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Abstract. The influence of the dimensions on the f and p1 pulsation modes from strange
quark stars, in the Cowling approximation, are investigated. For that purpose, the d-
dimensional nonradial pulsation equations (d ≥ 4) are numerically integrated considering that
the Schwarzschild-Tangherlini line element describes the spacetime outside the object. We found
that the fluid pulsation modes could become larger than those obtained in four dimensions. In
four dimensions, the f pulsation mode is nearly constant, and for high total masses, it increases
monotonically and quickly with the total mass. In this mass interval, the f frequencies grow
for the spacetime dimensions between 4 and 6 and decay for d larger than 7. Concerning the p1
pulsation modes, we found that they increase with the spacetime dimension and decline with
the increment of the total mass.

1. Introduction
The detection of gravitational waves (GW) coming from a system of two black holes orbiting
one another [1], accomplished by the LIGO and Virgo collaborations, is consistent with what
general relativity predicted. A few months after this event, GWs originating from the merger
of two neutron stars were reported in [2]. This last event, together with its electromagnetic
counterpart [3], shows a new way to study observational astrophysics.

Persuaded by theories involving extra dimensions and stimulated by the idea that GWs
could be the way to prove their existence, the study of some astrophysical phenomena in
extra dimensions has been carried out by different authors. Within the Einstein’s theory of
gravity, for example, the implications of extra-dimensional spacetimes on the static equilibrium
configurations [4, 5], radial stability [6], compactness [7, 8], and gravitational collapse [9, 10]
have been theoretically addressed.

Inspired by these articles, within the Cowling approximation approach, we analyze the
dependence of the fluid pulsation modes of stable strange stars with extra dimensions (see Ref.
[6]). For our aim, the stellar structure equations [11] and the non-radial oscillation equations
[12, 13], both modified for the inclusion of the extra dimensions, are integrated numerically.
Throughout this work, we use the units c = 1 = G4, where c and G4 represent the speed of light
and the gravitational constant in four dimensions, respectively.
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2. Higher-dimensional general relativity equations
2.1. Einstein field equation and energy-momentum tensor
To investigate the fluid pulsation modes f and p1, in the general relativity context in a d-
dimensional spacetime, we consider the field equation (d ≥ 4) of the form [14]:

Gµν =
d− 2

d− 3
Sd−2GdTµν . (1)

On the left-hand-side of Eq. (1), Gµν stands the Einstein tensor. The right-hand-side contains the

area of unitary hypersphere Sd−2 = 2
√
π(d−1)/Γ

(
d−1

2

)
, where Γ represents the gamma function,

with (d − 2)Sd−2/(d − 3) and Gd being respectively 8π term and the Newton’s gravitational
constant in d = 4. In addition, Tµν is the stress-energy tensor where

Tµν = ρdUµUν + pd (UµUν + gµν) , (2)

with ρd representing the energy density, pd being the fluid pressure, and Uµ stands for the
velocity of the fluid in a d-dimensional spacetime, where UµU

µ = −1. The aforenamed Greek
indices µ, ν, etc., run from 0 until d− 1.

2.2. Stellar structure equations
We regard that the fluid distribution in the hypersphere is depicted by the line element in d
dimensions [6]:

ds2 = −e2Φ(r) dt2 + e2Λ(r) dr2 + r2
d−2∑
j=1

j−1∏
i=1

sin2 θi

 dθ2
j , (3)

with Φ = Φ(r) and Λ = Λ(r) being functions depending on the radial coordinate r.
To investigate the stellar equilibrium configurations in higher-dimensional spacetime, we

integrate the set of equations

dm

dr
= Sd−2r

d−2ρd, (4)

dpd
dr

= −(pd + ρd)

 Sd−2Gdpdr
(d−3) + mGd

rd−2

1− 2mGd

(d−3)rd−3

 , (5)

dΦ

dr
= − 1

(pd + ρd)

dpd
dr

. (6)

The parameter m plays the role of mass function and represents the gravitational mass inside
the radial coordinate r. Eq. (5) shows the hydrostatic equilibrium equation, also known as the
Tolman-Oppenheimer-Volkoff equation [11], modified to insert the effects of the extra dimensions
[6].

