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Resumo
Sirius é a nova fonte de luz síncrotron de quarta geração que está sendo construída em
Campinas, Brasil, pelo Laboratório Nacional de Luz Síncrotron (LNLS). Com uma emi-
tância natural de 250 pm rad, radiação síncrotron de altíssimo brilho poderá ser gerada por
até 18 dispositivos de inserção (DI) instalados nos trechos retos do anel de armazenamento
e por 20 dipolos de alto campo (3.2 T) presentes no centro de cada arco cromático da rede
magnética. A câmara de vácuo padrão do anel será cilíndrica, feita de cobre e terá 12 mm
de raio, que é um valor pequeno comparado às câmaras de fontes de luz síncrotron de
terceira geração, e os primeiros DIs previstos serão fora do vácuo e terão uma abertura
bastante reduzida, com câmaras de apenas 2.4 e 3.0 mm de raio, na maioria dos casos.
Adicionalmente, o sistema de vácuo do anel será distribuído, através da deposição de NEG
na superfície interna das câmaras ao longo de todo o anel. Todos esses fatores intensificam
os campos de arraste, ou impedâncias, da máquina, que podem gerar oscilações coerentes,
deteriorando a qualidade da luz gerada, e causar perda total ou parcial do feixe, além de
influenciar na dinâmica de equilíbrio dos elétrons. Neste trabalho alguns dos principais
componentes da câmara de vácuo foram modelados e seus campos de arraste calculados
por meios semi-analíticos e numéricos e adicionados ao modelo total de impedância do
anel. Com a aplicação de tal modelo para a primeira fase de operação, constatou-se que o
feixe será instável nos planos transverais devido a oscilações causadas por acoplamento en-
tre pacotes gerados pela impedância de parede resistiva, tornando necessária a instalação
de sistemas de retroalimentação pacote por pacote para manter a estabilidade. Também
foi previsto que o feixe ficará estável se o anel for operado com uma cromaticidade nomi-
nal de 2.2 em ambos os planos transversais. Os limiares das instabilidades relacionadas a
oscilações intra-pacote estão muito acima da corrente nominal de operação e não serão um
problema. Não há previsão de instabilidades longitudinais de acoplamento entre pacotes,
haja vista que a máquina operará com cavidades de RF supercondutoras. Na segunda fase
de operação está prevista a instalação de uma cavidade Landau, que permitirá operação
com corrente total mais alta, inclusive com pacotes bastante intensos no meio do trem.
Apesar de não terem sido feitos cálculos para esse tipo de operação, os principais métodos
e códigos desenvolvidos nesse trabalho podem ser diretamente usados para tal fim.

Palavras-chaves: Projeto Sirius; Impedância; Instabilidades do feixe de partículas; Di-
nâmica do feixe.



ABSTRACT
Sirius is the new fourth generation light source that is being built in Campinas, Brazil, by
the Brazilian Synchrotron Light Laboratory (LNLS). With a natural emittance of 250 pm rad,
extremely high–brightness synchrotron light will be generated by, at most, 18 insertion
devices (IDs) installed in the straight sections of the storage ring and by 20 superbends
(3.2 T) present in the center of each achromat of the magnetic lattice. The standard
vacuum chamber will be round, made of copper, with a radius of 12 mm, which is small
compared to third generation light sources chambers, and the first IDs planned will be out
of vacuum and will have a very reduced gap, with chambers as small as 2.4 and 3.0 mm,
in most cases. Additionaly, vacuum pumping will be distributed, through the use of NEG
coating at the inner surface of the chambers in the whole ring. All these factors intensify
the impedance related effects of the machine, which can generate coherent oscillations,
compromizing the quality of the light, cause total or partial beam loss and influence the
equilibrium dynamics of the electrons. In this work some of the main components of the
vacuum chamber were modelled and their wake fields were calculated with semi-analytical
and numerical methods and added to the total impedance budget of the machine. With
the application of this model to the first phase of operation, it was found that the beam
will suffer from transverse coupled bunch resistive wall instability, making it necessary
the installation of transverse bunch-by-bunch feedback systems in both planes. It was
also predicted stability without feedback action provided that the ring operates with
chromaticity larger than 2.2 in both planes. The thresholds for intra-bunch instabilities
are much above the nominal operation current and will not be a problem in any of the
three planes and there will be no longitudinal coupled-bunch motion as long as the ring
operates with superconducting RF cavities. The installation of a Landau cavity is planned
for the phase two of operation, which will allow higher total current in the machine and
even high single-bunch current in the middle of the train. Even though it was not done
any calculations for these future operation conditions, the methods and codes developed
in this work can be directly applied for those cases.

Keywords: Sirius Project; Impedance; Particle beam instabilities; Beam dynamics.
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1 INTRODUCTION

The first objective of this work was to study the subject of wake fields and
impedances in accelerators and their effects on the beam dynamics of electron storage
rings. The following goal was to apply this knowledge gathered from the literature to
the Sirius storage ring, building the impedance budget with semi-analytic and numeric
calculations of the impedances of the main components1, with special care to the char-
acterization of the effect of the NEG coating on the total impedance; and to perform
calculations to predict the beam instabilities thresholds and study the possible cures for
them.

This thesis is organized in the following manner:

• in this Chapter general concepts related to the work necessary to understand its
relevance for the Sirius project as well as a brief description of the main mechanisms
involved will be discussed;

• in Chapter 2 the main concepts of the single particle dynamics, important for the
development of the rest of the work, will be introduced;

• in Chapter 3 the key of the wake field theory will be presented with focus to the
physical interpretation of the quantities introduced;

• in Chapter 4 the methodology for computation of the impedance effects on the beam
will be briefly described, with references for more detailed works and explanation
of the derivation of the equations;

• in Chapter 5 the models applied to the impedance calculation of some of the main
components of the storage ring will be presented and justified;

• in Chapter 6 the whole impedance budget gathered so far for the storage ring will
be presented;

• in Chapter 7 the instabilities studies performed with the impedance budget will be
discussed;

1.1 Synchrotron Light Sources
Synchrotron Light Sources (SLSs) are scientific facilities where the interaction be-

tween light and matter is used to study properties of a variety of materials. Through
1 This part of the work was done together with other members of the Brazilian Synchrotron Light

Laboratory (LNLS) team.
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Figure 1 – Schematic of a storage–ring–based light source showing the three main sys-
tems: the injection systems, composed of an electron gun, a Linear Accelerator
(LINAC) and a booster; the storage ring and the beamlines, with the experi-
ment stations at their ends.

techniques involving absorption, reflection, refraction and scattering of light of different
’colors’ and polarizations by the materials under study, their atomic structure, composi-
tion and chemical activity can be determined. The frequency of the light used in these
facilities ranges from tera-hertz to hard X-rays and its origin is always related to the
emission created by centripetal acceleration of ultra-relativistic charged particles (gen-
erally electrons), which has unique properties for use in scientific investigation: broad
spectrum, high total flux and the strong collimation are among them.

These facilities always rely on particle accelerators to create the ideal conditions
for the electrons emission and there are several different types of accelerators (a brief
description can be found in Wiedemann (2007)). Among them, we highlight the ones
based on synchrotron storage rings. In this type of SLS the electrons are grouped in
several bunches that fill the whole storage ring and are confined for hours in approximately
circular orbits by deflecting and focusing magnetostatic fields. The radiation used in
experiments can be generated by the same fields that deflect the beam (dipoles) or by
special devices called IDs that are installed in element–free sections of the ring, called
straight sections. The ring topology of these machines allows dozens of beamlines to
work simultaneously, performing completely different experiments, where the emitted light
periodically hit the samples under study and the interaction patterns are recorded for as
long as needed to achieve the desired resolution for the experiment.

Figure 1 shows a generic scheme of a storage ring based light source. It has three
main subsystems: an injector, the storage ring and the beamlines. The injector is respon-
sible for generating and accelerating the particles up to the ultra–relativistic energy of
the storage ring and in most light sources it is composed of a gun, a LINAC and a booster
synchrotron. In the case of electron storage rings the electron beam is emitted from cath-
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odes in the gun, via thermionic or photoelectric effect, and are compressed in bunches
and accelerated by the LINAC, generally up to energies of hundreds of MeV. After this,
the electrons are transported to the booster synchrotron where they are accelerated up to
the energy of the storage ring, generally a few GeV, and extracted from it to be injected
into the storage ring. This whole process can happen with a repetition rate of a few Hz.

The storage ring is a synchrotron just like the booster in which the average energy
of the electron beam is constant, while they perform dozens of billions of turns in the
few hours they remain there. After injection, the bunches of electrons oscillate around the
ideal orbit in the storage ring, but in a few dozens of thousands of turns they are damped,
reaching the storage ring equilibrium values of transverse emittances (size and divergence),
longitudinal length and energy spread. In ideal storage rings they stay stable in stationary
closed orbits emitting radiation that is collected by the beamlines. The radiation exits the
storage ring through holes in the external part of the vacuum chamber, called exit ports,
and propagate to the beamline in straight trajectories, tangent to the electrons orbit in
the point where it was generated.

1.2 Storage Ring Main Devices
This work will focus on the study of the dynamics of the particles while they are

in their equilibrium regime inside the storage ring, without considering the details of the
injection process. For this reason, in this subsection we will present the main subsystems
of a storage ring and discuss their main contributions to the task of keeping particles in
stable confinement for such long times. Throughout this whole work the approximation
𝑣 ∝ 𝑐 will be assumed in the formulas, given the ultra–relativistic regime of the particles.
Besides, all the equations are presented using the International System of Units (SI).

1.2.1 Magnetic Lattice

Magnetic lattice is the series of static magnets that are placed along the beam
trajectory to deflect and focus it to keep the motion stable. It is composed of a reduced
number of distinct types of magnets that have specific functions for the beam confinement:

Dipoles: or bending magnets, are the devices responsible for deflecting the beam in
such a way that its net deflection in one turn is 2𝜋 rad. They generate an almost
constant vertical field, 𝐵𝑦, along the beam path that curves its horizontal trajectory
(see Figure 2). At each point of the trajectory inside a dipole the curvature, 𝐺(𝑠),
is given by:

𝐺(𝑠) = 1
𝜌(𝑠) = 𝑒

𝑝0
𝐵𝑦(𝑠) ≈ 𝑒𝑐

𝐸0
𝐵𝑦(𝑠) (1.1)
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(a) Schematic figure of a dipole magnet,
where N and S indicate the North and
South poles of the magnet and the ver-
tical down arrows indicate the magnetic
field lines

(b) Picture of a real dipole magnet.

Figure 2 – Illustrations of a dipole magnet.

where 𝑠 is the longitudinal position along the ring, 𝜌(𝑠) is the radius of curvature,
𝑒 is the absolute value of the particle’s charge, 𝑐 is the speed of light, 𝑝0 is the
absolute value of the average linear momentum of the beam and 𝐸0 is the corre-
sponding average beam energy. Notice in the equation above that dipoles work as
spectrometers, if the beam has an energy spread and in the absence of other types
of magnets, particles with higher/lower energy will spiral out/in because their total
deflection angle will be different than 2𝜋 rad, which means eventually all particles
will hit the vacuum chamber and be lost;

Quadrupoles: are responsible to focus the beam, keeping oscillating around the ideal
orbit. They achieve this by creating a field that grows linearly in intensity with the
displacement from its center (see Figure 3), in such a way that they work as lenses.
They are characterized by their strength, defined by:

𝐾(𝑠) = 𝑒

𝑝0

𝜕𝐵𝑦

𝜕𝑥

⃒⃒⃒⃒
⃒
𝑦=0

(𝑠) (1.2)

where 𝑥 and 𝑦 are the horizontal and vertical displacement from the center of
the quadrupole. The strength defined above is directly related to how much the
quadrupole deflect off-centered particles, being its integral along the quadrupole
length directly related to the focal length of the magnet. One intrinsic limitation
of quadrupoles imposed by Maxwell Equations (ME) and the Lorentz force is that
they cannot focus the beam simultaneously in the horizontal and vertical directions.
This means that two types of quadrupoles are needed in a magnetic lattice, one to
focus in the horizontal, called focusing quadrupoles by convention, and another to
focus in the vertical, the defocusing quadrupoles, in such a way that net focusing
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(a) Schematic figure of a quadrupole mag-
net, where the curved arrows indicate the
magnetic field lines and the red/blue ar-
rows indicate the direction of the horizon-
tal/vertical forces felt by an electron en-
tering the sheet. Notice this quadrupole
focuses in the horizontal, so it is a focus-
ing quadrupole.

(b) Picture of a real quadrupole magnet, with
the coils that generate the magnetic field
and the iron core that guide and shape the
field lines inside the gap.

Figure 3 – Illustrations of a quadrupole magnet.

in both planes can be achieved with intelligent positioning of the magnets. Besides,
quadrupoles are arranged along the ring to correct the intrinsic limitation of the
dipoles regarding the energy dispersion, as discussed above, adding/subtracting net
deflection in one turn for particles with more/less energy. This causes particles to
have different closed orbits depending on their energy, the chromatic closed orbits.
Quadrupoles and dipoles are the most important multipoles in a storage ring be-
cause together they define its main equilibrium properties, such as the particles
average energy, the transverse beam natural emittance, and beam sizes along the
ring, as well as the fundamental frequency of oscillation of the particles, the tune.

Sextupoles: quadrupoles also suffer from chromatic aberrations, focusing more or less
the particles depending on their energy. This difference in focusing makes particles
oscillate differently around their closed orbit, changing their fundamental resonant
frequency. This is not a conceptually fundamental problem, but a practical one
because in almost all modern storage rings it is impossible to store particles with
only dipoles and quadrupoles. Sextupoles can correct that effect if placed at the
right positions along the ring because of their non-linear magnetic field, which grows
quadratically with the distance from its center, see Figure 4. Just like quadrupoles, it
is needed two types of sextupoles, focusing and defocusing, to correct the horizontal
and vertical frequency of oscillation of the particles. Sextupoles are needed, but
they introduce several complications for the design of a storage ring, because their
non-linear fields introduce chaos in some regions of the particles phase space. More
sextupoles or higher order multipoles can be introduced to avoid chaos as much as
possible and also to help correcting higher order chromatic effects.
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(a) Schematic figure of a sextupole magnet,
where N and S indicate the North and
South poles of the magnet and the curved
arrows indicate the magnetic field lines. (b) Picture of a real sextupole magnet.

Figure 4 – Illustrations of a sextupole magnet.

Higher order multipole magnets, such as octupoles and decapoles, can be used
to correct higher order chromatic and geometric aberrations, but their use is not very
common in the design of storage ring for light sources as they are in colliders, even though
this tendency is changing with the new light sources that are being designed, such as MAX
IV (LEEMANN et al., 2009), ESRF upgrade (FARVACQUE et al., 2013), APS-U (SUN;
BORLAND, 2015), SLS upgrade (STREUN et al., 2015) and Spring-8 upgrade (SOUTOME
et al., 2016). Nevertheless, they are always present in storage rings as errors of the main
magnets and their effect must be taken into account in detailed single particle dynamics
analysis.

Generally, lattices have high periodicity, being the repetition of a unit cell along
the whole extension of the ring. This periodicity simplifies the design of the ring, the
dynamics of the electrons and reduces the number of dangerous resonances that can harm
the beam stability. Unit cells generally can be divided in two parts, an arc section, where
the dipoles are placed, interleaved by focusing elements to control the dispersion and focus
the beam from one dipole to another, and a straight section, with a dedicated space for
the installation of IDs for light generation and other machine equipment. The straight
sections also have focusing elements to match the beam to the arcs.

1.2.2 RF Cavity

At each turn, the electrons lose energy due to synchrotron radiation which must be
replenished periodically in order for them to remain in stable orbits, with energy close to
the nominal energy of the storage ring. The magnetostatic components described above
cannot perform such a task neither any other component or method relying on static
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electromagnetic fields of any kind, because according to the ME and the Lorentz force,
the net energy transfered to a charged particle by static fields in one turn over the ring
must be zero. This means that the laws of physics constraint that it is necessary to rely on
time dependent electromagnetic fields to replenish the energy of the electrons. The way
this is accomplished in a storage ring is through the use of devices called RF cavities.

The RF cavity is a cylindrical electromagnetic cavity with the lowest Transverse
Magnetic mode (TM010) in the range of radiofrequency. Cavities for use in storage rings
must have at least two small holes in its axis for the beam passage and one other hole
to couple the cavity with an external source to feed the mode TM010 with energy. This
energy is transfered to the particles when they pass through the cavity by the almost
homogeneous longitudinal electric field of this mode. The frequency of this particular
mode is always exactly equal to a multiple, ℎ, of the revolution frequency of the beam
along the ring, in such a way that the phasing between the electric field and the beam
entrance in the cavity remains constant over several passages and, once initially adjusted
when the beam is injected in the ring, will be such that the average energy lost in one
turn is replenished. This special phase is called the synchronous phase. Moreover, this
synchronicity mechanism, that, by the way, is the responsible for the name of this type
of accelerator, creates ℎ points in the ring’s longitudinal phase space around which the
electrons can form stable bunches.

Besides the mode used to feed energy to the beam, a cavity can have several other
modes of higher resonant frequencies with a high quality factor, 𝑄, that can be excited
by the beam. When the beam passes through the cavity it leaves electromagnetic fields
with a very wide spectrum of frequencies. Most of these frequency components are rapidly
scattered and dissipated, but some of them, close to the resonant frequency of these modes,
can last for very long times and, assuming the beam is constantly feeding them, strong
electric potentials, or wake fields, can be formed. These potentials, in turn, influence the
beam dynamics, causing energy loss, distortion of the bunches and instabilities.

There are some methods to avoid this problem with cavities. For example, it is
possible to insert couplers in the cavity, similar to the one that feeds the fundamental
mode, but designed and positioned specially to interact with one or a group of these
higher order modes (HOMs) to absorb the energy deposited by the beam, which is later
transformed in thermal energy by resistors outside the cavity, or to design wave guides
in the cavity, through which the modes can propagate and be dissipated in the resistive
endings. Another method involves shifting the frequency of the modes, via thermal or
mechanical deformation, in such a way that they do not couple with any frequency of the
beam.

The superconducting RF cavities also do not have this problem because they
are built with very large tubes for the beam passage, in such a way that the HOMs
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can propagate through them. Even though for the main mode the ratio of the shunt
impedance by the quality factor, 𝑅𝑠/𝑄, which depends only on the geometry of the cavity,
as explained by Wiedemann (2007, Sec. 15.4), is strongly reduced by this approach, the
zero resistivity of the wall still provides very large values for 𝑄 and 𝑅𝑠. Sirius will adopt
this type of cavity and, based on the operation reports of other laboratories which also
employed this solution, we do not expect to have problems with HOMs.

1.2.3 Vacuum System

The vacuum system is used to create a compact region around the reference orbit
in the whole machine with very low pressure, and thus minimize collisions of the stored
charged particles with residual gas molecules, increasing the lifetime, which is the average
time particles can be stored with stable movement, and minimizing the production of
bremstrahlung radiation. As an estimate, the average pressure of a storage ring must be
lower than 1 nTorr for the average stored time of the particles to be of the order of a few
dozens of hours.

The vacuum system is composed of two main subsystems, the vacuum vessel, which
defines the boundaries of the electron’s environment, and vacuum pumps, which maintain
the desired difference in pressure between the two regions. Most of the extension of the
vacuum vessel is composed of straight and long chambers with a specific cross section,
constant along the extension of the chamber. They are made of metals due to several
desirable properties of these materials, such as high heat and electrical conductivities,
high acceptance to welding and braising, high resistance to pressure and low cost. Among
them we highlight implications of the high electrical conductivity, due to its importance
for this work. Besides the standard vacuum chamber there are several other structures
that compose the vacuum vessel, for example:

Bellows: are sanfonated elements that connect two vacuum chambers in order to ac-
commodate longitudinal thermal expansions and transverse misalignments between
them, as well as the assembly to the vacuum components themselves;

Valves: devices that are used to isolate the vacuum in different sections of the ring.
Generally they remain open, creating a single vacuum region along the ring, but
can be closed automatically in case of accidents, or for maintenance;

Flanges: are the components responsible for coupling two different vacuum components
together in a leakage-free manner;

Dipole Chambers: are special curved chambers used in the regions where there are
dipoles. In some cases they have exit ports to extract the photon beam to the
beamlines;
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Radiation Masks: are small protuberances in the vacuum chamber designed to shadow
more sensitive elements from synchrotron radiation.

Diagnostic Elements: are components used both to measure the electromagnetic sig-
nals generated by the beam to determine its properties, such as intensity, position
and oscillations and act back on it either as a feedback or feedforward corrections
to perturbations. They must be inside the chamber because the high frequency
components they measure cannot propagate out the chamber;

Transitions: there are some sections of the vessel that have different cross sections than
the standard chamber, generally to accommodate special devices such as RF cav-
ity, IDs, some magnets, ceramic chambers, collimators, etc. Transitions are smooth
longitudinal variations of cross section from one chamber to the other.

These are only some examples of the different components of the vacuum vessel
of a storage ring. All these components introduce variations in the inner cross sections of
the chamber which interact with the electromagnetic fields of the beam, creating other
fields, called wake fields, that causes not only heating of the components, in addition to
the radiation heating, but also act back on the beam itself affecting its dynamics with the
potential of causing instabilities that can severely limit the machine performance. The
study of this last interaction applied to the new Sirius light source in Brazil will be the
main subject of this work.

1.3 Light Source Generations
Brightness is the main figure of merit used to characterize a synchrotron light

source (HETTEL, 2014b), the larger its value the better the radiation. It is a measure of
the intensity and collimation of the radiation at a given frequency or wavelength and can
be mathematically defined by the following expression, according to Huang (2013):

𝐵(𝜔) = 1
Δ𝜔

𝐹 (𝜔)
Σ𝑥(𝜔)Σ𝑦(𝜔) (1.3)

where 𝜔 is the photon frequency, 𝐹 (𝜔) is the flux, the average number of photons per sec-
ond, Σ𝑥 and Σ𝑦 correspond to the volume the photon beam occupies in the horizontal and
vertical phase space, respectively, and Δ𝜔 is a frequency bandwidth that is proportional
to the central frequency (usually 0.1 %). The volume occupied by the photon beam in
phase space is convolution of the electron beam distribution and the photon distribution
emitted by a single electron. This last term depends on the radiation frequency and on
how it was generated. On the other side, the volume occupied by the electron beam in
phase space is called emittance and it depends only on the storage ring properties.
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Equation (1.3) shows that to increase the brightness of a given light source it is
necessary to increase the number of stored electrons, which linearly impacts the total
photon flux, and minimize the emittance of the electron beam. Consequently, together
with the electrons energy, the emittance and the current are the main figures of merit
of a storage ring. New machines always try to push the limit of these factors to obtain
gains in synchrotron light quality and, from time to time, new ideas and breakthroughs
in accelerator technology create large scale advances.

These discontinuities in the otherwise small and incremental improvements of
the radiation quality happened three times along the history of storage ring based light
sources, classified as four generations of machines. The first breakthrough was the con-
struction of machines dedicated to the generation of synchrotron radiation from dipoles,
which marked the difference from the first generation of light sources, which were para-
sitical to particle colliders.

The second breakthrough was the construction of machines specialized to operate
with IDs, which are special devices that are installed along the straight trajectory of the
beam and generate a transverse magnetic field with an amplitude that varies sinusoidally
along the longitudinal direction. When the beam passes through this field it wiggles,
and synchrotron emission of radiation happens due to its deflection at each wiggle. The
light emitted from successive wiggles interferes in such a way that only photons with
specific frequencies survive and the resulting radiation has a spectrum where all the
energy is concentrated at very thin peaks around multiples of this resonant frequency.
The intensity of these peaks is proportional to the number of particles in the beam and
the number of wiggles of the ID field and their bandwidth is proportional to the inverse
of the number of wiggles. Additionally, the polarization of the radiation is defined by the
direction of the magnetic field of the ID. For example, if the field is vertical, the electrons
will oscillate horizontally and the radiation will be horizontally polarized. In specially
designed IDs, circular and elliptical polarizations can also be achieved by changing not
only the intensity of the field but also its direction as a function of the longitudinal
position. All these properties of the light can be tuned according to the needs of the
experiment to be carried out at the experimental station, which makes these devices a
very powerful tool for scientific investigations.

Currently, another generation of light sources is rising. With much smaller emit-
tances, these machines are being called Fourth Generation Light Sources (4th GLS). This
search for smaller emittance becomes clear when we observe the graph shown in Figure 5
which compares the 3rd and 4th GLS. To interpret this figure it is important to know that
the emittance of a storage ring roughly scales with

𝜀 ∝ 𝛾2

𝑁3
𝑏

, (1.4)
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Figure 5 – Natural emittance normalized by relativistic energy squared as a function of
ring circumference for several existing Third Generation Light Sources (3rd

GLS) and future 4th GLS. The blue solid line is a fitting among the 3rd GLS
and the red solid line is a fitting among the 4th GLS. Note the only 4th GLS
in operation today is MAX-IV. Updated from (LIU; WESTFAHL, 2017).

where 𝛾 = 𝐸/𝑚0𝑐
2 is the relativistic energy and 𝑁𝑏 is the number of dipoles, or bending

magnets, of the storage ring. Besides, higher energy storage rings generally imply in larger
circumferences and, consequently more dipoles. Given the scaling presented above, it is
clear that in general the emittance is reduced with the increase of the ring circumference,
as shown by the tendency lines in the figure.

The 4th GLS will enable new science to be made, according to Eriksson et al.
(2014):"The significant improvement provided by the DLSRs (Diffraction Limited Light
Sources, or 4th GLS) under construction and in the design stage will enlighten our view
of the world and allow science which is not possible, or not even thinkable, today.". In
section 4 of his article, Eriksson et al. provides a very good review of the possible scientific
studies that will be enabled by such machines. Here we highlight the advances in imaging
techniques, such as ptychography (THIBAULT et al., 2014), and diffraction (HITCHCOCK;
TONEY, 2014), that will be possible due to the increase in the transverse coherent part
of the flux 2.
2 For a brief and didactic description of coherence, we recommend the work of Huang (2013).
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1.3.1 Multi-Bend-Achromat (MBA)

The main reason for the 4th GLS to achieve such small emittances is the use of
Multi-Bend-Achromat (MBA) lattices. In 3rd GLS the number of dipoles in one unit cell
of the magnetic lattice is two or three depending on the machine, but in 4th GLS this
number is larger than five, hence the name multi-bend. The achromat part of the name
MBA is due to the fact that energy dispersion errors introduced by dipoles are corrected
locally and do not affect the trajectories and transverse bunch sizes inside the IDs.

Even though this change does not seem to be harmful or difficult in a first analysis,
it requires several developments in almost all the areas involved in designing, construct-
ing and operating a light source (ERIKSSON et al., 2014; LIU; WESTFAHL, 2017). The
larger number of dipoles in a short space requires strong focusing from the quadrupoles
to achieve low emittances. These strong quadrupoles require strong sextupoles to correct
their chromatic errors, which, in turn, require other strong sextupoles to increase the sta-
bility region around the fixed point of the one–turn map (BORLAND et al., 2014). In order
to produce all these strong magnets, they need to be closer to the beam, their gap must be
smaller (JOHANSSON et al., 2014), which implies the vacuum chambers must be smaller
too. The smaller vacuum chamber decreases the vacuum conductance3, making it neces-
sary to adopt different solutions for vacuum pumping (AL-DMOUR et al., 2014), generally
distributed along the whole ring, such as the use of NEG coating inside the chambers, first
proposed by Benvenuti (1983). The proximity of the vacuum chamber and all the other
in–vacuum components to the beam, increase the beam coupling impedance, which leads
to higher heating of the components and to instabilities (NAGAOKA; BANE, 2014). The
stronger magnets also imply more sensitivity of the lattice to errors, such as construction
errors of the magnets, misalignments and residual multipoles (NEUENSCHWANDER et al.,
2015; HETTEL, 2014a), and, together with the very small transverse sizes of the beam,
require tight tolerances power supply stability and vibration, not only of the magnets and
Beam Position Monitors (BPMs), but also of the components of the beamlines, such as
the monochromators (SUSINI et al., 2014; SIEWERT et al., 2014) and also for the detectors
at the experimental stations (DENES; SCHMITT, 2014). Underlying all these intricacies
is the need of very detailed design, characterization and, in some cases measurement, of
all the components that are installed in the light source. Besides, detailed single particle
models of the storage ring are fundamental to evaluate the effect of each new design on
the global properties of the ring, such as beam lifetime and dynamic aperture. All this
requires very detailed simulations and high computational power (BORLAND et al., 2014).

Regarding the beam coupling impedance, the last 3rd GLS that were built already
demonstrated a need to evaluate the budget of the ring, simulating and, more importantly,
3 The vacuum conductance is proportional to the third power of the vacuum chamber radius, as de-

scribed by Al-Dmour et al. (2014).
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designing the components to minimize heating and other impedance related issues (NA-
GAOKA, 2004a; GÜNZEL; PEREZ, 2008; BLEDNYKH; KRINSKY, 2007; BLEDNYKH et
al., 2009). For 4th GLS this approach is practically mandatory because the predictions
for thresholds for strong instabilities are much lower for these machines than they were
for 3rd GLS (KLEIN et al., 2013; LINDBERG; BLEDNYKH, 2015; PERSICHELLI et al.,
2017; WANG et al., 2017a; WANG et al., 2017b). Additionally, the use of NEG technol-
ogy extended along the whole ring requires more detailed analysis of its effect on the
impedance.

1.4 Collective Effects
Collective effects can cause severe deterioration of the brightness of a machine

because they can lead to the increase of the effective emittance of the electron beam,
through coherent oscillations of the bunches, increase of the energy spread and the beam
sizes in all three planes. Besides, they can cause beam loss, which limits the maximum
current that can be stored and consequently the total photon flux of the machine. In this
section we will introduce the main mechanisms that drive collective effects in a storage
ring.

1.4.1 Interaction Mechanisms

One of the most important interaction in storage ring light sources is the collision
of particles in the beam, generally referred to as Coulomb scattering or IBS, which is
highly chaotic and its effects on the beam resembles the properties of the emission of
radiation, causing emittance and energy spread increase (PIWINSKI, 1974; BJORKEN;
MTINGWA, 1983; KUBO; OIDE, 2001). Additionally, the collision process also leads to
particle loss through a mechanism called Touschek scattering, first explained by Bruno
Touschek (BERNARDINI et al., 1963), described in details by Piwinski (1998), where the
transverse energy of oscillation is transfered to the longitudinal plane and the particles
gain/lose an energy deviation so large that they are lost. All these effects are very detri-
mental to new light sources, being the Touschek lifetime their main source of particle loss,
as pointed out by Nagaoka & Bane (2014).

The direct space charge (DSP) is another type of interaction among the particles,
being the result of the action of the cloud of electromagnetic field existent inside the
beam on individual particles. Each particle generates an electric and a magnetic field
that, when averaged among all particles, result in a net potential dependent on the shape
and sizes of the bunch. This potential acts like an external field on the movement of
the particles, leading to tune–shifts with amplitude and possible excitation of resonances.
However, for ultra-relativistic electron beams such as the ones of a light source storage
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ring, with energies on the order of a few GeV, this effect is very small and can be neglected.
This happens because in this limit the non-radiating field generated by each particle is
concentrated in a plane transverse to its movement and the electric and magnetic forces
that act on other particles moving parallel to it cancel each other out.

The Coherent synchrotron radiation (CSR) is another type of direct interaction
between particles in a beam. The radiation emitted by the particles travels forward with
the velocity of light and, due to the fact that the particles are moving on a curved
trajectory when they emit light, this radiation catches up with the particles ahead of the
emitting particle (DERBENEV et al., 1995). If the wavelength of the radiation is of the
same order of or larger than the bunch length, the average of this effect is non-zero and
the head of the bunch feels a net force. As this effect depends on the radiated field, in
contrast to the DSP, it does not tend to zero as the energy on the particles increases and
can be very harmful, depending on the bunch length of the beam, causing energy spread
increase and bunch lengthening or even microbunching (BYRD et al., 2002).

All mechanisms described above are examples of direct interactions among the
particles, they do not depend on the immersive environment to happen. The wake fields
and the indirect space charge (ISP) on the other hand, results from the interaction with
the vacuum chamber. The contact of the non-radiating field of the beam with the metallic
walls of the chamber induces currents in the surface of the metal that travels with the
beam, these surface currents also generate an electromagnetic field that propagates to the
center of the vacuum chamber and influences the movement of the particles, as described
by Laslett (1963). This electromagnetic field can have properties of non-radiating and
radiating field, depending on the characteristics of the vacuum chamber. If we consider
the chamber is perfectly conducting and with translational symmetry in the longitudinal
direction, then the surface charges travel in straight lines with the beam speed, which
means they will produce only non-radiating fields with the same properties of those of
the DSP. This is the origin of the ISP, that for the same reasons as the DSP is negligible
for high energy storage rings4.

1.4.2 Wake Fields

If any of the two conditions considered for the vacuum chamber does not hold,
then the surface charges also generate radiating fields or fields that are dragged behind
the source particle, namely wake fields. For example, if the vacuum chamber has no
longitudinal translational symmetry, then the surface charges must follow curved paths,
which makes them suffer accelerations and hence, radiate electromagnetic fields. Notice
4 This statement is not true for static (or quasi–static) fields, because the electric and magnetic com-

ponents of the force decouples and they depend on whether or not the boundary is a good electric
conductor or a high–𝜇 magnetic material. This problem was first studied by Laslett (1963) and will
be addressed later in this work.
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that this is only one of the several possible ways of introducing this mechanism, it would be
equivalent to say that the surface of the metal scatter the fields generated by the particles
in the beam and when the surface of the vacuum chamber has longitudinal symmetry
the reflection is specular but when it has corrugations or transitions, the scattering is
diffuse. Precisely what happens is that the walls of the vacuum chamber impose boundary
conditions on the fields that exist inside the vacuum vessel, univocally defining its time
and spatial dependency.

The wake fields can be very harmful to the beam, changing the properties of the
static distribution of particles and creating instabilities above a given current threshold,
which can lead to coherent oscillations of the bunches, emittance and energy spread
increase and even beam loss. All these effects cause serious deteriorations of the brightness
of the radiation, limiting the photon flux and bringing deterioration of its phase space
average distribution.

1.5 The Sirius Project
The National Center for Research in Energy and Materials (CNPEM) is a Brazil-

ian institution located in Campinas-SP that gathers four national laboratories, being the
LNLS one of them. This laboratory was created in 1987 to design, construct and oper-
ate a SLS. Such goals were successfully achieved with UVX, a second generation light
source that was opened to external users in 1997. Since them, the Brazilian community
of synchrotron users has grown and studies of a new, more competitive machine, started
in 2008.

By the end of 2011, Sirius was a well–developed project and it consisted on a
permanent magnet–based 3rd GLS, with an energy of 3 GeV, an emittance of the order
of 2 nm rad and circumference of 480 m, as described by Liu et al. (2010) and Liu et al.
(2011). This scenario changed after the first meeting of the Machine Advisory Committee
(MAC), in June 2012, when the committee recommended leaders to follow the idea of
MAX-IV (LEEMANN et al., 2009) and pursue sub-nanometer emittances. This challenge
was accepted and Sirius became the second project to fit the category of what today is
called 4th GLS, with a natural emittance even lower than the first projected machine of
this kind, the MAX-IV (LIU et al., 2013).

After several changes in the magnetic lattice (LIU et al., 2014; LIU et al., 2015; LIU
et al., 2016a) to improve the brightness of the light generated by the IDs that are being
planned for Sirius (SIRIUS, 2013; VILELA et al., 2017), the current lattice of the storage
ring is the one presented in Figure 6 and the current optical functions are presented in
Figure 7. The arc of the cell, composed of all the elements from the first to the second B1
dipoles, inclusive, is repeated twenty times to form the ring. The straight sections alternate
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Figure 6 – One fourth of the unit cell of the Sirius storage ring. Dipoles are shown in blue,
quadrupoles in orange and sextupoles in green. The vacuum pumps and valves
are also shown. Only half of the high-beta (A) and of the low-beta (B) straight
sections are shown. The arc and the straight sections are repeated to form the
unit cell in the following way: A-B-B-B. The unit cell is then, repeated five
times to form the ring.

Figure 7 – Optical (twiss) functions for one fourth of a period of the Sirius lattice. In
green is shown the dispersion function. In red, the vertical betatron function is
shown and in blue, the horizontal betatron function. Notice the strong focusing
of the betatron functions at the center of the low-beta (B) sections. (copied
from Sirius (2013).)
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Figure 8 – Sirius building layout, showing all the important areas of the light source, with
emphasis on the booster sharing the same tunnel as the storage ring and the
150 MeV LINAC tunnel. The experimental hall will be able to accommodate
beamlines up to 100 m long and the requirement for longer beamlines, with
possible length up to 450 m, is anticipated. (copied from Sirius (2013).)

in sections with two quadrupoles in each matching extremity (A), and sections with three
quadrupoles (B), in the following manner: A-B-B-B, in such a way that the ring has five A
sections and fifteen B sections. The difference between these two types of sections is that
beam is strongly focused in both directions, horizontal and vertical, in the B sections, to
improve the radiation generated by the undulators which will be installed there and the
A sections are optimized for off–axis injection in the horizontal plane. This way the ring
has twenty straight sections, from which eighteen will be available for installation of IDs.
However the real symmetry of the ring is only five, which difficults the optimization of
the single particle non-linear optics (SÁ et al., 2016; DESTER et al., 2017). In the center
of each arc there is a special dipole magnet, with longitudinal gradient and a strong peak
field of 3.2 T in its center that will provide hard x-rays, with critical energy of 19.2 keV,
for additional 20 beamlines (LIU et al., 2016a; SIRIUS, 2013).

The whole accelerator complex of the Sirius SLS, shown schematically in Figure 8,
will be composed of a 150 MeV LINAC, a full energy booster synchrotron, that will ramp
the electrons from the LINAC energy to the storage ring nominal energy with a cycling
rate of 2 Hz, and the storage ring, as described in Sirius (2013) web page. The injection
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Table 1 – Main Parameters of the Sirius Storage Ring.

Parameter Symbol Operation Phases UnitCommiss. Phase 1 Phase 2
Energy 𝐸0 3.0 GeV
Circumference 𝐿0 518.4 m
Revolution period 𝑇0 1.73 µs
Revolution frequency 𝑓0 578 kHz
Angular rev. freq. 𝜔0 3.632 Mrad s−1

Harmonic number ℎ 864
Momentum compaction 𝛼 1.7 × 10−4

Transverse tunes (H/V) 𝜈𝑥/𝑦 49.11/14.17
Energy loss per turn 𝑈0 473 keV
Natural emittance 𝜀0 252 pm rad
Natural energy spread 𝜎𝛿 8.5 × 10−4

Damping times (H/V/L) 𝜏𝑥/𝑦/𝑧 16.9/22.0/12.9 ms
Damping rates (H/V/L) 𝛼𝑥/𝑦/𝑧 59.2/45.5/77.5 Hz
Nominal total current 𝐼0 30 100 350 mA
Current per bunch 𝐼𝑏 34.7 116 405 µA
RF cavity 1 7-Cell 2 SC-RF
Voltage gap 𝑉0 1.8 3.0 MV
Natural bunch length 𝜎𝑧 3.2(10.7) 2.5(8.2) mm (ps)
Synchrotron Tune 𝜈𝑧 3.56 × 10−3 4.6 × 10−3

system will operate in top–up mode, where the total current of the storage ring is kept
nearly constant during the whole user’s shift, because periodic injection cycles along the
day are performed without the need of interrupting the operation of the machine. The
booster will be concentric to the storage ring and placed inside the same tunnel, which
minimizes costs related to the construction of a separate shielding and helps diminishing
its emittance, only 3.5 nm rad at 3 GeV (SÁ et al., 2014), which is important to maximize
the injection efficiency in the storage ring (LIU et al., 2016b).

