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RÉSUMÉ

Cette thèse présente une mesure de la section efficace de production du quark-top

célibataire en voie t avec 1, 04 fb−1 de données recueillies par le détecteur ATLAS au LHC

à partir de collisions proton-proton d’énergie centre de masse
√
s = 7 TeV. Les événements

sélectionnés contiennent un lepton, de l’énergie transverse manquante, et deux ou trois jets,

l’un d’eux étant étiqueté comme étant issu d’un quark-b. Le modèle pour le bruit de fond se

compose des processus multijets, W+jets et production de paires de quarks top ainsi que de

contributions moindres venant d’événements Z+jets et diboson. En utilisant une sélection

basée sur la distribution d’un discriminant multivarié construit avec des arbres de décision

stimulés, la section efficace de production de quark-top célibataire en voie t a été mesurée.

La valeur

σt = 97.3+30.7
−30.2 pb

a été obtenue. Ce résultat est en bon accord avec la prédiction du Modèle Standard.

En supposant que les éléments de la matrice CKM reliée au quark-top obéissent à la

relation |Vtb| � |Vts|, |Vtd|, la force du couplage W-t-b est extraite à partir de la section

efficace mesurée,

|Vtb| = 1.23+0.20
−0.19.

Si on suppose que |Vtb| ≤ 1, une limite inférieure |Vtb| > 0.61 est obtenue avec un niveau de

confiance de 95%.





Abstract

This thesis presents a measurement of the cross section of t-channel single top-quark produc-

tion using 1.04 fb−1 data collected by the ATLAS detector at the LHC with proton-proton

collision at center-of-mass
√
s = 7 TeV. Selected events contain one lepton, missing trans-

verse energy, and two or three jets, one of them b-tagged. The background model consists of

multijets, W+jets and top-quark pair events, with smaller contributions from Z+jets and

diboson events. By using a selection based on the distribution of a multivariate discriminant

constructed with the boosted decision trees, the cross section of t-channel single top-quark

production is measured:

σt = 97.3+30.7
−30.2 pb,

which is in good agreement with the prediction of the Standard Model.

Assuming that the top-quark-related CKM matrix elements obey the relation |Vtb| �

|Vts|, |Vtd|, the coupling strength at the W -t-b vertex is extracted from the measured cross

section,

|Vtb| = 1.23+0.20
−0.19. (1)

If it is assumed that |Vtb| ≤ 1 a lower limit of |Vtb| > 0.61 is obtained at the 95% confidence

level.
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Chapter 1

INTRODUCTION

What are the world’s fundamental building blocks? Which kind of forces hold them

together? These are the questions that people have long asked. Particle physics is the study

of the basic elements of matter and the interactions between them. From the discovery of the

electron about one hundred years ago (1897), the particle physics have developed gradually

from the atomic theory to a theory called Standard Model (SM), which describes the three

generations of quarks and leptons, as well as the four basic forces via force carrier particles.

Standard model successfully explains and predicts a wide variety of experimental results.

Although it still remains some questions without answers, such as the reason of the presence

of only three generations of quarks, the reason that matters have mass, the problem of the

gravity not included in the present formulation of the SM. The top quark, the last and

heaviest quark in the SM, is sensitive to physics beyond the SM due to its large mass. The

study of top quark is thus very interesting to test the SM and to probe new physics.

The Large Hadron Collider (LHC) located at CERN1 and Fermilab Tevatron are the

only places in the world that can produce top quarks under experiment steering. LHC

collides proton and proton beams while Tevatron is a proton-antiproton collider. In both

cases, the dominant top-quark production are from top-quark pair processes through strong

interactions, while the top quarks are also produced singly via electroweak interactions,

named single top-quark production.

The studies on single top-quark production help us to learn the weak interactions of

the top quark. Its cross section measurement leads to a direct determination of one of

the quantities predicted by the SM, the CMK matrix element |Vtb|. In addition, the rate

1Conseil Europeen pour la Recherche Nucleaire
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of single top-quark production can be significantly modified by new-physics interactions.

Thus the cross section measurement of single top-quark production provides an excellent

examination of the SM and deviations from SM prediction give a hint of the presence of

new physics. Further more, the single top-quark productions constitute as backgrounds to

many possible new physics. The studies on single top-quark production are important in

new-physics searching.

Single top-quark production consists of three different processes, t-channel, Wt asso-

ciated production, and s-channel. This thesis presents a cross section measurement on

t-channel single top-quark production using the data collected by ATLAS detector located

at the LHC, contributing in one of the most recent results of single top-quark studies [18]. It

is a test of the Standard Model and also gives further understandings on the single top-quark

productions.

Chapter 2 of this thesis gives an introduction of the Standard Model and the top-

quark physics. Then the LHC experiment and ATLAS detector are described in Chapter

3, where the reconstruction of the collected data are also explained. Chapter 4 shows the

phenomenology of single top-quark t-channel production and possible background processes,

as well as their modeling using Monte Carlo simulations.

Single top-quark t-channel cross section measurement starts with applying selections on

data to select single top-quark t-channel signal enriched data set, so called pre-selection. A

multivariate discriminator is then exploited by using boosted decision trees to further extract

signal events. Chapter 5 of this thesis describes the pre-selection of data and the estimations

of the backgrounds in the selected data. Then the application of boosted decision trees and

the final cross section measurement are given in Chapter 6. Chapter 7 summarizes the

results of this analysis and gives a perspective of the future single top-quark measurements.
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Chapter 2

THE STANDARD MODEL AND TOP-QUARK PHYSICS

Particle physics has developed rapidly in the 20th century. Decades of theoretical and

experimental discoveries lead to the Standard Model, which explains the fundamental parti-

cles of the world and their interactions. Top quark, the heaviest known fundamental particle

in the Standard Model, is especially sensitive to new physics beyond the SM due to its large

mass. The measurement of top-quark properties is an excellent test of the SM and a key

part of new physics searching.

This chapter will give a short introduction to the particle physics and its evolution from

the beginning. Then the Standard Model is briefly described. At the end the top-quark

physics is discussed in detail.
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2.1 Particle Physics

Particle physics is a branch of physics which studies the fundamental constituents of matter

and defines how they interact with each other. It is also called High Energy Physics,

because most of the studied particles are created through very energetic collisions with

other particles, normally in particle accelerators or cosmic rays.

The discovery of the first fundamental particle in particle physics can be tracked back

to 1897, the identification of the electron by J. J. Thomson. In 1919, Ernest Rutherford

discovered the proton as a product of the decay of the nitrogen nucleus. 13 years later, James

Chadwick discovered the neutron, another particle located within the nucleus. The scientists

at that time believed that these were the smallest atomic building blocks. Along with the

photon hypothesized by Albert Einstein in 1905, the neutrino postulated by Wolfgang Pauli

in 1930 and the positron discovered by Carl D. Anderson in 1932, these particles were called

”elementary particles”.

Then a lot of particles were discovered from 1930s to 1960s, such as the lepton µ in

1936, the strange particle Kaon in 1947, the pion in 1947, as well as their anti particles

in 1950s. The accelerators and detector developed fast and were widely used for the new

particle searching. People started to wonder which were the fundamental particles and how

to classify these new particles.

In 1964, Murray Gell-Mann and George Zweig proposed the quark model, which intro-

duced the up, down and strange quark as parts of an ordering scheme for hadrons. Soon

their theory was proven by deep inelastic scattering experiments at the Stanford Linear

Accelerator Center in 1968. The discovery of the J/ψ in 1974 introduced the charm quark

and ushered in a series of breakthroughs. The Standard Model was then developed in early

1970s. The left bottom quark and top quark predicted by the Standard Model were found

by Fermilab in 1977 and 1995 respectively. With the discovery of the heavy gauge bosons

W and Z in 1983, the theory of electroweak interactions in the Standard Model was firmly

established. The Standard Model has become a well-tested physics theory with its suc-

cess on explaining lots of experimental results and precise prediction of a wide variety of

phenomena.
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Figure 2.1: The elementary particles in the SM.

2.2 Standard Model

The Standard Model (SM) is a theory of the fundamental particles and the fundamental

forces. It explains all the particles and their complex interactions with:

• 6 quarks,

• 6 leptons,

• 4 interactions (forces) with corresponding force carriers.

For each kind of matter particle there is a corresponding antimatter particle. All known

particles are composed of quarks and leptons, and interact by exchanging force carrier parti-

cles. The quarks and leptons are categorized into three generations, as shown in Figure 2.1.

The 6 kinds of quarks are the up (u), down (d), charm (c), strange (s), bottom (b) and

top (t) quarks. The u, c and t quarks are up-type quarks with +2
3 charge, while the d, s and

b quarks are the down-type quarks with charge −1
3 . The 6 leptons are electron (e), muon

(µ), tau (τ) with charge −1 and their corresponding neutrinos νe, νµ, ντ with no charge.
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All quarks and leptons are fermions with spin of 1
2 . The quarks also have colour charge and

carry a baryon number 1
3 . And all leptons carry a lepton number L = 1.

In the world around us, the stable matter are composed by only the first generation of

quarks and leptons. This is due to the fact that heavy quarks and leptons quickly decay to

the lighter ones until they reach the stable level. The quarks could decay (flavor change)

through the weak interaction by exchanging a W boson. The transformation from mass

eigenstates to eigenstates of the weak interaction is described by the Cabibbo-Kobayashi-

Maskawa (CKM) matrix [25]:
|d′ >

|s′ >

|b′ >

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



|d >

|s >

|b >

 (2.1)

On the left is the weak interaction doublet partners of up-type quarks, and on the right is

the CKM matrix along with a vector of mass eigenstates of down-type quarks. The CKM

matrix element Vij is the coupling constant that determines the coupling strength of two

quarks i and j to a W boson. The square of the matrix elements |Vij |2 is proportional to

the probability that the quark of i flavor decays into a quark of j flavor. A current best

determination of the magnitudes of the CKM matrix elements is given by [26]
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016

−0.00012

0.2252± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.00070 0.999152+0.000030
−0.000045


The photon (γ), gluon (g), Z boson (Z) and W (boson) are the force carrier particles

with spin of 1. They transmit three of the four fundamental forces in nature. The four

fundamental forces are: the strong force, the weak force, the electromagnetic force and

the gravitational force. They work over different ranges and have different strengths. The

strong force, which binds together quarks inside protons and neutrons and holds together

particles inside an atomic nucleus, is mediated by gluons. The electromagnetic force uses

photon as carrier particle to generate the force between charged particles. The weak force,

playing a role in radioactive decay, is mediated by the W and Z bosons. Gravity is the
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weakest force but with an infinite range. It is the force between all matters due to their

mass. The force-carrying particle of gravity is not yet found in the experiment.

Physicists are expecting a grand unified theory that would unite all four of the forces.

The electromagnetic, weak and strong interaction can be unified in Standard Model by a

combination of local gauge symmetry groups: SU(2)L⊗U(1)Y ⊗SU(3)C . The electroweak

theory based on SU(2)L×U(1)Y and the Quantum Chromodynamics theory (QCD) based

on SU(3)C gauge symmetry group are briefly introduced below. Despite that, the gravity is

proved to be very difficult to fit in Standard Model, although it does not play a significant

role since it is so weak as to be negligible in minuscule scale of particles.

2.2.1 Electroweak Theory and Higgs Mechanism

The electromagnetic and weak interactions are unified by interpreting SU(2)L × U(1)Y as

the group of gauge transformations under which the Lagrangian is invariant [27, 28, 29, 30].

To give W±, Z boson mass, the full symmetry has to be broken by the Higgs mechanism

down to the electromagnetic gauge symmetry [31]. Thus the gauge invariant Lagrangian of

electroweak theory is constructed by the gauge, fermion and Higgs parts:

LEW = LG + LF + LH (2.2)

Gauge fields

The pure gauge field Lagrangian LG is invariant under non-Abelian gauge transformations.

It is formed by:

LG = −1

4
W i
µνW

µν,i − 1

4
BµνB

µν ,

where the isotriplet W i
µ , i = 1, 2, 3, and the isosinglet Bµ lead to the field strength tensors:

W i
µν = ∂µW

i
ν − ∂νW i

µ + g1ε
i
jkW

j
µW k

ν

Bµν = ∂µBν − ∂νBµ
(2.3)

Here, g1 is the non-Abelian SU(2) gauge coupling constant, εijk is the SU(2) structure con-

stant. The observable weak gauge bosons W±, Z and γ can be expressed by the combination
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of the gauge fields W i
µ and Bµ:

W±µ =
1√
2

(W 1
µ ∓W 2

µ) (2.4)

Aµ = Bµ cos θW +W 3
µ sin θW (2.5)

Zµ = W 3
µ cos θW −Bµ sin θW (2.6)

with Weinberg angle θW :

cos θW =
g1√

g1
2 + g2

2
. (2.7)

The g2 is the Abelian U(1) coupling constant.

Fermion fields

LF describes the interactions between fermions and the gauge fields:

LF =
∑
j

ψ̄Lj iγ
µDµψ

L
j +

∑
j,σ

ψ̄Rjσiγ
µDµψ

R
jσ (2.8)

ψLj represents the left-handed fermion fields of each lepton and quark family with family

index j:

ψLj =

 ψLj+

ψLj−


while the right-handed fields is:

ψRj = ψRjσ

where σ = ± is the component index. Dµ is the covariant derivative to ensure the gauge

invariance of the Lagrangian:

Dµ = ∂µ + ig1IiW
i
µ + ig2

Y

2
Bµ. (2.9)

Here, Ii is the quantum numbers of the weak isospin and Y is the weak hypercharge.

The Higgs Mechanism

The Higgs mechanism is an extension of the spontaneous symmetry breaking to create

massive vector bosons in a gauge invariant theory, while keeping the photon massless [31].
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The Lagrangian terms of Higgs scalar field is

LH = (DµΦ)†(DµΦ)− V (Φ), (2.10)

while Dµ is the covariant derivative to preserve the gauge invariance under the gauge trans-

formation:

Dµ = ∂µ − ig1IiW
i
µ + i

g2

2
Bµ. (2.11)

The Φ is scalar doublet filed with hypercharge Y = 1:

Φ =

(
φ+

φ0

)
, (2.12)

and V (Φ) is the potential term:

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (2.13)

Φ has a non-vanishing vacuum expectation value

< Φ >0=
1√
2

(
0

v

)
, with v =

√
−µ

2

λ
(2.14)

In the unitary gauge, the Higgs field has the simple form

< Φ >=
1√
2

(
0

v +H

)
. (2.15)

The real field H describes physical neutral scalar particles with mass

MH =
√
−2µ2. (2.16)

The Higgs kinetic term (DµΦ)†(DµΦ) produces the gauge boson masses

MW±
2 = g12v2

4 ,

MZ
2 = v2

4 (g1
2 + g2

2).
(2.17)

Fermion masses are generated by interactions between Higgs field and the fermions in a

gauge invariant way. This can be described by Yukawa couplings [32] between Higgs scalar

field Φ and fermion field ψ

LY ukawa = gψ(ψ̄LΦψR + ψ̄RΦ†ψL). (2.18)
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where gψ denotes the Yukawa coupling constant of the fermion. Via the Yukawa coupling

of the Higgs doublet to the fermions, the vacuum expectation value gives masses to fermion

particles, mf = λfv/
√

2. In particular, to explain the large top-quark mass the coupling of

the top quark to the Higgs boson has to be of order unity,

λtop =
√

2mtop/v ≈
√

2× 173/246 ≈ 0.99, (2.19)

which might suggest a special role of the top quark in electroweak symmetry breaking.

2.2.2 Quantum Chromodynamics Theory

The strong interaction between quarks and gluons are described by another non-abelian

gauge theory with SU(3)C symmetry group, the Quantum Chromodynamics theory (QCD) [33].

The QCD attributes the quarks an internal quantum number colour charge, red, green and

blue. Quarks interact by emitting and absorbing massless gluons, each of which carries one

unit of colour and one unit of anticolour. Eight kinds of gluons are required to transmit the

strong force between quarks. The quarks form colourless hadrons, which are mesons with

a quark and an antiquark or bayons with three quarks or antiquarks (e.g a proton(uud)

). Inside the hadron, the gluons emitted by quarks can split into quark-antiquark pairs

(sea quark), resulting a bevy of quarks and gluons (gluon-quark sea) that constantly blink

into and out of existence. QCD theory has a feature called confinement hypothesis, which

refers that the quarks have to be confined within colour singlet bound states. The forces

between quarks get stronger when they are pulled apart and will be large enough to create

new quark-antiquark pairs to form new hadrons before they are unbounded to be free. The

process that forms hadrons out of quarks and gluons is called hadronization. Another fea-

ture of QCD is called asymptotic freedom, indicating that the strength of strong interaction

progressively decreases as quarks and gluons get closer to each other until it vanishes at

zero distance.

Quark fields Ψ are in triplet colour representation. The eight gluon filed Gµa , a = 1, 2, ..., 8

have the field strength,

Gaµν ≡ ∂µGaν − ∂νGaµ + gsf
a
bcG

b
µG

c
ν , (2.20)
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where fabc are the structure constants of the SU(3) colour group, and gs characterizes the

QCD coupling strength αs,

αs =
gs

2

4π
. (2.21)

The covariant derivative acting on the quark triplets is,

Dµ = ∂µ − igs
λa
2
Gµa , (2.22)

where the λa, a = 1, 2, ..., 8 are the Gell-Mann 3 × 3 matrices. Then the SU(3)c gauge

invariant Lagrangian of QCD can be written as,

LQCD = Ψ̄(iγµDµ −m)Ψ− 1

4
Gµνa Gaµν . (2.23)
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2.3 Top-quark Physics

With the discovery of bottom quark in 1977, the Standard Model of elementary particles

predicted the existence of top quark, the last quark in the three generations of quarks. 18

years later in 1995, this prediction was proven by the discovery of top quark at Tevatron

by CDF and D0 experiments [34, 35]. In Standard Model, the top quark is an elementary

fermion with spin 1/2 and electric charge of +2/3. As one of the elementary particles with

no internal structure, the top quark has an extraordinary large mass of 173.2±0.9 GeV [36],

which is even more massive than most of the elements in the periodic table. The large

mass of top quark enables it to decay to a less massive on-shell W boson via electroweak

interaction, before the hadronization takes place. It makes the top quark the only quark

whose properties can be studied experimentally without the complications of hadronization

effects. Thus the Standard Model prediction of these properties can be tested with precise

measurements. Top quark also plays an important role in models of electroweak symmetry

breaking (EWSB) due to its mass close to EWSB scale. Further more, the measured top-

quark mass, together with the W boson mass, can be used to constrain the Higgs mass

based via its contribution to the radiative correction [37]. In Standard Model, the top

quark decays to a W boson and a b almost 100% of the time, where about 70% of the W

bosons are longitudinally polarized. Some models in the New Physics (NP) beyond SM

indicate the modifications on the top-quark decay ratio and the decayed W -boson helicity

comparing to the SM prediction. These new physics can be proved or denied by the precision

measurement of the top-quark production.

As a conclusion, the study of top quark is very important to test Standard Model and

to probe the possible New Physics. In this section the top-quark production and its decay

are explained in detail. Then the latest results of the measurement on top-quark properties

are introduced.

2.3.1 Top-quark Production

The top-quark can be produced from top-quark pair processes through strong interactions

and single top-quark processes via electroweak interactions.
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Top-quark Pair Production

The top-quark pairs are produced by the strong interaction between partons (quark, anti-

quark, gluon) in hadron collisions. Assume the collision hadrons are A and B with momen-

tums pA and pB, the two partons that create top quark are i from A and j from B with

momentums pi and pj . The cross section of top-quark pair production at center-of-mass

energy
√
s can be written as [1]:

σ(AB → tt̄) =
∑

i,j=q,q̄,g

∫
dxidxjfi/A(xi, µ

2)fj/B(xj , µ
2) · σ̂ij(ij → tt̄; ŝ, µ2) (2.24)

xi and xj are the momentum fraction of partons xi = pi/pA, xj = pj/pB, σ̂ij is the parton-

parton cross section. fi/A is the parton distribution function (PDF), which describes the

probability density for finding a parton i inside the hadron A. ŝ denotes the square of the

center-of-mass energy of the colliding partons,

ŝ = (pi + pj)
2 = (xipA + xjpB)2 ≈ 2xixjpApB ≈ xixj(pA + pB)2 = xixjs (2.25)

Here the terms proportional to parton mass and hadron mass are neglected since they are

very small comparing to the collision energy. By convention, the scale µ satisfies µ = µF =

µR, where the µF is the factorization scale introduced by the factorization, and µR is the

renormalization scale from the normalization procedure to calculate σ̂ij . In the case of top-

quark production, it is set with top-quark mass µ = mt, while different choices between

mt/2 and 2mt are used to calculate indicative theoretical uncertainties to the cross section

prediction.

As shown in the function above, the top-quark pair production have contributions from

gg → tt̄,qq̄ → tt̄,qg → tt̄ and gq̄ → tt̄ processes. Figure 2.3.1 show their corresponding

luminosities Lij as a function of
√
ŝ, where we can notice that the qg process has the

highest luminosity at the LHC. But the cross sections σ̂qg and σ̂gq̄ are of order αs
3 (αs is

QCD coupling strength introduced in Section 2.2.2), which are much smaller comparing

to σ̂gg and σ̂qq̄ of order αs
2. As a result, about 90% top-quark pairs are produced by

gluon-gluon fusion (gg process) at the LHC at
√
s = 14 TeV. Another 10% are from quark-

antiquark annihilation (qq̄ process). At the Tevatron, about 85% contribution of top-quark
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pair production are from qq̄ process and 15% from gg process. At both of the LHC and

Tevatron, qg and gq̄ processes only contribute to top-quark pair production at 10−2 level.

Figure 2.2: Parton luminosities for gluon-gluon, quark-antiquark, quark-gluon and gluon-
antiquark interactions at the LHC and Tevatron [1].

gg and qq̄ processes are the Leading Order (LO) processes while qg and gq̄ processes are

formally Next-to-Leading-Order (NLO) corrections. The Feynman diagrams of gg and qq̄

processes for tt̄ production are shown in Figure 2.3.1.

Figure 2.3: Feynman diagrams of the LO processes for tt̄ production: (a) gluon-gluon fusion
(gg → tt̄) and (b) quark-antiquark annihilation (qq̄ → tt̄).

σ̂ij can be calculated in perturbative QCD. The leading order cross section calculation
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is given by the reference [38]. The LO cross section predictions are not reliable due to their

huge dependence on the renormalization scale µR and factorization scale µF . More accu-

rate predictions can be obtained by taking into account the Next-to-Leading-Order (NLO)

corrections. The NLO calculations involve virtual contributions to the LO process, the fi-

nal state gluon bremsstrahlung, gluon splitting and the flavor excitation processes. Details

about NLO calculation for tt̄ cross section can be found in reference [39]. More studies

on achieving further accuracy using Next-to-Next-to-Leading logarithmic (NNLL) [40] and

Next-to-Next-to-Leading-Order (NNLO) [41] are undergoing. In this thesis, an approximate

NNLO cross section at
√
s = 7 TeV, σtt̄ = 164.6 pb [42] with mt = 172.5 GeV, is used for

the modeling of tt̄ production.

