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Abstract
The analytic integration and simplification of multi-loop Feynman integrals
to special functions and constants plays an important role to perform higher
order perturbative calculations in the standard model of elementary particles.
In this survey article the most recent and relevant computer algebra and special
function algorithms are presented that are currently used or that may play an
important role to perform such challenging precision calculations in the future.
They are discussed in the context of analytic zero, single and double scale cal-
culations in the quantum field theories of the standard model and effective field
theories, also with classical applications. These calculations play a central role
in the analysis of precision measurements at present and future colliders to
obtain ultimate information for fundamental physics.

Keywords: multi-loop Feynman integrals, computer algebra, special functions

1. Introduction

The present and upcoming high luminosity results at the Large Hadron Collider (LHC) at
CERN, with input of the results measured at the ep-collider HERA at DESY, yield a big
amount of precision data which require further fundamental precision calculations in perturba-
tive quantum chromodynamics (QCD). This also applies to projects in the future like the EIC
[1], the LHeC [2, 3], the ILC [4–7] or CLIC [8–10], the FCC_ee [11], and the proton version of
the FCC [11], also for quantum electrodynamics (QED). Many of these outstanding problems
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can be formulated by large expressions in terms of hundred thousands (and even millions) of
sophisticated Feynman integrals at higher loop order of presently up to three and four loops,
with no, a single and two scales, or even multiscale problems3. Up to one scale, and in much
fewer cases at two scales, technologies have been designed to calculate these integrals analyti-
cally over sets of basic functions, the properties of which have been studied to a certain extent.
Furthermore, numerical representations of these building blocks have been derived.

The central objects are s-fold multiple integrals of the form

F(n, ε) =
∫ 1

0
. . .

∫ 1

0
f (n, ε, x1, . . . , xs)dx1 . . . dxs, (1)

where the discrete parameter n stands for the Mellin variable, and ε = D − 4, ε ∈ R, |ε| � 1,
is the dimensional parameter. A crucial property is that the integrand f is hyperexponential4 in
each of the integration variables xi (1 � i � s) and hypergeometric in the discrete parameter
n. In particular, one is interested in calculating the first coefficients of their Laurent series
expansion w.r.t. ε:

F(n, ε) = Fl(n)εl + Fl+1(n)εl+1 + · · ·+ Fr(n)εr + O(εr+1). (2)

For m-loop Feynman integrals without infrared divergences such expansions start usually at
l = −m. In other cases, one obtains l = −2m. Alternatively, one looks for such an ε-expansions
for the inverse Mellin transform f (x, ε) with

M[ f (x, ε)](n) = F(n, ε) =
∫ 1

0
xn−1 f (x, ε)dx (3)

or its power series representation

f̄ (x, ε) =
∞∑

n=0

F(n, ε)xn. (4)

During the last decades more and more significant methods have been derived to simplify
such Feynman integrals. Based on the representation (for instance (2)–(4)), we will present
important tools that are currently used to perform such challenging calculations and discuss
the associated special function spaces. We further relate these aspects to different precision
calculations.

It is needless to say that we had to leave out the description of a series of techniques, which
are also important. This concerns a series of aspects, which have been surveyed in reference
[12], appearing in the same volume, and has been agreed between the different authors. It
concerns e.g. the use of the symbol [13] and specific Hopf algebra structures [14–16], which
are omnipresent in quantum field theoretic calculations. Related to this, many methods found
in algebraic and arithmetic geometry are applicable [17–24]. For mostly numerical methods
in use in multi-leg calculations we refer to [25].

One way to classify the emergence of new mathematical structures in quantum field theo-
ries is given by the study of their differential equations. This is first of all a practical issue at
the respective loop-level, where these structures are recognized and tied up with the respec-
tive graph topologies. There is in general no all order statement possible ab initio. However,

3 For zero scale problems results are available also at the five loop level.
4 h(x) is hyperexponential (or hypergeometric) in x if h′ (x)

h(x) (or h(x+1)
h(x) ) is a rational function in x.
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as has been found out recently, Calabi–Yau motives play an important role here, cf e.g. [24].
A selection criterion on what we are focusing on in the following are key technologies for
multi-loop calculations in the massive case, presently to three-loop order in the zero-, single-,
and two-scale cases. These technologies do synonymously apply to the corresponding mass-
less calculations. There, clearly simplifications can be obtained using even other technologies,
unlike the case in the massive case.

In the following we discuss the following key research topics:

• Guessing methods (see section 2),
• Solving linear recurrences and differential equations (see section 3),
• Solving coupled systems (see section 4),
• Transformation to special integral and sum representations (see section 5),
• Symbolic summation (see section 6),
• Symbolic integration (see section 7),
• The large moment method (see section 8),
• Special function tools (see section 9)
• And concrete calculations in the quantum field theories of the standard model and within

effective field theories (see section 10).

We emphasize that each of the different techniques cannot be considered as a stand-alone
toolbox. Contrary, they all have to be applied in non-trivial interactions. In particular, based
on a concrete problem, one has to choose the best tactic among the conglomeration of tools.
For further and supplementary aspects we refer also to [26–28] and chapter 3 [12] of the
SAGEX review. We will conclude this survey on multi-loop tools and multi-loop calculations
in section 11.