Table 1 shows the main global parameters of the storage ring for the planned
operation phases of the machine. Even though the commissioning will be performed with
a normal conducting PETRA 7-Cell RF cavity, in the users operation phases of the storage
ring the RF cavities will be Superconducting RF Cavity (SC-RF). The installation of a
3th harmonic passive landau cavity to lengthen the bunches and increase the lifetime is
foreseen, allowing multi-bunch operation with higher currents. Even though the expected
filling pattern of the machine is uniform, other arbitrary filling patterns are possible and,
in particular, gaps may be needed to cure ion instabilities (WANG et al., 2013; NAGAOKA;
BANE, 2014).
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2 SINGLE–PARTICLE DYNAMICS

In this chapter the main concepts of single particle dynamics that will be useful for
the rest of the work will be introduced without any intention to be complete or rigorous
in the presentation. There are good books, for example the ones written by Lee (1999)
and by Wiedemann (2007), and also one outstanding report written by Sands (1970) that
cover all the topics presented here and much more, with thoughtful didactics. Besides,
Borland et al. (2014) give a quick overview on all the topics relevant for single particle
dynamics.

2.1 Reference System
Connected to the concept of a storage ring is the one of the reference orbit. This

special closed orbit is the one that an ideal particle, the synchronous particle, with the
storage ring nominal energy would follow if it had the correct initial conditions. All the
components of a storage ring are aligned according to this special orbit in such a way that
their center, symmetry points or axis coincide with it and, in practice, the trajectories of
all particles stored in the machine will be close to it. For this reason, the reference orbit
is chosen to be the origin of the reference frame, defining a curved coordinate system
that moves along the ring, with one longitudinal coordinate tangent to the local orbit and
two transverse coordinates perpendicular to it. This type of co-moving coordinate system
is a particular case of a Frenet-Serret frame (FRENET, 1852; SERRET, 1851; Wikipedia
Contributors, 2017d), where the torsion is always zero, since storage rings are usually
designed only with dipoles that deflect in the horizontal plane. Such a coordinate system
can be defined in the following way (LEE, 1999, chap. 2):

𝑠(𝑠) = d𝑟0(𝑠)
d𝑠

,

𝑥̂(𝑠) = −𝜌(𝑠)d𝑠(𝑠)
d𝑠

, (2.1)

𝑦(𝑠) = 𝑠(𝑠) × 𝑥̂(𝑠),

where 𝑠 is the arc length of the reference orbit starting from an arbitrary point, 𝑟0 is
the position of the reference orbit in relation to a static, cartesian reference frame, 𝑠 is
the Frenet–Serret vector tangent to the orbit, 𝑥̂ is the negative of the normal vector,
generally known in accelerator physics literature as radial or horizontal coordinate, 𝑦 is
the standard binormal versor, often called vertical direction in accelerator physics. The
scalar 𝜌 is the local radius of curvature of the reference orbit, which is equal to the one
introduced by the dipoles, as defined in equation (1.1). This means that the reference
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Figure 9 – Frenet-Serret reference frame of a storage ring, with right-handed coordinate
system {𝑥̂, 𝑦, 𝑠}. Adapted from (LEE, 1999, pp. 123).

frame of an accelerator is piecewise straight with curvature different from zero only at the
dipole field regions.

With the definitions above, the position of an arbitrary particle can be described
as small deviations from the reference orbit (see Figure 9)

𝑟(𝑠) = 𝑟0(𝑠) + 𝑥𝑥̂(𝑠) + 𝑦𝑦(𝑠) (2.2)

with 𝑥 and 𝑦 being the horizontal and vertical displacements of the particles in rela-
tion to the reference orbit. In this reference frame, the dynamics of each particle can be
represented by its position in the six dimensional phase space defined by:

{𝑥, 𝑥′, 𝑦, 𝑦′, 𝑧, 𝛿} (2.3)

with

𝑥′ = d𝑥

d𝑠
≈ 𝑝𝑥

𝑝
, 𝑦′ = d𝑦

d𝑠
≈ 𝑝𝑦

𝑝
, 𝛿 = 𝑝

𝑝0
− 1 (2.4)

where 𝑝0 is the storage ring nominal linear momentum, 𝛿 ≈ Δ𝐸/𝐸0 is the energy devi-
ation of the particle in relation to the nominal energy of the storage ring and 𝑥′ and 𝑦′

are the normalized transverse components of the linear momentum of the particle. The
coordinate 𝑧 is defined as the relative longitudinal position of the particle in relation to
the synchronous particle

𝑧(𝑡) := 𝑠sync(𝑡) − 𝑠(𝑡) (2.5)

where 𝑡 is the wall-clock time and 𝑠sync(𝑡) is the trajectory arc-length of the synchronous
particle. Note that if the particle is ahead of the synchronous particle 𝑧 will be negative.
This convention is very important and will be consistently adopted throughout this work.
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2.2 Transverse Dynamics
At this point it is convenient to describe in general terms the movement of the

stored particles in storage rings similar to Sirius’. The particles are ultra–relativistic elec-
trons with energy of the order of a few GeV, and most of their velocity is always locally
tangent to the ideal orbit. There are typically hundreds of billions electrons grouped in
several bunches along the reference orbit, each bunch having length of a few milimiters
and transverse sizes of the order of dozens of microns. Each electron is under the influence
of a variety of electromagnetic fields (gravity can be neglected), coming from the static
magnetic fields of the dipoles and multipoles, the radiofrequency field of the RF cavity,
the direct fields of other electrons in the same bunch and the fields scattered by the vac-
uum vessel, generated by other electrons in the same bunch, in other bunches or even by
themselves in previous turns. Also, they emit synchrotron radiation in a random manner,
which makes them lose energy and perturbs their movement with a recoil effect.

The description of the dynamics of the stored particles begin with an approxima-
tion that neglects the effects of their self–generated fields, i.e. their interaction with each
other, with the vacuum chamber and with the residual molecules in their atmosphere. In
this framework the only forces acting on the particles are the magnetic fields of the dipoles
and multipoles and the longitudinal electric field of the RF Cavity and the only way they
can lose energy is through synchrotron radiation emission. Under such conditions, the
one–turn map of the ring defines a fixed point in the phase space defined in equation (2.3)
and the particles oscillate around it, being the oscillations in the planes {𝑥, 𝑥′}, {𝑦, 𝑦′} and
{𝑧, 𝛿} practically uncoupled. The oscillations in the first two planes are called transverse
oscillations, while the one in the third plane is denominated longitudinal oscillation.

For current synchrotrons, the dynamics of the longitudinal motion is much slower
than the dynamics of the transverse motion. As an example, in the Sirius storage ring
particles take approximately 215 revolutions around the ring to complete one turn around
the fixed point in the longitudinal direction while they oscillate 49 times per revolution
around the fixed point in the transverse plane. This property makes it possible to separate
the study of the longitudinal plane from the transverse one, considering the energy devi-
ation of one particle as a constant parameter in the transverse equations of motion. The
effects of the radiation energy loss are even slower than the longitudinal motion, taking a
few thousands of turns in the ring to significantly change the transverse motion.

Neglecting the energy variations of the particles, and the randomness of the radia-
tion emission, the motion of the particles can be described by a Hamiltonian in the Frenet-
Serret coordinate system defined by the ideal orbit. Considering the paraxial motion of
the particles around the closed orbit, this Hamiltonian can be simplified to a quadratic
form in the momentum coordinates. See, for example, the second chapter of Lee (1999,
pp. 32) book.
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This Hamiltonian generates four first–order coupled and non-linear equations of
motion for the transverse coordinates that accurately describe the short and mid-term
stability of the particles. Most of the non-linearities and coupling in these equations come
from the magnetic fields of the magnets along the ring, being the other contributor the
curvature of the reference orbit and the energy deviation of each particle. At this stage of
the simplification of the problem the dynamics of the electrons still is very complicated,
mainly for storage rings such as Sirius, with several and very strong sextupoles that
introduce chaos in the system in regions of the phase space that are surrounding the fixed
point.

2.2.1 Linear Equations of Motion

With further approximations, considering only the terms of the equations of motion
that are linear with the phase-space coordinates and ignoring all coupling between the two
transverse directions, the analysis of the dynamics becomes simple, with analytic solutions
to the equations of motion and physically significant parameterizations, that describes
a given machine. With this simplification, the transverse movement of the electron is
only dependent on the fields of dipoles and quadrupoles. Under such considerations, the
Hamiltonian of an arbitrary particle stored in the ring is given by

𝐻 ≈ 𝑥′2

2 + 𝑦′2

2 + 𝐺2(𝑠)
2 𝑥2 + 𝐾(𝑠)

2
(︁
𝑥2 − 𝑦2

)︁
− 𝐺(𝑠)𝑥𝛿 (2.6)

where it was normalized by the total momentum of the particle, 𝑝, and expanded up to
second order in the transverse phase space coordinates, in such a way that only dipoles,
𝐺(𝑠), and quadrupoles, 𝐾(𝑠), contribute to the dynamics. Besides, the independent vari-
able was changed from time to the longitudinal position of the particle along the Frenet-
Serret frames, which is possible because it is a monotonic function of time in storage
rings, allowing for easy inversion of derivatives. All the steps to get the equation above
are described in detail in the literature (BENGTSSON, 1997; LEE, 1999; WIEDEMANN,
2007). The equations of motion will be:

𝑥′′ = −𝜕𝐻

𝜕𝑥
= −

(︁
𝐾(𝑠) + 𝐺2(𝑠)

)︁
𝑥 + 𝐺(𝑠)𝛿 (2.7)

𝑦′′ = −𝜕𝐻

𝜕𝑦
= 𝐾(𝑠)𝑦

where the energy deviation dependent term in the horizontal equation of motion is the
dispersion generated by the dipole.

Looking back at the beginning of this section and reviewing all the approximations,
at first sight it seems that the region of validity of these linear equations is so limited that
their understanding is useless. However that is not what is observed in practice, because
storage rings are carefully designed to maximize the validity of this linear behavior: the
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position, number and strength of all magnets are so well tuned that nonlinearities cancel
each other. Another important point to justify the study of these linear equations is that
for synchrotron radiation generation, the smaller the transverse size and divergence of the
electron beam the better, which means most particles will stay for most of the time in
a very small region of approximately hundreds of microns around the fixed point, where
only the linear part of the one–turn map have a significant effect on the dynamics. Besides,
if a particle experience large transverse oscillations and happens not to be lost, damping
effects that arise due to synchrotron radiation emission will bring them close to the fixed
point in a few dozens milliseconds.

2.2.2 Betatron Function and Phase Advance

The homogeneous part of the equations of motion presented in equation (2.7) can
be cast in the following way:

𝑢′′ + 𝐾𝑢(𝑠)𝑢 = 0 (2.8)

where 𝑢 can be both, 𝑥 and 𝑦 and 𝐾𝑥 = 𝐾(𝑠) − 𝐺2(𝑠) and 𝐾𝑦 = −𝐾(𝑠). These equations
are known as Hill equations and their solutions can be parametrized in the following form,
as shown by Courant & Snyder (1958):

𝑢(𝑠) =
√︁

2𝐽𝛽𝑢(𝑠) cos(𝜇𝑢(𝑠) − 𝜑) (2.9)

where 𝛽𝑢(𝑠) is called the betatron function and depends only on the magnetic lattice and
𝜇𝑢(𝑠) is called phase advance and its relation to the betatron function is given by

𝜇′𝑢(𝑠) = 1
𝛽𝑢(𝑠) . (2.10)

The constants 𝜑 and 𝐽 depend on the initial conditions. It can be shown that:

𝐽 = H (𝑢(𝑠), 𝑢′(𝑠)) := 𝛾𝑢(𝑠)𝑢2(𝑠) + 2𝛼𝑢(𝑠)𝑢(𝑠)𝑢′(𝑠) + 𝛽𝑢(𝑠)𝑢′2(𝑠), (2.11)

with 𝛼𝑢(𝑠) = −𝛽′𝑢(𝑠)
2 and 𝛾𝑢(𝑠) = 1 + 𝛼2

𝑢(𝑠)
𝛽𝑢(𝑠) ,

which represents the equation of an ellipse in phase space with 𝐽 being the invariant area
of such ellipse.

The relevance of this parameterization is that it conveys very important practical
information regarding the properties and responses to perturbations of the beam that can
be extracted directly from the betatron function. It can be seen from equation (2.9) that
the maximum excursion a given particle can experience in a fixed longitudinal point of the
ring is proportional to the square root of the betatron function. Analogously, the beam
size of a distribution in equilibrium will also be proportional to the square root of the local
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betatron function. Thus, the ratio between the amplitudes of movement in two different
positions is proportional to the ratio of the square root of the betatron functions at the
two locations, a property that is fundamental in the process of defining the transverse
sizes of the vacuum chamber of a storage ring. For example, let us suppose the maximum
betatron function of a lattice is 16 m at a place where the vacuum chamber has an internal
dimension of 12 mm. This means that in another place where the betatron function is only
1 m the vacuum chamber can be much smaller, only 3 mm, without affecting the stored
beam, which would allow the installation of devices that require smaller apertures. The
name of this curve that defines the minimum aperture the vacuum chamber can have
along the ring is called Beam Stay Clear (BSC).

Another important property that is related to the betatron function is the response
of the beam to spurious electromagnetic fields. It can be shown that the larger the betatron
function the larger the effect of such field in the beam dynamics. In the special case of
dipolar fields, which are constant in the transverse plane, this dependency goes with√︁

𝛽(𝑠0), for a quadrupolar field it is proportional to 𝛽(𝑠0), for a sextupole 𝛽3/2(𝑠0) and
so on. For example, the strategy of focusing the betatron function is commonly used in
storage rings in straight sections where IDs are installed to minimize their effect on the
optics. Besides, this also reduces the BSC which allow them to have smaller gaps and,
consequently, stronger magnetic fields, which is desirable for radiation emission. In the
case of Sirius, the focusing will happen in both planes, which will allow the installation
of new types of devices, called the Delta undulators, with small gap in the vertical and
the horizontal directions.

Besides the betatron function, another important advantage of the parameteriza-
tion presented in equation (2.9) is the interpretation of the integral of the phase advance in
one turn around the ring. This integral normalized by 2𝜋 defines the tune of the machine:

𝜈𝑢 = 1
2𝜋

∮︁
d𝑠

1
𝛽𝑢(𝑠) . (2.12)

The integer part of this number corresponds to the number of complete oscillations in
the phase space the particles make after completing one turn in the ring. To interpret the
fractional part it is important to note in equation (2.9) that the dislocation of a particle
in a fixed longitudinal position in successive turns is a perfect senoid, independently of
the parameterization:

𝑢𝑖(𝑠0) = 𝐴𝑢,0 cos(2𝜋𝜈𝑢𝑖 − 𝜑0). (2.13)

where 𝐴𝑢,0 is a constant and the fractional part of the tune is identified as the natural
frequency of oscillation. This means that resonances can be excited by any electromagnetic
field along the ring with a frequency equal to the tune times the revolution frequency. This
observation is paramount to understand the collective instabilities that will be studied in
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this work. The electromagnetic fields generated by a bunch of particles interacts with other
bunches and, because they have the same oscillation frequency, a collective oscillation
emerges due to resonance. This mechanism can even happen in a single bunch, where
oscillations of the head of the bunch drives the tail to ever larger oscillations.

Additionally, resonances are also excited by static fields if the tune is a rational
number, as long as these fields have the correct transverse spatial dependency. For exam-
ple, if the fractional part of the tune is 1/2 and there is a spurious constant quadrupolar
field in some point of the ring, the kicks received by the particles in successive turns would
always sum constructively and a resonance behavior would be excited. If both transverse
planes of motion are considered it can be shown that if the tunes satisfy the equation:

𝑚𝜈𝑥 + 𝑛𝜈𝑦 = 𝑝 (2.14)

where 𝑚, 𝑛 and 𝑝 are integers, resonances can be excited by static magnetic field around
the ring. The number 𝑟2 = 𝑚2 + 𝑛2 is called the order of the resonance, and the lower the
order is, the higher its strength. If both 𝑚 and 𝑛 must be non-zero for the equation (2.14)
to be true, then the resonance depends on the existence of coupling fields, where the
position of the particle in one direction influences the kick in the other direction.

2.2.3 Dispersion Function

The inhomogeneous solution of the linear equations of motion can be written in
the following form:

𝑥𝛿(𝑠) = 𝜂(𝑠)𝛿 (2.15)

where 𝜂(𝑠) is called dispersion function and, like the betatron function, depends only
on the magnetic lattice. Note that this is a particular solution of the equation, where
periodic conditions is imposed. This choice has an advantage over other solutions because
of the meaning of the dispersion function: its value along the ring gives the shape of
the averaged trajectory of a particle with non-zero energy deviation. In other words, this
particular solution of the inhomogeneous equation gives the closed orbit for off-momentum
particles.

The dispersion function is very important to determine the equilibrium emittance
of a storage ring (WIEDEMANN, 2007, pp. 304),

𝜀0 ∝
∮︁

d𝑠
H (𝜂(𝑠), 𝜂′(𝑠))

|𝜌3(𝑠)| (2.16)

where the minimization of the functional H (𝜂(𝑠), 𝜂′(𝑠)) in the dipoles of the ring is one
of the main goals when designing a storage ring. The dispersion function is also important
for the calculation of the momentum compaction factor, 𝛼, which is the relative difference
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in closed orbit path length per unit of energy deviation, 𝛿,

Δ𝐿

𝐿
≈ 𝛿𝛼 := 𝛿

∮︁
d𝑠

𝜂(𝑠)
𝜌(𝑠) . (2.17)

This parameter, which in general is positive, is of fundamental importance for the longitu-
dinal dynamics, because it couples linearly the time it takes for the particles to complete
one turn in the ring with their energy deviation. Notice that the only sections of the ring
which contribute to the integral those are where the reference orbit is curved (in other
places the radius is infinity) and this is because particles with more/less energy generally
follow paths with larger/smaller radius in the dipoles, which increases/decreases the path
length.

2.2.4 Action–Angle Variables

Finding the action angle variables for a given Hamiltonian is equivalent to solving
the equations of motion, due to the simple time, or 𝑠, evolution of such variables. For
Hamiltonians with one elliptic fixed point, this task is achieved by performing canoni-
cal transformations in the phase space variables that brings them to the normal form,
where the movement is a simple harmonic oscillator. Then, the radius in phase space is
an invariant of motion and is recognized as the action. This procedure can be applied
to the Hamiltonian of equation (2.6) by recognizing the dispersion orbit as a canonical
transformation that changes the origin of the phase space (BERG, 1996, Appendix A2)

𝑥(𝑠) →
𝑥𝛽⏞  ⏟  

𝑥(𝑠) − 𝑥𝛿(𝑠), (2.18)

where 𝑥𝛿(𝑠) is given by equation (2.15), in such a way that the new Hamiltonian is purely
a quadratic form, without the crossed term 𝑥𝛿. This pure betatronic Hamiltonian can
than easily be written in action-angle variables in the following way:

𝐾 = 𝐽𝑥

𝛽𝑥(𝑠) + 𝐽𝑦

𝛽𝑦(𝑠) (2.19)

where 𝐽𝑥 and 𝐽𝑦, defined by equation (2.11) are recognized as horizontal and vertical
actions and the equation of motion shows that the angle variable, 𝜃, is the phase advance,
defined in equation (2.10):

𝐽 ′𝑢 = 𝜕𝐾

𝜕𝜃𝑢

= 0 and 𝜃′𝑢 = 𝜕𝐾

𝜕𝐽𝑢

= 1
𝛽(𝑠) = 𝜇′𝑢 (2.20)

These variables will be very important for this work, because the wake-fields will be
included in the electron dynamics as perturbations to the Hamiltonian presented above.
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2.2.5 Linear Map Formulation: Matrix Theory

An alternative way to describe the linear dynamics of a storage ring is via sym-
plectic transfer matrices, where the evolution of the coordinates in phase space can be
always written in the following form

𝑢(𝑠) = ℳ𝑠←𝑠0𝑢(𝑠0) (2.21)

where 𝑢(𝑠) = (𝑢(𝑠), 𝑢′(𝑠)) is vector of the coordinates in phase space and ℳ𝑠←𝑠0 is the
transfer matrix from points 𝑠0 to 𝑠. This form of the time evolution of the coordinates
can be obtained from equation (2.9) by derivation with respect to 𝑠 and substitution of
𝐽 and 𝜑 by the initial conditions 𝑢(𝑠0). After this procedure, it can verified that ℳ can
be written in normal form (BENGTSSON, 1997)

ℳ𝑠←𝑠0 = 𝒜(𝑠) · ℛ(𝜇𝑠←𝑠0) · 𝒜−1(𝑠0) (2.22)

where 𝒜−1 is a transformation matrix to the normalized coordinates and 𝑅 is a rotation
matrix in these coordinates, given by

𝒜(𝑠) =

⎡⎢⎣
√

𝛽𝑢 0
− 𝛼√

𝛽𝑢

1√
𝛽𝑢

⎤⎥⎦ , and ℛ(𝜃) =
⎡⎣ cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

⎤⎦ , (2.23)

and also satisfy the composition rule

ℳ𝑠2←𝑠0 = ℳ𝑠2←𝑠1 · ℳ𝑠1←𝑠0 (2.24)

where {𝑠0, 𝑠1, 𝑠2} in this order are sequential positions along the ring. Besides, successive
turns around the ring at some position 𝑠0 are completely described by the one turn matrix,
ℳ(𝑠0) :

𝑥𝑛 = ℳ𝑛 · 𝑥0, with ℳ𝑛 = 𝒜 · ℛ𝑛(2𝜋𝜈) · 𝒜−1 = 𝒜 · ℛ(2𝜋𝑛𝜈) · 𝒜−1. (2.25)

This formulation of the linear transverse motion is very useful for numeric calculation of
the evolution of the particles.

2.2.6 Chromaticity and Action Dependent Tune shift

The quadrupoles correct the chromatic effects in the orbit of the beam that are
generated in the dipoles and the result of such a correction is the finite value of the
dispersion function. However quadrupoles themselves are dispersive components, which
means their focusing strengths depend on the energy of the particles. This dependency
comes from higher–order terms of the Hamiltonian, not shown in equation (2.6), and
causes an effect on the beam where particles with different relative energy offsets have
different tunes.
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The linear part of this dependency is called linear chromaticity, which, if not
corrected, reduces the lifetime of the beam to a few seconds in most storage rings. For
example, for the case of Sirius the chromaticity of the ring without sextupoles is ≈ −130
for the horizontal direction. This means that particles with an energy deviation of only
0.15 % would have a tune that is 0.2 smaller than the tune of a particle with zero energy
deviation. As the energy deviation oscillates in the scale of hundreds of turns, this particle
would almost certainly cross a resonance that would induce its loss. Considering the
equilibrium energy spread of the Sirius storage ring is only half of this value, approximately
0.09 %, without chromaticity correction all particles with energy deviation above two
sigma of this distribution would be lost. Besides this mechanism, negative chromaticities,
even when they are small, make the beam more sensitive to collective instabilities driven
by wake fields, as will be analysed later in this work.

The sextupoles are introduced in the machine to correct the linear chromaticity
to positive values close to zero. After correction, these sextupoles change the higher-order
chromatic terms and also introduce geometric aberrations, non-linearities in the dynamics
of all particles that reduce the region around the fixed point where the beam is stable.
The main contribution of this effect for the dynamics in the vicinity of the fixed point is
the generation of a linear dependency of the tune of each particle with its action variable,
𝐽𝑢. Writing the linear expansion of the tune as a function of the energy deviation and the
action we get:

𝜈𝑥(𝛿, 𝐽𝑥, 𝐽𝑦) ≈ 𝜈𝑥,0 + 𝜉𝑥𝛿 + 𝐴𝑥𝑥𝐽𝑥 + 𝐴𝑥𝑦𝐽𝑦 (2.26)
𝜈𝑦(𝛿, 𝐽𝑦, 𝐽𝑥) ≈ 𝜈𝑦,0 + 𝜉𝑦𝛿 + 𝐴𝑦𝑦𝐽𝑦 + 𝐴𝑦𝑥𝐽𝑥

where 𝜉𝑥 and 𝜉𝑦 are the horizontal and vertical chromaticities, and 𝐴𝑥𝑥, 𝐴𝑦𝑦 and 𝐴𝑥𝑦 = 𝐴𝑦𝑥

are the action–dependent tune shifts.

These are the most important one–turn effects that impact on the mid and long–
term dynamics of the electrons at small oscillation amplitudes, in such a way that if we
average the Hamiltonian of equation (2.19) in one turn,

𝐻𝑡(𝐽𝑥, 𝐽𝑦) = 1
𝐿0

∮︁
d𝑠𝐾(𝑠) = 𝜔0

𝑐
(𝜈𝑥𝐽𝑥 + 𝜈𝑦𝐽𝑦) , (2.27)

they can be added to it simply by writing

𝐻𝑡(𝐽𝑥, 𝐽𝑦, 𝛿) = 𝜔0

𝑐

(︃
(𝜈𝑥,0 + 𝜉𝑥𝛿)𝐽𝑥 + (𝜈𝑦,0 + 𝜉𝑦𝛿)𝐽𝑦 +

𝐴𝑥𝑥
𝐽2

𝑥

2 + 𝐴𝑥𝑦𝐽𝑦𝐽𝑥 + 𝐴𝑦𝑦

𝐽2
𝑦

2

)︃
. (2.28)

2.3 Longitudinal Dynamics
In the study of the transverse dynamics the time scale involved was of a few

turns in the storage ring, which allowed us to treat the energy deviation of the particles
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as another constant of motion. In this section the dynamics of the electrons in a few
hundreds of turns will be analysed. In this scale the transverse betatron oscillations are
averaged out and the longitudinal dynamics, which describes the path length and energy
oscillations around the fixed point, has a well–defined natural frequency. The main factors
that influence the movement in this scale are the small unbalances between the energy loss
of the particles and their energy gain in the RF cavity and the revolution time variation
due to the energy offset of the particles.

2.3.1 Changes in Revolution Time

When the energy of a particle changes its velocity is also modified, which con-
tributes to the change of the revolution time. For most storage rings of SLSs this effect
is negligible when compared to the change in path length described by equation (2.17),
due to the ultra-relativistic regime in which these machines operate. This allows us to ap-
proximate the left hand side (l.h.s.) of equation (2.17) to the relative change in revolution
time. Then, from one turn to another, the relative position of a particle will change by:

𝑧𝑛+1 = 𝑧𝑛 + 𝛿𝑛𝛼𝐿0 (2.29)

where 𝑛 refers to the current turn and 𝑛 + 1 to the next. 𝐿0 is the nominal circumference
of the ring.

2.3.2 The Energy Balance

It can be shown that the rate of energy loss of a particle due to synchrotron
radiation emission is proportional to the inverse of square of the local curvature radius
of the particle times the fourth power of its total energy (JACKSON, 1962, pp. 661: eq.
14.31). Translating this dependency to a storage ring, the energy loss in one turn depends
on the magnetic fields of the lattice and on the energy deviation of the particle. For the
ideal particle the average energy loss depends only on the magnetic field of the dipoles,
but as the closed orbit for particles with non-zero energy deviation is different, its energy
loss is also different, not only because of the intrinsic dependence of the emission, but
also because of the slightly different magnetic fields it will experience in one turn. The
combination of these effects can be modeled in the following linear approximation:

Δ𝐸Rad ≈ −𝑈0 − 𝐸0𝐿0𝛼𝑧𝛿𝑛 (2.30)

where 𝑈0 is the energy loss of the ideal particle in one turn, 𝐸0 is the nominal energy of
the storage ring and the coefficient 𝛼𝑧 includes both effects, the intrinsic dependence on
the energy and the different orbit fields.

The energy gain of a particle in the RF cavity is given by the integral of the
longitudinal electric field, 𝐸‖, along the path of the particle and depends only on the
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initial phase of the field when it enters the cavity:

Δ𝐸 = 𝑉 (𝑡0) = 𝑞
∫︁ 𝐿𝑐

0
d𝑠𝐸‖(𝑠, 𝑡)|𝑡=𝑠/𝑐+𝑡0 (2.31)

where 𝑉 (𝑡0) is called the gap voltage of the cavity and 𝐿𝑐 is its length.

Now let us assume the frequency of oscillation of the electromagnetic field inside
the cavity, 𝜔𝑅𝐹 , is exactly a multiple of the revolution frequency of the synchronous
particle, 𝜔0:

𝜔𝑅𝐹 = ℎ𝜔0 (2.32)

where ℎ is called harmonic number. With this assumption, even though the fields are time
dependent, the synchronous particle will always see the same conditions as it enters the
cavity. Now let us make a further assumption that the synchronous particle reaches the
cavity in the exact time to gain energy 𝑈0 from the cavity:

𝑉 (0) = 𝑈0 (2.33)

where the time reference on l.h.s. is relative to the position of the synchronous particle.
Considering both assumptions and combining the energy gain in the cavity with the
energy loss in one turn, given by equation (2.30), we get the following one turn energy
balance for a storage ring:

𝛿𝑛+1 = 𝛿𝑛 − 𝐿0𝛼𝑧𝛿𝑛 + 𝑉 (𝑧𝑛+1) − 𝑈0

𝐸0
. (2.34)

where the subscript 𝑛 + 1 in the particle position means that it will go around the ring
first and then pass through the cavity.

2.3.3 Phase Stability Principle

Combining equations (2.29) and (2.34) we get the one turn map for the longitudinal
plane for which the synchronous position and the nominal energy defines a fixed point.
To analyse the stability of this fixed point let us linearize the map in its vicinity:

⎡⎣𝑧𝑛+1

𝛿𝑛+1

⎤⎦ =

𝑀⏞  ⏟  ⎡⎣ 1 𝛼𝐿0

−𝑉 ′0 1 − 𝐿0𝛼𝑧 − 𝑉 ′0𝛼𝐿0

⎤⎦⎡⎣𝑧𝑛

𝛿𝑛

⎤⎦ . (2.35)

where 𝑉 ′0 is the derivative of the voltage gap in relation to the arrival time of the particles
at the synchronous position normalized by the nominal energy of the ring, 𝐸0. It can be
shown that the eigenvalues of the matrix 𝑀 are given by the solution of the characteristic
equation

𝜆2 − Tr (𝑀) 𝜆 + Det (𝑀) = 0 (2.36)
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with Tr (𝑀) = 2 − 𝐿0 (𝛼𝑧 − 𝑉 ′0𝛼) and Det (𝑀) = 1 − 𝐿0𝛼𝑧 ≈ 1. This means that for the
matrix to be stable, |Tr (𝑀) | <= 2 (COURANT; SNYDER, 1958), the derivative of the gap
voltage must be positive/negative if 𝛼 is positive/negative. To illustrate this condition,
consider that initially a particle arrives at the cavity ahead of the synchronous particle,
the positive derivative means it will gain more energy, which makes it take longer to go
around the ring if the momentum compaction is positive, diminishing the difference of its
arrival time to the synchronous particle for the next turn. This way all particles remain
in an oscillatory movement around the fixed point with frequency given by

Tr(𝑀) = 2 cos(2𝜋𝜈𝑧) ≈ 2 − (2𝜋𝜈𝑧)2 =⇒ 𝜈𝑧 ≈ 1
2𝜋

√︁
𝐿0𝛼𝑧 + 𝑉 ′0𝛼𝐿0, (2.37)

where 𝜈𝑧 is called synchrotron tune in analogy to the betatron tunes defined in subsec-
tion 2.2.2.

Additionally, the determinant of the one–turn matrix is (1 − 𝐿0𝛼𝑧), which implies
the oscillations are damped, with 𝛼𝑧 being the damping factor. In most storage rings this
effect is small compared to the oscillation time, requiring thousands of turns to influence
the dynamics.

The voltage gap has the same harmonic composition as a function of the arrival
time as the electric field as a function of time. This means that the condition imposed in
equation (2.32) implies that there are at least ℎ stable fixed point along the ring and, as
in general the voltage is a pure senoid, these are the only stable points. This means that
it is possible to store up to ℎ agglomerations of electrons, called bunches, in a storage
ring.

2.3.4 The Potential Well

There is an important approximation to the map equations derived in the previous
sections that consists in considering the turn by turn iterations as infinitesimal transfor-
mations and taking the limit to the continuum, considering differences between turns as
derivatives. With this considerations, the equations of motion becomes:

d𝑧

d𝑠
= 𝛼𝛿(𝑠) (2.38)

d𝛿

d𝑠
= 𝛼𝑧𝛿(𝑠) + 𝑉 (𝑧(𝑠)) − 𝑈0

𝐿0𝐸0
.

If the damping term is not considered, the equations of motion can be derived
from a static Hamiltonian, given by:

𝐻‖ = 𝛼

2 𝛿2

𝑈(𝑧)⏞  ⏟  
−
∫︁ 𝑧

0
d𝑤

𝑉 (𝑤) − 𝑈0

𝐿0𝐸0
(2.39)
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where the first term of the right hand side (r.h.s.) is the kinetic term and 𝑈(𝑧) is called the
potential well, in an analogy with a potential energy. When the oscillations are small the
potential well can be expanded in power series of the longitudinal position. Generally the
RF cavity of storage rings are adjusted with each other in such a way that their potentials
always sum constructively, creating a practically linear gap voltage 𝑉 (𝑧) around the fixed
point, which implies the Hamiltonian can often be approximated by

𝐻‖ = 𝛼

2 𝛿2 + 𝑉 ′

2𝐿0
𝑧2 (2.40)

which is an harmonic oscillator, equivalent to the linear map of equation (2.35), if the
damping is not considered. This harmonic Hamiltonian is often used for analytic treat-
ments of instabilities because it is a good approximation for most RF systems and also
due to the simple expressions of its action-angle variables (LINDBERG, 2016, sec. III):

𝐻‖ = 𝜔𝑧

𝑐
𝐽𝑧 with 𝑧 =

√︃
2𝐽𝑧𝛼𝑐

𝜔𝑧

cos 𝜃𝑧 and 𝛿 =
√︃

2𝐽𝑧𝜔𝑧

𝛼𝑐
sin 𝜃𝑧, (2.41)

where 𝜔𝑧 = 𝜔0𝜈𝑧 = 𝜔0/2𝜋
√︁

𝑉 ′0𝛼𝐿0 is the synchrotron frequency.

2.4 Radiation Damping and Equilibrium Parameters
The synchrotron radiation emission is a quantum process that happens uncorrelat-

edly among all the electrons in the beam. While the average emission has a well defined
and smooth behavior, such as the spectra that are calculated with classical electrody-
namics for dipoles and IDs, a closer look into the individual emissions reveals the random
nature of these events. As expected the effect this process generates on the beam is also
dual, the average emission is responsible for energy loss and damping of the longitudinal
and transverse oscillations, while the random character of single emission events generates
uncorrelated motion in all planes, thats heat up the beam.

Both effects have very different dependencies on the parameters of the particles.
For example, in the last section we used the fact that the energy loss depends linearly
with the energy deviation of the particles, which caused an exponential damping of the
oscillations, i.e. a damping proportional to the amplitude of the oscillation, while the
heating in the longitudinal plane happens because the emissions are instantaneous and
uncorrelated among electrons or in time, having no short term dependency on any param-
eter of the electrons, which generates random walks for the energy deviations. Because
these effects have such different dependencies they always compete with each other, if the
amplitude of oscillation is large the damping dominates, if it is small there is a blow up.
It is this competition that generates the equilibrium energy distribution of the beam and
consequently, due to the potential well, the longitudinal distribution. While the amplitude
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of oscillation of each electron is in an endless variation, the average of all electrons in a
bunch remains stationary, with both effects balancing each other out.

In the transverse plane the effect of the radiation emission on the dynamics is not
as direct as in the longitudinal plane. Damping in the transverse plane is a two-fold effect:
first the electrons lose transverse momentum due to radiation emission because the emis-
sion is mostly on the direction of motion. This does not change the normalized momentum
of the electron, because the longitudinal momentum is also affected by this emission. In
a second moment the electron passes through the RF cavity, where the longitudinal mo-
mentum is replenished but the transverse momentum is unchanged, which means the
normalized transverse momentum is decreased. The net effect is an exponential damping
of the transverse oscillations, proportional to the betatron action of the movement.

The excitations of oscillations happen in the horizontal plane because of the dis-
persion function in the dipoles. When an electron emits radiation its closed orbit abruptly
changes, because its energy deviation has changed, however, as the position of the elec-
tron is the same as before, a betatron oscillation around the new closed orbit is excited.
Again, both effects balance each other out in stationary state, defining a distribution and
consequently the natural emittance of the storage ring. In the vertical plane, as the dis-
persion is ideally zero, the excitations are created by a much weaker mechanism and the
natural vertical emittance is practically zero. This mechanism is related to the fact that
the photon emission is not exactly in the direction of the momentum of the electrons,
but with an angular aperture around it proportional to 1/𝛾, which slightly changes the
vertical momentum of the electron, exciting betatron oscillations. In real storage rings,
residual vertical dispersion function from magnet errors and coupling fields that transfer
part of the horizontal emittance to the vertical plane completely overshadow this process
and define the vertical emittance of the beam.

2.4.1 Fokker-Planck Equation

All the arguments described in the last section can be mathematically described by
modeling the evolution of the beam distribution in terms of the Fokker-Planck equation.
In this framework we can consider the interaction of the electrons with the radiation
they emit as large particles subjected to a weak random and Markovian force, with an
approximately white spectrum. These are the conditions imposed on a system by the
kinetic theory in order for the distribution function to be described by such equation,
according to Landau & Lifshitz (1981), Wang & Uhlenbeck (1945), Zwanzig (2001).

There are several works that explain the use of the Fokker-Planck equation in
storage rings (LINDBERG, 2016; SUZUKI, 1983; SUZUKI, 1986; LEE, 1999; WIEDEMANN,
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2007). Here, only the main results will be presented. The Fokker-Planck equation is

𝜕Ψ
𝜕𝑠

+ {Ψ, 𝐻} = F (Ψ) , (2.42)

where Ψ = Ψ (𝑞, 𝑝, 𝑠) is the beam distribution in phase space, 𝑞 = (𝑥, 𝑦, 𝑧) and 𝑝 =
(𝑥′, 𝑦′, 𝛿) are the position and momentum vectors,

{Ψ, 𝐻} = 𝜕Ψ
𝜕𝑞

· 𝜕𝐻

𝜕𝑝
− 𝜕Ψ

𝜕𝑝
· 𝜕𝐻

𝜕𝑞
(2.43)

is the Poison bracket between the Hamiltonian and the particle distribution, where the
operators 𝜕

𝜕𝑞
and 𝜕

𝜕𝑝
are the gradients in relation to the positions and momenta of the

phase space, and F (·) is the Fokker-Planck operator for the accelerator, explicitly given
by (LINDBERG, 2016, eq. 33)

F (Ψ) =2𝛼𝑧

𝑐

(︃
Ψ + 𝛿

𝜕Ψ
𝜕𝛿

)︃
+ 𝐷𝑧

𝜕2Ψ
𝜕𝛿2 +

2𝛼𝑥

𝑐

(︃
Ψ + 𝐽𝑥

𝜕Ψ
𝜕𝐽𝑥

)︃
+ 𝐷𝑥

(︃
𝐽𝑥

𝜕2Ψ
𝜕𝐽2

𝑥

+ 𝜕Ψ
𝜕𝐽𝑥

+ 1
4𝐽𝑥

𝜕2Ψ
𝜕𝜃2

𝑥

)︃
+

2𝛼𝑦

𝑐

(︃
Ψ + 𝐽𝑦

𝜕Ψ
𝜕𝐽𝑦

)︃
+ 𝐷𝑦

(︃
𝐽𝑦

𝜕2Ψ
𝜕𝐽2

𝑦

+ 𝜕Ψ
𝜕𝐽𝑦

+ 1
4𝐽𝑦

𝜕2Ψ
𝜕𝜃2

𝑦

)︃
(2.44)

where 𝑐 is the speed of light, {𝐽𝑥, 𝜃𝑥} and {𝐽𝑦, 𝜃𝑦} are the action-angle variables of the
horizontal and vertical planes, as defined in equation (2.11), and 𝛼𝑢 and 𝐷𝑢 are the
damping and diffusion terms introduced by the radiation emission in the three planes of
motion, for which Sands (1970) and Wiedemann (2007) derive explicit expressions.

