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Abstract. We present novel aspects of a trajectory-based theory of massive spin-zero
relativistic quantum particles. In this approach, the quantum trajectory ensemble is the
fundamental entity. It satisfies its own action principle, leading to a dynamical partial
differential equation (via the Euler-Lagrange procedure), as well as to conservation laws (via
Noether’s theorem). In this paper, we focus on the derivation of the latter. In addition to the
usual expected energy and momentum conservation laws, there is also a third law that emerges,
associated with the conditions needed to maintain global simultaneity. We also show that
the nonrelativistic limits of these conservation laws match those of the earlier, nonrelativistic
quantum trajectory theory [J. Chem. Phys. 136, 031102 (2012)].

1. Introduction
Wave-based quantum mechanics, and its relativistic generalizations in the form of quantum field
theories, have been more or less fully developed (modulo renormalization) since the 1930s [1, 2, 3].
Moreover, perturbation calculations based on those theories (such as quantum electrodynamics)
have achieved tremendous success, in terms of numerical agreement with experiment. And yet
for all that, much disagreement still remains—e.g., as to the true significance of the wavefunction
(ontic vs. epistemic), and whether or not it completely represents a quantum state. For example,
there is the issue of whether or not the wavefunction need be supplemented with “hidden
variables,” and also, exactly what happens when the wavefunction “collapses.” Perhaps not
surprisingly, the various interpretations of quantum mechanics that have been developed over
the years [4, 5, 6, 7, 8, 9, 10, 11] provide different answers to these questions.

On the other hand, what if there were no need of a wavefunction at all in a quantum theory?
In recent years, attempts have been made to formulate a complete standalone theory of quantum
mechanics without wavefunctions [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. In particular,
in 2010, one of the authors (B. Poirier) proposed a theoretical framework in which a quantum
state is represented solely by an ensemble of real-valued probabilistic trajectories [14, 17]. With
the notable exception of spin, this nonrelativistic version of the trajectory-based theory turns
out to be formally mathematically equivalent to the standard wave-based Schrödinger equation
[12, 13, 14, 17]—though it can be derived completely independently [14, 17]. More recently, a
discrete version of the trajectory-based theory has also been proposed [20, 21, 22, 23], which
is not consistent with the Schrödinger equation except in the continuous limit. In either form,
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i.e. discrete or continuous, the trajectory-based theory also suggests a new interpretation of
quantum mechanics, as was also first proposed in 2010 [14]. This has come to be known as the
“many interacting worlds” interpretation, in contradistinction to the many worlds interpretation
of Everett [10, 11].

It should be emphasized that in the trajectory-based formulation (at least, the original
continuous version as developed by the authors), the relevant dynamical partial differential
equations (PDEs) emerge from an action extremization principle, applied to a trajectory-based
Lagrangian density (reminiscent of classical field theory). The resultant solutions are therefore
ensembles of true trajectories, as opposed to paths. In particular, there is no integration over
paths, only an Euler-Lagrange extremization, as in classical (field) theory. As a consequence, it
becomes a very straightforward matter to apply Noether’s theorem, to derive proper conservation
laws, based on the continuous symmetries. It should be noted that this provides a huge advantage
over say, Bohmian mechanics [5, 6], for which the quantum potential and force are treated as
external fields, arising from the time- and space-dependent wavefunction. As a result, e.g., there
are no satisfactory momentum conservation laws for Bohmian trajectories—at least none that
emerge from the Bohmian theory itself, as has been lamented by at least one author [6].

In reality, the quantum trajectories of the trajectory-based theory are identical with Bohmian
trajectories—meaning that both theories somehow manage to employ the same quantum
potential and forces. The difference is that in the trajectory-based approach, these quantities
are formulated solely from the trajectory ensemble itself, in a manner that exhibits both time
and space translation invariance. In a sense, these symmetries were thus “there all along” in
the Bohm theory, it is just that they are obscured by the theory’s reliance on a wavefunction.
In the trajectory-based approach, in contrast, these symmetries are naturally revealed in the
translation invariances of the trajectory-based Lagrangian density expression (Sec. 2.2).

With the success of the trajectory-based quantum theory in the nonrelativistic regime—and
particularly given its wholly trajectory-based character—it is promising to generalize this theory
for relativistic quantum particles. In spite of the success of quantum electrodynamics in terms of
its agreement with experimental results, there is currently no satisfactory relativistic quantum
theory for describing individual (or a fixed number of) spin-zero particles with a well-defined
probabilistic interpretation. For instance, a promising candidate, the Klein-Gordon theory, does
not achieve a probabilistic interpretation for a single quantum particle, due to the fact that the
current density j0 is not always positive semidefinite and that the four-current jα can either
be timelike or spacelike [6, 24, 25]. Although for spin-1/2 particles at least, these maladies
are repaired by the Dirac equation, even the Dirac theory gives rise to unphysical negative
energy states, when interpreted as a single-particle theory. Insofar as fixed, multi-particle Dirac
equations are concerned, these do exist in practice, but all of them are ad hoc beyond two
particles—a fact which, e.g., has thus far hampered the field of relativistic quantum chemistry
[26].

These deficiencies suggest the value of exploring a trajectory-based approach for a single
or fixed number of relativistic quantum particles, at least in contexts where QED pair
creation/annihilation effects are of lesser importance. To this end, our group has developed a
relativistic generalization of the trajectory-based quantum theory [27, 28]. Specifically, we have
derived relativistic quantum trajectory dynamical PDEs, which reduce to both the nonrelativistic
trajectory PDEs, and the classical relativistic dynamical equations, in the appropriate limits.
To our eyes, a remarkable feature of the relativistic quantum trajectory PDEs is that they
are not equivalent to Klein-Gordon (except in the above limits of course). The reason is that
they are essentially nonlinear—in fact, they can be recast in wave form as the Klein-Gordon
equation plus a nonlinear correction. What is more, the relativistic trajectory-based theory
gives rise to a well-defined timelike probability current jµ, with a temporal component j0 that
is positive-semidefinite over all spacetime (all trajectories are subluminal). Moreover, there are
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no negative energy quantum trajectory ensemble solutions. Finally, the relativistic quantum
trajectory theory gives rise to global simultaneity submanifolds—restoring the appealing, special
relativistic notion of global simultaneity, that would ordinarily have to be discarded as soon as
particle acceleration is introduced.

The above properties certainly distinguish the trajectory-based theory from the wave-based
Klein-Gordon theory for massive spin-zero relativistic quantum particles. The trajectory
approach may thus find some meaningful predictive value, again in contexts where QED pair
creation/annihilation effects are of less importance (or can be simulated as external potentials).
Although the dynamical PDEs for the trajectory-based relativistic quantum theory have already
been derived [27], and even implemented numerically [28], it remains to work out the associated
continuous symmetries and conservation laws. Such is the purpose of this paper, where for
the moment we restrict ourselves to a 1 + 1 flat Minkowski spacetime. In future work, we will
consider the full 3 + 1 case, for which angular momentum conservation laws emerge (and for
non-spin-zero particles, intrinsic angular momentum)—as does a non-trivial constraint on the
trajectory velocity field that turns out to be associated with global simultaneity (Sec. 4.4).

From a mathematical standpoint, even the restricted 1 + 1 case considered here is of interest,
for two reasons. First, unlike the usual wave-based quantum treatment, for which the spatial
coordinate x is an independent variable, here, x is a dependent variable—indeed, it is no
less than the very trajectory ensemble that we are solving for. The corresponding spacelike
independent coordinate is C, which labels a particular trajectory within the ensemble [i.e.,
the ensemble itself can be denoted x(C)]. Note that with respect to continuous symmetries,
one can examine the Lagrangian density both with respect to the extrinsic spatial coordinate
x, and also independently with respect to the intrinsic spatial coordinate C. Second, being
a relativistic theory, there are actually two dependent variables, (t, x)—i.e., the extrinsic
spacetime coordinates—that depend on the two intrinsic independent variables, (λ,C), where
the “ensemble time” parameter λ describes the evolution of trajectories within the ensemble.
All of this provides a rather rich structure, insofar as the continuous symmetries are concerned.

2. Formulation of the trajectory-based 3 + 1 relativistic quantum theory
2.1. Preliminaries
In the trajectory-based relativistic quantum theory, the spacetime of a single relativistic spin-
zero particle is represented by a 4d 3 + 1 Riemannian manifold, which is presumed to be flat
[27]. Because there is exactly one quantum trajectory passing through each point in spacetime,
the ensemble of quantum trajectories can be denoted by inertial coordinates xα = (ct,x), which
depend on the intrinsic coordinates Xµ = (cλ,C). Thus, C denotes a specific trajectory from
the ensemble, and for a fixed choice of C, the resultant xα(λ) denotes the trajectory path
through spacetime as a function of the “ensemble time” evolution parameter λ. The intrinsic
or “natural” coordinates are defined in such a way that the contours of λ(xα) are everywhere
skew-orthogonal to the trajectories, but are otherwise arbitrary. In particular, the theory admits
arbitrary and independent reparametrizations of the intrinsic time (λ→ λ′) and space (C → C ′)
coordinates.

