
The Rabi Model in SUSYQM

岡山大学 廣川 真男

Masao Hirokawa

Okayama University

1 序.

Wittenにより創始された超対称性量子力学 [1]は，現在も発展し続けている。例えば，文
献 [2, 3]やそこに挙げられている参考文献を参照されたい。文献 [4, 5, 6, 7]では，基底状態
の構造や超対称性の自発的破れが調べられている。本稿では，それらの先行研究とは違っ
た視点で，超対称性量子力学における基底状態を考えてみる。扱う物理模型は，共振器内
での 2準位原子と 1モード光との相互作用を記述するRabi模型である。このRabi模型は
量子光学でよく調べられてきたが，その物性は共振器量子電磁力学 (cavity QED)や回路量
子電磁力学 (circuit QED)において実験的に観測され始めている [8, 9, 10, 11, 12, 13, 14]。
自然界における原子と光の相互作用の強さは，量子電磁力学に従い，微細構造定数α =

1/137 ≈ 0.00729735で決まり，摂動論が有効となる相互作用の強さの領域に属する。一
方，実験室における共振器量子電磁力学では，通常の量子電磁力学のものよりも強い相互
作用を作り出すことができる [8, 9]。このような強い相互作用は，原子の安定した孤立系
とみなせる二つの状態からなる 2準位原子と，共振器の共鳴振動数を持った定在波を量子
化した 1モード光 (i.e., 単モード・レーザー)とを共振器の中で結合させ実験的に実現さ
れる。この強い結合のアナロジーは，超伝導回路を用いて固体物理学的に実現できるこ
とが予想された [10, 11]。簡単に述べると，共振器量子電磁力学における原子，光，鏡の
共振器を，それぞれ，超伝導回路上の人工原子，マイクロ波，空洞共振器で置き換える。
ここで，人工原子は，いくつかの Josephson接合の持つ非線形性を LC回路に利用して作
成する。この超伝導回路上で作り上げた共振器量子電磁力学が回路量子電磁力学であり，
実験的にも実現されている [12, 13]。特筆すべきことは，この回路量子電磁力学では，共
振器量子電磁力学よりもさらに強い結合の強さを実現できることである [14]。結合定数 g

を共振器の共鳴振動数 ω で割った無次元の相互作用の強さで g/ω = 0.3 程度を既に実現
しており 1，理論的には量子色力学の世界である。すなわち，現在の最先端テクノロジー
は，通常の量子電磁力学では説明できないかなり強い原子と光の相互作用の領域を実現し
ている。実験物理学者の提供する結果は，非摂動論的理論構成を要求し，理論物理学的に
も数理物理学的にも大変興味深いものであると言えよう。

12010 年に，当時 NTT 物性科学基礎研究所量子電子物性研究部に居た仙場浩一氏のご厚意で，論文
[12]のDelft工科大学チームのリーダー，Mooijと二人でセミナーを行う機会があったが，Mooijの話では，
g/ω = 0.9程度の相互作用は近々実験的に実現可能であろうとのことだった。
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本稿では，1モード光と相互作用する 2準位原子で実装する量子ビットが作り出す超対
称性量子力学的性質に焦点を充て，Rabi模型に対して結合を強くして行くと，超対称性
量子力学が超対称性の自発的破れへと向かうことを示す。さらに，この超対称性の自発的
破れは，原子の 2準位間のスピン・カイラル性によるものであることを示す。

2 Rabi模型.

まず，Rabi模型のハミルトニアンを記述しておく。以後，このハミルトニアンをRabi

ハミルトニアンと呼ぶことにする。
1モード光の消滅作用素と生成作用素を，それぞれ，a と a† で表す。Pauli のスピン行
列を

σx ≡

(
0 1

1 0

)
, σy ≡

(
0 −i
i 0

)
, σz ≡

(
1 0

0 −1

)
としておく。今，2準位原子の状態をスピンの状態 |↑⟩ と |↓⟩ で表現し，それぞれ，

|↑⟩ :=

(
1

0

)
と |↓⟩ :=

(
0

1

)