Single Top-quark Production

In contrast to the top-quark pair production from strong interactions, top quarks can be

produced singly at the hadron collider via electroweak interaction. There are three different

single top-quark production modes, which can be distinguished by the virtuality Q2 of the

W boson where

Q2 = −q2, q is the four momentum of the W boson.

One of them is called t-channel process and proceeds via the exchange of a space-like W

boson (q2 < 0); a second one is the s-channel process that fusions two quarks and produces

a time-like W boson (q2 ≥ (mt + mb)
2); a third one is Wt channel process where the top

quark is produced in association with a real W boson (q2 = M2
W ).

In all channels, single top-quark is produced dominantly via Wtb vertex. The cross

section of these three single top-quark channels are proportional to the square of CKM

matrix element |Vtb| (See Section 2.2 for |Vtb|). The measurement of the single top-quark

production is the only way to directly determine this CKM matrix element. The single top-

quark productions through Wtd or Wts vertices are strongly suppressed due to the small

|Vtd| and |Vts|. Thus their contributions are neglected and not considered in this thesis.

1. t-channel single top-quark production
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Figure 2.4: Leading order Feynman diagrams for single top-quark t-channel production.

Figure 2.4 shows the Leading-Order Feynman diagrams for single top-quark t-channel

production. In the t-channel, there are two kinds of productions, the flavour excitation

production qb → q′t and the W -gluon fusion production qg → q′tb̄. The flavour excitation

production corresponds a five-flavour scheme while W -gluon fusion production corresponds

to a four-flavour scheme [43]. There are two different approaches of single top-quark t-

channel production with different treatment for the b-quark and different calculation of the

t-channel production cross section. In the five-flavour scheme the initial b-quark is from the

quark sea inside the proton, with its luminosity described by a PDF set. It is considered

massless at leading order. In the four-flavour scheme, the b-quark comes from a gluon

splitting into a bb̄ pair and its mass is taken to be non-zero already at leading order.

At both the LHC and Tevatron, the t-channel process is the dominate process for single

top-quark production. The initial light quark q shown in Figure 2.4 can be u, d, s, c or their

antiquark. The top quark is produced with initial quark u, d̄, s̄, c, while for antitop-quark

production they are ū, d, s, c̄. Table 2.1 shows the contributions of different parton process

to single top-quark and antitop-quark t-channel production [44]. LHC is proton-proton

(u,u,d quark in a proton) collider, resulting larger cross section of top-quark production
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than the one of antitop-quark production. At the proton-antiproton collier Tevatron, the

cross sections for top-quark and antitop-quark productions are the same.

top-quark production antitop-quark production

ub→ dt 74% db̄→ ut̄ 56%

d̄b→ ūt 12% ūb̄→ d̄t̄ 20%

s̄b→ c̄t 8% sb̄→ ct̄ 13%

cb→ st 6% c̄b̄→ s̄t̄ 11%

Table 2.1: Contributions of different parton processes to the t-channel single top-quark and
antitop-quark production at the LHC at

√
s = 14 TeV [44].

In single top-quark t-channel and s-channel processes, the produced top quark is 100%

polarized along the direction of the d (d̄) quark, because in the Standard Model the W

boson couples only to fermions with left-handed chirality. Any observation of a different

top-quark polarization state in the experiment would indicate the new physics effects.

The leading order cross section of t-channel single top-quark production can be calculated

by squaring and convoluting with the parton density functions (PDFs) for the initial state

b-quark and light quark (or gluon and light quark), performing the phase space integral and

including the overall flux factor. The PDFs of quarks in the parton (see also Section 2.3.1)

are extracted from global fits to measurements of deep inelastic scattering experiment.

The NLO QCD corrections on the cross section calculation consist of two parts: the

one-loop virtual correction to the 2 → 2 (or 2 → 3) parton scattering process, and the

real emission correction from all possible parton scattering processes with one extra QCD

parton in the final state.

The single top-quark t-channel production can be calculated in five-flavour scheme or

four-flavour scheme. These two approaches are equivalent if all orders in the perturbative

expansion would be included. However, at low order the two predictions could differ sub-

stantially [43]. The advantage of five-flavour scheme is that in the calculation the logarithms

of the form ln((Q2 +m2
t )/m

2
b) are resumed into the b-quark parton density function which
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improves the stability of the perturbative expansion. Also the NLO calculation starts from

2 → 2 processes, which simplifies the calculation. The problem of this approach is that

the b-quark is only effectively described at leading order and in NLO level it enters as the

radiative contributions. This is not good for high-precision measurements which require the

distributions related to the spectator b should also be described at NLO accuracy. This

goal can be achieved by using the four-flavour scheme, which is the W -fusion production. In

this cross section calculation, the b quarks are considered to be massive quarks and do not

enter the evolution of the parton density functions and the running of the strong coupling.

One difficulty is that the terms related to ln((Q2 +m2
t )/m

2
b) cause the perturbation series

to converge rather slowly [1], another difficulty is that the NLO calculation is much more

complex and time consuming due to the presence of an additional (massive) particle in the

final state.

The leading order calculation for single top-quark t-channel production is referred in [45].

Some recent studies provide the NLO corrections for single top-quark t-channel production[46,

47, 48, 49, 50]. Further accurate calculations for single top-quark production beyond

NLO includes higher-order corrections from Next-to-Leading-Logarithm (NLL) soft-gluon

resumption [51]. In this thesis, the predicted cross section of t-channel single top-quark

production is calculated at NLO in the 5-flavour scheme with Next-to-Next-to-Leading-

Logarithm (NNLL) resumption [20] σt = 64, 57+2.71
−2.01pb for mt = 172.5 GeV. More cross

section results with different top-quark masses for t-channel production at the LHC can be

seen if Table 2.2.

mt( GeV) 170 171 172 173 174 175

top-quark (pb) 42.9 42.5 42.1 41.7 41.4 41.0

antitop-quark (pb) 23.2 23.0 22.8 22.5 22.3 22.1

Table 2.2: The NNLO approx cross sections of single top-quark and antitop-quark t-channel
productions at the LHC with

√
s = 7 TeV [20].

2. Single top-quark s-channel and Wt channel processes
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Figure 2.5: Leading order Feynman diagrams for single top-quark s-channel and Wt channel
production.

Single top-quark s-channel process is a Drell-Yan type process where quark and antiquark

annihilate into a time like virtual W boson. LO Feynman diagram of s-channel is shown

on the left of Figure 2.5. s-channel have the smallest contribution to single top-quark

production at the LHC, while it is the second largest process at the Tevatron. The dominant

parton process in s-channel is ud̄ → b̄t. In this thesis, the cross section prediction of s

channel is 4.6± 0.2 pb [52], from the NLO calculation with NNLL corrections.

Single top-quark Wt channel process is also called W associated single top-quark pro-

duction. As shown on the right of Figure 2.5, a b-quark and a gluon create an on-shell W

boson along with a top quark. At the LHC, Wt channel single top-quark production has a

cross section 15.7± 1.1 pb [53]. While at the Tevatron, Wt production is negligible.

2.3.2 Top-quark Decay

As discussed in Section 2.2, the probability of a quark i decay into j is proportional to the

square of CKM matrix element |Vij|. Utilizing the unitarity of CKM matrix and assuming

three quark generations only, the |Vtb| is between 0.9990 and 0.9992 at 90% Confidence

Level [54]. This means that top quarks almost fully decay into a b-quark and a W boson
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with other decay modes neglectable. Then the top-quark decay final states can be easily

identified by the W boson decays:

BR(W → eν) : BR(W → µν) : BR(W → τν) : BR(W → jets) = 1 : 1 : 1 : 6.

In top-quark pair production, if the two W -bosons originated from top-quark decay lep-

tonically to leptons e, µ or τ , it is referred as dilepton channel. If one W boson decay

leptonically and the other decay to jets, this process is called single lepton channel or lep-

ton+jets channel. If two W -bosons all decay hadronically to jets, this process is referred as

all hadronic channel. The single top-quark t-channel production can also be identified as

lepton+jets channel and hadronic channel according the W boson originated from top-quark

decay leptonically or hadronically.

With first order QCD corrections and some approximation, the top-quark decay width

is given by [55, 56]

Γt =
GFm

3
t

8π
√

2
(1−

m2
W

m2
t

)(1 + 2
m2
W

m2
t

)[1− 3αs
3π

(
2π2

3
− 2.5)] (2.26)

With given constants αs and GF , the decay width of top quark is calculated to be Γt '

1.4 GeV with mt around 170 GeV while corresponding life time of top quark is τt = 1/Γt ≈

5×10−25s. It is shorter than the top-quark hadronization time 3×10−24. As a consequence,

the top quark decays before it can form hadrons. The top-quark spin ”survives” non-

perturbative QCD and it can be studied with the angular distributions of the final state

particles in top-quark decay.

According to the SM, the weak decay of top quark follows a vector minus axial vector

(V-A) structure and produces polarized W bosons. The W -boson helicity in top-quark

decays is predicted to be 69.8% longitudinal polarized, 30.1% left-handed and 0.041% right-

handed [57]. Any deviation between measurement results and expected values would indi-

cate the existence of the new physics.

The top quark could also decay into a charm quark or up quark via flavor-changing

neutral currents (FCNC) decays. These are highly suppressed in the Standard Model to

branching ratios ∼ 10−9 or smaller. The huge top-quark samples at the LHC make it

possible to test the predictions of these rare processes.
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2.3.3 Cross Section Measurements of Top-quark Production

With the full Tevatron Run II samples and the increased integral luminosity of data from

the LHC in 2011, we could expand our knowledge on the properties of the top quark. The

published results of the Tevatron and LHC show a picture of the top quark that corresponds

closely to the one predicted by the SM. In this part, the current top-quark production cross

section measurement results are introduced.

Results of Top-quark Pair Production Cross Section Measurement

The cross section measurements of the tt̄ production are good tests of perturbative QCD. For

the time being, the published most precise cross section measurement of the tt̄ production

comes from Tevatron σtt̄ = 7.70± 0.52pb [58] with NLO prediction σNLOtt̄ = 7.5± 0.7pb [59].

It is extracted from a measurement of the ratio R = σtt̄/σZ . The relative total uncertainty of

this measurement is ∼ 7%, exceeding the theoretical prediction with uncertainty ∼ 9%. The

latest results from LHC with high-statistics samples and new NNLO theoretical calculation

could help to identify possible new physic.

The published results of tt̄ cross section measurements from CMS and ATLAS exper-

iment at the LHC are listed in table 2.3. All measured σtt̄ assume a top-quark mass of

172.5 GeV. These results used the early data collected in 2010.

Channel Experiment Lintegral(pb−1) σtt̄(pb)

l+jets - kinematics only CMS 36 173+39
−32(stat.+ syst.)± 7(lumi)

l+jets - with b-tagging CMS 36 150± 9(stat.)± 17(syst.)± 6(lumi)

dilepton CMS 36 168± 18(stat.)± 14(syst.)± 7(lumi)

dilepton ATLAS 35 171± 20(stat.)± 14(syst.)+8
−6(lumi)

Table 2.3: The published LHC results on the tt̄ production cross section [60, 61, 62, 63].

The results at the LHC using the full statistics of 2011 data are still preliminary. Fig-

ure 2.6 shows some of these preliminary results..
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Figure 2.6: Preliminary results on top-quark pair cross section measurement from ATLAS
and CMS experiment at the LHC [2, 3]. The vertical band are the predicted cross section
from approximate NNLO calculation [4, 5, 6, 7].

Single Top-quark Production Cross Section Measurement

The studies on single top-quark production help us to learn the charged-current weak in-

teractions of the top quark. The measurements of the single top-quark production cross

section lead to a direct determination of the CKM matrix element Vtb, which could be used

to test the unitarity of the CKM matrix. The single top-quark production cross section also

probes the bottom-quark density distribution inside the proton, which at the moment is

computed from light parton densities rather than extracted from data. Furthermore, single

top-quark production rates can be significantly modified by new-physics interactions, such

as heavy resonances or non-standard flavor-changing vertices [64]. In addition, the single

top-quark processes contribute as backgrounds to many possible new-physics processes. For

example, single top-quark t-channel process leads to the same final states as the Higgs boson

associated production WH →Wbb̄. The precise understanding of single top-quark produc-

tion would help to search for these new physics. Because of these reasons, the cross section
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measurement of single top-quark production has been very interesting and very important

in the high energy physics studies.

The single top-quark production was first observed by CDF [65] and D0 [66] experiment

at the Tevatron in 2009. The results from CDF and D0 are combined to a measured cross

section of

σs−channel+t−channel = 2.76+0.58
−0.47(stat+ syst)pb (2.27)

in pp̄ collisions at
√
s = 1.96 TeV with mt = 170 GeV , which is consistent with the Standard

Model expectation 2.26± 0.12pb [67]. The CKM matrix element is extracted |Vtb| = 0.88±

0.07 with a 95% Confidence Level lower limit of |Vtb| > 0.77 [68].

The single top-quark t-channel production are also measured independently by D0 group

at the Tevatron [22] with pp̄ collisions at
√
s = 1.96 TeV, which up to date gives the most

precise measurement of t-channel single top-quark production cross section

σ(pp̄→ tqb+X) = 2.90± 0.59(stat+ syst)pb (2.28)

for a top-quark mass mt = 172.5 GeV.

For the single top-quark Wt channel, the production cross section at the Tevatron is

negligibly small. Thus the observation of this process relies on the LHC experiment.

The ATLAS and CMS experiments at the LHC have made many progresses in the

studies on single top-quark production. The results are still preliminary and some of them

are discussed in the Chapter 7.
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Chapter 3

ACCELERATOR, DETECTOR AND OBJECT RECONSTRUCTION

The Large Hadron Collier could produce 80 million pairs of top quarks and an additional

34 million single top-quarks annually at the designed high luminosity. It is indeed a top-

quark factory and thus plays an important role for top-quark study. The work in this thesis

is based on the data collected in 2011 by ATLAS detector at the LHC with proton-proton

(pp) collisions at a center-of-mass energy
√
s = 7 TeV.

This chapter first introduces the LHC accelerator and its running. Then a detailed

introduction of the ATLAS detector and its components is described. The third part of this

chapter gives the reconstructions of the particles and some definitions which will be used in

the following analysis. The luminosity measurement in ATLAS and the data distribution

are briefly introduced in last sections.
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3.1 Large Hadron Collider

The Large Hadron Collider [69] is a superconducting particle accelerator, located from 50

to 175 meters beneath the surface at CERN, about 20 kilometers from Geneva center.

It is nowadays the world’s largest and highest-energy particle accelerator and the most

powerful particle smasher. The LHC is an international project jointed by thousands of

scientists from hundreds of countries all over the world. The purpose of the LHC is to

increase our knowledge about the origin of the universe and the origin of matters. It is

used to recreate the conditions and energies present immediately after the big bang, with

the hope of discovering how our universe came into existence. It helps the scientists to

look for these particles existing in some theory but have never been observed, particularly

for the hypothesized Higgs boson(s) and the large family of new particles predicted by

supersymmetry. It is expected to address some fundamental questions of physics, such as

the nature of dark matter, origin of the baryon asymmetry, sources of CP violation, and

the organizing principles for flavor physics.

CERN’s accelerator complex includes particle accelerators and colliders, can handle

beams of electrons, positrons, protons, antiprotons, and ”heavy ions” (the nuclei of atoms,

such as oxygen, sulphur, and lead). A global view of CERN accelerator complex is show

in Figure 3.1 [8]. The LHC program is mainly based on proton-proton collisions, while in

shorter running periods the heavy-ion and light-ion collisions are proceeded as well. Below

the acceleration chain of protons and lead ions are briefly described. Then the experiments

installed at the LHC and the current status of the LHC operation are introduced.

3.1.1 The Acceleration Chain and Designed Parameters of the LHC

Protons are obtained by removing electrons from hydrogen atoms. At first they are injected

from the linear accelerator (LINAC2) to Proton Synchrotron Booster (PSB) to be accel-

erated to 1.4 GeV. Then they are boosted by Proton Synchrotron (PS) to the energy of

26 GeV. These protons are further accelerated by the CERN’s second biggest accelerator

Super Proton Synchrotron (SPS) to increase their energy to 450 GeV. Finally, the pro-

tons will be introduced into LHC’s 27 kilometers circumference underground tunnel and be
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Figure 3.1: The CERN Accelerator Complex [8].
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accelerated to the colliding energy.

The lead ions are generated from a source of vaporized lead. They are injected from

LINAC3 to Low Energy Iron Ring (LEIR) to be accelerated. Then they follow the same

route to reach maximum acceleration as the protons.

The LHC carries two beams, one clockwise and the other counter-clockwise. For the

proton-proton collision, as designed, one beam consists of 2808 bunches, with over 1011

protons in each bunch. The two beams are circulating in separate magnet fields and vacuum

chambers in the main arcs of the LHC, within one ring of magnets which consist of two sets

of coils to create different magnet fields for the two beams. The two beams collide at the

insertion regions (IRs) in the common sections of the two beam, where the experimental

detectors are located. The maximum beam energy that can be reached in the LHC is

limited by the peak dipole field in the storage ring. To bend 7 TeV protons around the

ring, it requires a dipole field of 8.33 Tesla, which is generated by the superconducting

dipole magnets. The beam are focused by the quadrupole magnets. Strong focusing power

of the quadrupole could limit the bean size to be small and ensure a high event rate at the

collision point. The event rate R for a physics process with cross-section σ is proportional

to the instantaneous luminosity L:

R = Lσ. (3.1)

With n1 and n2 protons per bunch for the two beams, and nb bunches in one beam, an

approximate calculation of the luminosity L is given by [70]:

L = fr
nbn1n2

2πΣxΣy
. (3.2)

Here fr is the revolution frequency of the LHC machine, ΣxΣy characterize the beam size

and can be expressed as ΣxΣy = εnβ
∗, where εn is the normalized transverse beam emittance

and β∗ is the beta function which characterizes the beam optics. The total number of events

for a process is obtained by integrating the event rate R with time t,

Nevent =

∫
Rdt = Lσ, with L =

∫
Ldt. (3.3)

Instead of the total event number, the integrated luminosity L is often used to refer the

collected data size. The LHC is designed for very high instantaneous luminosity to ensure
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a high event rate even for those physics processes with small cross sections. Table 3.1 lists

some designed beam parameters of the LHC.

Beam parameters value Beam parameters value

Proton Injection Energy 450 GeV Peak Luminosity 1034cm−2s−1

Proton Beam Energy 7 TeV β∗ 0.55m

Particles per Bunch 1.15× 1011 Normalized Transverse Emittance 3.75µm

Number of Bunches 2808 Energy Loss per Turn 6.7KeV

Bunch Spacing 25ns Peak Dipole Magnet Field 8.33T

Bunch Length 7.5cm Peak Quadrupole Magnet Field 6.85T

Circulating Current 0.584A Total Cross Section 100pb

Stored Energy 362MJ Inelastic Cross Section 60pb

Table 3.1: LHC designed beam parameters [70]

3.1.2 The Experiments Installed at the LHC

As shown in 3.1, there are four main detectors installed at the four interaction points

(IP) of the LHC: the ATLAS (IP1), CMS (IP5), LHCb (IP8) and ALICE (IP2) detec-

tors [10] [71] [72] [73]. Another two small experiments LHCf [74] and TOTEM [75] are

installed on the LHC accelerator ring near the ATLAS region and the CMS region sepa-

rately.

• ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) are two

general purpose detectors designed to investigate a wide range of physics, including the

search for Higgs boson, supersymmetry particles, dark matters and extra dimensions.

Both of them consist of four concentric subsystems: the inner detector, electromag-

netic calorimeter, hadronic calorimeter and muon detector. The CMS has a single

magnet surrounding the inner detector and calorimeters with large magnet field of

3.8T, and its muon chambers are in return yoke. This is different comparing to the

ATLAS detector as introduced in Section 3.2. The different designs of the ATLAS and
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CMS detectors result in different capabilities of identifying and measuring particles,

which give rather different systematic uncertainties in the measurements. This way

they provide an independent cross-check measurement for each other.

• LHCb (Large Hadron Collider beauty) is a forward single arm spectrometer which

uses a series of sub-detectors to detect mainly forward particles. It is dedicated to the

study of the CP violating effects, phenomena in the decays of the b hadrons (hadrons

containing b quark).

• ALICE (A Large Ion Collider Experiment) is a dedicated heavy-ion detector used to

study nucleus-nucleus interactions at LHC energies. The collisions in ALICE generate

high temperature and large energy density, which could create a state of matter called

quark-gluon plasma. The existence of such a phase and its properties are important

to understand the confinement and of chiral-symmetry in QCD.

• LHCf (Large Hadron Collider forward) is the smallest one of the six official LHC

experiments, consisting two detectors located on either side of the ATLAS experi-

ment. It studies the neutral-particle production cross sections in the very forward

region of proton-proton and nucleus-nucleus interactions, helping to understand the

development of atmospheric showers induced by very high energy cosmic rays.

• TOTEM (TOTal Elastic and diffractive cross section Measurement) is installed near

the point where protons collide in the center of the CMS detector. It studies forward

particles that are very close to the LHC beams, dedicated to the precise measurement

of the proton-proton interaction cross section with the luminosity independent method

and to the study of elastic and diffractive scattering at the LHC.

3.1.3 Status of the LHC Operation

In November 2009, the proton beams were successfully circulated in the main ring of the

LHC, and first data at the center-of-mass energy of 900 GeV were recorded. With the

luminosity around 1027cm−2s−1, about 1.5 million events were collected. On 30 March
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2010, the LHC started the proton-proton collisions at the center-of-mass energy of 7 TeV.

The numbers of protons per bunch increased from 5 × 1010 to 1.2 × 1011, which exceeded

the designed parameter. And the highest instantaneous luminosity in 2010 reached 2 ×

1032cm−2s−1. Till the end of October 2010, the integrated luminosity of 48pb−1 proton-

proton collisions were collected. And 48µb−1 of heavy ion collision data were collected in

the following 4 weeks at center-of mass energy 2.76 TeV.

In 2011, the LHC was steadily running at 7 TeV center-of-mass energy with instanta-

neous luminosity above 1033cm−2s−1. From March to October 2011, The LHC delivered

5.63fb−1 data for ATLAS and 5.7fb−1 for CMS, as shown in Figure 3.2. And starting

from November, heavy ion collisions were proceeded for more than three weeks at center-of

mass energy 2.76 TeV. The performance of the LHC machine in 2011 has been outstanding,

delivering integrated luminosities beyond the expectations for both the proton-proton and

Pb-ion runs. Some performance like particles per bunch and normalized transverse emit-

tance have exceeded the designed value. The beam parameters in 2011 LHC operation can

be referred in Table 3.2 [9].

In 2012, the LHC has started its run from April and it is operating at 4 TeV beam energy.

The performance of LHC will be increased step by step during the operation procedure in

2012. Some current beam parameters of the LHC run in April as well as the expected values

in 2012 are shown in Table 3.2 [76] [77]. After 2012 run, the LHC will shutdown for about

20 months for upgrades to allow full energy operation (7 TeV per beam).
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Figure 3.2: Luminosity integrated by experiments in 2011 [9].