Due to the skew-orthogonality property described above, each contour of λ(xα) can be
interpreted as a global simultaneity submanifold [27]. In general, these will be curved, owing
to the accelerated motion of some or all of the relativistic quantum trajectories that make up
the ensemble. Even for free particles this is the case, owing to the quantum forces that arise
from variations in particle density across spacetime. (The same is also true in the nonrelativistic
case). Note that in general, it is not possible to take λ to be the proper time—at least not across
the entire trajectory ensemble. Only when all trajectories are parallel and unaccelerated is this
the case—a frame-defining situation that we refer to as quantum inertial motion.

In all versions of the trajectory-based quantum theory, all quantum effects arise from
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the mutual interactions of nearby trajectories or “worlds.” The quantum potential Q, and
(covariant) quantum force fQα , thus arise as forms that involve the “spatial” derivatives (i.e.,
derivatives with respect to the C variables) of the trajectory ensemble solution, xα(Xµ). A key
feature is that these expressions do not involve any X0, or λ, derivatives, effectively restricting
their evaluation to the simultaneity submanifolds. This is one of two postulates used to formulate
the trajectory-based theory [27].

Throughout this paper, the Greek indices α, β, γ, . . . run over the spacetime inertial coordinate
labels, i.e. 0, 1, . . ., whereas µ, ν, . . . serve a similar function for the curvilinear natural coordinate
system Xµ. Latin indices run over spatial (or spacelike) coordinate labels 1, . . ., as per usual,
with l,m, . . . used for inertial coordinates, and i, j, . . . for natural coordinates. We use the
Einstein summation convention for repeated indices. When an index is repeated three or more
times, the summation symbol is restored for clarity.

In inertial coordinates, the metric tensor ηαβ is the usual Minkowski one, with η̃ =
diag(−1, 1, 1, 1). In natural coordinates, the metric tensor is denoted gµν . These two metric
tensors are related by the transformation [27]:

gµν = ηαβ
∂xα

∂Xµ

∂xβ

∂Xν
. (1)

Note that the skew-orthogonality condition results in a gµν that is block-diagonal in its matrix
form, i.e.,

g̃ =

(
g00 0
0 γ̃

)
, (2)

where the “spatial metric” γ̃ is the 3× 3 spatial block of the full metric tensor g̃. We define the
determinants of g̃ and γ̃ to be:

g = det g̃ = g00γ, γ = det γ̃. (3)

The proper time τ for the quantum particle is defined via

dτ2 = − 1

c2
ηαβdx

αdxβ. (4)

Due to Eqs. (1), (2) and (4), we have

g00 = −
(
dτ

dλ

)2

. (5)

2.2. Dynamical PDEs governing time evolution
We obtain the dynamics of the relativistic quantum particle by extremizing the action, following
a generalized Euler-Lagrange procedure. For a classical free particle, the expression for the
relativistic Lagrangian is well-described in the literature [29, 30, 31, 32]. For a relativistic
quantum particle, the corresponding trajectory-based Lagrangian density is constructed in
Ref. [27]. The action is expressed as

S =

∫
d4XL

=

∫
d4X

ρ(Xµ)

c
L, (6)
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where L is the Lagrangian density and L is a scalar invariant quantity referred to as the
“Lagrangian.”

In Ref. [27], ρ(Xµ) is defined as the 4d scalar probability density of weight W = −1. This
can be expressed as:

ρ(Xµ) =
dτ

dλ
f(C), (7)

where f(C) denotes the 3d-probability density on C-space. Note that f(C) is independent of
λ. This follows from the second postulate of the theory, i.e. that probability is conserved along
individual trajectories [27]. In this paper, we find it convenient to work with the “reparametrized
Lagrangian” L(λ), defined as

L(λ) =
dτ

dλ
L. (8)

The net effect is to replace ρ(Xµ) with f(C), which is more convenient in practice. Thus,

L =
1

c

dτ

dλ
f (C)L =

1

c
f (C)L(λ). (9)

We find it convenient to decompose the (reparametrized) Lagrangian (density) into three
parts:

L = L0 + LI − LQ, (10)

L = L0 + LI − LQ, (11)

L(λ) = L
(λ)
0 + L

(λ)
I − L

(λ)
Q (12)

The 0, I, and Q terms refer to (classical) kinetic, (classical) external field, and quantum
contributions, respectively. The three parts of L(λ) in Eq. (12) are defined as follows [27]:

L
(λ)
0 = −mc2

√
− 1

c2
ηαβ

∂xα

∂λ

∂xβ

∂λ
, (13)

L
(λ)
I =

q

c

∂xα

∂λ
Aα (x) , (14)

L
(λ)
Q =

~2

8m

dτ

dλ

(
f(C)

γ1/2

)−2
γij

∂

∂Ci

(
f(C)

γ1/2

)
∂

∂Cj

(
f(C)

γ1/2

)
. (15)

We note that the external field Aα(x) in Eq. (14) is a function of xα, in general.
Note that different forms are possible for the quantum contribution to the (reparametrized)

Lagrangian, L
(λ)
Q , depending on the choice of gauge. In Eq. (15) above, we have chosen the

“Holland gauge” (which is also utilized in Ref. [13, 27]), because it is simplest. On the other

hand, the “Poirier gauge”, for which L
(λ)
Q = Q, is arguably more natural, because the resultant

action is essentially equivalent to the phase of the wavefunction (at least in the nonrelativistic
case).

Although the expression for L
(λ)
Q depends on the choice of gauge, the resultant dynamical

PDEs and Noether-theorem-derived conservation laws are independent of the gauge. In
particular, all trajectories in the ensemble are found to evolve in accord with the classical
relativistic force provided by the external vector potential Aα(x), together with a quantum force
contribution, obtained from the relativistic quantum potential Q as follows:

Q = − ~2

2m
γ−1/4f−1/2

∂

∂Ci

[
γ1/2γij

∂

∂Cj
f1/2γ−1/4

]
, (16)

fαQ = −∂x
α

∂Ci
γij

∂Q

∂Cj
(17)
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In Eq. (17) above, fαQ is the contravariant form of the covariant quantum force introduced

in Sec. 2.1—i.e., fαQ = ηαβfQβ . Note that fQα is almost equal to −∂Q/∂xα, except that the λ
component of the four-gradient must be projected out due to the first postulate—thus effectively
replacing gµν with γij in Eq. (17) [27].

In addition to the choice of gauge, one also has a choice of natural coordinate
reparametrization, as discussed above. The above forms are generic, in the sense that they
apply for any choice of natural coordinates. Throughout most of this paper, we leave the choice
of the natural timelike coordinate λ generic, although in Ref. [27], specific choices are explored.
Regarding the natural spacelike coordinates, here, a very convenient choice—and one which is
always available—is to define C such that the density f(C) = 1 everywhere. We call this a
“uniformizing” choice for C [17, 27], and it has the great advantage that f(C) vanishes from
the Lagrangian forms—which, in addition, further simplify, because ∂f(C)/∂Ci = 0. We shall
assume the use of uniformizing C coordinates henceforth throughout this work, although explicit
coordinate forms will not appear again until Sec. 4.

3. Action extremization, dynamical PDEs, and Noether’s theorem
3.1. Introduction
One of the primary advantages of the quantum theoretical framework employed here—as
compared with both traditional wave-based theories, as well as the discrete trajectory-based
theory [20]—is that it derives from a standalone trajectory-based Lagrangian. As such, it is
a wholly straightforward matter to examine the form of the Lagrangian in order to determine
its invariant symmetries. The corresponding conservation laws can then be obtained using the
Noether procedure [32, 33, 34, 35, 36, 37, 38]. Additionally, since the formalism is inherently
trajectory-based, the relativistic quantum, nonrelativistic quantum, and relativisic classical cases
are all treated on an equal footing. It therefore becomes equally straightforward to consider the
nonrelativistic and/or classical limits, and to verify agreement with previously established forms
for these limiting cases.

From examination of Eqs. (13) to (15), it is clear that the only dependence of the
(reparametrized) Lagrangian on the inertial coordinates xα enters through the external vector

potential contribution, L
(λ)
I . This is to be expected, and is exactly the same dependence as

in the classical relativistic case. Thus for free particles (e.g., Aα(x) = 0), the trajectory-
based relativistic quantum Langrangian is independent of both inertial space and time variables,
xα = (ct,x). Consequently, by Noether’s theorem, there exist associated inertial momentum
and energy conservation laws. This will be taken up again in Sec. 4.2.

On the other hand, as discussed in Sec. 1, the trajectory-based theory also has the independent
or natural coordinates to contend with, i.e. Xµ = (cλ,C). By inspection, none of Eqs. (13)
to (15) show an explicit dependence on the natural time-like coordinate λ, no matter how it
is parametrized—a feature we will exploit in Sec. 5. Here, of course, the significance is that
Noether’s theorem then implies a second energy conservation law, associated with the natural
time evolution. As for the explicit dependence on the natural space-like coordinates C, we see
that Eqs. (13) and (14) are completely devoid of any explicit or implicit reference to C (i.e. even
with respect to Ci derivatives). Since these are wholly classical contributions to the Lagrangian,
this is exactly as it should be—i.e., parallel classical “worlds” do not interact in any sense.

As for the quantum contribution of Eq. (15), here, we see that C enters in, both in terms of
derivatives (explicitly observed, and also implicit in the definition of γij), and also through the
f(C) dependence. On the other hand, the latter, explicit coordinate dependence can be made
to disappear through the use of uniformizing coordinates, as discussed. This means that the
present theory also admits a natural momentum or “C-conservation” law. In principle, then, we
have a total of eight energy and momentum conservation laws in 3 + 1 spacetime, which reduce
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to four such laws in the 1 + 1 restriction, as considered explicitly in the next section. Because
trajectory ensembles are employed, these take the form of continuity equations for density and
associated flux quantities. The physical meaning of these equations will become clear in the
next section.