で定義する。1モード光の状態空間はFock空間で与えられるので，それを F と記し，n個
の光子を持つ Fock状態を |n⟩ で表す，n = 0, 1, 2, · · ·。従って，光子数が n = 0のときは
Fock真空である。本稿で使う量子状態は，|n, ♯⟩ := |n⟩|♯⟩ で与えられる，n = 0, 1, 2, · · ·；
♯ =↑, ↓。ここで， |n⟩⊗ |♯⟩ からテンソルの記号 ⊗ を省略した。この省略は以後も用いる。
同様に，Fock 空間 F の状態 ψ に対して，|ψ, ♯⟩ で状態 |ψ⟩|♯⟩ を表す。
部分空間 Heven と Hodd を，それぞれ，|ψ, ↑⟩ なる形の状態全体の集合と，|ψ, ↓⟩ なる
形の状態全体の集合とする。ここで，状態 ψ はFock空間全体に亘る。すると，全状態か
らなる状態空間 H := C2 ⊗F は部分空間 Heven と部分空間 Hodd の直和に分解される：

H = Heven ⊕Hodd.

Rabi模型の自由ハミルトニアン H0 は

H0 :=
ℏωa

2
σz + ℏωc

(
a†a+

1

2

)
で与えられる。ここで，定数 ωa と定数 ωc は，それぞれ，原子の 2準位間遷移振動数と
共振器の共鳴振動数である。すると，Rabiハミルトニアン HRabi は

HRabi := H0 + ℏg
(
a+ a†

)
σx (2.1)

で与えられる。ここで，パラメータ g ≥ 0 は原子と光との間の相互作用の強さを表す結
合定数である。Rabiハミルトニアンの可解性は，Bargmannの表現 [16]を用いて，Braak

により調べられた [15]。
Rabi模型において，二つの振動数を ω := ωa = ωc のように調整したとき，エネルギー
固有値の数値計算は図 1 のようになる。図 1 において，特に結合定数が g = 0 と g ≈ ∞
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図 1: 原子間遷移の振動数 ωa と共振器内の光の振動数 ωc を ω := ωa = ωc と調整したときの Rabi ハミルトニアン HRabi のエ
ネルギー固有値。各線種により，下から n 番目のエネルギー固有値を区別する，n = 0, 1, 2, · · ·。ここで，下から 0 番目の固有値と
は，基底エネルギーのことである。

の二つの場合が，超対称性量子力学の観点から興味深い。結合定数 g = 0 の場合，基底状
態は一意的であるが，励起状態は 2重縮退している。また，各エネルギー固有値は等間隔
で配置し，間隔幅は ℏω となっている。一方，結合定数が g ≈ ∞ の場合，図 1 によると，
全ての状態はほぼ 2重縮退していることが期待でき，各エネルギー固有値は，ほぼ等間隔
で配置し，間隔幅は大体 ℏω と期待できる。本稿では，超対称性量子力学の観点から，こ
の物理的状況を詳しく調べる。そこで，以後，ω := ωa = ωc なる条件を仮定し，自由ハ
ミルトニアン H0 を HSS と書くことにする：

HSS :=
ℏω
2
σz + ℏω

(
a†a+

1

2

)
. (2.2)

ここで，回路量子電磁気学においては，二つの振動数 ωa と ωc を等しくなるように調整
することは難しくないことを注意しておく。

3 Rabi模型における超対称性
(人工)原子と光の間の相互作用が無いとき (i.e., g = 0)，Rabiハミルトニアンは自由ハ
ミルトニアン HSS となる。これは，超対称性量子力学でもっともよく知られたハミルト
ニアンである：

HRabi = HSS =
1

2m

(
p2 +W 2 + ℏ

dW

dx
σz

)
.
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ここで，光子の消滅作用素 a，生成作用素 a† と，位置作用素 x，運動量作用素 p との
対応， 

a =

√
mω

2ℏ
x+

i√
2mℏω

p,

a† =

√
mω

2ℏ
x− i√

2mℏω
p,

を用いた。また，W は超ポテンシャルで，W (x) = mωx となる。従って，(人工)原子と
光の相互作用が無い場合は，Rabi模型は N = 2 超対称性をもつことになる。このことを
詳細に記述すると，以下のようになる。実超電荷 Q1 と Q2 を，それぞれ，