Beam parameters 2011 2012 April 2012 plan

Peak luminosity (×1033cm−2s−1) 3.6 4.2 5-6.8

Proton Beam Energy ( TeV) 3.5 4 4

Number of Bunches 1380 1092 1380

Particles per Bunch (×1011) 1.5 - 1.6

Bunch Spacing (ns) 50 50 50

Normalized Transverse Emittance (µm) 1.9-2.3 - 2

β∗ (m) 1 0.6 0.6-0.9

Table 3.2: LHC beam parameters in 2011 and 2012 operation and the expected value in
2012 [9] [76] [77]

.
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Figure 3.3: The construction of the ATLAS detector [10].

3.2 ATLAS Detector

The ATLAS experiment is one of the two general purpose experiment at the LHC. It is

designed to measure the electroweak interactions, search for Higgs boson and new physics,

study extra dimensions of space and dark matters. The ATLAS detector is 25m in height

and 44m in length, weighting about 7000 tons. It is composed by four main sub-systems:

the magnet system, the inner detector, the calorimeter and the muon spectrometer. An

overall ATLAS detector layout is shown is Figure 3.3 [10].

The coordinate system and nomenclature used in ATLAS experiment are briefly de-

scribed here. The z-axis is the beam direction while x-y plane is transverse to the beam

direction. x-axis is defined as the direction pointing from the interaction point to the center

of the LHC ring and y-axis is pointing upwards. φ refers to the azimuthal angle in x-y

plane, range [−π, π]. θ is the polar angle from the z-axis. η is called pseudorapidity which

is calculated from θ:

η = −ln[tan(
θ

2
)].
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The distance in the pseudorapidity-azimuthal angle space is defined as:

∆R =
√

(∆η)2 + (∆φ)2.

To reach its physics goal, the ATLAS detector is required to have fast electronics and

sensor elements, large acceptance in pseudorapidity, good momentum resolution and particle

reconstruction efficiency, precise measurements of the energy and high efficiency triggers.

The main performance goals of the ATLAS detector are listed in Table 3.3 [10].

Detector Component Required Resolution η Coverage

Measurement Trigger

Tracking σpT /pT = 0.05%pT ⊕ 1% ±2.5

EM calorimetry σE/E = 10%/
√
E ⊕ 0.7% ±3.2 ±2.5

Hadronic calorimetry

barrel and end-cap σE/E = 50%/
√
E ⊕ 3% ±3.2 ±3.2

forward σE/E = 100%/
√
E ⊕ 10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9

Muon spectrometer σpT /pT = 10% at pT=1TeV ±2.7 ±2.4

Table 3.3: General performance goals of the ATLAS detector [10]. The units for E and pT

are in GeV.

3.2.1 Magnet System

The magnet system of ATLAS detector consists of a central solenoid (CS), one barrel toroid

(BT) and two end-cap toroids (ECT). It is 22 m in diameter and 26 m in length. The

positions of these four magnet system in ATLAS detector can be seen in Figure 3.3.

The central solenoid is placed outside the inner detector and before the electromagnetic

calorimeter [78]. It is aligned with the beam axis and provides a 2 T axial magnetic field for

the inner detector. The position of the central solenoid requires it to be as thin as possible

to reduce its effects on the particles before they reach the calorimeter. The parameters for

all the four magnet systems are shown in Table 3.4 [10].
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Property Feature Unit Solenoid Barrel toroid Endcap toroid

Size Inner diameter m 2.46 9.4 1.65

Outer diameter m 2.56 20.1 10.7

Axial length m 5.8 25.3 5.0

Number of coils 1 8 2× 8

Mass Conductor t 3.8 118 2× 20.5

Cold mass t 5.4 370 2× 140

Total assembly t 5.7 830 2× 239

Coils Turns per coil 1154 120 116

Nominal current kA 7.73 20.5 20.5

Magnet stored energy GJ 0.04 1.08 2× 0.25

Peak field in the windings T 2.6 3.9 4.1

Field range in the bore T 0.9-2.0 0.2-2.5 0.2-3.5

Conductor Overall size mm2 30 x 4.25 57 x 12 41 x 12

Ratio Al:Cu:NbTi 15.6:0.9:1 28:1.3:1 19:1.3:1

Number of strands(NbTi) 12 38-40 40

Strand diameter(NbTi) mm 1.22 1.3 1.3

Critical current(at 5T and 4.2k) kA 20.4 58 60

Operatingcritical-current ratio at 4.5K % 20 30 30

Residual resistivity ratio(RRR) for Al > 500 > 800 > 800

Temperature margin K 2.7 1.9 1.9

Number of units × length m 4 x 2290 8x4x1730 2x8x2x800

Total length(produced) km 10 56 2 x 13

Heat load At 4.5 K W 130 990 330

At 60-80 K kW 0.5 7.4 1.7

Liquid helium mass flow g/s 7 410 280

Table 3.4: The main parameters for the magnet system [10].

The barrel toroid is composed by 8 coils assembled radially and symmetrically around the

beam axis [79]. It generates a magnetic field 3.9 T (peak value) for the muon spectrometer.

The two end-cap toroids are similar as the barrel toroid but inserted in the two ends to

ensure a full range bending power. They provide a peak magnetic field 4.1 T for the muon

spectrometer [80]. Figure 3.4 shows the 8 coils of the barrel toroid during the setup of the

ATLAS detector [10].



36

Figure 3.4: The barrel toroid in ATLAS detector [10].

3.2.2 Inner Detector

The ATLAS Inner Detector (ID) is the detector closest to the beam pipe. It is designed

to provide highly efficient track reconstruction, excellent momentum resolution and a good

measurement of the primary and secondary vertices for the charged tracks. The inner

detector is about 7 meters long and of radius 1.15 m, located within the 2 Tesla solenoidal

magnetic field. It covers the pseudorapidity range |η| < 2.5. The inner detector is composed

by three independent but complementary sub-detectors, the Pixels, Semi-Conductor Tracker

(SCT) and the transition radiation tracker (TRT). An overview of the inner detector is

shown in Figure 3.5 [10]. while the basic overall parameters are summarized in Table 3.5 [10].

The pixel detector has very good position recognition capability of charged particles due

to its highly modular, containing approximately 1500 barrel modules and 700 disk modules.

It consists of three barrel layer and three disks in two end-caps. All the layers contain 140

million detector elements in total. The size of each elements is ∆R−φ×∆z = 50µm×400µm.
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Figure 3.5: Overview of ATLAS inner detector [10]

Item Radial extension (mm) Length (mm)

Pixel 45.5 < R < 242 0 <| z |< 3092

SCT (barrel) 255 < R < 549 0 <| z |< 805

(end-cap) 251 < R < 610 810 <| z |< 2797

TRT (barrel) 554 < R < 1082 0 <| z |< 780

(end-cap) 617 < R < 1106 827 <| z |< 2744

Table 3.5: Main parameters of the ID overall envelope [10].
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The resolution in R− φ plane can reach 10µm and in the z direction it is 115µm.

The SCT also has quick electronic response and good pattern recognition capability. It

provides additional momentum and position measurements for the tracks in the intermediate

radial range. The SCT is composed of four barrel layers and two end-caps, each with nine

wheels [81]. There are 4088 modules in SCT with each size ∆R−φ×∆z = 6.36cm× 6.40cm.

The SCT covers acceptance range |η| < 2.5, with resolution 16µm in R−φ plane and 580µm

in z direction.

The TRT system is based on the straw drift tubes with a diameter of 4 mm each. The

TRT can operate at very high rates and gives a combined accurate measurement in R − φ

plane with resolution better than 50µm, due to its large number of straws. The TRT

contains 73 layers of straws interleaved with fibres (barrel) and 160 straw planes interleaved

with foils (end-cap) [82] [83]. The charged tracks with pT > 0.5 GeV in range |η| < 2.0

traverse at least 36 straws, except in range 0.8 < |η| < 1.0 the minimum number is 22

straws due to the barrel-end-cap transition. The TRT also provides the measurement of

the transition radiation, which can be used to discriminate electrons from other charged

particles.

3.2.3 Calorimeters

The calorimeters are used to detect and identify the electrons, photons, jets, and to measure

their energies. In ATLAS detector, there are two parts of calorimeter, the electromagnetic

calorimeter (EM) and the hadronic calorimeter [84] [85]. The electromagnetic calorime-

ter is close to the inner detector and consists of the electromagnetic barrel calorimeter

(|η| < 1.475) and the electromagnetic end-cap calorimeter (1.375 < |η| < 3.2). The

hadronic calorimeter is placed outside the electromagnetic calorimeter, composed of the

tile calorimeter (|η| < 1.7), the hadronic end-cap calorimeter (1.5 < |η| < 3.2) and the for-

ward calorimeter which is located closest to the beam and covers the range 3.1 < |η| < 4.9.

The overall calorimeter system is shown in Figure 3.6 [10].

In general, the calorimeter is made of the absorber and detection medium. The particles

meet the absorber and produce secondary particles showers which are detected by the
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Figure 3.6: Overview of ATLAS Calorimeter [10]

detection medium. In ATLAS calorimeter, the electromagnetic calorimeter, the hadronic

end-cap calorimeter and the forward calorimeter use lead as absorber and liquid argon as

the active detection medium due to its intrinsic linear behavior, its stability of response

over time and its intrinsic radiation-hardness. For the tile calorimeter, the iron is used as

absorber and the plastic scintillator is used as the detection medium.

The cryostat systems is composed of one barrel cryostat and two end-cap cryostats.

The barrel cryostat contains the electromagnetic barrel calorimeter. And the two end-cap

cryostats contain the electromagnetic end-cap calorimeters, the hadronic end-cap calorime-

ters and the forward calorimeter.

Electromagnetic Calorimeter

The electromagnetic calorimeter uses the accordion shape absorbers and electrodes, provid-

ing a full coverage in φ without any cracks and a fast extraction of the signal at the rear or

at the front of the electrodes [84]. The accordion waves are axial and run in φ in the barrel.
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In the end-caps, the waves are parallel to the radial direction and run axially. To keep the

liquid-argon gap constant, the folding angles of the waves vary with radius.

The barrel electromagnetic calorimeter consists of three layers with different granularity

in the longitudinal direction, the first layer, the middle layer and the back layer. Figure 3.7

shows the barrel module and the granularity of the three layers [10]. The first layer is finely

segmented along η, while less and less segmented in the middle layer and the back layer.

Most of energy of electrons and photons will deposit in the middle layer, while the back

layer collects only the tail of the electromagnetic shower. There is also a presampler in the

region of |η| < 1.8, which is used to correct the energy loss of electromagnetic calorimeter.

Figure 3.7: Sketch of a barrel module of the electromagnetic calorimeter [10]. The gran-
ularity in η and φ of the cells of each of the three layers and of the trigger towers is also
shown.

The electromagnetic end-cap calorimeter has an inner wheel (2.5 < |η| < 3.2) and an
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outer wheel (1.375 < |η| < 2.5). The region 1.5 < |η| < 1.8 in end-cap calorimeter is

also divided into three layer as the barrel electromagnetic calorimeter. The granularity for

the middle cell in end-cap calorimeter is the same ∆η × ∆φ = 0.025 × 0.025. And The

presampler is used as well in the region of 1.5 < |η| < 1.8.

Hadronic Calorimeters

The goal of the hadronic calorimeter is to measure the energy of hadrons with good reso-

lution. It is required to be relatively thick to hold all hadronic showers and to reduce the

leakage to the muon system.

The barrel hadronic calorimeter is also called tile calorimeter. It uses iron as absorber

and scintillating tiles as the detection medium. It consists of a central barrel and two

extended barrel calorimeters. The central tile calorimeter covers range |η| < 1.0 with 5.8 m

in length and 7.4λ in radial depth, while the λ is the interaction length. The tile extended

barrel calorimeters in the region 0.8 < |η| < 1.7 have the inner radii 2.28 m and outer radii

4.25 m. The tile calorimeter is sampling calorimeter divided into three longitudinal layers.

In the first two layers the granularity is ∆η ×∆φ = 0.1 × 0.1 while in the third layer it is

∆η ×∆φ = 0.1× 0.2.

The hadronic end-cap calorimeters consist of two wheels, a front wheel and a rear wheel.

Each wheel contains two longitudinal sections, with outer radii of 2.3 m. The end-cap

calorimetry extends the pseudorapidity coverage of hadronic calorimeter to |η| < 3.2.

The forward calorimeter is placed about 4.7 m away from the interaction point, covering

the region of 3.1 < |η| < 4.9. As illustrated in Figure 3.8, the forward calorimeter is

composed of one electromagnetic module and two hadronic modules [10]. The forward

calorimeter provides a uniformity of the calorimetric coverage and limits the backgrounds

reach to the muon spectrometer. It also brings challenge due to the exposure to high particle

fluxes.
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Figure 3.8: Layout of the forward calorimeter modules [10].

3.2.4 Muon Spectrometer

The muon spectrometer (MS) is designed to measure muons with good momentum resolu-

tion, high detection efficiency and large fake track rejection. It also serves as the trigger

system to trigger on muons. The muon spectrometer is placed at the outermost of the

ATLAS detector. It consists of four parts, the monitored drift tubes (MDT), resistive plate

chambers (RPC), thin gap chambers (TGC) and cathode strip chambers (CSC) [86]. The

layout out the muon spectrometer is shown in Figure 3.9 [10].

The Monitored Drift Tube chambers (MDT) provide the precision momentum measure-

ment of the muons. It is located at the barrel and end-cap of the detector, covering a

region of |η| < 2.7. The MDTs contain three to eight layers of drift tubes, operated with

a non-flammable mixture of Argon and CO2 at an absolute pressure of 3 bar. It can reach

an average resolution of 80µm per tube, or about 35µm per chamber.

The Cathode Strip Chambers (CSC) are multi-wire proportional chambers with cathode

strip readout and with a symmetric cell. They have higher granularity and can provide a

better time resolution. Thus they are used in the innermost tracking layer in the forward

region 2 < |η| < 2.7. The resolution of a chamber in the bending plane can reach 40µm

while in the transverse plane the resolution is about 5 mm.

While the MDTs and CSCs perform as the precision-tracking chambers, Resistive Plate

Chambers (RPCs) and Thin Gap Chamber (TGCs) serve as the trigger chamber, another
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Figure 3.9: Overview of the muon system [10].
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critical part of the muon system. The RPCs cover the barrel region |η| < 1.05. They are

gaseous detectors with the gas mixture of C2H2F4 and SF6, providing a typical space-time

resolution of 1cm× 1ns. The TGCs are multi wire proportional chambers with a graphite

cathode, covering the end-cap region 1.05 < |η| < 2.4. RPCs and TGCs are also used to

provide second coordinate information for through going particles.

3.2.5 Trigger and Data Acquisition

As designed, at the LHC there are 40 millions of bunch crossing in one second with 23

collision events in each. It is impossible and not necessary to record all the events. The

trigger system is used to reduce the event rates and to select the interesting events for

physics analysis. In ATLAS, there are three level of triggers, the L1 trigger, the L2 trigger

and the Event Filter (EF) trigger. The L2 trigger and the EF trigger are also called Hight

Level Trigger (HLT). The overview of the trigger system is show in Figure 3.10 [10].

L1 trigger is a hardware based system. It selects the objects with a transverse momentum

exceeding a certain threshold, including the sections for muons, electrons, photons, tau, jets,

missing transverse energy (ET
miss) and total transverse energy. The L1 trigger threshold of

different candidates used in ATLAS in 2011 run are listed in Table 3.6. L1 trigger consists of

three parts, the Calorimeter Trigger (L1Calo), the Muon Trigger (L1Muon) and the Central

Trigger Processor (CTP). L1Calo uses the information from all the calorimeters with a

reduced-granularity ∆η × ∆φ = 0.1 × 0.1 to select high-energetic objects, while L1Muon

uses RPC and TGC trigger chamber as introduced in Section 3.2.4 for the selection of the

muons. The trigger selections are combined to a trigger ”menu” by the CTP. One or more

Regions-of-Interest (RoIs) are defined by L1 trigger, which is a ∆η×∆φ region of 0.4× 0.4

for L1Calo and about 0.1× 0.1 for L1Muon. L1 trigger reduces the event rate from 40 MHz

to about 75 kHz within a fixed latency of less than 2.5 µs.

During the latency of the Level 1 trigger selection, the complete event data is kept in

the pipeline memories of the sub-detector front-end electronics. Only the data selected by

the L1 trigger are transferred to the Readout Drivers (RODs) and are stored temporarily

in Readout Buffers (ROBs).
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Figure 3.10: Overview of the trigger system [10].
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Trigger Objects Trigger Threshold Event Rate

L1 ( GeV) EF ( GeV) L1 (kHz) EF (Hz)

Single muon 11 18 8 100

Single electron 16 22 9 55

Two muons 11 15,10 6 5

Two electrons 10 12 2 1.3

Two taus 15,11 29,20 7.5 15

Two photons 12 20 3.5 5

ET
miss 50 70 0.6 5

Multi-jets (5 jets) 10 30 0.2 9

Single jet plus ET
miss 50,35 75,55 0.8 18

Total Rate 55 500

Table 3.6: Trigger threshold and rates of L1 trigger and EF trigger in ATLAS. The event
rates corresponding peak luminosity 3× 1033cm−2s−1 [10].

L2 trigger, which is software-based, requires all the available data that associate to RoIs

(about 2% of the total event data) from the ROBs. It uses full-granularity information from

all detectors and refines the selection of candidate objects. The events rates can be reduced

to below 3.5 kHz with the L2 trigger selection in about 10 ms.

Those events selected by the L2 trigger are then transferred to the event-building system

and subsequently to the event filter for final selection. The EF trigger has access to the

full event data and uses offline reconstruction algorithms and tools. Event selection and

classification will be done within a few seconds by EF trigger, giving a further reduction of

event to ∼ 200Hz. Table 3.6 shows the main trigger objects and their threshold used in 2011

ATLAS data taking, as well as the corresponding event rate after L1 and EF trigger [9].

Events selected by the event filter are moved to permanent storage at the CERN com-

puter center. The system that receives, transfers and stores data between the three levels of

trigger is called data acquisition system (DAQ). In addition, it provides the configuration,
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control and monitoring of the hardware and software components during the data taking.

While another important component of the ATLAS detector is the Detector Control Sys-

tem (DCS), which supervises and controls the ATLAS detector hardware like power-supply

voltages, gas and cooling systems, magnetic field, temperatures, and humidity to ensure a

safe operation.
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3.3 Objects Reconstruction in ATLAS

The stored data after trigger are called RAW data. They contain the information from

all sub-detectors in ATLAS. The RAW data are further processed by offline reconstruction

algorithms and tools to reconstruct the physics objects such as tracks, electrons, muons,

jets and missing transverse energy, which could be used in physics analyses. This recon-

struction procedure is done based on a software framework called Athena. In this section,

the reconstruction and subsequential identification of electrons, muons, jets and transverse

missing energy are described in details.

3.3.1 Electrons

The information from calorimeters and inner detector are used to reconstruct and identify

electrons. The performance of electron reconstruction and identification is essential to

physic analysis since electrons contribute as final state particles to many SM and new

physic processes.

Reconstruction

The reconstruction of central electrons |η| < 2.47 uses the information from both the EM

calorimeter and the inner detector. In general, there are four steps [87] [11],

• First step is searching seed clusters. Sliding-window algorithm is used to search the

seed clusters of longitudinal towers with total transverse energy above 2.5 GeV. The

window size is 3× 5 in units of 0.025× 0.025 in η × φ space.

• Second, the best track which can be associated to the seed cluster is found. The tracks

are reconstructed by extrapolating their last measurement point to the middle layer of

the calorimeter. They are then associated with the seed cluster if the distance between

the track impact point and the cluster position satisfies ∆η < 0.05. An electron is

reconstructed if at least one track is matched to the seed cluster. In case of more

than one track associated with the seed cluster, the track with silicon hits and with

smallest ∆R =
√

∆η2 + ∆φ2 is chosen as the best track .
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• Third, the cluster energy is determined. The electron cluster is rebuilt using 3 × 7

(5 × 5) longitudinal towers of cells in the barrel (end-caps) to take into account the

different overall energy in the barrel and end-cap calorimeters. Then the cluster energy

is determined [88] by summing four different contributions: (1) the estimated energy

deposit in the material in front of the EM calorimeter, (2) the measured energy deposit

in the cluster, (3) the estimated external energy deposit outside the cluster, and (4)

the estimated energy deposit beyond the EM calorimeter.

• Finally, the four-momentums of central electrons are calculated. The energy is the

cluster energy Ecluster, the η and φ are the parameters ηtrack and φtrack of the best

track at the vertex, the transverse momentum pT is calculated as pT = Ecluster/cosh(ηtrack).

In the front region, 2.5 < |η| < 4.9, the electron candidates are reconstructed only from

energy deposits in the calorimeters. It will not be introduced in detail since only the central

electron is used in this analysis.

Identification

The identification of the electron uses selections on the calorimeter, tracking information

and some combined variables [11]. There are three kind of selections, the loose, medium

and tight selections, to identify electrons with different background rejection powers,

rejection =
1

electron fake rate
. (3.4)

The loose selection uses the shower shape variables of the EM calorimeter as well as the

hadronic leakage variables. The medium selection includes loose selection and adds require-

ments on the variables from the EM calorimeter strip layer, track quality and track-cluster

matching. Based on the medium selection, more variables from track-cluster matching,

track quality, TRT hits and conversion requirements are added to tight selection. The de-

tailed definitions of all variables used in the three level selections are shown in Figure 3.11.

The cuts used on these variables are determined and optimized to have an expected jet

rejection of 500, 5000 and 50000 for the loose, medium and tight selections respectively.
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Figure 3.11: Definition of the variables used in the loose, medium and tight electron selec-
tion [11].



51

3.3.2 Muons

In ATLAS detector, a produced muon hits in the Inner Detector (ID), passes through

the electromagnetic and hadronic calorimeters, and finally reaches the Muon Spectrometer

(MS). Its track is deflected by the magnet system. Muon track reconstruction is performed

independently in the ID and MS, while its momentum can be obtained by combining infor-

mation from the ID, calorimeters and MS.

Reconstruction of Muid Muons

The muon reconstruction chain is called ”muid” and contains four different algorithms [89]:

• The Standalone algorithm extrapolates the MS track back to the beam line to deter-

mine the direction of flight and the impact parameter of the muon at the interaction

point. The muon momentum is measured in MS and corrected by taking into account

the energy loss of the muon in the calorimeter.

• The Combined algorithm creates a muon by combining an ID track with a MS track

using a global fit of the two tracks.

• The MuGirl algorithm identifies an ID track as a muon if the track extrapolated to

the MS can be associated with track segments in the muon chambers. The muon

momentum and position are taken from the ID track parameters.

• The MuTagIMO algorithm extrapolates ID tracks to the MS and searches for segments

defined by another muon reconstruction algorithm, the Moore algorithm [90]. The

MuTagIMO algorithm performs tagging in all three layers (Inner-Middle-Outer) of

muon chambers.

