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We perform a lattice QCD study of the local form factors governing the 𝐵𝑠 → 𝜇+𝜇−𝛾 decay.
To determine the 𝐵𝑠 meson form factors, we perform lattice simulations for several values of
the heavy-strange meson masses 𝑚𝐻𝑠

, within the range 𝑚𝐻𝑠
∈ [𝑚𝐷𝑠

, 2𝑚𝐷𝑠
], and extrapolate

to the physical 𝐵𝑠 meson mass, 𝑚𝐵𝑠
≃ 5.367 GeV, using heavy quark effective theory (HQET)

scaling laws. For this calculation we employ the gauge configurations generated by the ETM
Collaboration with 𝑁 𝑓 = 2 + 1 + 1 flavours of Wilson-Clover twisted-mass fermions at maximal
twist. We explore the region of large di-muon invariant masses,

√︁
𝑞2 > 4.16 GeV, and use our

results to estimate the branching fraction for 𝐵𝑠 → 𝜇+𝜇−𝛾, recently measured by LHCb in the
region

√︁
𝑞2 > 4.9 GeV.
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The 𝐵𝑠 → 𝜇+𝜇−𝛾 decay rate at large 𝑞2 from lattice QCD G. Gagliardi

1. Introduction

The flavour-changing neutral current (FCNC) process 𝐵𝑠 → 𝜇+𝜇−𝛾 is highly suppressed in
the Standard Model (SM), making it a promising channel to search for signals of New Physics (NP).
Although the LHCb Collaboration has searched for signals of this decay [1, 2], no events have been
detected, leading to an upper limit on the branching ratio: B(𝐵𝑠 → 𝜇+𝜇−𝛾) < 2.0 × 10−9, for
photons 𝛾 emitted from quarks (initial-state radiation, ISR)1. Currently, no first-principles prediction
for this decay rate exists. Using lattice QCD, we calculate the form factors 𝐹𝑉 , 𝐹𝐴, 𝐹𝑇𝑉 , 𝐹𝑇𝐴,
and 𝐹̄𝑇 , which are the non-perturbative QCD inputs for the determination of the matrix elements
⟨𝛾, 𝜇+𝜇− |O7,9,10 |𝐵̄𝑠⟩.2 The O𝑖 are the operators in the effective weak Hamiltonian 𝐻𝑏→𝑠

eff describing
the FCNC 𝑏 → 𝑠 transition. We focus on the large invariant mass region (

√︁
𝑞2 > 4.16 GeV), where

contributions from neglected four-quark and chromomagnetic penguin operators (O1−6,8) in 𝐻𝑏→𝑠
eff

are expected to be small, as they are higher-order in the 1/𝑚𝑏 expansion [3]. Among these,
charming-penguin diagrams can be important, and we estimate the systematic error induced by our
approximation through a phenomenological parameterization of their contribution [4].

Since the 𝐵̄𝑠 meson is too heavy for direct simulation on current lattices, we simulate a range
of lighter heavy-strange mesons 𝐻̄𝑠 (composed of a heavy quark ℎ and a strange anti-quark 𝑠) with
masses 𝑚𝐻𝑠

∈ [𝑚𝐷𝑠
, 2𝑚𝐷𝑠

]. Heavy quark effective theory (HQET) relations are then used to guide
the extrapolation to the physical 𝐵̄𝑠 meson.

2. The effective Hamiltonian and the form factors on the lattice

The low-energy effective weak Hamiltonian describing the 𝑏 → 𝑠 transition, neglecting doubly
Cabibbo-suppressed contributions, is given by

H𝑏→𝑠
eff = 2

√
2𝐺𝐹𝑉𝑡𝑏𝑉

∗
𝑡𝑠

[∑︁
𝑖=1,2

𝐶𝑖 (𝜇)O𝑐
𝑖 +

6∑︁
𝑖=3

𝐶𝑖 (𝜇)O𝑖 +
𝛼em
4𝜋

10∑︁
𝑖=7

𝐶𝑖 (𝜇)O𝑖

]
, (1)

where 𝐺𝐹 is the Fermi constant, 𝐶𝑖 are the Wilson coefficients and O𝑖 are local operators renor-
malized at the scale 𝜇. With 𝑃𝐿 (𝑅) = (1 ∓ 𝛾5)/2, the operators O𝑖 are given by

