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Abstract
Universal fault-tolerant quantum computers will require error-free execution of long sequences of
quantumgate operations, which is expected to involvemillions of physical qubits. Before the full
power of suchmachines will be available, near-termquantumdevices will provide several hundred
qubits and limited error correction. Still, there is a realistic prospect to run useful algorithmswithin
the limited circuit depth of such devices. Particularly promising are optimization algorithms that
follow a hybrid approach: the aim is to steer a highly entangled state on a quantum system to a target
state thatminimizes a cost function via variation of some gate parameters. This variational approach
can be used both for classical optimization problems aswell as for problems in quantum chemistry.
The challenge is to converge to the target state given the limited coherence time and connectivity of the
qubits. In this context, the quantum volume as ametric to compare the power of near-termquantum
devices is discussed.With focus on chemistry applications, a general description of variational
algorithms is provided and themapping from fermions to qubits is explained. Coupled-cluster and
heuristic trial wave-functions are considered for efficiently findingmolecular ground states.
Furthermore, simple error-mitigation schemes are introduced that could improve the accuracy of
determining ground-state energies. Advancing these techniquesmay lead to near-termdemonstra-
tions of useful quantum computationwith systems containing several hundred qubits.

1. Introduction

Recent advances in thefieldof quantumcomputinghave boosted thehope that oneday complexproblems canbe
solved efficiently onquantumcomputers. Theultimate goal is a universal fault-tolerant quantumcomputer that runs
arbitrary algorithmsmuch faster thanona classical computer.However,millions of physical qubits andhigh-fidelity
gate operations are required to implement auniversal fault-tolerant quantumcomputer, a system that currently
cannotbebuilt. Yet, quantumdeviceswith a couple of hundredphysical qubitswith limitedorno error correction are
likely tobecomeavailable in thenear future.With it comes the questionhow to exploit these devices foruseful
calculations. In this paper,wediscusshow the variational quantumeigensolver (VQE) canbe runonnear-term
quantumdevices to tackle optimizationproblems that are exponentially hardonclassical computers.

We differentiate between two types of optimization problems. Thefirst kind are quantumoptimization
problems, such as finding the ground state of a complexmolecule or the simulation of its dynamics. In this case,
optimization typically involvesminimization of the total energy as described by the energy expectation value of a
non-trivial Hamiltonian as a function of somemolecular parameters, such as interatomic distances. The second
kind are classical optimization problemswhich can usually bemapped onto a relatively simple Ising-type
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Hamiltonian. In both cases, exponential scaling of the required computational resources with the problem size
canmake the problems hard to solve or even intractable on classical computers.

Generally, optimization problems are solved by finding the extremumof an objective function, such as cost,
energy, profit or error. As the cost function typically depends on a large set of parameters, finding a solution
involves searching a high-dimensional parameter space, which quicklymakes a brute-force approach unfeasible.
A quantum computer operates onHilbert space, which grows exponentially as 2Nwith the number of qubitsN.
The idea is to use this vast state spacewith the help of quantum entanglement, and thus boost the efficiency in
finding the right solution, ideally with exponential speed-up [1–5]. Amore careful analysis shows, however, that
the speed-up for classical optimization problems is inmany cases rathermodest [6–8]. In contrast, one can
benefit fromquantum speed-up in problems that are directly related to the quantum–mechanical description of
nature itself. A prominent example isfinding themany-electronwavefunction of amolecular system. Classical
computers fail to solve such problems exactly formore than a few tens of electrons because of the exponential
increase ofHilbert space with the number of electrons. The large state space of a quantum computer can be used
to simulate a chemical system and calculate its properties, including correlations and reaction rates, once the
challenge of efficientlymapping the fermionic problem to the available qubit hardware is overcome.

In fact, on a quantumdevice the natural way is to solve the chemical system in second quantization [3, 4,
9–33] formulated in terms of fermionic annihilation and creation operators. Because of the different statistics
there is no direct one-to-onemapping: each fermion operatormust be represented by a string of qubit operators,
which induces long-range qubit-qubit correlations in the system and places demanding requirements on the
connectivity and the number of gates (see section 4.1). To compute the quantum evolution of chemical systems
on a digital quantum computer, decomposition into discrete time steps is required and accordingly long gate
sequences [3, 14, 34].

On current quantumdevices, gate errors and decoherence restrict the number of sequential gate operations
that can be performedwhile keeping ameaningful, coherent quantum state.Moreover, connectivity between
qubits is limited by the physical routing of thewires on a qubit chip. This is why a new class of hybrid classical
quantumalgorithms, called theVQE [33–43], holds a lot of prospects for near-term quantum-computing
systems (see figure 1). These algorithmsworkwith short-depth circuits andwill result in approximate results
when the number of qubits, their coherence and the connectivity is large enough. These requirements on the
quantum system can be quantified by the quantum volume [44], a hardware-independent figure ormerit for the
power of a quantum computer.

TheVQE can be used both for classical optimization problems as well as for fermionicHamiltonians
describing, e.g., quantum chemistry. In quantum chemistry theVQE is used to calculate ground states [33–39]
of chemical systems. The high-dimensional trial wavefunctions, which are costly to represent on a classical
computer, are generated on the quantum computer using parametrized single-qubit and entangling gates. The
optimization of the gate parameters is performed on a classical computer by summing expectation values of the
qubit operatorsmeasured on the quantumdevice and thereby calculating the total energy as a cost function. This
can in principle lead to very short-depth circuits which ideally run in a time that is shorter than the coherence
time of the quantum computer. The sameVQE can be applied to other physical systems in condensedmatter
such as the Fermi–Hubbardmodel [2, 12, 17, 45–48] and spin systems [49–52].

Hybrid algorithms are, however, not resilient against decoherence and gate errors, whichmay lead to
inaccurate estimates of the expectation values. Currently available error-correction schemes, such as those based
on surface codes [53], require a significant number of qubits, rendering quantum simulations of practical
systems challenging in the near future. Still, novel schemes that do not require ancillas or code qubits can help
mitigate induced errors, enabling longer and bigger quantum computations. Such errormitigation schemes

Figure 1. Schematic of a hybrid quantum–classical computing architecture.
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[54, 55]need to be developed further and tested to improve accuracywithout the full overhead of error-
correction codes for universal quantum computing.

The paper is structured as follows: the quantum volume is discussed in section 2 beforewe explain theVQE
in section 3 and its application to quantum chemistry problems in section 4. After a brief discussion of the
prospects of solving classical optimization problemswith near-term quantumdevices in section 5, we elaborate
on the choice of suitable optimizers for the classical feedback in theVQE in section 6 and discuss the prospects of
fighting back decoherence in near-term quantumdevices without full error correction in section 7. Finally, we
conclude in section 8.