Then the results of the four algorithms are merged to reconstruct muid muons, following

procedures below:

• All Combined muons are added.
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• MuGirl muons that have a combined track are added if they do not share the ID track

with one of the Combined muons.

• MuTagIMO muons are added if they do not share the ID track with one of the Com-

bined muons and there is no hit overlap between the segments of the MuTagIMO

muon and the MS hits of a combined or a Standalone muon.

• MuGirl muons without a combined track are added if they satisfy the same criteria

as used for MuTagIMO muons.

• Standalone muons are added if they are not already part of a Combined muon and if

there is no MS hit overlap with the added MuGirl or MuTagIMO muons.

Identification

Some selections are applied on the reconstructed muons to identify muons with different

qualities. There are three levels of selections, corresponding tight, medium and loosemuons.

• loose muons: Medium muons and all MuTagIMO muons in muid muons.

• medium muons: Tight muons plus all Standalone muons in muid muons.

• tight muons: all Combined and MuGirl muons in muid muons that have a successful

combined fit.

3.3.3 Jets

Due to the QCD confinement (See Section 2.2.2), the colour-charged quarks and gluons

produced by the collision at the LHC will fragment into a spray of hadrons before they can

be directly detected, becoming jets. The kinematic properties of the jet reflect pretty well the

initial properties of the quarks or gluons. In ATLAS detector, a jet creates electromagnetic

and hadronic showers in the calorimeter. These showers are measured in calorimeter clusters,

which are groups of calorimeter cells. These calorimeter clusters are used by the jet finding

algorithms to reconstruct the jet objects. The jets used in this thesis are reconstructed
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by the anti-kT algorithm [91] with a distance parameter 0.4, using topological calorimeter

clusters (topo-clusters) as input for the jet finding. In ATLAS nomenclature such jets are

termed AntiKt4TopoJets. Below the formation of the topological calorimeter clusters and

the jet reconstruction using the anti-kT algorithm are introduced.

Topological calorimeter clusters

Topological clusters are groups of calorimeter cells that are designed to follow the shower

development [92]. The topocluster formation algorithm starts from a seed cell, whose sig-

nal/noise ratio (S/N) is above a threshold S/N > 4. The noise is estimated as the absolute

value of the energy deposited in the calorimeter cell divided by the Root Mean Square

(RMS) of the energy distribution measured in events triggered at random bunch crossings.

Cells neighboring the seed cell are included iteratively if they have a signal-to-noise ratio

S/N ≥ 2. A topological calorimeter cluster is formed by including all calorimeter cells

satisfying the requirement.

A topo-cluster is defined to have zero mass. Its energy equals to the energy sum of all

the included calorimeter cells. Its direction is calculated from the weighted averages of the

η and φ of the constituent cell.

The anti-kT algorithm

The topological calorimeter clusters defined above are used as ”objects” in the anti-kT jet

finding algorithm, which recombines the objects sequentially to be jets [91]. The anti-kT

algorithm uses di defined by the squared transverse momentum of a i object di = 1
p2T,i

, and

dij defined by the relative squared transverse momentum of a pair of objects i, j,

dij = min(
1

p2
T,i

,
1

p2
T,j

)
∆R2

ij

R2
. (3.5)

Here R is the distance parameter which represents a cone size. It can be set to 0.4 or

0.6. ∆Rij which has been introduced in Section 3.2 is the distance between two objects

i and j. dmin is the minimum value between di and dij . If dmin is di, the object i is

considered as a jet and is removed from the object list. If dmin is dij , object i and j are

merged to a new object k. i and j are removed from the object list and k is added in for
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sequential identification. The object list will change and the object values will update with

the identification procedure going on until there is no object left.

Jet Quality

Some reconstructed jets are not originated from hard scattering events. They could come

from the beam-gas events, cosmic rays and large calorimeter noise. Such jets are tagged

as “bad” jets using selections on the energy fractions in the electromagnetic and hadronic

endcap calorimeters, the pulse signal shape from the calorimeter cell, the jet time comparing

to beam collision, as well as the track information. Another category of jets are “ugly”

jets, which are the jets recontracted in problematic calorimeter regions that are not well

measured. A jet not “bad” neither “ugly” is classified as “good” jets, which will be used in

the physics analysis.

3.3.4 B-jet

B-jet identification, also called b-tagging, is important for top-quark studies since one of

the top-quark decay products is a b quark. In top-quark analysis, distinguishing the b jets

from other jets would help to reduce the background processes which have few b jets. This

is done by b-tagging algorithms which explore the unique properties of b quark and its

hadronization [93]. The b-hadron from b-quark hadronization remains about 70% of the

original b-quark momentum and it has a relatively large mass above 5 GeV. These make the

decay products of the b hadron having large transverse momentums and a large opening

angle. In addition, the b hadron travels with a relatively long distance before decaying

due to its relatively long life time, making the primary vertex of the b-quark hadronization

distinct from the secondary vertex of b-hadron decay. As a result, the distances between

b-jet tracks and the b-jets primary vertex are larger than the ones between light-jet tracks

and a light-jet primary vertex. Such distance is characterized by the impact parameters (IP)

of a track, including the transverse impact parameter d0 and longitudinal impact parameter

z0. d0 is the distance of closest approach of the track to the primary vertex point in x-y

plane while z0 is the z coordinate of the track at the point of closest approach. Also the
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decay length between primary vertex and secondary vertex is larger for a b jet than a light

jet. Furthermore, the b-hadron decay topology such as large charged decay multiplicity and

leptonic decay products can be used for b-jet identification.

B-tagging Algorithm

Many b-tagging algorithms have been developed in ATLAS, such as the impact parameter-

based algorithms JetProb, IP1D, IP3D [94], the secondary vertex-based algorithms SV0,

SV1 [93], and the algorithm using topology of b-hadron decay such as JetFitter [95]. In this

analysis one combined b-tagging algorithm is used, named JetFitterCombNN tagger [13],

which is the combination of JetFitter algorithm and IP3D algorithm based on artificial

neural network techniques.

The JetFitter algorithm exploits the topology of weak b- and c-hadrons decays inside

the jet, such as number of vertices, number of the tracks associated to the vertex, invariant

mass of decayed charged particle tracks, energies information of decayed charged particle

and flight length significance. A likelihood function containing probability density functions

of condensed term for different jets flavours is build as the discrimination between b, c and

light jets.

Lb,c,l =
∑

(coeff)PDF (mass)PDF (energy)PDF (significance) (3.6)

where coeff represents how probable it is to find a certain topology for a given flavour. The

details about this algorithm can be found in reference [95].

The IP3D algorithms uses transverse and longitudinal impact parameter significance,

Sd0 = d0/σd0 , Sz0 = z0/σz0 , where σ is their resolution. The measured Si (i = d0, z0)

is compared to pre-defined smoothed and normalized distributions for both the b-jet and

light jet hypotheses, b(Si) and l(Si), obtained initially from Monte Carlo. Two sets of two-

dimensional probability density functions are constructed for each track, the probability

from a b-jet Pb(Sd0 , Sz0) and the probability from a light jet Pl(Sd0 , Sz0). The weight of a

i track in a jet is defined by the ratio,

wi = Pb(Sd0 , Sz0)/Pl(Sd0 , Sz0). (3.7)
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The weight of the jet is used as the discriminant variable for b-jet identification,

wjet =
∑
Ntrack

lnwi. (3.8)

A b-jet is identified by applying the selection on the weight of the jets. An example of

the JetFitterCombNN weight distribution for different flavour jets is show in Figure 3.12

(a).

(a) (b)

Figure 3.12: (a) The normalized JetFitterCombNN weight distribution for different jet
flavour [12]. (b) Light-jet rejection as a function of the b-jet tagging efficiency, based on tt̄
simulated events [13]

.

B-tagging Efficiency and Light Jet Rejection

The performance of the b-tagging algorithm is characterized by the b-tagging efficiency and

the light jet rejection power. The b-tagging efficiency is defined by,

εb-tagging =
Nb tagged

Nb total
, (3.9)
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where Nb tagged is the number of b jets identified by the b-tagging algorithm, and Nb total

denotes the total number of b jets. The light jet rejection power is given by,

rejection =
1

εl-tagging
, with εl-tagging =

Nl tagged

Nl total
. (3.10)

Here Nl tagged is the number of light jets passed by the b-tagging selection, and Nl total is

the total number of light jets. Figure 3.12 (b) shows a comparison of the performance of

different tagging algorithms, obtained from Monte Carlo simulated tt̄ samples.

The b-tagging efficiency and light jet rejection can be estimated from data using data-

driven methods. Two most popular methods used to measure b-tagging efficiency are the

prelT method and the System8 method [13], while for light jet rejection measurement the

negative weight method and the sv0mass method are used [12]. More information about

these measurements can be found in the references [13, 12].

3.3.5 Missing Transverse Energy

The missing transverse energy (Emiss
T ) is a measure of the momentum of the escaping neutri-

nos. It also includes corrections for energy losses due to detector inefficiencies and resolution

that lead to the mis-measurement of the true ET of the final interacting objects. In this

analysis, the Emiss
T is reconstructed by the Cell-based algorithm, including contributions from

transverse energy deposits in the calorimeters, corrections for energy loss in the cryostat

and measured muons [96]:

Emissx(y) = Emiss,calox(y) + Emiss,cryox(y) + Emiss,muonx(y) . (3.11)

The x and y components of the calorimeter Emiss,calox(y) term are calculated from the transverse

energies measured in the calorimeter cells (TopoCells) that belong to the reconstructed topo-

cluster,

Emiss,calox(y) = −
∑

TopoCells

Ex(y). (3.12)

The Emiss,muonx(y) muon term is calculated from the momenta of muons that are reconstructed

in the muon spectrometer with a matched track in the inner detector,

Emiss,muonx(y) = −
∑

Muons

Ex(y). (3.13)
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The Emiss,cryox(y) reconstruction recovers this loss of energy in the cryostat using the correlation

of energies between the last layer of the liquid argon calorimeter and the first layer of the

hadronic calorimeter, as well as the correction for the end-cap cryostats.

The Emiss
T is then obtained,

Emiss
T =

√
(Emissx )2 + (Emissy )2 (3.14)

Emiss
T is further refined by applying object level corrections for the contributions which

arise from identified electrons, muons and jets.
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3.4 Luminosity Measurement

An accurate measurement of the delivered luminosity is a key component of the ATLAS

physics program [14]. The luminosity is essential to evaluate the background levels in the

cross section measurements of Standard Model processes and in the searching of new physics.

The uncertainties of the luminosity measurement constitute as one source of the systematics

in these measurements and determines the sensitivity to new physics signatures. In ATLAS,

the luminosity is measured independently using several detectors and multiple algorithms,

each having different acceptance, response to pile-up (multiple pp interactions within the

same bunch crossing), and sensitivity to backgrounds. The measured luminosity are then

calibrated by beam separation scans, also called van der Meer (vdM) scans. This section

briefly introduces the luminosity measurement and calibration in ATLAS, while more details

about the procedure can be found in reference [14] [97].

The luminosity of a proton-proton collier can be given by,

L =
µnbf

σinel
(3.15)

where µ is the average number of inelastic interactions per bunch crossing (BC), nb is the

number of bunch pairs colliding at the interaction point (IP), f is the LHC revolution

frequency, and σinel is the total inelastic proton-proton collision cross section.

ATLAS monitors the delivered luminosity by measuring a visible number of interac-

tions per BC, denoted by µvis, using a variety of detectors and different algorithms. The

luminosity can then be expressed as

L =
µvisnbf

σvis
, (3.16)

where σvis = εσinel is the visible cross section, obtained by the predicted total inelastic

cross section σinel times the efficiency ε of a particular detector and algorithm from Monte

Carlo simulation. The measured luminosity is calibrated by vdM -scan technique, which

determines σvis without a priori knowledge of the inelastic pp cross section or of detector

efficiencies.
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3.4.1 Measurement of µvis

There are two primary detectors used to measure µvis bunch-by-bunch: LUCID (LUminosity

measurement using a Cerenkov Integrating Detector) [98] and BCM (Beam Condition Mon-

itoring) [99]. LUCID consists of two gas Cerenkov detectors that surround the beampipe

on each side of the IP. The BCM detector has four diamond detectors arranged around

the beampipe on each side of the IP, which are split into two horizontal and two vertical

detectors called BCMH and BCMV. Both LUCID and BCM record signals of interactions

for each BC with a preset threshold. EventOR and EventAND algorithms use these signals

to determine the µvis.

During a given time, the total number of BCs is NBC . The BCs with at least one signal

are counted to NOR. The µvis is given by the EventOR algorithm,

µORvis = −ln(1− NOR

NBC
) (3.17)

In the case of EventAND algorithm, a BC is counted in NAND if there is at least one signal

on both sides of the IP. µvis is determined by

NAND

NBC
= 1− 2e−(1+σ

visOR/σvisAND )µAND
vis /2 + e−(σ

visOR/σvisAND )µAND
vis (3.18)

where σvisOR and σvisAND are corresponding visible cross sections.

The BCMH and BCMV are read out separately, leading to different luminosity mea-

surements. In addition, the Forward Calorimeter (FCal) and the Hadronic Tile Calorimeter

(Tile) of ATLAS detector are also used to measure the luminosity by monitoring the currents

drawn in the different parts of the detector due to inelastic collisions. A comparison of the

average number of interactions per bunch crossing < µ > measured by different detectors

and algorithms is shown in Figure 3.13. More information about additional detectors and

algorithms used for the luminosity measurement can be found in reference [97].

3.4.2 Calibration of σvis

The calibration of σvis is performed using dedicated vdM scans where the LHC machine

parameters can be directly measured. Comparing to normal physics operations, the beam
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Figure 3.13: Fractional deviation in < µ > measured by different detectors and algorithms
with respect to the one measured by EventOR algorithm using BCMH detector. Statistical
uncertainties per point are negligible [14].

conditions during the dedicated vdM scans are with fewer bunches colliding, no bunch

trains, and lower bunch intensities. Table 3.7 shows a summary of the main characteristics

of the May 2011 vdM scans (numbered VII and VIII) used for the luminosity calibration.

As introduced in Section 3.1, the luminosity inferred from measured accelerator param-

eters is given by

L = fr
nbn1n2

2πΣxΣy
. (3.19)

where n1 and n2 are the numbers of protons per bunch in beam 1 and beam 2 respectively,

together forming the bunch charge product. Σx and Σy characterize the horizontal and

vertical profiles of the colliding beams. Comparing Equation 3.16 and Equation 3.19, the

σvis can be determined from the peak luminosity with the peak interaction rate µMAX
vis

observed by a given detector and algorithm during the vdM scan,

σvis = µMAX
vis

2πΣxΣy

n1n2
. (3.20)

In a vdM scan, the beams are separated by steps of a known distance which allows a direct
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vdMScan VII-VIII

15 May, 2011

Scan Directions 2 sets of horizontal plus vertical scans

Total Scan Steps per Plane 25

Scan Duration per Step 20s

Number of bunches colliding in ATLAS 14

Total number of bunches per beam 38

Number of protons per bunch ∼ 0.8× 1011

β∗ ∼ 1.5m

Normalized Transverse Emittance ∼ 40µm

Typical luminosity/bunch 0.38µb−1/s

µ (interactions/crossing) 2.3

Table 3.7: Summary of the main characteristics of the 2011 vdM scans performed at the
ATLAS interaction point [14]. The values of luminosity/bunch and µ are given for zero
beam separation.
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measurement of Σx and Σy. The bunch charge product n1 and n2 can be measured by

eight Bunch Current Transformers (BCTs) in multi-step process. Since the beam sizes and

the bunch charge product can vary bunch-to-bunch, their measurements must be performed

independently for each BC.

3.4.3 Total Luminosity Uncertainty

The total uncertainty in the measurement of the luminosity by ATLAS in 2011 consists

of four main components, the uncertainty of µ determination, the σvis calibration uncer-

tainty from vdM scans, the long-term stability of the detector and the corrections due to

background effects. As a summary, a total relative uncertainty of 3.7% is found. Table 3.8

lists the contributions of different sources to the total systematic uncertainty on luminosity

measurement.

Uncertainty Source δL/L

µ Dependence 1.0%

vdM Scan Calibration 3.4%

Long-term consistency 1.0%

Background Correction 0.2%

Total 3.7%

Table 3.8: Relative uncertainty on the luminosity measurement in 2011, broken down by
source [14].
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3.5 ATLAS Data Distribution and Data Quality

The ATLAS distributed computing system consists of three classes, named as Tier-0, Tier-1

and Tier-2 [100]. The recorded raw data acquired with the ATLAS detector are stored into

tape immediately at the Tier-0. In addition, the replica of data files are sent to 10 Tier-1

centers to be stored on tape, ensuring a long-term protection against a possible data loss.

The objects reconstruction is carried out at the Tier-0, producing Event Summary Data

(ESD) for the detector and reconstruction studies. ESD and the derived smaller Analysis

Object Data (AOD) files are distributed to Tier-1 and Tier-2 centers for further analysis.

During 2011, ATLAS has recorded 5.6fb−1 data of pp collisions, with a peak luminosity

of 3.6× 1033cm−2s−1. With the availability of collision data, it is essential for everyone to

understand what datasets are good for physics analysis. The data quality (DQ) is deter-

mined by assessing the LHC status, the operational conditions of hardware and software

elements of the detector, the trigger quality, the monitoring of the data acquisition systems,

and some complex analysis of physics quantities on data reconstruction. Data quality de-

cisions are made and recorded using green, yellow, and red flags corresponding to good,

caution and bad data quality, supplemented by grey (unknown - usually due to insufficient

statistics) and black (subsystem off) [101]. Final data quality flags are derived after full

reconstruction, with experts converging on the “green” and “red” states. Figure 3.14 shows

the fractions of good data from each components of the ATLAS [15]. In 2011 ATLAS data-

taking, approximately 90% of the 5.6fb−1 of delivered luminosity is available for physics

analysis.

ATLAS data-taking is divided into runs and luminosity blocks (LB). The luminosity

blocks are discrete periods of time (∼ 2 minutes) over which detector conditions are assumed

to be constant. The runs and luminosity blocks with “green” data quality finally form the

GoodRunList (GRL) to be used by each analysis group to select the good data from all

recorded data.
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Figure 3.14: Luminosity weighted relative detector uptime and good quality data delivery
during 2011 stable beams in pp collisions at

√
s = 7 TeV between March 13th and October

30th (in %), after the summer 2011 reprocessing campaign [15].
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Chapter 4

PHENOMENOLOGY, SIMULATION AND DATA

With large amount of data collected by the ATLAS detector, the precise cross section

measurements of single top-quark production processes are expected. For this purpose, a

good understanding of the phenomenology of signal and background processes is necessary.

The first part of this chapter discusses the kinematical properties of the signal and of other

processes that could produce a similar signature. The second part describes the Monte-Carlo

generations used to determine the event selection acceptance and to model the kinematics

of signal and background events. In addition, the information concerning the data used in

this analysis are introduced in the final part of this chapter.
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4.1 Phenomenology

The knowledge of the properties of single top-quark events and of all contributing back-

ground is essential to define events selection criteria to enhance the signal purity and reduce

the level of backgrounds. This section describes the final states of the t-channel single

top-quark events and of the possible background processes.

4.1.1 Single top-quark Production

An illustration of single top quark t-channel production is shown in Figure 4.1. In W -

gluon fusion process (qg → q′tb̄), the produced top quark decays to a W boson, which can

then decay leptonically to an electron, a muon or a tau, and the associated neutrino. In

this channel the signal signature for a single top-quark consists of a charged lepton and a

neutrino from the W decay, a b-quark from the top-quark decay, a light quark produced in

the forward direction and a second b-quark coming from initial state gluon splitting. At the

detector level this decay products result in a signature consisting of a lepton, at least two jets

in which one is a b-jet and large transverse missing energy (Emiss
T ) due to the undetected

neutrino in the detector. The light quark in this channel often recoils softly against the

quark top and ends up in the forward region of the detector. It is an important feature

of t-channel single top-quark process to distinguish it from background processes. On the

other hand, the b-jet from gluon splitting is produced collinearly to the beam direction and

in general escapes detector identification.

The W boson in single top-quark production could also decay hadronically to quark-

antiquark pair. This kind of process is difficult to be distinguished from QCD-multijet

events. For this reason the leptonic decay which leads to lepton+jets final state and provides

the cleanest event signature is used to perform cross section measurement in this analysis.

According to the W boson decaying to a electron or a muon, the leptonic process can

be further divided into electron channel and muon channel. The W → τν decay with a

subsequent decay of the τ lepton to eνeντ and µνµντ are also accounted in the electron

channel and muon channel respectively.

The single top-quark s-channel process consists of two b jets in the final states. The
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W t-channel single top-quark production has one associated W bosons and one W boson

from top quark decay, resulting two leptons in the final states. These two processes are not

expected to constitute large backgrounds due to their different final state signatures and

lower production cross sections.

The cross sections of single top-quark production at NLO with NNLL corrections are

listed in Table 4.1.

Figure 4.1: Signature of single top-quark t-channel production [16].

t-channel 64.57 + 2.71 - 2.01 pb

s-channel 4.63 + 0.19 - 0.17 pb

Wt 15.74 + 1.06 - 1.08 pb

Table 4.1: cross-sections of single top-quark production for mt = 172.5 GeV/c2 at NLO
with NNLL corrections [52, 53, 20].
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Figure 4.2: An illustration of top-quark pair semi-leptonic decay [17].

4.1.2 Top-quark Pair Background

Top-quark pair production constitutes an important background to single top-quark events.

As shown in Figure 4.2, the two top quarks produced decay into two W bosons and two b

quarks. The two W bosons can then decay leptonically or hadronically. Two modes of top-

quark pair production contribute as the backgrounds to single top events, the semi-leptonic

mode where one W boson decays into a lepton-neutrino pair and the other W boson decays

into a quark-antiquark pair, and the dileptonic mode where both W bosons decay into

lepton-neutrino pairs. The semi-leptonic mode of tt̄ events have one lepton, four jets (two

b-jets) and large missing energy. It contributes to the background of single top events if

only two of the four jets are identified. Dileptonic tt̄ events have two high pT leptons, two

b-jets and missing energy due to the neutrinos. It may mimic the t-channel single top-quark

production final-state signature if one of the leptons is not identified.

At the LHC the total top-quark pair production cross-section is σ(tt̄) = 164.6 pb [42],

about two times larger than the total single top-quark cross-section. The branching ratio of

semi-leptonic mode is about 30% while the dileptonic mode has low branching ratio of 5%.
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Figure 4.3: Feynman diagram of top-quark pair semi-leptonic decay [17].

4.1.3 W+jets, Z+jets, Diboson Backgrounds

Beside top-quark decay, W bosons can also be produced in many different ways in proton-

proton collisions at the LHC. The Feynman diagram of an example W production from

quark-antiquark annihilation is shown in Figure 4.3 (a). The W boson is produced in

association with quarks, which could have same final states of single top-quark production.

The associated quark can be light quark (u,d,s), b quark or c quark. This kind of production

lead to W+jets events in data, which constitute a main source of background due to its

cross-section several orders of magnitude above that of single top-quark production.