O𝑐
1 =

(
𝑠𝑖𝛾

𝜇𝑃𝐿𝑐 𝑗

)
(𝑐 𝑗𝛾

𝜇𝑃𝐿𝑏𝑖) , O𝑐
2 = (𝑠𝛾𝜇𝑃𝐿𝑐) (𝑐𝛾𝜇𝑃𝐿𝑏) , (2)

O7 = −𝑚𝑏

𝑒
𝑠𝜎𝜇𝜈𝐹𝜇𝜈𝑃𝑅𝑏 , O8 = − 𝑔𝑠𝑚𝑏

4𝜋𝛼em
𝑠𝜎𝜇𝜈𝐺𝜇𝜈𝑃𝑅𝑏 , (3)

O9 = (𝑠𝛾𝜇𝑃𝐿𝑏) ( 𝜇̄𝛾𝜇𝜇) , O10 = (𝑠𝛾𝜇𝑃𝐿𝑏) ( 𝜇̄𝛾𝜇𝛾5𝜇) (4)

while O3−6 are the QCD penguins. The transition amplitude for the decay is then given by [4]

A[𝐵̄𝑠 → 𝜇+𝜇−𝛾] = −𝑒 𝛼em√
2𝜋

𝐺𝐹𝑉𝑡𝑏𝑉
∗
𝑡𝑠𝜀

∗
𝜇

[ 9∑︁
𝑖=1

𝐶𝑖𝐻
𝜇𝜈

𝑖
𝐿𝑉𝜈 + 𝐶10

(
𝐻

𝜇𝜈

10 𝐿𝐴𝜈 −
𝑖

2
𝑓𝐵𝑠

𝐿
𝜇𝜈

𝐴
𝑝𝜈

)]
, (5)

where the last term, which depends on the axial decay constant 𝑓𝐵𝑠
of the 𝐵𝑠 meson, corresponds to

the final-state-radiation (FSR) contribution, while the non-perturbative information due to photon
emission by the quarks (ISR) is encoded in the hadronic tensors 3 𝐻

𝜇𝜈

𝑖
, which are pure QCD

1The contribution from final-state radiation (FSR), where the photon is emitted from a muon, has been subtracted [1].
2The text and figures here and below correspond to the decay of the 𝐵̄𝑠 meson.
3We refer to our work [4] for the definition of the hadronic tensors 𝐻𝜇𝜈

𝑖
.
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Figure 1: Continuum-limit extrapolation of the lattice data for the strange- (left panel) and heavy-quark
(right panel) contribution to the form factors 𝐹𝑉 and 𝐹𝐴 for 𝑥𝛾 = 0.4. The transparent bands correspond to
the best-fit function obtained in the linear 𝑎2 fit. In the panels, the different colors correspond to different
values of the heavy quark mass 𝑚ℎ.

quantities. Exploiting Lorentz invariance, the hadronic tensors can be decomposed in terms of form
factors. 𝐹𝑉 and 𝐹𝐴 parameterize the hadronic tensors 𝐻

𝜇𝜈

9−10 corresponding to the semileptonic
operators O9−10, while 𝐹𝑇𝑉 , 𝐹𝑇𝐴 and 𝐹̄𝑇 parameterize 𝐻