Q1 =
1

2
√
m

(Wσx − pσy) と Q2 =
1

2
√
m

(Wσy + pσx)

で定義すると，

{Qk, Qℓ} = δkℓHRabi,

[Qk, HRabi] = 0,

{Qk, NF} = 0,

k, ℓ = 1, 2，なる関係をみたす。ここで，作用素 NF = σz は，次の条件をみたす。

NFψeven = ψeven, ψeven ∈ Heven,

NFψodd = −ψodd, ψodd ∈ Hodd.

従って，超対称性の自発的破れは起こっておらず，超対称性基底状態は |0, ↓⟩ となり，基
底エネルギーは 0 となる。さらに，明らかに，Rabiハミルトニアンの基底状態は一意的
で，励起状態は全て 2重縮退している。
また，複素超電荷 Q− とその共役作用素 Q+ は，おのおの

Q− =
√
ℏω a†σ− と Q+ =

√
ℏω aσ+

となる。ここで，σ− と σ+ は，それぞれ，スピンの消滅作用素と生成作用素で，

σ± :=
σx ± iσy

2

によって定義される。縮退する状態のお互いの間のやりとりは，複素超電荷 Q− とその
共役作用素 Q+ で次のように関係付けられる：

Q−|n, ↓⟩ = Q+|n, ↑⟩ = 0,

|n, ↑⟩ = 1√
ℏω(n+ 1)

Q+|n+ 1, ↓⟩,

|n+ 1, ↓⟩ = 1√
ℏω(n+ 1)

Q−|n, ↑⟩,

n = 0, 1, 2, · · ·。また，よく知られているように，

HRabi =
{
Q+, Q−} , {

Q±, Q±} = 0,

である。以上の，複素超電荷に関する関係式が，結合定数 g = 0に対する，Rabiハミル
トニアンのエネルギー固有値の配置を説明する。
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4 Rabi模型における超対称性の自発的破れ
この章では，結合定数 g が十分大きい場合を考える。結合定数 g を大きくして行く
と，相互作用の形から，2 準位原子部分のエネルギー ℏωσz/2 よりも，光が支配するエネ
ルギー

Hasym := ℏω
(
a†a+

1

2

)
+ ℏg

(
a+ a†

)
σx

が漸近的に系全体のエネルギーを支配してくると期待される。すなわち，原子のエネル
ギー部分 ℏωσz/2 は，光が支配する部分に対して，g ≈ ∞ の周りで非常に小さな摂動と
して働くであろう。この様子を詳しく考察してみる。

ユニタリ作用素 Ug を Ug :=
1√
2

(
V− −V+
V− V+

)
と定義する。ここで，V± はユニタリ作

用素で，V± := e±g(a†−a)/ω で与えられる。また，よく知られたBogoliubov変換の式

V±

{
ℏω
(
a†a+

1

2

)
± ℏg

(
a+ a†

)}
V∓ = ℏω

(
a†a+

1

2

)
− ℏ

g2

ω
(4.1)

を思い出しておく。すると，Rabiハミルトニアンのユニタリ変換

U∗
gHRabiUg = U∗

gHasymUg −
ℏω
2
Ṽg = H̃0 − ℏ

g2

ω
− ℏω

2
Ṽg (4.2)

を得る。ここで，H̃0 は漸近的ハミルトニアンで

H̃0 =

(
ℏω
(
a†a+ 1

2

)
0

0 ℏω
(
a†a+ 1

2

))