In this section, we derive the natural coordinate Noether conservation laws for the trajectory-
based relativistic quantum theory in full 3 + 1 spacetime. Due to subtleties associated with the
generality of the natural time-like coordinate λ, we find it necessary to utilize a general approach
as described, e.g., in Ref. [35]. In particular, in the following subsection, we use Noether’s
theorem to derive the Euler-Lagrange equations and the Noether current equations.

3.2. Generic derivation of dynamical PDEs
Consider an infinitesimal transformation of the natural coordinates Xµ and the inertial
coordinates xα,

Xµ → Y µ = Xµ + δXµ, (18)

xα(Xσ)→ yα(Y σ) = xα (Xσ) + δxα(Xσ), (19)

where δxα(Xσ) is called the “total variation.” In addition, there is the transformation of xα

restricted to the point Xσ, i.e.

xα(Xσ)→ yα(Xσ) = xα (Xσ) + ∆xα(Xσ), (20)

where ∆xα(Xσ) is called the “symmetry variation.” In Appendix A, it is shown that δxα(Xσ)
and ∆xα(Xσ) are related via

∆xα(Xσ) = δxα(Xσ)− (∂µx
α)δXµ, (21)

to first order in δXµ, where

∂µ ≡
∂

∂Xµ
. (22)

It is also proved in Appendix A that

∂µ(∆xα) = ∆(∂µx
α), (23)

and that

∂µ(δxα) = δ(∂µx
α) + (∂νx

α) ∂µ(δXν), (24)

to first order in δXν .
Under the transformation of Eqs. (18) and (19), the variation of the action is

δS = 0, (25)

where

δS =

∫
d4Y L

[
yα(Y σ),

∂

∂Y µ
yα(Y σ),

∂2

∂Y µ∂Y ν
yα(Y σ);Y σ

]
−
∫
d4XL

[
xα(Xσ),

∂

∂Xµ
xα(Xσ),

∂2

∂Xµ∂Xν
xα(Xσ);Xσ

]
. (26)
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Here it is assumed that the functional form of the Lagrangian density L is invariant. The
form-invariance of the Lagrangian density is discussed in Ref. [32].

In the following proof, we use an abbreviated notation for the Lagrangian density, as evaluated
at different combinations of the above coordinates:

L[xα, Xσ] ≡ L
[
xα(Xσ),

∂

∂Xµ
xα(Xσ),

∂2

∂Xµ∂Xν
xα(Xσ);Xσ

]
, (27)

L[yα, Y σ] ≡ L
[
yα(Y σ),

∂

∂Y µ
yα(Y σ),

∂2

∂Y µY ν
yα(Y σ);Y σ

]
, (28)

L[yα, Xσ] ≡ L
[
yα(Xσ),

∂

∂Xµ
yα(Xσ),

∂2

∂Xµ∂Xν
yα(Xσ);Xσ

]
. (29)

The dependence of L on the inertial coordinates xα and their derivatives with respect to Xµ is
considered up to the second derivatives of xα, which is due to our adoption of the Holland gauge

for L
(λ)
Q in Eq. (15).

With the above abbreviated notations, the variation of the action is expressed as:

δS =

∫
d4Y L[yα, Y σ]−

∫
d4XL[xα, Xσ]. (30)

Since

∂Y µ

∂Xν
= δµν +

∂δXµ

∂Xν
, (31)

we obtain

d4Y =

∣∣∣∣det

(
∂Y µ

∂Xν

)∣∣∣∣ d4X
≈

(
1 +

∂δXµ

∂Xµ

)
d4X. (32)

Under the transformation Eq. (19), the resulting transformation of the Lagrangian density
is:

L[xα, Xσ]→ L[yα, Y σ] = L[xα, Xσ] + δL[xα, Xσ], (33)

Likewise, the restricted transformation of Eq. (20) leads to the following transformed Lagrangian
density:

L[xα, Xσ]→ L[yα, Xσ] = L[xα, Xσ] + ∆L[xα, Xσ]. (34)

where L[y(X)] is defined in Eq. (29). Similar to the derivation of Eq. (21), it is straightforward
to show that δL[xα, Xσ] and ∆L[xα, Xσ] are related via

∆L[xα, Xσ] = δL[xα, Xσ]− ∂L[xα, Xσ]

∂Xµ
δXµ, (35)

up to O(δX).
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Using Eqs. (30), (32), (33) and (35) and keeping only the terms that are linear in the
variations, we have

δS =

∫
d4Y L[yα, Y σ]−

∫
d4XL[xα, Xσ]

=

∫
d4X

(
1 +

∂δXµ

∂Xµ

)
(L[xα, Xσ] + δL[xα, Xσ])−

∫
d4XL[xα, Xσ]

=

∫
d4X

[
∂δXµ

∂Xµ
L[xα, Xσ] + δL[xα, Xσ]

]
=

∫
d4X

[
∂δXµ

∂Xµ
L[xα, Xσ] + ∆L[xα, Xσ] +

∂L[xα, Xσ]

∂Xµ
δXµ

]
=

∫
d4X

[
∆L[xα, Xσ] +

∂

∂Xµ
(L[xα, Xσ]δXµ)

]
. (36)

From Eq. (34), we note that

∆L[xα, Xσ] = L[yα, Xσ]− L[xα, Xσ], (37)

which is obtained at the fixed point Xσ. Similarly, ∆xα, ∆(∂µx
α) and ∆(∂µ∂νx

α) are defined
at the fixed point Xσ. Thus we have:

∆L =
∂L
∂xα

∆xα +
∂L

∂ (∂µxα)
∆ (∂µx

α) +
∑
µ,ν

1

2
(1 + δµν)

∂L
∂ (∂µ∂νxα)

∆ (∂µ∂νx
α)

=

(
∂L
∂xα

− ∂µ
∂L

∂(∂µxα)
+
∑
µ,ν

1

2
(1 + δµν) ∂µ∂ν

∂L
∂(∂µ∂νxα)

)
∆xα

+

[(
∂µ

∂L
∂(∂µxα)

)
∆xα +

∂L
∂(∂µxα)

∂µ (∆xα)

]
+

[
−
∑
µ,ν

1

2
(1 + δµν)

(
∂µ∂ν

∂L
∂(∂µ∂νxα)

)
∆xα

+
∑
µ,ν

1

2
(1 + δµν)

∂L
∂ (∂µ∂νxα)

∂µ∂ν (∆xα)

]
. (38)

After some algebra as shown in Appendix B, it is revealed that

∆L =

(
∂L
∂xα

− ∂µ
∂L

∂(∂µxα)
+
∑
µ,ν

1

2
(1 + δµν) ∂µ∂ν

∂L
∂(∂µ∂νxα)

)
∆xα

+∂µ

{[
∂L

∂(∂µxα)
−
∑
ρ,ν

1

2
δµρ (1 + δρν) ∂ν

∂L
∂(∂ρ∂νxα)

]
∆xα

+
∑
ρ,ν

1

2
δµρ (1 + δρν)

∂L
∂(∂ρ∂νxα)

∂ν (∆xα)

}
. (39)
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Substituting Eq. (39) into Eq. (36), we have:

δS =

∫
d4X

{(
∂L
∂xα

− ∂µ
∂L

∂(∂µxα)

+
∑
µ,ν

1

2
(1 + δµν) ∂µ∂ν

∂L
∂(∂µ∂νxα)

)
∆xα

+∂µ

[(
∂L

∂(∂µxα)
−
∑
ρ,ν

1

2
δµρ (1 + δρν) ∂ν

∂L
∂(∂ρ∂νxα)

)
∆xα

+
∑
ρ,ν

1

2
δµρ (1 + δρν)

∂L
∂(∂ρ∂νxα)

∂ν (∆xα) + LδXµ

]}
.

= 0. (40)

The terms in the first set of parentheses in the first line of Eq. (40) pertain to the variations
∆xα, which are independent. These give rise to the Euler-Lagrange equations, i.e. the dynamical
PDEs:

∂L
∂xα

− ∂µ
∂L

∂(∂µxα)
+
∑
µ,ν

1

2
(1 + δµν) ∂µ∂ν

∂L
∂(∂µ∂νxα)

= 0, (41)

for α = 0, 1, 2, 3.