𝜇𝜈

7 , which corresponds instead to the
contribution of the photon penguin operator O7. The (local) form factors 𝐹𝑉 , 𝐹𝐴, 𝐹𝑇𝑉 , 𝐹𝑇𝐴 and 𝐹̄𝑇

are functions of the invariant mass
√︁
𝑞2 of the 𝜇+𝜇− pair, and we find it convenient to express them

in terms of the dimensionless variable 𝑥𝛾 = 1−𝑞2/𝑚2
𝐵𝑠

= 2𝐸𝛾/𝑚𝐵𝑠
, where 𝐸𝛾 is the photon energy

in the 𝐵̄𝑠-meson rest frame. The simulated values of 𝑥𝛾 are 0.1, 0.2, 0.3, 0.4. In this proceedings,
we discuss the calculation of 𝐹𝑉 , 𝐹𝐴, 𝐹𝑇𝑉 and 𝐹𝑇𝐴, which can be determined using standard
lattice techniques [4], and provide the dominant contribution to the decay rate. The calculation
of the subleading form factor 𝐹̄𝑇 is instead more involved and requires the application of recently
developed spectral density reconstruction techniques [5]. We refer to our work [4] for further details
on the calculation of this contribution.

We compute 𝐹𝑉 , 𝐹𝐴, 𝐹𝑇𝑉 , and 𝐹𝑇𝐴 using four different 𝑁 𝑓 = 2 + 1 + 1 Wilson-Clover twisted
mass ensembles, with lattice spacings 𝑎 ∈ [0.056, 0.091] fm. This setup, at maximal twist, ensures
that the leading discretization errors are proportional to 𝑎2. The form factors are computed for five
different values of the heavy-quark mass, specifically 𝑚ℎ/𝑚𝑐 = 1, 1.5, 2, 2.5, 3, where 𝑚𝑐 is the
charm-quark mass. These values of 𝑚ℎ correspond to 𝑚𝐻𝑠

∈ [𝑚𝐷𝑠
, 2𝑚𝐷𝑠

]. Figure 1 shows the
lattice-spacing dependence of 𝐹𝑉 and 𝐹𝐴 for 𝑥𝛾 = 0.4, distinguishing the contributions from photon
emission by the strange and heavy quarks. The bands in the figure correspond to the continuum
limit extrapolation that we perform through simple 𝑎2 fits of the data for each value of 𝑥𝛾 and 𝑚ℎ.

Having determined the form factors for𝑚𝐻𝑠
∈ [𝑚𝐷𝑠

, 2𝑚𝐷𝑠
], we perform the mass extrapolation

to the physical 𝐵𝑠 meson mass making use of the scaling laws derived in the framework of the HQET
and large-photon-energy expansions [6, 7]. In the effective theory, to leading-order in 1/𝐸𝛾 and

3
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1/𝑚𝐻𝑠
, the form factors are given by 4

𝐹𝑉 (𝑥𝛾 , 𝑚𝐻𝑠
)

𝑓𝐻𝑠

=
𝐹𝐴(𝑥𝛾 , 𝑚𝐻𝑠

)
𝑓𝐻𝑠

=
|𝑞𝑠 |
𝑥𝛾

𝑅(𝐸𝛾 , 𝜇)
𝜆𝐵 (𝜇)

(6)

𝐹𝑇𝑉 (𝑥𝛾 , 𝑚𝐻𝑠
, 𝜇)

𝑓𝐻𝑠

=
𝐹𝑇𝐴(𝑥𝛾 , 𝑚𝐻𝑠

, 𝜇)
𝑓𝐻𝑠

=
|𝑞𝑠 |
𝑥𝛾

𝑅𝑇 (𝐸𝛾 , 𝜇)
𝜆𝐵 (𝜇)

, (7)

where 𝑞𝑠 is the electric charge of the strange quark, 𝜆𝐵 is the first inverse moment of the 𝐵𝑠-meson
light-cone distribution amplitude, and 𝑅 and 𝑅𝑇 are radiative correction factors [6]. 𝑓𝐻𝑠

is instead
the axial decay constant of the 𝐻̄𝑠 meson, which we determine non-perturbatively. In the large
mass/energy effective theory, the leading contribution comes from the photon emitted by the strange-
quark, while the emission from the heavy-quark is suppressed by an additional power of 1/𝑚𝐻𝑠

.
The relations above, being valid for large 𝐸𝛾 (i.e. for small 𝑞2), are however insufficient to describe
the behaviour of the form factors in the range of simulated 𝑥𝛾 and 𝑚𝐻𝑠

, due to sizable resonance
contributions which give rise to the following modification of the previous LO relations [4]