2.Quantumvolume, ametric for near-termquantumdevices

For current quantumprocessors, various architectures and physical qubit realizations are being considered.
While quantum systems based on superconducting qubits [34, 56–61] at themoment seem to be leading the
way, ion-trap-based systems [62, 63] are close competitors. Furthermore, semiconductor-based spin qubits
[64–66] and other quantum architectures [67–69]may still become important in the future. Given the different
hardware implementations it is often difficult to benchmark the usefulness or power of quantum systems, which
is why a hardware-independentmeasure is required. To define a suitablemetric, wefirst note that a quantum
computer’s performance depends onfivemain hardware parameters:

(i) Number of physical qubitsN.

(ii) Connectivity between qubits.

(iii) Number of gates that can be applied before errors or decoherencemask the result.

(iv) Available hardware gate set.

(v) Number of operations that can be run in parallel.

With the goal to quantify a quantum computer’s powerwith a single parameter, wewould like to consider a
metric based on the question ‘can this device run a given algorithm?’. For any given instance of a quantum
algorithm, there is a lower bound on the number of qubitsN required to run the algorithm, aswell as the
necessary number of steps (or circuit depth) d.We therefore define a quantum volumeVQ [44] that takes into
account both the number of qubitsN and the allowable depth d of quantum circuits that can be run on a near-
termquantumdevice. In the simplest case, we could just choose the quantumvolume to be d·N; however, this
has some undesirable properties in that it can be gamed in variousways. For example, inmany cases the smallest
error rates and therefore the largest circuit depthwill result from very few qubits, evenN=2, as in this case
therewill be less connectivity and parallelization overhead and fewer issues with crosstalk between qubits.
However, clearlyN=2 is a completely uninteresting limit. Also the other extreme, where a device hasmany
qubits but little coherence, i.e. d≈1, is not interesting because such a system cannot use entanglement as a
resource and calculations become effectively classical.

We therefore conceptually define the quantum volume as

=˜ [ ( )] ( )V N d Nmin , . 1Q
2

Here, the number of qubitsN is an easily accessible hardware parameter; however, the achievable circuit depth
d(N)needs further specification in terms of the hardware parameters given in the list above.

We start by considering one step of a quantum algorithm (a depth-one circuit) on a number ofN qubits.
Such a step is expressed as a unitary operator that can bewritten as a tensor product of randomly chosen
arbitrary two-qubit gates on disjoint pairs of qubits (see step 1 infigure 2(a)). Here, we allow any unitary two-
qubit operation in the SU(4) group, whichmay consist of a combination of one- and two-qubit gates on the
actual hardware. Then an effective error rate òeff is defined as the error rate per two-qubit gate averaged over
many realizations of such depth-one circuits. Therefore, òeff depends on the gate overhead requiredwhen all-to-
all connectivity, full parallelism and a suitable gate set is not available. Thereby, it also encapsulates both the
errors of single- and two-qubit gates. If the hardware supports all possible two-qubit gates directly (requiring an
all-to-all connectivity)with identical error rate ò, and in addition allows unlimited gate parallelism, then òeff=ò.
If the connectivity is limited, then it will be necessary to insert additional SWAP gates to permute the qubits in
order to implement the random two-qubit gates, leading to an increase of òeff>ò. A planar nearest-neighbor
qubit couplingwould lead to an effective error rate of  µ Neff , and a linear chain of qubits would yield an
effective error rate of òeff∝Nò. On the other hand a hardwarewhich supportsmore complex gates such as the
Tofoli gate directly or the use of a compiler which efficiently compresses the gates of a test circuit could also lead
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to a situationwith òeff<ò. Other special features and limitations of the hardwaremust be dealt with in a similar
manner.

The error rate of a single circuit step scales with the number of simultaneous two-qubit gates ò1step∝Nòeff.
In otherwords, we can estimate the circuit depth inwhich, on average, a single error occurs as  ( )d N1 eff ,
linking the effective error òeff to the previous definition of the quantumvolume using the circuit depth. As an
example, if an effective error rate  = -10eff

4 is experimentally achievable, depth d=10 algorithms could be
run on a 1000-qubit device, and d=100 algorithms on a 100-qubit device.

However, the effective error rate òeff will depend not only on the gate error rates and the connectivity but,
more generally, on the complexity of the quantum systemwhich growswith the number of qubits, for example,
because of crosstalk. The effective error rate òeff(N)will therefore likely be a function ofN even if full connectivity
is available.Moreover, òeff also depends on the sophistication of the scheduling algorithm responsible for
mapping the quantumalgorithm considered to the hardware. Both hardware and software improvements will
thus impact the effective error rate òeff(N).

Finally, we note thatwith this definition the allowable circuit depth  ( )d N1 eff decreases withN at
constant effective error òeff, whichmeans that a system’s quantum volume decreases ifmore qubits with the
samefidelity aremade available on the hardware.However, a given algorithmdoes not necessarily need allN
available qubits. It could even be beneficial for an algorithm that requires n<N qubits to run on anN-qubit
machinewhen selecting a subset of qubits with good connectivity is selected.We therefore further refine the
definition of the quantum volume in equation (1):


=

<

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟( )

( )V n
n n

max min ,
1

, 2
n N

Q
eff

2

where themaximum is taken over an arbitrary choice of n qubits tomaximize the quantumvolume that can be
obtainedwith such a subset.

We plot an example quantum circuit with two circuit steps and the functional dependence of the quantum
volume on the number of qubits and an effective two-qubit error rate infigure 2. The dashed line denotes the
tipping point where = =( )d N N1 eff . From any point on this line, a significant increase inVQ requires
improvements in both òeff andN.We also see that the usefulness of current quantumdevices is likely limited by
the typical effective error rates, which are  > -10eff

3. To improve òeff wewill have to start encoding quantum
states in logical qubits with an overhead in the number of physical qubits. This will eventually lead to fault
tolerant quantum computing.

The quantum volume is therefore an architecture-neutralmetric that characterizes the capability of a chosen
quantum computing architecture to run useful quantum circuits. It enables the comparison of hardware with
widely different performance characteristics and quantifies the complexity of algorithms that can be run on such
a system. An important conclusion that we can draw for the usefulness of near-termquantumdevices is that
when increasing the number of qubits the power of the quantumdevice will increase only if the effective error
rate is improved at the same time.