3.3. Generic derivation of (infinitesimal) Noether current and conservation laws
The remaining terms in Eq. (40) take the form of a vanishing four-divergence or continuity
equation. These are the terms that give rise to the conservation laws,

∂µJ µ = 0, (42)

where the (infinitesimal) Noether current is

J µ =

(
∂L

∂(∂µxα)
−
∑
ρ,ν

1

2
δµρ (1 + δρν) ∂ν

∂L
∂(∂ρ∂νxα)

)
∆xα

+
∑
ρ,ν

1

2
δµρ (1 + δρν)

∂L
∂(∂ρ∂νxα)

∂ν (∆xα) + LδXµ. (43)

Due to Eq. (21), we have:

J µ =

(
∂L

∂(∂µxα)
−
∑
ρ,ν

1

2
δµρ (1 + δρν) ∂ν

∂L
∂(∂ρ∂νxα)

)
(δxα − (∂σx

α) δXσ)

+
∑
ρ,ν

1

2
δµρ (1 + δρν)

∂L
∂(∂ρ∂νxα)

∂ν (δxα − (∂σx
α) δXσ) + δµσL δXσ. (44)

Due to Eq. (24), we have

∂ν (δxα − (∂σx
α) δXσ) = ∂ν (δxα)− (∂ν∂σx

α) δXσ − ∂σxα∂ν (δXσ)

=
[
δ (∂νx

α) + ∂λx
α∂ν

(
δXλ

)]
− (∂ν∂σx

α) δXσ

−∂σxα∂ν (δXσ)

= δ (∂νx
α)− (∂ν∂σx

α) δXσ. (45)
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Substituting Eq. (45) into Eq. (44), we obtain

J µ =

[
∂L

∂(∂µxα)
−
∑
ρ,ν

1

2
δµρ (1 + δρν) ∂ν

∂L
∂(∂ρ∂νxα)

]
δxα

+
∑
ρ,ν

1

2
δµρ (1 + δρν)

∂L
∂(∂ρ∂νxα)

δ(∂νx
α)

−

{[
∂L

∂(∂µxα)
−
∑
ρ,ν

1

2
δµρ (1 + δρν) ∂ν

∂L
∂(∂ρ∂νxα)

]
∂σx

α

+
∑
ρ,ν

1

2
δµρ (1 + δρν)

∂L
∂(∂ρ∂νxα)

∂ν∂σx
α − δµσL

}
δXσ. (46)

3.4. Generic derivation of conservation laws based on natural coordinate invariance
At this stage, we exploit the fact that the solution trajectory ensemble xα(Xµ) is invariant with
respect to all infinitesimal translations in the natural coordinates, Xµ. Note that this natural
coordinate symmetry holds (in uniformizing coordinates) even when there is an external vector
potential present. As shown below, consideration of all such infinitesimal translations gives rise
to the energy-momentum tensor.

Consider δXµ to be a fixed infinitesimal translation, i.e., δXµ = εµ, where εµ are constants.
Since the trajectory ensemble is invariant under any such infinitesimal translation, we have

Xµ → Y µ = Xµ + εµ, (47)

xα(Xσ)→ yα(Y σ) = xα(Xσ), (48)

which leads to δxα(Xσ) = 0. Thus, the Noether current in Eq. (46) becomes

J µ =
∑
ρ,ν

1

2
δµρ (1 + δρν)

∂L
∂(∂µ∂νxα)

δ(∂νx
α)

−

{[
∂L

∂(∂µxα)
−
∑
ρ,ν

1

2
δµρ (1 + δρν) ∂ν

∂L
∂(∂ρ∂νxα)

]
∂σx

α

+
∑
ρ,ν

1

2
δµρ (1 + δρν)

∂L
∂(∂ρ∂νxα)

∂ν∂σx
α − δµσL

}
εσ. (49)

In addition to Eqs. (47) and (48), we use the following property:

∂

∂Xν
xα(Xσ)→ ∂

∂Y ν
yα(Y σ) =

∂

∂Xν
xα(Xσ). (50)

We note that ∂νε
σ = 0 since εσ is a constant four-vector. Equation (50) is valid because we have

set δXσ = εσ and taken into account ∂νε
σ = 0. Thus, we have

δ(∂νx
α) = 0. (51)

Because of Eq. (51), the current in Eq. (46) becomes

J µ = −

{[
∂L

∂(∂µxα)
−
∑
ρ,ν

1

2
δµρ (1 + δρν) ∂ν

∂L
∂(∂ρ∂νxα)

]
∂σx

α

+
∑
ρ,ν

1

2
δµρ (1 + δρν)

∂L
∂(∂ρ∂νxα)

∂ν∂σx
α − δµσL

}
εσ. (52)
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From the above expression, we obtain

J µ = −Θµ
σ ε

σ, (53)

where Θµ
σ is the (canonical) energy-momentum tensor, defined by

Θµ
σ =

[
∂L

∂(∂µxα)
−
∑
ρ,ν

1

2
δµρ (1 + δρν) ∂ν

∂L
∂(∂ρ∂νxα)

]
∂σx

α

+
∑
ρ,ν

1

2
δµρ (1 + δρν)

∂L
∂(∂ρ∂νxα)

∂ν∂σx
α − δµσL. (54)

From Eqs. (42) and (53), it is straightforward to show that

∂µΘµ
σ = 0, (55)

for σ = 0, 1, 2, 3. Clearly, σ = 0 corresponds to the energy conservation law (continuity
equation), and σ = i to the momentum conservation law, associated with natural coordinate
translation symmetry. Likewise, the µ = 0 component corresponds to energy or momentum
density, whereas µ = j corresponds to the corresponding flux quantities. The above natural
coordinate conservation laws have been derived here for the full 3 + 1 spacetime, but have
straightforward simplifications for the 1 + 1 case considered in Sec. 4.

4. Specific conservation laws in 1 + 1 spacetime
4.1. Introduction
In Sec. 3, generic forms of the conservation laws were derived, for 3 + 1 (or really arbitrary-
dimensional) spacetime. Here, we restrict consideration to just the 1+1 spacetime case, and also
replace the generic Lagrangians with the explicit forms from Sec. 2.2. The restriction to a single
spatial dimension helps to simplify the resultant expressions, as does the use of uniformizing
coordinates in terms of which f(C) = 1.

Instead of eight separate conservation laws, there are now just four, associated with the
two natural variables (cλ, C) and the two inertial variables, (ct, x). Note that the latter two
depend on the functional form of the Lagrangian density L being invariant with respect to
translations in inertial coordinates xα. Thus, we are henceforth ignoring the external vector
potential contribution LI— i.e., only the free particle case is considered.

In this section, Noether’s theorem is applied to obtain the four conservation laws in the
form of two-term 1 + 1 continuity equations (the flux “vectors” now include just a single
component). Three of the four continuity equations will be seen to give rise to independent
dynamical constraints, whereas the fourth is a trivial expression that does not correspond to
anything new. The three nontrivial conservation laws derived here correspond to conservation
of energy, momentum, and the C-conservation law, respectively. All three of these conservation
laws have been previously identified in the context of the nonrelativistic trajectory-based theory
[17, 19]. Accordingly, it becomes possible to compare the nonrelativistic limits of the present
relativistic results with the previously derived non-relativistic trajectory-based expressions. This
is done in Sec. 5.

In this section, we use the generic Noether current results from Sec. 3 to derive specific
1 + 1 forms for the natural coordinate conservation laws associated with λ and C. We find
that the natural coordinate “momentum” continuity equation becomes the C-conservation law,
as discussed. In contrast, the λ or natural coordinate “energy” conservation law is seen to
become a trivial equation, with vanishing density. Thus, it is the inertial coordinate continuity
equations, for ct and x, that are seen to give rise to the usual energy and momentum conservation
laws, respectively. These are derived first—conveniently, from the Euler-Lagrange equations
themselves.
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4.2. General inertial coordinate conservation laws: energy and momentum
From Eq. (41), the 1 + 1 Euler-Lagrange equations become:

∂L
∂xα

− ∂

∂λ

(
∂L

∂
(
∂xα

∂λ

))− ∂

∂C

(
∂L

∂
(
∂xα

∂C

))+
∂2

∂C2

 ∂L

∂
(
∂2xα

∂C2

)
 = 0, (56)

for each component α = 0, 1. Recall that in the free-particle case considered here, LI = 0,
i.e., so that the contribution from Eq. (14) vanishes. Under these conditions, L has no explicit
dependence on xα explicitly, meaning that

∂L
∂xα

= 0, (57)

so that the first term of Eq. (56) vanishes, resulting in

∂

∂λ

(
∂L

∂
(
∂xα

∂λ

))+
∂

∂C

(
∂L

∂
(
∂xα

∂C

))− ∂2

∂C2

 ∂L

∂
(
∂2xα

∂C2

)
 = 0. (58)

Next, we define the following quantities:

Πα ≡ ηαβ
∂L

∂
(
∂xβ

∂λ

) , (59)

Φα ≡ ηαβ

 ∂L

∂
(
∂xβ

∂C

) − ∂C
 ∂L

∂
(
∂2xβ

∂C2

)
 . (60)

Substituting into Eq. (58), we find:

∂

∂λ
Πα +

∂

∂C
Φα = 0, (61)

where α = 0, 1. The physical interpretation of this equation becomes a bit clearer with the
following minor redefinitions:

ρE = cΠ0 ; JE = cΦ0; (62)

ρP = Π1 ; JP = Φ1 (63)

As suggested by the new quantity units, ρE and ρP represent energy and momentum
densities, respectively, whereas JE and JP are the corresponding energy and momentum fluxes.
Equation (61) thus leads to two continuity equations, corresponding to energy and momentum
conservation, respectively:

∂ρE
∂λ

+
∂JE
∂C

= 0, (64)

∂ρP
∂λ

+
∂JP
∂C

= 0, (65)

It is interesting that these two conservation laws, Equations (64) and (65), can be derived directly
from the Euler-Lagrange equation of Eq. (58)—i.e., from the dynamical PDEs themselves. Also,
we note that the individual expressions for Πα and Φα depend in general on the choice of gauge—
with the explicit forms that will be provided in Sec. 4.3 corresponding to the Holland gauge (i.e.,
LQ chosen as per Eq. (15)). However, the continuity conditions themselves are gauge-invariant.
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4.3. Specific inertial coordinate conservation laws: energy and momentum
Before substituting the specific forms of Eqs. (13) and (15) into the expressions of Sec. 4.2, it is
convenient to introduce the following notation:

tλ ≡
∂t

∂λ

∣∣∣∣
C

, t′ ≡ ∂t

∂C

∣∣∣∣
λ

, (66)

xλ ≡
∂x

∂λ

∣∣∣∣
C

, x′ ≡ ∂x

∂C

∣∣∣∣
λ

. (67)