𝐹𝑉 (𝑥𝛾 , 𝑚𝐻𝑠
)

𝑓𝐻𝑠

=
|𝑞𝑠 |

𝑥𝛾 + 2𝐶𝑉

𝑚2
𝐻𝑠

𝑅(𝐸𝛾 , 𝜇)
𝜆𝐵 (𝜇)

,
𝐹𝐴(𝑥𝛾 , 𝑚𝐻𝑠

)
𝑓𝐻𝑠

=
|𝑞𝑠 |

𝑥𝛾 + 2𝐶𝐴

𝑚𝐻𝑠

𝑅(𝐸𝛾 , 𝜇)
𝜆𝐵 (𝜇)

, (8)

where, within the vector-meson-dominance (VMD) approximation, the pole parameters 𝐶𝐴 and 𝐶𝑉

are related to the mass splitting between the 𝐻̄𝑠 pseudoscalar meson and the ground-state vector
(𝐻̄∗

𝑠) and axial-vector (𝐻̄𝑠1) mesons via

𝐶𝑉 =
𝑚2

𝐻∗
𝑠
− 𝑚2

𝐻𝑠

2
≃ (0.5 GeV)2 , 𝐶𝐴 = 𝑚𝐻𝑠1 − 𝑚𝐻𝑠

≃ 0.5 GeV . (9)

Similar relations hold for 𝐹𝑇𝑉 and 𝐹𝑇𝐴 too [4]. We perform the extrapolation to the physical
𝐵𝑠-meson point through a simultaneous global fit of the mass and 𝑥𝛾 dependence of all four form
factors, employing a fit Ansatz which includes the resonance corrections in Eq. (8), as well as the
NLO and NNLO corrections of order O( 1

𝐸𝛾
, 1
𝑚𝐻𝑠

) and O( 1
𝐸2
𝛾
, 1
𝑚2

𝐻𝑠

) to the LO relations in Eq. (6).
The full fit Ansatz is thoroughly discussed in [4], to which we refer for further technical details.
The results of the combined fits are shown in Figure 2, where the bands correspond to the best-fit
functions, and the vertical line to the physical point 𝑚𝐻𝑠

= 𝑚𝐵𝑠
. The pole terms nicely describe the

behaviour of the form factors at small 𝑥𝛾 (where they are more relevant), and we obtain for 𝐶𝑉 and
𝐶𝐴, which are free-parameters in our fits, the values 𝐶fit

𝑉
= (0.57(3) GeV)2 and 𝐶fit

𝐴
= 0.70(7) GeV,

which although slightly larger than the values in Eq. (9), are in line with the expectations from
VMD. In Figure 3, we compare our results for the form factors at the physical point with existing
determinations based on light-cone sum rules [8], on the relativistic dispersion approach based on
the constituent-quark picture [9], and on a hybrid approach [10] which uses lattice QCD results
for 𝐷𝑠 → ℓ𝜈ℓ𝛾 in combination with quark-model and VMD-inspired relations, to infer the vector
and axial-vector form factors of 𝐵𝑠 → 𝜇𝜇𝛾. As the figure shows, with a few exceptions, our
results differ significantly from the earlier estimates, which in turn disagree with each other. In
particular our results are smaller than the light-cone sum rule predictions [8], and larger than both
the quark-model results [9] and those of the hybrid approach [10].

4For the tensor form factors we have explicitly inserted in the l.h.s. the dependence on the renormalization scale 𝜇,
which is instead absent in 𝐹𝑉 and 𝐹𝐴 which are scale-independent quantities. In the following, our results for 𝐹𝑇𝑉 and
𝐹𝑇𝐴 are given in the 𝑀𝑆 scheme at the scale 𝜇 = 5 GeV.
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Figure 2: Extrapolation to the physical 𝐵𝑠 meson of the four form factors 𝐹𝐴 (top left) , 𝐹𝑇𝐴 (top right), 𝐹𝑉
(bottom left) and 𝐹𝑇𝑉 (bottom right). The different colors correspond to the different simulated values of 𝑥𝛾 .
The continuum bands correspond to the best-fit function obtained in the mass-extrapolation fits.
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Figure 3: Comparison between our results for the form factors (red bands), and existing model-dependent
results [8–10]. The region between the vertical red dashed lines corresponds to the region of simulated 𝑥𝛾 ,
and therefore within this region our results are obtained through an interpolation of our lattice data.