となり，Ṽg は

Ṽg =

(
0 e2g(a

†−a)/ω

e−2g(a†−a)/ω 0

)
で与えられる，ユニタリかつ自己共役相互作用である。従って，Ṽ 2

g は恒等作用素。
任意の波動関数 ψ =

(
ψ1

ψ2

)
と ϕ =

(
ϕ1
ϕ2

)
に対して，ψ̃j := eiπa

†a/2ψj と ϕ̃j := eiπa
†a/2ϕj

とする。よく知られた公式

eiπa
†a/2ae−iπa

†a/2 = −ia と eiπa
†a/2a†e−iπa

†a/2 = ia

を用い，
a† + a =

√
2mω/ℏx

に注意すると，

⟨ψ|Ṽg|ϕ⟩ =
∫
dxψ̃∗

1(x)ϕ̃2(x)e
i(2g

√
2m/ℏω)x +

∫
dxψ̃∗

2(x)ϕ̃1(x)e
−i(2g

√
2m/ℏω)x

なる式を得る。これに，Riemann-Lebesgueの定理を使ってやると，

lim
g→∞

⟨ψ|Ṽg|ϕ⟩ = 0
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なる極限を得る。この減衰から，作用素U∗
g (HRabi + ℏg2/ω)Ug は，作用素 H̃0 に弱収束す

ることを得る:

lim
g→∞

⟨ψ|U∗
g (HRabi + ℏg2/ω)Ug|ϕ⟩ = ⟨ψ|U∗

g (Hasym + ℏg2/ω)Ug|ϕ⟩ = ⟨ψ|H̃0|ϕ⟩. (4.3)

ここで，作用素 U∗
g (HRabi + ℏg2/ω)Ug は，作用素 H̃0 に強収束しないことを注意してお

く。何故ならば，⟨ψ|Ṽ ∗
g Ṽg|ψ⟩ = ⟨ψ|ψ⟩ となるからである。

この残りの章で，超対称性の自発的破れの観点から，弱収束 (4.3)が，Rabiハミルトニ
アン HRabi の固有状態 φRabi と漸近的ハミルトニアン Hasym の固有状態 φn との間の対応

φRabi ≈ φn, g ≫ 1. (4.4)

を考察する。ここで，n は，固有状態 φRabi の固有エネルギー ERabi に対して，次の関係
をみたす非負の整数である：

ERabi ≈ ℏω
(
n+

1

2

)
− ℏ

g2

ω
, g ≫ 1. (4.5)

実は，固有状態 φn として，Ug|n, ↑⟩ もしくは Ug|n, ↓⟩ が取れる。従って，式 (4.4)と式
(4.5)により，図 1のように，各固有エネルギーが 2重縮退していることが分かる訳である。
上述の対応を超対称性の自発的破れの観点から示す前に，Rabiハミルトニアンの持つ
パリティ対称性を思い出しておく：

[HRabi,Π] = 0.

ここで，Π はパリティ作用素で，Π := σz(−1)a
†a で与えられる。従って，

b := σxa と b† := σxa
†

なる表現を採用すると，[b, b†] = 1 であり，Rabiハミルトニアン

HRabi = Hasym +
ℏω
2
σz

のハミルトニアン Hasym は，

Hasym = ℏω
(
b†b+

1

2

)
+ ℏg

(
b† + b

)
(4.6)

なる表現を持つ。ここで，

ℏω
2
σz =

ℏω
2
(−1)b

†bΠ −→ 0 as g → ∞ in the weak sense

である。
式 (4.6)は，くり込むべきエネルギーの形を示唆する。この式の表現と式 (4.4)により，
漸近的にくり込まれたRabiハミルトニアンHAR

Rabi を

HAR
Rabi := Hasym + ℏ

g2

ω
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で定義する。すると，

HRabi + ℏ
g2

ω
−→ HAR

Rabi as g → ∞ in the weak sense.