In terms of these forms, the generic inertial density and flux expressions become

ρE = − ∂L
∂tλ

, JE = −
(
∂L
∂t′
− ∂

∂C

(
∂L
∂t′′

))
, (68)

ρP =
∂L
∂xλ

, JP =
∂L
∂x′
− ∂

∂C

(
∂L
∂x′′

)
. (69)

In uniformizing coordinates, the 1 + 1 reparametrized free-particle Lagrangian expressions
become:

L
(λ)
Q =

~2

8m

√
t2λ − x2λ/c2

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)3

, (70)

L(λ) = −mc2
√
t2λ − x2λ/c2 −

~2

8m

√
t2λ − x2λ/c2

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)3

. (71)

Utilizing Eqs. (9), (71) and (68), we obtain specific forms for the energy density and flux:

ρE =
mc2tλ√
t2λ − x2λ/c2

+
~2

8m

tλ√
t2λ − x2λ/c2

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)3

, (72)

JE =
~2c2t′

4m

[√
t2λ − x2λ/c2

(
(x′′2 − c2t′′2) + (x′x′′′ − c2t′t′′′)

(x′2 − c2t′2)3

−
3
(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)4

)
+

(
tλt
′
λ − xλx′λ/c2

)√
t2λ − x2λ/c2

(
x′x′′ − c2t′t′′

)
(x′2 − c2t′2)3

 . (73)

Utilizing Eqs. (9), (71) and (69), we obtain the momentum density and flux in similar fashion:

ρP =
mxλ√

t2λ − x2λ/c2
+

~2

8mc2
xλ√

t2λ − x2λ/c2

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)3

, (74)

JP =
~2x′

4m

[√
t2λ − x2λ/c2

(
(x′′2 − c2t′′2) + (x′x′′′ − c2t′t′′′)

(x′2 − c2t′2)3
−

3
(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)4

)

+

(
tλt
′
λ − xλx′λ/c2

)√
t2λ − x2λ/c2

(
x′x′′ − c2t′t′′

)
(x′2 − c2t′2)3

 . (75)

These equations represent the trajectory-based energy and momentum conservation laws for
a massive spin-zero relativistic quantum particle in 1 + 1 spacetime.
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4.4. Natural coordinate conservation laws: C-conservation
In analogy with the inertial quantities of Eqs. (62) and (63), we find it useful to introduce the
corresponding natural coordinate quantities,

ρ̃E = Θ0
0, J̃E = cΘ0

1, (76)

ρ̃P =
1

c
Θ0

1, J̃P = Θ1
1, (77)

designated with a ‘˜’. This leads to natural coordinate “energy” and “momentum” continuity
equations:

∂ρ̃E
∂λ

+
∂J̃E
∂C

= 0 (78)

∂ρ̃P
∂λ

+
∂J̃P
∂C

= 0 (79)

Equation (79), being directly associated with the C coordinate, corresponds to what has been
called the “C-conservation law” [17, 19]. Equation (78) does not correspond to any independent
conservation law, for reasons to be discussed.

We first examine Eq. (79), for which the generic forms for the 1 + 1 quantities are given by

ρ̃P =
∂L
∂tλ

t′ +
∂L
∂xλ

x′, (80)

J̃P =

[
∂L
∂t′
− ∂

∂C

(
∂L
∂t′′

)]
t′ +

∂L
∂t′′

t′′

+

[
∂L
∂x′
− ∂

∂C

(
∂L
∂x′′

)]
x′ +

∂L
∂x′′

x′′ − L. (81)

To obtain specific forms for these quantities, we substitute Eqs. (9) and (71) into Eqs. (80) and
(81), which yields

ρ̃P =
−mc2

(
tλt
′ − xλx′/c2

)√
t2λ − x2λ/c2

− qt′Φ (t, x) +
q

c
x′A (t, x)

− ~2

8m

(
tλt
′ − xλx′/c2

)√
t2λ − x2λ/c2

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)3

,

(82)

J̃P =
~2

4m

{√
t2λ − x2λ/c2

[(
x′′2 − c2t′′2

)
+
(
x′x′′′ − c2t′t′′′

)
(x′2 − c2t′2)2

− 7

2

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)3

]

+

(
tλt
′ − xλx′/c2

)√
t2λ − x2λ/c2

(
x′x′′ − c2t′t′′

)
(x′2 − c2t′2)2


+mc2

√
t2λ − x2λ/c2 + qtλΦ (t, x)− q

c
xλA (t, x) . (83)

Note that for completeness, we have restored the external vector potential contribution—since
natural coordinate translation symmetry does not require that this vanish.

Equation (79) is denoted as the C-conservation law, with ρ̃P and J̃P given by Eqs. (82) and
(83), respectively. The C-conservation law has an interesting place in the context of trajectory-
based quantum theory [17, 19]. In the 1d non-relativistic theory, it simply states that the
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velocity field is single-valued, or that quantum trajectories do not cross—or rather, it ensures
that this property is maintained for all times, if it is true at the initial time. Likewise, in the
many-dimensional non-relativistic case, it ensures that vortices do not arise, if they are not
present initially. One might argue that these are undesirable or ad hoc constraints to impose
on an otherwise arbitrary velocity vector field. In the relativistic context, however, the C-
conservation law takes on a more substantial meaning. This is because it is directly linked to
the conditions that must be imposed on the velocity vector field in order to ensure the consistent
construction of global simultaneity submanifolds—on which the whole of the relativistic theory
depends [27]. The required (Frobenius) condition can be specified using a kind of parallel-
transport argument—which as it happens, simply does not manifest in the 1 + 1 special case.
Consequently, further discussion will be reserved for future publications.

We now turn our attention to Eq. (78), whose generic 1 + 1 quantities become

ρ̃E =

(
∂L
∂tλ

)
tλ +

(
∂L
∂xλ

)
xλ − L, (84)

J̃E =

(
∂L
∂t′
− ∂

∂C

(
∂L
∂t′′

))
tλ +

(
∂L
∂t′′

)
t′λ

+

(
∂L
∂x′
− ∂

∂C

(
∂L
∂x′′

))
xλ +

(
∂L
∂x′′

)
x′λ. (85)

By substituting Eqs. (9) and (71) into the above expressions, we obtain the following specific
forms:

ρ̃E = 0, (86)

J̃E =
~2

4m

{(
x′xλ − c2t′tλ

) [√
t2λ − x2λ/c2

((
x′′2 − c2t′′2

)
+
(
x′x′′′ − c2t′t′′′

)
(x′2 − c2t′2)3

−
3
(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)4

)
+

(
tλt
′
λ − xλx′λ/c2

)√
t2λ − x2λ/c2

(
x′x′′ − c2t′t′′

)
(x′2 − c2t′2)3


−
(
x′x′λ − c2t′t′λ

)√
t2λ − x2λ/c2

(
x′x′′ − c2t′t′′

)
(x′2 − c2t′2)3

}
. (87)

We note that L(λ) in Eq. (71) is positive-homogeneous of degree 1 in ∂µx
α, and so is L. Thus,

the vanishing ρ̃E at the coordinate level, obtained in Eq. (86), results from Eq. (84) together
with Euler’s theorem of homogeneous functions [39]. In any event, the corresponding continuity
equation, Eq. (78), simply states that the C space integral of ρ̃E must be zero for all time—which
is already implied by the fact that ρ̃E itself is zero. As a conservation law, the result is therefore
trivial.

On the other hand, the vanishing of ρ̃E in Eq. (86) is itself a useful result, because it implies
a constraint between the inertial energy and momentum densities, ρE and ρP . Specifically, we
have

ρ̃E = −ρEtλ + ρPxλ − L = 0, (88)

which is easily obtained from Eqs. (84), (86), (68) and (69). The Eq. (88) constraint can be
useful, particularly when deriving the nonrelativistic limits of ρE and JE .
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5. Nonrelativistic limits of the conservation laws
In Sec. 4, we have obtained three trajectory-based conservation laws for the relativistic quantum
mechanics of a massive spin-zero particle. In this section, we verify that the nonrelativistic limits
of these energy, momentum and C-conservation continuity equations agree with those obtained
from the nonrelativistic trajectory-based theory. In order to ensure a self-consistent comparison,
we begin by evaluating the nonrelativistic limit of the action S, and show its agreement with
the nonrelativistic action S(NR). Then, we proceed to obtain the nonrelativistic limits of the
corresponding continuity equation density and flux quantities. Note that all of these quantities
(as opposed to the continuity conditions themselves) are gauge-dependent. Accordingly, we work
in the Holland gauge throughout.

5.1. Nonrelativistic limit of the action
Due to Eqs. (6) and (12), the action can be decomposed into three parts,

S = S0 + SI + SQ, (89)

where

S0 =

∫
dλdCf(C)L

(λ)
0 , SI =

∫
dλdCf(C)L

(λ)
I ,

SQ =

∫
dλdCf(C)

(
−L(λ)

Q

)
, (90)

and L
(λ)
0 , L

(λ)
I and L

(λ)
Q are presented in Eqs. (13), (14) and (15), respectively. Since L

(λ)
0 , L

(λ)
I

and L
(λ)
Q are homogeneous functions of degree 1 in ∂λx

α, the corresponding actions S0, SI and

SQ are parameter-invariant [39]. In other words, the action S remains invariant under arbitrary
reparameterization, λ→ λ′.