Figure 4.3 (b) shows an example of Z+jets production. If one of the two leptons from Z

boson decay is not identified this process has a similar signature as single top-quark produc-

tion, which makes Z+jets events another source of background. The Z+jets background is

expected to be sizably smaller than W+jets background.

WW , WZ, and ZZ diboson events where at least one of the bosons decays leptonically

constitute a small background to the single top-quark signal events. These events are

also collectively called diboson backgrounds. An example of such background is shown in

Figure 4.3 (c).
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4.1.4 QCD Multijet Background

The QCD process has a huge cross section in LHC and manifests itself in multiple jets

final states. These multijet events contribute to a background of single top-quark events

if one jet is misidentified as an isolated lepton or a real non prompt leptons (coming from

b/c-quark semileptonic decay for example) that appears isolated. Thus one key point to

reduce QCD multijet background rests on the low lepton misidentification efficiency and

good isolation between leptons and jets. In single top-quark study, some specific isolation

criteria (see Section 5.1) are explored to make sure the strong rejection power of the QCD

multijet background. In addition, the lack of W boson and its decay products neutrino in

multijets events could be used to distinguish it from single top-quark production.
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4.2 Monte Carlo Simulation

The event features of single top-quark t-channel production and its backgrounds can be

simulated by Monte Carlo (MC) method. MC simulations of signal and background events

are used to estimate the signal efficiency and background rates in data after certain selec-

tions. They are also used to model the distributions of kinematic variables in the events.

The Monte Carlo simulation of a physics process starts from the generation of the physic

process according to a theoretical model, then proceeds with full detector simulation where

the interactions between physic process particles and the detector materials are simulated

by a software toolkit called Geant4 [102]. After detector simulation, the MC raw data are

produced, which are finally subjected to the same reconstruction and reprocessing as real

raw data as introduced in Section 3.3 and Section 3.5.

Event generator are used for the generation of a physic process, producing events with

the kinematics predicted by the theory. The parton distribution functions (PDFs) used in

the event generator, describing the probability density for finding a parton inside the hadron,

are derived from experimental data [103]. The leading order (LO) calculation of the cross

section is based on hard process, while the radiation of extra particles and the hadronization

effects require higher-order corrections. For this reason, the Leading Order (LO) matrix

element generator such as AcerMC [104] and ALPGEN [105] and Next-to-Leading-Order

(NLO) generator such as MC@NLO [106] and Powheg [107, 108] are normally interfaced

with showering and hadronization generator such as Herwig [109] and Pythia [110] for

event generation. The Jimmy generator [111] is also used with Herwig to model multiple

interactions.

This section introduces the generators used for the Monte Carlo simulations of the single

top-quark production and its backgrounds, as well as the corresponding cross sections. K-

factors are used to correct the generator cross section to the theoretical calculation (NLO

or NNLL or approximate NNLO, depending of the available calculation).

The QCD multijet process is difficult to model with MC due to its large theoretical cross

section uncertainties. This process is modeled using side-band regions in the data, which

will be introduced in following section.
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4.2.1 Single Top-quark MC samples

The single top-quark production samples have been generated using the AcerMC generator

coupled to Pythia for hadronization. The ISR/FSR samples are generated by varying the

parameters controlling the initial state radiation (ISR) and final state radiation (FSR) by

a factor of two up and down, to estimate the uncertainties in ISR/FSR modeling. The

cross sections of subprocesses and k-factors of single top-quark production are summarized

in Table 4.2.

σ [pb] k-factor Generator

t-channel (e+jets) 6.94 1.0 ACERMC+Pythia

t-channel (µ+jets) 6.83 1.0 ACERMC+Pythia

t-channel (τ+jets) 7.26 1.0 ACERMC+Pythia

s-channel (e+jets) 0.498 1.0 ACERMC+Pythia

s-channel (µ+jets) 0.489 1.0 ACERMC+Pythia

s-channel (τ+jets) 0.521 1.0 ACERMC+Pythia

W + t-channel all decays 15.74 1.0 ACERMC+Pythia

t-channel (e) ISR/FSR up/down 6.94 1.0 ACERMC+Pythia

t-channel (µ) ISR/FSR up/down 6.83 1.0 ACERMC+Pythia

t-channel (τ) ISR/FSR up/down 7.26 1.0 ACERMC+Pythia

s-channel (e) ISR/FSR up/down 0.498 1.0 ACERMC+Pythia

s-channel (µ) ISR/FSR up/down 0.489 1.0 ACERMC+Pythia

s-channel (τ) ISR/FSR up/down 0.521 1.0 ACERMC+Pythia

W + t-channel ISR/FSR up/down 15.74 1.0 ACERMC+Pythia

Table 4.2: Single top-quark event Monte Carlo samples used for the analyses.The single-top
processes already include the correction to approximate NNLO in the cross-section column.
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4.2.2 Top-quark pair MC samples

Top-quark pair events have been generated using MC@NLO 3.41 coupled to Herwig with

Jimmy for hadronization, with the NLO parton density function CTEQ6.6, and a scale

choice of µR = µF = mt. For systematic studies, the Powheg generator was used, and

interfaced to both Herwig and Pythia for hadronization modeling studies. Initial and

Final State Radiation (ISR/FSR) effects on the acceptance have been studied with the

AcerMC generator interfaced with Pythia for the hadronization. The associated cross-

sections of the MC samples of top-quark pair production are summarized in Table 4.3.

σ [pb] k-factor Generator

tt̄ no fully hadronic 80.1 1.12 MC@NLO+Herwig

tt̄ no fully hadronic 79.117 1.13 POWHEG+Herwig

tt̄ no fully hadronic 79.117 1.13 POWHEG+Pythia

tt̄ no fully hadronic ISR/FSR up/down 58.23 1.53 ACERMC+Pythia

Table 4.3: Top-quark event Monte Carlo samples used for the analysis. The single top-quark
processes already include the correction to approximate NNLO in the cross-section column.

4.2.3 W+jets, Z+jets and Diboson MC samples

The Alpgen generator along with the Herwig parton shower algorithm was used for the

generation of inclusive W+jets events. According to the jet flavour, W+jets event can

be separated in W+light jet process, Wbb̄ process, Wcc̄ process and W c process. Each

of these process consists of several sub-processes with different numbers of partons in the

final states. The cross sections differ quite a bit between all these different processes as

shown in Table 4.4. These process are generated separately to have large enough statistics,

allowing proper studies on the processes with high parton multiplicities and with different

jet flavours.
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However, there is a double counting problem because the phase space can be populated

both by W+N partons events and W+(N-1) partons events with hard radiation from the

parton shower. The MLM matching scheme [112] is used to remove this double-counting by

vetoing some events from each sample.

Another problem is that the W+light jet sample may have contributions from Wbb,

W cc or W c processes. Similar flavour overlap situation may also exist in Wbb, W cc and

W c samples. A flavour overlap method is developed to deal with this problem. For every

event in all those processes, a variable ”HFOR”, containing the information of quark flavour

and heavy flavour multiplicity, is decided by matching the jets in the event with quarks in

truth level after parton showering using ∆R =
√

(∆η)2 + (∆φ)2. It is used to identify

the flavour of the event to be a W+light jet event or a Wbb event or a W cc event or a

W c event. All W+jets samples are combined and re-classified to W+light samples, Wbb

samples, W cc samples and W c samples by the variable ”HFOR”. In such way there is no

flavour overlap between these samples.

Z+jets samples were simulated using the leading order Alpgen generator, combined

with Herwig for the parton showering. Corresponding cross-sections are reported in Ta-

ble 4.5.

WW , WZ, and ZZ diboson processes were simulated using Herwig. Table 4.5 sum-

marizes the relevant information for the MC samples of the W+ jets, Z+ jets, and diboson

backgrounds used in this analysis.

4.3 Data

This analysis uses the data collected by the ATLAS detector between March and June in

2011 at the LHC with proton-proton collision at a center-of-mass energy of
√
s = 7 TeV.

The data are recorded base on single lepton triggers (see Section 3.2.5). The good runs list

as introduced in Section 3.5 is used to select the data with good quality. The final data size

after these selections are integrated luminosity of 1.04 ± 0.04 pb−1. The uncertainties on

the luminosity calculation is about 3.7%, which contributes one source of the systematics

in the cross section measurement in this thesis.
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Cross-section [pb] k-factor Generator

W → `ν + 0 parton 6,920 1.2 +Herwig

W → `ν + 1 partons 1,300 1.2 ALPGEN+Herwig

W → `ν + 2 partons 380 1.2 ALPGEN+Herwig

W → `ν + 3 partons 100 1.2 ALPGEN+Herwig

W → `ν + 4 partons 26 1.2 ALPGEN+Herwig

W → `ν + 5 partons 7 1.2 ALPGEN+Herwig

W → `ν + bb̄ + 0 parton 47 1.2 ALPGEN+Herwig

W → `ν + bb̄ + 1 partons 36 1.2 ALPGEN+Herwig

W → `ν + bb̄ + 2 partons 17 1.2 ALPGEN+Herwig

W → `ν + bb̄ + 3 partons 7 1.2 ALPGEN+Herwig

W → `ν + cc̄ + 0 parton 128 1.2 ALPGEN+Herwig

W → `ν + cc̄ + 1 partons 105 1.2 ALPGEN+Herwig

W → `ν + cc̄ + 2 partons 52 1.2 ALPGEN+Herwig

W → `ν + cc̄ + 3 partons 17 1.2 ALPGEN+Herwig

W → `ν + c + 0 parton 644 1.52 ALPGEN+Herwig

W → `ν + c + 1 partons 205 1.52 ALPGEN+Herwig

W → `ν + c + 2 partons 51 1.52 ALPGEN+Herwig

W → `ν + c + 3 partons 11 1.52 ALPGEN+Herwig

W → `ν + c + 4 partons 3 1.52 ALPGEN+Herwig

Table 4.4: Monte Carlo samples used for the presented analysis. The cross-section column
includes any K-factors and branching ratios.
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Cross-section [pb] k-factor Generator

Z → `` + 0 parton 668 1.25 ALPGEN+Herwig

Z → `` + 1 partons 134 1.25 ALPGEN+Herwig

Z → `` + 2 partons 41 1.25 ALPGEN+Herwig

Z → `` + 3 partons 11 1.25 ALPGEN+Herwig

Z → `` + 4 partons 2.9 1.25 ALPGEN+Herwig

Z → `` + 5 partons 0.8 1.25 ALPGEN+Herwig

WW 11.5 1.48 Herwig

WZ 3.46 1.60 Herwig

ZZ 0.97 1.30 Herwig

Table 4.5: Monte Carlo samples used for the presented analysis. The cross-section column
includes any K-factors and branching ratios.
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Chapter 5

EVENT PRE-SELECTION AND BACKGROUND ESTIMATION

Single top-quark t-channel cross section measurement starts with the pre-selection of the

data, which refers a set of selections established to select single top-quark t-channel signal

events. Same pre-selection is also used on Monte Carlo simulated samples (MC samples)

of single top-quark t-, s- and W t-channels, tt̄ process, W+jets process, Z+jets process and

diboson process. The data set after pre-selection is a mix of signal t-channel single top-

quark events and all backgrounds events. The QCD-multijets background contribution is

estimated using a binned likelihood fit to the side-band region of Emiss
T distribution in the

data, where the template of QCD process is obtained from data and the templates of all

the other processes are from their MC samples. The normalization of W+jets backgrounds,

including W+light jets process, Wbb process, W cc process and W c process, are derived

from data and its kinematic distributions are taken from the Monte Carlo simulated samples.

The contributions of tt̄ background, diboson background, single top-quark s-channel and

W t-channel process are estimated using their MC samples.

The pre-selection, established based on the knowledge of the phenomenology of t-channel

single top-quark production and its background processes, is described first in this chapter.

Then the estimation of QCD-multijets background and W+jets background are introduced

in detail. Finally the event yields of data and all Monte Carlo simulated samples after

pre-selection are listed.
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5.1 Object Selection

Based on the reconstructed objects as introduced in Section 3.3, additional selections are

applied according to the features of the objects in single top-quark t-channel production,

which are central lepton with high pT, high pT jets and the central b jet. High quality

leptons are required with additional isolation criteria to reduce mainly the QCD-multijet

background.

Electrons are selected with “Tight” quality and a pT > 25 GeV and |ηclus| < 2.47 (ηclus

denotes the electromagnetic cluster position). A veto is applied to electron candidates in the

region 1.37 < |ηclus| < 1.52 corresponding to the calorimeter barrel-endcap overlap region

with limited instrumentation. To reduce the backgrounds due to hadrons faking an electron

signature, electrons from heavy-flavour decays or photon conversions, the isolation criteria

of electrons are explored, which requires low calorimeter activity and few tracks within an

η-φ cone surrounding the electron. Calorimeter activity is gauged using Etcone30, the total

energy in an η − φ cone of 0.3 centered around the electron after the subtraction of the

energy associated with the electron itself. Track isolation is determined using Ptcone30,

which gives the scalar sum of pT for all tracks within a cone of 0.3 around the electron,

not including the pT of the electron itself. The calorimeter isolation requirement selects

electrons with Etcone30/pT < 0.15, while the track isolation demands Ptcone30/pT < 0.10.

Muons are required with “Tight” quality, pT > 25 GeV and the pseudo-rapidity region

of |η| < 2.5. Muons must also satisfy a set of requirements on track quality in the inner de-

tector [113]. The isolation criteria are applied in order to reduce background contamination

from leptonic decays of heavy flavour quarks resulting in a muon inside a jet. The transverse

energy within a cone of R = 0.3 about the muon direction, named Etcone30, is required

Etcone30/pT < 0.15. While the scalar sum of transverse momenta of additional tracks in-

side a R = 0.3 cone around the muon, named Ptcone30, must satisfy Ptcone30/pT < 0.10.

In addition, an overlap removal between jets and muons is applied, removing any muon

whose momentum direction is within a ∆R < 0.4 cone of a jet with pT > 20 GeV.

Jets are selected with pT > 25 GeV and |η| < 4.5. Jets overlapping with identified

electron candidates within a cone of ∆R < 0.2 are removed from the list of jets, as the jet
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and the electron are very likely to correspond the same physics object.

The b-tagging requires a JetFitterCombNN tagger weight above 2.40 which corresponds

to a b-tagging efficiency of 56% and a light quark jet rejection factor of 520 (the rejection

is defined in Section 3.3.4). The b-tagged jet is also required to have pT > 25 GeV and

|η| < 2.5.

5.2 Single Top-quark Event Pre-selection

Single top-quark event pre-selection includes event cleaning selections, selections to enhance

signal and selections specialized to reject the QCD background.

5.2.1 Event Cleaning Cuts

First, several common filters are used to reject the uninterested events. These are:

• Use only data in good runs list.

– This is used to select the data with good quality as mention in Section 3.5.

• Require no ”bad” jet of pT > 20 GeV in the event.

– “bad” jets are defined in Section 3.3.3. This is to filter out the background events

that are not originated from hard scattering process.

• Have at least one primary vertex reconstructed from at least 5 tracks

– This is used to reject events from non-collision background.

5.2.2 t-channel Event Selections

These selections are established based on the knowledge of the final states of single top-quark

t-channel production from Section 4.1.

• Exactly one selected electron or muon.

• Emiss
T > 25 GeV
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• Have two or three selected jets.

• Exactly one jet is a b-tagged jet.

2-jet samples are required to have exactly two jets in the events and 3-jet samples have

three jets in the events. In the following contexts of this thesis, the selections without

requiring 1 b-tagged jet are called pretag selection, and after 1 b-tagged jet requirement

are called b-tagged selection. The samples after corresponding selections are called pretag

samples and b-tagged samples. According to the lepton being a electron or a muon, the

samples can also be divided into electron channel events and muon channel events.

5.2.3 The QCD multijet veto

Fake electrons from QCD-multijet events tend to have low Emiss
T and low transverse W mass

relative to single top-quark events, hence a triangular cut using these variables is an effective

way to reduce this background. The cut applied is MT (W ) + Emiss
T > 60. The selection

efficiency of the triangular cut on the observed data events is 85% and on single top-quark

t-channel events is 95%.
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5.3 Corrections on Data and MC

There are several corrections need to be done during the analysis to correct the energy scale

in data and some mis-modeling effects in Monte Carlo simulation.

• The energy of electrons in data has to be scaled in order to center the Z peak to the Z

mass. In addition, the electron and muon energy MC resolution has to be smeared so

that MC describes the width of the data peak. Energy/momentum smearing as well

as energy scaling shifts should be propagated into the Emiss
T . These corrections need

to be done before any event selection and object selection. Associated uncertainties

should also be taken into account in the systematic studies.

• Due to the mis-modeling of detector and lepton reconstruction and identification ef-

fects in MC with respect to data, scale factors will be used to re-scale the acceptance

term entering the cross section measurement. This includes the electron and muon

trigger, identification and reconstruction scale factors

• The b-tagging algorithm performance is also calibrated with data. The scale factors

are derived to correct the b-tagging efficiency and mis-tag rate in Monte Carlo. These

scale factors are parameterized as a function of their relevant kinematic variables.

• Since Monte Carlo samples are produced before or during a given data taking period,

only a best-guess of the data pile-up conditions can be put into the Monte Carlo.

Thus, a pile-up re-weighting is done to the Monte Carlo samples at the analysis level

to re-weight the pile-up conditions in Monte Carlo simulation to what is found in the

data. This ensures same average interactions per bunch crossing in MC and in data.

• Finally, a luminosity-weighted scale factor is applied for Monte Carlo samples to take

into account a loss of acceptance region in the electromagnetic calorimeter and to

reproduce data conditions for concerned runs.
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5.4 QCD-multijet Background Estimation

Since the Monte Carlo can not model the QCD-multijet background precisely, this back-

ground contribution can only be estimated using data-driven techniques. For this purpose,

jet-electron samples are selected from data to model the kinematic distributions of QCD-

multijet background. Then the normalization of the QCD-multijet background is obtained

by performing a binned maximum likelihood fit to the Emiss
T distribution in the data, with

multijet templates from jet-electron samples and templates of other processes (single top-

quark process, tt̄ process, W/Z+jets processes and diboson process) from Monte Carlo

simulated sample [114]. In addition, a cross-check method named matrix method is briefly

introduced in the last part of this section.

5.4.1 Jet-electron Model

A QCD-multijet event that can pass the single top-quark t-channel pre-selection would have

one misidentified lepton in the event. The jet-electron method selects the samples from data

with each event having one jet-electron, which is used as an electron but is actually a jet that

has similar kinematics as an electron. The used data are selected by the jet trigger with a

threshold 20 GeV. The jet-electron in the event is required to have ET > 25 GeV, |η| < 2.47

and with the crack regions (1.37 < |η| < 1.52) removal as the electron selection. The jet-

electron must also contain at least four tracks, to reduce the contributions from photon

conversion. The fraction of the jet-electron energy that deposited in the electromagnetic

calorimeter has to be between 80% and 95%, which ensures orthogonality of the jet-electron

data set to the sample of events with electron candidates.

The jet-electron samples used to model the QCD-multijet background are required to

have one jet-electron in the event, no additional lepton candidates, and to pass all the other

selections in the pretag selection except the Emiss
T requirement.

5.4.2 Normalization of QCD-multijet Background

For both electron channel and muon channel, the Emiss
T distribution of the jet-electron

model is fitted to the Emiss
T distribution of data to obtain the fractions of the QCD-multijet
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background in the data. The fits are done separately on the pretag data sample and b-

tagged data sample to get the normalization of the QCD-multijet background in pretag

events and b-tagged events, while the same template of the QCD-multijet events that from

jet-electron pretag samples is used for both cases. The fitted Emiss
T distributions for the

electron and muon channel is shown in Figure 5.1 and Figure 5.2.

Figure 5.1: Emiss
T distribution for the 2-jet b-tag sample in the (a) electron and (b) muon

channel [18]. A binned likelihood fit is performed to determine the fraction of multijet
events in the sample. Events of tt̄ and single-top production have been regrouped under the
“Top” distribution. All processes are normalized to the fit values. The last histogram bin
is the sum of the events in that bin and higher.

A summary of the QCD-multijet background estimation is given in Table 5.1.

Pretag events Tagged events

Jet bin e channel µ channel e channel µ channel

1-jet 24000± 12000 12000± 6000 320± 160 290± 145

2-jet 15000± 7500 6800± 3400 710± 355 440± 220

3-jet 6000± 3000 1700± 850 580± 290 270± 135

Table 5.1: Summary of the QCD-multijet background in different jet bins of pretag and
tagged events in the electron+jets and muon+jets data sets using the final uncertainty.
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Figure 5.2: Emiss
T distribution for the 3-jet b-tag sample in the (a) electron and (b) muon

channel [18]. A binned likelihood fit is performed to determine the fraction of multijet
events in the sample. Events of tt̄ and single-top production have been regrouped under the
“Top” distribution. All processes are normalized to the fit values. The last histogram bin
is the sum of the events in that bin and higher.

To evaluate the systematic uncertainty for the QCD estimation, the jet-electron data

sample are divided into a high pile-up sample and a low pile-up sample based on the number

of primary vertices more than 6 or less than 6. The method was reapplied to both samples

to gauge the effect of pile-up on the procedure. The binned likelihood fit is also performed

in a less sensitive variable, the transverse W mass, as another cross check. As a result of

these studies a systematic uncertainty of 50% is assigned on the QCD-multijet rate.

5.4.3 Matrix Method Cross Check

In principle the jet-electron model should only be used to estimate the QCD-multijet back-

ground in electron channel. But it proves that the jet-electron model also fits well in the

muon channel, giving good agreement between expected and the observed distribution of

the kinematic variables [115]. Additionally, another approach, the matrix method, can be

used to cross check the QCD-multijet background estimation in electron and muon channels.

