(MνD)T , is

Mν =

 2(ρν2)2 0 2ρν2ρ
ν
4

0 2(ρν2)2 0
2ρν2ρ

ν
4 0 2(ρν4)2 + (ρν3)2

 , (17)

where ρν2 = (µν2)/M1/2
1 , ρν4 = (µν4)/M1/2

1 and ρν3 = (µν3)/M1/2
3 ; M1 and M3 are the masses of the

right handed neutrinos appearing in (9).
The non-Hermitian, complex, symmetric neutrino mass matrix Mν may be brought to a

diagonal form by a unitary transformation, as

UTν MνUν = diag
(
|mν1 |eiφ1 , |mν2 |eiφ2 , |mν3 |eiφν

)
, (18)
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where Uν is the matrix that diagonalizes the matrix M †νMν .
As in the case of the charged leptons, the matrices Mν and Uν can be reparametrized in

terms of the complex neutrino masses. Then [22,23]

Mν =

 mν3 0
√

(mν3 −mν1)(mν2 −mν3)e−iδν
0 mν3 0√

(mν3 −mν1)(mν2 −mν3)e−iδν 0 (mν1 +mν2 −mν3)e−2iδν

 (19)

and

Uν =

 1 0 0
0 1 0
0 0 eiδν

 cos η sin η 0
0 0 1

− sin η cos η 0

 , (20)

where
sin2 η = mν3−mν1

mν2−mν1
, cos2 η = mν2−mν3

mν2−mν1
. (21)

The unitarity of Uν constrains sin η to be real and thus | sin η| ≤ 1, this condition fixes the
phases φ1 and φ2 as

|mν1 | sinφ1 = |mν2 | sinφ2 = |mν3 | sinφν . (22)

The only free parameters in the matrices Mν and Uν , are the phase φν , implicit in mν1 , mν2 and
mν3 , and the Dirac phase δν .

3.3. The neutrino mixing matrix
The neutrino mixing matrix VPMNS , is the product U †eLUνK, where K is the diagonal matrix
of the Majorana phase factors, defined by

diag(mν1 ,mν2 ,mν3) = K†diag(|mν1 |, |mν2 |, |mν3 |)K†. (23)

Except for an overall phase factor eiφ1 , which can be ignored, K is

K = diag(1, eiα, eiβ), (24)

where α = 1/2(φ1 − φ2) and β = 1/2(φ1 − φν) are the Majorana phases.
Therefore, the theoretical mixing matrix V th

PMNS , is given by

V th
PMNS =


O11 cos η +O31 sin ηeiδ O11 sin η −O31 cos ηeiδ −O21

−O12 cos η +O32 sin ηeiδ −O12 sin η −O32 cos ηeiδ O22

O13 cos η −O33 sin ηeiδ O13 sin η +O33 cos ηeiδ O23

×K, (25)

where cos η and sin η are given eq. (21) Oij are given in (15), and δ = δν − δe.
To find how our results are related to the neutrino mixing angles we make use of the equality

of the absolute values of the elements of V th
PMNS and V PDG

PMNS [28], that is

|V th
PMNS | = |V PDG

PMNS |. (26)

This relation allows us to derive expressions for the mixing angles in terms of the charged lepton
and neutrino masses.
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The magnitudes of the reactor and atmospheric mixing angles, θ13 and θ23, are determined
by the masses of the charged leptons only. Keeping only terms of order (m2

e/m
2
µ) and (mµ/mτ )4,

we get

sin θ13 ≈ 1√
2
x

(1+4x2−m̃4
µ)√

1+m̃2
µ+5x2−m̃4

µ

, sin θ23 ≈ 1√
2

1+ 1
4
x2−2m̃2

µ+m̃4
µ√

1−4m̃2
µ+x2+6m̃4

µ

. (27)

The magnitude of the solar angle depends on charged lepton and neutrino masses, as well as,
on the Dirac and Majorana phases,

| tan θ12|2 =
mν2 −mν3

mν3 −mν1

1− 2O11
O31

cos δ
√
mν3 −mν1
mν2 −mν3

+
(
O11
O31

)2 mν3 −mν1
mν2 −mν3

1 + 2O11
O31

cos δ
√
mν2 −mν3
mν3 −mν1

+
(
O11
O31

)2 mν2 −mν3
mν3 −mν1

 . (28)

The dependence of tan θ12 on the Dirac phase δ, see (28), is very weak, since O31 ∼ 1 but
O11 ∼ 1/