For obtaining the nonrelativistic limit of the action S, the most convenient choice is to set
λ = t. With this choice, we have:

xλ = ẋ ≡ ∂x

∂t

∣∣∣∣
C

; β ≡ 1

c

∂x

∂t

∣∣∣∣
C

=
ẋ

c
; tλ = 1 (91)

In addition, recall that we are now using a uniformizing choice of C, so that f(C) = 1 in Eq. (90)
above. Thus we have

S0 =

∫
dλdC

(
−mc2

)√
− 1

c2
ηαβ

∂xα

∂λ

∂xβ

∂λ

≈
∫
dtdC

(
−mc2

)√
1− 1

c2
ẋ2. (92)

Since the relativistic quantum trajectories are all subluminal, in general, we have 0 ≤ |β| < 1.
In the nonrelativistic limit, |β| � 1, and thus β can be used as an expansion parameter.

Expanding L
(λ)
0 /(mc2) up to O

(
β2
)
, we obtain S0 in the nonrelativistic limit:

S0 ≈
∫
dtdC

(
−mc2 +

1

2
mẋ2

)
. (93)

Upon evaluating the C integral, we obtain the usual classical result, in the nonrelativistic limit.
Likewise, SI is also a purely classical contribution—from the external vector potential. It is



Symmetries in Science XVIII

Journal of Physics: Conference Series 1612 (2020) 012022

IOP Publishing

doi:10.1088/1742-6596/1612/1/012022

18

clear that this reduces to the usual scalar potential in the nonrelativistic limit, although to first
order in β, we have

SI =

∫
dλdC

q

c
(∂λx

α)Aα (t, x)

≈
∫
dtdC

(
−qΦ (t, x) +

q

c
ẋA (t, x)

)
. (94)

Of course, the interesting case is SQ. To evaluate the nonrelativistic limit of this quantity,
we utilize the following procedure. First, setting λ = t, we have

SQ =

∫
dλdC

[
− ~2

8m

√
t2λ −

1

c2
x2λ

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)3

]

≈
∫
dtdC

[
− ~2

8m

√
1− 1

c2
ẋ2

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)3

]
. (95)

In the nonrelativistic limit, it is straightforward to show that(
∂x

∂λ

∣∣∣∣
C

)(
∂(ct)

∂λ

∣∣∣∣
C

)−1
≈
(
∂(ct)

∂C

∣∣∣∣
λ

)(
∂x

∂C

∣∣∣∣
λ

)−1
. (96)

Replacing λ by t in Eq. (96), we obtain

ẋ

c
= β ≈ ct′

x′
. (97)

From Eq. (97), it can be shown that

ct′′ ≈ x′′β + x′β′, (98)

ct′′′ ≈ x′′′β + 2x′′β′ + x′β′′. (99)

If we assume that x′′β � x′β′, x′′′β � 2x′′β′ and x′′′β � x′β′′, then we obtain ct′′ ≈ x′′β and
ct′′′ ≈ x′′′β. Therefore,

β ≈ ct′′

x′′
≈ ct′′′

x′′′
(100)

Due to Eqs. (91), (97) and (100), Equation (95) can be approximated as follows:

SQ ≈
∫
dtdC

(
− ~2

8m

x′′2

x′4

)(
1− β2

)−1/2
. (101)

In Ref. [27], it has been discussed that LQ, defined in Eq. (11), is of the same order as the
quantum potential Q, and that Q/(mc2) ≈ O(β2), where O(βn) denotes order n in β. Therefore,
we have

LQ
mc2

≈ O(β2), (102)

L
(λ)
Q

mc2
=

dτ

dλ

LQ
mc2

. (103)
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In addition, for the nonrelativistic quantum trajectories, L
(NR)
Q can be expressed as:

L
(NR)
Q =

~2

8m

x′′2

x′4
. (104)

It is straightforward to show that L
(NR)
Q is of the same order as the quantum potential Q(NR)

for the nonrelativistic quantum trajectories, and that Q(NR)/(mc2) ≈ O(β2). Therefore,

L
(NR)
Q

mc2
=

1

8

(
~
mc

)2 x′′2

x′4
≈ O(β2). (105)

We note that the nonrelativistic limits of LQ and L
(λ)
Q are the same up to O(β2), which is L

(NR)
Q .

Using Eqs. (102), (103) and (105), we expand L
(λ)
Q /(mc2) up to O(β2). Equation (101) then

becomes

SQ ≈
∫
dtdC

(
− ~2

8m

x′′2

x′4

)
. (106)

From Eqs. (93), (94) and (106), we obtain the nonrelativistic limit of the action:

S ≈
∫
dtdC

(
−mc2 +

1

2
mẋ2 − qΦ +

q

c
ẋA− ~2

8m

x′′2

x′4

)
. (107)

Up to the expected additive constant (−mc2), this action S agrees with S(NR), which leads to
the nonrelativistic trajectory-based dynamical PDE.

5.2. Nonrelativistic limit of the momentum conservation law quantities
A similar procedure can be applied to obtain nonrelativistic limits for the density and flux
quantities in the energy, momentum and C-conservation continuity equations. We start by
obtaining the nonrelativistic limit of Eq. (65). Due to Eqs. (91), (97) and (100), we obtain

ρP ≈ mẋ√
1− ẋ2/c2

+
~2

8mc2
ẋ√

1− ẋ2/c2

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)3

≈ mc2

[
ẋ

c2
(
1− β2

)−1/2
+

1

8

(
~
mc

)2 x′′2

x′4
β

c

(
1− β2

)−3/2]
, (108)

where ẋ and β are defined in Eq. (91). Due to Eq. (102), the second term in the bracket of
Eq. (108) is of order β3. Expanding ρP /(mc

2) up to O(β2), we have

ρP ≈ mc2
[

1

c
· ẋ
c

+O(β3)

]
≈ mẋ. (109)

To obtain the nonrelativistic limit of JP , we start from Eq. (75) and set λ = t. By using
Eqs. (91), (97), (100) and (102) and making the substitution ct′ ≈ βx′, we obtain

JP ≈ mc2
(
1− β2

)−5/2{1

4

(
~
mc

)2 [(x′′′
x′4
− 2

x′′2

x′5

)
− β

c

x′′ẋ′

x′4

]}
. (110)
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After similar algebraic substitutions using the limiting forms from Sec. 5.1, and subsequent
reduction to second order in β, Equation (110) becomes:

JP ≈ mc2

{
1

4

(
~
mc

)2 [(x′′′
x′4
− 2

x′′2

x′5

)
+

1

c
O
(
β3
)]}

≈ ~2

4m

(
x′′′

x′4
− 2

x′′2

x′5

)
. (111)

Equations (109) and (111) match exactly the nonrelativistic forms as presented in Ref. [17],
Interestingly, in the nonrelativistic limit, the continuity equation for ρP and JP , Eq. (65), yields
the nonrelativistic trajectory-based dynamical PDE itself.

5.3. Nonrelativistic limit of the energy conservation law quantities
Next, we obtain the nonrelativistic limit of Eq. (72). Due to the constraint in Eq. (88), we can
rewrite:

ρE =
1

tλ

[
∂L
∂xλ

xλ − L
]
, (112)

JE =
1

tλ

[
−J̃E +

∂L
∂t′′

t′λ +

(
∂L
∂x′
− ∂

∂C

(
∂L
∂x′′

))
xλ +

∂L
∂x′′

x′λ

]
. (113)

We note that Eqs. (112) and (113) are equivalent to the expressions of ρE and JE in Eq. (68).
It is straightforward to utilize Eqs. (112) and (113) to obtain the nonrelativistic limits of ρE
and JE , respectively. From Eqs. (78) and (86), we find that the natural coordinate flux J̃E is
divergence-free, i.e.,

∂J̃E
∂C

= 0. (114)

Defining

φE =

(
∂L
∂x′
− ∂

∂C

(
∂L
∂x′′

))
xλ +

∂L
∂x′′

x′λ, (115)

we find that Eq. (113) can be expressed as:

JE =
1

tλ

[
−J̃E +

∂L
∂t′′

t′λ + φE

]
. (116)

From Eqs. (114), (115) and (116), we have

∂JE
∂C

=
∂

∂C

{
1

tλ

[
−J̃E +

∂L
∂t′′

t′λ + φE

]}
=

1

tλ

[
−∂J̃E
∂C

+
∂

∂C

(
∂L
∂t′′

t′λ + φE

)]
−
t′λ
t2λ

[
−J̃E +

∂L
∂t′′

t′λ + φE

]
=

∂

∂C

(
∂L
∂t′′

t′λ

)
+

1

tλ

∂φE
∂C
−
t′λ
t2λ
J̃E . (117)

In the nonrelativistic limit, we set λ = t, and then we have tλ = 1, t′λ = 0 and xλ = ẋ. Therefore,
Eq. (117) becomes

∂JE
∂C
≈ ∂φE

∂C
. (118)
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Thus, Eq. (64) can be replaced by

∂ρE
∂t

+
∂φE
∂C

= 0, (119)