The matrix method applies the same pre-selection on the data except the lepton def-

inition. Two kind of leptons used in the pre-selection, named “loose” lepton and “tight”



87

lepton, are selected with different criteria. In the case of muon selection, the “tight” muon

is the selected muon as introduced in Section 5.1, while the “loose” muon is the “tight”

muon selection without the isolation requirements. Using these two kinds of muons in the

pre-selection, two data samples are selected, the loose data sample and the normal data

sample after pre-selection, here called the tight data sample. The number of selected loose

data sample N loose and the number of selected tight data sample N tight can be counted and

two equations are constructed as,

N loose = N loose
real +N loose

fake (5.1)

N tight = N tight
real +N tight

fake = εrealN
loose
real + εfakeN

loose
fake (5.2)

(5.3)

In this, the muons come from W or Z decay are called real muon and muons from other

sources are called the fake muon, which feature the muons in QCD-multijet events where the

muons are mainly from the semi-decay of a b-hadron. εreal is the real muon loose-to-tight

rate and εfake is the loose-to-tight rate of the fake muon. The εreal and εfake can be derived

from data and will be introduce later. N loose
real and N loose

fake are the two unknown values in the

equations that denote the number of event with a real muon and number of events with

a misidentified muon in the loose data sample. In the data sample after pre-selection, the

N tight
real is the number of events with real muon and N tight

fake is the estimation of QCD-multijet

events that can be expressed by,

N tight
fake =

εfake
εreal − εfake

(N looseεreal −N tight) (5.4)

The Z → µµ control sample is selected from data to derive the real muon loose-to-

tight rate εreal. The selections require two muons in the event with pT above 25 GeV and

different charges, the mass of the two muons satisfying 80.2 GeV < Mµµ < 100.2 GeV, the

Emiss
T in the event below 20 GeV and one in the two muons must be “tight“ muon (tagged

muon). The rate of the other muon (probed muon) to be tight is used as the real muon

loose-to-tight rate εreal. The overall real muon loose-to-tight rate obtained with early data

is close to 98%.
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An iteration method is explored to estimate εfake using data. In this method, the

loose data sample and tight data sample are selected as before but leave out the Emiss
T

requirement. The control samples are selected by requiring Emiss
T < 10 GeV to these loose

data sample and tight data sample. In this QCD-multijet enriched control sample, the fake

muon loose-to-tight rate can be approximately given by,

ε0
fake = (

N tight

N loose
)MET<10GeV (5.5)

Taking ε0
fake and εreal derived before into Equation 5.4, an approximated QCD-multijet

background estimation in the tight data sample in whole Emiss
T region can be obtained,

N tight 0
fake =

ε0
fake

εreal − ε0
fake

(N looseεreal −N tight) (5.6)

The scale factor of W/Z production in the tight data sample can be calculated by,

k1
W/Z+jets =

N tight −N0 tight
fake −N

tight

tt,MC
−N tight

t,MC

N tight
W+jets,MC +N tight

Z+jets,MC

(5.7)

where N tight

tt,MC
, N tight

t,MC , N tight
W+jets,MC and N tight

Z+jets,MC are the numbers of events in the Monte

Carlo simulated samples of tt̄, single top-quark t-channel, W+jets and Z+jets processes, af-

ter the same selection as the tight data sample. The scale factor can be used in Equation 5.5

and subtracting the W/Z contributions to get a refined fake loose-to-tight rate,

εifake =
N tight − kiW/Z+jets(N

tight
W+jets,MC +N tight

Z+jets,MC)−N tight

tt,MC

N loose − kiW/Z+jets(N
loose
W+jets,MC +N loose

Z+jets,MC)−N loose
tt,MC

(5.8)

with i = 1. The ε1
fake can be taken into this loop again to get a better W/Z scale factor,

resulting a more precise ε2
fake. With more iteration, the εifake will become stable and finally

gives the good approximation of εfake. Figure 5.3 illustrates the iterations of the overall

loose-to-tight rate of fake muon in early data taken, where the last three iteration overlapped

with each other.

The εreal and εfake derived from data are using in Equation 5.4 and give the estimation

of the QCD-multijet background N tight
fake . The cross check using matrix method has been

performed in early stage of the analysis with limited data. The results are compatible with

the estimations using jet-electron model within 50% uncertainties.
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Figure 5.3: The iterations of fake muon loose-to-tight rate calculation with different colors.
The results are in one bin with y axis denoting the loose-to-tight rate of fake muons.
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5.5 W+jets Background Estimation

W+jets events constitute a main source of background to the single top t-channel produc-

tion, including the W+light jet events, Wbb events, W cc events and W c events. The Wbb

events, W cc events and W c events are also collectively called W+heavy flavour jets events.

The overall normalization of the W+jets background and the composition of each process

with different jet flavour are derived from data, while the kinematic shape and acceptance

of W+jets backgrounds are obtained from Monte Carlo simulated samples [116].

5.5.1 W+jets Total Normalization

In the pretag samples, the fraction of single top-quark t-channel signal events are negligible

(less than 1%). With the QCD-multijet background estimated from data, the other contri-

butions in pretag samples like tt̄, Z+jets and diboson processes can be estimated using the

Monte Carlo predictions by taking into account their theoretical uncertainties as the sys-

tematic uncertainties. Thus an event counting method is developed to estimate the number

of W+jets events in pretag sample, which is simply taken as the data count minus all other

backgrounds:

Npretag
W+jets = Npretag

data −Npretag
multijet −N

pretag
MC (5.9)

Npretag
W+jets is the number of events left after subtracting the estimated QCD-multijet and

Npretag
MC from the data. Npretag

MC is the sum of other background events, including Z+jets,

single top-quark, tt̄, and diboson processes, estimated using Monte Carlo samples. The

uncertainties of single top-quark t-channel estimated from Monte Carlo is taken as 100%.

The resulting normalization factors, calculated by dividing the estimated Npretag
W+jets with

the number predicted in W+jets Monte Carlo simulated samples, are shown in Table 5.2.

The table only shows the statistical uncertainty.

5.5.2 Estimation of the W+jets Flavour Composition

The flavour composition of the W+jets sample is estimated using the pretag data samples

in combination with the b-tagged data sample. The 1-jet b-tagged, 2-jet pretag and 2-jet

b-tagged event samples are used as control samples to construct three equations with the
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sample normalization factor

combined

W+1jet pretag 0.966 ± 0.001 (stat)

W+2jet pretag 0.914 ± 0.002 (stat)

W+3jet pretag 0.879 ± 0.004 (stat)

Table 5.2: Data/MC W+jets pretag normalization factors extracted from the muon and
electron samples combined together with the uncertainty due to data statistics [116].

three unknown fractions of Wbb, W c and W+light jets in 2-jet pretag sample, F pretagbb,2 ,

F pretagc,2 and F pretagl,2 , while the fraction of W cc events is obtained by multiply a correction

factor kpretagcc→bb with F pretagbb,2 , where the kpretagcc→bb denoting F pretag,MC
cc,2 /F pretag,MC

bb,2 is obtained

from MC samples. The three equations are:

Npretag
data−bkg,2 = Npretag

data−bkg,2(F pretagbb,2 + kpretagcc→bbF
pretag
bb,2 + F pretagc,2 + F pretagl,2 ),

N tag
data−bkg,2 = Npretag

data−bkg,2(F pretagbb,2 P tagbb,2 + kpretagcc→bbF
pretag
bb,2 P tagcc,2 + F pretagc,2 P tagc,2 + F pretagl,2 P tagl,2 ),

Npretag
data−bkg,1 = Npretag

data−bkg,2(F pretagbb,2 kpretagbb,2→1 + kpretagcc→bbF
pretag
bb,2 kpretagcc,2→1 + F pretagc,2 kpretagc,2→1

+F pretagl,2 kpretagl,2→1 ).

Here Npretag
data−bkg,2, N tag

data−bkg,2 and Npretag
data−bkg,1 are the estimated W+jets event numbers in

each control sample, which are obtained similar as Eq. 5.9. P tagbb,2, P tagcc,2, P tagc,2 and P tagl,2 are

the acceptances of the individual flavour processes after b-tagged selection with respect to

the pretag selection, calculated from MC samples. kpretagbb,2→1, kpretagcc,2→1, kpretagc,2→1 and kpretagl,2→1 are

the projection factors derived from MC samples by dividing the fractions in 1-jet pretag MC

sample to the fractions in 2-jet MC sample for each flavour process. The fractions F pretagbb,2 ,

F pretagc,2 and F pretagl,2 are determined by solving the three equations.

The correction factors Kbb (same as Kcc), Kc and Klight are derive to be used in analysis,

correcting the fractions in MC samples, F pretag,MC
bb,2 , F pretag,MC

c,2 and F pretag,MC
l,2 to the ones
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estimated from data,

Kbb =
F pretagbb,2

F pretag,MC
bb,2

, Kc =
F pretagc,2

F pretag,MC
c,2

, Kl =
F pretagl,2

F pretag,MC
c,2

, (5.10)

The resulting correction factors are shown in Table 5.3.

K-factor Kbb Klight Kc

Value 1.371±0.082(stat)±0.964(sys) 0.914±0.004±0.106 1.282±0.036±0.327

Table 5.3: Flavour factor K for each W+jets flavour for the muon and electron samples
combined, with statistical and systematic uncertainties [116].

5.5.3 Total W+jets Scale Factors

The total correction factors for each W+jets flavour sample are then derived from the

above flavour factors and then multiplied by the overall normalization factor for each jet

multiplicity bin from Table 5.2, including the projection factors for 1, and 3 jet events

derived from the MC samples. The final correction factors are shown in Table 5.4.

jet bin Kbb Klight Kc

W+1jet 1.361±0.090(stat)±0.950(sys) 0.908±0.004±0.260 1.273±0.040±0.390

W+2jet 1.252±0.080(stat)±0.860(sys) 0.835±0.004±0.210 1.172±0.040±0.290

W+3jet 1.182±0.070(stat)±0.870(sys) 0.788±0.004±0.330 1.106±0.040±0.400

Table 5.4: Final correction factor K for each W+jets flavour for the muon and electron
samples combined, with statistical and systematic uncertainties [116].

The W+jets normalization and flavour composition estimate includes a 100% single top-

quark cross-section uncertainty, as well as the theoretical cross-section uncertainties of tt̄,

Z+jets and diboson processes. An extra 25% systematic uncertainty is added to cover the

projection factor uncertainty obtained from the effect of Alpgen variations on the heavy-

flavour content of W+Jets events. The uncertainty of QCD-multijet background estimation,
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the jet energy scale uncertainty, the b-tag and light tag rate uncertainties are also taken

into account in the systematic uncertainties of W+jets estimations. The W+jets total

uncertainties are the sum in quadrature of the statistical and systematic uncertainties and

are shown in the event yields table in Section 5.6.

5.5.4 W+jets Scale Factor Checks

In the W+jets flavour composition estimation, the used 2-jet b-tagged control samples have

been subtracted the contributions of single top-quark t-channel signal events that selected

by cut-based analysis (See Chapter 6 for an introduction of cut-based analysis). The signal

selection in cut-based analysis requires η of light jet above 2.0, total transverse energies in

the event larger than 210 GeV, the reconstructed top mass 150 GeV < Mtop < 190 GeV,

and ∆η between the b-tagged jet and light jet satisfying |∆η(b− jet, l− jet)| > 1.0. While

the boosted decision trees analysis selects signal events with the constructed multivariate

discriminant as described in Chapter 6, resulting different signal region with respect to the

cut-based selection. To make sure the boosted decision tree analysis are not biased by the

W+jets scale factors, one simple check is made by re-calculating the W+jets scale factor

using the 2-jet pretag control sample with the rejection of the signal events selected by the

boosted decision trees discriminant. As a result, the new W+jets scale factors agree very

well with the ones calculated for cut based analysis. The difference are within statistical

uncertainties, as shown in table 5.5.

W+jets Scale Factor Kbb Klight Kc

Cut based 1.252±0.090(stat) 0.835±0.004(stat) 1.172±0.004(stat)

BDT Analysis 1.229±0.082(stat) 0.836±0.003(stat) 1.178±0.037(stat)

Table 5.5: 2-jets channel correction factor K for each W+jets flavour for the muon and
electron samples combined, with statistical uncertainties [116].
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5.6 Event Yields after Pre-selection

Tables 5.6 and 5.7 list the event yields after event selection and background estimation for

the electron channel and muon channel, respectively.

The multijet event yields and contributions from W+jets events are determined with

data-driven techniques as introduce before. tt̄, other top (single top-quark s- and W t-

channel), Z+jets, Diboson and the single top-quark t-channel signal expectation are nor-

malized to theoretical cross sections. The event yields of all these processes are summed to

the total expected event yields.

After btagged selection,the predicted single top t-channel fraction in the data is about

9% in 2-jet sample and 8% in 3-jet sample. The major backgrounds are tt̄, W+jets and

QCD-multijet backgrounds.

Pretag electron B-tagged electron

2-jets 3-jets 2-jets 3-jets

t-channel 908±34 614±23 452±17 298±11

tt̄, Other top 1689±112 3462±253 787±53 1702±125

W+light jets 71005±21465 18803±8210 350±105 126±55

W+heavy flavour jets 30080±7813 9095±3004 2628±746 1109±405

Z+jets, Diboson 11257±6106 4428±2405 158±63 95±44

Multijets 15000±7500 6000±3000 710±355 580±290

TOTAL expected 129940±24786 42403±9551 5084±838 3910±518

DATA 129217 39750 5021 3592

Table 5.6: Predicted and observed event yields, after selection, in the electron 2-jet and 3-jet
b-tagged samples. The uncertainties on the multijet and the W+jets yields are calculated
including all systematic and statistic uncertainties in the estimation. Uncertainties on these
predictions are only reflecting the uncertainties on the theoretical cross section prediction.
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Pretag muon B-tagged muon

2-jets 3-jets 2-jets 3-jets

t-channel 999±37 651±24 488±18 319±12

tt̄, Other top 1682±111 3481±256 787±52 1709±125

W+light jets 89633±27097 22481±9823 494±149 204±89

W+heavy flavour jets 35885±9375 10477±3505 3093±872 1248±473

Z+jets, Diboson 7964±3986 2423±1187 163±60 77±30

Multijets 6800±3400 1700±850 440±220 270±135

TOTAL expected 142963±29148 41173±10533 5464±916 3829±518

DATA 149941 42005 5592 3915

Table 5.7: Predicted and observed event yields, after selection, in the muon 2-jet and 3-jet
b-tagged samples. The uncertainties on the multijet and the W+jets yields are calculated
including all systematic and statistic uncertainties in the estimation. Uncertainties on these
predictions are only reflecting the uncertainties on the theoretical cross section prediction.
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Chapter 6

BOOSTED DECISION TREES AND CROSS SECTION
MEASUREMENT

After the single top-quark event pre-selection, the predicted fraction of single top-quark

t-channel signal is less than 10% in the selected data. It is impossible to perform a cross

section measurement since the uncertainties of the background estimation are larger than

the predicted number of signal events. More powerful discriminants are needed to further

extract signal events and suppress backgrounds. For this purpose, three different approaches

are explored, the cut-based (CB) analysis [116], the boosted decision trees [117, 118] (BDT)

analysis [119] and the neural network [120, 121] (NN) analysis [115]. The cut-based approach

applies additional selections on the b-tagged samples after pre-selection to enhance the sig-

nal significance, where in each selection one discriminating variable is used. In contrast BDT

analysis and NN analysis explore the multivariate techniques, which simultaneously analyze

multiple variables and combine them into a single discriminant. Even poorly discriminant

variables can be exploited in a multivariate approach and thus contribute to improve the

separation of the signal and the background. The correlations of different variables are also

properly taken into account with multivariate techniques. Among many multivariate meth-

ods, boosted decision trees present a clear, logical model that can be understood easily and

their performances are insensitive to the inclusion of poorly discriminating input variables.

These give a transparent and flexible control of the method to achieve physics purpose.

This chapter first gives an introduction of the boosted decision trees technique. Then the

details of the implementation of boosted decision trees method are described. Later section

describes the methods of cross section measurement and systematic uncertainty estimation.

The results of single top-quark t-channel cross section measurement and |Vtb| determination

are given in the following section. Finally the measurement are concluded and possible

improvements in future are discussed.
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6.1 Introduction of Boosted Decision Trees

In the present analysis, boosted decision trees discriminator is employed, using the ROOT

Toolkit for Multivariate Data Analysis (TMVA) [122]. With this approach, a significantly

improved sensitivity can be reached with respect to the pre-selection shown in chapter 5.

Boosted decision trees study a large number of input variables in the training samples,

which are the Monte Carlo simulated samples with known knowledge of signal and back-

ground events. The performance of the trained boosted decision trees is then tested to with

an independent set of MC samples. In this analysis, all MC samples that have passed b-tag

pre-selection are divided in two independent parts of equal size for the training and test

respectively1. Single top-quark t-channel simulated samples weighted to its prediction are

used for signal. And a mixture of tt̄, W+jets, dibosons and jet-electron samples all weighted

according to their relative abundance as introduced in Section 5.6 are used as background.

The total training and test samples are composed each from 50% signal events and 50%

background events.

With the training samples, boosted decision trees perform sequential selections on the

variables in the event to separate signal from backgrounds. At each step of the sequential

selection, the variable that gives the best separation between signal and background is chosen

and a threshold is determined on this variable value. The combination of all decisions form

a tree structure classifier, named a decision tree. More decisions trees are generated to

reduce the statistical fluctuations by reweighting the samples used. Finally, results from all

decision trees are combined to construct a multivariate discriminant.

6.1.1 Decision Tree

A decision tree is a binary tree structured of nodes where each father node can have up to

two child nodes. An illustration of a decision tree is shown in Figure 6.1. From the top node

of the tree, repeated yes/no decisions are performed on a single variable at a time and split

the father node into child nodes until some stop criterion is reached. The resulting terminal

1Ideally one should divide the sample in three parts of equal size: train, test and yield, but here due to
limited MC statistics only two part were considered.
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nodes are called leaves. With this method the phase space is split into regions that are

eventually classified as signal or background, depending on the majority of training events

that end up in the final leaf nodes.

Figure 6.1: An illustration of a decision tree.
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Splitting

The splitting criterion for each node is defined during the training of the tree. A variety of

separation criteria can be configured to assess the performance of a variable and a specific

selection. The criterion chosen in this analysis is the Gini index, defined by

Gini = (
n∑
i=1

Wi)p(1− p), (6.1)

where p is the purity of a node, Wi is the weight of a event i, n represents the total event

number in the node. The purity p of a node can be expressed by,

p =

∑
sWs∑n
i=1Wi

. (6.2)

Here
∑

sWs is the sum of weighted signal events. Note that Gini is 0 if the sample is pure

signal or pure background. The training procedure selects the variable and cuts values that

optimize the increase in the separation between the father and the child nodes. In the case

of Gini index, it is maximize

Increase = Gini(father)−Gini(left child)−Gini(right child), (6.3)

which is also referred as the goodness or gain of the split. In this optimization, all input

variables are looped over and the cut values are scanned over the variable range with a

granularity of preset nCuts bins.

Stop Criterion and Pruning

With the increasing number of splitting in the decision tree, the samples size is reduced

and the relative statistical uncertainties are growing. A decision tree with too many nodes

and leaves could lead to final leaves dominated by statistical fluctuations. Another risk of

the training of a decision tree is called overtraining problem. Overtraining refers that the

decision tree overfits training samples and its performance only features this specific training

samples. While using another independent samples for the training would lead to very

different outcomes. To reduce statistically insignificant nodes and reduce the overtraining

of the trees, the stop criterions and pruning methods are explored.
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One stop criterion of a decision tree is theMaxDepth, which denotes the maximum layers

of a decision tree. The depth of a root node is 0. Another stop criterion is nEventsMin,

which requires a minimum number of events in terminal leaves. Note that the event number

used here is weighted event number.

The pruning method chosen here is the so-called Cost Complexity pruning [123]. It

defines misclassification rate of a node with

R = 1−max(p, 1− p). (6.4)

The misclassification rate of the subtree of the node is referred as Rsubtree. The cost com-

plexity for this node is then defined by

ρ =
R−Rsubtree

Nnodes of subtree − 1
(6.5)

The node with the smallest ρ value in the tree is recursively pruned away as long as ρ <

PruneStrength, where PruneStrength is a value set by users. If the PruneStrength

option is set to a negative value, an algorithm attempts to automatically detect the optimal

strength parameter. The training sample is then divided into two subsamples, of which one

is used for training with different PruneStrength, while the other one serves for validating

the performance of the pruning.

6.1.2 Boosting

A single decision tree are extremely sensitive to the training samples. Slightly different

training samples can lead to very different trees. This limitation can be overcame by using

boosting methods. The boosting of a decision tree derives several decision trees (a forest)

from the same training sample by reweighting misclassified events. All boosted decision

trees are combined to form a classifier which is given by a weighted majority vote of the

individual decision trees. The boosting algorithm used in the present analysis is an adaptive

boost method called AdaBoost [124]. It calculates a boosting parameter for the mth tree,

αm = βln(
1− εm
εm

), (6.6)
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where β is a parameter default set 1 in AdaBoost, εm is the misclassification error rate of

mth tree, defined as,

εm =

∑n
i=1WiIi∑n
i=1Wi

(6.7)

where Ii = 1 if the i event is misclassified and 0 otherwise. The boosting changes the weight

of event by

Wi →Wi × eαmIi (6.8)

and renormalizes the event,

Wi →
Wi∑n
i=1Wi

(6.9)

A new decision tree is boosted using the reweighted samples. The total number of boosted

decision trees is controlled by BDT option NTrees.

6.1.3 Output of Boosted Decision Trees

At the end of a trained decision tree, if a leaf has purity p > 1
2 (1

2 is default value), then

it is called a signal leaf, otherwise, a background leaf. With a given event x, the trained

decision tree will process the variables of this event and land the event on either a signal

leaf or a background leaf, giving a score of the event T (X) = 1 or T (X) = −1 accordingly.

For m decision trees boosted by AdaBoost method, The final BDT weight of event x is the

weighted sum of each tree output,

T (X) =
M∑
m=1

αmTm(X). (6.10)

The BDT weights of data events are used as the multivariate discriminators to distinguish

signal from backgrounds.
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6.2 Application of Boosted Decision Trees

This section describes the selection of the variables used in boosted decision trees, the

optimization of the BDT method and its validation. The sensitivity to high pile-up events

of trained boosted decision trees is also checked in the final part of this section.

6.2.1 Selection of Discriminant Variables

The list of variables entering a BDT event classifier is derived from a procedure of optimiza-

tion that selects only the variables that bring a significant discrimination between signal

and the considered background.

The discriminating power of a given variable is computed using the separation power

S2 =
1

2

∫
(s(x)− b(x))2

s(x) + b(x)
dx,

where s(x) and b(x) are the probability density, for signal and background respectively,

for this variable. A large set of kinematical variables was tested, including the 4 momen-

tum variables of objects like b-tagged jet, light jet, lepton, EmissT , reconstructed W and

reconstructed top quark, event kinematics such as MT (W ), H and HT of various object

combination, angular correlation variables between all kinds of objects and some event

variables like sphericity and aplanarity. In total, more than 70 variables are considered.

Tables 6.1 and 6.2 list the 14 most discriminating variables, among those tested, that are

used in the 2-jet and 3-jet channels, respectively.

• M top(lνb): Top-quark mass reconstructed from the b-tagged jet, charged lepton

and neutrino. The transverse momentum of the neutrino is given by the x- and y-

components of the Emiss
T vector, while the unmeasured z-component of the neutrino

momentum pz(ν) is inferred by imposing a W -boson mass constraint on the lepton-

neutrino system. The solution that gives smaller pz(ν) is chosen in this calculation.

• η(UJet): Pseudorapidity of the leading untagged jet.

• Ht: Scalar sum of the transverse momenta of the jets, the charged lepton and the

missing transverse energy.
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1 M top(lνb) 8 ∆η(UJet, Lepton)

2 η(UJet) 9 Emiss
T

3 Ht 10 E(Lepton)

4 pT (BJet) 11 Ht Deviation

5 ∆R(BJet, Lepton) 12 M(Jet1, Jet2)

6 M(BJet) 13 MT (W )

7 ∆η(W,BJet) 14 Sphericity

Table 6.1: Variables ranking for 2-jet channel BDT training

1 η(UJet) 8 ∆η(W,BJet)

2 Sphericity 9 ∆R(BJet, Lepton)

3 M top(lνb) 10 M(BJet)

4 ∆η(UJet, Lepton) 11 Ht Deviation

5 E(Lepton) 12 pT (BJet)

6 MT (W ) 13 Emiss
T

7 Ht 14 M(Jet1, Jet2)

Table 6.2: Variables ranking for 3-jet channel BDT training
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• pT (BJet): Transverse momentum of the b-tagged jet.