Figure 2. (a)Example quantum circuit with two circuit steps. Step 2 requires different connectivity andwould lead to an increased gate
count on quantumhardwarewith only nearest neighbor interactions. This is illustrated to the right of step 2. (b)Quantum volume as a
function of the effective error rate òeff and the physical number of qubitsN. For simplicity, we assume that for a given òeff,VQ stays
constant for d<N .
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3. ExploringHilbert spacewith theVQE

To exploit near-term quantumdevices, applications and algorithms have to be tailored to current quantum
hardwarewith only tens or hundreds of qubits andwithout full quantum error correction. Onemain constraint
is the limited quantumvolume that restricts the depth ofmeaningful quantum circuits. Still, a small-scale
quantum computer with hundred qubits can process quantum states that cannot even be stored in any classical
memory. A natural way tomake use of this quantum advantage is via a hybrid quantum–classical architecture: a
quantum co-processor preparesmulti-qubit quantum states qY ñ∣ ( ) parametrized by control parameters q. The
subsequentmeasurement of a cost function q q q= áY Y ñ( ) ( )∣ ∣ ( )E Hq q , typically the energy of a problem
HamiltonianHq, serves a classical computer tofind new values q in order tominimize q( )Eq andfind the
ground-state energy

q q= áY Y ñ
q

( ( )∣ ∣ ( ) ) ( )E Hmin . 3q q
min

ThisVQE approach toHamiltonian-problem solving has been recently applied in different contexts [34, 37, 40,
70–72]. In fact, theHamiltonianHq can takemany forms, the only requirement being that it can bemapped to a
systemof interacting qubits with a non-exponentially increasing number of terms.Herewe distinguish two
relevant cases: Hamiltonians that describe fermionic condensed-matter ormolecular system (section 4) and
Hamiltonians that describe a classical optimization problem (section 5).

3.1. Variational quantumeigensolvermethod
In detail, the VQEmethod consists of fourmain steps as shown infigure 3. First, on the quantumprocessor a
tentative variational eigenstate, a trial state, qY ñ∣ ( ) is generated by a sequence of gates parameterized by a set of
control parameters q. In the ideal case, this trial state depends on a small number of classical parameters q,
whereas the set of gates is chosen to efficiently exploreHilbert space. In particular, the class of states forming the
solution to theminimization problem in equation (3)has to lie within the set of possible trial states. Suitable gate
sets which provide a good approximation to thewanted target state, whichminimizes the cost function, have
been found for both classical optimization problems [41] (section 5) and quantum chemistry problems
(section 4). Aside from these considerations, it is also essential that hardware constraints be taken into account.
As not all gates are directly realizable in hardware, decomposing them into those available in the quantum
hardware adds extra overhead in circuit depth. An alternative is, therefore, to use a heuristic approach based on
gates that are readily available in hardware [72] as discussed below.

Second, once the trial state has been prepared and the expectation value of the problemHamiltonianHq is
determined. The problemHamiltonian can be decomposed into Pauli strings s s s= Ä Ä ¼a

a a aP N1 2
N1 2 with

single-qubit Pauli operators and the identity operator  , s s s sÎ { }, , ,i
j

i
x

i
y

i
z such that

Figure 3.Variational quantum eigensolvermethod. The trial states, which depend on a few classical parameters q, are created on the
quantumdevice and used formeasuring the expectation values needed. These are combined on a classical computer to calculate the
energy q( )Eq , i.e.the cost function, andfindnew parameters q tominimize it. The new q parameters are then fed back into the
algorithm. The parameters *q of the solution are obtainedwhen theminimal energy is reached.
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å=
a

a a ( )H h P . 4q

N denotes the number of qubits. To determine the expectation value of each Pauli operator inPα, each single
qubit’s population ismeasured repeatedly for a given number of experiments with identical trial state
preparation qY ñ∣ ( ) . This corresponds tomeasuring s j

z for each qubit; other Pauli operators can be determined
by applying a pre-rotation on the qubit before themeasurement that effectively rotates themeasurement axis.
To determine the expectation value of the Pauli strings, themeasurement outcomes aremultiplied for each run
of the experiment and then averaged.

In a third step, the cost function q q q q q= áY Y ñ = å áY Y ña a a( ) ( )∣ ∣ ( ) ( )∣ ∣ ( )E H h Pq q is calculated by
summing up the expectation values ofPαwith corresponding coefficients hα.

Finally, the value of q( )Eq isminimized as a function of the parameters q. A classical optimization algorithm
processes q( )Eq and provides new parameters q. For each parameter set, a new set of gates for trial state
preparation has to be loaded onto the quantumprocessor. As this requires rather time-consuming re-
programming of the quantumhardware, it is important that only aminimal number of queries should bemade
to the quantumprocessor.Moreover, the calculated expectation valueswill be noisy because of the limited
sampling statistics of the qubit state. Therefore, classical robust optimizers have to used that can handle the noise
on themeasured expectation values and scale favorablywith the number of parameters as described in section 6.
The procedure endswhen theminimumof q( )Eq in equation (3) is reachedwithin a given accuracy and the
optimal parameters *q are found.

4.Quantum chemistrywith qubits

Todemonstrate the potential of a quantumprocessor with limited quantum volume, one needs to consider
quantumalgorithms that provide a large scaling advantage comparedwith their classical counterparts. The
solution of the electronic structure problem in quantum chemistry belongs to this class: because of the
exponential scaling of the problem, it is impossible tofind an exact solution to the Schrödinger equation of
systemswithmore than a few tens of electrons on a classical computer. Several approximations have been
introduced to access the properties of large-scale systemswithmore than 1000 electrons on high-performance
computers. The aim is to reach the required accuracy for chemical energies (∼50 meV). One approach is to
approximate themany-electronHamiltonian itself using, for example, density-functional theory [73]. There,
the original systemof interacting electrons is replaced by a fictitious one of non-interacting electronsmoving in a
modified external potential that allows, at least in principle, the original exact solution to be recovered.

An alternative approach starts from the exactHamiltonian and attempts tofind suitable approximations for
the systemwavefunction in themany-electronHilbert space. This calculation can, in principle, be performed
either within thefirst or the second quantization formalism. Infirst quantization, all spatial integrals have to be
evaluated on the quantum computer. For this reason, approaches based on second quantization aremore suited
forfirst-generation quantumdevices. In this case, all spatial integrals are evaluated beforehand on a classical
computer, whereas the sampling of theHilbert space is performed in the orbital configuration space spanned by
molecular Slater determinants. This approachmaps naturally to the variationalmethod described above
(section 3). It starts from the one-electron basis states that are obtained by solving theHartree–Fock equation.
TheseHartree–Fock orbitals are then used to construct an anti-symmetrized product wavefunction, the Slater
determinant, which is used as a starting point for a perturbative expansion. In this expansion a controlled series
of excited configurations is added until a sufficiently accurate approximation of the ground state is found.