2. Guessing methods

Often physical quantities can be evaluated up to a certain precision and one seeks for a math-
ematical representation that allows one to represent the data in a more compact fashion, to
gain further insight and to support further calculations that depend on these quantities. Here
we will emphasize two crucial tactics: (1) to predict from a given floating point number (that
approximates a real number to very high precision) an alternative representation in terms of
special constants and (2) to guess from a finite set of evaluations at integer points a linear
recurrence or linear differential equation that satisfies all evaluations at integer points of the
physical quantity.

2.1. Guessing integer relations

Using the LLL algorithm [29], or the PSLQ algorithm introduced in [30] and substantially
improved in [31, 32], one can try to solve the following problem: given a finite set of finite
floating point numbers a1, . . . , an with high precision (say l fractional digits), find integers
z1, . . . , zn ∈ Z as small as possible in its absolute value5 such that

z1 a1 + · · ·+ zn an < 10−m,

5 Since any finite floating point number can be written as a rational number, this problem can be always solved if
the integers zi can be arbitrarily large. Thus a solution to the problem might indicate a proper relation among the
approximated real numbers if l is large but the values zi are small.
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where m is large.
In order to obtain further confidence one may apply this method with further precision

(i.e., more digits l of the input) and checks if the obtained result remains the same but m gets
larger. For instance, suppose that we are given the finite floating point number

a1 = 5.687 004 079 890 582 076 303 126 056 881 684 334 188 496 551 559 97

with l = 50 fractional digits that approximates a real number r1 ∈ R. Then one can use, e.g.,
the Mathematica implementation of the PSLQ algorithm to search for an alternative represen-
tation in terms of ζ(2), ζ(3) and ζ(5). Namely, by activating FindIntegerNullVector
[{a1, N[Zeta[2],50], N[Zeta[3],50], N[Zeta[5],50]}] one obtains the result
(z1, z2, z3, z4) = (−2, 2, 5, 2) with m = 49. Thus we may conjecture that

r1 = ζ(2) +
5
2
ζ(3) + ζ(5)

holds. We remark that the PSLQ method finds this relations already with l = 5 fractional digits
with precision m = 4. Of course, if one is given even more digits of r1, one may check if even
more digits m agree. Similarly, one may apply PSLQ again for this improved data in order to
check if there is even a smaller relation (with smaller zi).

Summarizing, the method can be very efficiently used if one knows the set of numbers, by
which the result of a calculation is finally spanned or if one wants to find a linear combination of
such numbers. A highly non-trivial example is, e.g., the calculation of the five-loop β-function
in QCD in reference [33], where these guessing tools were instrumental. For a recent survey on
these techniques (covering not only PSLQ but also the LLL approach) and further applications
we refer to [34].

2.2. Guessing recurrences and differential equations

In section 8 below we will introduce a method that enables one to compute many moments
F(n, ε) in (3) or coefficients in (4) for n = 0, 1, 2, . . . . More precisely, if we write F(n, ε) in its
ε-expansion (2), we will be able to compute the moments of the first ε-coefficients, say F j(n)
for l � j � r with n = 0, 1, 2, . . . , μ where μ is large (e.g., μ = 104).

Within multi-loop calculations these moments depend linearly also on special constants,
such as the multiple zeta values [35], with rational coefficients. This finally leads to several
finite sequences, F(0), F(1), . . . , F(μ), of rational numbers. Then given these numbers, one can
try to guess a linear recurrence

a0(n)F(n) + a1(n)F(n + 1) + · · ·+ aλ(n)F(n + λ) = 0 (5)

of order λ with polynomial coefficients ai(n) ∈ Q[n] that contains this finite sequence as
solution. Namely, fixing the order λ and assuming that the degrees of the polynomials ai(n)
are less than or equal to δ, one searches for the r = (δ + 1)(λ+ 1) unknown coefficients.
More precisely, by setting n = 0, . . . , r − 2 in (5) and plugging in the rational numbers
F(0), . . . , F(r + λ− 2) one gets r − 1 equations in r unknowns over the rational numbers
which can be solved by linear algebra. In many cases this yields solutions that do not hold
for n � r − 1. Thus one usually takes an over-determined system (by more evaluations, say
0 � n � r + 100). In this way one can exclude basically all wrong solutions. Finally, given
a found solution one usually checks at many extra points if the recurrence is still valid. This
gives further evidence that the guessed recurrence is reliable.

This tactic implemented, e.g., in the Maple package gfun [36] or the Mathematica pack-
age GeneratingFunction [37] is surprisingly simple and can be carried out in this naive
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fashion for small examples (i.e., for recurrences of small orders λ and small degree bounds
δ). For large examples within QCD calculations this straightforward procedure utterly fails.
Here highly efficient computer algebra technologies, such as homomorphic image calculations
and rational/polynomial reconstructions, are essential [38]. Using in addition gcd-calculations
to determine recurrences with minimal order, the Mathematica implementation Guess.m by
Kauers could be utilized with about μ = 5000 moments to guess all the recurrences that deter-
mine the massless unpolarized three-loop anomalous dimensions and Wilson coefficients in
deep-inelastic scattering [39–41] in reference [42], see also [43–47]. For even larger problems,
the highly efficient Sage implementation in ore_algebra [48] (utilizing among other smart
techniques the fast integer arithmetic of Flint) was instrumental to guess linear recurrences
with minimal order. E.g., for the massive form factor [49, 50] about μ = 10 000 moments were
needed to obtain recurrences up to order λ = 55 and degree δ = 1300. In the case of a mas-
sive operator matrix element 8000 moments [51] could be calculated and difference equations
were derived for all contributing color and ζ-value structures. Recently, also the three-loop
splitting functions [44], the anomalous dimensions from off shell operator matrix elements
[44–46, 52], and lately the polarized transition matrix element Agq(N) [53] and the logarith-
mic contributions to the polarized O(α3

s ) asymptotic massive Wilson coefficients [54] have
been derived by guessing the underlying recurrence relations.