The static equilibrium equations are integrated from the center to the surface of the object. In
the center (r = 0), we consider the conditions m(0) = 0, Λ(0) = 0, Φ(0) = Φc, pd(0)Gd = pcdGd,
and ρd(0)Gd = ρcdGd; where the parameters pcdGd and ρcdGd are respectively the central
pressure and the central energy density. The compact object’s surface (r = R) is attained when
pd(R)Gd = 0. At this point, the interior metric connects smoothly with the Schwarzschild-
Tangherlini exterior spacetime [15, 16] where e2Φ(R) = e−2Λ(R) = 1− 2GdM

(d−3)rd−3 , with MGd/(d−3)

standing the total mass of the object.
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2.3. Nonradial oscillation equations
Perturbed stars can present different modes of oscillations depending on the restoring force that
acts on them. They form a distinct family of oscillation modes [17]. E.g., we have the f -mode,
favored for the gravitational waves emission, and p-modes, where the pressure is the restoring
force and with frequencies higher than the f -modes. One of the methods used to investigate
the oscillation modes is the relativistic Cowling approximation, where the metric perturbations
are neglected during the fluid oscillations. In d = 4, this method displays a difference of around
20% and 10% to the results found by a relativistic numerical form for f and p1-modes [18],
respectively. With this motivation, we find that this method is used to study, e. g., how
rotational speed [19, 20], crustal elasticity [21], and anisotropy [22] affect fluid pulsation modes
coming from compact stars.

The higher-dimensional fluid Lagrangian displacement vector is assumed of the form [23]

ςk =

 e−Λ

rd−4
Q̃,−Z̃

j−1∏
i=1

1

sin2 θi

 ∂

∂θj

 r−2Y m
l , (7)

where k goes from 1 to d − 1 and j runs from 1 to d − 2. Eq. (7) contains the parameters
Q̃ = Q̃(t, r) and Z̃ = Z̃(t, r), which are functions of both the temporal t and radial coordinate
r, and the harmonic functions in d dimensions Y m

l = Y m
l (θ1, ..., θd−2). Then the perturbations

of the velocity, δUµ, can be placed as

δUµ =

(
0, e−Φdς

r

dt
, e−Φdς

θi

dt

)
. (8)

It is worth mentioning that Eq. (8) can be reduced to the form reported in [24] assuming d = 4.
With these variables, the fluid pulsation equations can be derived by considering the variation

of the conservation of energy-momentum tensor (δ(∇µTµν) = 0). Considering δgµν=0, we get
∇µ (δTµν) = 0. The explicit forms with ν = r, θ are

(pd + ρd)
eΛ−2Φ

rd−2

∂2Q̃

∂t2
− ∂

∂r

[
pd

[
1

eΛ rd−2

∂Q̃

∂r
+
l(l + d− 3)

r2
Z̃

]
Γ1 +

Q̃

eΛ rd−2

dpd
dr

]

−
[
dρd
dr

+
dpd
dr

]
dΦ

dr

Q̃

eΛ rd−2
+
dpd
dr

[
dpd
dρd

+ 1

] [
1

eΛ rd−2

∂Q̃

∂r
+
l(l + d− 3)

r2
Z̃

]
= 0, (9)

pd + ρd
e2Φ

∂2Z̃

∂t2
+ pd

[
1

eΛ rd−2

∂Q̃

∂r
+
l(l + d− 3)

r2
Z̃

]
Γ1 +

Q̃

eΛ rd−2

dpd
dr

= 0, (10)

where Γ1 =
[
1 + ρd

pd

] [
dpd
dρd

]
.

Following [23], we consider the perturbative parameters as Q̃(t, r) = eiωtQ(r) and Z̃(t, r) =
eiωtZ(r), where ω depicts the eigenfrequency of oscillation. Furthermore, from these two second-
order differential equations last equations, Eq. (9) and Eq. (10), we can be derived in two first-
order differential equations what are more appropriate for numerical integration. In such a way,
we replace the difference d

dr [Eq. (10)]-[Eq. (9)] inside Eq. (10). Thus, we obtain:

dZ

dr
= 2

dΦ

dr
Z − eΛ

rd−2
Q. (11)