4.1.Mapping fermions to qubits
The electronicHamiltonian in second quantization is given by

å å= + ( )† † †H t a a u a a a a , 5F
ij

ij i j
ijkl

ijkl i k l j

where the operators †ai and ai create and annihilate electrons in the ith orbital. The parameters tij and uijkl
describe the one- and two-electron interactions and can be efficiently computed classically as the overlap
integrals of the orbitals in the basis set [74]. The two-electron term scales atmost with the number of orbitals to
the fourth power [4, 75] and therefore does not grow exponentially, whichwould prohibit efficient computation
even on a quantum computer.

Because ai and
†ai , unlike the Pauli spin operators, follow fermionic commutation rules {ai, aj}=0,

={ }† †a a, 0i j , d={ }†a a,i j ij, a direct implementation of equation (5) on a qubit-based quantumprocessor is not
feasible without amapping from fermionic to Pauli operators. The fermionic nature of electrons implies that
many-electronwavefunctionsmust be anti-symmetric with respect to particle exchange. This is reflected in the
way fermionic creation and annhilation operators act on state vectors:
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dñ = ñ- + - +∣ ∣ ( )†a f f f f f p f f f f, ..., , , , ..., , ..., , 1, , ..., , 6i i i i N f i i i N1 1 1 ,0 1 1 1i

dñ = ñ- + - +∣ ∣ ( )a f f f f f p f f f f, ..., , , , ..., , ..., , 0, , ..., . 7i i i i N f i i i N1 1 1 ,1 1 1 1i

Here = - å =
-( )p 1i

fk
i

k0
1

denotes the parity and Î { }f 0, 1i the occupation number of the fermionic orbital i. The
naive replacement of the fermionic operators (†)ai by Pauli ladder operators s s s=  ( )i 2i

x y does, however,
not reproduce equations (7) because s

i describe distinguishable particleswith no special symmetries.
A variety ofmappings have been developed that guarantee that the fermion statistics are captured on a

systemof qubits [76–78]. Among those, the Jordan–Wignermapping [79] is particularly intuitive: it is based on a
one-to-onemapping of fermionic to qubit occupations, i.e. the occupancy information is stored locally. To take
into account the parity information pi in equations (7), fermionic operators are translated as

 s s Ä ÄÄ - - Ä -( ) ( )†a , 8i
i z N i1

 s s Ä ÄÄ - + Ä -( ) ( )a , 9i
i z N i1

whereN is the total number of qubits considered. It is obvious that calculating the parity when acting on qubit i
requires the knowledge of all state occupations j<i, which is accomplished by theσ z terms in equation (9).
However, this introduces a non-locality in themapping and,when inserted into theHamiltonian in equation (5),
gives rise to long sequences ofσ z operators intercalating betweenσ± operators of length k, known as k-local
termsThismeans that a fermionic wavefunction is spread out over( )N qubits, posingfidelity issues in the
readout process of the expectation value of theHamiltonian.

Recent schemes for tapering off qubits inmapped fermionicHamiltonians [78, 80], based on fermionic
symmetries, can partially alleviate the hardware requirements necessary for performing simulations of
fermionic systems. These second-quantized tapering schemes exploit symmetries in themapped qubit
Hamiltonian to reduce the simulation space needed to host themapped fermionic system.

The Jordan–Wigner transformation [79] consists of a local occupancymap and a non-local,( )N , parity
function, whereas the binary-tree transformation encodes both operations onmaps that scale( ( ))Nlog with
the number of qubits [76–78], which is a clear advantage comparedwith the Jordan–Wigner transformation.

4.2. Coupled cluster trial wavefunctions
Once amapping of fermions to qubit has been chosen, suitable trial states for theVQEhave to be prepared on
the quantumprocessor. At best, these trial states incorporate the structure of the problemHamiltonian and
knownproperties of the solution state, such as the total numberN of fermions.While one could aim tofind a
gate set that allows one to generate all possible excited Slater determinant configurations, which is known as the
full configuration interaction approach, the number of states scales factorially with the number of electrons, a
clear obstacle for computing largermolecules. Oneway to improve the efficiency is to use a coupled-cluster
approach for creating the trial states, which allows a systematic sampling of all relevant excited Slater
determinants up to a given excitation degree. In conventional quantum chemistry, these coupled-cluster
expansions are used as a benchmark for all other approaches.

In the unitary coupled-cluster (UCC) approach [81], which is a variational version of the commonly used
coupled-clustermethod [82], the unitary operator q( )U that is used to generate a trial wavefunction qY ñ∣ ( )
from the reference state Fñ∣ is given by

q qY ñ = Fñ = Fñq q-∣ ( ) ( )∣ ∣ ( )( ) ( )†
U e . 10T T

It is constructed by exponentiation of the cluster operator q( )T defined as

å å åq q q qq q= = =
Î

Î
Î
Î

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) †

( ) ( )
( ) † †T T T a a T a a a a, , ,... 11

k
k

i
j

i
j

j i
i j

l k

i j
k l

l k j i1
occ

unocc

2
, occ

, unocc

,
,

Here, the coefficients q describes a vector of parameters that will be optimized usingVQE. A common choice for
the reference state Fñ∣ is the ground-state Slater-determinantmade up of the lowest-energymolecular orbitals
obtained from the solution of theHartree–Fock equation.

The coefficients q of the cluster operators are not independent and their value decreases with the order of the
excitation. Therefore, this expansion is typically truncated at the double (UCCSD) or triple level (UCCSDT) of
excitationwithout significantly reducing the accuracy. In fact, the exponentiation of the cluster operator q( )T
introduces higher uncorrelated excitations at each level of truncation, e.g., for q q q= +( ) ( ) ( )( ) ( )T T T1 2

q q
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the expansion produced triplet and quadruple excitations in the first few terms of the expansion (fifth and sixth
terms, respectively). Despite the compactness of this expansion, the number of coefficients q increases already in
UCCSDwith the number of orbitals to the fourth power, which impacts the efficiency of the classical
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optimization of the trial state qY ñ∣ ( ) . In practice, in the case of largemolecular systems the limited achievable
circuit depth in current quantumdevices requires a further truncation of the series in equation (12). Thus, while
the coupled clustermethod guarantees in principle an efficient convergence towards the exact ground state, its
implementation in state-of-the-art quantum computers requires further studies in terms of howdifferent
approximations (truncations) affect the accuracy of the solution.