Notice that equation (2.42) separates the hamiltonian forces in the l.h.s. and the
dissipative and random forces in the r.h.s.. If the effect of radiation emission were not
taken into account, the r.h.s. of would be zero and the l.h.s. would be a statement of the
Liuville Theorem for Hamiltonian flow, which in the accelerators physics community is
also known as Vlasov Equation. For machines that operate with heavy particles, such as
the colliders that use protons or ions, this is approximately true, but for storage rings of
synchrotron light sources, which mostly employ electrons, the Fokker-Planck terms are
very important to describe the behavior of the beam in time scales of the order of ms or
higher, which are the scales where impedance related collective instabilities happen.

The Fokker-Planck equation can be used to calculate the equilibrium distribu-
tion of the beam. Considering the total Hamiltonian of the ring is given by the sum of
equations (2.39) and (2.19),

𝐻 = 𝐽𝑥

𝛽𝑥

+ 𝐽𝑦

𝛽𝑥

+ 𝛼

2 𝛿2 + 𝑈(𝑧), (2.45)

the equilibrium distribution is a separable function in the three planes of motion because
the 𝐻 does not couple them. Besides, the horizontal distribution must be a function only
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of the invariant 𝐽𝑥, the vertical of 𝐽𝑦 and the longitudinal of 𝐻‖, because they are the
invariants of motion:

Ψ(𝑞, 𝑝) = 𝑓𝑥(𝑥, 𝑥′)𝑓𝑦(𝑦, 𝑦′)𝑓𝑧(𝑧, 𝛿) = 𝑓𝑥(𝐽𝑥)𝑓𝑦(𝐽𝑦)𝑓𝑧(𝐻‖). (2.46)

With these considerations the distribution commutes with the total Hamiltonian
and the l.h.s. of the Fokker-Planck equation, (2.42), is zero. From the r.h.s. it can be
shown that

Ψ(𝑞, 𝑝) =

𝑓𝑥⏞  ⏟  
exp (−𝐽𝑥/𝜀𝑥)

2𝜋𝜀𝑥

·

𝑓𝑦⏞  ⏟  
exp (−𝐽𝑦/𝜀𝑦)

2𝜋𝜀𝑦

·

𝑓𝛿⏞  ⏟  
exp

(︂
− 𝛿2

2𝜎2
𝛿

)︂
√

2𝜋𝜎𝛿

·

𝜆⏞  ⏟  
exp

(︂
− 1

2𝜎2
𝛿

2
𝛼
𝑈(𝑧)

)︂
𝐴

(2.47)

with

𝜀𝑥 = 𝑐𝐷𝑥

2𝛼𝑥

, 𝜀𝑦 = 𝑐𝐷𝑦

2𝛼𝑦

, 𝜎𝛿 = 𝑐𝐷𝑧

2𝛼𝑧

, (2.48)

where 𝜀𝑥 and 𝜀𝑦 are the horizontal and vertical emittances, 𝜎𝛿 is the energy spread of the
beam and 𝐴 is a normalization constant such that∫︁

d𝑧*𝜆(𝑧*) = 1 (2.49)

It easy to see that the beam vertical size is given by

𝜎2
𝑦(𝑠) =

⟨
𝑦2
⟩

= 2𝛽𝑦(𝑠)
∫︁

d𝜃𝑦 cos2(𝜃𝑦)
∫︁

d𝐽𝑦𝑓𝑦(𝐽𝑦)𝐽𝑦 = 𝛽𝑦𝜀𝑦 (2.50)

and that for the horizontal plane the canonical transformation that shifted the off-
momentum fixed point, represented by equation (2.18), must be taken in account:

𝜎2
𝑥 =

⟨
(𝑥 + 𝜂𝛿)2

⟩
=
⟨
𝑥2
⟩

+ ⟨2𝑥𝜂𝛿⟩ + 𝜂2
⟨
𝛿2
⟩

= 𝛽𝑥𝜀𝑥 + 𝜂2𝜎2
𝛿 . (2.51)

For the longitudinal plane, in the simple case of a quadratic potential well, as
described by equation (2.40), we have

𝜎2
𝑧 =

∫︁
d𝑧*𝜆 (𝑧*) 𝑧*2 = 1

𝐴

∫︁
d𝑧* exp

(︃
− 𝑉 ′

2𝐿0𝛼𝜎2
𝛿

𝑧*2
)︃

𝑧*2 = 𝜎2
𝛿

𝐿0𝛼

𝑉 ′
= 𝜎2

𝛿

𝑐2𝛼2

𝜔2
𝑧

. (2.52)
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3 WAKES AND IMPEDANCES

The main aspects of single–particle dynamics, governed by the guiding electro-
magnetic fields generated by the magnets and the RF cavity, were analysed in the last
chapter. The effects of the radiation emission on the particle that generated this radiation
were also considered, and concepts such as equilibrium distribution of particles, emit-
tance and energy spread were introduced; however, no interaction among the particles
in this distribution was considered. Besides the external fields, the self–generated fields,
fields induced by the stored particles, are important to characterize the dynamics when
the intensity of the beam becomes large. These fields have different effects on the beam
depending on how the interaction happens. In this chapter we will study the theory of
wake fields, analysing its main definitions and modeling.

3.1 Wake Fields
Even though the mechanism behind the interaction among the stored particles

through wake fields is very simple to describe qualitatively, a quantitative self–consistent
description is very difficult. The main difficulty comes from the fact that ME should
be solved using the vacuum chamber of the whole ring being subjected to a source, the
beam, that is acted upon by the external fields and the self–generated fields we want
to determine. In order to tackle this problem self-consistency must be forgotten and
approximations must be done.

The first approximation is to consider that all the properties of the materials that
compose the vacuum chamber are linear in relation to the intensity of the fields. This
linearity combined with the linearity of the ME allow us to solve the electromagnetic
fields for a single source particle and sum over the beam to get the desired result. Another
approximation consists in breaking the storage ring in several small parts that do not
interacts with each other, which allow us to solve ME for each part independently. This
approximation is valid for storage rings because generally the irregularities or transitions
in the vacuum chamber are far from each other in such a way that the fields generated in
one of them cannot propagate to the other.

The two approximations described above already greatly simplifies the problem,
but in order to make it tractable other two are needed: the rigid beam and the impulse
approximations. The rigid beam approximation consists in considering that when the par-
ticles are passing through a component that generates wake fields they always move in
straight lines parallel to each other with constant and equal speeds. Applying this ap-
proximation to the particles that generates the wake fields allows for a simple algorithm
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to solve the ME for any structure, because it defines that the source of the fields is a
particle moving straight in the longitudinal direction with constant speed. As the bound-
ary conditions are imposed by the walls of the chamber, the whole problem becomes well
defined. The impulse approximation consists in saying that the effect of the wake fields
of a structure on the particles is only to change their momentum after the whole process
and this change in momentum is given by the integral from minus infinity to infinity of
the Lorentz Force on the unperturbed trajectory of the particle. Combining this approx-
imation with the rigid beam, we see that the integral must be performed parallel to the
source particle at a fixed distance from it.

To clarify these approximations, let us express them mathematically. First, con-
sider a particle with charge 𝑄 and velocity 𝑣 moving in the vacuum chamber. The ME
for the fields generated by this particle are given by:

∇ · 𝐷 = 𝑄𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0)𝛿(𝑠 − 𝑣𝑡)
∇ · 𝐵 = 0

∇ × 𝐸 = −𝜕𝐵

𝜕𝑡
(3.1)

∇ × 𝐻 = 𝑄𝑣𝑠𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0)𝛿(𝑠 − 𝑣𝑡) + 𝜕𝐷

𝜕𝑡

where 𝛿(·) is the Dirac’s Delta function, 𝑥0 and 𝑦0 defines the transverse displacement of
the source particle, 𝑠 is the unitary vector that defines the longitudinal direction and

𝐷(𝑡) =
∫︁ ∞
−∞

d𝑡*𝜀(𝑡 − 𝑡*)𝐸(𝑡*) (3.2)

𝐵(𝑡) =
∫︁ ∞
−∞

d𝑡*𝜇(𝑡 − 𝑡*)𝐻(𝑡*), (3.3)

where 𝜀 and 𝜇 simplifies to the electric permittivity and magnetic permeability of the
vacuum in the region inside the vacuum chamber where the source particle is, but can be
any causal function that describes the dynamics of the materials of the wall. Combining
these equations with the boundary conditions of continuity of the perpendicular compo-
nents of 𝐷 and 𝐵 and of the tangential components of 𝐻 and 𝐸, the problem is well
defined and there is an unique solution for 𝐸 and 𝐵 inside the vacuum chamber. For the
case when the chamber is considered as a Perfect Electric Conductor (PEC), the fields
inside the wall are zeroed by surface charge and currents in the inner wall, as described
by Jackson (1962, sec. I.5).

If a witness particle with charge 𝑞 experiences these fields in agreement to the
approximations made before, its momentum change is expressed by

Δ𝑝(𝜌𝑠, 𝜌𝑤, 𝑧) =
∫︁ ∞
−∞

d𝑡 𝐹 (𝜌𝑠, 𝜌𝑤, 𝑠, 𝑡)|𝑠=𝑣𝑡−𝑧 , (3.4)

where 𝜌𝑤 and 𝜌𝑠 are the transverse positions of the witness and source particles, respec-
tively, and 𝑧 is the distance the witness particle is behind the source. The Lorentz force
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in this case is given by

𝐹 = 𝑞 (𝐸𝑠𝑠 + (𝐸𝑥 + 𝑣𝐵𝑦)𝑥̂ + (𝐸𝑦 − 𝑣𝐵𝑥)𝑦) . (3.5)

All the conditions imposed above to simplify the problem are referred as zeroth–
order approximations by Stupakov (2000), which indeed they are in the sense that they
define the minimum level of complexity the analysis of wake fields must contain to explain
the behavior of the beam. However, most of the considerations are well justified, for
example, the assumption of linearity of the materials is justified by the fact that the
intensities of the fields involved are not large compared to the saturation curves of the
materials, in such a way that linearization of the responses is always possible. For example,
the magnetic field of in-vacuum IDs is generated by ferromagnetic blocks placed with
alternating magnetization direction along the beam trajectory. Generally there is a very
thin copper foil between the blocks and the beam environment shielding the blocks from
the self–generated fields of the beam, however very low frequency fields can penetrate the
foil and reach the blocks, which makes them important for the determination of such fields
and the effects on the beam. This was the case presented by Blednykh et al. (2016) where
a model for the wakes was built from the linearization of the response of such materials
and a good agreement with beam measurements was achieved.

The approximation of breaking the ring in small parts which contribute indepen-
dently to the whole budget of wake in the machine is always revisited by people responsi-
ble for simulating the components of new machines. In several occasions, where elements
that introduce variations in the vacuum chamber transverse profile are close to each other,
they are simulated together to check if there is mutual interference. Apart from some cases
where the elements have resonances with similar frequencies, the results show that one
simulation with both components is equal the sum of them simulated separately.

The impulse approximation is also justified by the small effect these fields have
on the dynamics of the beam in a single pass. Actually this approximation is recurrent in
accelerator physics simulations; models for IDs and multipoles, such as quadrupoles and
sextupoles, are very common under this assumption. Even for these components, which
are stronger than wake fields, the results are a good approximation to the more detailed
simulation with thick components.

There are two different aspects of the rigid–beam approximation that must be
analysed separately in order to justify it. The first is the consideration that the witness
particle is always at a fixed distance 𝑧 behind the source particle. This approximation is
very good for any storage ring because as the particles are ultra-relativistic, their velocity
is close to the light speed and even with a considerable energy difference between the
particles, their velocity difference is negligible. additionally, the typical energy variation
inside a bunch is very small, on the order of 0.1 %.
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The second aspect is related to the consideration that the particles traverse the
structure parallel to the axis, because, in principle, sloping straight trajectories could also
be considered and the momentum gain would be dependent on the angles 𝑥′ and 𝑦′ of
the source and the witness particle. An inclined trajectory of the source particle could
generate different electromagnetic fields in the structure, because the coupling between
the two would be affected. Besides, an inclined trajectory of the witness particle would
make it sample different fields, yielding different momentum changes. There is a study
in the literature by Danilov (2000) where the author calculates the angular wake for a
stripline and an experimental work from the same author (DANILOV et al., 1993) where
a current–dependent damping of the oscillations is measured at the 120 MeV injection
energy for the BEP electron storage ring. There are also some other related studies in
the literature (JONES et al., 1998). However, there is no strong experimental evidence of
the importance of such effect in the total impedance budget of a storage ring, probably
because of the paraxial nature of the movement of the particles.

One interesting feature of the impulse approximation is that, even though the
interaction between two particles via wake fields does not respect Newton’s third law
(action-reaction) and, consequently, cannot be cast into an Hamiltonian formulation, the
mean–field interaction, where the degrees of freedom of all the source particles of the
beam are averaged out, does respect the Hamilton equations, because, as can be seen
in equation (3.4), the change in momentum of the witness particle depends only on its
position.

3.2 Wake Functions
The approximations performed in the last section led to a formula to describe

the change in momentum of the witness particle and to a method of how to include this
momentum change in the dynamics of this particle. In summary, everything we need to
know in order to compute the effect of the wake fields are already defined, we just need
to compute the total momentum variation for each particle due to the action of all the
other particles. In this process it is useful to define functions that are independent of the
charge of the particles involved, being dependent only on the structure that generates the
wake fields. These functions are called wake functions, or simply wakes, and are defined
by

(𝑤𝑥, 𝑤𝑦, 𝑤𝑠) = 𝑣

𝑞𝑄
(Δ𝑝𝑥, Δ𝑝𝑦, −Δ𝑝𝑠) , (3.6)

where the components of Δ𝑝 are given by equation (3.4). The wake function has units of
energy per square charge, which is V C−1 in SI. The minus sign in the definition of the
longitudinal wake is introduced so that positive values have an interpretation of energy
loss when both charges have the same sign.
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3.3 The Wake Potential
With the approximations performed in the section 3.1 together with the restrictions

imposed on the electromagnetic fields by the ME it is possible to show that the wake
functions can be derived from a scalar potential function, called wake potential. To show
this, we will use the same approach described by Stupakov (2000), that is credited to Alex
Chao. The Lagrangian of the witness particle is

𝐿 = −𝑚𝑐2

√︃
1 − 𝑣2

𝑐2 + 𝑞𝐴 · 𝑣 − 𝑞𝜑, (3.7)

where 𝐴 is the potential vector of the electromagnetic fields defined in equation (3.1)
and 𝜑 is the scalar potential of the same fields. Inputing this Lagrangian into the Euler-
Lagrange equation we get

d
d𝑡

(𝑝 + 𝑞𝐴) = 𝑞∇ (𝐴 · 𝑣 − 𝜑) , (3.8)

where ∇ denotes derivation with respect to the witness particle position. Integrating the
equation above with the considerations made in section 3.1 we get

𝑞𝑄

𝑐
∇𝑅𝑊 := Δ𝑝 = 𝑞

∫︁ ∞
−∞

d𝑡∇ (𝑣𝐴𝑠 − 𝜑) . (3.9)

where 𝑅 = (𝑥𝑤, 𝑦𝑤, −𝑧) and 𝑊 = 𝑊 (𝜌𝑠, 𝜌𝑤, 𝑧) is the wake potential and it is assumed
that the velocity of the particle is in the longitudinal direction. It was also considered
that the fields go to zero at infinity. It can be checked that the wake functions as defined
in equation (3.6) are obtained from the wake potential:

𝑤𝑠 = − 𝜕𝑊

𝜕(−𝑧) = 𝜕𝑊

𝜕𝑧
, 𝑤⊥ = ∇𝑤,⊥𝑊, (3.10)

and, as 𝑊 ∈ 𝐶∞(R), we have the following equality

𝜕𝑤⊥
𝜕𝑧

= ∇𝑤,⊥𝑤𝑠. (3.11)

which is known as Panofsky-Wenzel theorem. It is also possible to show that in the ultra-
relativistic limit, 𝑣 → 𝑐, the wake potential is an harmonic function of the transverse
coordinates of the witness particle (STUPAKOV, 2000)

∇2
𝑤,⊥𝑊 = 𝜕2𝑊

𝜕𝑥2
𝑤

+ 𝜕2𝑊

𝜕𝑦2
𝑤

= 0, (3.12)

and, if perfect conducting walls are assumed at the ends of the structure, it is also
an harmonic function with respect to the transverse coordinates of the source parti-
cle (ZAGORODNOV et al., 2015)

∇2
𝑠,⊥𝑊 = 𝜕2𝑊

𝜕𝑥2
𝑠

+ 𝜕2𝑊

𝜕𝑦2
𝑠

= 0. (3.13)
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These properties are very important for calculating wake functions numerically and
will be used later in this work. The Panofsky-Wenzel theorem, for example, is employed
in three–dimensional simulations to calculate all wake functions from the longitudinal
electric field, because the longitudinal wake function depends only on this component of
the field, as given by equation (3.5). Then, from equation (3.11) we have:

𝑤⊥ =
∫︁ 𝑧

−∞
d𝑧*∇⊥

(︃
𝑐

𝑄

∫︁ ∞
−∞

d𝑡𝐸𝑠|𝑠=𝑐𝑡−𝑧*

)︃
. (3.14)

3.4 The "Causality" Principle
When we take the ultra-relativistic limit, 𝑣 → 𝑐, all the wake fields generated by

a particle can only influence particles that are behind it, no particle ahead will suffer its
influence. This is equivalent to saying that the wake potential must satisfy the condition

𝑊 (𝜌𝑠, 𝜌𝑤, 𝑧) = 0, ∀ 𝑧 < 0, (3.15)

which also directly applies to the wake functions. This condition is known in literature
as causality principle and, even though it is only an approximation for the real machine,
most calculations of wake functions for the ring components are performed under this
assumption, including all the refined results obtained of the solutions of the ME by numeric
solvers.

The main idea of this approximation is that, since the direct field of an ultra-
relativistic particle is in the same transverse plane as the particle itself, the wake fields
generated by an imperfection in the vacuum chamber are created at the exact same time
this particle passes through the longitudinal position where this imperfection is located.
As both, particle and wake field wave front have the same speed, the latter cannot catch
up with the first.

Even though this is a good approximation for real beams stored in SLS storage
rings and it generally simplifies the calculations and even enables the use of specific
algorithms to compute the effects on the beam, in this work we will not assume this
approximation for any of the wakes used and all the algorithms to be developed will work
with causal and non–causal wakes. The main reason for this consideration is that all the
raw effective wakes from the time domain solvers of the ME do not respect the causality
condition, because they are calculated from finite–length charge distributions. The causal
impedances are only obtained after post-processing the data and the point–charge wakes,
or Green functions, can only be accessed through fitting, which makes it very practical to
use the raw effective wakes in simulations.

Besides, this formalism of wake functions is very general and can be applied in the
modeling of other sources of collective effects, such as the interaction of the beam with ions
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in the vacuum chamber (WANG et al., 2013) or to model the effect of CSR on the beam.
While the wakes of the former case also respect causality, the latter case, in a completely
opposite way, is zero behind and non-zero ahead the source particle (DERBENEV et al.,
1995).

3.5 Expansion of the Wakes
For most applications we are interested in knowing the wake functions only in a

domain very close the center of the vacuum chamber, with 𝜌𝑠 and 𝜌𝑤 much smaller than
the characteristic transverse dimension of the vacuum chamber, which allow us to expand
the wake potential in its transverse coordinates and keep only the low–order terms

𝑊 (𝜌𝑠, 𝜌𝑤, 𝑧) ≈ 𝑊0 + 𝜌𝑇
𝑠 · 𝑀 𝑠 + 𝜌𝑇

𝑤 ·
(︂

𝑀𝑤 + 𝒟 · 𝜌𝑠 + 1
2𝒬 · 𝜌𝑤

)︂
(3.16)

where 𝑊0, 𝑀 𝑠, 𝑀𝑤, 𝒟 and 𝒬 are coefficients of the expansion that depend only on
the longitudinal position 𝑧, being 𝒬 and 𝒟 symmetric matrices and 𝑄11 = −𝑄22 due to
equation (3.12). Expanding the wake functions in first order we get

𝑤𝑠 ≈ 𝑊 ′
0 + 𝜌𝑇

𝑠 · 𝑀 ′
𝑠 + 𝜌𝑇

𝑤 · 𝑀 ′
𝑤 (3.17)

𝑤⊥ ≈ 𝑀𝑤 + 𝒟 · 𝜌𝑠 + 𝒬 · 𝜌𝑤 (3.18)

where the prime indicates derivation with respect to 𝑧.

All these components have different effects on the beam and some of them are more
important than others. The component 𝑊 ′

0 generally is the only term of the expansion of
𝑤𝑠 that is considered in calculations because it dominates the rest of the expansion. So this
term is responsible for all the longitudinal effects on the beam, including average energy
loss, potential–well distortion, hence bunch-lengthening and bunch-shortening, coupled
bunch oscillations, and even energy spread increase in some cases. For this reasons, from
now on, the term longitudinal wake will always refer to 𝑊 ′

0 unless otherwise specified.

The vectors 𝑀 𝑠 and 𝑀𝑤 are generally referred to as monopolar wakes, because
they generate a transverse wake that is independent of the transverse displacement of the
particles. The effect these wakes can cause on the beam is to change its closed orbit as a
function of the beam current which is a static effect and cannot lead to instabilities. In
addition, for most practical cases these terms are zero due to symmetries in the vacuum
chamber.

The elements of the matrix 𝒟 are referred to as dipolar wakes, because they are
generated due to dipole displacements of the source particle. Specifically 𝒟11 and 𝒟22

are called horizontal and vertical dipolar wakes, respectively. They are responsible for all
the transverse instabilities that leads to coupled oscillations of the bunches, emittance
deterioration and even beam loss. Besides, they can also induce coherent tune shifts, a
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concept that will be described later. These terms are dangerous because they create a
mechanism for oscillations of the source particles to induce oscillations on the witness
particle and this force is always resonant because both particles have approximately the
same tune. The term 𝒟12 = 𝒟21 is zero in most cases due to symmetries in the vacuum
chamber, but even when it is non-zero it does not induce any significant effect on the
beam because, as generally the fractional part of the horizontal and vertical tunes are
different, oscillations in one plane do not drive oscillations in the other.

The coefficients 𝒬11 and 𝒬22 are called detuning or quadrupolar wakes because
the force they induce has the same characteristics of a quadrupole. In the ultra-relativistic
limit 𝒬11 = −𝒬22 which is the basic property of the quadrupole strengths in the horizontal
and vertical plane and, as expected from a quadrupole, they generate tune shifts in the
beam as a function of current. The same analysis made for the coefficient 𝒟12 applies for
the term 𝒬12.

As mentioned above, some components of the wake expansions are zero depending
on the properties of the vacuum chamber. This is a consequence of the fact that the
wake potential must preserve all the symmetries of the vacuum chamber. For example,
the standard vacuum chamber used in the Sirius storage ring is a round straight tube,
which is a particular case of a cylindrical symmetry. For this type of symmetry all the
components of 𝑀 𝑠, 𝑀𝑤 and 𝒬 must be zero and the only components of 𝒟 different from
zero are the horizontal and vertical dipolar wakes and they must be equal to each other.
Thus we conclude that most of the resistive wall of the Sirius storage ring will not induce
quadrupolar wakes nor any type of skew effect and that there will be no significant orbit
distortions as a function of current. Besides, considering that most of the components
installed in the ring, such as bellows and BPMs only slightly break this symmetry, we can
expect that the behavior of the beam in the horizontal and vertical planes will be very
similar, where the differences will mostly be due to asymmetries in the single–particle
dynamics.

Taking into consideration what was discussed above, we can rewrite the expansion
of the wakes in equations (3.16) and (3.17) keeping only the most important terms:

𝑊 (𝜌𝑠, 𝜌𝑤, 𝑧) = 𝑊0(𝑧) + 𝑥𝑤

(︃
𝑊 𝐷

𝑋 (𝑧)𝑥𝑠 − 𝑊 𝑄(𝑧)
2 𝑥𝑤

)︃
+ 𝑦𝑤

(︃
𝑊 𝐷

𝑌 (𝑧)𝑦𝑠 + 𝑊 𝑄(𝑧)
2 𝑦𝑤

)︃
(3.19)

and, consequently

𝑤𝑠(𝑧) = 𝑊 ′
0(𝑧)

𝑤𝑥(𝑥𝑠, 𝑥𝑤, 𝑧) = 𝑊 𝐷
𝑋 (𝑧)𝑥𝑠 − 𝑊 𝑄(𝑧)𝑥𝑤 (3.20)

𝑤𝑦(𝑦𝑠, 𝑦𝑤, 𝑧) = 𝑊 𝐷
𝑌 (𝑧)𝑦𝑠 + 𝑊 𝑄(𝑧)𝑦𝑤
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where 𝑊 𝐷
𝑋 = 𝐷11, 𝑊 𝐷

𝑌 = 𝐷22 and 𝑊 𝑄 = 𝑄22 and the ultra-relativistic approximation
was considered.

3.6 Impedances
As already mentioned in the beginning of section 3.2 all the tools needed to model

the effect of the wake fields on the beam are described in section 3.1, however it is
useful to define some other concepts such as the wake functions or the wake potential
because they facilitate and uniformize the formalism. The impedance is another one of
these concepts, introduced by Vaccaro (1966) to explain instabilities in the ISR ring at
European Organization for Nuclear Research (CERN). It is proportional to the Fourier
transform of the wake functions with respect to the longitudinal coordinate, 𝑧, and it is
very useful in any kind of analytic calculation of instabilities, or even in the determination
of the wake functions. Besides, due to the fact that we are interested in the effects of wake
fields for storage rings which are intrinsically periodic, the impedance reveals properties
that are difficult to infer looking at the wake itself.

There are several different definitions of impedances in the literature. In this work
we will adopt the definitions of Chao (1993), Stupakov (2000), Heifets & Kheifets (1991):

𝑍‖(𝜔) := 1
𝑐

∫︁ ∞
−∞

d𝑧𝑊 ′
0(𝑧)𝑒𝑖𝜔𝑧/𝑐

𝑍𝐷
𝑥 (𝜔) := − 𝑖

𝑐

∫︁ ∞
−∞

d𝑧𝑊 𝐷
𝑋 (𝑧)𝑒𝑖𝜔𝑧/𝑐

𝑍𝐷
𝑦 (𝜔) := − 𝑖

𝑐

∫︁ ∞
−∞

d𝑧𝑊 𝐷
𝑌 (𝑧)𝑒𝑖𝜔𝑧/𝑐

𝑍𝑄(𝜔) := − 𝑖

𝑐

∫︁ ∞
−∞

d𝑧𝑊 𝑄(𝑧)𝑒𝑖𝜔𝑧/𝑐

(3.21)

where 𝑍‖ ≡ 𝑍𝑠 ≡ 𝑍𝐿 is the longitudinal impedance, 𝑍𝐷
𝑥 and 𝑍𝐷

𝑦 are the horizontal
and vertical dipolar impedances and 𝑍𝑄 is the quadrupolar, or detuning, impedance. In
other references, such as in the book of Zotter & Kheifets (1998), the impedance is the
conjugate complex of the definitions presented here. The wakes can be obtained back from
the impedances by the inverse transforms

𝑊 ′
0(𝑧) = 1

2𝜋

∫︁ ∞
−∞

d𝜔𝑍‖𝑒
−𝑖𝜔𝑧/𝑐

𝑊𝑡(𝑧) = 𝑖

2𝜋

∫︁ ∞
−∞

d𝜔𝑍𝑡𝑒
−𝑖𝜔𝑧/𝑐,

(3.22)

where 𝑊𝑡 and 𝑍𝑡 denote any of the transverse wakes and impedances. Considering that
the wakes are real functions, the impedances must satisfy

𝑍‖(𝜔) = 𝑍*‖(−𝜔) (3.23a)
𝑍𝑡(𝜔) = −𝑍*𝑡 (−𝜔), (3.23b)
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or simply, the real part of the longitudinal impedance must be an even function of the
frequency and the imaginary part must be an odd function, while for the transverses
impedances the opposite is valid: the real part is odd and the imaginary part is even.
Impedances have several other interesting mathematical properties, as presented by Chao
(1993). For example, when the wakes satisfy the causality condition the real and imaginary
parts of the impedance obey Kramers–Kronig relations (KRONIG, 1926), also known as
Hilbert transforms.

It is interesting to note that instead of defining the impedances by the set of
equations (3.21) we could have defined one generalized impedance from the wake potential

𝑍(𝜌𝑠, 𝜌𝑤, 𝜔) = − 𝑖

𝑐

∫︁ ∞
−∞

d𝑧𝑊 (𝜌𝑠, 𝜌𝑤, 𝑧)𝑒𝑖𝜔𝑧/𝑐 (3.24)

and the impedances could be derived simply by considering its expansion in the transverse
coordinates:

𝑍(𝜌𝑠, 𝜌𝑤, 𝜔) = 𝑐

𝜔
𝑍‖ + 𝑥𝑤

(︃
𝑍𝐷

𝑥 𝑥𝑠 − 𝑍𝑄

2 𝑥𝑤

)︃
+ 𝑦𝑤

(︃
𝑍𝐷

𝑦 𝑦𝑠 + 𝑍𝑄

2 𝑦𝑤

)︃
. (3.25)

3.7 Potential of Bunches of Particles
Now that all the important tools for describing the wake field effects were intro-

duced we will calculate the change in momentum that a specific particle inside a bunch
will feel due to the action of all the other particles. To do that we will assume that in
the whole ring there is only one source of impedance, localized at a given point of the
accelerator, and that the vacuum chamber is perfectly aligned with the reference orbit of
the storage ring in such a way that a particle that is on the reference orbit also is at the
origin of the expansion made in equation (3.16). The synchronous position will be adopted
as the origin of the longitudinal coordinate and the positions of the particles will be mea-
sured with respect to it, in agreement to the definitions of section 2.3.1, specifically to
equation (2.5), where particles behind the synchronous particle have positive deviations.
Under such assumptions we get:

𝑉 (𝜌𝑖, 𝑧𝑖) =
∑︁

𝑗

𝑊 (𝜌𝑗, 𝜌𝑖, 𝑧𝑖 − 𝑧𝑗) (3.26)

where 𝑉 (𝜌𝑖, 𝑧𝑖) is denominated effective wake potential, because it is the net effect of the
average of the point–charge wake potential over the bunch and the indices 𝑖 and 𝑗 are
related to the witness and the source particles respectively. Notice the summation above
is very difficult to evaluate for a real beam, because in every bunch there are dozens
of billions of electrons. Moreover, this sum does not highlight properties of the beam
such as time dependence. If the beam is in equilibrium or is slowly varying the l.h.s. of
equation (3.26) is approximately the same for successive turns in the ring, or over several
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passages by the impedance source, but each term of the r.h.s. can be very different from
one turn to another, which means the sum must always be carried out. For all these
reasons, it is important to make an approximation and consider that the effective wake
potential experienced by each particle is an integral over the beam distribution:

𝑉 (𝜌, 𝑧, 𝑠) =
∫︁

d𝑝
∫︁

d𝜌′
∫︁

d𝑧*Ψ(𝑝, 𝜌′, 𝑧*; 𝑠)𝑊 (𝜌′, 𝜌, 𝑧 − 𝑧*) (3.27)

where 𝑝 = (𝑥′, 𝑦′, 𝛿) represents the momentum coordinates and Ψ is beam probability
density distribution function in phase space, which is time dependent in the general case
and is normalized to one.

3.7.1 Multi–Turn and Multi–Bunch Effects

The equation (3.27) is not general enough to take into account all the wake field
forces on the particles. In some cases the wakes persist for so long that they last for a
time equivalent to several turns in the ring, acting on the same particles that generate the
fields in successive turns. Generally these wakes are generated by cavity-like structures in
the vacuum chamber that trap their electromagnetic eigen-modes for long times. In this
situation we must add a sum over the distribution in previous turns

𝑉 (𝜌, 𝑧, 𝑠) =
∞∑︁

𝑘=−∞

∫︁
d𝑝
∫︁

d𝜌′
∫︁

d𝑧*Ψ(𝑝, 𝜌′, 𝑧*; 𝑠 − 𝑘𝐿0)×

𝑊 (𝜌′, 𝜌, 𝑧 − 𝑧* + 𝑘𝑐𝐿0) (3.28)

where the sum can be extended to infinity because the wake-potential is zero for relative
positions between the source and the witness particles when there is no interaction between
them. For example it does not make sense for a particle to feel the wake field it generates
in the next turn. This means the wake potential must be zero for large negative values
of 𝑧 − 𝑧*. Yet, in the most general case, there is more than one bunch stored in the ring,
which means it is also necessary to take the influence of other bunches into account

𝑉𝑛(𝜌, 𝑧, 𝑠) =
∑︁
𝑙∈B

𝐼𝑙

⟨𝐼⟩

∞∑︁
𝑘=−∞

∫︁
d𝑝
∫︁

d𝜌′
∫︁

d𝑧*Ψ𝑙(𝑝, 𝜌′, 𝑧*; 𝑠 − 𝑠𝑟)×

𝑊 (𝜌′, 𝜌, 𝑧 − 𝑧* + 𝑠𝑟) (3.29)

where

𝑠𝑟 = 𝑘𝐿0 − (𝑠𝑙 − 𝑠𝑛) (3.30)

is the retarded position defining when the wakes were generated, 𝐼𝑙 is the current and 𝑠𝑙

is the synchrotron position of the 𝑙-th bunch in the ring, ⟨𝐼⟩ = ∑︀
𝑙∈B 𝐼𝑙/𝑀 is the average

current per bunch, 𝑀 is the number of buckets filled, and B is a set of integer numbers
to identify which bunchs are filled with particles. For example, if the bunches 1, 10, 500



Chapter 3. Wakes and Impedances 64

and 735 are filled and the rest is empty, then B = {1, 10, 500, 735} and for sure 𝑛 ∈ B.
Also, 𝑉𝑛 needs the subscript 𝑛 in order to identify it as the wake potential felt by the 𝑛-th
bunch in the ring.

Combining equation (3.29) with the expansion of equation (3.20) we can derive
expressions for each component of the effective wake functions of the beam

(𝑉 ′0)𝑛(𝑧, 𝑠) =
∑︁
𝑙∈B

𝐼𝑙

⟨𝐼⟩

∞∑︁
𝑘=−∞

∫︁
d𝑧*𝜆𝑙(𝑧*; 𝑠 − 𝑠𝑟)𝑊 ′

0(𝑧 − 𝑧* + 𝑠𝑟) (3.31a)

(𝑉 𝑄
𝑋 )𝑛(𝑥, 𝑧, 𝑠) = 𝑥

∑︁
𝑙∈B

𝐼𝑙

⟨𝐼⟩

∞∑︁
𝑘=−∞

∫︁
d𝑧*𝜆𝑙(𝑧*; 𝑠 − 𝑠𝑟)𝑊 𝑄(𝑧 − 𝑧* + 𝑠𝑟) (3.31b)

(𝑉 𝐷
𝑋 )𝑛(𝑧, 𝑠) =

∑︁
𝑙∈B

𝐼𝑙

⟨𝐼⟩

∞∑︁
𝑘=−∞

∫︁
d𝑧*𝑑𝑙(𝑧*; 𝑠 − 𝑠𝑟)𝑊 𝐷

𝑋 (𝑧 − 𝑧* + 𝑠𝑟) (3.31c)

where 𝜆𝑙 is the longitudinal line distribution and 𝑑𝑙 is the horizontal dipole moment of
the 𝑙-th bunch defined by

𝜆𝑙(𝑧; 𝑠) =
∫︁

d𝑝
∫︁

d𝜌′Ψ𝑙(𝑝, 𝜌′, 𝑧; 𝑠) (3.32)

𝑑𝑙(𝑧; 𝑠) =
∫︁

d𝑝
∫︁

d𝜌′𝑥Ψ𝑙(𝑝, 𝜌′, 𝑧; 𝑠) (3.33)

and 𝑉0, 𝑉 𝐷
𝑋 and 𝑉 𝑄

𝑋 are the effective longitudinal, horizontal dipolar and horizontal de-
tuning wake functions of the bunch. The expressions for the vertical effective wakes 𝑉 𝐷

𝑌

and 𝑉 𝑄
𝑌 are very similar to the horizontal ones, just changing 𝑥 for 𝑦.

3.7.2 Relation with Impedance

In order to demonstrate how the concept of impedance is useful in the beam
dynamic calculations and its interpretation, let us consider that the beam is stationary,
which means its distribution does not depend on time, and that all bunches in the ring
are identical and equally spaced. When we apply the last assumption to equation (3.31a)
we notice the double sum can be replaced by a single one, if we define a variable

𝑗 = 𝑘𝑀 + 𝑙 − 𝑛

where 𝑀 is the number of bunches stored in the ring. This way the sum reads

𝑉0(𝑧) =
∞∑︁

𝑗=−∞

∫︁
d𝑧*𝜆(𝑧*)𝑊 ′

0(𝑧 − 𝑧* + 𝑗𝑐
𝑇0

𝑀
). (3.34)

where the symbols 𝑙 and 𝑛 can be dropped due to the symmetry among bunches and
the potential is time-independent. Additionally, if we substitute the wake function by its
representation in terms of the impedance given in equation (3.22) the equation above
becomes

𝑉0(𝑧) = 1
2𝜋

∞∑︁
𝑗=−∞

∫︁
d𝜔𝜆̃(𝜔)𝑍‖(𝜔)𝑒−𝑖𝜔(𝑧/𝑐+𝑗

𝑇0
𝑀

) (3.35)
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where the line density 𝜆(𝑧*) was also substituted by its Fourier Transform, defined as

𝜆̃(𝜔) =
∫︁ ∞
−∞

d𝑧𝜆(𝑧)𝑒𝑖𝜔𝑧/𝑐. (3.36)

Finally, using the Fourier Series expansion of the Dirac’s delta comb:
∞∑︁

𝑝=−∞
𝛿(𝜔 − 𝑝𝑀𝜔0) = 1

𝑀𝜔0

∞∑︁
𝑗=−∞

𝑒
−𝑖2𝜋𝑗 𝜔

𝑀𝜔0 = 1
𝑀𝜔0

∞∑︁
𝑗=−∞

𝑒−𝑖𝜔(𝑗 𝑇0
𝑀

), (3.37)

where 𝜔0 = 2𝜋/𝑇0 is the angular revolution frequency of the ring, equation (3.35) can be
written as

𝑉0(𝑧) = 𝑀𝜔0

2𝜋

∞∑︁
𝑝=−∞

𝜆̃(𝑝𝑀𝜔0)𝑍‖(𝑝𝑀𝜔0)𝑒−𝑖𝑝𝑀𝜔0𝑧/𝑐. (3.38)

where we notice the beam will only sample the impedance at multiples of the revolution
frequency. Similar expressions can be obtained for the dipolar and quadrupolar effective
wake functions:

𝑉 𝐷
𝑥 (𝑧) = −𝑖𝑀𝜔0

2𝜋

∞∑︁
𝑝=−∞

𝑑(𝑝𝑀𝜔0)𝑍𝐷
𝑥 (𝑝𝑀𝜔0)𝑒−𝑖𝑝𝑀𝜔0𝑧/𝑐 (3.39a)

𝑉 𝑄
𝑥 (𝑥, 𝑧) = −𝑥

𝑖𝑀𝜔0

2𝜋

∞∑︁
𝑝=−∞

𝜆̃(𝑝𝑀𝜔0)𝑍𝑄(𝑝𝑀𝜔0)𝑒−𝑖𝑝𝑀𝜔0𝑧/𝑐 (3.39b)

and analogously for the vertical plane. Notice in the equations above that the dipolar
impedance does not generate any effective wake function if the beam is stable and well
centered in the vacuum chamber, because in this condition the dipole moment of the
beam is zero. This is the main characteristic of a coherent mechanism, it depends on
the values of specific properties of the beam, in this case the longitudinal distribution of
the dipole moment, and its effects are only visible through averages on the distribution.
On the other hand, the detuning wake generates a 𝑧-dependent quadrupole strength on
individual particles of the beam even if the beam is stationary, which is characteristic of
an incoherent effect: it affects the intra–bunch dynamics but it is not necessarily reflected
in the averages on the distribution.