√
2(me/mµ). Hence, we may neglect it when comparing (28) with the data on neutrino

mixings.
The dependence of tan θ12 on the phase φν and the physical masses of the neutrinos enters

through the ratio of the neutrino mass differences, it can be made explicit with the help of the
unitarity constraint on Uν , eq. (22),

mν2 −mν3

mν3 −mν1

=
(|mν2 |2 − |mν3 |2 sin2 φν)1/2 − |mν3 || cosφν |
(|mν1 |2 − |mν3 |2 sin2 φν)1/2 + |mν3 || cosφν |

. (29)

4. Neutrino mass spectrum
In the present model, the numerical values of sin2 θ13 and sin2 θ23 are determined by the masses
of the charged leptons only, in very good agreement with the experimental values [11,12,29],

(sin2 θ13)th = 1.1× 10−5, (sin2 θ13)exp ≤ 0.046, (30)

and
(sin2 θ23)th = 0.5, (sin2 θ23)exp = 0.5+0.06

−0.05. (31)

In this model, the experimental restriction |∆m2
12| < |∆m2

13| implies an inverted neutrino mass
spectrum, |mν3 | < |mν1 | < |mν2 | [20].

As can be seen from eqs. (28) and (29), the solar mixing angle is sensitive to the neutrino
mass differences and the phase φν , but is only very weakly sensitive to the charged lepton masses.
If we neglect the small terms proportional to O11 and O2

11 in (28), we get

tan2 θ12 = (∆m2
12+∆m2

13+|mν3 |
2 cos2 φν)1/2−|mν3 || cosφν |

(∆m2
13+|mν3 |2 cos2 φν)1/2+|mν3 || cosφν |

. (32)

From this expression, we may readily derive expressions for the neutrino masses in terms of
tan θ12 and φν and the differences of the squared masses of the neutrinos masses

|mν3 | =

√
∆m2

13

2 cosφν tan θ12

1− tan4 θ12 + r2√
1 + tan2 θ12

√
1 + tan2 θ12 + r2

, (33)

where r2 = ∆m2
12/∆m

2
13 ≈ 3× 10−2.

The other two masses, |mν1 | and |mν2 | are immediately obtained from the knowledge of |mν3 |
and ∆m2

12 and ∆m2
13.
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The cosmological upper bound on the sum of neutrino masses sets a lower bound for cosφν [17]∑
|mν | ≤ 0.17 eV −→ cosφν ≥ 0.55 (34)

Since, for small values of φν , the neutrino masses change very slowly with cosφν , in the absence
of any other experimental information, we set φν = 0 in our formulas. Hence, we find

|mν2 | ≈ 0.056eV |mν1 | ≈ 0.055eV |mν3 | ≈ 0.022eV, (35)

where we used the values ∆m2
13 = 2.6× 10−3eV 2, ∆m2

21 = 7.9× 10−5eV 2 and tan θ12 = 0.667,
taken from [13].

5. V th
PMNS and the tri-bimaximal form

Once the numerical values of the neutrino masses are determined, we may readily verify that
the theoretical mixing matrix, V th

PMNS , is very close to the tri-bimaximal form of the mixing
matrix [30],

V th
PMNS =


√

2
3

√
1
3 0

−
√

1
6

√
1
3 −

√
1
2

−
√

1
6

√
1
3

√
1
2

+ δV tri
PMNS , (36)

where δV tri
PMNS = V th

PMNS − V tri
PMNS . From eq. (25), the correction term to the tri-bimaximal

form of the mixing matrix comes out as

δV tri
PMNS ≈

 1.94× 10−2 −2.84× 10−2 −3.4× 10−3

2.21× 10−2 1.5× 10−2 −8.2× 10−6

1.8× 10−2 1.24× 10−2 3.1× 10−10

 . (37)

A more complete discussion of the deviation from the tri-bimaximal form in the framework of
the minimal S3-invariant extension of the SM can be found in [25].

6. Flavour Changing Neutral Currents (FCNC)
Models with more than one Higgs SU(2) doublet have tree level flavour changing neutral
currents. In the Minimal S3-invariant Extension of the Standard Model considered here, there is
one Higgs SU(2) doublet per generation coupling to all fermions. The flavour changing Yukawa
couplings may be written in a flavour labelled, symmetry adapted weak basis as

LFCNC
Y =

(
EaLY

ES
ab EbR + UaLY

US
ab UbR +DaLY

DS
ab DbR

)
H0
S

+
(
EaLY

E1
ab EbR + UaLY

U1
ab UbR +DaLY

D1
ab DbR

)
H0

1 +

(
EaLY

E2
ab EbR + UaLY

U2
ab UbR +DaLY

D2
ab DbR

)
H0

2 + h.c.