4.3.Hardware-efficient trial states suitable for near-termquantumhardware
Amuch simpler approach is, therefore, the heuristic generation of the trial state with unitary operations that are
more suited to the available quantumhardware [72]. Independently of the particular problem to be solved, one
may choose trial states that can be efficiently generated in current quantumhardware and at the same time allow
the generation of highly entangled states that are close to the target state.

This approach is showcased in the examples provided in sections 4.4 and 5.2. As shown infigure 4, the
preparation of the heuristic trial states comprises two types of quantumgates, single-qubit Euler rotations q( )U
determined by the rotation angles q and an entangling drift operationUent acting on pairs of qubits. TheN-qubit
trial states are obtained by applying a sequence ofD entanglersUent alternatingwith the Euler rotations on theN
qubits to the initial ground state ¼ ñ∣00 0 ,

q q q qF ñ = ¼ ¼ ñ
  

∣ ( ) ( ) ( ) ( )∣ ( )
‐

U U U U U 00 0 . 13D
ent

1
ent

D times

0

This gate sequence has a total number of = +( )p N D3 2 independent angles.
To bemore specific, the single-qubit operations are decomposed into rotations about the x- and the z-axes,
q =

q q q
( )U Z X Zq i q q q,

q i q i q i
1

,
2

,
3

, , with q q s= -( ) [ ]X exp i 2q
j
q i

j
q i

q
x, , (and similarly for Y and Z ) denoting the unitary

operation acting on qubit q at the ith position in the gate sequences. The heuristic approach does not rely on the
accurate implementation of specific two-qubit gates and can be usedwith anyUent that generates sufficient
entanglement. A natural choice can be the cross-resonance gate [83, 84] as a two-qubit gate suited for thefixed-
frequency superconducting qubit architecture as used, for example, for the IBMQexperience [61].

4.4. Smallmolecules calculatedwith theVQE
As an application of themethod described above, we present the calculation of the ground-state energy of simple
molecules such as the hydrogenmolecule: the starting point is theHamiltonian in second quantization in
equation (5)with the one-body terms, tij, representing the kinetic energy of the electrons and the potential
energy that they experience in the presence of the nuclei,
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and theCoulomb repulsion terms
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-
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r ru d d
1

. 15ijkl i j k l1 2 1 1
1 2
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Zn are the nuclei chargesZn (n=1, 2), and eachwavefunction f ( )xi 1 orbital is a 1s orbital centered at the one
hydrogen atom.We assume that the system is in its spin singlet state. After reduction [78] a two-qubit

Figure 4.Heuristic preparation of trial states for the variational quantum eigensolver based on single-qubit gates q( )U interleaved by
entangling operationsUent as described in the text.
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Hamiltonian is obtained

   s s s s s s= Ä + Ä + Ä + Ä + Ä ( )H f f f f f 16H z z z z x x0 1 2 3 42

with f0=−1.0524,f1=0.01128,f2=0.3979,f3=0.3979,and f4=0.1809. These coefficients are calculated
at the equilibriumdistance of 0.74Åusing equations (14) and (15) and are given inHartrees.

We evaluate the ground state of theHamiltonian in (16) on an ideal quantum simulator [61] using a heuristic
trial wavefunction approach (section 4.3)with an increasing number of entangling steps (one, two and four).
Here, the single qubit rotations of heuristic trial wavefunctions where implemented as q q q=( ) ( ) ( )U Y Zi i i

0 1 and
the entanglementwas introduced via control phase gates [85]. Figure 5 shows that a no entangling step is not
sufficient to converge towards the correct energy value, whereas one ormore entanglers can reproduce the
expected results within a few tens of optimization steps in the rotation-angle space q.

Thismethod can be extended to largermolecules. For lithiumhydride (LiH) and beryllium dihydride
(BeH2) the second-quantized fermionicHamiltonian is constructed using aminimal set of atomic orbitals
[72] (labeled by the conventional hydrogenic quantumnumbers). In BeH2 the basis is composed of the 1s, 2s,
2px orbitals associated to beryllium, and the 1s orbital associated to each hydrogen atom. This results in a total
of ten spin orbitals. The two innermost 1s spin orbitals of beryllium are assumed to be completely filled. The
remaining eight spin-orbitals of BeH2 are reduced to six by exploiting spin-parity symmetries [78]. Similarly,
the LiH ismapped onto four qubits. It is demonstrated numerically that in the absence of noise, a number of
entangling stepsD=8 andD=28 are required to achieve chemical accuracy for LiH and BeH2, respectively,
for the given experimental connectivity. However, the combined effect of decoherence and finite sampling
limits the optimal depth for optimizations on current quantumhardware to between zero and two entanglers,
which results in deviations of the simulated bond-dissociation energies from the real values. Decreasing the
effective error rates or applying error-mitigation schemes as discussed in section 7 will improve the accuracy
of the computations.

5. Classical optimizationwith qubits

The complexHamiltonians of quantum chemistry problems give quantum computers an inherent advantage
over classical hardware. For classical optimization the advantage is not as obvious becausemany of the relevant
problems can bemapped to a relatively simple Ising-spinHamiltonian. It is diagonal in the computational basis
and can be tackled by a range of classicalmethods. One of the issues with classical solvers is to avoid solutions in
localminima of the cost function. In this context simulated annealing [86] is an approach thatmakes use of
thermalfluctuations to escape such localminima.Quantum annealing [87] additionally exploits quantum
tunneling and can potentially reach a ground state faster especially for problemswith very corrugated cost
functions [6, 7]. The potential for quantum speed-upwith this approach is heavily debated in the community;
however, because of the tremendous application space even amodest speed-up for a selected number of

Figure 5.Quantum simulation of the hydrogenmolecule on an ideal quantum simulator. At the equilibrium geometry and no
entangler block in the circuit, the energy converges to a state with an energy that is about 50% too high.With twoormore entanglers,
the exact energy is obtained. The inset shows the entire dissociation profile for a hydrogenmolecule calculatedwith four entangling
steps.
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problemsmight have a significant impact.Moreover, understanding the detailed evolution of the optimization
process and the potential role of entanglement is critical even for improving algorithms that run on classical
hardware. This is why the application of theVQE for solving classical optimization problems on gate-based
near-termquantumdevices is especially interesting.