Further we note that one can guess in a similar fashion a linear differential equation of the
power series f (x) =

∑∞
n=0 F(n)xn, say

a0(x) f (x) + a1(x)Dx f (x) + · · ·+ aλ(x)Dλ
x f (x) = 0,

where Dx =
d

dx denotes the differentiation w.r.t. x. Both, the Mathematica implementation in
Guess.m and the Sage implementation in [48] cover this extra feature.

Given such recurrences, one succeeds in many cases to solve the recurrences in terms of
special functions that are most relevant in QCD calculations. Further details on these solving
aspects will be given in the next section.

3. Solving linear recurrences and differential equations

As already motivated in section 2.2 above and further emphasized in sections 6–8, one can
derive a linear recurrence (linear difference equation) or a linear differential equation which
contains the given multi-loop Feynman integral (1) or a given physical expression in terms of
such Feynman integrals as a solution. Then a natural strategy is to apply the available tool-
boxes to compute all solutions of the derived equations that can be represented in terms of
certain classes of function spaces that will be introduced in more detail in section 9. In the case
that one finds sufficiently many (linearly independent) solutions one may obtain an alternative
representation of the physical problem in terms of these solutions.

In the following we describe different algorithms that can provide solutions of linear
difference and differential equations that occur in QCD calculations.

3.1. Ordinary linear equations

We start with equations in one variable, i.e., with ordinary linear difference equations of the
form

λ∑
i=0

ai(n) F(n + i) = r(n) (6)
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and ordinary linear differential equations of the form

λ∑
i=0

ai(x)Di
x f (x) = r(x), (7)

where Dx =
d

dx denotes the differentiation w.r.t. x.

3.1.1. Ordinary linear difference equations. The first major contribution for recurrence solv-
ing is elaborated in [55] and is substantially improved in [56]. Given rational functions
a0(n), . . . , aλ(n), r(n) ∈ K(n) (K denotes a computable field that contains the rational numbers)
it finds all rational solutions F(n) ∈ K(x) of (6). More generally, using the algorithms from [57]
and the more efficient version given in [58] one can compute all hypergeometric solutions of
(6), this means one can compute all solutions that can be written as hypergeometric products

F(n) =
n∏

k=l

f (k),

where l is an integer and f (k) is a rational function in k; here l is chosen such that the eval-
uation f (k) for k ∈ N with k � l has no pole and is nonzero. In particular, the solutions can
be described in terms of a product of Γ-functions, Pochhammer-symbols, factorials, binomial
coefficients and rational functions. Even more generally, using the algorithms described in
[59, 60] one can search for all d’Alembertian solutions, i.e., all solutions that can be expressed
in terms of iterative sums defined over hypergeometric products. Special cases of this class
of sums are harmonic sums [61, 62], cyclotomic harmonic sums [63], generalized harmonic
sums [64, 65] and finite binomial sums [66]; infinite binomial sums have been also studied in
[66–68]. Further details and extra properties of such sums are presented in section 9.

Finally, one can search in addition for all Liouvillian solutions [69] which cover in addition
the interlacing of expressions in terms of iterated sums over hypergeometricproducts. Basically
all these tools have been generalized to the setting of difference fields [70] and rings [71]
(utilizing results from above and [72–76]) that allows one to find such solutions for difference
equation (6) where the coefficients ai(n) and the inhomogeneous part r(n) are not just rational
functions but can be built again by indefinite nested sums over hypergeometric products. E.g.,
using the summation package Sigma [77–79], that contains this general toolbox, one can
compute for the recurrence

(1 + S1(n) + nS1(n))2
(
3 + 2n + 2S1(n) + 3nS1(n) + n2S1(n)

)2
F(n)

− (1 + n)(3 + 2n)S1(n)
(
3 + 2n + 2S1(n) + 3nS1(n) + n2S1(n)

)2

× F(n + 1) + (1 + n)2(2 + n)3S1(n)(1 + S1(n) + nS1(n))F(n + 2) = 0

the complete solution set{
c1 S1n

n∏
l=1

S1(l) + c2S1(n)2
n∏

l=1

S1(l)|c1, c2 ∈ K

}
;

here S1(n) =
∑n

k=1
1
k denotes the nth harmonic number. Internally, the recurrence operator is

factorized as much as possible into linear factors. Then each extra factor provides one extra
linearly independent solution which is constructed by one extra indefinite sum. In other words,
finding ν linear factors (ideally ν = λ) yields ν linearly independent solutions where the most

6



J. Phys. A: Math. Theor. 55 (2022) 443005 Topical Review

complicated solution is built by an iterative nested sum over hypergeometric products of nest-
ing depth ν − 1; the particular solution will lead to a nested sum of depth ν. Then a key task is
to simplify these sum solutions further such that the nesting depth is minimal; further aspects
on such simplifications will be given in section 6.1. We note that all solutions of a linear recur-
rence can be given in terms of d’Alembertian solutions if the linear recurrence operator factors
completely into first-order linear factors. We call such a recurrence also first order factorizing.
If this is not the case, i.e., if only parts of the recurrence can be factored into linear right-hand
factors then it is called non-first order factorizing.