Equation (3.38) can be exploited in order to clarify the meaning behind the concept
of impedance and its analogy with an electric circuit impedance. Notice that the equation
can be interpreted as the Fourier expansion of the wake in the interval 𝑇0/𝑀 and the
coefficient that multiplies the exponential in the sum is the Fourier component of this
expansion

𝑉0 = 𝜆̃𝑍‖, (3.40)

where 𝜆̃ is the analog of the current in a circuit and 𝑉0 is the voltage induced by this
current. The same analogy can be extended to the impedance in other planes. Actually,
the modeling of the vacuum chamber as a circuit is a resource widely used to model the
low frequency part of the impedance, as done by Sessler & Vaccaro (1967), Davino &
Hahn (2003), for example.
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3.8 Models for Impedances and Wakes
Even though the impedance of each component results of a complex interaction

between one particle and its environment, they often can be represented by simple physical
models. A good example that is widely used, either to model the interaction of the beam
with a trapped mode of a RF cavity, as described by Zotter & Kheifets (1998, Appendix
1.B), or to represent the whole impedance budget of a storage ring, is the resonator
impedance, given by the RLC circuit in parallel

1
𝑍 ‖

= 1
𝑅 𝑠

+ 𝑖

𝜔𝐿
− 𝑖𝜔𝐶 ⇒ 𝑍‖ = 𝑅𝑠

1 + 𝑖𝑄
(︁

𝜔𝑅

𝜔
− 𝜔

𝜔𝑅

)︁ (3.41)

where 𝑅𝑠 is called the shunt resistance of the cavity, 𝑄 = 𝑅𝑠

√︁
𝐶/𝐿 is the quality fac-

tor, 𝜔𝑅 = 1/
√

𝐿𝐶 is the resonant frequency and 𝐿 and 𝐶 are the inductance and the
capacitance. The wake function associated with this impedance is given by the damped
harmonic oscillator1

𝑊 ′
0(𝑧) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 𝑧 < 0
𝛼𝑅𝑠 𝑧 = 0

2𝛼𝑅𝑠𝑒
−𝛼𝑧/𝑐

(︂
cos

(︂
𝜔̄𝑅𝑧

𝑐

)︂
− 𝛼

𝜔̄𝑅

sin
(︂

𝜔̄𝑅𝑧

𝑐

)︂)︂
𝑧 > 0

, (3.42)

where 𝛼 = 𝜔𝑅/2𝑄 is the damping factor and 𝜔̄𝑅 =
√︁

𝜔2
𝑅 − 𝛼2. When 𝑄 is large, the damp-

ing factor is small and the wake rings for several periods, extending to large 𝑧 distances
behind the source particle. Such type of wakes are called narrow–band, because in the
frequency domain the impedance has a sharp peak around the resonant frequency, with
maximum amplitude equal to 𝑅𝑠. In the context of a storage ring, where several bunches
are stored in the machine, wakes like this, generated by one bunch can last long enough
to influence other bunches behind it or even itself in the following turns, if the resonance
condition of the sequential bunches spacing and the wake period is approximately met. On
the other hand, if 𝑄 is small, generally close to one, the damping factor is large, and the
wake decays fast. This type of resonator is called broad band resonator (BBR), because
its impedance has a very wide spectrum.

The periodicity of the storage ring was considered in the calculation of the effective
wakes in section 3.7.1 and expressed by the infinite sum in equations (3.31). When the
impedances are narrow–band, only a few of those sampling lines are relevant for the
convergence of the sum. This is a result of the multi–turn buildup of the electromagnetic
fields in the device that generates the impedance. When the wake is broad–band, the
impedance does not change much from successive lines in the summation, in such a way
that the sum can be replaced by an integral, and the whole information regarding the
1 This expression is valid for 𝑄 > 1/2. The general formula can be found in Zotter & Kheifets (1998,

sec. 3.2.4).
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periodicity of the system is lost, because the interaction only occurs in a short–time
interval. The reasoning above suggest that the attribution of narrow or broad–band term
depends on the size of the ring and, more specifically, on the bunch spacing.

There are some degenerate cases of the resonator impedance which are very useful
to model sort–range wakes. They are the resistive impedance, 𝑍Res, and the inductive
impedance, 𝑍Ind, given by

𝑍Res = 𝑅

𝑍Ind = −𝑖𝐿𝜔
⇒

𝑊 ′
0,Res = 𝑅𝛿(𝑧)

𝑊 ′
0,Ind = 𝑖𝐿𝛿′(𝑧)

(3.43)

where 𝛿(𝑧) is the Dirac’s delta function and 𝛿′(𝑧) its first derivative. While the resistive
impedance is related to energy loss and instabilities, the imaginary creates tune shifts
and potential well distortion. It is common in the related literature to attribute the word
capacitive to negative inductive impedances, even though it does not have the correct
𝜔–dependence.

The analogous of the longitudinal resonator model for the transverse plane is given
by

𝑍𝑡 = 𝜔𝑅

𝜔

𝑅𝑠

1 + 𝑖𝑄
(︁

𝜔𝑅

𝜔
− 𝜔

𝜔𝑅

)︁ , (3.44)

where the factor 1/𝜔 must be introduced for the impedance to satisfy the symmetry
properties and the Panofsky–Wenzel theorem. The corresponding wake function is2

𝑊𝑡(𝑧) =

⎧⎪⎪⎨⎪⎪⎩
0 𝑧 < 0
2𝛼𝜔𝑅

𝜔̄𝑅

𝑅𝑠𝑒
−𝛼𝑧/𝑐 sin

(︂
𝜔̄𝑅𝑧

𝑐

)︂
𝑧 > 0

. (3.45)

3.9 Impedance Calculation
For most practical cases, determining the impedance of a given component of the

storage ring is a very difficult task because of the complexity of the boundary conditions
involved. The exact analytic solution of the ME can only be performed for a limited
number of cases, and even in these cases some idealization of the real system must be
performed. In order to tackle this problem, the accelerator physics community resorts to
various possible ways of finding approximate results and all these efforts can be grouped
in two categories: the analytic treatments and the numeric solutions.

An adequate description of the analytic methods for finding such solutions is be-
yond the scope of this work and can be found in the book written by Zotter & Kheifets
(1998) and the report written by Gluckstern (2000). Besides, Chao (1993) and Palumbo et
2 Same as described in footnote 1. The general expression is in Zotter & Kheifets (1998, sec. 3.3.2).
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al. (1994) also discuss some of the approximate methods in a very intuitive way; and Ng
& Bane (2010) present a table with some of the most important results for common types
of accelerator structures. Not covered in any of these references is the explanation of
the use of the parabolic equation, which is a paraxial approximation of the ME, to the
impedances calculation, presented by Stupakov (2006). From these equations it can be
shown that the wakes must satisfy a very interesting scaling feature that is very useful
for numeric simulations (STUPAKOV et al., 2011).

Most analytic methods are employed in frequency domain, which means the result
of the calculation is an expression for the impedance, not for the wake, which generally is
valid for a certain range of frequencies and most common approximations consider either
frequencies much lower than the cutoff frequency3 of the pipe (𝜔 ∼ 2.4𝑐/𝑏) or very high
frequencies. While the first kind of approximations is valid for bunches longer than the
characteristic transverse dimension of the structures, the latter is a good approximation
for very short bunches.

In the case of Sirius, the standard vacuum chamber has a radius of 12 mm while
the bunch will have approximately 3 mm in length. This combination of dimensions is
delicate because the bunch is not long enough for the low frequency approximations to
be valid nor short enough for the high frequency regime to dominate, which means we
cannot rely only on these methods to compose the Sirius impedance budget.

Below we will describe two cases of analytic impedance calculations of fundamental
importance to this work: the first is the tapered transition, which is an example for the
arguments presented above, indicating that numerical solvers are the most accurate way of
calculating impedances, and the other is the resistive wall, which is a big exception to this
rule. Finally, we will introduce the main concepts important for numerical simulations.

3.9.1 Tapered Transitions

Some components in a storage ring require transverse apertures that are different
from the standard vacuum chamber. For example, most undulators need narrower cham-
bers because their magnetic gap is small in order to achieve larger fields. The beam ports
of the RF cavities, on the other hand, can be larger than the standard pipe. These two
types of structures in the vacuum chamber are called collimators4 and cavities, respec-
tively, and have a strong impact on the total impedance budget of a storage ring, mainly
in the transverse plane. See for example a paper by Günzel (2006) which describes the
impedance budget of the ESRF storage ring or another work of the same author, Günzel
& Perez (2008), where the impedance budget of ALBA is analysed.
3 Cutoff frequency is the frequency of the lowest eigen-mode of the pipe, above which the fields can

propagate through the tube.
4 Actually there is a device called collimator which has the same concave geometry of the pairs of

transitions defined with this name here. Their function is to screen the transverse tail of the beam.
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(a) Flat transition. (b) Round transition. (c) Scheme of a tapered transition.

Figure 10 – When 𝑟 > 𝑅 the element is called cavity and when 𝑟 < 𝑅 it is called collima-
tor. The tapers are the smooth transition regions of the chamber, region where
the radius varies. When the transition has no tapers it are called step–in or
step–out, depending on the relation between the initial and final radius.

Figure 10c shows a scheme of such type of geometry, with the important param-
eters for the impedance calculation. Such geometry can be separated in two independent
contributions from the two cross section variations if the gap, 𝑔, is large, according to Bane
et al. (2007). As discussed by Heifets & Kheifets (1991), when the beam passes through
transitions two forces act on it: one from the change of the energy stored in the syn-
chronous component of the field that travels with the beam, 𝑍𝑠, originated due to the
difference in the cross sections, and another one due to the radiation emitted by the image
charges on the wall, 𝑍𝑟,

𝑍out
0 = 𝑍𝑟 + 𝑍𝑠 (3.46a)
𝑍 in

0 = 𝑍𝑟 − 𝑍𝑠 (3.46b)

where 𝑍out
0 is the total impedance of the transition where the beam goes from a smaller

chamber to a larger one (step–out), 𝑍 in
0 is the impedance from a larger chamber to a

smaller one (step–in) and the equality of the terms 𝑍𝑟 in both cases is a consequence of
the beautiful theorem of directional symmetry of the impedance, demonstrated by Heifets
(1990). The term 𝑍𝑠 is constant regardless of the frequency and tapering of the transi-
tion, and causes energy gain in the step–in case and energy loss for the step–out. For a
transition with round cross–section this contribution to the impedance is given, according
to Palumbo et al. (1994), by

𝑍𝑠 ≈ 𝑍0

2𝜋
ln
(︂

𝑟1

𝑟2

)︂
, (3.47)

where 𝑍0 = 120𝜋 Ω is the impedance of free space and 𝑟1 and 𝑟2 are the radius of the
chamber before and after the transition, respectively. Besides, for the step–in case the
total energy loss by the beam must be approximately zero, 𝑍 in

0 ≈ 0, because the radiation
emitted propagates in the opposite direction of the beam. This means that all the energy
of the radiation must be taken from the synchronous field, which yields that in the high
frequency limit 𝑍𝑟 = 𝑍𝑠.

Notice that the average influence of the source term, 𝑍𝑠, on the impedance in
one turn around the ring is zero, because of the periodicity of the vacuum chamber.
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Thus, the term that really matters is the contribution from radiation, which depends
on the characteristics of the transition, such as the tapering. Analytic studies of this
component were carried out by Yokoya (1990) for a round geometry (Figure 10b), where
the author derived expressions for the low frequency range of smoothly varying tapered
transitions. Later Stupakov (1996) corrected the upper frequency limit of the validity
of these expressions and extended the lower limit to zero frequency. The result is the
following:

𝜔𝑟2

𝑐𝑙
≪ 1 : 𝑍‖ = −𝑖𝜔𝑍0

4𝜋𝑐

∫︁ ∞
−∞

d𝑧 (𝑟′)2
, 𝑍𝑡 = −𝑖𝑍0

2𝜋

∫︁ ∞
−∞

d𝑧

(︃
𝑟′

𝑟

)︃2

, (3.48)

where 𝑟 = 𝑟(𝑧) is the radius of the chamber, 𝑟′ = 𝑟′(𝑧) is the derivative of the radius and
𝑙 = (𝐿 − 𝑔)/2 is the taper length. This impedance is imaginary while the one from the
high frequency limit is real. This happens because below the cutoff frequency no radiation
can propagate, suggesting that above this threshold a real part of the impedance will
arise and approach the high frequency limit, while the imaginary part will tend to zero,
after a complex frequency range where the transition between the two limiting behaviors
dominates. Another feature of the equation above is that the impedance tends to zero
with the taper length. For example, for a linear taper the formulas above simplify to

𝜔𝑟2

𝑐𝑙
≪ 1 : 𝑍‖ = −𝑖𝜔𝑍0

4𝜋𝑐

|𝑟1 − 𝑟2|
𝑡

, 𝑍𝑡 = −𝑖𝑍0

2𝜋

1
𝑡
|𝑟−1

1 − 𝑟−1
2 |, (3.49)

where 𝑡 = tan−1 𝜃 = 𝑙/|𝑟1 − 𝑟2| is the transition factor of the taper.

Stupakov (2007) developed a method to find the low frequency impedance of tapers
with general cross sections and derived explicit formulas for a flat taper, consisting on
a rectangular geometry with varying vertical gap and constant horizontal aperture, as
shown in Figure 10a. His results are:

𝜔𝑤2

2𝑐𝑡ℎ
≪ 1 and ℎ ≪ 𝑤 ≪ 𝑙 :

𝑍‖ = −0.43𝑖𝜔𝑍0

𝜋𝑐

∫︁ ∞
−∞

d𝑧(ℎ′)2

𝑍𝑦 = −𝑖𝑍0𝑤

4

∫︁ ∞
−∞

d𝑧
(ℎ′)2

ℎ3

𝑍𝐷
𝑥 = −𝑍𝑄

𝑥 = −𝑖𝑍0

4𝜋

∫︁ ∞
−∞

d𝑧

(︃
ℎ′

ℎ

)︃2

, (3.50a)

where 𝑤 is the chamber half–width and ℎ(𝑧) is the half–gap. It is worth noting that the
dipolar horizontal and the quadrupolar impedances are equal to each other and a factor
of 2 smaller than the transverse impedance in a conical taper, while the longitudinal
impedance is approximately 7/4 of its counterpart. The most interesting result, however,
is the linear dependence of the vertical dipolar impedance with the width of the chamber,
which makes this impedance approximately 𝜋/(2𝑤 ⟨ℎ⟩harm) larger than the round chamber
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one. For example, for a linear taper these expressions become

𝜔𝑤2

2𝑐𝑡ℎ
≪ 1 and ℎ ≪ 𝑤 ≪ 𝑙 :

𝑍‖ = −0.43𝑖𝜔𝑍0

𝜋𝑐

|ℎ1 − ℎ2|
𝑡

,

𝑍𝑦 = −𝑖𝑍0

2
𝑤

𝑡
(ℎ−1

1 + ℎ−1
2 )|ℎ−1

1 − ℎ−1
2 |,

𝑍𝐷
𝑥 = −𝑍𝑄

𝑥 = −𝑖𝑍0

4𝜋

1
𝑡
|ℎ−1

1 − ℎ−1
2 |,

(3.51)

where we note that 𝑍flat
𝑦 /𝑍round

𝑦 = 𝜋𝑤(ℎ−1
1 + ℎ−1

2 ).

Podobedov & Krinsky (2007) studied the low frequency limit of confocal5 elliptical
transitions and found results very similar to the expressions above for the flat geometry,
which gives some confidence in trying to extend the qualitative results discussed here for
approximated geometries.

Even though the low–frequency impedance of long and short collimators and cav-
ities are the same, because the equations showed above can be applied to both lim-
its, Heifets (1990) found different limits for the high frequency impedances of a round cav-
ity, depending on the length of their gap. Besides, Stupakov et al. (2007) found equal limit
values for the longitudinal impedance, but different for the transverse dipolar impedance
in a round collimator. While for the longitudinal limit the value is two times the quantity
in equation (3.47), for the transverse plane they found

short: 𝑍𝐷
𝑥 = 𝑍0𝑐

2𝜋𝜔𝑟2

(︃
1 − 𝑟4

𝑅4

)︃
long: 𝑍𝐷

𝑥 = 𝑍0𝑐

𝜋𝜔𝑅2

(︃
1 − 𝑅4

𝑟4

)︃
(3.52)

where the notation of Figure 10c was used. Besides, there is a very large frequency gap
between the two limiting cases that are of great importance, mainly for storage rings
such as Sirius, which have bunch lengths that sample these frequencies. For the round
collimator, Stupakov & Podobedov (2010) used the parabolic equation to calculate the
impedance from a few dozens GHz up to a few THz, with excellent agreement with results
from numerical solvers. However, so far the impedance for other geometries, or even the
detailed behavior of one of the round transitions, can only be accessed with the aid of
numerical solvers.

For example, Blednykh (2006) studied the impedance of the flat collimator–type
chamber of a mini–gap undulator and found a very intense narrow–band mode just above
the cutoff of the pipe, that depended very strongly on the width of the cross–section.
For all these reasons the formulas studied here, even though very useful to the study of
this type of impedance and qualitative analysis of the relevant parameters for impedance
optimization, will not be used quantitatively for any device of the impedance budget.
5 Confocal ellipses means they have the same foci. In the case of the transition cited here, the equation

𝑎2(𝑧1) − 𝑏2(𝑧1) = 𝑎2(𝑧2) − 𝑏2(𝑧2) is valid for any longitudinal position 𝑧1 and 𝑧2, where 𝑎 and 𝑏 are
the larger and smaller axes of the ellipse.
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3.9.2 Multi–Layer Resistive Wall

The standard resistive wall effect has been known for a long time. It was first ob-
served to generate coherent oscillations in electron streams coupled to circuits by Pierce
(1951) and then used to create a resistive-wall amplifier by Birdsall et al. (1953). This
idea was first applied to the study of collective effects in accelerators by Neil & Sessler
(1965) and Laslett et al. (1965) to explain longitudinal and transverse coherent oscilla-
tions of coasting beams and then by Courant & Sessler (1966) to describe instabilities
of bunched beams. Since then the theory for calculation of the now called resistive-wall
impedance evolved (CHAO, 1993), being exactly solved by Bane (1991) for a round and
infinitely thick and long vacuum chamber, where the author provided analytic formulas
for the short-range wake-fields, and for an arbitrary transverse cross section by Yokoya
(1993), who based its work on a formalism developed by Gluckstern et al. (1993). In his
work, Yokoya also showed that the spectral dependency of the longitudinal and transverse
dipolar and quadrupolar impedances of elliptic chambers with equal smaller axis, but dif-
ferent eccentricities, are identical, in such a way that their wake functions differ from each
other only by a constant factor. In the special cases of a round and a flat chamber, which
are degenerated cases of an ellipse, with eccentricities equal to 0 and 1 respectively, the
so called Yokoya factors are given by(︁

𝑍‖
)︁

flat
=
(︁
𝑍‖
)︁

round
(3.53)(︁

𝑍𝐷
𝑥

)︁
flat

= 𝜋2

24
(︁
𝑍𝐷

𝑥

)︁
round

(3.54)(︁
𝑍𝐷

𝑦

)︁
flat

= 𝜋2

12
(︁
𝑍𝐷

𝑥

)︁
round

(3.55)(︁
𝑍𝑄

)︁
flat

= 𝜋2

24
(︁
𝑍𝐷

𝑥

)︁
round

, (3.56)

where the net horizontal force felt by the witness particle with the same horizontal position
as the source particle is zero for the flat chamber. Actually, this is a particular case of the
general result that the wake potential of this structure must not depend individually on
the horizontal positions of the source and witness particles, but only on their difference

𝑊flat(𝑥𝑠, 𝑦𝑠, 𝑥𝑤, 𝑦𝑤, 𝑧) = 𝑊flat(𝑦𝑠, 𝑦𝑤, 𝑥𝑠 − 𝑥𝑤, 𝑧),

so that the condition of translational symmetry in the horizontal direction is respected.

It is very recurrent in accelerators to have chambers that are composed of different
laminar layers of materials. For example, the chambers of fast time-varying magnets, such
as the injection kickers of a storage ring, must be made of a bad conductor, generally a
ceramic, to allow the penetration of the fields. To avoid discontinuities in the path of
the image current of the beam6, which could lead to excessive heating and consequent
6 This is equivalent to say: "to decrease the impedance of the beam".
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melting or burning of the magnet components and the accumulation of static charges
in the ceramic, a thin layer of metal is coated in the inner surface of the chamber. The
thickness of the coating must be of a few microns: thin enough not to distort the external
field as it penetrates the walls, which has frequencies of the order of hundreds of kilo
Hertz, and thick enough to shield most of the frequencies of the beam, which extend to a
few dozens of giga Hertz. Specifically for the kicker magnet, outside the ceramic vacuum
chamber, there is a layer of ferrite, which is used to guide the external field of the kicker.
In the low frequency part of the spectrum, all these different layers of materials are seen
by the self–generated fields of the beam and contribute to the impedance.

Besides, the multi–layer chamber model also applies in the simple case of a stan-
dard vacuum chamber of an accelerator, where the finite thickness of wall can be inter-
preted as a multi–layer chamber composed of metal and air. For low frequencies, the skin
depth of the material becomes larger than the thickness of the chamber, which decreases
the losses by the beam. As a consequence, the real part of the impedance goes to zero and
the imaginary part goes to a constant value as the frequency tends to zero. This behavior
is correctly predicted by the multi–layer model, while the infinitely thick formula predicts
that both impedances diverge to plus and minus infinity, respectively. This low frequency
of the resistive wall has a very narrow band nature and influences the long–range wake
fields, which are directly related to the coupled bunch resistive–wall instability and the
incoherent tune shifts caused by chambers without circular symmetry, as explained by
Chao et al. (2002).

The multi–layer chambers problem was first tackled by Zotter (1969a), who created
an algorithm that solved the problem for an arbitrary number of layers of materials with
arbitrary electric and magnetic properties, as long as they were linear, homogeneous and
isotropic (ZOTTER, 1969a; ZOTTER, 1969b; ZOTTER, 1970). Even though his method
was general enough to be applied to any azimuthal mode 𝑚 of the source, he only calcu-
lated the fields for the azimuthal modes 𝑚 = 0 and 𝑚 = 17. This allowed him to derive
explicit analytic formulas, under some approximations, for the longitudinal impedance
of simplified configurations, such as a single wall with finite thickness, and a metallized
ceramic chamber surrounded by a PEC. In this latter case, the author concluded that
the effectiveness of the coating in the inner wall was much higher than what is intuitively
thought by comparing the thickness of the coating with the skin depth of the fields for a
given frequency.

Later Piwinski (1977) calculated the impedance generated by a gaussian bunch in a
four-layer round chamber composed of metal, ceramic, ferrite and PEC, in that order, and
confirmed what Zotter (1970) had previously found: for this type of multi–layer chambers,
7 It is remarkable that his method goes beyond the rigid beam approximation, considering the source

of the wake fields as an infinitely long beam oscillating in the transverse plane to calculate the mode
𝑚 = 1.
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the fields will not penetrate through the coating if its thickness, 𝑡, satisfies

𝑡 >
𝛿2

𝑑
, with 𝛿 =

√︃
2

𝜇0𝜔𝜎𝑐

(3.57)

where 𝛿 is the skin depth, 𝜎𝑐 is the conductivity of the coating, 𝜇0 is the magnetic per-
meability of vacuum, 𝜔 is the angular frequency of the fields and 𝑑 is the thickness of
the ceramic. This means that, since generally 𝑑 ≫ 𝑡, the coating is efficient down to
frequencies much lower than what is intuitively thought.

In a more recent work, Zotter (2005) rederived his formalism for a point like charge,
which was used by Mounet & Métral (2009) to derive formulas for the electromagnetic
fields and impedances of any azimuthal mode 𝑚, under the assumption of a rigid beam.
Later, the same authors also derived expressions for a multi–layer flat chamber with
possible different layers in the top and bottom plates (MOUNET; MÉTRAL, 2010a) which
allowed them to generalize the Yokoya factors (MOUNET; MÉTRAL, 2010b). Then, in
his PhD thesis, Mounet (2012) developed a general method to perform Fourier integrals,
which allowed him to compute the exact short and long–range wake functions using the
impedances. All these developments in 2D impedance theory were implemented by Mounet
in a code called ImpedanceWake2D (MOUNET, 2011) that is available as free software
for the accelerator community. It is important to mention that other authors also solved
the problem of multi–layer impedances using different methods, for example Hahn (2008)
and Al-Khateeb et al. (2005) also derived general methods valid for arbitrary energies and
frequencies in round chambers and Burov & Lebedev (2002a), Burov & Lebedev (2002b)
also solved the problem under the assumption of long wavelengths, 𝑐/𝜔 ≪ 𝑎, for round
and flat geometries.

In summary, the theory of smooth multi–layer infinitely long round chambers is
completely solved. In this work we implemented Mounet & Métral formulas to calcu-
late the impedances for round chambers for the azimuthal modes 𝑚 = 0 and 𝑚 = 1 in
Matlab® and Python3 and the wake functions were obtained using the code Impedance-
Wake2D. In cases where the eccentricity of the chamber is large, the Yokoya Factors are
applied to the round chamber results.

3.9.3 Numeric Methods

The numerical solvers can be grouped in two categories: 1) the frequency domain
codes, that are more indicated for calculation of resonant modes below the cutoff of the
chamber, and 2) time domain solvers. While the first class computes the eigen-values and
eigen-modes of the structures and the user must identify which ones can be excited by
the beam passage, the latter solves ME computing directly the fields that are generated
by the beam. In this type of solvers the beam is modeled by a line density of charge, 𝜆,
that traverses the structure at the speed of light with a constant transverse displacement,



Chapter 3. Wakes and Impedances 75

𝜌′0, and then, by discretization of the space-time in grids and approximations of the
derivatives by linear operators on the fields in the vertices and faces of each grid, the
electromagnetic field can be calculated up to the desired distance behind the source, so
the integral defined in equation (3.4) can be carried out. Depending on the methods
employed in the discretization and the properties of the linear operators in each grid,
different convergencies of the solutions related to the finesse of the grids can be achieved.
There are several different methods and codes in the literature dedicated to this purpose.
For a good review on numeric methods Niedermayer & Gjonaj (2016) and its references
are recommended.

3.9.3.1 Finite Line Density Issue

This procedure employed to find the impedances has an intrinsic limitation: the
line density used as source particle in simulations must always spread over a few grids,
which means a delta-like function can never be used and the wake functions, or wake
potential, cannot be obtained. Instead, the effective wake potential, given by

𝑉 (𝜌′0, 𝜌, 𝑧) =
∫︁

d𝑧*𝜆(𝑧*)𝑊 (𝜌′0, 𝜌, 𝑧 − 𝑧*), (3.58)

is the result of the simulations. In principle this equation could be inverted with the
aid of the convolution theorem (Wikipedia Contributors, 2017c), where after the Fourier
transform on both sides of the equation one could get

𝑊̃ = 𝑉

𝜆̃
. (3.59)

However, this procedure fails to give the values of the impedance at large frequencies
due to two effects: the most obvious is the limitations imposed by the Nyquist theorem
applied to the grid length of the simulation and the other comes from the fact that the
line density Fourier transform has a tail at large frequencies that makes the denominator
of equation (3.59) very small, which, in turn, increases the effect of the noise of the
simulations for this frequency range. This limitation on the knowledge of the impedance
for high frequencies makes it impossible to obtain the wake function accurately for short
distances from the source.

The line density generally used for such calculations is the gaussian distribution:

𝜆(𝑧) = 1
𝜎

√
2𝜋

exp
(︃

−(𝑧 − 𝑛𝜎)2

2𝜎2

)︃
, (3.60)

where 𝑛 is an integer generally equal to 5 or 6. due to its minimal duration-bandwidth
product (NIEDERMAYER; GJONAJ, 2016). A rule of thumb for these calculations is to
consider the impedance only up to frequencies 𝜔 <= 2𝜎/𝑐 thus avoiding strong influences
of the numerical noises as discussed above, which is much more limiting than the Nyquist
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requirement, given that in simulations the bunch length must be at least five times larger
than the grid size.

The authors Podobedov & Stupakov (2013) found a way to overcome this prob-
lem, as long as the bunch length used in the simulation is short enough. However, a
more practical approach comes from the fact that a real bunch also has a finite length
and cannot excite wakes with arbitrarily large frequencies, which means if the line den-
sity used to obtain the wakes is smaller than the smallest longitudinal structure in the
bunch expected to generate any macroscopic significant effect we want to study, then
the impedance extracted from that simulation is close enough. Notice this method is in-
trinsically non-consistent, because we must know a priori how the beam will behave to
compute the impedance that will drive this behavior. However, the knowledge gathered by
the accelerator physics community in the last fifty years, through several experiments and
confrontation of these results with simulated and analytically calculated beam dynamics,
led to some rules of thumb that determine the maximum frequency that can be expected
to influence the dynamics of a bunch with a given natural bunch length.

This approach may be conflicting in some situations when the high frequency
content of the wake is desired but the structure being analysed has strong resonant modes
that take hundreds of meters behind the source to damp. Running a simulation with a
short line density will drastically increase the complexity of the simulation because of the
smaller mesh size. The solution for these cases is running two simulations, one with a
short bunch and small wake length and other with a longer bunch and long wake length,
to characterize the resonant mode. Another approach is to simulate the resonant modes
with a frequency domain code.

3.9.3.2 ECHO Code

There are some solvers in the literature that were developed specifically for ro-
tationally symmetric geometries, such as ABCI (CHIN, 1994), since this type of struc-
ture is rather common in accelerators. In this type of systems the wake potential in the
ultra-relativistic approximation can be partially solved without the need of specifying the
boundary conditions, only by the application of the Panofsky-Wenzel theorem and equa-
tion (3.12). It can be shown (STUPAKOV, 2000) that the most general form for the wake
potential in such conditions is:

𝑊 (𝜌𝑠, 𝜌𝑤, 𝜃, 𝑧) =
∞∑︁

𝑚=0
𝑊𝑚(𝑧)𝜌𝑚

𝑤 𝜌𝑚
𝑠 cos(𝑚𝜃) (3.61)

where 𝜌 = |𝜌| is the distance of the particles to the center of the chamber, 𝜃 is the angle
between the source and the witness particles and the source particle is assumed to lie
in the 𝑥̂ direction. The wake functions can be obtained from the gradient of the wake
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potential. Expanding the wake functions in the leading order we have

𝑤𝑠(𝑧) ≈ 𝑊 ′
0(𝑧) (3.62)

𝑤𝑡(𝑥𝑠, 𝑧) ≈ 𝑊1𝜌𝑠(𝑟 cos(𝜃) − 𝜃 sin(𝜃)) = 𝑊1𝑥𝑥̂ (3.63)

where the force is along the direction of the displacement of the source particle.

This partial solution of the wake potential allows us to solve each azimuthal com-
ponent of the wake potential separately, which implies the numerical solution can be found
for a single plane of the structure, for example, the plane 𝑥−𝑠, or 𝑦 = 0. This bidimensional
mesh drastically reduces the simulation time for such components and this class of codes
are called 2D solvers. Among such codes we highlight ECHOz1 and ECHOz2 (ZAGOROD-
NOV et al., 2003; ZAGORODNOV; WEILAND, 2005; ZAGORODNOV, 2006), which are
distributed as free software by the author. While ECHOz1 calculates only the azimuthal
mode 𝑚 = 0, ECHOz2 provides the longitudinal and transverse wake functions for an
arbitrary mode 𝑚. This code employs several solutions to common problems of numeric
simulations that makes it the state of the art for impedance calculation. Among the
advantages of this code we highlight:

• zero dispersion in the longitudinal plane. Longitudinal dispersion is a typical numeric
artifact that introduces a non-physical dependency of the phase velocity of the
electromagnetic waves with their frequency, which deteriorates the precision of the
wakes;

• fast convergence of the ratio between bunch size and grid length, 𝜎/ℎ: in other codes
this ratio must be one order of magnitude larger than ECHO’s value for the results
to have the same precision. In ECHO a ratio of 5 already gives convergent results,
which greatly reduces the simulation time for a given frequency requirement on the
knowledge of the impedance;

• moving mesh: instead of discretizing the whole structure, the grids move with the
source and this region extends behind it only down to the desired length of the wake.
This approach helps reducing the simulation time in cases where the structure is
larger than the wake length and is applied in other codes too, such as GdfidL;

• indirect integration: for the wake calculation, the infinite integral in the longitudi-
nal direction can be substituted by finite integrals in closed contours that span the
structure longitudinally. The first method proposed by Weiland (1983) was valid
only for cavity-like structures, but then it was generalized for any rotationally sym-
metric structure by Napoly et al. (1993), and finally generalized for any 3D structure
by Zagorodnov (2006). This procedure greatly reduces the computational time be-
cause otherwise it would be necessary to propagate the beam for a very long distance
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just for the sake of integral convergence. Besides, it improves the precision of the
results, because the long integral in the direct method suffers from accumulation of
numerical errors.

There is another code provided by the same author, ECHOzR, that calculates the
wakes for structures with rectangular cross sections (ZAGORODNOV et al., 2015). The
conditions imposed on the geometry are that the lateral walls are composed of infinite
vertical and perfectly conducting parallel plates separated by a distance 𝑤 and that the
horizontal walls that define the vertical gap have an arbitrary longitudinal profile and
electrical conductivity. Employing the harmonic properties of the wake potential (equa-
tions (3.12) and (3.13)) on the transverse coordinates of the source and witness particles,
the author solves partially the wake potential by expanding it in trigonometric func-
tions that automatically satisfy the boundary conditions in the vertical plates. This way,
similarly to the rotationally symmetric case, the numerical computation is reduced to a
bidimensional problem that is solved independently for each term of the expansion. All
the advantages presented for ECHOz2 regarding the precision of the results and simula-
tion time also applies for ECHOzR. The main difference between the two codes is that
for the rectangular code significant post-processing of the results is needed, because the
lowest order longitudinal and transverse wake functions are an infinite sum of the modes
of the expansion. However, close to center of the chamber, convergence can be achieved
by summation of approximately the first ten modes.

There is also a generic version of the ECHO code, called ECHO3D, that can be
used to compute the wakes for an arbitrary geometry. This code has all the advantages of
the bidimensional codes, but lacks a key feature: it is not parallelized. For 3D structures
this limitation imposes great restrictions on the type of simulation that can be performed,
due to the extremely large required computational time.

3.9.3.3 GdfidL Code

When the components of the vacuum chamber do not respect the symmetries
required by the 2D solvers or cannot be approximated by one that does, 3D codes must
be used. They are also used when a detailed simulation is needed to compute not only
the wake potential but also the distribution of the electromagnetic field density in the
structures, to calculate heating effects and also the transmission of the fields through
ports. The most well-known applications for this type of simulations are GdfidL (BRUNS,
1997; BRUNS, 2017) and CST Particle Studio (CST, 2017), being the first code the adopted
choice for Sirius components design and simulation.
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4 COLLECTIVE EFFECTS

In the previous chapter the mechanism of interaction between particles was mod-
eled and formulas for the momentum change of an arbitrary particle due to the action
of all the other particles in the beam were derived. In this chapter we will try to include
these interactions in the dynamic model of the particles and analyse how the beam will
behave as a whole.

4.1 Sum of the Wakes
With the theory developed so far it is formally possible to calculate the wake po-

tential for all the structures of the ring and include their effects on the beam dynamics
assuming the impulse approximation, which considers the variation of the particle momen-
tum must be applied at the position in the ring equivalent to the center of the impedance
source. However, a further approximation is usually done for the calculation of the effect
of wake-fields in global parameters of the machine, such as tune–shifts, energy loss and
even instabilities. This approximation considers all the impedance sources are located at
a single point in the ring, in other words, it neglects the phase advances between each
wake source. This way the total longitudinal wake of a machine can be given by:

𝑊 ′
0(𝑧) =

∑︁
𝑖

(𝑊 ′
0(𝑧))𝑖 (4.1)

where 𝑖 refers to the 𝑖-th impedance source of the ring.

For the transverse plane it is important to remember that the transverse amplitude
of the displacements of the source and witness particles varies along the ring, which means
the transverse components of the wake potential must be scaled according to the local
betatron functions at their positions

𝑊 𝐷
𝑢 = 1

(𝛽𝑢)𝑇

∑︁
𝑖

√︁
(𝛽𝑢)𝑠

𝑖 (𝛽𝑢)𝑤
𝑖

(︁
𝑊 𝐷

𝑢 (𝑧)
)︁

𝑖

𝑊 𝑄
𝑢 = 1

(𝛽𝑢)𝑇

∑︁
𝑖

(𝛽𝑢)𝑤
𝑖

(︁
𝑊 𝑄

𝑢 (𝑧)
)︁

𝑖
(4.2)

where 𝑢 represents 𝑥 or 𝑦, (𝛽𝑢)𝑇 refers to the value of the betatron function at the position
where all the impedances are being lumped, (𝛽𝑢)𝑤

𝑖 is the value of the betatron function
at the location where the witness particle feels the kick and (𝛽𝑢)𝑠

𝑖 is the betatron function
where the source particle generated the wake.

This scaling can be easily understood by the analysis of the wake potential terms of
the quadrupolar and dipolar wakes. For example, the horizontal dipolar term of the wake
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potential corresponds to 𝑥𝑠𝑥𝑤𝑊 𝐷
𝑥 (𝑧), which means it depends linearly on the displacement

𝑥𝑠 at the point 𝑎 where it induces the wake fields. If we want to displace the position where
this wake was generated from positions 𝑎 to 𝑏 and, on average, keep its value unchanged,
it is necessary to consider that the amplitude of movement of the source particle were√︁

𝛽𝑎
𝑥/𝛽𝑏

𝑥 larger when it excited the fields and we have to multiply our equivalent wake
function by this value. In the same way, the witness particle felt the fields generated by
the source at a position 𝑐 downstream from the point where they were generated and, if
we want to consider the position of the witness particle in 𝑏, it is important to multiply
the effective wake by

√︁
𝛽𝑐

𝑥/𝛽𝑏
𝑥, to keep the average strength unchanged.