To run the VQEwe again consider two different ways to create trial wavefunctions. First, the quantum
approximate optimization algorithm (QAOA) [41] is discussed, which is a polynomial-time algorithm for
finding an approximate solution to a classical optimization problemwith a desired accuracy. It is related to the
quantum adiabatic algorithm [88], but has shorter circuit-depth requirements. Second, we give a short
example howheuristic trial states can be used to solve aMaxCut problem on a real quantumdevice using
the VQE.

5.1.QAOAwith short depth
Similarly to the approach described in section 4.3 the trial wavefunction in theQAOA is guided towards the
solution by repeated unitary evolution according to twoHamiltonians. Thefirst one is theHamiltonianHC,
which encodes the classical cost function ( )C x of a binary constrained optimization problem. The second one is
amixingHamiltonianHM, which helps guide the optimization inHilbert space towards the ground state ofHC.
The number of times that bothHamiltonians are applied in the optimization process defines the levelD of the
circuit and determines the complexity of the algorithm.

Without loss of generality, it is assumed that an optimal solution vertic x minimizes the cost functionC(x)
which is a polynomial in the binary components Î { }x 0, 1i of the variable x. Encoding of the cost function

( )C x into aHamiltonianHC requires shifting the binary variables  -( )x z1 2i i with Î -{ }z 1, 1i and then
substituting szi i

z to obtain an Ising-typeHamiltonian.We chose the same notation as in equation (4) but
consider only diagonal terms s sÎ { },i

j
i
z which gives

å å s= =
a

a a
a

a
a

a
⨂ ( )H h P h . 17C
i

i
z

Here the index iα runs over all s ai
z inPα, which constitutes a k-local term (many-body interaction term among

k N qubits), matching the polynomial terms in the cost functionCwith corresponding real coefficients hα.
The secondHamiltonianHM is just a global transverse field, i.e. s= -åHM i i

x. Tofind the ground state of the
problemHamiltonianHC, one proceeds by applying the evolution operator

b g = b g

=

- -( ) ( )U , e e 18
l

D
H H

1

i il M l C

to a starting state y ñ∣ 0 that can easily be generatedon the quantumcomputer, e.g. a uniform superposition state.
Using theVQE, the parameters of thefinal state b g b g yñ = ñ∣ ( )∣U, , 0 are then adjusted such as tominimize the
expectation value b g b gá ñ∣ ∣H, ,C .Measurement of thefinal state b gñ∣ , directly yields the solutionof the classical
optimizationproblemwith a probability that approaches unity asD increases.However, with increasingD the
circuit depth requiredwill reach the decoherence limits of available quantumhardware, and thefidelity of the result
will again decrease. Also, the number of classical parameters that need to beoptimized for largeDwill result in a
slower convergence. Insteadofusing theVQE, choosing afine interpolation b g = -( ) ( )l D l D, 1 ,l l with l=0,
K,Dwouldbe equivalent tofirst orderwith a trotterized version of the adiabatic quantumalgorithm [1, 88]. By
letting theVQE select optimal parameters (γl,βl), amore direct path to the target state becomespossible and the
algorithmcan reach the ground statewith high accuracy even for relatively small values ofD. TheQAOAhas been
generalized and successfully applied toMaxCutwith analytical andnumerical studies [89].

5.2. VQE applied to theMaxCut problem
To give an example of a classical optimization problem,we discuss an instance of themaximum-cut (MaxCut)
problemwithfive qubits. Instead of generating trial states with theQAOA,we again use the hardware-efficient
approach explained in section 4.3 to run the algorithmon a real quantumdevice. TheMaxCut problem is an
NP-complete binary optimization problem,with applications in clustering, network science, and statistical
physics. It aims at grouping the nodes of a graph into two subgroups by cutting across the links between them.
The cut is to bemade in such away that the addedweights of the links (edges) that were cut aremaximized.

The formal definition of this problem is the following: consider an n-node non-directed graphwith edge
weights >w 0ij , =w wij ji, where (i, j) enumerate the nodes linked by the corresponding edge [90]. The profit
function to bemaximized is therefore the sumof edgeweights connecting points in the two different subsets. By
assigning a subset label xi=0 or xi=1 to each node i, one tries tomaximize

å= -( ) ( ) ( )C w x xx 1 . 19
i j

ij i j
,
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Wecan then use themapping described in section 5.1 to obtain the IsingHamiltonian
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In otherwords, theweightedMaxCut problem is equivalent tofinding the ground state of the IsingHamiltonian

å s s=
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( )H w . 22C
i j
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For exploring the solution space ofHCweuse the approach from section 4.3 to define a hardware-efficient
heuristic trial wave function

qy q yñ = ñ∣ ( ) [ ( ) ] ∣ ( )U U , 23D
ent 0

whereUent is a collection of fully entangling gates that are diagonal and the number of entanglersD defines the
level of the quantum circuit. The single-qubit rotations are chosen to be q q=  =( ) ( )U Yi

N
i1 , whereN is the

number of qubits. For a classical problem this choice allows a search over the space of quantum states with only
real coefficients, while still exploiting entanglement to potentially converge faster to the solution. Evaluation of
the energy expectation value for a specific trial wavefunction is especially simple in this case as it is sufficient to
measure all four qubits and extract the pairwise s si

z
j
z correlators. Figure 6(a) shows two different cuts through a

problem instancewith four nodes (qubits). The lower of the two solves the problem if all non-zeroweights inwij

are assumed to be equal.Whenwe implement this on an ideal quantum simulator [61, 85] and use theVQE to
optimize the parameters of the trial state in 100 trial steps, we get the state probabilities shown infigure 6(b). For
this simple simulation, the solution is foundwith a probability that is higher than 95%.

6. Classical robust optimizers formeasured expectation values

The optimization cycle of theVQE (see section 3) involves evaluation of the cost function on a real quantum
device, e.g., a superconducting quantumprocessor, and adjustment of the variational parameters using classical
optimization algorithms (see section 3). In the latter, several important aspects need to be considered for
successful application of theVQE.

First, the optimization could get stuck in a localminimum that would correspond to an excited state of the
system.Using a suitable optimization routine can prevent finding such falseminima. Gradient-descentmethods
may be combinedwith simulated annealing steps or strategies that involve starting frommultiple initial points.
In this context, in [38] a greedy searchwithmultiple starting points is alternatedwith a Powell search, showing
good performances onHubbard lattices of up to twelve sites.