The recurrences coming from QCD calculations usually have polynomial coefficients ai(n)
and the right-hand side r(n) is either 0 or is built by indefinite nested sums over hypergeometric
products. One of the largest homogeneous recurrences (r(n) = 0) that have been solved with
Sigma were of order λ = 35 and the degree of the coefficients of ai(n) was up to 1000 and
the occurring integers required up to 1400 decimals digits; for details see, e.g., [42, 80]. The
largest inhomogeneous recurrences were up to order λ = 12 where r(n) may be built up to
hundreds of highly nested indefinite nested sums.

In most cases Feynman diagrams or physical expressions in terms of such integrals depend
on the dimensional parameter ε. In particular, this parameter ε occurs in the coefficients ai(n)
and the inhomogeneous part r(n) of the recurrence (6). In some special cases, the solution F(n)
can be given in terms of indefinite nested sums over hypergeometric products where ε occurs
inside of the sums and products. In such situations, the above methods implemented in Sigma
can find the complete solution in n and ε. However, in most instances such a closed form
solution does not exist and one seeks for closed form solutions of the first coefficients Fi(n)
(free of ε) of the ε-expansion (2). In order to accomplish this task, one can apply the algorithm
from [81] implemented in Sigma in order to constructively decide if the coefficients Fi(n) can
be represented in terms of nested sums over hypergeometric products.

The more complicated multi-loop Feynman integrals are considered, the more complicated
function spaces arise. Thus further techniques are extremely desirable that extend the class of
indefinite nested sums over hypergeometric products. In this regard, one should mention the
special case of factorial series [82–84] solutions of the form f (n) =

∑∞
k=0

k!
(n+k)!ak. Namely,

given a linear recurrence in f (n), an operator method is described in [85] and further considered
in [86], to provide a linear recurrence for the sequence ak. Precisely here one can utilize the
recurrence solver of Sigma to decide, if ak can be written in terms of d’Alembertian solutions.
E.g., for the recurrence

(1 + n)(2 + n)(3 + n) f (n) − (2 + n)2(3 + n) f (1 + n)

+ (2 + n)(3 + n) f (2 + n) − f (3 + n) = 0

one finds the factorial series solution
∑∞

k=0
n!

(k+n)!

∑k
i=0

(−1)i

i! . Furthermore, Petkovšek proposed

new ideas in [87] to find solutions of truncated binomial sums: instead of k!
(n+k)! one can choose

certain products of binomial coefficients and the upper bound should be integer-linear in n.

3.1.2. Ordinary linear differential equations. In various instances one is interested in a power
series solution f (x) =

∑∞
n=0 F(n)xn of a linear differential equation (7). If the coefficients ai(x)

are rational functions in x and the inhomogeneous part r(x) itself can be given in form of a
power series representation, one can utilize holonomic closure properties [36, 37, 88] as fol-
lows. Plugging the power series ansatz into the differential equation and comparing coefficients
w.r.t. xn yield a linear recurrence of the form (7) (with updated ai(n) and r(n)) for the desired
coefficients F(n). In a nutshell, one can activate the available recurrence solver introduced in
section 3.1.1 to compute closed form representations of the coefficients F(n).
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Alternatively, there are also direct algorithms available, similarly to the difference equation
case, that can solve linear differential equations in terms of rather general classes of special
functions. Namely, using the algorithms from [55] one can find all rational solutions. More
generally, using [89] and, e.g., the improved versions given in [56, 90] one can find all hyper-
exponential functions f (x). In general, the functions can be given in the form e

∫ x
l h(x)dx for some

rational function h and lower bound l; special cases are, e.g., rational functions or roots over
such functions. More generally, one can use these algorithms to compute all d’Alembertian
[59, 60], i.e., all solutions that can be given in terms of iterated integrals over hyperexponen-
tial functions. Special cases of these integrals, are harmonic polylogarithms [91], cyclotomic
polylogarithms [63], generalized multiple polylogarithms [64, 65] but also root-valued nested
integrals [66]; further details are given in section 9. As for the recurrence case the correspond-
ing differential operator is factorized as much as possible into linear factors. Then each factor
yields one extra linearly independent solution by introducing one extra indefinite integration
quantifier. These d’Alembertian solutions can be computed with the packageHarmonicSums
[92]. Similarly to the recurrence case we note that all solutions of a linear differential equation
can be given in terms of d’Alembertian solutions if the differential operator factors completely
into first-order linear factors. We call such a differential equation also first order factorizing.
If this is not the case, i.e., if only parts of the linear differential equation can be factored
into first-order linear right-factors then it is called non-first order factorizing. More generally,
also Liouvillian solutions [93] can be calculated partially with HarmonicSums by utilizing
Kovacic’s algorithm [94]. For instance, given

(11 + 20x) f ′(x) + (1 + x)(35 + 134x) f ′′(x)

+ 3(1 + x)2(4 + 37x) f (3)(x) + 18x(1 + x)3 f (4)(x) = 0.