All references in literature consider that the position where the wake is generated
and the position where the particles feel these wakes are the same, so in this work we will
consider it too. Under such condition, the equations (4.2) reduce to

𝑊 𝐷
𝑢 = 1

(𝛽𝑢)𝑇

∑︁
𝑖

(𝛽𝑢)𝑖

(︁
𝑊 𝐷

𝑢 (𝑧)
)︁

𝑖

𝑊 𝑄
𝑢 = 1

(𝛽𝑢)𝑇

∑︁
𝑖

(𝛽𝑢)𝑖

(︁
𝑊 𝑄

𝑢 (𝑧)
)︁

𝑖
(4.3)

where (𝛽𝑢)𝑖 is the value of the betatron function at the position of the wake source. How-
ever, depending on the transverse sizes of the chamber the fields can only catch up with
the witness at distances of the order of centimeters away from the point where the fields
were generated. For 4th GLS, where the focusing is very strong, such a distance is enough
for the betatron function to have changed considerably. The effect of this consideration
can be a topic for future studies.

4.2 Energy Loss
One of the most important effects of wake fields is the energy loss by the beam.

It can be computed considering only the leading order term in the momentum change
expansion

Δ𝐸 ≈ 𝑐Δ𝑝 ≈ 𝑐

(︃
𝑝𝑠

𝑝
Δ𝑝𝑠 + 𝑥′Δ𝑝𝑥 + 𝑦′Δ𝑝𝑦

)︃
≈ 𝑐Δ𝑝𝑠. (4.4)

This way the energy variation of a given particle due to wake-fields depends on which
bunch it is and on its longitudinal deviation from the synchronous particle and is given,
in the most general form, by equation (3.31a) multiplied by the average charge of the
bunches and the charge of the particle. If we consider the distributions are stationary
and the ring is uniformly filled with charge, then the expression for the wake-potential is
reduced to equation (3.38).
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Under this approximation, the energy variation of a particle after passing through
the impedance source would be given by:

Δ𝐸 (𝑧) = −𝑒𝐼𝑏𝑇0𝑉0(𝑧) = −𝑒𝐼𝑏𝑇0
𝑀𝜔0

2𝜋

∞∑︁
𝑝=−∞

𝜆̃(𝑝𝑀𝜔0)𝑍‖(𝑝𝑀𝜔0)𝑒−𝑖𝑝𝑀𝜔0𝑧/𝑐. (4.5)

where 𝐼𝑏 = 𝑄𝑏/𝑇0 = 𝑁𝑏𝑒/𝑇0 is the current per bunch, 𝑇0 is the revolution time, 𝑁𝑏 is the
number of particles per bunch and 𝑒 is the absolute value of the elementary charge of the
electron. The average total energy lost by one bunch is given by

⟨Δ𝐸⟩𝑏 = 𝑁𝑏

∫︁ ∞
−∞

d𝑧𝜆 (𝑧) Δ𝐸 (𝑧) = − (𝐼𝑏𝑇0)2

𝜅‖⏞  ⏟  
𝑀𝜔0

2𝜋

∞∑︁
𝑝=−∞

|𝜆̃(𝑝𝑀𝜔0)|2ℜ
{︁
𝑍‖(𝑝𝑀𝜔0)

}︁
(4.6)

where 𝜅‖ ≡ 𝜅𝐿 is called the longitudinal loss factor, | ˜𝜆 (𝜔)|2 = 𝜆̃ (𝜔) 𝜆̃* (𝜔) must be an
even function of the frequency, given that 𝜆 is real. Notice that only the real part of the
impedance contributes to the energy loss, because the imaginary part is an odd function
of the frequency. The average energy loss per particle can be defined as

⟨Δ𝐸⟩𝑝 = ⟨Δ𝐸⟩𝑏

𝑁𝑏

= −𝑒𝐼𝑏𝑇0𝜅‖. (4.7)

For impedances that vary smoothly with the frequency compared to the interval 𝑀𝜔0,
the sum in the definition of the loss factor can be replaced by an integral

𝜅‖ = 1
2𝜋

∫︁ ∞
−∞

d𝜔|𝜆̃(𝜔)|2ℜ
{︁
𝑍‖(𝑝𝑀𝜔0)

}︁
= 1

𝜋

∫︁ ∞
0

d𝜔|𝜆̃(𝜔)|2ℜ
{︁
𝑍‖(𝑝𝑀𝜔0)

}︁
. (4.8)

The sum of the energy loss in each impedance source of the ring results in an
additional energy loss per turn for the particles. This means the new fixed point of the
longitudinal one turn map is not given by equation (2.33), but by

𝑉 (𝑧0) = 𝑈0 + ⟨Δ𝐸⟩𝑝 (4.9)

instead, where 𝑧0 is the new synchronous position, measured in relation to the zero current
one.

Another important parameter to consider in the design of several components of
the vacuum chamber is the power deposited in the wall per unit area by the beam due to
wake fields. To calculate such quantity we need the power loss of the whole beam, which
is obtained from equation (4.6) by multiplying it by the number of bunches and dividing
by the revolution time of the ring,

𝑃𝑤 = ⟨Δ𝐸⟩𝑇

𝑇0
= 𝑀

𝑇0
⟨Δ𝐸⟩𝑏 = 𝑇0

𝐼2
0

𝑀
𝜅‖ (4.10)

where 𝐼0 = 𝑀𝐼𝑏 is the total current stored. Now, to compute the power density one
needs to know the distribution of the tangential component of the electric field on the
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walls of the geometry. For complex geometries simulated in numerical solvers, this is done
automatically by the codes, through the computation of the tangential magnetic field and
application of the Leontovich boundary conditions (LANDAU; LIFSHITZ, 1960, pp. 280)
to get the tangential electric field. When the calculation is performed analytically, not
only the impedance, but also the fields in all regions of space must be known. For the
round chamber, the symmetry helps and the power per unit area, 𝐷𝑠, is given simply by

(𝐷𝑠)circle = 𝑃𝑤

2𝜋𝑏𝐿
(4.11)

where 𝐿 and 𝑏 are the length and radius of the chamber. For flat chambers, which can be
approximated by two infinitely large parallel plates, this problem was solved by Piwinski
(1992), whose results were used by Nagaoka (2006) to derive a formula that relates the
power density of the parallel plates, at a distance 𝑏 from the particle, with the one from
the round chamber,

𝐷𝑠(𝑥) = 𝜋2

4 cosh2
(︁

𝜋𝑥
2𝑏

)︁ (𝐷𝑠)circle , (4.12)

where 𝑥 is the transverse position on the plate from the point of minimum distance
between the particle and the plate. This function has a maximum value of 2.5 at 𝑥 = 0
and decays to negligible values above 𝑥 ≈ 4𝑏.

4.3 Current Dependent Hamiltonian
The usual approach to calculate the effects of the wakes on the beam is by introduc-

ing the total wake potential of the machine in the one turn averaged Hamiltonian (BERG,
1996; LINDBERG, 2016). This is justified by the fact that the wake forces are weak and
their effects on the beam are very slow, in such a way that the evolution of the beam
parameters are counted in a turn by turn basis. In section 4.1 it was defined a method
to sum all the wakes of the machine and the average transverse Hamiltonian was defined
in section 2.2.6, specifically in equation (2.28), and the average longitudinal Hamiltonian
was defined in subsection 2.3.4, by equation (2.39).

The wakes strongly couple the evolution of the transverse dynamics with the lon-
gitudinal plane and for this reason, the transverse analysis of collective effects usually
deal with the longitudinal Hamiltonian too. On the other hand, the coupling between
both transverse planes is very small in normal conditions of machine operation and the
wakes do not change this scenario, because of the generally weak coupling contributions
from the impedance budget, due to the symmetries of the vacuum chambers. This prop-
erty allows the simplification of the problem by neglecting the degrees of freedom of one
transverse plane when the analysis of the other is being carried out. The analysis of the
longitudinal motion is again simplified, without the need of considering both transverse
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degrees of freedom of the particles. With these considerations, the one turn Hamiltonian
of the particles that is generally considered for collective effects studies is

𝐻𝑛 = 𝐽𝑢

(︂
𝜈𝑢 + 𝜉𝑢𝛿 + 𝐽𝑢

𝐴𝑥𝑥

2

)︂
+ 𝐻‖ − ⟨𝐼⟩ 𝑇0𝑉𝑛 (𝑢, 𝑧, 𝑠)

(𝐸0/𝑒)𝐿0
(4.13)

where ⟨𝐼⟩ 𝑇0 is the average charge per bunch, the subscript 𝑛 indicates the 𝑛–th bunch
and the effective wake potential is given according to the ideas developed in section 3.7,
specifically by equations (3.31),

𝑉𝑛 (𝑢, 𝑧, 𝑠) =
∑︁
𝑙∈B

𝐼𝑙

⟨𝐼⟩

∞∑︁
𝑘=−∞

∫︁
d𝑧*

(︃
𝜆𝑙(𝑧*; 𝑠 − 𝑠𝑟)𝑊0(𝑧 − 𝑧* + 𝑠𝑟) +

𝑢𝑑𝑙(𝑧*; 𝑠 − 𝑠𝑟)𝑊 𝐷
𝑢 (𝑧 − 𝑧* + 𝑠𝑟)+

𝑢2

2 𝜆𝑙(𝑧*; 𝑠 − 𝑠𝑟)𝑊 𝑄(𝑧 − 𝑧* + 𝑠𝑟)
)︃

, (4.14)

where 𝑠𝑟 is the retarded position defined in equation (3.30), 𝜆𝑙 and 𝑑𝑙 are the longitudinal
distribution and dipole moment of the beam, defined in equations (3.32), and 𝑊0 is the
primitive function of the longitudinal wake, 𝑊 ′

0.

4.4 Stationary Effects

4.4.1 Potential Well Distortion

All the effects of the wakes on the beam can be calculated from the Hamiltonian
defined in equation (4.13). One particular effect is the distortion of the potential well
created by the RF cavities, which changes the equilibrium distribution of the particles
and the intrabunch dynamic properties such as the synchrotron tune.

To calculate such effect, we consider a static distribution for the beam and neglect
the effects of 𝑊 𝐷

𝑢 and 𝑊 𝑄, because they are small for a well centered beam in the
vacuum chamber. Besides, apart from the effect of cavities, the distortions are dominated
by short–range wakes, in such a way that we can neglect the multi–bunch and multi–turn
contributions. Under such considerations, the Hamiltonian of the particle becomes

𝐻 = 𝛼

2 𝛿2 + 𝑈(𝑧) − 𝐼𝑏𝑇0

(𝐸0/𝑒)𝐿0

∫︁
d𝑧*𝜆(𝑧*)𝑊0(𝑧 − 𝑧*), (4.15)

which is time–independent. Following the same reasonings performed in section 2.4.1 we
notice that equation (2.47) is still valid if we substitute the expression for the longitudinal
distribution by

𝜆(𝑧) = H (𝜆, 𝑧) := 𝐴 exp
(︃

1
𝛼𝜎2

𝛿

(︃
−𝑈(𝑧) + 𝐼𝑏𝑇0

(𝐸0/𝑒)𝐿0

∫︁
d𝑧*𝜆(𝑧*)𝑊0(𝑧 − 𝑧*)

)︃)︃
, (4.16)

with 𝐴 ∈ R
⃒⃒⃒⃒∫︁ ∞
−∞

d𝑧H (𝜆, 𝑧) = 1 ,
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which is a transcendental integral equation for the longitudinal distribution. This equa-
tion was first proposed and solved by Haïssinski (1973) and for this reason carries his
name. Even though analytic solutions exist for some special impedances, such as the one
presented by Shobuda & Hirata (1999), in general it must be solved numerically.

The method we adopted to solve this equation was based on an iterative approach.
Starting from a very low 𝐼𝑏 and an initial guess

𝜆𝐼𝑏
0 (𝑧) = 𝐴 exp

(︃
−𝑈(𝑧)

𝛼𝜎2
𝛿

)︃
, (4.17)

we iterate

𝜆𝐼𝑏
𝑛 (𝑧) =

⎧⎪⎪⎨⎪⎪⎩
H (𝜆𝐼𝑏

0 , 𝑧) if 𝑛 = 1

H
(︂

𝜆
𝐼𝑏
𝑛−1+𝛽𝜆

𝐼𝑏
𝑛−2

1+𝛽
, 𝑧
)︂

if 𝑛 > 1
, (4.18)

where 𝛽 is a positive convergence control variable. For each iteration the difference

𝑑𝐼𝑏
𝑛 =

∫︁ ∞
−∞

d𝑧
(︁
𝜆𝐼𝑏

𝑛 − 𝜆𝐼𝑏
𝑛−1

)︁2
(4.19)

is calculated and compared to a threshold, 𝜖. When 𝑑𝐼𝑏
𝑛𝑐

< 𝜖, convergence is assumed
and we set 𝜌𝐼𝑏 = 𝜌𝐼𝑏

𝑛𝑐
. Then, the current is incremented by a small value 𝐼𝑏 + Δ𝐼, with

Δ𝐼 ≪ 𝐼𝑏, and the process is repeated with the initial guess 𝜌𝐼𝑏+Δ𝐼
0 = 𝜌𝐼𝑏 . This method does

not require the wakes to respect causality and can also be applied to generic RF cavity
potentials. The current version of the code implemented cannot handle wake functions
that are given by distributions, such as the Dirac’s delta function, 𝛿(𝑧), and its derivative,
𝛿′(𝑧), which corresponds to the resistive and the inductive wakes, respectively, but it could
easily be extended to manipulate such operators. Currently, when we want to simulate
these wakes, the effective wake given by the convolution of these distributions with a small
gaussian beam is used. For example, in the Sirius simulations, where the bunch length is
of the order on a few millimeters, a gaussian bunch of approximately 𝜎𝑧 = 20 µm is more
than enough to reproduce the results of the 𝛿(𝑧) and the 𝛿′(𝑧) wakes.

This implementation was benchmarked with the results presented by Bane & Ruth
(1989) for the inductive and resistive impedances, but it fails to converge for the capacitive
wakes (negative inductance) when the strength of the perturbation gets close to the well
known singularity point of such impedance, as explained by Shobuda & Hirata (1999).
However this was not a problem for all the practical cases studied in this work.

4.4.2 Incoherent Tune Shifts

The variation of the transverse oscillation frequency of the bunch as a function of
the current is another effect which can be derived from the Hamiltonian of equation (4.13):

Δ𝜈𝑛
𝑢 = (Δ𝜇′𝑢)𝑛

𝜔0/𝑐
= 1

𝜔0/𝑐

⎛⎝ 𝜕𝐻𝑛

𝜕𝐽𝑢

⃒⃒⃒⃒
⃒
⟨𝐼⟩

− 𝜕𝐻𝑛

𝜕𝐽𝑢

⃒⃒⃒⃒
⃒
⟨𝐼⟩=0

⎞⎠ (4.20)
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where the superscript 𝑛 was used because the tune shift is different for different bunches
if the filling pattern is not uniform and the wakes that generate it last for multiple turns.
If the distributions are in equilibrium, we can show that:

Δ𝜈𝑛
𝑢 = ⟨𝐼⟩ 𝑇0

2𝜋(𝐸0/𝑒)
∑︁
𝑙∈B

𝐼𝑙

⟨𝐼⟩

∞∑︁
𝑘=−∞

∫︁
d𝑧*

⎛⎝√︃ 𝛽𝑢

2𝐽𝑢

cos(𝜇𝑢)𝑑𝑙(𝑧*)𝑊 𝐷
𝑢 (𝑧 − 𝑧* + 𝑠𝑟)+ (4.21)

𝛽𝑢 cos2(𝜇𝑢)𝜆𝑙(𝑧*)𝑊 𝑄
𝑢 (𝑧 − 𝑧* + 𝑠𝑟)

)︃
, (4.22)

where it was used 𝑢 =
√

2𝐽𝑢𝛽𝑢 cos(𝜇𝑢). For a well centered beam, 𝑑𝑙 = 0 and the dipolar
wake does not influence the tune, and even in the case when the beam is off centered its
average effect is zero, because the term cos(𝜇𝑢) averages to zero for each particle in the
beam. The quadrupolar wake, on the other hand, creates a 𝑧 dependent tune shift given
by,

Δ𝜈𝑛
𝑢 = 𝛽𝑢(1 + cos(2𝜇𝑢)) ⟨𝐼⟩ 𝑇0

4𝜋(𝐸0/𝑒)
∑︁
𝑙∈B

𝐼𝑙

⟨𝐼⟩

∞∑︁
𝑘=−∞

∫︁
d𝑧*𝜆𝑙(𝑧*)𝑊 𝑄

𝑢 (𝑧 − 𝑧* + 𝑠𝑟). (4.23)

For uniform filling paterns, with 𝑀 bunches, we can follow the reasonings presented in
subsection 3.7.2 and use equation (3.39b) to show that:

Δ𝜈𝑢 = −𝛽𝑢(1 + cos(2𝜇𝑢)) 𝐼𝑏𝑇0

4𝜋(𝐸0/𝑒)
𝑖𝑀𝜔0

2𝜋

∞∑︁
𝑝=−∞

𝜆̃(𝑝𝑀𝜔0)𝑍𝑄
𝑢 (𝑝𝑀𝜔0)𝑒−𝑖𝑝𝑀𝜔0𝑧/𝑐, (4.24)

where 𝐼𝑏 is the current per bunch. Averaging this result with the bunch distribution and
using the impedance property described in equation (3.23b), we get the average incoherent
tune shift of an arbitrary particle in one synchrotron period, or simply, the incoherent
tune shift of each bunch:

⟨Δ𝜈𝑢⟩ = 𝛽𝑢
𝐼𝑏𝑇0

4𝜋(𝐸0/𝑒)

𝜅𝑄
𝑢⏞  ⏟  

𝑀𝜔0

2𝜋

∞∑︁
𝑝=−∞

|𝜆̃(𝑝𝑀𝜔0)|2ℑ
{︁
𝑍𝑄

𝑢 (𝑝𝑀𝜔0)
}︁
, (4.25)

where 𝜅𝑄
𝑢 is the quadrupolar kick factor.

4.5 Coherent Motion (Instabilities)
The single–particle dynamics of a typical SLS storage ring was studied in chap-

ter 2, where it was seen that the forces used to control the beam are highly harmonic.
This harmonicity makes the beam very susceptible to coherent oscillations against any
source of resonant perturbation. The wake fields are a type of perturbation that is always
in resonance with the beam because it is self–driven, which also gives an exponential
character to the amplitude growth of the coherent oscillations.

The most common way to analyse these instabilities analytically is through the
Fokker-Planck equation. Actually, most works in literature do not take into account the
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damping and diffusion terms of radiation emission, considering only the Liuville flow of
the particles. Under this assumption, the r.h.s. of equation (2.44) is zero and the resulting
equation is commonly known in the accelerator community as Vlasov equation. Sacherer
(1973) developed a method to solve this equation for low currents and then generalized
it for high currents (SACHERER, 1977). This method is widely used and was rederived
in several subsequent works, using different basis functions for expansion of the coherent
modes. The standard book for study of collective effects, Chao (1993), and the book
written by Ng (2006) have a compilation of the solution of Sacherer integral equation for
several different types of basis functions.

In this work we will use the solution found by Suzuki (1983) for the longitudi-
nal Fokker-Planck equation and another work of the same author (SUZUKI, 1986) to the
transverse plane for the estimates of single and multi–bunch instabilities. We will not
follow in detail the derivation of his formulas here, but only highlight the main approx-
imations made, in order to establish an easy interpretation of the results which will be
presented in chapter 7. We recommend to the interested reader the original works and
the more recent paper written by Lindberg (2016), where all the steps of the derivation
are very well justified. Besides, since the Hamiltonian terms of this approach are identical
to the solution of the Vlasov equation, all the references presented in the last paragraph
are very helpful in understanding the method.

The main idea of the method is to describe the beam distribution as the equilibrium
solution of the Fokker-Planck equation, Ψ0, plus a small perturbation, Ψ1, and analyse its
time evolution. If the perturbation increases with time, the beam is considered unstable.
Expressing this expansion mathematically we get

Ψ (𝐽 , 𝜃, 𝑠) = Ψ0 (𝐽) + Ψ1 (𝐽 , 𝜃, 𝑠) (4.26)

where 𝐽 = (𝐽𝑢, 𝐽𝑧) and 𝜃 = (𝜃𝑢, 𝜃𝑧) are the action–angle variables in both planes con-
sidered (one transverse and the longitudinal planes). The subscript 𝑛 was not used in
the equation above to identify the bunch number only to simplify the notation, but the
expansion above must be made for each bunch separately. Substituting this expression in
the Fokker-Planck equation we obtain

𝜕Ψ1

𝜕𝑠
+ {𝐻0, Ψ0} + {𝐻0, Ψ1} + {𝐻1, Ψ0} ≈ F (Ψ0) + F (Ψ1) (4.27)

where 𝐻0 is the static part of the Hamiltonian defined in equation (4.13), calculated
considering the effective wake potential generated by Ψ0, and 𝐻1 is the dynamic part of
the Hamiltonian, with effective wake potential generated by Ψ1. The term {𝐻1, Ψ1} was
neglected in the equation above because it is non–linear in Ψ1, thus, much smaller than
the other terms.
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The next step is to assume a specific form for the distributions:

Ψ0(𝐽) = 𝑓0(𝐽𝑢)𝑔0(𝐽𝑧) Ψ1(𝐽 , 𝜃) = 𝑓1(𝐽𝑢, 𝜃𝑢)𝑔1(𝐽𝑧, 𝜃𝑧)𝑒−𝑖Ω𝑠/𝑐, (4.28)

where 𝑐 is the light speed and Ω is the complex frequency which defines the stability of
the beam. If the imaginary part of Ω is larger than zero, the beam will be unstable. This
expansion is substituted in the Fokker-Planck equation

−𝑖
Ω
𝑐

𝑓1𝑔1+𝑔0
d𝑓0

d𝐽𝑢

𝜕𝐻1

𝜕𝜃𝑢

+ 𝑓0
d𝑔0

d𝐽𝑧

𝜕𝐻1

𝜕𝜃𝑧

+

𝑔1
𝜕𝑓1

𝜕𝜃𝑢

𝜕𝐻0

𝜕𝐽𝑢

+ 𝑓1
𝜕𝑔1

𝜕𝜃𝑧

𝜕𝐻0

𝜕𝐽𝑧

= 𝑔1F (𝑓1) + 𝑓1F (𝑔1) (4.29)

where the facts that Ψ0 is the equilibrium distribution of the Fokker-Planck equation and
that the static Hamiltonian is function only of the action variables were used.

Assuming the ring is uniformly filled with 𝑀 equally spaced bunches, by sym-
metry, their equilibrium distribution must be the same and the time evolution of the
perturbations in each bunch must be equal, only a phase difference between them is al-
lowed. Since the system is periodic, we can express an arbitrary phase among the bunches
in the coupled–bunch basis, in such a way that, for a pure eigen-mode of this basis, the
distribution of the 𝑙-th bunch can be written as a function of the distribution of the 𝑛-th
bunch by

Ψ1𝑙 = (𝑓1𝑔1)𝑛 𝑒−𝑖Ω𝑠/𝑐𝑒𝑖𝜇(𝑙−𝑛)/𝑀 (4.30)

where 𝜇 ∈ [0, 𝑀 − 1] is the coupled–bunch mode. With this consideration, in order to
solve the problem, instead of solving the Fokker-Planck equation for 𝑀 bunches in the
ring, we need to solve for the 𝑀 coupled–bunch modes. This transformation does not
change the form of equation (4.29) because the terms affected are the ones related to the
wake potential, which are implicitly defined through 𝐻0 and 𝐻1. The eigen frequency Ω
also changes the implicit subscript 𝑛 to the implicit subscript 𝜇.

Several approximations are performed at this point. First, the stationary effects
of the effective wake potential are neglected and the quadratic potential well of equa-
tion (2.40) is considered in the longitudinal plane. This perfectly harmonic potential
defines a gaussian distribution for 𝑔0 and a constant synchrotron tune, as shown in sec-
tion 2.4.1. Even though this is a good approximation for low bunch currents, which is
the case of multi–bunch operations in storage rings, the terms neglected here can have
a significant contribution in the current range where single–bunch instabilities happen.
Besides, this approximation excludes the possibility of using the equations derived here
to study instabilities in the presence of a lengthening cavity in the ring, which creates a
quartic potential well. There are generalizations of this method in literature to include
synchrotron tune shifts, such as the work of Chin et al. (1983), or to consider the quartic
potential well, by Chin (1983), but they will not be used in this work.
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4.5.1 Longitudinal Plane

Another approximation consists in breaking the analysis in two, one for each plane.
When the longitudinal plane is analysed, the effects of the dipolar and quadrupolar terms
of the wake potential are neglected and the transverse perturbation 𝑓1 can be set to unit.
Under this approximation, the Fokker-Planck equation reads(︃

−𝑖
Ω
𝑐

+ 𝜔𝑧

𝑐

𝜕

𝜕𝜃𝑧

)︃
𝑔1 + d𝑔0

d𝐽𝑧

𝜕𝐻1

𝜕𝜃𝑧

= F (𝑔1). (4.31)

This equation can be solved expanding the function 𝑔1 in azimuthal modes 𝑚 and radial
modes 𝑘:

𝑔1(𝐼𝑧, 𝜃𝑧) = 𝑒−𝐼𝑧

∞∑︁
𝑘=0

∞∑︁
𝑚=−∞

𝑎
(𝑚)
𝑘 𝑓

(|𝑚|)
𝑘 (𝐼𝑧)𝑒𝑖𝑚𝜃𝑧 , (4.32)

where 𝐼𝑧 = 𝐽𝑧/(𝜎𝑧𝜎𝛿) is the normalized action,

𝑓
(|𝑚|)
𝑘 (𝐼𝑧) =

√︃
𝑘!

(|𝑚| + 𝑘)!𝐼
|𝑚|/2
𝑧 𝐿

|𝑚|
𝑘 (𝐼𝑧), (4.33)

and 𝐿
|𝑚|
𝑘 (𝐼𝑧) is the generalized Laguerre polynomial (Wikipedia Contributors, 2018). The

important property of this basis functions is their orthogonality. The azimuthal expansion
is orthogonal under the interval (0, 2𝜋), which is the domain of the phase–space angle 𝜃𝑧,
and the functions 𝑓

(|𝑚|)
𝑘 are orthogonal under∫︁ ∞

0
d𝑥𝑒−𝑥𝑓

(|𝑚|)
𝑘 (𝑥)𝑓 (|𝑚|)

𝑙 (𝑥) = 𝛿𝑘𝑙, (4.34)

where 𝛿𝑘𝑙 is the Kronecker delta function.

With this expansion it is possible to show that the Fokker-Planck equation can be
written as an infinite matrix equation and Ω is given by its eigenvalues:(︃

Ω
𝜔𝑧

− 𝑚 + 𝑖
|𝑚| + 2𝑘

𝜏𝑧𝜔𝑧

)︃
𝑎

(𝑚)
𝑘 = 𝑖

∞∑︁
𝑚=−∞

𝑘=0

(︁
𝑀𝑚,𝑛

𝑘,𝑙 + 𝑂𝑚,𝑛
𝑘,𝑙

)︁
𝑎

(𝑛)
𝑙 , (4.35)

where

𝑀𝑚,𝑛
𝑘,𝑙 = 𝐼𝑏𝑀𝜔0𝛼

2𝜋(𝐸0/𝑒) (𝜔𝑧𝜎𝑧/𝑐)2 𝑖(𝑚−𝑛)𝑚
∞∑︁

𝑝=−∞

𝑍𝐿(𝜔𝑝)
𝜔𝑝

𝑔𝑚𝑘(𝜔𝑝)𝑔𝑛𝑙(𝜔𝑝) (4.36)

is the mode–coupling matrix and 𝑂𝑚,𝑛
𝑘,𝑙 is a real matrix, called diffusion matrix, and is

given by Suzuki (1983). The modes of oscillation of the beam are given by:

𝑔𝑚𝑘(𝜔𝑝) = 1√︁
𝑘! (|𝑚| + 𝑘)!

(︃
𝜔𝑝𝜎𝑧√

2𝑐

)︃|𝑚|+2𝑘

exp
⎛⎝−

(︃
𝜔𝑝𝜎𝑧√

2𝑐

)︃2
⎞⎠ , (4.37)

with

𝜔𝑝 = 𝜔0 (𝑝𝑀 + 𝜇 + 𝑚𝜈𝑧) . (4.38)
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This eigenvalue equation must be truncated at some value of radial and azimuthal modes
in order to be handled numerically. The specific truncation value, in general, depends on
the impedance spectrum.

There are two types of instabilities which can be explained by the equation (4.35):
the mode–coupling instabilities, which are generated by the broad–band impedance of the
machine, and the coupled–bunch instabilities, generally created by RF cavities. The former
is characterized by the coupling between two different modes. For low beam intensities,
the real part of the frequency of two adjacent azimuthal modes differ from each other by
the synchrotron frequency. As the beam current increases, these frequencies are shifted
by the imaginary part of the impedance and, when they are close to each other, the real
part of the impedance couples them. The two real frequencies become complex, one being
the conjugate complex of the other, which means one of them becomes unstable, if the
value of the imaginary part is larger than the radiation damping effect. This instability is
also known as microwave instability or turbulent bunch-lengthening and is characterized
by the increase of the energy spread of the beam above given current threshold.

The coupled–bunch instabilities generally happen at small bunch currents, because
they depend on the total current of the ring. This instability is caused by narrow–band
impedances and it happens due to the asymmetry in the sampling of the real part of
the impedance, caused by the shift 𝜇 + 𝑚𝜈𝑧 in the expression for 𝜔𝑝. Since this type of
instability happens at low values of bunch current, it is often not necessary to solve the
eigenvalue problem defined by equation (4.35), in such a way that only the diagonal terms
of the most prominent radial mode of the mode–coupling matrix are enough to calculate
the threshold:

Ω
𝜔𝑧

− 𝑚 + 𝑖
|𝑚|
𝜏𝑧𝜔𝑧

= 𝐼𝑏𝑀𝜔0𝛼

2𝜋(𝐸0/𝑒) (𝜔𝑧𝜎𝑧/𝑐)2 𝑚
∞∑︁

𝑝=−∞

𝑍𝐿(𝜔𝑝)
𝜔𝑝

𝑔2
𝑚0(𝜔𝑝). (4.39)

Actually, the diagonal terms of the mode–coupling matrix are used in a much more
general scope than the estimation of the coupled–bunch instabilities. The quantity

𝑍

𝑛

⃒⃒⃒⃒
eff

=

∞∑︀
𝑝=−∞

𝑍𝐿(𝜔0(𝑀𝑝+𝜈𝑧)
(𝑀𝑝+𝜈𝑧) 𝑔2

𝑚0(𝜔0(𝑀𝑝 + 𝜈𝑧))
∞∑︀

𝑝=−∞
𝑔2

𝑚0(𝜔0(𝑀𝑝 + 𝜈𝑧))
(4.40)

is called effective impedance and is used together with the loss factor, defined in sec-
tion 4.2, as a figure of merit to characterize the impedance budget of a storage ring.

4.5.2 Transverse Plane

The effects of the longitudinal impedance are neglected in the transverse plane
analysis and even though there are some works in literature which consider the quadrupo-
lar impedance (LINDBERG, 2016), in this work we will only take into account the dipolar
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impedance. In general, the quadrupolar wake helps increasing the threshold of the insta-
bilities, but only when its strength is comparable with the dipolar wake. Since this is not
the case for the Sirius storage ring, this approach is well justified.

Without the longitudinal impedance, the term involving the derivative of 𝐻1 with
respect to the longitudinal angle variable 𝜃𝑧 can be neglected because it is much smaller
than the other terms in equation (4.29). With this simplification, a solution for 𝑓1 can be
found:

𝑓1 = 𝐷
√︁

𝐽𝑢
d𝑓0

d𝐽𝑢

𝑒𝑖𝜃𝑥 (4.41)

which is a rigid dipole motion in the transverse phase space. This dipole mode varies
longitudinally according to the function 𝑔1, which remains to be defined. After inserting
the solution for 𝑓1 in equation (4.29), the resulting equation for 𝑔1 is very similar to the
one of the longitudinal plane, in such a way that the solution is given by:(︃

Ω − 𝜔𝑢

𝜔𝑧

− 𝑚 + 𝑖

(︃
1

𝜔𝑧𝜏𝑢

+ |𝑚| + 2𝑘

𝜏𝑧𝜔𝑧

)︃)︃
𝑎

(𝑚)
𝑘 = −𝑖

∞∑︁
𝑘=0

∞∑︁
𝑚=−∞

(︁
𝑀𝑚,𝑛

𝑘,𝑙 − 𝑂𝑚,𝑛
𝑘,𝑙

)︁
𝑎

(𝑛)
𝑙 (4.42)

where 𝑂𝑚,𝑛
𝑘,𝑙 is the same diffusion matrix of the longitudinal plane analysis and

𝑀𝑚,𝑛
𝑘,𝑙 = 𝐼𝑏𝑀𝜔0

4𝜋(𝐸0/𝑒)𝜔𝑧

𝑖𝑚−𝑛
∞∑︁

𝑝=−∞
𝛽𝑢𝑍𝐷

𝑢 (𝜔𝑝)𝑔𝑚𝑘(𝜔𝑝 − 𝜔𝜉)𝑔𝑛𝑙(𝜔𝑝 − 𝜔𝜉). (4.43)

where we notice the local betatron function multiplies the impedance, as expected from
the reasonings of section 4.1. In the case of the transverse planes the sampling frequency
changes to include the effect of the transverse betatron oscillations of the beam,

𝜔𝑝 = 𝜔0(𝑀𝑝 + 𝜇 + 𝜈𝑢 + 𝑚𝜈𝑧), (4.44)

Analogously to the longitudinal plane, two types of instabilities are explained by
the equation above, one driven by the broad–band impedance, and another by narrow–
band impedances. In this case, however, the former type, which is known as Transverse
Mode-Coupling Instability (TMCI), generally is associated with beam loss, imposing a
limit to the maximum current which can be stored in the ring. The same approximation
made in the last section, can be done here too in order to calculate the multi–bunch
instabilities:(︃

Ω − 𝜔𝑢

𝜔𝑧

− 𝑚 + 𝑖
1

𝜔𝑧𝜏𝑢

+ 𝑖
|𝑚| + 2𝑘

𝜏𝑧𝜔𝑧

)︃
= −𝑖

𝐼𝑏𝑀𝜔0

4𝜋(𝐸0/𝑒)𝜔𝑧

∞∑︁
𝑝=−∞

𝛽𝑢𝑍𝐷
𝑢 (𝜔𝑝)𝑔2

𝑚0(𝜔𝑝 − 𝜔𝜉).

(4.45)

From the diagonal terms of the mode–coupling matrix we can define the dipolar
kick factor of the impedance as:

𝜅𝐷
𝑢 = 𝑀𝜔0

2𝜋

∞∑︁
𝑝=−∞

𝑍𝐷
𝑢 (𝜔0(𝑀𝑝 + 𝜈𝑢))𝑔2

00(𝜔0(𝑀𝑝 + 𝜈𝑢)) (4.46)

which is the main figure of merit to represent an impedance budget.
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4.6 Tracking Code
The structure of the tracking code used is very similar to the one described in

Ref. Sá et al. (2015), with the additional feature of including damping and quantum
excitation terms for the single particle dynamics. Wake field kicks can be included in two
different ways:

General Wakes: In this case the wakes do not need to respect the causality condition
and are passed to the code as interpolation tables. The code uses the particle in cell
(PIC) approach, where the total simulation length for the longitudinal direction, 𝐿𝑐,
is segmented into 𝑁𝑐 intervals and the approximate beam distribution is calculated
from the number of macroparticles in each cell. Then, the convolution theorem is
used to calculate the kick curve(BASSI et al., 2016b), which is interpolated according
to each particle’s position;

Resonators: The parameters of the resonators, (𝑅𝑠, 𝜔𝑟, 𝑄), are used as input. The code
does not use the PIC approach, each of the 𝑁𝑝 macroparticles being simulated in-
teracts with each other and the wake is calculated through the sum of the potentials
left by each particle in each resonator.

In the second method 𝑁𝑝 is the only variable to be tested for the result convergence
analysis, while for the first method the additional variable 𝑁𝑐 is also important. This
inconvenience can be avoided if the number of slices is set in such a way that the grid
length satisfies the Nyquist theorem for the highest relevant frequency of the impedance
used in tracking,

Δ𝑧𝑐 = 𝐿𝑐/𝑁𝑐 >
2

𝑓max
. (4.47)

This code was benchmarked with SPACE(BASSI et al., 2016b) and Elegant(BORLAND,
2000).
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5 IMPEDANCE MODELING

In this chapter the impedance modeling of some storage ring components will
be discussed. The components described below are the ones for which the modeling is
not trivial and required detailed analysis of some key aspects. The gathering of all the
components and analysis of the whole impedance budget will be performed in the next
chapter.

5.1 Standard Chamber
Sirius standard vacuum chamber will be made of copper with a round cross-

section of 12 mm internal radius, 𝑏, which is considerably smaller than the chambers
of 3rd GLS, as shown by Nagaoka & Bane (2014). This small chamber does not only
affect the resistive wall impedance, which scales with 1/𝑏3 for the transverse planes, but
also all the other components’ impedances, because of the proximity of the walls with
the beam (NAGAOKA; BANE, 2014). In this section we will describe the adopted model
for the impedance of the standard chamber of the storage ring, focusing on the effect
of the NEG and the low–frequency contribution from the Laslett incoherent impedance
generated by the magnetic poles of the dipoles. Table 2 shows the values of the main
parameters of this model.

5.1.1 Effect of NEG Coating

The solution adopted for the vacuum in Sirius employs the mixed and concomitant
use of localized and distributed pumping, where the last is achieved through coating the
vacuum vessel with NEG (BENVENUTI et al., 1998; PRODROMIDES, 2002). In 2012 the

Table 2 – Wall Impedance parameters.

Parameter Value Unit
Copper conductivity 59.0 MS m−1

Copper relaxation time 27 fs
NEG conductivity 1.0 MS m−1

NEG thickness 1.0 µm
Chamber radius 12.0 mm
Chamber wall thickness 1.0 mm
Total length 500 m
Dipole length 100 m
Chamber shape round
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LNLS signed a license agreement with CERN to develop NEG coating in-house and since
then the Vacuum Group has developed the infrastructure and improvement of techniques
for production, deposition and in–situ activation of NEG in order to produce coatings
with low surface roughness and good thickness uniformity in all vacuum chambers of the
ring (SERAPHIM et al., 2015; ROCHA, 2017).

The presence of NEG changes the electromagnetic properties of the inner surface
of the chamber and contributes to the impedance increase. This effect was first noticed
in an impedance measurement made in ELETTRA by Karantzoulis et al. (2003), where
the authors described an anomalous increase of the tune shift with current after the in-
stallation of NEG–coated aluminum chambers for IDs. Nagaoka (2004b) tried to explain
the measured results using the multi–layer formulas for the transverse impedance, but
quantitative agreement was only obtained using excessively large resistivities for NEG.
Such experimental results created some concern in the community and the effect of the
roughness of the inner surface of the chamber was hypothesized as a possible explanation.
Nagaoka et al. (2007) studied such an effect when analysing Soleil storage ring measure-
ments, where the impedance budget of the machine was not enough to account for the
bunch lengthening observed, and concluded that the impedance of the measured roughness
could not explain the additional impedance necessary to fit the experimental results.