• ∆R(BJet, Lepton): The distance, ∆R = sqrt(∆η2 + ∆φ2), between the b-tagged jet

and the charged lepton.

• M(BJet): Invariant mass of the b-quark jet.

• MT (W ): Transverse mass of the W -boson, reconstructed using the same neutrino and

lepton as in M top(lνb).

• ∆η(W,BJet): Difference in η between the reconstructed W -boson and the b-tagged

jet.

• ∆η(UJet, Lepton): Difference in η between the untagged jet and charged lepton.

• Emiss
T : Reconstructed missing transverse energy.

• E(Lepton): Energy of the charged lepton.

• Ht Deviation: Ratio of the scalar sum of the transverse momenta of the leading jet,

the charged lepton and the missing transverse energy over Ht:

Ht Deviation =
Emiss

T + pT leadingJet+ pT Lepton

Ht

• M(Jet1, Jet2): Invariant mass of the two leading jets in the event.

• Sphericity: Sphericity is a measurement of the sum of squared transverse momentum,

with respect to the event axis, of the lepton and jets in the event. Sphericity of an

isotropic event tends to be 1.

– The sphericity tensor: Sαβ =
∑
i
pαi p

β
i /
∑
i
|pi|2, where i is an index running over

the particles of the event, and α, β = 1, 2, 3.

– 3 eigenvalues λ1, λ2 and λ3 are obtained by diagonalization of Sαβ, λ1 ≥ λ2 ≥ λ3
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– Sphericity= 1.5 ∗ (λ2 + λ3).

– Aplanarity= 1.5 ∗ λ3.

• Aplanarity: Aplanarity is an event shape variable. Aplanarity of a planar event is

close to 0 and it is close to 1
2 for an isotropic event.

Figures 6.2 and 6.3 shows the normalized distribution of 4 most discriminant variables

used in boosted decision tree, for signal and background 2-jet and 3-jet events. More

distributions are shown in Appendix A.

Figure 6.2: Normalized distribution of the most discriminant variables for signal (blue) and
background (red) for 2-jet events.
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Figure 6.3: Normalized distribution of the most discriminant variables for signal (blue) and
background (red) for 3-jet events.
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6.2.2 Variable Correlations

One of the advantage of the boosted decision trees analysis is that all well modeled variables

can be used as input, even if they have low separation power or high correlations. As

introduced in Section 6.1.1, in each split of the decision tree all input variables will be

looped and only the best variable will be used. Including more variables gives more choice

for the boosted decision trees to make a better decision. But to keep analysis simple and

easy to control, a reasonably short list of variables is preferred. Highly correlated variables

that contribute little in improving BDT performance are removed from the list of variables

used.

The linear correlations between variables are shown in Figure 6.4 and Figure 6.5. Some

variables are quite correlated but are still used in BDT since they help to improve the BDT

performance.
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Figure 6.4: correlation matrices of input variables for signal and background in 2-jet channel.
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Figure 6.5: correlation matrices of input variables for signal and background in 3-jet channel.
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6.2.3 Boosted Decision Trees Optimization

As introduced in previous sessions, there are several main configuration options in the

training of boosted decision trees.

• nCuts: the number of bins used to optimize the cuts value on the variables in the

splitting. Different choices of nCuts from 5 to 50 have been tested in the optimization.

• nEventsMin: minimum event number requirement in a terminal leaf node. In the

optimization, the numbers from 5 to 100 have been used.

• MaxDepth: the maximum-layer limitation of a decision tree. The BDT performances

with depths from 2 to 6 are examined.

• NTrees: the total number of boosted decision trees. Numbers of trees from 20 to

2000 are tested in the optimization.

• PruneMethod and PruneStrength: options to choose pruning and set pruning strength.

NoPruning and PruneStrength from -1 to 10 have been tested.

The optimization of the BDT starts from examining the overtraining of the BDT and the

continuity of the BDT output. The overtraining of the BDT is described by the Kolmogorov-

Smirnov test results, which is the likelihood that the distribution obtained from the test

sample could have been obtained from the training sample. The likelihood value is required

to be larger than 0.1 to make sure of the compatibility between the BDT distribution of

training sample and test sample. In the optimization it is discovered that the overtraining

increase significantly if the MaxDepth is large than 3. The Kolmogorov-Smirnov test results

of the BDTs for 2-jet channel and 3-jet channel are shown in Figures 6.6a and 6.7a. NTrees

has to be larger than 50 to have a continuous BDT output and it is further tuned in next

step of optimization.

Then different BDTs with different combination of configuration values are tested to

achieve larger signal significance. It is done by checking the background rejections of dif-
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a) b)

Figure 6.6: TMVA control plots for 2-jet events - a) Overtraining checks for signal (blue) and
background (red) in the train and test samples, b) background rejection vs signal efficiency.

a) b)

Figure 6.7: TMVA control plots for 3-jet events - a) Overtraining checks for signal (blue) and
background (red) in the train and test samples, b) background rejection vs signal efficiency.
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ferent BDTs with the same signal efficiency level. The signal efficiency and background

rejection curves for 2-jet BDT and 3-jet BDT are shown in Figures 6.6b and 6.7b.

BDT settings are further optimized to make sure of the good agreements between BDT

distributions of Monte Carlo simulated samples and of data samples. Too optimistic settings

or including some variables that are not well modeled could lead to obvious deviations. The

validation plots with final BDT options are shown in Section 6.2.4.

The impact of the different BDT configurations on systematic uncertainties are also

examined. The final BDT optimization is the results of balancing overtraining, validation

and systematic uncertainties. A summary of all BDT settings used for the 2-jet and 3-jet

channels are shown in Tables 6.3 and 6.4. After training, the normalized BDT outputs of

signal and backgrounds are shown in Figure 6.8. In this plot, “top” background includes tt̄,

single top-quark s-channel and Wt-channel backgrounds.

SeparationType=GiniIndex nCuts=10

nEventsMin=50 MaxDepth=3

NTrees=100 BoostType=AdaBoost

PruneMethod=NoPruning

Table 6.3: Boosted decision trees settings for 2-jet channel

SeparationType=GiniIndex nCuts=20

nEventsMin=30 MaxDepth=3

NTrees=175 BoostType=AdaBoost

PruneMethod=CostComplexity PruneStrength=-1

Table 6.4: Boosted decision trees settings for 3-jet channel
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Figure 6.8: Normalized BDT output of signal and background for the 2-jet and 3-jet channel
in the b-tagged sample (electron and muon samples combined).
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6.2.4 Validation of the Variables

To make sure the reliability of the BDT performance, it is important to validate all input

variables that they are well modeled. This is done by testing the variable distribution

agreements between data and simulated samples. Here, single top-quark, tt̄, Z+jets and

diboson Monte Carlo samples have been normalized to their theoretical prediction, while

multijet and W+jets backgrounds are normalized to their estimations using data-driven

methods as introduced in Section 5.4 and Section 5.5.

The stacked distribution of the five most discriminant variables in the 2-jet and 3-jet

pretag and b-tagged samples are shown in Fig 6.9, Fig 6.10 and in Fig 6.11, Fig 6.12,

respectively. In these plots, “top” background includes tt̄, single top-quark s-channel and

Wt-channel backgrounds. All distributions of the variables used in the BDT are shown in

Appendix A.

The stacked BDT distributions are shown in Figures 6.13 and 6.14 for the 2-jet and 3-jet

b-tagged samples, respectively.

A reasonable agreement is achieved for all variables considered and for the combined

BDT discriminant.
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Figure 6.9: Most discriminant variables used as input of the BDT for the 2-jet pretag sample
(electron and muon samples combined).
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Figure 6.10: Most discriminant variables used as input of the BDT for the 2-jet b-tagged
sample (electron and muon samples combined).
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Figure 6.11: Most discriminant variables used as input of the BDT for the 3-jet pretag
sample (electron and muon samples combined).
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Figure 6.12: Most discriminant variables used as input of the BDT for the 3-jet b-tagged
sample (electron and muon samples combined).
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a) b)

c) d)

Figure 6.13: Boosted decision trees output for 2-jet events in a) pretag and b) b-tagged
samples (electron and muon samples combined). Figures c) and d) show the upper tail of
each distribution (BDT Weight> −0.25).
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a) b)

c) d)

Figure 6.14: Boosted decision trees output for 3-jet events in a) pretag and b) b-tagged
samples (electron and muon samples combined). Figures c) and d) show the upper tail of
each distribution (BDT Weight> −0.30).
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6.2.5 Pile-up Checks

Pile-up refers to the occurrence of multiple interactions in the same bunch crossing. The

measured average number of interactions per bunch crossing < µ > in current data is

shown in Section 3.4. Pile-up will affect the objects energy (jet, Emiss
T ) measuring, the jet

multiplicity in the event and the trigger rate. Unexpected pile-up condition could lead to

mis-modeling of variables and loss of event selection efficiency. The LHC will have high

levels of pile-up as luminosity increases. Thus it is important to study the impacts of high

pile-up conditions on the analysis.

One observable directly associated with pile-up is the vertex multiplicity in a event.

In BDT analysis, the BDT outputs of the dominate backgrounds and signal events are

compared with the ones of hight pile-up events by requiring the number of primary vertices

to be larger than six. Good agreement is observed as shown in Fig 6.15.

Figure 6.15: BDT outputs of hight pile-up events compare to the nominal ones, for the
dominate backgrounds and signal events.
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6.3 Event Yield after Selection on BDT outputs

To improve the signal purity, events are selected to have BDT output values above a certain

threshold. These cuts are chosen, for both 2-jet and 3-jet channel BDT distribution, such

as to minimize the total expected uncertainty on the cross-section determination.

For 2-jet channel, the BDT distribution of b-tagged samples are scanned over the range

[-0.8,0.2] with a granularity of 20 bins and 21 cut values starting with -0.8 are chosen.

The systematics sensitivities of different cut choice in the cross section measurement are

estimated by performing pseudo experiments as introduced in Section 6.5. It is found that

the best cut choice rests in the range [0,0.1]. Then a refined scan is done with a granularity

of 0.01 in this range. The cut value that gives the minimum statistical and systematical

uncertainties on the expected cross section measurement is found to be 0.02 for 2-jet channel

cross section measurement. Similar procedure is performed for 3-jet channel measurement

and the best BDT lower thresholds is chosen at -0.08.

Expected and observed event yields after the application of these additional cuts are show

in table 6.5. “Other top” refers the single top-quark s-channel and Wt-channel events.

Comparing to the event yields in Section 5.6, the ratio of signal events over background

events (S/B) in the selected data has increased from less than 0.1 to 1.16 (combined),

while the statistic of signal events remains relatively large. The major contributions of the

backgrounds come from tt̄ events and W+jets events.
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2-jet 3-jet total

t-channel 139.1± 51.2 53.3± 17.6 192.4± 54.1

tt̄, Other top 18.9± 7.4 35.1± 19.6 54.0± 21.0

W+light jets 2.3± 1.6 3.8± 3.9 6.1± 4.2

W+heavy flavour jets 61.8± 19.1 23.4± 8.2 85.2± 20.8

Z+jets, Diboson 1.6± 1.7 0.4± 0.6 2.0± 1.8

QCD 5.3± 3.4 12.9± 6.9 18.2± 7.7

TOTAL Expected 229.1± 55.3 128.9± 28.7 358.0± 62.3

S/B 1.55 0.71 1.16

DATA 320 126 446

Table 6.5: Event yield after the application of thresholds on the boosted decision trees
discriminants outputs. The multijets and W+jets backgrounds are normalized to the data,
all other samples are normalized to theory cross sections. Uncertainties shown are systematic
uncertainties.
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6.4 Cross Section Measurement with Likelihood Fit

After applying selections on the BDT output of data and MC samples, the expected numbers

of single top-quark t-channel events and of all backgrounds are fitted to match the observed

number of data [115]. The likelihood function used for the fit is given by the product of the

Poisson likelihoods. The background rates are constrained by Gaussian priors.

L(βs;βbj) =
e−µ · µn

n!
·

B∏
j=1

G(βbj ; 1.0,∆j) with (6.11)

µ = µs +
B∑
j=1

µbj , µs = βs · ns , and µbj = βbj · nj . (6.12)

Here ns is the predicted number of signal events in the selected data, while nj is the predicted

number of events of background j in the selected data set. n is the number of observed

events in selected data. The index j runs over all background processes that are considered.

The number of considered background processes is B. The scale factors βs for signal and

βbj for the backgrounds are the parameters of the likelihood function that are to be fitted to

match the observed data. The background scale factors are constrained by Gaussian penalty

terms to account for the a-priori knowledge on the backgrounds. The Gaussian functions

of these priors have a mean of 1.0 and a width of ∆j which is the relative uncertainty

of the predicted background cross sections (See background cross section uncertainties in

Section 6.5). The scale factors βs and βbj are obtained by minimizing the negative log of

the likelihood function −logL(βs;βbj).

With the observed number of single top-quark t-channel events in data, µs, the cross

section of t-channel single top-quark production is given by,

σt =
µs

εL
, (6.13)

where ε is the event selection acceptance of signal events and L is the integral luminosity of

the data sample. ε is estimated using Monte Carlo simulated samples

ε =
ns

σMC
t L

. (6.14)
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Combine Equation 6.13 and Equation 6.14, the cross section of single top-quark t-channel

production can be obtained by

σt =
µs

ns
σMC
t = βsσMC

t . (6.15)
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6.5 Systematic Uncertainties

The systematic uncertainties on the cross section measurement are determined using a

frequentistic method based on pseudo experiments [115]. The uncertainties from various

sources cause variations on the signal acceptance and the background rates, which are

discussed in the second part of this section. These variations are propagated to the creation

of the pseudo experiments. The entire set of pseudo experiments can thereby be interpreted

as a replication of the sample space given our systematically limited knowledge of nature.

An estimator denoting the probability density of all possible outcomes of the measurement

is obtained from the cross section measurement using these pseudo experiments. The root

mean square (RMS)2 of this estimator distribution is an estimation of the uncertainty of

the measurement. Performing the pseudo experiment based on the expected signal and

background cross sections gives the expected uncertainty. Using the measured single top

t-channel cross section and using the estimated nuisance parameters βj on background cross

section one can estimate the uncertainty of the actual measurement.

6.5.1 Creation of Pseudo Experiments

The pseudo experiments are created by varying the number of backgrounds events and

signal events. For a background j, its expectation value ν̃j is varied according its theoretical

cross section uncertainty ∆j and the uncertainties caused by all source of systematics. The

signal expectation value ν̃s is varied according the systematic uncertainties.

For the variation of ν̃j due to cross section uncertainty ∆j , it is done by throwing a

random number βgen
j according to a log-normal distribution with mean one and RMS ∆j .

The varied expectation value is then ν̃jβ
gen
j . Using a log-normal distribution as prior has

the advantage of avoiding unphysical negative values by construction.

For the variation of ν̃j due to a systematic source i, it is technically done by throwing a

Gaussian distributed random number δi using a mean of zero and a width of one. And the

acceptance (event yields) positive shift εij+ and negative shift εij− due to the i systematic

2Physical scientists often use the term root-mean-square as a synonym for standard deviation when they
refer to the square root of the mean squared deviation of a signal from a given baseline or fit.
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source are also included in the variation.

Then in one generated pseudo experiment, the expectation value of background j is

νgen
j = ν̃j · βgen

j ·

{
1 +

S∑
i=1

|δi| · (·H(δi) · εij+ +H(−δi) · εij+)

}
, (6.16)

where H denotes the Heaviside function. The number of the background events nj in this

pseudo experiment is based on a Poisson distribution with mean νgen
j . The expected number

of signal events in the pseudo experiment is determined in similar way without taking into

account the cross section uncertainties.

A large set of pseudo experiments are generated in this way to cover all possible variations

due to all the systematics.

6.5.2 Sources of Systematic Uncertainties

The systematic uncertainties of the signal acceptance and the normalization of the individual

backgrounds are from various sources. All these uncertainties finally cases variations on the

event yields of signal and backgrounds and are then propagated in the creation of the pseudo

experiments.

• Lepton energy scale/resolution: Lepton energy and lepton resolution in MC are

corrected to data by applying scale factor and by smearing respectively (See Sec-

tion 5.3). The impact of the lepton energy scale uncertainty on the selected sample is

evaluated by scaling the pT of the lepton up or down by 1σ and re-applying the ob-

ject and event selections. The smearing of the lepton energy resolution is also shifted

according to its uncertainties and selections are redone.

• Lepton Identification (ID) and trigger efficiency scale factors: The scale

factors are applied to MC lepton trigger/ID efficiencies in order to reproduce the

efficiencies seen in data. To assess their impact on the cross-section measurement, the

scale factors that shifted according to their uncertainties are used to re-compute the

predicted MC event yields and signal acceptance.
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• Jet energy scale: In ATLAS, the measurement of the jets starts from signals

recorded in the calorimeter cells (See Section 3.3.3). The jet energy measured at

calorimeter level needs to be calibrated to the particle level, to correct calorimeter

noncompensation, energy losses in dead material, shower leakage, “out of cone” en-

ergy, and pile-up. The jet energy scale (JES) is derived from these calibrations using

data[125]. The energy of each jet are scaled up or down by 1σ, to estimated its uncer-

tainties. The change is propagated to the missing transverse energy calculation, then

the object and event selection are redone to measure the effect on the cross-section

measurement. The pile-up uncertainty and b-tagged JES uncertainty are added in

quadrature to the JES uncertainty.

• Jet energy resolution: The impact of the jet energy resolution is evaluated by

smearing the jet energy in data [125].

• Jet reconstruction efficiency: The jet reconstruction efficiency impact is evaluated

by randomly dropping jets from events according to its uncertainties. Event selections

are re-applied to determine the variation from the nominal sample [125].

• B-tagged heavy flavour and light flavour scale factor uncertainty: The btag-

ging efficiency and light jet mis-tag rate of btagging algorithms have been measured

from data [13, 12]. Scale factors of data/MC are derived and corresponding uncer-

tainties are evaluated. These uncertainties are propagated to the final event yields.

• MC generator: The dependence of signal acceptance on the MC generator used is

determined by the difference between the standard AcerMC single top-quark events

and single top-quark events generated by MCFM [126]. Systematic effects from Monte

Carlo modeling for the tt̄ process are estimated by comparing generators (mc@nlo

+ Herwig vs PowHeg + Herwig).

• Parton shower modeling: The dependence of the signal acceptance on the parton

shower model is estimated by symmetrizing the difference between acermc + pythia
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and acermc + herwig using simulations of t-channel single top-quark processes. Sys-

tematic effects from Monte Carlo modeling for the tt̄ process are estimated using

Powheg + pythia and Powheg + herwig.

• Initial and final state radiation: The dependence of the signal acceptance and

the tt̄ background uncertainty on the ISR/FSR model is estimated respectively from

a set of single top-quark and tt̄ acermc + pythia samples generated with various

ISR/FSR tunes which explore the full experimentally allowed parameter space. The

largest deviations from the nominal samples coincide with the ISR and FSR com-

bination shifted up or down, so this variation is used to determine the uncertainty.

Correlations between different processes are also considered.

• Parton distribution functions: The signal and background MC samples are reweighted

according to each of the PDF uncertainty eigenvectors and take the largest variation

as the uncertainty.

• Background cross section: In this analysis, the event yields from the tt̄, Z+jets

and diboson background processes are estimated using the acceptance from MC and

the theoretically predicted cross-sections. The cross section uncertainty on the tt̄ cross

section is 164.57+11.4
−15.7. An uncertainty of 5% is assigned to the diboson background

and an uncertainty of 60% to the Z+jets background. For the W t- and s-channel

single top-quark processes, a 10% uncertainty is used on the cross-section.

• QCD background normalization: The QCD background is normalized to data

through the fitting method in the electron channel and muon channel, as described in

section 5.4. A systematic uncertainty of 50% is assigned.

• W+jets background normalization and flavour composition: Various system-

atic uncertainties on W+jets scale factors estimations as introduced in Section 5.5 are

propagated to the final analysis. The W+jets flavour uncertainties are treated as fully

correlated between Wbb and Wcc and uncorrelated with Wc+jets and with W+light

jet processes.
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• Luminosity: The luminosity uncertainty for 2011 data is 3.7%. This uncertainty is

based on dedicated van der Meer scans taken in May 2011 with ongoing evaluation of

this calibration using calorimeter-based techniques.

• MC statistics: The uncertainty due to the limited size of the Monte Carlo samples

are included.

• W+jets shape uncertainty: A shape uncertainty to the W+jets background is

assigned based on varying several parameters in the generation of the W+jets samples

(ptjmin10, iqopt3). The W+jets samples are reweighted according to each of these

parameters and take the largest variation as a systematic uncertainty.

• Forward jet η reweighting: To evaluate uncertainties due to the mis-modeled η

distribution of the forward jet, especially for high η regions, alternative MC distri-

butions are generated by reweighting. The reweighting histogram is obtained from

the pretag data sample. The η distribution from observed events is divided by the

distribution taken from MC simulation.

• Missing Transverse Energy: An “Emiss
T ” uncertainty is included which accounts for

uncertainties in the soft jets and cell-out terms. These are treated as fully correlated.

The uncertainties in the Emiss
T due to pile-up are also taken into account. The variation

in the event yields due to each of these uncertainties is a few percent.

• Liquid Argon Hole: An uncertainty related to reconstruction issues due to the hole

in the liquid argon calorimeter is included. The variation in the event yields due to

this uncertainty is a few percent.