HarmonicSums finds the general solution{
c1 + c2

∫ x

0

1
1 + τ1

dτ1 + c3

∫ x

0

∫ τ1

0

3
√

1 +
√

1 + τ2

(1 + τ1)(1 + τ2)
dτ2 dτ1

+ c4

∫ x

0

∫ τ1

0

3
√

1 −
√

1 + τ2

(1 + τ1)(1 + τ2)
dτ2 dτ1|c1, c2, c3, c4 ∈ K

}
,

where
√

1 + x is hyperexponential and 3
√

1 −
√

1 + x is algebraic over a field generated by x
and

√
1 + x. More generally, in [93] an algorithm has been described that finds all Liouvillian

solutions of a homogeneous linear differential equations, i.e., all solutions that can be given
by iterated integrals over hyperexponential function and functions that are algebraic over the
extension below. More generally, an algorithm has been proposed in [95] that can find all
Liouvillian solutions of linear differential equations whose coefficients are given in terms of
functions that are Liouvillian. In some sense, this highly general solver can be considered as
the continuous version of the recurrence solver [70] implemented within the package Sigma.

As already emphasized in section 3.1.1, also the dimensional parameter ε appears in the
coefficients ai(x) and the inhomogeneous part r(x) of the linear differential equation (7) when
one deals with Feynman integrals. In some special cases one can use the above algorithms
directly where ε may arise inside of d’Alembertian and Liouvillian solutions. However, simi-
larly to the recurrence case, this approach usually does not work and one aims at finding closed
forms of the first coefficients of the ε-expansion

f (x, ε) = f l(x)εl + f l+1(x) εl+1 + · · ·+ fr(x) εr + O(εr+1).

8
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In this regard, the package HarmonicSums can decide constructively if the first coefficients
f i(x) (free of ε) can be given in terms iterated integrals over hyperexponential functions; for
the underlying algorithm we refer to [96] which is based on ideas given in [81].

By looking at more and more complicated Feynman integrals also the class of Liouvillian
solutions is not sufficient. For second order linear differential equations van Hoeij proposed
algorithms in [97] that can find hypergeometric series solutions (pFq’s) in terms of certain
rational function arguments. These advanced tools turned out to be instrumental to deal with
the ρ-parameter in [98, 99] and related quantities.

3.2. Partial linear equations

Solving partial linear difference and differential equations is a hard problem. It has been shown
in [100] based on [101] that already the task to solve such equations in terms of polynomial
solutions is an unsolvable problem. Recently, new methods have been introduced in [102, 103]
that enable one to search for (not necessarily all) rational solutions of partial linear difference
equations of the form∑

(s1,...,sr )∈S

a(s1,...,sr )(n1, . . . , nr)F(n1 + s1, . . . , nr + sr) = 0, (8)

where the coefficients a(s1,...,sr) are rational functions in the variables n1, . . . , nr and S ⊂ Zr is a
finite set. In [104] further ideas coming from section 3.1.1 have been incorporated to hunt also
for solutions in terms of a given set of nested sums. E.g., suppose that we are given the partial
linear difference equation

− (n + 1)2
(
k + n2 + 2

)(
4k2 − 3kn2 + 5kn + 12k − 2n3 − 2n2 + 8n + 8

)
F(n, k + 1)

+ (n + 1)2
(
k + n2 + 3

)(
2k2 − 2kn2 + 2kn + 6k − n3 − n2 + 4n + 4

)
F(n, k + 2)

+ (n + 1)2(k + n + 1)
(
2k − n2 + n + 4

)(
k + n2 + 1

)
F(n, k)

− (k + 1)n2(n + 2)2
(
k + n2 + 2n + 2

)
F(n + 1, k)

+ kn2(n + 2)2
(
k + n2 + 2n + 3

)
F(n + 1, k + 1) = 0

and the set W = {S1(k), S1(n + k), S2,1(n + k)} in terms of the harmonic numbers and the har-
monic sum S2,1(n) =

∑n
k=1

S1(k)
k2 ; compare section 9. Then fixing the total degree bound 5 or the

arising objects in the numerator, one can compute with the package SolvePLDE introduced
in [104] the 37 solutions p

(1+n)2(1+k+n2)
where p is taken from the set{

1 +
1
2

nS1(k + n), k, n, kn, kn2, kn3, kn4, kS1(n), knS1(n), kn2S1(n),

kn3S1(n), kS1(n)2, knS1(n)2, kn2S1(n)2, kS1(n)3, knS1(n)3, kS1(n)4,

kS2,1(n), knS2,1(n), kn2S2,1(n), kn3S2,1(n), kS1(n)S2,1(n),

knS1(n)S2,1(n), kn2S1(n)S2,1(n), kS1(n)2S2,1(n), knS1(n)2S2,1(n),

kS1(n)3S2,1(n), kS2,1(n)2, knS2,1(n)2, kn2S2,1(n)2, kS1(n)S2,1(n)2,

knS1(n)S2,1(n)2, kS1(n)2S2,1(n)2, kS2,1(n)3, knS2,1(n)3,

kS1(n)S2,1(n)3, kS2,1(n)4

}
.
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In particular, the method for scalar linear difference equations in [80] has been carried over
in this new package to search also for closed form solutions of the first coefficients of an
ε-expansion.