この漸近的にくり込まれた RabiハミルトニアンHAR
Rabi が記述する物理系の実超電荷 Q1

と Q2 を，それぞれ，
Q1 := UgQ̃1U

∗
g と Q2 := UgQ̃2U

∗
g

で定義する。ここで，作用素 Q̃1 と Q̃2 は

Q̃1 :=

√
ℏω
2

√
a†a+

1

2
σx と Q̃2 :=

√
ℏω
2

(
−i
√
a†a+

1

2
σ+ + i

√
a†a+

1

2
σ−

)
である。すると，

{Qk, Qℓ} = δkℓH
AR
Rabi,

[Qk, H
AR
Rabi] = 0,

{Qk, NF} = 0,

k, ℓ = 1, 2，なる関係式をみたす。作用素 NF = UgσzU
∗
g = σx は

NFψeven = ψeven, ψeven ∈ UgHeven,

NFψodd = −ψodd, ψodd ∈ UgHodd,

なる条件をみたす。ここで，

H = UgH = (UgHeven)⊕ (UgHodd)

に注意しておく。
また，複素超電荷 Q− とその共役作用素 Q+ は，それぞれ，

Q− = UgQ̃
−U∗

g と Q+ = UgQ̃
+U∗

g

となる。ここで，作用素 Q̃− と Q̃+ は

Q̃− =

√
ℏω
(
a†a+

1

2

)
σ+ と Q̃+ =

√
ℏω
(
a†a+

1

2

)
σ−

である。このとき，
HAR

Rabi =
{
Q+, Q−} , {

Q±, Q±} = 0,

が成り立つ。さらに，

Q−Ug|n, ↑⟩ = Q+Ug|n, ↓⟩ = 0,

Ug|n, ↑⟩ =
1√

ℏω(n+ 1/2)
Q+Ug|n, ↑⟩,

Ug|n, ↓⟩ =
1√

ℏω(n+ 1/2)
Q−Ug|n, ↓⟩,
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n = 0, 1, 2, · · ·，なる関係式が成り立つ。これらの関係式により，結合定数が無限大の場
合のRabiハミルトニアンの固有値の漸近的配置が説明される。
ところで，漸近的にくり込まれたRabiハミルトニアンは次のような対称性を持つ：

[σx, H
AR
Rabi] = 0. (4.7)

今，状態 ψ+ と ψ− を

ψ± :=
1√
2
Ug(|0, ↑⟩ ± |0, ↓⟩)

で定義すると，状態 ψ+ と ψ− は，漸近的にくり込まれたRabiハミルトニアンHAR
Rabi の

最小固有値を持つ状態となり，さらに二つの状態の間には

σxψ+ = ψ− ̸= ψ+, ⟨ψ+|ψ−⟩ = 0 (4.8)

なる関係があることが分かる。ここで，Pauliのスピン行列 σx は，スピン・カイラル変
換をもたらすことを思い出しておこう：

σx|↑⟩ = |↓⟩ かつ σx|↓⟩ = |↑⟩.

従って，漸近的にくり込まれたRabiハミルトニアンHAR
Rabi はスピン・カイラル対称性 (4.7)

を持つが，その最低固有値をもつ状態は，式 (4.8)のように，スピン・カイラル対称性に
関して不変とはならない。これは，まさしく，超対称性の自発的破れに他ならず，この破
れを引き起こしているものはスピン・カイラル性である。また，もちろん，漸近的にくり
込まれたRabiハミルトニアンは超対称性基底状態を持たない。すなわち，その最低エネ
ルギーは ℏω/2 となり正である。

5 議論.

以上の議論により，Rabi模型において，その結合定数の増大は，N = 2 超対称性量子
力学に自発的超対称性の破れをもたらすことが分かった。我々はこのRabi模型の結合定
数の増大に伴い，超対称性の自発的破れをもたらす過程に興味を持っている。
以下の八つの作用素

K+ :=
1

2
a†a†, K− :=

1

2
aa, K0 :=

1

4
a†a+

1

4
,

B :=
1

4
σz,

WR
+ :=

1√
2
a†σ−, WR

− :=
1√
2
aσ+, WCR

+ :=
1√
2
a†σ+, WCR

− :=
1√
2
aσ−,

は，ある非コンパクト直シンプレクティック超代数の基底を与える [17]。この基底を用い
ると，超対称性を持つハミルトニアン HSS は

HSS = 2ℏωK0 + 2ℏωB
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と書ける。量子光学で，回転項と呼ばれる作用素 WR と対回転項と呼ばれる作用素 WCR

を，それぞれ，

WR :=
√
2(WR

+ +WR
− ) と WCR :=

√
2(WCR

+ +WCR
− )

で定義する。これら二つの項は，それぞれ，お互いのスピン・カイラル変換になっている：

WCR = σxWRσx.