3. Results for the branching fractions

We use our form factor results to evaluate the ISR contribution to the branching fractions

BSD(𝑥cut
𝛾 ) =

∫ 𝑥cut
𝛾

0
d𝑥𝛾

dBSD
d𝑥𝛾

, (10)

where 𝐸cut
𝛾 = 𝑚𝐵𝑠

𝑥cut
𝛾 /2 is the upper photon energy limit, and dBSD/d𝑥𝛾 is the ISR contribution to

the differential branching fraction5. The left panel of Figure 4 shows our results, with the red band
representing the branching fractions calculated neglecting four-quark and chromomagnetic penguin
contributions. As already mentioned, these contributions are expected to be small for low 𝑥cut

𝛾 .
However, to estimate the associated systematic error, we included a phenomenological description

5The interference between ISR and FSR contributions is negligible for all 𝑥cut
𝛾 [4].
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Figure 4: Left: Our determination of the ISR contribution BSD (𝑥cut
𝛾 ). The red and light-red bands differ on

whether Δ𝐶9 (𝑞2) in Eq. (11) has been included or not, while the vertical line corresponds to the experimental
cut imposed by the LHCb Collaboration [1, 2]. Right: charming-penguin diagram due to the four-quarks
operators O𝑐

1−2 (the corresponding diagram with the real photon emitted from the strange quark is not shown).

of the charming-penguin diagram (right panel of Figure 4), which likely dominates the neglected
contributions due to the presence of broad 𝑐𝑐 resonances near or within the 𝑞2 region we explored.
Following previous works [3, 9, 10], we account for this contribution by introducing a 𝑞2-dependent
shift to the Wilson coefficient 𝐶9: 𝐶9 → 𝐶eff

9 (𝑞2) = 𝐶9 + Δ𝐶9(𝑞2). The shift Δ𝐶9(𝑞2) is modeled
as a sum over 𝐽𝑃 = 1− charmonium resonances [9, 10]:

Δ𝐶9(𝑞2) = − 9𝜋
𝛼2

em
(𝐶1 +

𝐶2
3
),
∑︁
𝑉

|𝑘𝑉 |𝑒𝑖 𝛿𝑉
𝑚𝑉𝐵(𝑉 → 𝜇+𝜇−)Γ𝑉
𝑞2 − 𝑚2

𝑉
+ 𝑖𝑚𝑉Γ𝑉

, (11)

where Γ𝑉 , 𝑚𝑉 , and 𝐵(𝑉 → 𝜇+𝜇−) represent the resonance’s total decay width, mass, and branching
fraction into 𝜇+𝜇−. For the lowest resonances, these values come from experiments, but little is
known about phase shifts 𝛿𝑉 and fudge factors 𝑘𝑉 . To be conservative, we assume the phases
are uniformly distributed in [0, 2𝜋) and use 𝑘𝑉 = 1.75 ± 0.75. Including Δ𝐶9 produces the light-
red band in Figure 4 (left panel), representing our final result. Charming-penguin uncertainties
dominate for 𝑥cut

𝛾 > 0.2, necessitating a first-principles calculation to improve the predictions of
BSD(𝑥cut

𝛾 ) in this region. At 𝑥cut
𝛾 ≃ 0.166 (indicated in the left panel of Figure 4 by the vertical dashed

line) we can compare our result BSD(0.166) = 6.9(9) × 10−11 with the LHCb upper-bound [1, 2],
BLHCb

SD (0.166) < 2 × 10−9, which is more than one order of magnitude larger than our result 6.
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6Recently, the LHCb Collaboration has presented a new upper bound based on an analysis with explicit detection of
the final state photon [11]. Above the 𝑐𝑐 resonances, the bound is however weaker than the earlier result [1, 2].
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