Second, because of the limited number of samples of theHamiltonian terms on the quantum computer one
only has access to a noisy energy (cost) value. The error in the energy estimation goes as( )s1 , with s the
number of samples taken. Grouping Pauli operators into commuting sets [40, 72] that can bemeasuredwith the
same state preparation and post-rotations reduces the number of separatemeasurements and enablesmore
averages and better sampling statistics. Still, the choice of the optimizermust take into account that the cost
function is affected by stochastic fluctuations. In fact, whileUCCmethods and other analytical variational
circuits in principle support the use of gradient-basedmethods that increase the efficiency of the optimization

Figure 6. (a)Twodifferent cuts for aMaxCut instancewith four vertices. The lower cut has a larger cumulatedweight and represents
the partitioning that solves the problem. (b) Solution of the problemusing theVQEwith heuristic trial-states and a depthD=3
circuit.
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[91], an imperfect knowledge of the unitary gates implemented in a given quantumdevice and statistical noise
render gradient-based approaches less useful. Derivative-freemethods, such asNelder–Mead and theTOMLAB
method, have been tested for optimization of the hydrogenmolecule, resulting in a superior performance of the
lattermethod in the presence of stochastic noise [40].

Third, time overheads due to repeated sampling and the number of function evaluations to update the
variational parameters will affect the performance of the optimization. In this spirit, the use of a simultaneous
perturbation stochastic approximation (SPSA) [92], used in [72] formolecular structure problems, provides
both a constant overhead in terms of the number of variational parameters and robustness with respect to
stochastic fluctuations. Extensions of the SPSAmethod that include approximations to theHessianmatrix can
be explored to improve the speed of the optimization in the final steps, where estimating second derivatives helps
achieve faster convergence [93]. In contrast, additional savings in time overhead in SPSAoptimizations that rely
on just one evaluation of the cost function per update step [94] could further improve the performance in large-
scale quantumproblemswhere sampling is particularly difficult.While simultaneous perturbationmethods can
be very useful in the optimization of fermionic problems, for classical problems, such as instances ofMaxCut,
the ease of evaluating the cost functionmay favor standard gradient-descent or derivative-free routines.

Another critical aspect is the improvement of the classical control hardware for running theVQEon a
quantumdevice:measurement of the cost functionwith sufficient accuracy requires repeated sampling of the
output state and thereby also repeated cycles of qubit initialization, application of the quantum gates and qubit
measurement. The speed of the execution of the optimization can be improved on the hardware side by using
integrated active reset techniques. In the case of superconducting qubits this is true for both qubits and
resonators [95, 96].Moreover, the costly time overhead in synthesizing and loading control pulses onto the
quantumprocessor for trial-state preparation can be reduced by short-latency field-programmable gate-array-
based control andmeasurement architectures such that time overheads are solely related to the execution of the
quantumgates and the readout of the qubits.

7. Prospects offighting decoherencewithout full error correction

The hardest challenge for practical near-term quantumdevices is their sensitivity to noise. Any computation that
has the potential to leverage quantum effects and to provide a quantum speed-up over classical algorithms needs
sufficiently coherent qubits. It was realized early on [97] that the coupling to the environment sets both a time
and size limit for a quantum computation. Hence, the strength of this coupling determines how large a
computation can be performed. This constant limit has to be contrasted to the improvements that are gained
from the asymptotic scaling advantages of quantumalgorithms. This limitationwas, at least in theory, remedied
with the advent of quantum error correction [98–100]. However, in spite of rapid experimental progress, the
resource requirements for fully fault-tolerant operationswith current codes [53] seemprohibitively large
[101, 102]. In turn, hopeswere raised that non-error-corrected devices will soon become available that reach a
regime of reasonably long coherence times and give rise to dynamics too complex to be simulated on a classical
computer [43, 103]. In light of these developments, the question arises which computational tasks can be
accomplishedwith quantumdevices that have only limited or no error correction. Depending on the formof the
actual physical noise, it is expected that the production of entropy in any quantum circuit that is subject to noise
will set a limit to this approach [104], and error correction is indispensable for any advanced formof quantum
information processing. However, the full computational power of even short-depth circuits is not yet fully
understood, and based on complexity-theoretic grounds, it can be argued, that evenfinite-depth circuits lie
beyond the computational power of a classical computer [43, 105].

Recent experiments inwhich the quantum simulation of smallmolecules was performed [72] showed that
even for very short-depth circuits the effects of decoherence become apparent. For the simulation to be of value,
the effect of this error needs to bemitigated, and several proposals have beenmade to deal with the effects of
decoherence in short-depth quantum computation [39, 54, 55, 106].

For a large fraction of applications, the computational task can be abstracted to estimate the expectation
value of some observable after the application of a short-depth quantum circuit. This estimationmust be
accurate enough to achieve a simulation precision that outperforms approximate classical simulation tasks.
Techniques tomitigate the error in the estimation of expectation valueswere introduced in [55]. It is shown that
the estimate can be improved in the presence of noise with only amodest time overhead. This approach requires
no additional hardware resources such as fresh ancilla or code qubits.

In this scheme, the estimation of an expectation value is improved by an extrapolation to the limit of zero noise
as originally proposed by Richardson [107]. Themethod requires no a priori knowledge about the noise source,
except that the noise is weak and time-independent. To understand this approach it is useful to choose amore
physicallymotivated description of the computation rather than the gate-based quantum circuits. It ismore
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convenient to consider a time-dependentHamiltonian dynamics = åa a a( ) ( )H t J t P that implements the
circuit, where Jα(t) are coupling coefficients andPα areN-qubit Pauli operators. In thismodel the coherent
evolution is subject to a noise contribution  that is effectively constant in time and acts on a time scalemuch
larger than the time-dependentHamiltonian implementing the quantum circuit. The time evolution up to some
timeT of the open systemwith initial state ρ0 can by described by a Lindbladmaster equation

r r l r
¶
¶

= - +( ) [ ( ) ( )] ( ( )) ( )
t

t H t t ti , . 24

The expectation value E(λ) of some observableA is then obtained from thefinal state ρλ(T) and can bewritten as
a power series of the noise rateλ
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where *( )E 0 corresponds to the noise-free expectation value.
Richardson proposed a so-called deferred approach to the limit to estimate an expectation value such as *( )E 0

with high accuracy [107, 108]. For this purpose, the expectation valueE(λj) ismeasured for different noise rates
λj=cjλ, where cj is a rescaling factor andλ the actual noise rate in the experiment. The noise-free expectation
value can then be estimated by [55]
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0 for k=1...n. In this way the largest terms in the error up toO(λ n) are
canceled, thus leading to an estimation of the noise-free expectation valuewith very high accuracy. In practice
however, the noise rateλ isfixed. To still obtain an experimental estimate of the expectation values E(λj), the
following trick can be applied: the quantum circuitH(t) can be run for a time cj T andwith a reduced coupling
Jα/cj. As the noise  is assumed to be constant in time, it can be shown that the state resulting froma rescaled
dynamics is identical to the state obtained from the dynamics with an effectively rescaled noise parameter.
Depending on the nature of the noise, relative errors for the noise-free expectation value range from10−6 to
10−11 [55].