(38)

The Yukawa couplings of immediate physical interest in the computation of the flavour
changing neutral currents are those defined in the mass basis, according to Ỹ EI

m = U †eLY
EI
w UeR,

where UeL and UeR are the matrices that diagonalize the charged lepton mass matrix defined in
eqs. (12). We obtain [23]

Ỹ E1
m ≈ mτ

v1


2m̃e −1

2m̃e
1
2x

−m̃µ
1
2m̃µ −1

2

1
2m̃µx

2 −1
2m̃µ

1
2


m

, (39)
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Table 2. Leptonic FCNC processes, calculated with MH1,2 ∼ 120 GeV .

FCNC processes Theoretical BR Experimental References
upper bound BR

τ → 3µ 8.43× 10−14 2× 10−7 B Aubert et al [33]
τ → µe+e− 3.15× 10−17 2.7× 10−7 B Aubert et al [33]
τ → µγ 9.24× 10−15 6.8× 10−8 B Aubert et al [34]
τ → eγ 5.22× 10−16 1.1× 10−11 B Aubert et al [35]
µ→ 3e 2.53× 10−16 1× 10−12 U Bellgardt et al [36]
µ→ eγ 2.42× 10−20 1.2× 10−11 M L Brooks et al [37]

and

Ỹ E2
m ≈ mτ

v2


−m̃e

1
2m̃e −1

2x

m̃µ
1
2m̃µ

1
2

−1
2m̃µx

2 1
2m̃µ

1
2


m

, (40)

where m̃µ = 5.94×10−2, m̃e = 2.876×10−4 and x = me/mµ = 4.84×10−3. All the non-diagonal
elements are responsible for tree-level FCNC processes. If the S′2 symmetry in the Higgs sector
is preserved [31], 〈H0

1 〉 = 〈H0
2 〉 = v.

The amplitude of the flavour violating process µ→ 3e, is proportional to Ỹ E
µeỸ

E
ee [32]. Then,

the leptonic branching ratio,

Br(µ→ 3e) =
Γ(µ→ 3e)

Γ(µ→ eνν̄)
(41)

and

Γ(µ→ 3e) ≈
m5
µ

3× 210π3

(
Y 1,2
µe Y

1,2
ee

)2

M4
H1,2

, (42)

which is the dominant term, and the well known expression for Γ(µ→ eνν̄) [28], give

Br(µ→ 3e) ≈ 2(2 + tan2 β)2
(
memµ

m2
τ

)2 ( mτ

MH

)4

, (43)

taking for MH ≈ 120 GeV and tanβ = 1 we obtain Br(µ→ 3e) = 2.53× 10−16, well below the
experimental upper bound for this process, which is 1× 10−12 [36].

Similar computations give the numerical estimates of the branching ratios for some others
flavour violating processes in the leptonic sector. These results, and the corresponding
experimental upper bounds are shown in Table 2. In all cases considered, the theoretical
estimations made in the framework of the minimal S3-invariant extension of the SM are well
below the experimental upper bounds [23].

7. Muon anomalous magnetic moment
In the minimal S3-invariant extension of the Standard Model we are considering here, we have
three Higgs SU(2) doublets, one in the singlet and the other two in the doublet representations
of the S3 flavour group. The Z2 symmetry decouples the charged leptons from the Higgs boson
in the S3 singlet representation. Therefore, in the leading order of perturbation theory there

DISCRETE’08: Symposium on Prospects in the Physics of Discrete Symmetries IOP Publishing
Journal of Physics: Conference Series 171 (2009) 012081 doi:10.1088/1742-6596/171/1/012081

8



are two neutral scalars and two neutral pseudoscalars whose exchange will contribute to the
anomalous magnetic moment of the muon. Since the heavier generations have larger flavour-
changing couplings, the largest contribution comes from the heaviest charged leptons coupled
to the lightest of the neutral Higgs bosons.