The uncertainties of main sources of systematics on the rates of all processes are given in

Table 6.6 and 6.7 for 2-jet and 3-jet events, respectively. The impact that each systematic

uncertainty on the expected and observed cross-section measurement is given in Table 6.9

in Section 6.6.
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Uncertainties(%) t Other top W+lightj W+heavyj Z+j, diboson

Jet energy scale up -4 -4 4 -10 -16

down 2 11 -16 -22 -19

Jet energy resolution < 1 ±3 - - ±14

Jet reconstruction < 1 ±1 ±2 ±2 ±4

b tagging scale factor up 10 7 11 11 17

down -11 -8 -10 -9 -16

Mistag scale factor < 1 < 1 ±18 ±5 ±6

Lepton scale factor ±4 ±2 - - ±4

Lepton energy resolution up -2 5 - - -12

down 1 8 - - -10

MC Generator ±7 ±13 - - -

Shower ±14 ±11 - - -

ISR/FSR up -11 -28 - - -

down 29 -16 - - -

PDF ±3 ±8 - - -

Luminosity ±4 ±4 - - ±4

Emiss
T up -1 -1 -9 -1 -3

down 1 1 -6 1 2

η reweighting ±4 ±2 ±2 ±5 ±8

Wc, cc, bb normalization - - - ±6 -

Multijets - - ±3 ±7 -

tt̄ cross section - ±6 ±1 ±4 -

Wt, s-channel cross section - ±2 ±2 ±4 -

Z+jets cross section - - ±4 ±2 ±45

Diboson cross section - - < 1 < 1 ±1

MC Statistics ±4 ±7 ±55 ±14 ±48

Table 6.6: Rate uncertainties for the 2-jet channel.
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Uncertainties(%) t Other top W+lightj W+heavyj Z+j, diboson

Jet energy scale up 25 -1 13 29 75

down -10 -12 53 7 -29

Jet energy resolution 1 < 1 - - ±41

Jet reconstruction 4 < ‘ ±11 ±2 ±37

b-tagging scale factor up 7 7 9 7 11

down -8 -9 -11 -10 -13

Mistag scale factor < 1 < 1 ±25 ±2 ±5

Lepton scale factor ±2 < 1 - - ±4

Lepton energy resolution up 10 -1 - - 67

down 9 1 - - -89

MC Generator ±7 ±13 - - -

Shower ±2 ±21 - - -

ISR/FSR up 7 -44 - - -

down 12 -43 - - -

PDF ±3 ±8 - - -

Luminosity ±4 ±4 - - ±4

η reweighting ±4 ±4 ±9 ±3 ±8

Wc, cc, bb normalization - - - ±4 -

Multijets - - ±4 ±8 -

tt̄ cross section - ±6 ±1 ±6 -

Wt, s-channel cross section - ±1 ±2 ±3 -

Z+jets cross section - - ±6 ±5 ±45

Diboson cross section - - < 1 ±1 ±1

MC Statistics ±5 ±3 ±81 ±14 ±44

Table 6.7: Rate uncertainties for the 3-jet channel.
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6.6 Results of Cross Section Measurement

The β values obtained in the single top-quark t-channel cross section measurement using

likelihood fit are given in Table 6.8. The observed (measured) cross-section is derived by

multiplying the β value of the single top-quark t-channel process with its standard model

cross-section. In the fit, the multijets and W+jets backgrounds estimated using data-driven

methods are not allowed to vary, and other backgrounds are varied within their theoretical

cross-section uncertainties. The 2-jet channel and 3-jet channel are fitted simultaneously to

get the combined results.

Channels t-channel tt̄, Other top W+light W+heavy Z+jets, Diboson Multijets

Combined 1.506551 0.962769 1.000000 1.000000 1.007525 1.000000

2-jet 1.653824 1.000000 1.000000 1.000000 1.000005 1.000000

3-jet 0.945393 0.999985 1.000000 1.000000 0.999997 1.000000

Table 6.8: The β values determined from fitting different processes for 2-jet channel and
3-jet channel and the combination of 2-jet and 3-jet channels.

The cross-section uncertainties are determined by generating pseudo experiments, 100,000

for each measurement using 2-jet, 3-jet and their combined samples. Each pseudo experi-

ment gives a measured β of single top-quark t-channel cross section. By taking into account

all systematics sources in the generation of pseudo experiments as introduced in Section 6.5,

the measured factor β distribution reflects the probability density of all possible outcomes

of the cross section measurement. Its RMS and
√

(1−mean)2 +RMS2 give the estimated

uncertainties on the cross section measurement. Figure 6.16 shows the β distribution of

all pseudo experiments created for the observed cross section measurement, including all

uncertainties and combining 2-jet and 3-jet channels. The mean is 1.063 and the RMS is

0.310, giving the uncertainties on the cross section measurement of +31.6% and -31.0%.

With the standard model cross-section of 64.6 pb, the measured (expected) cross section

and uncertainty is σt = 106.8+36.5
−36.2 (64.6+24.2

−24.1) pb for the two jet channel BDT analysis.
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Figure 6.16: Pseudo-experiment distribution used for the final cross-section uncertainty de-
termination. This distribution is for the observed cross-section uncertainty, for all channels
combined.

For three jet channel BDT analysis, the measured(expected) cross-section is σt = 61.1+32.6
−32.0

(64.6+33.4
−32.6) pb.

Two jet and three jet are combined for the final cross section measurement. With

the standard model cross-section of 64.6 pb, the measured (expected) cross section and

uncertainty is σt = 97.3+30.7
−30.2 (64.6+22.0

−21.6) pb.

Table 6.9 shows a breakdown of the largest systematic uncertainties and their contribu-

tion to the final cross section measurements for expected data.

The impact of hight pile-up events to the cross-section measurement is also estimated.

The events with larger number of primary vertices (> 6) are used to redo the whole analysis.

As a results, a relative 5.7% shifts on the fitted observed cross-section is observed, with about

4% larger systematic uncertainties. As a conclusion, the t-channel single top-quark cross

section measurement using boosted decision trees is not strongly affected by high pile-up

condition.
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Source ∆σexp/σexp [%] ∆σobs/σobs [%]

Data statistics ±9.7 ±7.4

MC statistics ±7.2 ±5.6

b-tagging scale factor +16.7/-16.7 +14.6/-14.6

Mistag scale factor +1.5/-1.5 +1.1/-1.1

Lepton scale factor +4.9/-4.9 +4.7/-4.9

Lepton energy resolution +2.7/-2.0 +1.7/-1.5

Jet energy scale +8.8/-9.3 +6.3/-6.9

Jet energy resolution +1.1/-1.1 +1.0/-1.0

Jet reconstruction +1.9/-1.9 +1.3/-1.3

W shape +0.3/-0.3 +0.5/-0.5

Wlj normalization +0.3/-0.3 +0.7/-0.7

Wc, cc, bb normalization +2.4/-2.4 +1.6/-1.6

η reweighting +8.5/-8.5 +7.4/-7.4

Emiss
T +0.1/-0.2 +0.4/-0.4

pile-up Emiss
T +1.4/-1.4 +1.1/-1.1

LAr +0.5/-0.6 +0.2/-0.3

PDF +4.2/-4.2 +3.7/-3.7

Generator +8,0/-8.0 +7.3/-7.3

Shower +15.8/-15.8 +15.4/-15.4

ISR/FSR +16.1/-16.1 +18.0/-17.6

Theory cross-section +5.9/-5.9 +3.4/-3.4

Multijets +3.6/-3.6 +2.2/-2.2

Luminosity +4.6/-4.6 +4.2/-4.2

All Systematics +32.6/-32.0 +30.8/-30.1

Total +34.0/-33.5 +31.6/-31.0

Table 6.9: Breakdown of the major contributions to the systematic uncertainty on the ex-
pected t-channel single top-quark production cross-section measurement in the BDT anal-
ysis, expected and observed results for 2-jet and 3-jet channel combined.
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6.7 |Vtb| Measurement

In the Standard Model the CKM matrix element |Vtb| is close to one, but new physics

contributions could alter its value significantly. |Vtb| can be directly determined from the

measured single top-quark t-channel cross section since the cross section is proportional to

|Vtb|2. This |Vtb| measurement makes no assumptions on the number of quark generations

or on the unitarity of the CKM matrix. |Vtb| is only assumed to be |Vtb| � |Vtd|, |Vts| and

W -t-b interaction is assumed to be a SM-like left-handed weak coupling.

|Vtb|2 is calculated by dividing the observed single top-quark t-channel cross section with

the SM expectation,

|Vtb|2 =
σmeasured
t

σMC
t

= βt. (6.17)

βt is the β value of single top-quark t-channel as discussed in Section 6.6. The result

obtained is

|Vtb| = 1.23+0.20
−0.19. (6.18)

The experimental and theoretical uncertainties are added in quadrature.

The |Vtb|2 measurement is modeled by a Gaussian likelihood. Restricting the range of

|Vtb| to the interval [0, 1], as required by the SM, the Gaussian likelihood is converted to

have a integral of 1 in the range of [0, 1]. In a Bayesian view this corresponds to a flat

prior between 0 and 1. The posterior probability density function of |Vtb|2 measurement is

shown in Figure 6.17. Integrating the posterior probability density function from 1 down

to 0 until reaching 95% of the area, a lower limit on |Vtb| at the 95% confidence level is

obtained: |Vtb| > 0.61.

In the |Vtb| measurement, the estimations of single top-quark s-channel, Wt-channel and

the tt̄ backgrounds are from theoretical prediction, where the |Vtb| is assumed to be close

to 1. Ignoring this assumption and giving |Vtb| a value sizably different than 1.0 will not

change the results of |Vtb|measurement. Because the rate of tt̄ background would not change

since |Vtb| � |Vtd|, |Vts| is assumed and other decays (to heavier 4th generation quarks) are

prohibited by kinematics. In addition, the rate of background “tt̄, other top is allowed to

float within their cross section uncertainties during the measurement(See Section 6.4). The
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Figure 6.17: The posterior probability density function of |Vtb|2.

variations caused by a different |Vtb| is less than this uncertainties and thus negligible. In

summary, the extraction of |Vtb| is reliable under the assumptions in the measurement.
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6.8 Conclusion

In this chapter, a multivariate discriminant is constructed by boosted decision trees to

further extract single top-quark t-channel events from the data sets after pre-selection. The

structures of boosted decision tress are easy to understand, which allows a transparent

control of the method. The optimization of the training procedure is crucial to obtain a

powerful and reliable BDT discriminator. All used variables are validated and are proved

to be well-modeled. The selection using the constructed BDT discriminator significantly

improves the signal purity in selected data with respect to the pre-selection.

After the BDT selection, the cross section of single top-quark t-channel production is

measured by performing a likelihood fit of the expected number of signal and backgrounds

to the observed data. The scale factors of signal and backgrounds are derived from the fit.

The uncertainties of the cross section measurement are estimated by pseudo experiments,

which are created according to the variations of the events yields due to different systematic

sources. With the measured single top-quark t-channel cross section, the value of |Vtb| and

a lower limit are also extracted.

The uncertainties on the cross section measurement are dominated by systematic uncer-

tainties. The largest systematic uncertainties are the modeling of ISR/FSR and the parton

shower. Uncertainties from different generator choices and the modeling of η are also siz-

able. Another large uncertainty is the btagging scale factor uncertainty, which causes large

variations on the acceptances of signal and backgrounds. JES uncertainty also constitutes

one major systematic uncertainty on the cross section measurement. With more inputs from

the experimental data available in the future, these systematic uncertainties are expected

to be decreased.

In addition, the potential of the boosted decision trees can be further exploited to im-

prove the measurements. Some solutions are discussed below:

• The choice on the BDT settings can be more aggressive. The optimization of BDT

is a balance between overtraining, MC/data agreements and systematic uncertain-

ties. Smaller systematic uncertainties could be achieved with the tolerance of larger

overtraining or worse MC/data agreements.
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• Alternative methods in BDT training can be used, such as using a different splitting

criterion, different pruning method and different boosting method. Some simple tests

have been performed and no significant improvements are shown. A detailed study is

necessary.

• More subtle controls of the decision tree are possible, such as the normalization of the

signal sample and background sample in the root node (normalized to equal size as

default), definition of the signal/background node (default purity criterion is 1
2), the

β setting in AdaBoost method (default is 1).

• Fitting the full shape of BDT distributions to data instead of applying a selection

will make maximal use of all signal events remaining after the pre-selection. It also

allows for constraining the background rates from data. Preliminary study with the

fit method have been performed, using the same trained BDT as presented in Sec-

tion 6.2.3. It is found a reduction of 3% in total uncertainty of single top-quark

t-channel cross section measurement. More improvements are expected with the uti-

lization of a new BDT optimized for the fit method.
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Chapter 7

SUMMARY AND OUTLOOK

This chapters gives a summary of the measurement results in this thesis. Some pre-

liminary results on single top-quark t-channel cross section measurement from ATLAS and

CMS experiment at the LHC are presented in the second section. The results are compared

between different analyses and between different experiments. Possible single top-quark

measurements and new physic searches in the future are discussed in the final part of this

chapter.
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7.1 Summary

The LHC has run smoothly and efficiently at center-of-mass
√
s = 7 TeV with an instanta-

neous luminosity larger than 1033cm−2s−1 in 2011. The integrated luminosity of 1.04 fb−1

data collected from ATLAS detector is used in this thesis to perform a single top-quark

t-channel production cross section measurement. This measurement explored a boosted

decision trees multivariate approach and combined the results of 2-jets and 3-jets channels.

The measured cross section of single top-quark t-channel production is

σt = 97.3+30.7
−30.2pb. (7.1)

This results is compatible with the Standard Model prediction and stable with the high

pile-up condition.

A measurement of the CKM matrix element |Vtb| is also performed using the observed

single top-quark t-channel cross section. This measurement is independent of assumptions

about the number of quark generations or about the unitarity of the CKM matrix. Assuming

|Vtb| � |Vts|, |Vtd| and a SM-like left-handed Wtb coupling, the measured |Vtb| is

|Vtb| = 1.23+0.20
−0.19. (7.2)

Constraining |Vtb| to the Standard Model region |Vtb| ≤ 1, a lower limit at 95% confidence

level is obtained

|Vtb| > 0.61. (7.3)

The measured |Vtb| is compatible with the Standard Model prediction.
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7.2 Preliminary Results from ATLAS and CMS

Cut-based (CB) analysis [116] and neural network (NN) analysis [115] in ATLAS use the

same data sets and share the same pre-selection as boosted decision tree analysis. After

pre-selection, CB analysis applies additional sequential selections to extract signal events,

while the NN analysis exploits neural network multivariate discriminators.

7.2.1 Cut-based Analysis in ATLAS

The additional selection cuts in CB analysis were chosen in order to increase the expected

significance of the t-channel single top-quark signal, taking into account systematic uncer-

tainties on the background estimate [127]. These selection cuts are:

• 2-jet channel: η(UJet) > 2.0, Ht > 210 GeV, 150 GeV < M top(lνb) < 190 GeV,

∆η UJetBJet > 1

• 3-jet channel: η(UJet) > 2.0, Ht > 210 GeV, 150 GeV < M top(lνb) < 190 GeV,

M AllJets > 450GeV .

Corresponding explanations for the variables used can be found in Section 6.2.1.

The cut-based analysis measures, by combining four different channels (positive and

negative lepton charge, with two and three jets) a cross section of σt = 92 +29
−26 pb. The sep-

aration of candidate events according to the lepton charge allows individual measurements

of the top-quark and top-antiquark cross sections, yielding the results σ(t) = 59+18
−16 pb

and σ(t̄) = 33+13
−12 pb, that can be compared to the theoretically predicted cross sections of

41.9+1.8
−0.8 pb and 22.7+0.9

−1.0 pb, respectively [20].

The data selected by CB selections and by BDT selections only partially (25%) over-

lapped. This allows examination of the signal in a different phase space region. The mea-

sured cross section in CB analysis is in good agreement with the one measured in BDT

analysis.
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7.2.2 Neural Network Analysis in ATLAS

NN analysis uses the NeuroBayes [128, 129] tool, which combines a three-layer feed-forward

neural network with a complex preprocessing of the input variables. The variables used in

NN are chosen according their separation performance in NN, which are not exactly the

same with the ones used in BDT. Among 12 variables used in 2-jet channel in NN analysis,

several most discriminating variables are M top(lνb), η(UJet), ET (UJet), ∆η(W,Bjet),

∆η(Bjet, Ujet), HT , MT (W ). 18 variables used in 3-jet channel, the most discriminating

variables are M(Jet1, Jet2), M top(lνb) and ∆η(Jet1, Jet3).

In NN analysis, the signal event in selected data are extracted by performing a maximum

likelihood fit to the entire NN output distributions in the 2-jet and 3-jet data set. Combining

2-jet and 3-jet channel, the measured cross section is

σt = 83± 4 (stat.) +20
−19 (syst.) pb = 83± 20 pb.

The value of |Vtb| is extracted from the NN analysis. The result obtained is |Vtb| =

1.13+0.14
−0.13 (exp.)±0.02 (theo.) = 1.13+0.14

−0.13. Restricting the range of |Vtb| to the interval [0, 1],

as required by the SM, a lower limit on |Vtb| is extracted: |Vtb| > 0.75 at the 95% confidence

level.

The measured cross section and |Vtb| are in good agreements with BDT analysis. The

estimated uncertainties is smaller than BDT analysis. A summary of the measured cross

section results in BDT, CB and NN analysis in ATLAS are shown in Figure 7.1.

7.2.3 Results from CMS Experiment

The single top-quark t-channel cross section measurement in CMS uses 1.14fb−1 data col-

lected by CMS detector in 2011 [21]. CMS analysis applies event selections similar as the

ATLAS analysis. These event selections are

• exactly one isolated muon (electron) candidate, with pT > 20 GeV (ET > 30 GeV)

and |η| < 2.1 (|η| < 2.5).

• reject the events with additional muons (electrons) that pass the looser quality criteria,

and pT > 10 GeV (15 GeV), |η| < 2.5.
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Figure 7.1: Summary of the ATLAS single top-quark t-channel cross-section results [19].
Theoretical predictions obtained from approximate NNLO calculation [20] are shown by the
vertical bands.

• 2 or 3 jets with pT > 30 GeV and |η| < 4.5.

• require MT (W ) > 40 GeV for muon channel to suppress the events with a muon does

not come from a leptonically decaying W boson.

• require Emiss
T > 35 GeV for electron channel to reduce the QCD-multijet contamina-

tion.

The QCD-multijet background and W+jets background are also estimated using data-

driven methods in CMS analysis. The signal content of the selected sample are extracted by

performing a maximum likelihood fit to the distribution of the pseudorapidity of the light

jet η(UJet). The measured cross section with the muon and electron channel combined is

σt = 70.2± 5.2(stat.)± 10.4(syst.)± 3.4(lumi.)pb. (7.4)

Assuming |Vtb| � |Vtd|, |Vts|, |Vtb| is determined in CMS analysis,

|Vtb| = 1.04± 0.09(exp.)± 0.02(theo.). (7.5)
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The results on single top-quark cross section measurement at the Tevatron have been

introduced in Section 2.3.3. A comparison of the cross section measurements in CMS at the

LHC and in D0 at the Tevatron is shown in Figure 7.2.

Figure 7.2: Single top cross section in the t-channel versus center-of-mass energy, compar-
ing CMS measurement [21] with the dedicated t-channel cross section measurements in D0
experiment at the Tevatron [22, 23]. The results are also compared with the QCD expec-
tations computed at NLO with MCFM in the 5-flavour scheme [24] and at approximate
NNLO [20].
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7.3 Single Top-quark Measurements in The Future

The studies on single top-quark have just begun. In the future, a large variety of single

top-quark analyses are expected, including both SM measurements and searches for the

possible new physics. All these studies could expand our knowledge of the particle physics

and make us one step closer to the true nature of the universe.

7.3.1 Single Top-quark Wt-channel and s-channel Measurements

The cross section of single top-quark Wt channel production at the Tevatron is negligibly

small. The first observation of the Wt associate single top production rests on the measure-

ments at the LHC. In ATLAS, a search of the single top-quark Wt-channel production in

dilepton final states is performed, observing a 3.3σ evidence [130]. In CMS, the single top-

quark Wt associate production in dilepton channel is also measured, giving a significance

of 2.7σ [131].

The studies on single top-quark s-channel and Wt-channel in lepton+jets final states

have also started and results are expected in near future.

7.3.2 Flavor Changing Neutral Current (FCNC) Analysis

In the SM, FCNC processes are suppressed at higher orders, while extensions of the SM

with new sources of flavour predict higher rates of FCNC top-quark productions [132]. A

search of the FCNC single top-quark production is performed [133] in ATLAS. No evidence

of FCNC production is found. Further constrains on the cross section of single top-quark

FCNC production can be achieved in future analysis.

7.3.3 Top Polarization and W Polarization

In the Standard Model, the W boson couples only to fermions with left-handed chirality.

As a results, the top quark produced in single top-quark t-channel and s-channel is 100%

polarized along the direction of the d (d̄) quark. The polarized top-quark decays into a

W boson either left-handed or longitudinally polarized. The kinematics of the final state
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particles in single top-quark production can be used to probe the polarization of top quark

and W boson.

7.3.4 W ′ Measurement

Many new physic models such as techni-color [134], Kaluza-Klein extra dimensions [135],

little Higgs models [136], have a common feature of existence of W ′-like bosons. W ′ boson

can contribute to the single top-quark s-channel production qq̄′ → W ′,W ′ → tb̄. The

distribution of the invariant mass of the tb̄ system could shown a resonance effect around

MW ′ , which can be used to identify this type of new physics.

7.3.5 Search for Fourth Generation Quarks

The fourth generation bottom-like quark b′ is possible in many physics scenarios. If mb′ >

mt+mW , the b′ is likely to decay into a top quark and a W−. Thus the single b′ production

results in the same final states as single top-quark Wt-channel production. The studies on

the single top-quark Wt-channel final states could search for the single b′ production and

constrain the mass of b′.

7.3.6 Many Other Measurements

Many other studies on the single top-quark production are very interesting but will not be

discussed in detail here, such as the new final state of single top-quark production mono-

tops [137], model-independent extraction of CKM matrix elements [138], anomalous tbW

couplings in single-top production [139], searching for heavy resonance particles [140] and

charged Higgs [141].
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Appendix A

MODELING OF INPUT VARIABLES TO THE BOOSTED DECISION
TREE
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Figure A.1: Normalized distribution of the discriminating variables used as input of the
boosted decision tree for signal (blue) and background (red) for 2-jets events.
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Figure A.2: Normalized distribution of the discriminating variables used as input of the
boosted decision tree for signal (blue) and background (red) for 2-jets events.
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Figure A.3: Normalized distribution of the discriminating variables used as input of the
boosted decision tree for signal (blue) and background (red) for 3-jets events.
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Figure A.4: Normalized distribution of the discriminating variables used as input of the
boosted decision tree for signal (blue) and background (red) for 3-jets events.
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Figure A.5: Stacked distributions of the variables used as input of the BDT for the 2-jets
pretag sample.
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Figure A.6: Stacked distributions of the variables used as input of the BDT for the 2-jets
pretag sample.
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Figure A.7: Stacked distributions of the variables used as input of the BDT for the 2-jets
pretag sample.
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Figure A.8: Stacked distributions of the variables used as input of the BDT for the 2-jets
pretag sample.
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Figure A.9: Stacked distributions of the variables used as input of the BDT for the 3-jets
pretag sample.
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Figure A.10: Stacked distributions of the variables used as input of the BDT for the 3-jets
pretag sample.
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Figure A.11: Stacked distributions of the variables used as input of the BDT for the 3-jets
pretag sample.
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Figure A.12: Stacked distributions of the variables used as input of the BDT for the 3-jets
pretag sample.
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Figure A.13: Stacked distributions of the variables used as input of the BDT for the 2-jets
tag sample.
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Figure A.14: Stacked distributions of the variables used as input of the BDT for the 2-jets
tag sample.
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Figure A.15: Stacked distributions of the variables used as input of the BDT for the 2-jets
tag sample.
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Figure A.16: Stacked distributions of the variables used as input of the BDT for the 2-jets
tag sample.
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Figure A.17: Stacked distributions of the variables used as input of the BDT for the 3-jets
tag sample.
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Figure A.18: Stacked distributions of the variables used as input of the BDT for the 3-jets
tag sample.
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Figure A.19: Stacked distributions of the variables used as input of the BDT for the 3-jets
tag sample.
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Figure A.20: Stacked distributions of the variables used as input of the BDT for the 3-jets
tag sample.
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