We emphasize that this new package enables one also to attack partial linear dif-
ferential equations and to find solutions in its multivariate power series expansion
f (x1, . . . , xr) =

∑
(n1,...,nr)∈Nr F(n1, . . . , nr)x

n1
1 . . . xnr

r . Namely by plugging the power series
ansatz into the partial differential equation and comparing coefficients w.r.t. xn1

1 . . . xnr
r pro-

duce a partial linear difference equation of the form (8). Thus one can utilize the tools described
above to search for closed form representations of F(n1, . . . , nr). In section 4.2 this tactic will
be refined further to find solutions for certain classes of coupled systems of partial linear
differential equations.

4. Solving coupled systems of linear differential equations

In order to solve open problems at the forefront of elementary particle physics, millions of
complicated Feynman integrals have to be tackled. As a preprocessing step one often applies
integration-by-parts (IBP) methods [105–107] that crunch these integrals to a few hundred
(or thousand) so-called master integrals; for a recent survey, possible refinements and applica-
tions see, e.g., [107, 110, 111]6. Then the main task is to simplify only these master integrals
to expressions in terms of special functions and to assemble the original problem with these
sub-results. Most of these master integrals f i(x, ε) can be determined as solutions of coupled
systems of linear differential equations. For single-variate systems they are of the form

Dx

⎛
⎜⎝

f 1(x, ε)
...

fλ(x, ε)

⎞
⎟⎠ = A

⎛
⎜⎝

f 1(x, ε)
...

fλ(x, ε)

⎞
⎟⎠+

⎛
⎜⎝

g1(x, ε)
...

gλ(x, ε)

⎞
⎟⎠, (9)

with A being a λ× λ matrix with entries from K(x, ε) where the right-hand sides are given in
terms of simpler master integrals. They are either determined by other coupled systems or have
to be tackled by tools presented, e.g., in sections 6 and 7. Here we elaborate the most relevant
approaches. Before one considers to solve such systems, one may also analyze them further as
exemplified in [112] in order gain further insight or to find further relations among them.

4.1. Uncoupling algorithm and scalar solvers

In the last years a general toolbox has been elaborated that finds all solutions that can be
given in terms of iterated integrals (or sums) as follows. By uncoupling algorithms [113, 114]
available, e.g., in the package OreSys [115], one first decouples the system (9) to a scalar
linear differential equation in one of the unknowns. Using the differential equation solver in
HarmonicSums [92] (based on [59, 93, 94]) one finds, whenever possible, a closed form rep-
resentations of the unknown functions f1, . . . , fλ in terms of d’Alembertian (and partially of
Liouvillian) solutions. Based on this strategy we recalculated the two-loop form factors [116]
and obtained first results for the three-loop case [117]. Another fruitful approach [118] is based
on recurrence solving. Here one assumes that the arising Feynman integrals can be given in

6 Here the method of syzygies [108, 109] from computational algebraic geometry helps to reduce the number of
contributing scalar products.
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Figure 1. Solving systems.

the power series representations

f i(x) =
∞∑

n=0

Fi(n)xn, i = 1, . . . ,λ. (10)

Then the machinery proceeds as summarized in figure 1. After the decoupling of the sys-
tem (step (1)) one takes the scalar differential equation of f1(x) and calculates by means of
holonomic closure properties [88] a scalar linear recurrence of F1(n) (step (2)). Activating the
recurrence solver of Sigma (based on [55, 57–59, 75, 81]) one can decide algorithmically in
step (3) if F1(n) can be represented in terms of indefinite nested sums. If yes, one plugs this rep-
resentation into the decoupled system and gets closed forms of the remaining F2(n), . . . , Fλ(n)
in step (4). For advanced QCD-calculations see, e.g., [43, 44, 118–123].

4.2. Direct solver

So far there are only few algorithms available that can compute directly (i.e., without uncou-
pling) the desired set of solutions of a given coupled system of the form (9). For instance, with
the algorithms in [124] one can find all hyperexponential solutions of (higher order) coupled
systems but so far no algorithms are available to compute all d’Alembertian or Liouvillian
solutions. First steps have been elaborated in [125] within the general difference field setting.

However, in various instances it has been observed in [126] that the arising coupled systems
of the form (9) can be transformed to a system of the form

Dx f̃(x, ε) = εÃ(x)̃f(x, ε) + g̃(x, ε) (11)

for a matrix Ã(x) which is free of ε and where f̃ and g̃ are defined by the multiplication
of an invertible matrix T with f = ( f1, . . . , fλ) and g = (g1, . . . , gλ), respectively. Under the
assumption that such a transformed system exists, algorithms are available to compute such
a transformation matrix T. Furthermore, methods exist, cf [127–130] that can hunt for such
a basis transformation for the multivariate case, i.e., for systems of partial linear differen-
tial equations. Given such a transformed system one obtains the benefit that one can read off
the coefficients of the ε-expansion in terms of indefinite nested integrals. However, such a
transformation does not hold for more complicated systems.