A straightforward computation gives

δa(H)
µ =

YµτYτµ
16π2

mµmτ

M2
H

(
log

(
M2
H

m2
τ

)
− 3

2

)
. (44)

With the help of ( 39) and ( 40) we may write δa(H)
µ as

δa(H)
µ =

m2
τ

(246 GeV )2

(2 + tan2 β)
32π2

m2
µ

M2
H

(
log

(
M2
H

m2
τ

)
− 3

2

)
, (45)

Taking again MH = 120 GeV and the upper bound for tanβ = 14 gives an estimate of the
largest possible contribution of the FCNC to the anomaly of the muon’s magnetic moment
δa

(H)
µ ≈ 1.7 × 10−10. This number has to be compared with the difference between the

experimental value and the Standard Model prediction for the anomaly of the muon’s magnetic
moment [38]

∆aµ = aexpµ − aSMµ = (28.7± 9.1)× 10−10, (46)

which means
δa

(H)
µ

∆aµ
≈ 0.06. (47)

Hence, the contribution of the flavour changing neutral currents to the anomaly of the magnetic
moment of the muon is smaller than or of the order of 6% of the discrepancy between the
experimental value and the Standard Model prediction.

8. Conclusions
In the minimal S3-invariant extension of the SM the flavour symmetry group Z2×S3 relates the
mass spectrum and mixings. This allowed us to compute the neutrino mixing matrix explicitly
in terms of the masses of the charged leptons and neutrinos [22]. In this model, the magnitudes
of the three mixing angles are determined by the interplay of the flavour S3 × Z2 symmetry,
the see-saw mechanism and the lepton mass hierarchy. We also found that VPMNS has three
CP violating phases, one Dirac phase δ = δν − δe and two Majorana phases, α and β, that are
functions of the neutrino masses, and another phase φν which is independent of the Dirac
phase. The numerical values of the reactor, θ13, and the atmospheric, θ23, mixing angles
are determined by the masses of the charged leptons only, in very good agreement with the
experiment. The solar mixing angle θ12 is almost insensitive to the values of the masses of
the charged leptons, but its experimental value allowed us to fix the scale and origin of the
neutrino mass spectrum, which has an inverted hierarchy, with the values |mν2 | = 0.056eV ,
|mν1 | = 0.055eV and |mν3 | = 0.022eV . We also obtained explicit expressions for the matrices of
the Yukawa couplings of the lepton sector parametrized in terms of the charged lepton masses
and the VEV’s of the neutral Higgs bosons in the S3-doublet representation. These Yukawa
matrices are closely related to the fermion mass matrices and have a structure of small and very
small entries reflecting the observed charged lepton mass hierarchy. With the help of the Yukawa
matrices, we computed the branching ratios of a number of FCNC processes and found that the
branching ratios of all FCNC processes considered here are strongly suppressed by powers of

the small mass ratios me/mτ and mµ/mτ , and by the ratio
(
mτ/MH1,2

)4
, where MH1,2 is the
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mass of the neutral Higgs bosons in the S3-doublet. Taking for MH1,2 a very conservative value
(MH1,2 ≈ 120 GeV ), we found that the numerical values of the branching ratios of the FCNC
in the leptonic sector are well below the corresponding experimental upper bounds by many
orders of magnitude. It has already been argued that small FCNC processes mediating non-
standard quark-neutrino interactions could be important in the theoretical description of the
gravitational core collapse and shock generation in the explosion stage of a supernova [39–41].
Finally, the contribution of the flavour changing neutral currents to the anomalous magnetic
moment of the muon is small but non-negligible and it is compatible with the best, state of the
art measurements and theoretical computations.
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[11] M. Maltoni, T. Schwetz, M.A. Tórtola and J.W.F. Valle, New J. Phys. 6 (2004) 122.
[12] T. Schwetz, “Neutrino oscillations: Current status and prospects”, Acta Phys. Polon. B36 (2005) 3203.

arxiv: hep-ph/0510331.
[13] M. C. Gonzalez-Garcia and M. Maltoni, arXiv:hep-ph/0704.1800.
[14] M. Apollonio et al. [CHOOZ Collaboration], Eur. Phys. J. C27 (2003)331 .
[15] K. Eitel in “Neutrino 2004”, 21st International Conference on Neutrino Physics and Astrophysics (Paris,

France 2004) Ed. J. Dumarchey, Th. Patyak and F. Vanuucci. Nucl. Phys. B (Proc Suppl.) 143, (2005)
197.

[16] S. R. Eliot and J. Engel, J. Phys. G 30 (2004) R183.
[17] U. Seljak, A. Slosar and P. McDonald, JCAP 0610, (2006) 014. arXiv:astro-ph/0604335.
[18] O. Elgaroy, and O. Lahav, New J. Phys. 7 (2005) 61.
[19] J. Lesgourgues and S. Pastor, Phys. Rept. 429, (2006) 307. arXiv:astro-ph/0603494.
[20] J. Kubo, A. Mondragón, M. Mondragón, E. Rodŕıguez-Jáuregui, Prog. Theor. Phys. 109, (2003), 795.
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