In turn, from Eqs.(10) and (11), we have:

dQ

dr
= −l(l + d− 3)eΛrd−4Z +

[
dρd
dpd

] [
ω2eΛrd−2

e2Φ
Z +

dΦ

dr
Q

]
. (12)
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Eqs. (11) and (12) are reduced to those reported in [24] for d = 4. We integrate Eqs. (11) and
(12) from the center r = 0 toward the hypersphere’s surface r = R. Following [22, 24], with the
aim to determine regular solutions at the center, we assume Q/rl+d−3 = −Zl/rl = C, with C
being a dimensionless constant. Moreover, on the surface of the object is found:[

ω2eΛrd−2

e2Φ
Z +

dΦ

dr
Q

]
r=R

= 0. (13)

2.4. The profile of the equation of state
The fluid that makes up the compact object is defined by

pd =
ρd

(d− 1)
− dBd

(d− 1)
, (14)

with pd and ρd representing respectively the pressure and energy density, and where Bd stands
a constant. Following [6], we regard Gd dBd = 240 [MeV/fm3].

To determine the oscillations spectrum of compact star, Eqs. (11) and (12) are solved together
with the equation of state and the boundary condition (13) for l = 2 and different values of d and
ρcdGd through the Runge–Kutta fourth-order method implemented with the shooting method.

3. Numerical results
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Figure 1. The change of f - and p1-mode frequencies with the total mass MGd/(d − 3) are
shown on the left and right panels, respectively. In both figures, four different dimensions are
considered.

The behavior of the f - and p1-mode oscillation with the total mass MGd/(d− 3) is plotted
in the left and right panels of Fig. 1, respectively, for some spacetime dimensions. In figures,
stable compact objects against small radial perturbations are considered, review [6].

From the figure, we see that all f -mode frequency curves stay nearly constant [25, 26] and,
only in large mass values, it grows quick with MGd/(d − 3). In the four-dimensional case, the
curve f -mode frequency decays with the total mass until reaches a minimum value. Hereafter,
the curve turns counterclockwise to start increasing its value with the total mass. For higher
dimensions, the f -mode is almost constant, and for large total mass values, it increases with
MGd/(d− 3). In the same figure, it can be observed the influence of the dimension influence on
the f -mode. For total mass interval, we see that the f -mode grows in the dimensions 4 ≤ d ≤ 6
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and decays for d ≥ 7. In all dimensions taken into account, all f -mode frequencies are within
the interval 2.38− 3.18 [kHz] range, which is determined in the respective dimensions d = 4 and
d = 6.

In turn, such as happen in the four-dimensional spacetime, for d > 4, we observe that the p1-
are higher than the f -modes frequencies (see [27]). Moreover, it can be seen that the p1-mode
has a monotonic decrease with the increment total mass, thus reaching the lowest p1-modes at
the maximum mass points. Besides, for a total mass range, the p1-mode frequencies are also
affected by the growth of d. For larger dimensions higher p1-modes are found.

4. Conclusions
In the scope of general relativity, the change of the oscillation spectrum with the spacetime
dimension is investigated. For this purpose, the static equilibrium configuration and the
nonradial equation within the Cowling approximation in d spacetime dimensions are obtained.
For the fluid, it is considered the MIT bag model equation of state extended for d dimensions.
It is also assumed that the interior solutions are matched to the exterior Schwarzschild-
Tangherlini line element. The f - and p1-mode frequencies of stable compact objects against
radial perturbations are analyzed for some mass MGd/(d− 3) and dimensions d.

By observing the oscillation frequencies of strange quark stars, for a range of masses and
dimensions, the f -mode frequencies are essentially constant and exhibit rapid growth for larger
masses, in contrast to the p1 modes which change notably with MGd/(d−3) and d. Additionally,
we found that the minimum and maximum mode frequency f are obtained respectively at d = 4
and d = 6. On the other hand, the growth of the p1-mode frequency with the dimension is
found. Such as is determined in four dimensions, in higher-dimensional spacetimes the f -modes
are smaller than p1-mode frequencies.

The possibility of detecting f pulsation modes from compact stars, for different masses, and
getting nearly constant frequency values in the range f ∼ 2 − 3 [kHz] with M/M� ≤ 1.7, in
d = 4, it would be a good sign of the existence of the of strange quark stars. If the f -modes
frequencies are still constant and higher than those obtained in four dimensions for an interval
of MGd/(d− 3), it would indicate that quarks can propagate in extra-dimensional spacetimes,
and d-dimensional strange quark stars could exist.
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