回転項 WR は通常の状態空間 F ⊗C2 に作用する一方で，対回転項 WCR はカイラル状態
空間F ⊗ σxC2 上での回転項となるのである。もちろん，数学としては，カイラル状態空
間と元の状態空間は同じもであるが。Rabiハミルトニアンを回転項を用いて書き直すと，

HRabi = HSS + ℏg(WR + σxWRσx)

となる。ここで注意しておきたいのは，Rabiハミルトニアンの相互作用の数学的表記に
おいては，回転項 WR もカイラル回転項 σxWRσx も ‘対等’に現れていることである。し
かしながら，それらの項のそれぞれの役割は，相互作用の強さにより変わって来ることが，
回転波近似 (RWA)の理論では知られ，実験的にも確認されている。共振器量子電磁力学
と回路量子電磁力学の実験結果 [8, 9, 13]によると，弱結合領域と強結合領域では，カイ
ラル回転項 (=対回転項)による寄与は，それを無視できる位に小さい。従って，これらの
結合領域では，‘対等性’は失われるが，回転波近似が有効となる。他方，相互作用の強さ
が，強結合領域を超える領域に入ると，カイラル回転項の効果が顕著に表れ，その役割が
重要となって来る [14]。この強結合領域を超えるさらに強い結合領域は，回路量子電磁力
学では，超強結合領域と呼ばれている [14, 18, 19, 20]。つまり，強結合領域と超強結合領
域の境界は，カイラル回転項が復活するかどうかを決める上では重要となる。現在の回路
量子電磁力学のテクノロジーは，まさにこの境界を我々に見せ始め，彼らの実験結果は，
弱結合領域で失われていた ‘対等性’が，超強結合領域で復活しようとすることを物語って
いる。筆者は，超対称性の自発的破れをもたらす過程が，この Rabi模型における ‘対等
性’を復活させ，そこに何らかのカイラル量子相転移 [21]が関与していると予想している
[22]。
このような回転項による効果とカイラル回転項の効果のせめぎ合いは，カイラル分子
に関するHundのパラドックス [23, 24]を連想させるかもしれない 。ただ，Hundのパラ
ドックスは分子の状態に関するものであるが。回路量子電磁力学には，このようなカイラ
ル性に関する量子シミュレーション [25]を実験的に行う可能性があるのかもしれない。
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C. J. P. M. Harmans, and J. E. Mooij, Phys. Rev. Lett. 105, 237001 (2010).

[15] D. Braak, Phys. Rev. Lett. 107, 100401 (2011).

[16] H. G. Reik and M. Doucha, Phys. Rev. Lett. 57, 787 (1986).

[17] A. B. Balantekin, Ann. Phys. (NY) 164, 277 (1985); H. A. Schmitt and A. Mufti,

Phys. Rev. D 43, 2743 (1991); V. A. Kostelecky, M. M. Nieto, and D. R. Truax,

Phys. Rev. D 32, 2627 (1985).

[18] M. Devoret, S. Girvin, and R. Schoelkopf, Ann. Phys. (Leipzig) 16, 767 (2007).

[19] J. Clarke and F. K. Wilhelm, Nature 453, 1031 (2008); G. Günter, A. A. Anap-

para, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuiti, A. Tredicucci,

A. Leitenstorfer, adn R. Huber, Nature 458, 178 (2009).

[20] J. Casanova, G. Romera, I. Lizuain, J. J. Garćıa-Ripoll, and E. Solano, Phys. Rev.
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