8. Conclusion

Current and near-term quantumprocessors willmost likely be limited to a few hundred,maybe a thousand
qubits, and operate without quantum error correction. If the qubits and their control were ideal, the
computational power of quantumdevices with a couple hundred qubits would already dwarf that of any classical
computer and could show quantum advantage. However, errors in the quantumoperations reduce their
computational power.

In this paper it is argued that a propermetric, such as the quantum volume, should be used to assess the
computing power of a quantumprocessor and to compare different prototypes on a fair basis.With thismetric,
it becomes clear that not only the qubit number has to be increased, but also and evenmore importantly, the
effective error rate needs to be significantly reduced before practical applications comewithin reach. Simple
estimates show that to run an algorithmwith depth hundred on a hundred-qubit device requires an effective
error rate of 0.01%. This number is not completely unrealistic, but shows the necessity to construct algorithms
with short depth.Moreover, error-mitigation schemes using no or only a small number of extra ancilla qubits
will be important to compensate systematic deviations in the computed result.

Besides enlarging the quantumvolume and reducing the effect of errors, it is essential tofind suitable
methods and algorithms to use quantum effects efficiently.We have discussed that a promisingway forward is to
consider hybrid quantum–classical architectures inwhich the quantumprocessor is used to generate trial
quantum states that could not be stored in conventionalmemory. TheVQEmethod can be used to solve any
type of problem that can be cast into a physical Hamiltonian. Constrained binary optimization problems can be
described by an Ising-typeHamiltonian, whereas problems from the field of quantum chemistry ormaterial
sciencemap into amore general spinHamiltonianwithmore than longitudinal interactions among the spins.

For Ising-typeHamiltonian problems, it is not clear howmuch quantum speed-up can be expected, because
many fast classical algorithms have already been developed [41]. In contrast, theHamiltonian for chemistry and
materials-related problems contains so-called non-stoquastic terms, whichmakes it difficult to solve these
problems exactly on a classical computer. It is, therefore, believed that using a quantumprocessor will lead to
exponential speed-up. The current state of the art encompasses proof of concept simulations of smallmolecules:
in the context of superconducting qubits the hydrogenmolecule has been simulatedwith two qubits [33, 34, 72]
and largermolecules such as LiH andBeH2 have been simulatedwith seven qubits [72]. As the size of the systems
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under study grows in electron number so does the required number of qubits, for example, the simulation of the
electronic structure of small organicmolecules such as benzene and ethane [13] already requires tens to
hundreds of qubits. In the case of strongly correlated electrons, even the simplest systemsmade of a few atoms,
like for instance the chromiumdimer [109], quickly become intractable for classical computers when accurate
numerical solutions are required. To address strongly correlated problems of practical relevance such as the
nitrogen fixation catalytic center in bacteria [27] or the iron–sulphur clusters in the respiratory chain protein
complexes [110, 111] (seefigure 7) quantumprocessors with a significantly increased quantum volume are
needed. To achieve this, the capabilities of next-generation quantumprocessors have to improve along several
directions:

(i) Improvement of coherence and qubit control, as well as development of error-mitigation schemes.

(ii) Hardware-efficient and problem-specific trial state preparationwhen usingVQE.

(iii) Efficient circuit optimization by code optimizers and improvedmappings from fermions to qubits.

(iv) Classical parameter optimizationmethods suited for VQE.

As for (i), current best error rates of∼10−4 for single and∼10−3 for two-qubit gatefidelities in the case of
superconducting qubit architectures do not provide sufficient accuracy formore complex quantum
calculations. The coherence time of qubits has to be improved, e.g., by improving fabrication techniques or chip
designs. The control pulses for qubits and their interaction have to be optimized to avoid systematic gate errors.
Any remaining errors have to be compensated by error-mitigation strategies.

As for (ii), trial states that require only a variation of a few parameters to prepare the targeted solution state
are required. It is an open question how to construct suitable trial states for a general problem set. Onemay
speculate that some combination of heuristic and problem-specific approaches is best suited for theVQE, e.g.,
hardware-efficient trial wavefunctions which obey certain physical constraints, for example, to conserve the
particle number in the quantum chemistry context.Moreover, enlarging the set of available gates, e.g. by
exploring coupling primitives that allow different types of interactions between two ormore qubits to be realized
[112, 113] is considered to create problem-specific trial states and render theVQE efficient.

As for (iii), different fermions-to-qubitsmaps have been proposedwhich do not require the creation of
entanglement over the entire qubit space. Among the different variants of the Jordan–Wigner and binary-tree
methods, one can envisage approaches that performbetter in the presence of system-specific noise.Moreover, it
may be possible to identify newmaps into qubits, which are especially suited for VQEs and that can exploit, for
instance, the use of additional ancilla qubits to further reduce the number and the complexity of the gates. Of
particular interest is also the possibility to optimize quantum circuits using post-processing tools at compilation
[27]. The use of high-level languages for the generation and themanipulation of quantum circuits will indeed
offer the possibility to rationalize the qubits resources, thus reducing the circuit depth and therefore the time to
solution.

As for (iv), specialized classical optimizers that can deal with large stochastic fluctuations resulting from
queries to the quantumprocessor in theVQE are required. The possibility that optimization routines get
trapped in false localminima or the effect of high noise render the robustness of optimizers of critical

Figure 7.Qubit resources needed for quantum chemistry. Qubit numbers up to ten are based on existing experiments, whereas the
resources for largermolecules are estimates. From left to right: hydrogenmolecule, lithiumhydride, berylliumhydride, iron sulphor
(Fe–S) cluster inDPH2 complex of PyrococcusHorikoshii (PDB entry code 3LZD), and Fe–S clusters sequence in cytochromeB560
subunit ofmitochondria (PDB entry code 3SFD).
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importance for near-term applications. Even the use of quantum-enhanced optimization schemesmay be
envisaged.

In conclusion, several promising approaches tomake use of near-termdevices with hundreds of qubits and
limited coherence times have been developed. Overcoming the remaining challenges will allowus to solve
tangible problems,most likely in quantum chemistry,material science or classical optimization.
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