Specific forms are obtained as follows. Utilizing Eqs. (9) and (71), we obtain:

ρE ≈
mc2√

1− ẋ2/c2
+ qΦ (x) +

~2

8m

1√
1− ẋ2/c2

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)3

, (120)

From Eqs. (91), (97) and (100), we have:

ρE ≈ mc2
(
1− β2

)−1/2
+

~2

8m

x′′2

x′4
(
1− β2

)−3/2
, (121)

where the external potential is temporarily ignored. We expand ρE/(mc
2) up to O(β2). From

Eq. (102), we obtain:

ρE ≈ mc2

[
1 +

1

2

(
ẋ

c

)2

+
1

8

(
~
mc

)2 x′′2

x′4
+O(β4)

]

≈ mc2 +
1

2
mẋ2 +

~2

8m

x′′2

x′4
+ qΦ (x) , (122)

where the external potential has been restored in the last form above.
To obtain the nonrelativistic limit of JE , we start from Eq. (115). By using Eqs. (9), (71)

and (115), we obtain

φE ≈ ~2

4m

{√
1− ẋ2/c2

[
x′ẋ
[(
x′′2 − c2t′′2

)
+
(
x′x′′′ − c2t′t′′′

)]
(x′2 − c2t′2)3

−x′ẋ′
(
x′x′′ − c2t′t′′

)
(x′2 − c2t′2)3

− 3x′ẋ

(
x′x′′ − c2t′t′′

)2
(x′2 − c2t′2)4

]

+

(
−ẋẋ′/c2

)√
1− ẋ2/c2

x′ẋ
(
x′x′′ − c2t′t′′

)
(x′2 − c2t′2)3

}
, (123)

in the nonrelativistic limit. By utilizing Eqs. (91), (97), (100) and (123) and making the
substitution ct′ ≈ βx′, we obtain:

φE ≈ mc2
(
1− β2

)−3/2{1

4

(
~
mc

)2 [(x′′′
x′4
− 2

x′′2

x′5

)
ẋ− x′′ẋ′

x′4

]

+
1

4

(
~
mc

)2 1

c
β
(
1− β2

)
ẋ

(
1− βẋ′

β̇x′ + βẋ′

)}
. (124)

Similar manipulations as in Sec. 5.2 then yields

φE ≈ mc2

{
1

4

(
~
mc

)2 [(x′′′
x′4
− 2

x′′2

x′5

)
ẋ− x′′ẋ′

x′4
+O

(
β4
)]}

≈ ~2

4m

[(
x′′′

x′4
− 2

x′′2

x′5

)
ẋ− x′′ẋ′

x′4

]
. (125)

Equations (122) and (124) match exactly the nonrelativistic forms as derived previously in
the Holland gauge.
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5.4. Nonrelativistic limit of the C-conservation law quantities
Finally, we turn to the nonrelativistic limit for the C-conservation law. We start from Eqs. (79),
(82) and (83) and take the nonrelativistic limit using a similar procedure as in the previous
subsections. Using Eqs. (91), (97), (100), Eqs (82) and (83) become:

ρ̃P ≈
(
mc2

) x′
c

[
ẋ

c

(
1− β2

)−1/2
+

q

mc2
A (t, x)− 1

8

(
~
mc

)2 x′′2

x′4
β
(
1− β2

)−1/2]
, (126)

J̃P ≈
(
mc2

){1

4

(
~
mc

)2 [(x′′′
x′3
− 5

2

x′′2

x′4

)(
1− β2

)−1/2 − x′′ẋ′

x′3
β

c

(
1− β2

)−1/2]
+

q

mc2
Φ (t, x)− q

mc2
ẋ

c
A (t, x) +

(
1− β2

)1/2}
. (127)

Expanding ρ̃P /(mc
2) to order O(β2) yields

ρ̃P ≈ mẋx′ +
q

c
x′A (t, x) . (128)

By balancing β orders in Eq. (79), and using Eq. (127), we obtain

J̃P ≈ mc2 − 1

2
mẋ2 + qΦ (t, x)− q

c
ẋA (t, x) +

~2

4m

(
x′′′

x′3
− 5

2

x′′2

x′4

)
. (129)

To summarize this section: in the nonrelativistic limit, the energy and momentum
conservation laws are obtained from Eqs. (64) and (65), respectively, by setting λ = t and
restricting all expressions to second order in β. We have shown that, in the nonrelativistic limit,
ρP , JP , ρE and φE are given by Eqs. (109), (111), (122) and (125), respectively. Likewise, the C-
conservation law in the nonrelativistic limit is obtained from Eq. (79), where the nonrelativistic
limits of ρ̃P and J̃P are given by Eqs. (128) and (129), respectively. Finally, we compare the
nonrelativistic limits of the quantities above with the corresponding quantities derived previously
for the nonrelativistic theory. Provided all comparisons are made in the Holland gauge, we find
the results to be identical in every case—apart from the expected presence of the usual constant
rest energy term mc2, which is immaterial for nonrelativistic dynamics. We thus conclude that
the relativistic energy, momentum and C-conservation laws as derived here all give rise to the
correct results in the nonrelativistic limit.

6. Summary and Conclusions
As a standalone theory, the trajectory-based formulation [12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23] presents a new and vastly different perspective on quantum mechanics, in terms of which
the wavefunction itself becomes utterly extraneous. Historically speaking, valid alternative
perspectives have often proven quite useful in physics. A good example would be Hamiltonian
vs. Newtonian mechanics, in classical physics. In the case of the trajectory-based theory, this
approach offers not only a new interpretation of quantum mechanics, but also a new mathematical
formulation. There are evidently also numerical benefits, as well.

On the mathematical/theoretical front, there are obvious advantages to a standalone
trajectory-based quantum theory—not least of which would be the natural ability to address
the classical limit. Comparing waves to trajectories is not so straightforward—especially since
x is an independent variable in a wave theory, but a dependent variable in a trajectory theory.
A trajectory-based formulation enables an apples-to-apples comparison, which is quite valuable.
Moreover, those trajectory theories that derive from an action extremization principle are
especially valuable, in that they provide (via Noether’s theorem) a natural understanding of
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symmetry and conservation laws. It should be stressed that both Bohmian mechanics [5] and the
discrete version of the trajectory-based theory [20], fail to deliver on this score. In particular,
neither of these other trajectory approaches manifests a Lagrangian with all of the proper
invariance symmetries—and hence, they cannot give rise to the full set of conservation laws
obtained here.

The other key feature of this work is that it specifically addresses the relativistic generalization
of quantum mechanics—at least, for massive particles of spin zero. In this context, it is perhaps
surprising that the trajectory-based theory differs fundamentally from Klein-Gordon—but in
ways that “repair” all of the deficiencies of the latter. Note that here, too, the fact that the
formulation derives from an underlying Lagrangian and action principle—rather than from an
existing wave equation that is merely “translated” into trajectory form—is of vital importance.
In particular, past efforts to build a quantum trajectory theory “on top of” the already-
flawed Klein-Gordon foundation have been doomed to failure—resulting, e.g., in superluminal
trajectories [6].

In this article, we have analyzed the invariance of the trajectory-based relativistic quantum
Lagrangian of Ref. [27], with respect to its continuous translation symmetries, in order to derive
the corresponding conservation laws via Noether’s theorem, in the restricted context of 1 + 1
spacetime. Despite being a “1d” application, there are in fact four such continuous symmetries
to emerge—associated with both the two independent, natural, curvilinear spacetime coordinates
(cλ, C), and also with the two dependent inertial spacetime coordinates, (ct, x). It is the latter
two that give rise to the familiar energy and momentum conservation law continuity equations.
As for the natural coordinates, λ does not lead to anything new, whereas C gives rise to the less
familiar “C-conservation law.” The natural coordinate results are quite interesting, given that
the non-relativistic case does not even have an analog of λ, whereas the C law—though present,
also, in the non-relativistic case—is not so easy to interpret there. In the relativistic context, in
contrast, we find that the C-conservation law is intimately connected with global simultaneity.

Using Noether’s theorem, we have derived four continuity equations, Eqs. (64), (65), (78)
and (79). Generic expressions for the requisite density and flux quantitites, i.e. ρE , JE , ρP , JP ,
ρ̃P , J̃P , ρ̃E and J̃E , are provided in Eqs. (68), (69), (80), (81), (84) and (85). Specific forms for
ρE , JE , ρP , JP , ρ̃P , J̃P , ρ̃E and J̃E , are provided in Eqs. (72), (73), (74), (75), (82), (83), (86)
and (87). Equation (78) does not correspond to a bona fide conservation law, due to the fact
that ρ̃E vanishes, as indicated in Eq. (86). The three remaining continuity equations, Eqs. (64),
(65) and (79), represent the energy-, momentum- and C-conservation laws, respectively. Finally,
through some effort, we were able to obtain expressions for the nonrelativistic limit for each of
the relevant quantities above (i.e., ρE , JE , ρP , JP , ρ̃P and J̃P ) and to compare these with the
results derived from the nonrelativistic theory. Working consistently within the Holland gauge,
perfect agreement was obtained in every case.

Despite progress, much work remains for the future. The most obvious direction will be to
consider the full 3 + 1 spacetime case. Generalizations of the present conservation laws for 3 + 1
spacetime are straightforward enough—indeed, many of the generic results derived here, e.g. in
Sec. 3, have already been worked out for the 3 + 1 case. Of the results presented here, it is the
C-conservation law whose 3+1 generalization will be most interesting—owing to the connection
with global simultaneity, as discussed. In addition to the conservation laws presented here, in
the 3+1 case, there is also rotational symmetry and angular momentum conservation to contend
with. Lorentz invariance symmetry will also play a nontrivial role.