As elaborated in [104], there are other special cases that enable one to solve coupled sys-
tems of partial linear differential equations if one considers the solution as a multivariate

11
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power series solution where the coefficients satisfy a nicely coupled system of linear difference
equations. For instance, take the coupled partial system

(x − 1)yDxy f (x, y) +

(
x

(
2ε+

7
2

)
− ε+ 1

)
Dx f (x, y) + (x − 1)xD2

x f (x, y)

+ y(2ε+ 1)Dy f (x, y) +
3
2

(2ε+ 1) f (x, y) = 0,

x(y − 1)Dxy f (x, y) + x(4 − ε)Dx f (x, y) + (y(
13
2

− ε) − ε+ 1)Dy f (x, y)

+ (y − 1)yD2
y f (x, y) +

3(4 − ε)
2

f (x, y) = 0.

Then writing f (x, y) as a multivariate power series f (x, y) =
∑∞

n,m=0 F(n, m)xnym one obtains
by coefficient comparison w.r.t. xnxm the coupled system of homogeneous first-order difference
equations

3
2

(2ε+ 1)F(n, m) − n(ε− 1)F(n + 1, m) = 0,

−3
2

(ε− 4)F(n, m)− m(ε− 1)F(n, m + 1) = 0.

Given such a first-order homogeneous system, it follows that its solution can be expressed in
terms of hypergeometric products. Namely, using the algorithm given in [104, section 4.1]
(which is a simplified version of the algorithm given in [131]) and implemented in the package
HypSeries one obtains the solution

F(n, m) =

(
n∏

i=1

(1 + 2i)(3 + i − ε)
2i(−2 + i + ε)

)
m∏

i=1

(1 + 2i + 2n)(i + 2ε)
2i(−2 + i + n + ε)

=

(
3
2

)
m+n

(4 − ε)n(1 + 2ε)m

m!n!(−1 + ε)m+n

in terms of hypergeometric products or equivalently in terms of factorial and Pochhammer
symbols. As a consequence the derived solution of the original coupled system of differential
equations can be given in the form

F(x, y) =
∞∑

n,m=0

(
3
2

)
m+n

(4 − ε)n(1 + 2ε)m

m!n!(−1 + ε)m+n
xnym.

Using this sum representation one can deploy the summation tools in section 6 to calculate the
first coefficients of its ε-expansion. We note that these solutions (coming from homogeneous
first-order difference systems) are closely related to special functions that are introduced in the
next section.

5. Transformation to special integral and sum representations

In the simplest cases, the integrands of Feynman integrals (1) exhibit Euler beta-function
structures and by clever rewriting, cf also e.g. [132], the integral can be rewritten in terms of
hypergeometric functions and their generalization [133–136]. More precisely, one may rewrite
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simple Feynman integrals in terms of the following hierarchy of p+1Fp functions, the first of
which read

B(a1, a2) =
∫ 1

0
dt ta1−1(1 − t)a2−1

2F1(a1, a2, b1; x) =
Γ(b1)

Γ(a2)Γ(b1 − a2)

∫ 1

0
dt ta2−1(1 − t)b1−a2−1(1 − tx)−a1

3F2(a1, a2, b1; x) =
Γ(b2)

Γ(a3)Γ(b2 − a3)

∫ 1

0
dt ta3−1

× (1 − t)−a3+b2−1
2F1(a1, a2, b1; tx).

Here the parameters ai, bi are such, that the corresponding integrals exists, [136]7. We note
that computer algebra can be used non-trivially to explore further properties on these spe-
cial functions. E.g., using symbolic summation (see also section 6) one can compute all
arising contiguous relations of a finite set of sums [139]. More generally, it is possible to
represent Feynman integrals by Mellin–Barnes [140–142] representations [81]. As well-
known, the Mellin–Barnes representations are also used for hypergeometric functions and their
generalizations, originally in terms of Pochhammer Umlauf-integrals.

At three-loop order, also Appell functions [104, 143–150] and their generalizations arise;
see, e.g., [118, 151, 152]. For instance, the F1 function has the integral representation

F1(a, b1, b2, c; x, y) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0
dt ta−1(1 − t)c−a−1(1 − xt)−b1(1 − yt)−b2 ,

Re(c) > Re(a) > 0.

When one succeeds in detecting that the given Feynman integrals can be rewritten in integral
representations that can be connected to p+1Fp or Appell-like functions, one can utilize the
essential property that all the p+1Fp functions have a single infinite sum representation, while
the Appell-functions are represented by two infinite sums. For instance, we get

F1(a; b1, b2; c; x, y) =
∞∑

m=0

∞∑
n=0

(a)m+n(b1)m(b2)n

m!n!(c)m+n
xmyn.

Similarly, there are also other classes of higher transcendental functions, which obey multi-
sum representations [104, 146, 147, 149]. Up to the level of massless and single mass two-loop
integrals, cf [153] and in some cases in the three loop case, cf [118], these representations are
usually sufficient. For more complicated integrand-structures, however, one has to apply other
techniques. Applying successively Newton’s binomial theorem and Mellin–Barnes [140–142]
decompositions on the integrand, implemented in different packages [154–157], enables one
to carry out all integrals by introducing Mellin–Barnes integrals. Finally, carrying out the
remaining Mellin–Barnes integrals with the residue theorem yields definite multiple sums

L1(n)∑
k1=1

. . .