There are expressions in the literature to estimate the impedance of a rough sur-
face, such as those of Bane et al. (1997) which are based on numeric calculations, and
those of Stupakov et al. (1999) that are calculated analytically. Their predictions account
for an inductive impedance in low frequency, where the characteristic length of the sur-
face protrusions is much smaller than the bunch length, and real impedance for very large
frequencies. However, one of the considerations for the derivation of such formulas is that
the surface is perfectly conducting, which means all the image charges will flow by the
rough surface. It seems reasonable that for finite conductivity chambers, the wall currents
will penetrate the material and the effect of the roughness should be even smaller.

Given all the considerations presented above, the initial model adopted for the
standard Sirius vacuum chamber is a round smooth infinite three–layer pipe, consisting
of: 1 µm of NEG coating, 1 mm of copper and air to infinity. As shown in Table 2 the value
used for NEG conductivity was 1 MS m−1. This value is the measurement average of the
NEG resistivity as a function of the frequency made by Koukovini-Platia et al. (2014).
Since this measurement was performed for a very short frequency range, only from 10 to
11 GHz, and considering that other factors may influence the NEG conductivity, such as
the activation process and aging effects, we calculated the impedance for several values
of conductivity, as shown in Figure 11a. Also shown in the figure is the spectrum, in
arbitrary units, of a gaussian bunch with 𝜎 = 2.5mm, which is the natural bunch length
of the Sirius storage ring. Notice that the dependency of the impedance for the frequency
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(a) Wall Impedance as a function of NEG conductivity (in MS m−1).

(b) Wall Impedance as a function of NEG thickness (in µm).

Figure 11 – Wall impedances as a function of the frequency for several values of NEG
conductivity (a) and coating thickness (b). The nominal values for both are
presented in Table 2. Also shown in black is the power spectrum of a 2.5 mm
gaussian bunch in arbitrary units.
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(a) NEG conductivity in MS m−1 (b) Coating thickness in µm.

Figure 12 – Simulations of TMCI for single bunch in the machine using the parameters of
the first phase of operation of the storage ring, as shown in Table 1, and for
several different values of (a) NEG conductivity and (b) coating thickness.

range of interest is very non-linear, being almost saturated for lower conductivities, which
means that variations on the conductivity does not have a strong impact on the beam
behavior. We can also infer from the figure that the effect of NEG on the impedance
is mostly inductive in both planes, where an increase of a factor of 3 in the imaginary
impedance is noticeable.

The increase of the imaginary impedance is clearly seen in Figure 12a, which shows
simulations of transverse single–bunch tune shift and the TMCI, and Figure 13, which
shows the loss factors and the effective longitudinal impedance.

A study of the impedance dependence on the thickness of the NEG coating was
also carried out, as shown in Figure 11b, Figure 12b and Figure 13. Different from the
conductivity case, this parameter has strong influence on the value of the impedance,
affecting almost linearly the imaginary part in both planes and quadratically the loss
factor.

From the analysis of Figure 12 we note that, even though the NEG coating has
a strong influence on the impedance, the TMCI threshold induced exclusively by its
contribution is much above the nominal single bunch current for uniform filling of the
machine and does not compromise the operation. Besides, as will be seen with further
details in the next sections, the increased longitudinal inductive impedance will contribute
to the bunch lengthening, which helps decreasing IBS effects and improving Touschek
lifetime.
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Figure 13 – Loss factor (left) and effective longitudinal impedance (right) for a 2.5 mm
bunch as a function of the coating thickness for several different values of
NEG conductivity, in MS m−1.

A complete analysis of the impedance of a NEG coated chamber is provided by
Shobuda & Chin (2017), who explains the existence of several regimes along the spectrum,
where different mechanisms dominate the impedance behavior. For example, the skin
depth of NEG at 30 GHz is approximately 3 µm, which is three times larger than the
thickness of the coating used in Sirius chambers, thus, in the frequency range analysed so
far, from 1 to 50 GHz, most of the losses happens in the copper chamber and that is why
the impedance is mostly inductive. For higher frequencies the NEG contribution will be
resistive, and for lower it will not have any effect on the impedance.

5.1.2 Low–Frequency Impedance

One particular frequency range of interest for Sirius is the very low part of the
impedance, which goes from 0 Hz to a few MHz, because this range defines two impor-
tant mechanisms which influence the dynamics of the beam. The first is the traditional
resistive–wall instability, defined by the harmonic of the betatron frequency with lowest
frequency, being numerically equal to the fractional part of the tune times the revolution
frequency. The second is the incoherent tune–shift induced by the quadrupolar impedance,
which depends on the direct current (DC) value of the impedance. This mechanism was
introduced in section 4.4.2 and is quantitatively described by equation (4.25). Consider-
ing that the resistive–wall impedance has a very sharp peak at DC, this term has strong
influence on the whole sum that defines the tune–shifts, mainly for multi-bunch opera-
tions. Actually the infinitely thick wall theory, from Gluckstern et al. (1993) and Yokoya
(1993), provides divergent results for this tune–shift. Nagaoka (2001) solved this problem
in explaining measurements at ESRF using a method developed by Heifets (1998) and
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Figure 14 – Low frequency impedance for different distances of the dipole magnetic poles
to the vacuum chamber.

explained in detail by Chao et al. (2002), which employed the concept of the diffusion time
of the magnetic field in the chamber to truncate the multi–turn effect of this impedance
as a way of considering the finite thickness of the wall. Later, Shobuda & Yokoya (2002)
showed that such approach is not needed when the impedance already takes into account
the finite thickness.

The impedance at very low frequencies is very difficult to calculate because it
depends on what is outside the vacuum chamber, due to the increasingly large skin
depth. Shobuda & Yokoya (2002) pointed this possibility out when they tried to ex-
plain the tune shifts observed in KEKB with their finite–thick wall theory. With the
multi–layer formulas used in this work it is possible to see the influence of materials out-
side the chamber on the impedance, as shown Figure 14, where the infinitely thick layer
of air was substituted by a variable gap of air and a layer of FeSi (𝜇𝑟 = 40), used in
the magnetic poles of Sirius magnets. Note that the first betatron line, responsible for
the coherent tune–shifts and the resistive–wall instability is completely determined by
the copper chamber, but the zero frequency impedance depends on the distance of the
magnet to the external part of the wall. One can argue that, since Sirius vacuum chamber
is round, this dependence is not important because there is no quadrupolar impedance.
However, considering that the impedance at these frequencies depend on the materials
outside the chamber, it is reasonable to think it will depend on how they are distributed
too. Remembering that the storage ring is filled with magnets with cores made out of fer-
romagnets, and noticing that only dipoles can generate a quadrupolar impedance because
the symmetry of the poles of quadrupoles and sextupoles does not allow such component,
we considered this effect on the total budget.

According to Zotter & Kheifets (1998, p. 340) the indirect space–charge impedance
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in the ultra-relativistic limit at zero frequency (for penetrating fields) is given by

𝑍𝑦 = 𝑖
𝑍0𝐿

𝜋

(︃
(𝜀1 − 𝜉1)

1
ℎ2

1
+ (𝜀2 − 𝜉2)

1
ℎ2

2

)︃
(5.1)

where the indices ℎ1 and ℎ2 refer to the electric and magnetic gaps, respectively, 𝜀𝑖 and 𝜉𝑖

are the Laslett (1963) coefficients for incoherent and coherent tune shifts associated with
the electric (1) and magnetic (2) fields, given by

𝜀1 = 𝜀2 = 0, 𝜉1 = 𝜉2 = 1
2 for round chambers,

𝜀1 = 𝜀2

2 = 𝜋2

48 , 𝜉1 = 𝜉2 = 𝜋2

16 for flat chambers.
(5.2)

The coherent coefficients 𝜉𝑖 are a particular case of the dipolar impedance, while the
incoherent coefficients 𝜀𝑖 of the quadrupolar impedance. This way, we can interpret the
low–frequency limit of the impedances shown in Figure 14 as the sum of the electric and
magnetic incoherent space–charge impedance. In fact, a direct evaluation of equation (5.1)
for the electric boundary using ℎ1 equal to the internal radius of the vacuum chamber gives
an impedance of 208 MΩ, which is very similar to the value of 200 MΩ taken from the curve
where the magnet is far from the beam. The magnetic part gives a contribution of 117 MΩ
when we consider that the dipole is 16 mm away from the center of the chamber, which
corresponds to the 3 mm curve in the plot. This value is also close to the 120 MΩ, obtained
by the subtraction of the 3 mm curve and the 1 m curve. With all the considerations above,
we defined the quadrupolar impedance for the Sirius vacuum chambers as1

𝑍𝑄
𝑦 (𝜔) = −𝑍𝑄

𝑥 (𝜔) =
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−
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𝑍𝐷

𝑦 (𝜔)
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round

)︂
𝜀flat

2
𝜉round

2

𝐿𝐷

𝐿𝑇

(5.3)

where 𝐿𝑇 is the total length considered for the chamber, 𝐿𝐷 is the length covered by
dipoles and the fraction involving the Laslett coefficients is the conversion from the round
dipole factor to the flat quadrupole factor. Note that if we had used the Yokoya factors
in the equation above we would get an impedance a factor of two lower. This approach
is not correct since these factors were derived under the assumption of infinitely thick
chambers, which means they are only valid in the frequency range where the electric and
magnetic fields are shielded at the same place, in other words, when they do not penetrate
the material.

5.2 Kicker Chambers
The Sirius storage ring will have two kicker magnets, one standard dipole kicker

and one non–linear kicker. While the former will be used for on–axis injection in the
1 As the Sirius dipoles are straight magnets with inclined poles to produce a quadrupole gradient and

the chambers, as well as the beam trajectory, are curved along them, the distance of the poles to the
chamber is variable. Nevertheless, 3 mm is a good estimate for the average distance and that is why
it was used in the definition above.
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Table 3 – Main parameters of the kicker magnet for impedance modeling

Parameter Symbol Value Unit
Capacitance 𝐶𝑏𝑏 30.0 pF
Parasitic resistance 𝑅𝑠 500 Ω
Pulser circuit resistance 𝑅𝑒 50.0 Ω
Ferrite permittivity 12
Ferrite initial permeability 𝜇𝑖 1600
Ferrite saturation frequency 𝜔𝑠 20.0 Mrad s−1

Ceramic permittivity 9.3
Titanium conductivity 1.6 MS m−1

FeSi conductivity 2.0 MS m−1

FeSi permeability 40

Figure 15 – Cross section of the Sirius storage ring kicker window–frame magnet.

commissioning of the light source, and as a pinger magnet for machine studies, the latter
will be used for injection in top-up mode (LIU et al., 2016b). Even though the topolo-
gies of the two magnets are very different, their vacuum chamber will be identical: a
ceramic chamber, coated with 10 µm of Titanium. This means that at high frequencies
their impedance will be identical too. Below we describe the considerations on the model-
ing of the impedance of the dipole kicker magnet and then extrapolate to the case of the
non-linear kicker. Table 3 shows the main values of the parameters used to model these
components.

Figure 15 shows an schematic drawing of a transverse section of the window-frame
dipole kicker magnet that will be used in Sirius storage ring. This type of magnet acts
on the beam by the passage of a pulsed current, generated by an external pulser circuit,
on the lateral copper plates. This current induces a magnetic field around the plates that
is guided by the ferrite to create an almost constant vertical field at the inner gap of the
magnet. The copper plates located at the center of the magnet are important to increase
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the magnetic impedance for the field lines, forcing them to close the loop by the air gap
and not around the ferrite blocks.

There are two main contributions to the impedance of this type of magnet: the
losses and resonances defined by the materials of the vacuum chamber and the window-
frame itself; and the coupled flux of the beam with the external circuit that feeds the
magnet. While the first contribution dominates the high frequency part of the spectrum,
the second is important at low frequencies.

The coupled flux, first modeled by Nassibian & Sacherer (1979) and improved
by Davino & Hahn (2003), treats the window-frame as a transformer that couples the beam
to the external circuit impedance, 𝑍𝑔(𝜔), characterized by the impedance termination of
the pulser circuit and the residual capacitances and resistances of the device, which can be
accessed via twin wire measurements (MOSTACCI; CASPERS, 2016) with the endplates
open and short circuited, as explained by Davino & Hahn (2003). This model predicts
impedances for the coupled flux given by

𝑍*‖ = Δ2

ℎ2
𝑖𝜔𝐿2𝑍𝑔

𝑖𝜔𝐿2 + 𝑍𝑔

, 𝑍𝐷
𝑥 = 𝑐

𝜔Δ2 𝑍‖, 𝑍𝐷
𝑦 = 𝑍𝑄

𝑥 = 0 (5.4)

where Δ is a transverse offset of the beam, 𝐿2 = 𝜇0𝐿ℎ/𝑤, 𝐿 is the length of the magnet
and ℎ and 𝑤 are the transverse dimensions as defined in Figure 15.

Equation (5.4) predicts zero vertical impedance and, for a well centered beam,
Δ = 0, the longitudinal impedance is zero too. Considering there is no measurements
yet for the circuit impedance, 𝑍𝑔(𝜔), of the kicker magnet, the parametric dependency
described by Davino & Hahn (2003)

𝑍𝑔(𝜔) = 𝑅𝑒 + 1
1

𝑅𝑠
+ 𝑖𝜔𝐶𝑏𝑏

(5.5)

was used for Sirius, where 𝐶𝑏𝑏 is the busbar capacitance, equal to 30 pF for their kicker,
𝑅𝑠 is a resistance in parallel with the capacitance to account for the ferrite losses, equals
to 490 Ω in their case, and 𝑅𝑒 is the matching impedance of the external circuit, which we
considered equal to 50 Ω. Figure 16 shows the coupled flux horizontal impedance for some
values of 𝐶𝑏𝑏 and 𝑅𝑠, where the resonant behavior created by the parallel association of
the inductance 𝐿2 with the capacitance 𝐶𝑏𝑏 can be noticed. In general, the variation of
the parameters influences the positioning, intensity and width of the resonant peaks, all
around a few MHz, but do not change the value of the imaginary impedance at lower
frequencies. As will be shown below, the Titanium coating in the vacuum chamber shields
the beam electromagnetic fields starting from approximately the frequency range of these
peaks, thus, their attenuation is expected. The low frequency impedance will not be
attenuated, and will influence the coupled-bunch motion, but not the incoherent tune
shifts, because there is no quadrupolar impedance associated with this mechanism.
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Figure 16 – Coupled flux impedance of the dipole kicker magnet as a function of the
frequency for several values of capacitance (left) and resistance (right).

Figure 17 – Tsutsui model for the window–frame kicker magnet.

Regarding the uncoupled flux, there are no formulas in the literature to estimate
the impedance of an out–of–vacuum window–frame magnet as the one presented in Fig-
ure 15. There is, however, a model for an in–vacuum magnet developed by Tsutsui (2000)
for the longitudinal impedance, which was extended to the transverse dipolar impedances
by Tsutsui & Vos (2000) and then to the quadrupolar impedance by Salvant et al. (2010).
These formulas were derived by solving the ME exactly for an ultra-relativistic beam,
considering the geometry of Figure 17, which is infinite in the longitudinal direction. Note
that in this model the fraction of the fields generated by the beam that are inside the
region defined by the angle 𝜃 directly interacts with a PEC material, which is an ap-
proximated model for the cooper plates of the real magnet, while the rest of the field
directly see the ferrite, which is a lossy material. With the exception of the presence of
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Figure 18 – Transverse impedances of the four models of kicker analysed.

the vacuum chamber, this is what happens in the real magnet, which makes this model a
good approximation for the window–frame geometry.

The ferrite that will be used in this magnet is the CMD5005 (Ceramic Magnets,
2017). Its frequency–dependent relative magnetic permeability is modeled by

𝜇𝑟(𝜔) = 1 + 𝜇𝑖

1 + 𝑖 𝜔
𝜔𝑠

(5.6)

where 𝜇𝑖 is the initial permeability and 𝜔𝑠 is the saturation frequency of the material,
which were obtained by fitting the datasheet curve. The values calculated agree well with
direct measurements made by Hahn & Davino (2002).

In order to estimate the effect of the vacuum chamber on the impedance, other
models based on round multi–layer formulas were analysed. The idea behind the formula-
tion of these models is to try to account for limiting angle 𝜃 cases of the Tsutsui geometry,
that defines the proportion of the fields that interact with a good conductor. Under these
assumptions the models are:

Best case (B): The beam only sees the good conductor. The layers in this case are:
Titanium, ceramic, air and Copper;

Worst case (W): The beam only sees the ferrite. The layers of the round model in this
case are composed of: Titanium, ceramic, air, ferrite and Copper;

No Coating (NC): To show the effect of the Titanium coating, this layer was removed
from the analysis of the worst case model: ceramic, air, ferrite and Copper.

Figure 18 shows the transverse impedances of the four models analysed. The W
curve matches the low frequency limit of the NC case, but at approximately 1 MHz the
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Figure 19 – Longitudinal (left) and dipolar horizontal (middle) impedances as a function
of the frequency for several values of coating thickness, in µm. The power
spectrum of a 2.5 mm bunch is also shown (solid black) in the left to high-
light the important part of the frequency spectrum, and the first horizontal
betatron line (black dashed) is shown in the middle. In the right is shown the
loss factor (above) and quadrupolar kick factor (below) as a function of the
bunch length for several values of coating thickness.

coating starts to influence the impedance, damping all of them to very low values. Besides,
the impedance predicted by the Tsutsui model (TT) is even lower than the B case, and
that the relations between the three of them cannot be described by the constant Yokoya
(1993) factors, a fact already pointed out by Salvant et al. (2010). Considering that this
component have a stronger influence on the total budget due to the low frequency limit
of the impedance, the model adopted for the transverse plane was the B case, multiplied
by constant factors to match its impedance to the Tsutsui model. The values used were
(0.42, 0.52, 0.58) for the horizontal dipolar, vertical dipolar and vertical quadrupolar
impedances, respectively.

For the longitudinal plane it is well known from Zotter (1969a) and Piwinski (1977)
that the coating influences the impedance at much lower frequencies than the skin depth of
the metal. For this reason the titanium layer thickness was varied in simulations to check
if it could be thinner than the nominal value. The results are shown in Figure 19, where
we notice by looking at the difference from the result without coating that it is effective
since very low frequencies. For almost all the relevant frequency range, the longitudinal
impedance is constant, starting to increase only at large frequencies, because in this
limit it is dominated by skin–depth effect on the Titanium and the standard resistive wall
characteristics apply. However, note that the baseline of the impedance is almost inversely
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Table 4 – Main parameters for the fast correctors impedance model.

Parameter Value Unit
stainless steel conductivity 1.3 MS m−1

Chamber wall thickness 300 µm
Chamber radius 12 mm
Chamber length 100 mm
Number of elements 80

proportional to the thickness of the coating. This effect is seen in the behavior of the loss
factor also shown in Figure 19, which can be used to calculate the power density on the
wall through equations (4.10), (4.11), and (4.12). Note that a reduction of the coating
thickness to 4 µm would not impact the impedance and heating issues. In the transverse
plane, the effect of the coating reduction is only to cause a linear shift of the frequency
where the impedance is damped, which does not change its effect on the beam, as can be
seen by the quadrupolar kick factor.

Based on the study presented above, we defined the impedance of the non-linear
kicker magnet as a round multi–layer chamber with: vacuum, Titanium, ceramic, air, FeSi
and Copper. Besides the substitution of the ferrite with the FeSi as the magnet core, this
component does not have the parallel copper plates to induce a dipole kick on the beam,
creating a much more complex transverse field dependence using copper wires displaced
transversely. Such property makes the use of the Tsutsui model inappropriate for this
case, and instead of multiplying the resultant impedance of the round chamber by the
same factors of the dipole kicker, we decided to use the Laslett coefficients, defined in
equation (5.2). This magnet also does not have the coupled flux part of the impedance,
because the external circuit does not couple with a beam close to the center of the magnet.

5.3 Fast Corrector Chambers
The fast orbit correctors of the Sirius storage ring will operate at an update rate

of 100 kHz in the Fast Orbit Feedback System (FOFB) (TAVARES et al., 2013), requiring
special vacuum chambers in order for such high frequency fields to penetrate. The solution
adopted is to brase thin stainless steel chambers in the standard copper chamber of the
ring. The reduced conductance, only 1 MS, of this material provides a skin depth of 1.6 mm
at 100 kHz, which is much larger than the 0.3 mm thickness of the chamber and do not
significantly damp or distort the external field of the magnet. The relevant parameters
used for modeling of this type of chamber is presented in Table 4.

The small length of these chambers, only 10 cm, raises a question on the validity
of the infinitely–long multi–layer chamber formulas used so far. This question is answered
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Table 5 – Main parameters of the undulators impedance modeling.

Parameter APU19 APU20 Delta21 Delta52 Unit
Length 2.4 2.4 2.4 3.6 m
Quant. in Phase 1 1 1 2 3
Quant. in Phase 2 2 3 6 6
Straight type low–beta high–beta low–beta low–beta
Full magnetic gap 5 6.2 7.0 13.8 mm
Chamber wall thickness 0.10 0.10 0.80 1.00 mm
Hor. beam stay clear 24.0 24.0 8.2 11.2 mm
Vert. beam stay clear 4.8 6.0 5.0 8.0 mm
Transition factor (𝑡) 20

by Shobuda et al. (2009), who calculated the impedance of a finite resistive insert of finite
thickness on an otherwise perfectly conducting and infinitely long round chamber. The
authors conclude that even for an insert whose length is smaller than its radius, if the
thickness is of the order of 100 µm, the impedance is already equal to the infinitely long
chamber counterpart. This result shows that the use of the multi–layer formulas employed
so far for the other components are still valid for the fast corrector chambers.

5.4 Undulator Chambers
For the first phase of operation of the Sirius light source the installation of seven

IDs on the storage ring is planned. There will be four different types of devices: two Delta-
type undulators (TEMNYKH, 2008) and two Adjustable Phase Undulator (APU) (CARR,
1991). Design details, as well as first experiences with the prototype measurements of the
Sirius Delta undulator, are described by Vilela et al. (2017) and the information regarding
the radiation parameters of such devices can be found elsewhere (SIRIUS, 2013). All the
IDs will be out of vacuum and their vacuum chamber will be made of copper and coated
with NEG. Regarding the impedance issues, on the one hand this is good because it
simplifies the design of the tapers, allowing further optimization of its parameters for
impedance reduction, but on the other hand the resistive wall impedance will always be
there, regardless of the existence or not of the additional damping provided by radiation
emission2.

Table 5 shows the main impedance related parameters of each device type. These
devices have two main sources of impedance that will be modeled separately: one comes
from the two tapers at both ends of the device and another from the resistive wall.
2 One important remark is that both types of undulators that will be used in Sirius do not have the

degree of freedom of changing gap, which means that there will be no way to "turn of" their magnetic
fields when the IDs are not used. What is usually done is to change the phases among the Halbach
(1985) cassettes in such a way that the field lays down in the longitudinal direction, so the electron
beam stops radiating.
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The modeling of the tapers was performed with the whole collimator in the simulation,
considering perfectly conducting walls and linear transitions with factor3 𝑡 equals to 20,
which means the angle of the taper is 2.86° (50 mrad), much lower than the rule of thumb
of 10°. The APU chambers were calculated with ECHOzR (ZAGORODNOV et al., 2015),
being modeled as flat collimators starting from a square chamber of sides equal to the
radius of the real chamber and final gap equal to the Vertical BSC defined in Table 5. The
Delta–type undulators are a little more complicated to model, because their final chamber
geometry is an ellipse with major and minor axes given by the horizontal and vertical BSC
presented in Table 5, invalidating the consideration of a flat geometry due to the non–
negligible horizontal tapering. We dealt with this problem by simulating a round transition
with ECHOz2 (ZAGORODNOV; WEILAND, 2005) and applying numerical factors given
by Podobedov & Krinsky (2007, Figures 12a, 13 and 14) to the impedances. Even though
their comparisons are valid for tapers with transverse sections composed by confocal
ellipses, all the analytic formulas analysed in subsection 3.9.1 suggest that the parts of
the tapers with lower gaps contribute more to the total impedance, which corroborates
this approach. The form factors used here were (1, 1.3, 0.5, −0.4) for the longitudinal,
vertical dipolar, horizontal dipolar and horizontal quadrupolar impedances, respectively.

Figure 20 shows the impedances of the four ID types before the application of
the form factors on the Delta–type undulators. Also shown is the low–frequency analytic
expressions discussed in subsection 3.9.1. Note that in general their quantitative agreement
with the numerical simulations is not very good, but the qualitative comparisons among
all the types of undulators, mainly the differences between the round and flat geometries,
are well predicted by the theory. In the case of the longitudinal and horizontal impedances
for flat geometries this quantitative difference between theory and numerical simulations
could be explained by the fact that the second condition imposed on the validity limits
of the expressions (ℎ ≪ 𝑤) is not met in the cases studied here, because the tapers start
with a square geometry. Stupakov (2007) provides expressions for impedances for any
ratio ℎ/𝑤, which consists on multiplying the integrands of equations (3.50) by form–factor
functions that depend on ℎ(𝑠)/𝑤. The paper has figures that explicitly show the value of
these form–factors and, after a qualitative analysis, it can be concluded that they justify
the differences observed here. For the vertical dipolar impedance, this scenario changes
because the analytic formula overestimates the impedance by a factor larger than four
(they are above the upper limit of the plot and are not shown), which is so large that even
the form factors could not account for the difference observed. Maybe this disagreement,
if our results are correct, comes from higher–order terms in the taper angle that are not
considered in the derivation of the analytic formulas.

Another interesting aspect of the numerically calculated vertical dipolar impedance
3 Here we recall the notation defined in subsection 3.9.1.
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Figure 20 – Geometric impedance from the tapered transitions of the undulators. Solid
lines represent numerical calculations performed with ECHOz1 and ECHOz2
for the Delta undulator and with ECHOzR for the APU. Dashed lines are
the prediction by the analytic formulas studied in subsection 3.9.1. Full black
curves show the spectrum of a 2.5 mm long gaussian bunch.

is the presence of the narrow–band trapped mode studied by Blednykh (2006) for the
APU19. Considering that this mode depends strongly on the width of the chamber and
the fact that the Sirius undulators are still under study, the complete effect of the this
peak was not studied in details, being subject for future work. However, it was verified
that it does not induce transverse coupled–bunch oscillations.

Figure 21 shows the vertical dipolar and longitudinal wall impedance of the four
types of undulators. They were calculated using the code ImpedanceWake2D (MOUNET,
2011) for flat multi–layer chambers. The layers used in the calculations were: NEG, Cop-
per, air, high 𝜇–material. The last layer was added in an attempt to consider the effect of
the magnet blocks of the IDs on the DC impedance, which can be noted in Figure 21b.
This figure also shows in dashed lines the results obtained with the calculation of the
impedance using the round chamber formulas and posterior application of the Yokoya
factors. Note that for the undulators with small gap (APU19, APU20 and Delta21), this
method underestimates the impedance, because the sum of the electric and magnetic
Laslett coefficients is larger than the factor for the quadrupolar impedance. But for the
Delta52 both formulas agree because in this case only the electric coefficient contributes
significantly and it is equal to 𝜋2/24. Blednykh et al. (2016) created a more sophisticated
model, where the authors considered that a fraction of the surface of the pole of the IDs
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(a) High frequency impedance (b) Low Frequency

Figure 21 – Wall impedance of the four types of undulators planned for Sirius. Also shown
in black in (a) is the power spectrum of a 2.5 mm gaussian bunch in arbitrary
units.

was composed of the high 𝜇–materials and the other part by saturated ferromagnet blocks
with 𝜇 ≈ 1. With this impedance they successfully explained the incoherent tune–shifts
caused by these devices in NSLS–II. Once the detailed model of the IDs are available we
intent to improve these components impedance model in a similar way.

The chamber heating is an important aspect to be considered in the design of the
undulators, because it is difficult to insert cooling systems in devices with such small gaps.
Particularly for the Delta–type undulators, which have small apertures in both transverse
directions. To estimate the power density for these devices we used the flat chamber
approximation, described in equation (4.12). Even though the undulators chambers are
not flat, the estimation of the peak density using this formula is a worst case scenario
for the real value. Even in this case it was verified through heating simulations that the
power deposited by the wake fields is not an issue.

5.5 BC Chamber
The BC magnet is the central dipole in the arc of the Sirius storage ring unit cell.

It is a permanent magnet with longitudinal and transverse gradients and at its center
there is a very thin slice that will reach a peak magnetic flux density of 3.2 T. It will be
used as source for 20 beamlines, providing radiation with critical energy of 19.2 keV. In
order to achieve this high flux density, the poles of central part must be very close to the
beam, with a full gap of 10 mm.

The initial proposal for the chamber of the central section of this magnet was an el-
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Figure 22 – Scheme of the keyhole–shaped chamber for the BC magnet.

liptical geometry with inner minor semi–axis equal to 4 mm and major semi–axis equal to
the radius of the standard chamber, 12 mm, connected by a smooth tapered transition with
transition factor equal to 15. Motivated by the analytic formulas of the theory discussed
in subsection 3.9.1, we also investigated the impedance of a round chamber with inner
radius equal to the minor radius of the proposed elliptical chamber. For the impedance
calculations, the elliptical chamber was approximated by a flat one and simulated using
ECHOzR (ZAGORODNOV et al., 2015), while the round chamber was simulated with
ECHOz1 and ECHOz2 (ZAGORODNOV; WEILAND, 2005). It was known, however, that
the round chamber did not meet the vacuum requirements, because the radiation gen-
erated by the upstream dipole would hit strongly the inner part of the transition in the
positive (outward the storage ring center) horizontal direction, causing heating problems.
For this reason, a chamber which satisfies the requirements, with a "keyhole" shape, as
shown in Figure 22, was also proposed and its impedance simulated with GdfdL (BRUNS,
2017).

Figure 23a shows the comparison of the vertical dipolar impedance among the three
models analysed. The theory predicts a higher low frequency inductive impedance for the
flat–chamber model and we note that this is indeed the case. One interesting fact, however,
is that the round chamber remains imaginary for all the frequency range analysed, its real
part only emerges at frequencies larger than 60 GHz, while the flat chamber has a very
strong real part at low frequencies, which couples with the beam oscillation mode 𝑔10 ·𝑔00.
From the theory of mode–coupling instability, discussed in subsection 4.5.2, we know
that at zero chromaticity the imaginary part of the impedance causes tune–shifts of the
coherent modes and bring them close to each other, in this case the modes 0 and -1,
represented in the figure by the spectra 𝑔00 · 𝑔00 and 𝑔10 · 𝑔10, respectively; but it is the
real part of the impedance that couples them causing the instability. We can see this
mathematically recalling that the mode–coupling matrix has the following form, when
only the modes 0 and -1 are considered:

𝑀

𝑁
∝

⎛⎝𝐼1 − 1
𝑁

𝑅1

−𝑅1 𝐼0

⎞⎠ ⇒ 𝜆1,2

𝑁
∝

𝐼0 + 𝐼1 − 1
𝑁

2 ± 1
2

√︃(︂
𝐼1 − 1

𝑁
− 𝐼0

)︂2
− 4𝑅2

1, (5.7)

where 𝑁 is the number of particles in the bunch,

𝐼𝑖 =
∫︁

d𝜔ℑ
{︁
𝑍𝐷

𝑦

}︁
𝑔𝑖0𝑔𝑖0 (5.8a)

𝑅1 =
∫︁

d𝜔ℜ
{︁
𝑍𝐷

𝑦

}︁
𝑔10𝑔00, (5.8b)
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(a) Vertical Impedance (b) Vertical TMCI

Figure 23 – Comparison of the impedance and its effect on the beam through simulations
of mode–coupling instability for different models of impedance. For the TMCI
a gaussian single bunch with 2.5 mm root-mean-square (rms) length was con-
sidered. The impedance used was that of the 20 components along the ring,
multiplied by the average betatron function at the magnet’s position.

and 𝑔𝑚𝑙 is given by equation (4.37). Henceforth, it is clear from the eigen–value expression
in equation (5.7) that the instability can only happen if the real part of the impedance is
strong enough to couple with the beam in such a way that

2|𝑅1| ≥
⃒⃒⃒⃒
𝐼1 − 1

𝑁
− 𝐼0

⃒⃒⃒⃒
. (5.9)

Note that when the number of particles in the bunch is small, the r.h.s. of the inequality
above is very large and when 𝑁 → ∞ it tends to 𝐼1 − 𝐼0. If 𝑅1 is not larger than this
difference, the modes simply cross each other. Note that some mechanism similar to the
one explained above is happening in Figure 23b for the round and keyhole chambers,
where even after being multiplied by a factor of 2.5 and 2.0, respectively, to match the
tune shifts, their real impedances are not strong enough to create the instability.

Figure 24 shows the other impedances for the three models. Note that the imag-
inary part of the longitudinal impedance of the keyhole and round models are smaller
than the one of the flat chamber by a factor of approximately 2, which is in agreement
with the theory predictions, and the quadrupolar impedance introduced by keyhole is
negligible. The horizontal dipolar impedance was not calculated for this model yet, but
a calculation was performed for a keyhole geometry with the ℎ𝑠𝑙𝑜𝑡, defined in Figure 22,
equals to 2 mm and it was similar to the transverse impedance of the round model.
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Figure 24 – Longitudinal (left), dipolar horizontal (center) and quadrupolar horizontal
(right) impedances for the three models of BC chamber considered. The dipo-
lar horizontal impedance of the keyhole chamber was not calculated yet and
the round chamber does no have a quadrupolar impedance.

5.6 Coherent synchrotron radiation (CSR)
The radiation emitted by one particle can influence other particles in the bunch in

a similar way as the wake fields and, for this reason, it is treated with the same formalism
of impedances and wake functions discussed so far. Such mechanism is often referred to
as CSR because its net effect is only relevant for wavelengths of the same order or larger
than the bunch length, according to Nagaoka & Bane (2014). The wake function of a
source particle moving in circular trajectory in free–space over a witness particle in this
same trajectory was calculated by Derbenev et al. (1995) and is given by:

𝑊 ′
0(𝑧)
𝐿

=

⎧⎪⎪⎨⎪⎪⎩
− 𝑍0𝑐

2𝜋34/3
1

𝜌2/3(−𝑧)4/3 𝑧 < 0

0 𝑧 > 0
, (5.10)

where 𝜌 is the radius of curvature of the trajectory, 𝐿 = 2𝜋𝜌 is the total length of its circle
and, contrary to other cases, the wake only affects particles ahead of the source particle.
Notice that this formula diverges at the origin and predicts energy gain for all ranges of
interaction. This happens because this equation is only the tail of a very short–range and
intense wake. This wake starts at 𝑊 ′

0(0−) ≈ 𝛾4/𝜌2, crosses zero at −𝑧 ≈ 2𝜌/9𝛾2 and soon
after that assumes the value of the asymptotic behavior described by the equation above4.
A fast calculation shows that the short–range scales of the complete wake (𝜌/𝛾2 ≈500 nm
4 Figure 2 of Murphy et al. (1997) has a graphic of this function.
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(a) (b)

Figure 25 – (a) behavior of 𝑌𝑘(𝑥) as a function of 3𝑥/𝑘3/2 showing its smooth dependency.
(b) Sum of the two terms of the CSR impedance: the free–space contribution,
𝑊 ′

0 and the shielding term, 𝑊 ′
1, where it becomes clear the cancellation of

the long tail at positions ahead of the source particle (𝑧 negative).

for Sirius) are much smaller than any characteristic length important for the stability
analysis in Sirius, which justifies the use of equation (5.10).

Murphy et al. (1997) calculated the wake function of the same trajectory described
above, but instead of considering the particles were in free space, the authors included two
infinite parallel plates equally spaced from the particles trajectory. The asymptotic form
of the wake they obtained has, in addition to the term of equation (5.10), a contribution
from the radiation of the image charges on the plates, given by

𝑊 ′
1(𝑧)
𝐿

= −𝑍0𝑐

4𝜋

1
2𝜋ℎ2 𝐺

(︃
𝜌1/2

ℎ3/2 𝑧

)︃
, (5.11)

where ℎ is the distance of any one of the plates to the beam trajectory and the function
𝐺 is given by

𝐺(𝑥) = 8𝜋
∞∑︁

𝑘=1

(−1)𝑘+1

𝑘2
𝑌𝑘(𝑥) (3 − 𝑌𝑘(𝑥))

(1 + 𝑌𝑘(𝑥))3 , (5.12)

with 𝑌𝑘(𝑥) being one of the roots of the equation

𝑌𝑘 − 3𝑥

𝑘3/2 𝑌
1/4

𝑘 − 3 = 0. (5.13)

According to Bane et al. (2010) from the four roots of the equation above, two are complex
and two are real and we are interested in the one that gives the larger value for 𝑌𝑘(𝑥)
when 𝑥 < 0, the smallest for 𝑥 > 0 and when 𝑥 = 0 the two real roots are equal to 3.
Figure 25a shows 𝑌𝑘(𝑥) as a function of the term 3𝑥/𝑘3/2, where we note a smooth and
well behaved dependency, guaranteeing fast convergence of the infinite series that defines
𝐺. It is necessary to compute only the first 25 to 30 terms for convergence in almost all
practical cases. Figure 25b shows the effect of the plates on the total wake, where we can
note that, contrary to the free–space term, it is non–zero behind the source particle and
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that its contribution in the portion ahead is to cancel the long tail of the free–space wake,
working as a shield for low frequency terms.