On the more technical side, natural generalizations of the present theory for arbitrary C
coordinates (i.e., not just the uniformizing case), and also for other gauges, remain to be worked
out. In particular, the so-called “Poirier” gauge [14, 17], has the property that the corresponding
action S is very closely related to the phase of the wavefunction. This property is useful
for comparing trajectory- and wave-based approaches, although it has the disadvantage that
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L
(λ)
Q = Q is somewhat more complicated than for the Holland gauge considered here, particularly

for multiple spatial dimensions. In particular, the Poirier gauge involves one higher-order spatial
(C) derivative than the Holland gauge [i.e., LQ [xα(X), ∂µx

α(X), ∂µ∂νx
α(X), ∂µ∂ν∂ρx

α(X);X]],
which results in higher-order expressions for the relevant Euler-Lagrange and Noether quantities.

Finally, the most important generalization of the present work—and also the riskiest—will
no doubt be for spin 1/2 particles. The “risk” comes from the fact that Lagrangian-based
theories are more naturally suited for continuous, rather than discrete, domains—as has already
been discussed in the context of discrete “many interacting worlds” theories. On the other
hand, the great advantage of such a trajectory-based “Dirac equation” is that negative energy
solutions are likely to disappear entirely. For one-electron systems, negative energy solutions
are a nuisance; for two or more electrons, they can be devastating [26]. A trajectory-based
version that avoids negative-energy solutions entirely, then, might be of tremendous value, in
the context of many-electron quantum chemistry.

Appendix A. Proof of Equations (21), (23) and (24).
In this Appendix, we prove Eqs (21), (23) and (24), starting with Eq. (21). From Eqs. (19) and
(20), we have

∆xα(Xσ) = yα(Xσ)− xα(Xσ)

= yα(Xσ)− yα(Y σ) + yα(Y σ)− xα(Xσ)

= − [yα(Y σ)− yα(Xσ)] + δxα(Xσ). (A.1)

We note that

yα(Y σ)− yα(Xσ) = yα(Xσ + δXσ)− yα(Xσ)

=

(
yα(Xσ) +

∂yα

∂Xµ
δXµ +O((δX)2)

)
− yα(Xσ)

=
∂yα

∂Xµ
δXµ +O((δX)2)

=
∂xα

∂Xµ
δXµ +O((δX)2), (A.2)

where the last step is obtained by keeping only the zeroth-order variation—i.e., yα(Xσ) ≈
xα(Xσ). Thus Eq. (A.1) becomes:

∆xα(Xσ) = − [yα(Y σ)− yα(Xσ)] + δxα(Xσ)

= δxα(Xσ)− ∂xα

∂Xµ
δXµ +O((δX)2). (A.3)

Therefore, up to the first order in δXµ, Equation (21) is proved.
To prove Eq. (23), we start from

∆xα(Xσ) = yα(Xσ)− xα(Xσ). (A.4)

Then

∂µ (∆xα) =
∂

∂Xµ
(yα(Xσ)− xα(Xσ))

=

(
∂yα(Xσ)

∂Xµ
− ∂xα(Xσ)

∂Xµ

)
= ∆ (∂µx

α) . (A.5)
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Therefore, Eq. (23) is proved.
To prove Eq. (24), we start from

δxα(Xσ) = yα(Y σ)− xα(Xσ). (A.6)

Because

∂Y ν

∂Xµ
=

∂ (Xν + δXν)

∂Xµ

= δνµ +
∂(δXν)

∂Xµ
, (A.7)

we have

∂µ (δxα) =
∂

∂Xµ
(yα(Y σ)− xα(Xσ))

=

(
∂yα(Y σ)

∂Xµ
− ∂yα(Y σ)

∂Y µ

)
+

(
∂yα(Y σ)

∂Y µ
− ∂xα(Xσ)

∂Xµ

)
=

(
∂Y ν

∂Xµ

∂yα(Y σ)

∂Y ν
− ∂yα(Y σ)

∂Y µ

)
+ δ

(
∂xα(Xσ)

∂Xµ

)
=

((
δνµ +

∂(δXν)

∂Xµ

)
∂yα(Y σ)

∂Y ν
− ∂yα(Y σ)

∂Y µ

)
+ δ

(
∂xα(Xσ)

∂Xµ

)
=

((
∂yα(Y σ)

∂Y µ
+
∂(δXν)

∂Xµ

∂yα(Y σ)

∂Y ν

)
− ∂yα(Y σ)

∂Y µ

)
+ δ

(
∂xα(Xσ)

∂Xµ

)
=

∂(δXν)

∂Xµ

∂yα(Y σ)

∂Y ν
+ δ

(
∂xα(Xσ)

∂Xµ

)
. (A.8)

We note that

∂yα(Y σ)

∂Y ν
=

∂

∂Y ν
(xα(Xσ) + δxα(Xσ))

=
∂Xρ

∂Y ν

∂

∂Xρ
(xα(Xσ) + δxα(Xσ)) . (A.9)

Because

∂Xρ

∂Y ν
=

∂
(
Y λ − δXρ

)
∂Y ν

= δρν −
∂(δXρ)

∂Y ν
, (A.10)

Equation (A.9) becomes

∂yα(Y σ)

∂Y ν
=

(
δρν −

∂(δXρ)

∂Y ν

)
∂

∂Xρ
(xα(Xσ) + δxα(Xσ))

= δρν
∂xα(Xσ)

∂Xρ
− ∂ (δXρ)

∂Y ν

∂xα(Xσ)

∂Xρ

+δρν
∂ (δxα(Xσ))

∂Xρ
− ∂ (δXρ)

∂Y ν

∂ (δxα(Xσ))

∂Xρ
.

(A.11)
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By substituting (A.11) into (A.8) and keeping only the terms which are first-order in the
variations, we obtain:

∂µ (δxα) =
∂(δXν)

∂Xµ

∂yα(Y σ)

∂Y ν
+ δ

(
∂xα(Xσ)

∂Xµ

)
=

∂(δXν)

∂Xµ

(
δλν
∂xα(Xσ)

∂Xλ

)
+ δ

(
∂xα(Xσ)

∂Xµ

)
=

∂(δXν)

∂Xµ

(
∂xα(Xσ)

∂Xν

)
+ δ

(
∂xα(Xσ)

∂Xµ

)
= δ (∂µx

α) + (∂νx
α) ∂µ(δXν). (A.12)

Therefore Eq. (24) is proved.

Appendix B. Proof of Eq. (39)
We start from the expression of ∆L in Eq. (38). We define

Λµνα ≡
∂L

∂(∂µ∂νxα)
. (B.1)

And we define the terms in the bracket in the last line of Eq. (38) to be:

∆L2 ≡ −
∑
µ,ν

1

2
(1 + δµν) ∂µ∂ν

∂L
∂(∂µ∂νxα)

∆xα +
∑
µ,ν

1

2
(1 + δµν)

∂L
∂ (∂µ∂νxα)

∂µ∂ν (∆xα) .

(B.2)

Thus,∫
d4X∆L2 =

∫
d4X

[
−
∑
µ,ν

1

2
(1 + δµν) ∂µ∂νΛµνα ∆xα +

∑
µ,ν

1

2
(1 + δµν) Λµνα ∂µ∂ν (∆xα)

]

=

∫
d4X

[
−
∑
µ,ν

1

2
(1 + δµν) ∂ν ((∂µΛµνα ) ∆xα) +

∑
µ,ν

1

2
(1 + δµν) (∂µΛµνα ) ∂ν (∆xα)

+
∑
µ,ν

1

2
(1 + δµν) ∂µ (Λµνα ∂ν (∆xα))−

∑
µ,ν

1

2
(1 + δµν) (∂µΛµνα ) ∂ν (∆xα)

]

=

∫
d4X

[
−
∑
µ,ν

1

2
(1 + δµν) ∂ν ((∂µΛµνα ) ∆xα) +

∑
µ,ν

1

2
(1 + δµν) ∂µ (Λµνα ∂ν (∆xα))

]

=

∫
d4X

[
−
∑
µ,ν

1

2
(1 + δνµ) ∂µ ((∂νΛνµα ) ∆xα) +

∑
µ,ν

1

2
(1 + δµν) ∂µ (Λµνα ∂ν (∆xα))

]
.

(B.3)

Because Λνµα = Λµνα and δνµ = δµν , we have∫
d4X∆L2 =

∫
d4X

∑
µ,ν

1

2
(1 + δµν) ∂µ [− (∂νΛµνα ) ∆xα + Λµνα ∂ν (∆xα)]

=

∫
d4X

∑
µ,ν

∂µ

[
1

2
δµρ (1 + δρν) (− (∂νΛρνα ) ∆xα + Λρνα ∂ν (∆xα))

]
. (B.4)
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Thus

∆L2 =
∑
µ,ν

∂µ

[
1

2
δµρ (1 + δρν)

(
−
(
∂ν

∂L
∂(∂ρ∂νxα)

)
∆xα +

∂L
∂(∂ρ∂νxα)

∂ν (∆xα)

)]
. (B.5)

By substituting Eq. (B.5) into Eq. (38), we obtain Eq. (39). Therefore, Eq. (39) is proved.
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