The CSR impedance with and without shielding is known for a long time, see for
example the work of Faltens & Laslett (1973). The free-space impedance, corresponding
to the wake given in equation (5.10) is given by (NAGAOKA; BANE, 2014, Eq. 18)

𝑍(𝜔)
𝐿

= 𝑍0

2𝜋

Γ (2/3)
31/3 exp

(︂
𝑖𝜋

6

)︂(︃
𝜔

𝑐𝜌2

)︃1/3

. (5.14)

Calculations of the impedance of the shielded configuration with the parallel plates
can be found in Warnock (1990) and Murphy et al. (1997). However, recently Cai
(2011) presented an approximated result that he built based on the exact equations given
by Warnock which is easy to calculate numerically and simply describes the impedance
in terms of scaled results

𝜌

ℎ

𝑍(𝑛)
𝑛

= 16𝑍0𝑢0

∞∑︁
𝑝=0

(Ai′(𝑢𝑝)Ci′(𝑢𝑝) + 𝑢𝑝Ai(𝑢𝑝)Ci(𝑢𝑝)) , (5.15)

where 𝑛 = 𝜔𝜌/𝑐, Ai and Bi are the Airy functions (Wikipedia Contributors, 2017a) and
the prime denotes their derivatives, Ci = Ai − 𝑖Bi and the variable 𝑢𝑝 is given by

𝑢𝑝 = 𝜋2(2𝑝 + 1)2

22/3

⎛⎝𝑛

(︃
2ℎ

𝜌

)︃3/2
⎞⎠−4/3

. (5.16)

Using the parallel plates model for the CSR impedance, Bane et al. (2010) cal-
culated the threshold for the microwave instability as a function of the plates separation
using a Vlasov Fokker Planck (VFP) equation solver developed by Warnock & Ellison
(2000) and showed that the CSR–induced instability depends only on two scaled vari-
ables: the threshold strength, (𝑆csr)th, and the shielding parameter, Π, given by

(𝑆csr)th = 𝐼
𝜌1/3

𝜎
4/3
𝑧,0

, Π = 𝜎𝑧,0
𝜌1/2

ℎ3/2 (5.17)

where 𝜎𝑧,0 is the bunch length at zero current and 𝐼 is a normalized bunch current (with
unit of m in the SI) given by

𝐼 = 𝑍0𝑐

4𝜋

𝐼𝑏𝑇0

2𝜋𝜈𝑠,0 (𝐸0/𝑒) 𝜎𝛿,0
, (5.18)

where 𝐼𝑏 is the bunch current, 𝜈𝑠,0 is the zero–current synchrotron tune and 𝜎𝛿,0 is the
zero–current energy spread. Figure 26 shows their main results with the addition of one
line indicating the shielding parameter for Sirius low–field dipoles, where one can note
that if the whole ring were composed by only this type of dipole the threshold would be
(𝑆csr)th = 1.44, which converted to bunch current gives 0.9 mA.
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Figure 26 – Plot adapted from Bane et al. (2010): CSR threshold strength, (𝑆csr)th, as a
function of the shielding parameter, Π. Blue dots: simulations with the VFP
solver. Purple squares: results of the linearized Vlasov equation (does not
include damping). Olive diamonds: results with a damping factor two times
larger. Dashed line: the scaling (𝑆csr)th = 0.5 + 0.12Π. Black line: shielding
parameters for the low field dipoles of Sirius, B1, B2 and the low field part
of the BC magnet (BCLF). The shielding for the high field part of this same
magnet (BCHF) is larger than the maximum value showed.

Note that for most of the simulated shielding parameter range, the threshold fol-
lows a simple dependency given by the line

(𝑆csr)th = 0.5 + 0.12Π. (5.19)

Despite the simple model for the impedance used in these calculations, several experi-
ments confirmed the instability predictions above, for example the one performed at the
Metrology Light Source by Ries et al. (2012) and the more recent results from ANKA,
described in Brosi et al. (2016). However, the threshold calculated in this way does not
take into account the effect of other impedances, requiring a more specific study.

Inspired by these good agreements between theory and measurements we decided
to create an initial model for the CSR impedance based on this parallel plate approxima-
tion. Table 6 shows the main parameters used for modeling the impedances and wakes
for the case of the Sirius storage ring. The impedance was directly calculated from equa-
tion (5.15), but the method to obtain the wake was more involved. Instead of the wake
function of the point charge, we convolved the expressions of equations (5.10) and (5.11)
with a small gaussian beam of 𝜎 = 5 µm to avoid the divergence of the free–space wake
and used this effective wake function as input for tracking simulations. The convolution
with the shielded contribution was done in the standard numeric way, but the one with
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Table 6 – Main parameters used for modeling the CSR impedance and effective wake
function

Parameter B1, B2, BCLF BCHF Unit
Bending radius 17.2 3.1 m
Magnet length 0.8/1.2/0.4 0.06 m
Total deflection angle 337.6 22.4 °
Vacuum chamber radius 12 4 mm
Shielding parameter 7.8 17.5
Threshold current 0.9 2.9 mA

the free–space part of the wake was performed following Nagaoka & Bane (2014)

𝑉0(𝑧) =
∫︁ ∞
−∞

d𝑥𝑊 ′
0(𝑥)𝜆(𝑧 − 𝑥) = −

∫︁ ∞
−∞

d𝑥𝑊0(𝑥)𝜆′(𝑧 − 𝑥), (5.20)

where the divergence of the first integral of the equation above is neglected and the
remainder is integrable. This procedure is justified by the fact that what causes this
divergence is the approximated expression of the wake; the real physical one is finite. The
explicit expressions for the integrands are

𝑊0(𝑧)
𝐿

=

⎧⎪⎪⎨⎪⎪⎩
−𝑍0𝑐
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1
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2𝜋𝜎3
exp
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− 𝑧2

2𝜎2

)︃
. (5.21)

Note that 𝑊0(𝑧) also diverges at the origin, but slower, in such a way that the convolution
can be carried out numerically or analytically. The analytic result was obtained with
Wolfram Mathematica (Wolfram Research Inc., 2016) and it reads
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,

where 1F1 is the confluent hypergeometric function (Wikipedia Contributors, 2017b). Fig-
ure 27a shows the two components of the wake and their sum, while Figure 27b shows
the impedance calculated via the inverse Fourier transform and posterior deconvolution of
equation (5.20), compared with the calculation using equation (5.15) and the free-space
impedance (5.14). Note the very good agreement between the two methods of calculating
the impedance, which validates the calculation trick of the effective wake function. Be-
sides, note that the shielding virtually eliminates the resistive part of the impedance up to
approximately 100 GHz and changes the sign of the imaginary part from positive, which
is generally referred as capacitive in the accelerator community, to negative, often called
inductive. However, the impedance in this range of frequencies may depend very strongly
on the parameters of the vacuum chamber geometry. For example, Warnock & Morton
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(a) Effective wake functions. (b) Impedances.

Figure 27 – CSR effective wake functions and impedances calculated using the parame-
ters of the Sirius low–field dipoles. Solid lines represent the real part of the
impedance and dashed lines, the imaginary part. In both plots the blue line
coincides with the red one and, therefore, it is not visible.

Figure 28 – Total CSR impedance (left) and wake (right) models for Sirius, considering
the two types of dipoles. Solid lines represent the real part of the impedance
and dashed lines represent the imaginary part.

(1990) calculated the radiation impedance for a beam in a smooth toroidal chamber with
rectangular cross-sections and found that the impedance at low frequencies would also
be imaginary, but capacitive. The importance of this impedance to the budget is not in
the frequency region of the stationary beam spectrum, but the very strong impedance at
high frequencies, because the instability arises when modulations in the beam distribution
starts radiating coherently, as explained by Stupakov & Heifets (2002).

Figure 28 shows the total impedance considered for Sirius. The contribution from
both types of dipoles was calculated considering their total lengths along the ring. Notice
that the strong shielding factor of the BC magnet helps reducing the total impedance, in
such a way that the threshold predicted by equation (5.19) rises to 1 mA.

As a final remark, we reinforce that this is only the initial model for the impedance,
future works could consider the analytic results obtained by Stupakov & Zhou (2016),
where the authors developed a general method to calculate the impedance for any planar
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trajectory in free space, and with the parallel plates shielding, and applied it to some
practical cases, including the case of a finite dipole followed by a straight section. Another
possibility is to use the results from Stupakov & Kotelnikov (2009), where the authors used
a method developed in a previous paper (STUPAKOV; KOTELNIKOV, 2003) to calculate
the impedance of a finite dipole in a rectangular chamber. Besides, numerical solvers such
as the one developed and described by Zhou et al. (2012) based on a method for solving
the parabolic equation by Agoh & Yokoya (2004) could be employed.
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6 IMPEDANCE BUDGET

The main aspects of the whole impedance budget of the Sirius storage ring will
be discussed in this chapter. Besides the components whose modeling were analysed in
Chapter 5, several others are also included. Table 7 shows all the components and im-
portant parameters for weighting their contribution to the budget, such as the quantity
(Q) of elements and the average betatron function at their locations. The longitudinal pa-
rameters, the loss factor, effective impedance and power loss of the beam, were calculated
considering multi–bunch operation with uniform filling in all the 864 RF buckets of the
ring and, additionally, for the power loss it was considered 100 mA in the machine. The
transverse figures of merit, however, were calculated for the single bunch case in order to
compare the relative effect of each component on TMCI. Finally, for all the calculations
it was considered a 2.5 mm long bunch.

Some of these components, precisely the tapers for the superconducting RF cavity
and the tapered transitions of the injection straight section, had their impedance cal-
culated following the same methods of the undulators and the BC magnet transitions,
discussed in Sections 5.4 and 5.5, respectively. All the others were designed in detail with
3D modeling and calculated with GdfidL1 (BRUNS, 1997), to minimize issues related to
wake heating and avoid the coupled–bunch instabilities. In this work, only the key aspects
of these designs will be mentioned and their detailed impedance characterization as well
as the design process can be found elsewhere (DUARTE et al., 2013; DUARTE et al., 2017b;
DUARTE et al., 2017a).

A closer look to Table 7 reveals that the flanges, which are an important source
of impedance for other machines, as described by Nagaoka (2004a), are not included
in our budget, because Sirius flanges are virtually free of any impedance. They were
based on a modified version of a KEK MO–type flange (SUETSUGU et al., 2005) and,
as explained by Seraphim et al. (2015), they do not present material transition and the
vacuum seal is made at the inner surface, forming a cavity with negligible size. Another
type of component missing in the impedance budget is the scraper, which is responsible
for limiting the horizontal or vertical acceptance of the storage ring to avoid localized
electron losses in other, more delicate, elements by creating transverse obtrusions with
variable gap. Generally the impedance of such device is optimized for its nominal position,
which is defined by taking into account the BSC at the scraper location, but the abrupt
transitions created when it is in any other position, farther or closer from the center of the
vacuum chamber, generate a large impedance. The Sirius design, presented by Duarte et
1 All the 3D calculations and optimizations were performed by another member of the LNLS team,

Henrique de Oliveira Caiafa Duarte.



Chapter 6. Impedance Budget 119

Ta
bl

e
7

–
Si

riu
s

st
or

ag
e

rin
g

im
pe

da
nc

e
bu

dg
et

fo
r

ph
as

e
1.

RW
st

an
ds

fo
r

R
es

ist
iv

e
wa

ll
an

d
Tr

an
s

fo
r

tr
an

sit
io

ns
.

M
ul

ti
bu

nc
h

@
10

0m
A

Si
ng

le
bu

nc
h

[k
V

/p
C

]
Q

𝛽
𝑥

[m
]

𝛽
𝑦

[m
]

𝜅
𝐿

[V
/p

C
]

𝑍
𝐿
/𝑛

| 𝑒𝑓
𝑓

[𝑚
Ω

]
𝑃

𝑤
[W

]
𝛽

𝑥
𝜅

𝐷 𝑥
𝛽

𝑦
𝜅

𝐷 𝑦
𝛽

𝑥
𝜅

𝑄 𝑥
𝛽

𝑦
𝜅

𝑄 𝑦

Pi
pe

RW
1

6.
0

11
.0

6.
80

−
41

.4
3

13
6.

11
−

10
.1

1
−

18
.5

2
0.

02
−

0.
30

D
el

ta
21

RW
2

2.
2

2.
2

0.
31

−
1.

91
6.

27
−

1.
62

−
3.

22
1.

66
−

1.
66

D
el

ta
52

RW
3

2.
6

2.
6

0.
44

−
2.

68
8.

82
−

1.
05

−
2.

09
1.

09
−

1.
09

A
PU

19
RW

1
2.

2
2.

2
0.

16
−

0.
99

3.
27

−
0.

91
−

1.
82

0.
95

−
0.

95
A

PU
20

RW
1

17
.8

5.
0

0.
13

−
0.

79
2.

61
−

3.
78

−
2.

11
3.

95
−

1.
11

BC
RW

20
0.

4
5.

2
0.

05
−

0.
30

0.
98

−
0.

04
−

0.
57

0.
00

0.
00

FO
C

RW
80

7.
2

6.
5

0.
60

−
1.

47
12

.0
9

−
0.

47
−

0.
42

0.
00

0.
00

N
LK

RW
1

18
.2

7.
3

0.
10

−
0.

11
1.

91
−

0.
48

−
0.

39
0.

49
−

0.
20

D
IP

K
RW

1
18

.0
6.

7
0.

10
−

0.
10

1.
91

−
0.

55
−

0.
22

0.
67

−
0.

25
D

el
ta

21
Tr

an
s

2
2.

4
2.

4
0.

01
−

0.
71

0.
28

−
0.

18
−

0.
46

0.
14

−
0.

14
D

el
ta

52
Tr

an
s

3
3.

0
3.

0
0.

02
−

0.
70

0.
48

−
0.

09
−

0.
23

0.
07

−
0.

07
A

PU
19

Tr
an

s
1

2.
4

2.
4

0.
01

−
0.

45
0.

12
−

0.
07

−
0.

64
0.

10
−

0.
10

A
PU

20
Tr

an
s

1
3.

0
3.

0
0.

01
−

0.
35

0.
15

−
0.

04
−

0.
24

0.
06

−
0.

06
BC

Tr
an

s
20

0.
4

5.
2

0.
10

−
4.

80
1.

98
−

0.
23

−
2.

94
0.

00
0.

00
R

F
C

AV
Tr

an
s

1
7.

3
7.

3
5.

71
−

10
.0

7
11

4.
33

−
0.

35
−

0.
35

0.
00

0.
00

K
IK

S
Tr

an
s

1
18

.2
7.

1
0.

00
−

0.
22

0.
10

−
0.

12
−

0.
31

0.
23

−
0.

09
BP

M
Bl

oc
k

12
0

6.
6

8.
8

12
.8

1
−

28
.1

9
25

6.
30

−
6.

86
−

9.
14

0.
00

0.
00

Be
llo

w
s

20
6.

6
8.

8
0.

84
−

2.
08

16
.8

6
−

0.
49

−
0.

66
−

0.
00

0.
00

R
ad

.M
as

ks
36

0
6.

6
11

.0
2.

93
−

11
.4

5
58

.7
1

−
5.

04
−

1.
22

−
4.

39
7.

31
Va

lv
e

Bl
oc

k
40

6.
6

11
.0

9.
41

−
24

.5
1

18
8.

40
−

5.
00

−
8.

33
−

0.
10

0.
17

SL
G

SL
07

1
7.

0
7.

0
0.

34
−

0.
22

6.
77

−
0.

06
−

0.
06

0.
00

0.
00

SL
G

SL
15

1
7.

0
7.

0
0.

14
−

0.
04

2.
86

−
0.

06
−

0.
06

0.
00

0.
00

SL
M

on
ito

r
2

4.
8

14
.5

0.
19

−
0.

18
3.

87
−

0.
07

−
0.

22
0.

00
0.

00
SL

H
Sh

ak
er

1
18

.2
7.

3
0.

53
−

0.
19

10
.6

7
−

0.
57

−
0.

09
−

0.
21

0.
09

SL
V

Sh
ak

er
1

2.
5

22
.0

0.
53

−
0.

19
10

.6
7

−
0.

03
−

0.
69

0.
03

−
0.

26
SL

H
K

ick
er

1
18

.2
7.

3
0.

56
0.

07
11

.1
5

−
0.

59
−

0.
10

−
0.

21
0.

09
SL

V
K

ick
er

1
2.

5
22

.0
0.

56
0.

07
11

.1
5

−
0.

03
−

0.
72

0.
03

−
0.

26
D

C
C

T
2

2.
5

22
.0

0.
76

2.
18

15
.1

8
−

0.
04

−
0.

36
0.

00
0.

00
Pu

m
p

Sl
ot

s
10

0
16

.0
7.

0
0.

27
−

1.
27

5.
49

−
0.

77
−

0.
34

−
0.

00
0.

00
C

SR
1

2.
0

25
.0

0.
00

−
0.

20
0.

00
To

ta
l

44
.4

4
−

13
3.

28
88

9.
46

−
39

.7
2

−
56

.5
2

4.
57

1.
12



Chapter 6. Impedance Budget 120

al. (2017a), will not have this problem, presenting negligible impedance for any transverse
offset.

In order to simplify the presentation of the results, the components of Table 7 were
divided in some groups:

Ring RW: comprises the elements BC RW, Pipe RW (standard chamber), FOC RW
(Fast orbit correctors), NLK RW (Non–linear Kicker), DIPK RW (Dipole Kicker).
The element that dominates the impedance of this group is the resistive–wall impedance
of the standard chamber;

ID RW: composed by the undulators resistive–wall impedance, APU19 RW, APU20 RW,
Delta21 RW, Delta52 RW, and the CSR impedance. This last one was included here
because it does not fit in any of the groups and its contribution in the frequency
range of the equilibrium beam spectrum is too small to have its own category;

Ring Geom: Transitions of chambers with different cross sections along the ring, formed
by the RF CAV Trans, BC Trans and KIKS Trans (transitions for both kickers).
The resistive longitudinal impedance of this group is dominated by the RF cavity
transition impedance, because space limitations in the straight section where it will
be installed forced the use of a small transition factor, 𝑡, which means larger taper
angles and, consequently, impedance too. However, the vertical kick factor is defined
mostly by the BC Trans, as can be seen in Table 7;

ID Geom: all the transitions for the IDs;

Vac. & Diag: Composed of all the stripline (SL) kickers and pick ups, SL GSL07, SL
GSL15, SL Monitor, SL HShaker, SL VShaker, SL HKicker, SL VKicker, the DCCT2

and the Pump Slots.

Blw & BPM: This group contains the isolated bellows and the BPM block, which was
simulated as a single piece because all BPMs of the storage ring have two bellows
attached, one upstream and another downstream, which means there could be cou-
pling between the resonant modes of each device;

Valve Block: All the valves of the storage ring will have a BPM Block followed by a
Radiation Mask in the upstream direction and a bellows downstream. For the same
reasons as the previous component, all these elements were simulated as a single
block. Duarte et al. (2017a) shows a Figure of these components and the impedance
comparison of the sum of individual impedances and the block impedance, demon-
strating the differences between both approaches.

2 Short for Direct Current Current Transformer, it is the current meter of the storage ring.
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Figure 29 – Longitudinal impedance budget for Sirius.

Figure 30 – Single–bunch loss factor (left, blue) and effective impedance (right, orange)
calculated for the nominal operation mode of phase1 for Sirius.

Rad. Masks: This group is composed of a single type of component to show its large
contribution to the budget and also to highlight the positive impact of its optimiza-
tion, as described by Duarte et al. (2017a).

Figure 29 shows the longitudinal impedance budget of the storage ring for its
first phase of operation and Figure 30 shows the single bunch loss factor and effective
impedance, which were defined in section 4.2 and subsection 4.5.1, respectively. Note that
the imaginary part of the impedance is mostly inductive and is dominated by the resistive–
wall impedance of the standard chamber, which we know from section 5.1 that is mostly
determined by the NEG coating. This large contribution is responsible for approximately
one third of the total effective impedance of the storage ring and, consequently to the
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bunch lengthening, which will be discussed in Chapter 7.

The second larger contribution for the imaginary part of the impedance is also the
major contributor to the real part. It is usual for the bellows and the BPMs to dominate
the longitudinal impedance of the ring, as can be noted from Max IV impedance budget
analysed by Klein et al. (2013) or from Soleil’s budget, presented by Nagaoka (2004a) or
even in the work of Blednykh & Krinsky (2007) for NSLS-II. Note in Figure 29 the exis-
tence of three main peaks in the impedance of these components, one very narrow-band,
located at approximately 9 GHz, close but below the cutoff of the chamber, which is due
to a trapped mode in the bellows cavity. Increasing the frequency, the next one, close to
12 GHz, also comes from the bellows, and the other, at 18 GHz, is from the BPMs. It is
interesting to note that this peak from the BPM is much broader than what was presented
by Duarte et al. (2013, Figure 4a), due to the resistive wall chamber that is included in
the simulation presented here. Duarte et al. (2017b) show a plot comparing simulations
with PEC and resistive walls in GdfidL. The feature of performing electromagnetic simu-
lations considering the finite conductivity of the metals of the chamber is reasonably new
in most time domain codes, and was not available in GdfidL at the time when that paper
was published.

Considering the bellows are made of stainless steel and the BPMs are made of
Ti6Al4V, the geometric average of the electrical resistivity of these materials is approx-
imately 59 times larger than copper and the average length of each component is 5 cm.
Considering there will have 160 BPMs and 360 bellows in the ring, we note that this
is roughly equivalent to 26 m of stainless steel chamber, which in turn, because of the
√

𝜌 dependence of the resistive wall impedance, is equivalent to 200 m of copper cham-
ber, qualitatively accounting for the large broad band contribution of these components.
In fact, this contribution is so large that it could even change significantly the value of
the low frequency resistive–wall impedance and affect the thresholds for coupled–bunch
instabilities in the transverse plane. It remains a task for future works to estimate this
contribution and improve the impedance budget in this direction.

The effect of the resistive–wall of the BPMs and bellows is enhanced by the fact
that instead of a smooth chamber, which would distribute the impedance over the whole
spectrum because of the 1/

√
𝜔 dependence of the resistive wall, these components have

cavities which increase the effective inner surface and concentrate the impedance around
the frequencies of the resonant modes, which are relatively low. However, this is rather
inevitable for these components, and it is worth remembering that the Sirius BPM has one
of the lowest loss factors among several existent designs due to the bell shaped cavity of
its button, as showed by Duarte et al. (2013) and its first resonant peak is at a frequency
as high as it can be, considering the state of the art for the production of such component.

Another component that is worth mentioning is the radiation mask. As described
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Figure 31 – Horizontal dipolar impedance budget for Sirius.

by Duarte et al. (2017a) two proposals were studied, one axially symmetric, which basically
creates a bottleneck in the chamber, and one with only a lateral obtrusion in the outer
horizontal side of the chamber, where all the radiation is concentrated. While the first
design was easier and cheaper to produce, the second had a longitudinal impedance five
times smaller and for this reason was chosen as the official model. Looking at Figure 30
we note that if the impedance of this component were five times larger its contribution to
the budget would be as large as the one from the BPM for the loss factor, and its effective
impedance would be −58 mΩ, which is much larger than the −46 mΩ of the resistive wall.
Such significant increase would strongly impact the threshold of the microwave instability,
which will be studied in Chapter 7.

Figure 31 and Figure 32 shows the 𝛽𝑥,𝑦 weighted horizontal and vertical dipolar
impedance budgets for the first phase of operation of Sirius, and Figure 33 and Figure 34
shows the 𝛽𝑥,𝑦 weighted single–bunch kick factor for the horizontal and vertical dipolar and
quadrupolar impedances. The impedance in both planes are very similar to each other,
due to the predominating round chamber of the machine. With exception of the IDs, the
main differences come from the local betatron functions at the position of the components,
being the vertical slightly larger, because on average 𝛽𝑦 > 𝛽𝑥. In fact, the average of the
vertical betatron function around the ring is 11 m, while the horizontal is only 6 m. Even
though the gaps of the IDs are very narrow and the resistive–wall impedance depends on
the inverse of the cube of the half gap, the dominating contribution for the kick factors
comes from the standard chambers of the ring, but only because both betatron functions
at the position of the IDs are very small, of the order of 3 m, as can be noticed in Table 7.

The only components of the ring with quadrupolar impedances with significant
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Figure 32 – Vertical dipolar impedance budget for Sirius.

Figure 33 – Horizontal kick factors for single–bunch operation mode.

Figure 34 – Vertical kick factors for single–bunch operation mode.
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Figure 35 – Tune shift normalized by the bunch current as a function of the number of
bunches in uniform filling.

effect on the beam for the single–bunch operation mode are the IDs and the radiation
masks, due to the asymmetries in their chambers. Here we recall that the quadrupolar
kick factor is what originates the incoherent tune shifts on the beam and the single–bunch
dipolar kick factor is related to the coherent tune shifts, which means that their sum is the
measurable tune of the machine and that the last one is the main factor that determines
the threshold of the TMCI. Considering the vertical dipolar kick factor of the component
Ring Geom is dominated by the impedance of the transition of the BC magnet, if the
elliptical vacuum chamber were used instead of the keyhole geometry, as discussed in
section 5.5, their kick factor would be 2.5 times larger, being the third largest of all the
groups presented here. The geometric transitions of the IDs also have a small effect on
the impedance because of the low betatron function, as already explained, and due to the
large transition factor, 𝑡, that was used in the tapers, which was only possible because
the IDs are out–of–vacuum.

While the single–bunch tune shifts are mostly defined by the broad–band impedance
of the whole spectrum, their multi–bunch counterpart depends mostly on the low–frequency
components of the dipolar impedance and on the zero–frequency component of the quadrupo-
lar impedance, because, as shown in Figure 31 and Figure 32, the impedance in this region
is two to three orders of magnitude larger than the high–frequency part of the spectrum,
being dominated by the resistive–wall contributions from the standard chamber and the
undulators. Figure 35 shows the tune shift normalized by the bunch current in uniform
filling as a function of the number of filled bunches, which should be an horizontal line
if the impedance were broad band. When all the bunches are filled, the incoherent tune
shifts are almost five times larger than the coherent ones and, in the vertical plane, most
part comes from the Laslett (1963) incoherent tune shifts from the dipole magnets, as
modeled in section 5.1.
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7 INSTABILITY STUDIES

The impedance budget presented in the last chapter will be used here to calculate
some beam parameters at equilibrium, or stationary state, and the thresholds for insta-
bilities as well as the behavior of the beam above the threshold. In the first section of
this chapter we will briefly discuss the effect of the PETRA 7–Cell cavity on the coupled–
bunch instabilities of Sirius for the commissioning phase; In the second and third sections
the longitudinal and transverse dynamics of the storage ring will be studied for the phase
one of operation.

7.1 The PETRA 7–Cell Cavity
According to the impedance budget gathered for Sirius, there will be no long–range

wake fields capable of generating longitudinal coupled–bunch instabilities. All the elements
simulated were tested individually to check whether their impedances could create this
type of instability. Actually, this was a criterion adopted in the design of the components,
not only for the longitudinal plane, but also for both transverse planes. However, a PETRA
7–Cell cavity will be used in the commissioning phase and it is known that this type of
cavity can generate coupled–bunch instabilities, as shown by Bassi et al. (2016a) for the
case of NSLS–II, for which this same commissioning strategy was adopted. Bassi et al.
(2016a) presents a table with the simulated values of the longitudinal HOMs of this cavity,
which we will use here to estimate the instabilities for Sirius.

The procedure we adopted to perform this analysis was the following: first we
identified which of these modes have potential to cause coupled–bunch instabilities in the
Sirius storage ring. This was done by finding the minimum value for the impedance as a
function of the frequency for which equation (4.39) gives a positive growth rate. Isolating
the impedance in that equation we get

⃒⃒⃒
𝑍min
‖ (𝜔)

⃒⃒⃒
= 𝜔𝛼𝑧

𝐼𝑇 𝜔0𝛼

2𝜋𝐸0 (𝜔𝑧𝜎𝑧/𝑐)2

ℎ2
𝑚(𝜔) . (7.1)

Figure 36 shows the comparison of the minimum impedance with the impedance of the
cavity for different values of current, considering the azimuthal modes 𝑚 = ±1. For higher
order azimuthal modes, the minimum impedance is much larger than any of the shunt
impedances of the cavity. Note that with 10 mA three modes are already larger than the
minimum impedance and have potential to create instabilities.

Next, for the modes with shunt impedance larger than the minimum impedance,
we found the frequency range, Δ𝜔‖, in which their impedance is also larger than the
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Figure 36 – Longitudinal PETRA 7–Cell cavity impedance compared with the minimum
shunt impedance needed to drive coupled–bunch instabilities for several values
of total beam current.

minimum impedance, in such a way that, recalling equation (4.39), if the condition

∀𝑝 ∈ Z, ∃ 𝜔𝑝 ∈ Δ𝜔 | 𝜔𝑝 := (𝑀𝑝 + 𝜇 ± 𝜈𝑧) 𝜔0 (7.2)

is satisfied, it is very likely that the beam will be unstable. Considering the modes can be
represented by the resonator impedance introduced in equation (3.41), we can find Δ𝜔‖

by solving the inequality

⃒⃒⃒
𝑍min
‖

⃒⃒⃒
≤ ℜ

⎧⎨⎩ 𝑅𝑠

1 + 𝑖𝑄
(︁

𝜔𝑅

𝜔
− 𝜔

𝜔𝑅

)︁
⎫⎬⎭ (7.3)

for positive frequencies. The result can be used to define

Δ𝜔‖ =

⎧⎪⎨⎪⎩𝜔 ∈ R

⃒⃒⃒⃒
⃒⃒⃒−𝑓

2 ≤ 𝜔

𝜔𝑅

−

⎯⎸⎸⎷(︃𝑓

2

)︃2

+ 1 ≤ 𝑓

2

⎫⎪⎬⎪⎭ (7.4)

where 𝑓 = 1/𝑄
√︁

𝑅𝑠/𝑍min
‖ − 1. In order to improve the visualization of the data, it is useful

to map the interval Δ𝜔‖ for all the resonators to the interval [0, 1). This is accomplished
with the definition

Δ𝜈‖ =
{︂

𝜈 ∈ R, 𝜔 ∈ Δ𝜔‖

⃒⃒⃒⃒
𝜈 = 𝜔

𝜔0
−
⌊︂

𝜔

𝜔0

⌋︂}︂
, (7.5)

where ⌊·⌋ is the floor function. In this space, the sampling lines for longitudinal instability
are equal 𝜈𝑧 for the azimuthal mode 𝑚 = 1 and 1 − 𝜈𝑧 for the mode 𝑚 = −1, which
are all very close to the limits of the interval, remembering the synchrotron tune for
Sirius is approximately 4 × 10−3. Figure 37 shows the values of Δ𝜈‖ as a function of the
coupled–bunch mode closest to each resonator,

𝜇𝑅 ≡
⌊︂

𝜔𝑅

𝜔0

⌋︂
mod(𝑀), (7.6)
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Figure 37 – The horizontal axis indicates the mapping of the RF cavity longitudinal
impedance peak frequencies in the coupled–bunch modes. Vertical axis in-
dicates the fractional part of one revolution frequency in the ring. Black
horizontal lines are ±𝜈𝑧 and the interval defined by the dots is the interval
in which sampling by the synchrotron tune corresponds to instability at the
indicated current.

where this is strictly valid only for mode 𝑚 = 1. For mode 𝑚 = −1 the value of −𝜔𝑅

should be used, which, due to the fact that floor of negative numbers is the complement
of its positive counterpart, for example, ⌊−3/5⌋ = 2, the coupled–bunch numbers would
be inverted. We highlight that this definition is only useful if the bandwidth of the mode
is smaller than the revolution frequency, otherwise the HOM would be able to drive more
than one coupled–bunch mode into resonance. In Figure 37, each vertical line indicates the
frequency range where instability could be generated if the beam sampled any frequency
there and the horizontal black lines are the frequencies sampled by the beam. Analysing
the Figure 37 we note that according to this impedance model, the beam will be stable
up to 100 mA. This hypothesis was tested with a direct application of the equation (4.39),
which confirmed that there would be no positive growth rates.

However, in the real cavity, the resonant frequencies of the HOMs depend on the
temperature and have a strong dependence on the geometry of the cavity, which, in turn,
will be adjusted to change the frequency of the main mode to be close to the Sirius RF
frequency. These frequency changes can be larger than the revolution frequency of the
ring, which means that the scenario presented in Figure 37 could change drastically and
some of the modes could cross the lines sampled by the beam, close to zero and one. The
first analysis, based on the results presented in Figure 36, is more reliable, because the
shunt impedance is much less sensitive to small changes in the cavity. For this reason,
since we plan to commission the ring with currents up to 30 mA, and also predicting a
possible delay in the installation of the superconducting RF cavity, a longitudinal kicker
was designed and will be installed in the ring, together with a longitudinal bunch–by–
bunch feedback system to control the longitudinal coupled–bunch instabilities.
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This kicker will have a shunt impedance, 𝑅𝐾 , of 900 Ω and an amplifier of 30 W.
Considering the losses in the cables, the maximum effective power applied to the beam
will be 9 W (DUARTE, 2018). According to Lonza (2007), the relation between the power,
𝑃 , and the damping time provided by the kicker, 𝜏𝐾 , is given by

𝛼𝐾 = 1
𝜏𝐾

=
√︃

𝑅𝑘𝑃

2
𝛼

2𝜋𝜈𝑧(𝐸0/𝑒)
𝑐

𝑧max
, (7.7)

where 𝑧max is the maximum amplitude of the movement. The requirement for the max-
imum longitudinal oscillation of the beam for stable operation is 10 % of the beam size,
which corresponds to 0.25 mm and, consequently, via the equation above, an additional
damping rate of 175 Hz will be provided by the kicker, which is approximately two times
larger than the natural damping rate of the storage ring. With this factor of three in the
damping, operations with 30 mA will be possible. Actually, the estimation made above is
pessimistic, because the measurement of the longitudinal oscillations will be much better
than the requirement presented above, which means the instability will be controlled at
smaller amplitudes, requiring less power. Besides, if more power were needed it will be
possible to install another amplifier in parallel, doubling the total power of the system.
Finally, even though Figure 37 is not enough to quantitatively describe the stability of
the beam, it shows that there are regions of the Δ𝜈 space which are free of HOMs, or at
least have weaker ones, in such a way that in principle it will be possible to find more
stable regions by adjusting the temperature of the cavity.

A similar study was performed for the transverse couple–bunch instabilities with
the impedance model provided by Bassi et al. (2016a). In this case, we can use equa-
tion (4.43) to isolate the minimum impedance,

𝑍min
𝑢 (𝜔) = (𝛼𝑢 + |𝑚|𝛼𝑧)

𝛽𝑢

4𝜋𝜈𝑧𝐸0

𝐼𝑇 ℎ2
𝑚(𝜔 − 𝜔𝜉)

, (7.8)

where 𝑢 stands for both, 𝑥 and 𝑦. Figure 38 shows the comparison of the minimum shunt
impedance with the cavity impedance for several values of currents in the machine for the
azimuthal mode 𝑚 = 0. The azimuthal modes 𝑚 = ±1 will be stable at zero chromaticity,
but at 𝜉𝑢 = 2.5, currents larger than 50 mA could become unstable. The calculations were
performed for the horizontal plane, but the results are identical in the vertical plane,
because horizontal and vertical betatron functions at the location of the cavity are equal.
In this case, there are fewer modes, but all are strong enough to create coupled–bunch
instabilities. Even for a current as low as 5 mA there are modes which could drive the
beam unstable. It was verified that the chromaticities only start to influence for values
larger than 5, which would degrade the lifetime of the ring and cause instabilities of the
modes 𝑚 = ±1, as discussed above.

Proceeding with the calculation of the frequency range Δ𝜔𝑢, where the absolute
value of the impedance for each HOM is larger than the minimum impedance, we use the
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Figure 38 – Transverse PETRA 7–Cell cavity impedance compared with the minimum
shunt impedance needed to drive coupled–bunch instabilities for several values
of total beam current.

equation (3.44) to model the modes as resonators and get

−𝑍min
𝑢 ≥ ℜ

⎧⎨⎩𝜔𝑅

𝜔

𝑅𝑠

1 + 𝑖𝑄
(︁

𝜔𝑅

𝜔
− 𝜔

𝜔𝑅

)︁
⎫⎬⎭ , (7.9)

which differs from its analog in the longitudinal plane, because we are interested in nega-
tive real impedances, which are responsible for generating instabilities. This equation can
be used to define, implicitly,

Δ𝜔𝑢 =
{︃

𝜔 ∈ R
⃒⃒⃒⃒
⃒ 𝜔 < 0, 𝜔4 +

(︃
1

𝑄2 − 2
)︃

𝜔2𝜔2
𝑅 + 𝑅𝑠

𝑍min
𝑢 𝑄2 𝜔𝜔3

𝑅 + 𝜔4
𝑅 ≥ 0

}︃
, (7.10)

where we point out that now we are looking for negative frequencies, because it is in
this region that the real part of the impedance is negative too. The second inequality
in the definition of the interval Δ𝜔𝑢 is too complex to be solved analytically and the
values were found numerically. With this interval, we can calculate Δ𝜈𝑢 using the exact
same definition as in the longitudinal plane, given by equation (7.5), with the remark
that, since now we are working with negative frequencies, the floor function should be
carefully carried out. On the other hand, the definition of the coupled–bunch mode must
be changed, because the transverse tunes are much larger than unit and have to be taken
into account:

𝜇𝑅 ≡
⌊︂−𝜔𝑅 − 𝜈𝑢

𝜔0

⌋︂
mod(𝑀). (7.11)

Figure 39 shows the fractional frequency range, Δ𝜈𝑢 as a function of the coupled–bunch
mode calculated for the horizontal plane for all the transverse HOMs. Recalling equa-
tion (4.43), the sampling of the impedance in the transverse plane when mapped to the
space of Δ𝜈𝑢 happens at 𝜈𝑥,𝑦, shown in the figure as black horizontal lines. Note that the
threshold for the horizontal and vertical instabilities is slightly below 50 mA. Actually,
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Figure 39 – The horizontal axis indicates the mapping of the RF cavity transverse
impedance peak frequencies in the coupled–bunch modes. Vertical axis in-
dicates the fractional part of one revolution frequency in the ring. Black solid
horizontal line is the fractional part of 𝜈𝑥 and black dashed line is the frac-
tional part of 𝜈𝑦. The interval defined by the dots is the range in which
sampling by the betatron tune corresponds to instability at the indicated
current.

the precise calculation, using equation (4.43), showed that the threshold is coincidently
30 mA for both planes. Besides, notice that at 100 mA another HOM, the same one driving
the vertical plane instability, also starts to influence the horizontal plane. One interesting
feature of this figure is that it reveals an island of stability in the region (0.34, 0.44) and,
since the difference between the tunes is only 0.07, in principle it would be possible to
try to adjust the temperature of the cavity to change the position of the HOMs in such
a way that this region coincides with the beam.

However, as discussed for the longitudinal plane, this phasing study is very ideal-
ized and it is very likely that the real cavity will have a different configuration. For these
reasons the most pragmatic approach is to rely in transverse bunch–by–bunch feedback
systems to ensure the stability of the beam. These systems will be available for Sirius in
the commissioning.

7.2 Longitudinal Plane
The studies of the longitudinal dynamics of the Sirius storage ring will be presented

in this section. First, we will evaluate the effects of the standard impedance budget,
without considering the CSR impedance. In the second part we will analyse the noise in
tracking simulations induced by high–frequency components of the wake, together with
the solutions for this problem that were adopted in this work. In the third part we will
present the results of the simulations with CSR, trying to take into account the effect of
the other impedance sources and IBS as well.
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Figure 40 – Stationary parameters of the longitudinal plane, calculated from the solution
of the Haissinski equation.

7.2.1 Standard Impedance Budget Effects

Table 1 shows only the natural, or zero–current, values of the equilibrium pa-
rameters of the storage ring. When the bunch current increases, the IBS change these
parameters due to the temperature rise coming from collisions1. The main impact of this
effect for the wake field induced collective effects is the energy spread increase and the
consequent bunch lengthening. Figure 40 shows the equilibrium parameters of the storage
ring as a function of current for three situations, where the last one, IBS+Wake, is not
self-consistent, because it was obtained by the solution of the Haïssinski equation using
the additional energy spread induced by IBS as initial input. It means that the reduction
of the IBS effect caused by lengthening of the bunch by the wake is not considered in
that curve. While this curve can be considered as a higher limit for the bunch length and
energy spread, or optimistic in relation to the threshold of the instabilities which will be
studied below, the curve for which only the wake function of the machine is considered can
be interpreted as the other extreme limit case. The strong inductance of the impedance
budget becomes evident in Figure 40 where we notice that the bunch is lengthened by a
factor larger than 2 in the current range analysed, while the synchrotron position, ⟨𝑧⟩,
only changes by less than 2 mm.

The average synchrotron tune, ⟨𝜈𝑧⟩, and the synchrotron tune spread, 𝜎𝜈𝑧 , shown
in Figure 40 were calculated based on a generalization of the synchrotron tune defined in
equation 2.37 for a general voltage gap, 𝑉 (𝑧). Neglecting the damping rate, 𝛼𝑧, in that
1 The effect of IBS on Sirius equilibrium parameters was not calculated in this work. The values shown

here were obtained by Natália Milas and Afonso Haruo Mukai
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Table 8 – Broad band resonators model of the Sirius longitudinal impedance budget.

𝑓𝑅 [GHz] 716.2 206.9 138.4 79.6 57.3 35.0 17.5 17.8 11.9 9.2
𝑅𝑠 [kΩ] 30.0 6.5 2.0 2.0 2.5 2.5 1.7 3.0 4.0 20.0
𝑄 0.7 1.3 4.0 1.0 4.5 3.0 1.0 24.0 24.0 100.0

Figure 41 – Comparison of the complete longitudinal impedance calculated for the Sirius
storage ring (blue) with the BBRs fitting presented in Table 8 (red).

equation, we can define a 𝑧–dependent synchrotron tune as

𝜈𝑧(𝑧) = 1
2𝜋

√︁
𝑉 ′(𝑧)𝛼𝐿0, (7.12)

where 𝑉 ′(𝑧) is the derivative of the effective voltage (RF cavity plus wake) obtained from
the Haissinski equation, normalized by the nominal energy of the storage ring, 𝐸0. This
way, the average synchrotron tune and the synchrotron tune spread can be calculated
with

⟨𝜈𝑧⟩ =
∫︁ ∞
−∞

d𝑥 𝜈𝑧(𝑥)𝜆(𝑥), 𝜎2
𝜈𝑧

=
∫︁ ∞
−∞

d𝑥 (𝜈𝑧(𝑥) − ⟨𝜈𝑧⟩)2 𝜆(𝑥), (7.13)

respectively, where 𝜆(𝑧) is the equilibrium distribution, solution of the Haissinski equation.

The current threshold for the microwave instability was calculated in frequency
domain, using equation (4.35) and by macroparticle tracking. In this process, we also
created a model based on BBRs for the whole impedance budget as an attempt to sum-
marize it in a small set of numbers that can be used in future calculations and try to
understand the individual contribution of each structure to the behavior of the beam.
Such task was accomplished with the 11 BBRs shown in Table 8. Figure 41 shows the
comparison between the fitted and original impedances. Even though the agreement is
not excellent, and there is still room for improvement, this model explains very well the
bunch lengthening, the energy loss, threshold of the instability and the behavior of the
beam above the threshold. The very high frequency BBR, the first in the table, is due
to the NEG–coated vacuum chamber, which has a very large inductive impedance at low
frequencies, being the major contributor for the bunch lengthening. The last three res-
onators are originated by the bellows and the BPMs of the machine and have a fairly
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Figure 42 – Mode–coupling instability for two different bunch lengths for phase one of
operation. The black lines indicate where different azimuthal modes couple.

large 𝑄 factor. Their correct modeling is very important to reproduce the behavior of the
beam above the threshold of the microwave instability.

For the frequency domain calculations we did not take into account the IBS effect
and, due to the limitation of the theory, the potential well distortion is not included
either. We ran the simulations of the mode–coupling instability considering the first 31
radial modes and the azimuthal modes from −30 to 30, totalizing 1860 modes, for two
different bunch lengths: 2.5 mm and 3.0 mm, being the first condition related to zero–
current parameters of the first phase of operation of the storage ring and the second
was considered only for a better understanding of the physical phenomena, as described
below. Figure 42 shows the results, which are amazingly interesting. There is a fierce
competition for mode-coupling among modes with azimuthal number up to 17, being the
higher order modes driven by the strong high–frequency components of the resistive–wall
impedance and the low–order modes driven by the other components of the machine,
mainly the BPMs and bellows. In the simulation with bunch length equal to 2.5 mm,
several of them couples almost together, being difficult to identify which one goes first.
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On the other hand, when a bunch of 3 mm is used, all couplings are shifted to higher
currents and the coupling between one dipolar and one quadrupolar mode is the first
one to happen. In both simulations there is the prediction of a weak instability, result of
the coupling between two radial modes of the same dipolar azimuthal mode, that in fact
sets the threshold for the instability at 1.25 mA. The BBR model does not predict this
coupling and so far we could not identify which part of the impedance budget is creating
it, but it must be some component at the low–frequency part of the spectrum because it
is present and unchanged in simulations with bunch lengths up to 5 mm.

Tracking simulations were performed for 3 × 104 turns in the ring, using 107

macroparticles and the PIC method was used to apply the wake kicks, where longitu-
dinal direction was segmented in 5 × 104 bins from −5 cm to 5 cm, which corresponds to
2 µm per bin. With these parameters all the wakes of the budget can be completely de-
scribed, with the requirement of the Nyquist theorem, expressed in equation (4.47), being
met for all of them. As will be described in the next section, the Savitzky–Golay filter was
applied in the beam distribution before the convolution with wake in every turn, as an
attempt to control the effects of numerical noise to acceptable levels. The initial tracking
conditions were the stationary results obtained with the Haissinski equation, to minimize
the initial oscillations of the beam, which would increase the time needed to observe the
instability buildup.

Figure 43 shows the main longitudinal beam parameters obtained from average
over all the turns of the simulation. Two different situations were studied, with and without
the IBS effects, to account for the best and worst case scenarios, respectively, regarding
the instability threshold. A strong instability rises between 2.8 mA and 3.0 mA for the
simulation with only the wake effects, and drastically increases the average energy spread
as a function of the current. Only 0.5 mA above the threshold, the energy spread reaches
values larger than the one where the effects of IBS are considered. Even though their
time average are comparable, the behavior of the beam above the threshold is completely
different in both situations. This difference is notable in Figure 44 where the time evolution
of the energy spread is shown. The coherent energy of the instability drives exponentially
increasing oscillations of the beam, deforming the longitudinal distribution of the particles.
When this deformation is large, the interaction of the beam with the wake is weakened
and radiation damping brings the beam to lower values of energy spread. Even though
it is not shown here, simulations with a larger number of turns show that this process
of growth and damping repeats, forming a saw–tooth like pattern. Figure 45 shows the
discrete Fourier transform of the time evolution of the average bunch position, where the
horizontal axis was normalized by the zero–current synchrotron tune for easy identification
of the coherent modes. The dipole mode, as expected, remains fixed at one synchrotron
tune, because of the single–bunch nature of the simulation, which carries the potential
well distortion together with the bunch. The mode which is driving the instability is the
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Figure 43 – Main parameters of the beam obtained from tracking (dots) as a function
of the current for the simulations with and without the effects of IBS. The
values shown here are averages over all the 3 × 104 turns of the simulation.
The solid lines are the results obtained from the solution of the Haissinski
equation.

Figure 44 – Time evolution of the energy spread for different bunch currents close to the
threshold of the sawtooth–like instability.
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Figure 45 – Discrete Fourier transform of the time–dependent bunch centroid, as a func-
tion of frequency in units of the zero–current synchrotron frequency.

quadrupolar mode, close to 1.75. Even though it is present in the spectrum below the
threshold, its amplitude increases almost two orders of magnitude from current 2.8 mA
to 3.0 mA. The peak at approximately 3.5 is not another coupling of modes, as Figure 42
suggests, but only a multiple of the main mode that is driving the instability, being a result
of the non-linearities created by both the radiation damping and the different interaction
of the beam with the wake as a function of time.

Figure 43 also reveals a small sudden change in the average longitudinal position of
the beam as a function of the current from the simulations with 2.2 mA and 2.4 mA in both
simulations presented there. This could be an indication of the weak instability predicted
by the frequency domain analysis, but no other result besides this one corroborates such
interpretation, and further studies are required to confirm or reject this hypothesis.

Even though the threshold of the instability was not determined properly with
the study presented here, because the behavior of the beam in the best and worst case
scenarios is completely different, two important conclusions can be drown. The first is
that the lower limit for the current threshold is much larger than any current predicted
for operation of the machine. Even the single–bunch operation scenarios are currently
limited to 2 mA due to lifetime issues. The second is that, as indicated by the frequency
domain analysis, the current threshold is very sensitive to an increase in the bunch length
caused by energy spread increase, which suggests the real behavior of the beam will be
closer to the simulated IBS+Wake than to the only wake case. It is a work for future
endeavors, however, to develop methods to self-consistently simulate the effects of wake
fields and IBS together, or at least use some iterations between both isolated simulations
to obtain more realistic results.

As a final remark, the tracking code and the Haissinski solver employed in this
analysis can be directly applied to determine the single–bunch stability of the storage
ring in the second phase of operation, when the Landau cavity will be installed. The
calculations were not yet performed mainly due to lack of time.
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Figure 46 – Tracking results, showing the effect of noise as a function of current for dif-
ferent numbers of macroparticles in the simulation.

7.2.2 Noise in Tracking Simulations

Prior to the study presented above, it was necessary to deal with the problem
of noise in tracking simulations in order to extract reliable results. Numerical noise can
completely spoil longitudinal simulations, because it provides an additional source of
energy spread for the bunch, which is bad for two reasons: first, because this is the main
observable that indicates the onset of the instability we want to study; and second, because
the increased energy spread lengthens the bunch, which changes, generally weakens, the
effect of the wake, preventing the instability from happening. Figure 46 shows an example
of this phenomena, where the first tracking results obtained for Sirius are presented.
They were performed with a slightly different configuration for the machine than the one
presented in last section, and for this reason this figure does not exactly compares to
Figure 43. Note that even with a number of particles as large as 106, there still is a strong
influence of noise, and only with 107 particles the results seem to have converged, where
the onset of an instability happens at approximately 3 mA, as already known from the
last section results.

This additional energy spread is introduced by the interaction of very high–frequency
components of the wake with fluctuations in the beam distribution due to the reduced
finite number of simulated particles. There are some methods to avoid this problem, being
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the most obvious one to increase the number of particles until this effect is negligible. This
approach generally works well. For example, in the benchmarking presented in subsec-
tion 4.6 only 105 macroparticles were enough to reproduce the results of Elegant (BOR-
LAND, 2000) and SPACE (BASSI et al., 2016b), but in the case of the impedance budget
of Sirius, the strong high–frequency components of the resistive–wall and the CSR, makes
such approach impracticable. Another method is to increase the size of the grids in the
longitudinal plane as a method to abruptly cut the high frequencies of the wake, avoiding
the generation of noise. This method is also valid when one knows that the high–frequency
components of the wake are not strong enough to generate coherent motion, which again,
is not the case of CSR and neither what was being indicated by the frequency–domain
analysis for the case of the resistive–wall. Even when the wakes are not strong enough to
create instabilities and the application of this method is viable, depending on the param-
eters of the simulation, convergent results might be difficult to obtain, requiring several
simulations with different number of particles and mesh sizes, until optimal parameters
are found.

A conceptually similar way of ignoring the high frequencies of the wake and, at
least in parts, to avoid the problem of spectral leakage is to convolve the original wake
function with a small gaussian distribution, that smoothly filters the undesired frequencies
without the need of increasing the mesh size. The convergence of the results depends, then,
only on the number of particles. This method was successfully used for Sirius calculations
considering the standard impedance budget presented in last section, but completely failed
in the CSR simulations. Even the success with the impedance budget is due to the fact
that, luckily, the mode which coupled first was the quadrupolar one, as showed in the last
section. If the parameters of the simulation were slightly different it could have failed as
well. Other filters, which are not as smooth as the gaussian could be a better alternative
for handling this problem.

Another method, which is the hard way of dealing with noise, is to filter the noise
at the source, i.e. filter the distribution of particles. Terzic & Bassi (2011) shows a very
detailed study where the authors compared different methods of performing this task. The
study of these advanced methods will be addressed in the future. The solution currently
adopted for this problem was the use of 9–point cubic Savitzky–Golay filter (SAVITZKY;
GOLAY, 1964), as it is done in Elegant (BORLAND, 2000), according to Borland (2001).
The results presented in last section were calculated already using this method and the
ones from the next section, where the CSR will be analysed, will use it too.

Considering that the issues with noise are very difficult to be dealt with in tracking
simulations, it is useful to know a priori what will be its effect on the beam, given a wake
function and the number of particles being simulated. This necessity motivated us to try
to understand better how this coupling of the wake with the beam creates the additional
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energy spread. In the paragraphs below we describe a possible explanation for this process.

7.2.2.1 Estimation of Numerical Noise

Given a longitudinal density distribution 𝜌(𝑧), the number of particles in a small
interval Δ𝑧 centered at the position 𝑧, 𝑁𝑙(𝑧), is a random variable that follows a binomial
distribution. Thus, considering that there are 𝑁𝑝 macroparticles in the bunch simulation,
we have

⟨𝑁𝑙⟩ = 𝜌(𝑧)Δ𝑧𝑁𝑝 and var (𝑁𝑙) ≈ 𝜌(𝑧)Δ𝑧𝑁𝑝, (7.14)

where ⟨·⟩ and var (·) denotes average and variance, respectively, being the latter a measure
of the fluctuations in the bunch due to the finite number of particles. If the particles were
static, this fluctuation would also be static, but, as they are moving due to the longitudinal
dynamics of the storage ring, these fluctuations are constantly changing. For very small
Δ𝑧, the value of 𝑁𝑙(𝑧) changes very fast, but as Δ𝑧 increases, this characteristic time
becomes increasingly large.

It is possible to estimate the length scale where the behavior of the variance changes
by considering the number of turns it takes for the stored particles to complete one
oscillation in the longitudinal phase space, which is 1/𝜈𝑧,0. This means that, on average,
the longitudinal position of each particle differs from its position in the last turn by Δ𝑧𝐿 ≈
4𝜈𝑧,0𝜎𝑧,0. Consequently, for scales below or on the order of this length, the fluctuations of
the particle distribution changes in a turn-by-turn basis.

Now, let us consider there is a wake function 𝑊 (𝑧) that is constant in a small
interval Δ𝑧𝑊 ≈ Δ𝑧𝐿 behind the source particle and zero outside this interval. Then, any
particle inside the bunch would receive random kicks 𝐾 = 𝑒𝐼𝑏𝑇0𝑊𝑁𝑙/𝑁𝑝. The average
of this kick varies slowly in time, because it depends on the evolution of the density
distribution, but the variance, given by

var (𝐾) = (𝑞𝐼𝑏𝑇0𝑊 )2 var (𝑁𝑙)
𝑁2

𝑝

≈ (𝑞𝐼𝑏𝑇0𝑊 )2 Δ𝑧𝑊

𝜎𝑧𝑁𝑝

√︁
2𝜋 exp(1)

, (7.15)

varies from turn to turn, where in the last step it was assumed 𝑧 ≈ 𝜎𝑧 and that the distri-
bution is gaussian, 𝜌(𝜎𝑧) = 1/(

√︁
2𝜋 exp(1)𝜎𝑧). Summarizing, this mechanism introduces

a random variation of the energy of the particles in a turn-by-turn basis, similarly to the
quantum excitation process due to radiation emission. This means that it should change
the energy spread of the beam by

Δ𝜎2 = 𝜎2
𝛿 − 𝜎2

𝛿0 ≈ 4var(𝐾)/𝐸2
0

𝛼𝑧𝑇0(4 − 𝛼𝑧𝑇0)
=

=
(︂

𝑞𝐼𝑏𝑇0𝑊

𝐸0

)︂2 Δ𝑧𝑊

𝜎𝑧𝑁𝑝

√︁
2𝜋 exp(1)

4
𝛼𝑧𝑇0(4 − 𝛼𝑧𝑇0)

. (7.16)
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Figure 47 – Energy spread increase in simulations multiplied by 𝑁𝑝𝜎𝑧/𝐼2
𝑏 . The curves 105,

106, 107 and 5 × 107 were performed with the same wake function using the
PIC method, while for curve (107, BBR) the dynamics was simulated using
directly the BBRs from the impedance model presented in subsection 7.2.1.
For the curve (106, Gauss) a convolution with a 40 µm gaussian bunch was
applied to the wake and a Savitzky–Golay filter was applied in the simulation
of the results of (107, Sav-Go).

Figure 47 shows the energy spread variation from Sirius tracking simulations mul-
tiplied by 𝑁𝑝𝜎𝑧/𝐼2

𝑏 . According to equation (7.16) this quantity should depend only on the
storage ring properties and on the wake characteristics, (𝑊, Δ𝑧𝑊 ), and, therefore should
be an horizontal straight line in the plot. The curves for 105 and 106 particles approxi-
mately follow this rule, having the same baseline, and the curves for 107 and (107, BBR),
deviate from this behavior above 2 mA, but approach the same baseline of the others for
lower currents. This deviation is understood when the simulation with 5 × 107 particles
is analysed, where the real microwave instability dominates the scaling. Besides, the fact
that the tracking using directly the BBR also follows this pattern, is an indication that
this is not an artifact of the PIC method.

The curve (106, Gauss) corresponds to the filtering of the wake with a gaussian
of 𝜎 = 40 µm. This filtering reduces the strength of the wake at short ranges and conse-
quently changes the baseline of this curve. The curve (107, Sav-Go) is the result of using
the Savitzky–Golay filter in the simulation, hence it has the same short–range wake of
the other curves, and, according to equation (7.16), should follow the same baseline of
the other curves below the threshold of the instability. This is not what is happening
because the filtering of the distribution changes its interaction with the high frequencies
of the wake. Notice, however, that with the Savitzky–Golay filter, a simulation with 107

particles have the same behavior above the threshold as an ordinary simulation with 5
times more macroparticles.

While Figure 47 shows that equation (7.16) qualitatively explains the energy
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Figure 48 – Dots represents the energy spread increase in simulations with the same wake
function (represented by the blue curve in the small graphic) and lines are
the prediction of equation (7.16) using a constant model for the wake (orange
line in the small graphic), with 𝑊 = 1 MV/C and Δ𝑧𝑊 =80 µm.

spread increase induced by noise in simulations, Figure 48 shows that, even though several
approximations were performed in its derivation, that equation can be used to quanti-
tatively estimate the number of particles needed to avoid such problems. In this figure
the behavior of the curve (107, Sav-Go) again differs from the others, presenting a larger
energy spread increase than its counterpart without filtering for low currents, but smaller
noise close to the threshold. The understanding of this behavior is a subject for further
studies.

7.2.3 Inclusion of CSR in the Budget

Before including the CSR in the Sirius impedance budget, we performed simu-
lations using only this source of impedance to test if we could find the same threshold
predicted by the theory. We ran the mode–coupling instability simulations using the first
30 radial numbers and azimuthal modes from −40 to 40, but no instability was predicted
up to 4 mA. Simulations with more modes were not performed because of the large com-
puting time they would take. The tracking simulations were performed with the same
discretization of the longitudinal direction the same as the one used in subsection 7.2.1,
with a grid size of 2 µm, and the number of macroparticles was increased to 5 × 107, to
ensure convergence. At 1.2 mA, weak modulations of the longitudinal density distribution
were already observed, as shown in Figure 49. The peak value of the coherent modes is
centered at a wavenumber equal to 7 mm−1 and rise three times above the simulation
noise level. This wavenumber corresponds to a frequency of 333 GHz, which is close to the
first peak of real part of the CSR impedance, at 400 GHz, shown by Figure 28.



Chapter 7. Instability Studies 143

Figure 49 – Longitudinal beam distribution and its discrete Fourier transform for a CSR
simulation with beam current of 1.2 mA.

Recalling section 5.6, the threshold predicted by equation (5.19) is 1.0 mA for Sir-
ius, which is below the value found here, considering that a simulation was performed
with 1.1 mA and no traces of microbunching were found. However, a closer look at Fig-
ure 26 reveals that the threshold obtained with the VFP solver, in the region close to the
shielding parameter of the Sirius dipoles, is larger than the line defined by the mentioned
equation. Besides, the damping rate used by Bane et al. (2010) in that simulation was
approximately 3.5 times larger than Sirius longitudinal damping rate. If we consider the
strength parameter at threshold given by the linearized Vlasov solver, also shown in that
figure, instead of the one predicted by equation (5.19), the current threshold is between
1.1 mA and 1.2 mA, which agrees with the result found here.

Simulations with beam currents above the threshold have shown very good agree-
ment with qualitative explanation of the behavior of the beam given by Venturini &
Warnock (2002), where quasiperiodic bursts of CSR are followed by a relaxation of
the distributions and damping. For example, Figure 50 agrees well with (VENTURINI;
WARNOCK, 2002, Fig. 2), where the discontinuities in the bunch size oscillations are
generated when the bursts happen.

The results shown above suggest all the parameters of the simulation are correctly
tuned so as to identify the CSR instability and we proceeded with its inclusion in the stor-
age ring impedance budget. The simulations without the effects of IBS show modulations
of the beam density starting from a current of 1.4 mA. These modulations have approxi-
mately the same strength as the ones shown in Figure 49. However, when only the CSR
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Figure 50 – Time evolution of the bunch size for a beam current of 4.0 mA under the
effect of the microbunching instability driven by CSR.

Figure 51 – Time evolution of the energy spread and bunch length for different bunch
currents in the simulation with CSR and the machine impedance budget.

wake is included in the simulation, with a current only 0.1 mA above the threshold, the
modulations are strong enough to distort the beam, changing significantly the time evolu-
tion of energy spread and bunch length. For the case where both the machine impedance
and CSR are considered, the instability remains weak up to 1.7 mA, as shown in Figure 51.
The threshold for the simulations with the effect of IBS included is between 3.4 mA and
3.6 mA, but the instability is weak and does not change the equilibrium parameters up
to 4.0 mA.
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Figure 52 – Transverse coupled–bunch instabilities for the first phase of operation of the
Sirius storage ring.

7.3 Transverse Plane

7.3.1 Multi–Bunch Instabilities

Differently from the longitudinal plane, in the transverse plane there will be
coupled–bunch instabilities because of the long–range wake field of the resistive–wall
impedance. The contribution of the IDs to this instability is two-fold: on the one hand,
they increase the long–range impedance of the machine, which decreases the threshold,
but on the other hand, the additional energy loss by radiation they introduce increases
the damping rate in all planes, and changes the equilibrium parameters of the machine,
which helps stabilizing the beam. The effects of the additional radiation were calculated
for the Sirius storage ring assuming all IDs were in their configuration of maximum ver-
tical field and the main results can be found in (SIRIUS, 2013). In practice, however,
the damping rates of the machine will oscillate between the bare machine values and the
maximum value presented in the mentioned reference because the IDs will be constantly
moving, changing the configuration of their fields. For this reason, we decided to adopt
the conservative approach and not to include the effect of the IDs on the damping time
to calculate the instability thresholds.

Figure 52 shows the coupled–bunch growth rates at zero chromaticities calculated
with equation 4.43 for the phase one of operation of the machine, with the impedance of
the IDs included, but without the additional damping they provide. Besides the resistive–
wall instabilities, which are characterized by the peaks in the coupled–bunch numbers at
864 − 50 = 814 in the horizontal plane and 864 − 15 = 849 in the vertical plane, the
effects of other impedances can be seen as well. In the horizontal plane the resistive wall
contribution from the kickers is responsible for the slow decay of the growth rate as a
function of the coupled–bunch mode close to the most unstable mode. This is due to the
large betatron function at the injection straight section, of approximately 18 m. In the
vertical plane only the resistive wall is driving the beam unstable, but there is a peak at a
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Table 9 – Transverse coupled–bunch instability thresholds at zero chromaticity for the
phase one of operation for different assumptions on the IDs effects.

Plane
Threshold Current [mA]

without IDs with IDs
w/o damping with damping

Vertical 29.5 21.4 32.0
Horizontal 54.6 37.9 56.8

coupled–bunch number approximately equal to 650, which is being caused by the DCCT
impedance. This component is installed in the arc of the lattice, close to the dipole B2,
where the vertical betatron function is very large, of the order of 22 m.

Table 9 shows the current thresholds at zero chromaticity for the coupled–bunch
instabilities for different assumptions on the effect of the IDs to show their influence on the
impedance budget and also the contribution of the additional damping on the stabiliza-
tion of the beam. The additional damping increases the threshold by a factor of approx-
imately 3/2 in both planes, and, interestingly, almost cancel the effect of the impedance
of the IDs for this instability. This is only possible because the betatron functions at the
location of the IDs is very low, which implies that their effects on the transverse dynam-
ics is relatively weak, even though their gap is approximately five times smaller than the
standard vacuum chamber and the resistive wall goes with 1/𝑏3. Table 9 also shows that
the vertical threshold is almost twice as large as the one for the horizontal plane, even
for the bare machine impedance, which is a consequence of the larger average vertical
betatron function of the machine and the fact that the vertical tune is larger than the
horizontal.

Figure 53 shows the effect of the chromaticity on the most unstable mode of
the coupled–bunch instability calculated with two different approaches. One using the
approximate expression of equation 4.43 for the azimuthal modes 0 and 1, which are the
diagonal terms of the mode–coupling matrix, given by equation 4.42, and another by
solving the mode–coupling matrix, considering the first 7 radial modes and azimuthal
modes from −7 to 7. There is a very good agreement between the two approaches at low
chromaticities, when the azimuthal mode 0 dominates the instability, but at larger values,
the simplified approach overestimates the thresholds (underestimate the strength of the
instability). This study shows that the beam will be stable when the ring is operated with
chromaticities above 2.3 and 1.6 in the vertical and horizontal planes, respectively. Such
dependency was foreseen a few years ago, which allowed the optimization of the non–linear
optics of the storage ring to operate at chromaticity equal to 2.5 in both planes, which we
expect will avoid the usual problems of lifetime and dynamic aperture reduction related
to this type of operation.
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Figure 53 – Effect of chromaticity on the most unstable mode of the transverse coupled–
bunch instabilities for the first phase of operation of the Sirius storage ring.

Even though the study above shows the possibility of operating the ring in stable
conditions with an increased chromaticity, the most reliable way to solve this problem,
which has been demonstrated to be successful in several 3rd GLS for the last two decades,
is the use of transverse bunch–by–bunch feedback systems. Sirius will have two of these
systems, one for the horizontal plane and another for the vertical. The actuators used
will be striplines with shunt impedance, 𝑅𝐾 , of 70 kΩ m−1 and the amplifier will have
maximum power of 75 W, of which only approximately 30 W will be applicable to the
beam, due to cable losses (DUARTE, 2018). According to Lonza (2007), the relation
between the power, 𝑃 , and the damping time provided by the kicker, 𝜏𝐾 , is given by

𝛼𝐾 = 1
𝜏𝐾

=
√︃

𝑅𝐾𝑃

2
√︁

𝛽𝐾𝛽𝐵
1

(𝐸0/𝑒)𝑇0

1
𝑥max

, (7.17)

where 𝛽𝐾 and 𝛽𝐵 are the betatron functions at the position of the actuator and the pickup,
respectively, and 𝑥max is the maximum amplitude of the movement. The requirement for
stability of the beam allows oscillations no larger than 10 % of the beam size, which
corresponds to 1.7 µm at the pickup position for the vertical plane and 5.5 µm in the
horizontal plane. These requirements for beam stability are very demanding, so we will
assume, as a worst case scenario, that the instability will be controlled at an oscillation
ten times larger than the requirement for the vertical plane. Using this value in the
equation above, the maximum damping rate the system will be capable of controlling is
170 kHz and 190 kHz in the horizontal and vertical plane, respectively, which are much
larger than the thresholds calculated so far. This estimation is, off course, very idealized,
because at such large growth rates the total latency of the system, not included in this
simplified analysis, becomes a serious issue, reducing the effectiveness of the bunch–by-
bunch feedback system. Considering another scenario, where the beam is initially unstable
and we want to control this instability with the feedback system, even with an oscillation
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Figure 54 – Transverse single–bunch instabilities for the first phase of operation of the
Sirius storage ring, considering the unperturbed longitudinal distribution,
without the effects of IBS and potential well distortion.

as large as 5 mm, the maximum damping rate will still be of the order of 0.5 kHz.

The behavior of the beam in the second phase of operation of the storage in
the multi–bunch configuration cannot be explained with the frequency domain theory
used here because of the flattened distribution of the beam, created by the action of the
passive Landau cavity, and further investigations are needed. However, based on the work
of Cullinan et al. (2016) it is expected that the chromaticity will have an even larger effect
on the beam, being more efficient to stabilize it.

7.3.2 Single–Bunch Instabilities

Figure 54 shows the growth rate of the single–bunch instability for different values
of chromaticity. The solid lines represent the results obtained from tracking and the dashed
lines are from the solution of the equation (4.42), considering the first 10 radial modes
and azimuthal modes from −10 to 10, totalizing 231 modes. The tracking simulation was
performed with 105 macro particles in the bunch for 104 turns, using directly the effective
wake functions obtained from numerical simulations with ECHO and GdfdL and the
wake functions calculated with ImpedanceWake2D (MOUNET; MÉTRAL, 2010b) for the
resistive–wall impedance. While the growth rate is a direct result of the frequency domain
calculation, being given by the largest imaginary part of all the eigenvalues, in tracking
simulations these values were extracted from the angular coefficient of the linear fit of the
natural logarithm of the beam size as a function of time. The good agreement between
frequency and time domain simulations shown in the Figure 54 was already expected,
considering that the conditions used in tracking perfectly match the assumptions used by
the mode–coupling theory.

We do not believe that the discrepancies on the prediction of the damping rates
are due to the truncation of the mode–coupling matrix, because we have performed con-
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vergence tests on the number of modes included in that analysis. They might be due to
the fact that the impedance budget only have the kickers’ impedance, but not the wake
functions yet, which makes the total impedance and wakes of the budget not completely
equivalent to each other. Another possibility comes from the fact that in the time-domain
simulations the effective wake functions were used, and not the point-charge wakes. This
could soften the strength of the short–range wakes, due to the convolution with the gaus-
sian beam used for their calculation in the numerical solvers of the ME. An investigation
of better ways to extract and use the information of the effective wake functions in track-
ing simulations is desirable in the future, maybe by fitting the wakes or the impedances
with well–known functions, like resonators, inductors and resistors, for which analytic
expressions for the wakes exists, as was done by Nagaoka (2006) for the Soleil impedance
budget.

Figure 54 also shows that the chromaticities have a strong effect on the single–
bunch instabilities, where positive values reduce growth rates in both planes at the cost
of lowering the current threshold too. It is expected that this reduced growth rate will
improve the effectiveness of the control of this instability with the bunch–by–bunch
feedback system, as shown experimentally at ALS (BYRD; BARRY, 1997) and at Dia-
mond (KOUKOVINI-PLATIA et al., 2017).

It is known from the theory, as explained by Lindberg (2016) for example, that
the longitudinal impedance has a two-fold effect on the transverse single–bunch stability
because of the potential well distortion: the reduction of the average synchrotron tune
tends to decrease the threshold and the creation of synchrotron tune spread induces
Landau damping, pushing it to higher currents. The net effect of these two mechanisms
at zero chromaticity depends on the particularities of the impedance budget and need
detailed analysis. The simulation of this effect on Sirius was done in a simplified manner,
where the distorted potential well which generates the equilibrium distribution given by
the Haissinski equation is used in the longitudinal plane to simulate the effect of the
longitudinal impedance without the need of applying the wake kicks. This was done
because below the threshold of the microwave instability all the effects of the longitudinal
impedance are described by the distorted potential at equilibrium. This approach speeds
up tracking simulations, because it saves time by not computing the longitudinal wake
kicks and allows simulations with much less macro–particles, since there is no noise to
induce energy spread increase and spoil the results. This method could be extended to
currents higher than the threshold of the microwave instability by also adjusting the energy
spread of the ring to the equilibrium energy spread defined by this instability. However,
this was not done in the case of Sirius, because, as seen in section 7.2, in the cases where
the microwave instability happens it induces deformations in the bunch distribution so
strong that it is not likely that a transverse instability could rise. This is an hypothesis
that could be easily tested in the future using the same tools developed in this work.
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Figure 55 – Transverse single–bunch instabilities for the first phase of operation of the
Sirius storage ring, considering effects of IBS and potential well distortion.

Considering the assumptions above, Figure 55 shows the effect of the longitudinal
impedance on the transverse stability of the beam for two different configurations, with
and without considering the effects of the IBS, and for different values of chromaticities.
In the vertical plane, the potential well distortion alone does not increase the current
threshold but helps lowering the growth rates of the instability and increase its sensi-
tivity to chromaticity. In contrast, the additional energy spread introduced by the IBS
increases the threshold but does not influence strongly the growth rates. It is interesting
to notice the peculiar behavior of the simulation with IBS and potential well distortion
at chromaticity equal to 1, where the beam is unstable from 1.8 mA to 3.2 mA and then
becomes stable again up to currents higher than 4 mA. This can be understood if one
notice that in all the situations presented in both Figure 54 and Figure 55 the instability
in the vertical plane is dictated by two independent mode–coupling events, the first being
the one responsible for the current threshold at approximately 1.45 mA and the other
taking place at higher currents. The qualitative behavior of the first coupling is the same
in both figures, first it grows in strength up to a maximum value, which depends on the
condition simulated, followed by a decline and a probable decoupling at higher currents.
On the other hand, the behavior of the second coupling is very different among the sim-
ulations, being completely suppressed for chromaticities larger than 1 with potential well
distortion and IBS. The qualitative behavior of the instability in the horizontal plane is
similar to the vertical, with the potential well distortion alone not increasing the thresh-
old, but helping to control the strength of the growth rates, and the IBS contributing
to the increase of the stable region. Finally, Figure 55 shows that both planes are stable
when the ring is operated at a chromaticity equal to 2.0.



151

CONCLUSIONS

In this work we modeled the impedance of some of the main components of the
Sirius storage ring with simplified models and gathered the results for other components
whose calculations were done in detail using 3D solvers of Maxwell equations, to form
the initial impedance budget of the machine. This data was used to calculate the current
thresholds for single and multi-bunch instabilities for Sirius phase 1 of operation, which
consists in 100 mA total current (or 120 µA per bunch in uniform filling), 2 SC RF cavities
and no 3HC for bunch lengthening. In Phase 2, although the current is larger, there will
be 3HC, which is expected to lengthen the bunch by a factor of 3 to 4.

One of the most important components of the impedance budget is the standard
chamber of the storage ring, which has a small transverse cross-section, only 12 mm in
radius, and will be NEG–coated along all its extension. In this work we used semi–analytic
formulas from literature to compute the impedance of this component, which allowed us
to evaluate the effect of NEG under various possible scenarios related to its thickness
and electrical conductivity. It was verified that imprecision in the conductivity close to
the nominal value of 1 MS m−1, do not have a large impact on the current threshold
of the TMCI. On the other hand, small thickness increase above the nominal value of
1 µm, strongly contributes to lowering the threshold of the TMCI. Besides, under nominal
conditions of electrical conductivity and coating thickness, the standard chamber resistive
wall is the main contributor to the transverse impedance of the machine and is responsible
for 1⁄3 of the total longitudinal effective impedance, having a large impact on bunch-
lengthening. Despite of these effects, the operation of the ring will not be compromised,
given that all the thresholds for single–bunch instabilities are much above the nominal
current of the ring in uniform filling.

A study of the geometric transition impedance of the BC magnet revealed that
the initial proposal for the vacuum chamber, which consisted in a transition from the
standard round chamber to an elliptical one, had an impedance 2.5 times larger than a
round conical cross section. Based on this study, the design of this component was changed
to an intermediate geometry which meets the requirement for radiation power dissipation
and have approximately the same impedance of the conical transition.

The insertion devices predicted for phase one of operation of the storage ring will
be out–of–vacuum magnets, which allowed us to create a simple model for its geometric
transition impedance, consisting on simple tapers in both ends of the device with a very
large transition factor. The resistive wall impedance of such components was calculated
using the same methods as the standard chamber and, even though the gap of these
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devices is very small, of the order of 5 mm to 7 mm full gap, their contribution to the
transverse impedance is relatively low, because of the small values of the horizontal and
vertical betatron functions at the insertion devices positions.

Regarding the coupled–bunch instabilities, a PETRA 7–Cell RF cavity will be
used in the commissioning phase. Even though it is difficult to predict correctly the
quantity and peak frequency of the RF cavities higher order modes, in this work we
carried out a study of the coupled–bunch instabilities induced by them on Sirius, based
on an impedance model found in literature. The studies have shown that, provided the
transverse and longitudinal bunch–by–bunch feedback systems are installed and working,
these cavities will not compromise the commissioning. Otherwise, a vertical instability will
arise at approximately 25 mA in uniform filling. For phase one of operation, the PETRA
7–Cell cavity will be replaced by a superconducting one and the longitudinal kicker will
be removed to optimize the impedance of the machine. In this situation, no longitudinal
coupled–bunch instabilities are predicted.

The current threshold for the resistive–wall instability are approximately 20 mA
in the vertical plane and 35 mA in the horizontal plane, which will require the action of
the transverse bunch–by–bunch feedback system to reach the nominal current of 100 mA.
However, studies have shown that with chromaticities close to 2.2 and 1.8 in the vertical
and horizontal planes, respectively, the beam will be stable up to the nominal current in
uniform filling without the action of feedback systems. The prediction of this behavior, a
few years ago, enabled us to optimize the operation of the machine with chromaticity of
2.5 in both transverse planes, which will mitigate common problems related to this type
of operation, such as dynamic aperture and lifetime reduction.

The calculation of the single–bunch instabilities were performed with frequency
domain codes, based on the mode–coupling theory and also with a tracking code developed
in-house. It was verified, with good agreement between both methods, that the threshold
for microwave instability is at approximately 3.0 mA per bunch, if the effects of energy–
spread increase induced by IBS were not taken into account. When this effect is included,
the threshold is above 4.0 mA. However, further studies considering the bunch–lengthening
induced by the impedance on the calculation of the IBS effects is necessary in order to
improve the accuracy of the predictions. The coherent synchrotron radiation impedance
was included in the impedance budget of the storage ring and tracking simulations were
performed to access the current thresholds. Simulations with only the CSR impedance
revealed a threshold of 1.2 mA, which is in good agreement with the predicted value
from theory. When the machine impedance is added in the simulations, the threshold
increases to 1.4 mA but the instability is weak and does not change significantly the
beam parameters up to 1.7 mA. Finally, when IBS effects are included, the threshold is
approximately at 3.4 mA and remains weak up to 4.0 mA. Further studies are needed in
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order to confirm these results under different simulation parameters and also with a more
accurate estimation of the IBS–induced increase of energy spread.

Without considering the potential well distortion caused by the longitudinal impedance
transverse single–bunch tracking results have shown an excellent agreement with the fre-
quency domain codes, where the current threshold for the TMCI in the vertical plane was
verified to be 1.5 mA and 2.0 mA for the horizontal plane. It is possible to lower the growth
rates of the instability above the threshold by increasing the chromaticity at the cost of a
small reduction of the current threshold. The potential well distortion was included in the
transverse simulations by setting the potential well of the simulated RF cavity with the
equilibrium potential well obtained from the Haissinski equation solver, which allowed us
to perform tracking with a very reduced number of particles compared to the standard
approach of simulating the longitudinal and transverse wake kicks concomitantly. The
results have shown that the current thresholds remain approximately unchanged but the
sensitivity of the instability with chromaticity increases significantly, in such a way that a
chromaticity equal to 2.0 in both planes is enough to increase the threshold up to currents
higher than 4.0 mA. When IBS effects are included, the threshold slightly increases, but
the sensibility of the growth rates with chromaticity does not change.

Further studies are needed to characterize the behavior of the beam in the second
phase of operation, when a Landau cavity will be installed in the ring to lengthen the
bunches. For the single–bunch studies the same tracking code and the Haissinski equa-
tion solver developed in this work can be used directly, without any addition of new
functionalities, but new methods must be investigated for the multi–bunch studies.
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