Lv (n,k1,...,kv−1)∑
kv=1

f (n, k1, . . . , kv). (12)

7 One may then perform corresponding analytic continuations, cf [137, 138].
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Here the upper bounds L1(n), . . . , Lv(n, k1, . . . , kv−1) are integer linear (i.e., linear combinations
of the variables over the integers) in the dependent parameters or ∞, and f is hypergeometric
in n and the summation variables ki. For further details on this rewriting process we refer, e.g.,
to [28, 81].

In physical applications the dimensional parameter ε arises in the parameters ai, bi, ci, . . . of
the p+1Fp and Appell-type representations. Moreover, the hypergeometric summand f in (12)
may also depend on ε. In all these cases one seeks for an ε-expansion where the coefficients
are represented in sum representations that are as simple as possible. In order to accomplish
this task, highly general summation methods introduced in section 6 can be applied.

6. Symbolic summation

Following the strategy sketched in section 5 one ends up at (thousands or even millions) of
definite multiple sums where the summand is built by hypergeometric products and indefinite
nested sums, like harmonic sums [61, 62], cyclotomic harmonic sums [63], generalized har-
monic sums [64, 65]; these sums may pop up in particular if one expands the summand w.r.t. the
ε-parameter (i.e., if one applies the differential operator w.r.t. ε to the hypergeometric products;
for a detailed description see, e.g., [104]). Producing such sum representations without making
the original problem more complicated is highly non-trivial. However, if one succeeds in get-
ting an appropriate sum representation, one can apply various symbolic summation algorithms
to simplify these sums.

6.1. Simplification of indefinite nested sums

The simplification of indefinite nested sums defined over hypergeometric products started with
Gosper’s and Karr’s summation algorithms [72, 158] and has been enhanced significantly
within the last 20 years to a strong summation machinery based on difference field and ring
theories [73, 159–163]. Using our summation package Sigma [77, 78] it is now possible
to design completely automatically appropriate difference rings in which one can represent
such indefinite nested sums fulfilling various optimality criteria: e.g., the number of nested
summation quantifiers or the degrees in the denominators are minimized; see [164–167]. Fur-
thermore, employing our contributions to a refined Galois theory of difference rings [168]
(see also [69, 169–171]), the used sums do not admit any algebraic relations. As a consequence,
one obtains canonical (unique) product-sum representations [79].

Furthermore, these algorithms can be accompanied with quasi-shuffle relations [172–176]
for the discovery of such relations in a very efficient way; for further details we refer to
section 9.

6.2. The WZ-summation approach

The treatment of single nested definite hypergeometric sums started with Zeilberger’s cre-
ative telescoping paradigm [177–181] and has been enhanced to multi-summation with the
WZ-summation approach due to [182] and its refinements given, e.g., in [183–185]. Given a
multiple sum F(n, ε) over a hypergeometric summand, like on the left-hand side of8

n−2∑
j=0

j+1∑
r=0

n− j+r−2∑
s=0

(−1)r(n − j − 2)!
( j+1

r

)
r!

(n − j + r)!
(−1)s

( n− j+r−2
s

)
(n − s)(s + 1)

8 For a ∈ Z\{0} we define the generalized harmonic numbers Sa(n) =
∑n

k=1
(sign(a))k

k|a|
.
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=
((−1)n − 1)(n2 + n + 1)

n2(n + 1)3
+

S1(n)
(n + 1)2

− S2(n) + 2S−2(n)
n + 1

, (13)

one can search for a recurrence/difference equation of order λ of the form

λ∑
i=0

ai(n, ε) F(n + i, ε) = r(n, ε)

with polynomials ai(n, ε) in n, ε and r(n, ε) being an expression in terms of multiple sums of
simpler type than F(n, ε). By further tricks one can compute even a homogeneous recurrence.
With the package MultiSum [183] one obtains, for instance, for the triple sum in (13) a
homogeneous linear recurrence with polynomial coefficients in n of order λ = 4 in about 2
days.

Given this recurrence, one can utilize algorithms from [55, 57, 58, 69, 70, 75]
(see section 3.1.1) encoded in our package Sigma that find all d’Alembertian solutions, i.e.,
all solutions that can be expressed in terms of indefinite nested sums defined over hyperge-
ometric products. More precisely, Sigma computes four linearly independent solutions (i.e.,
their linear span generates all solutions) where

−1
4(1 + n)2

n∑
i=3

i∑
j=3

(8 − 24 j + 11 j 2 + 3 j 3 − 3 j 4 + j 5)
(−2 + j)2(−1 + j)2 j 2(1 + j)

×
j∑

k=1

(−1)k(−2 + k)2(9 − 86k + 229k2 − 156k3 − 26k4 + 64k5 − 26k6 + 4k7)
(36 − 20k − 26k2 + 25k3 − 8k4 + k5)(8 − 24k + 11k2 + 3k3 − 3k4 + k5)

(14)

is the most complicated sum solution. Finally, with four initial values of the triple sum one
finds an alternative representation of it in terms of indefinite nested sums.

In general, these are highly nested, and the summands might consist of ugly polynomials
in the denominator (like in (14)) that do not factorize nicely. However, employing our sophis-
ticated difference ring algorithms introduced in section 6.1, one can simplify the found repre-
sentation further and obtains the right-hand side in (13). In total, the solving and simplification
steps need around 10 s.

Summarizing, combining the WZ-approach (recurrence finding) and solving tools, one
obtains a summation machinery that can transform a definite nested sum to expressions in
terms of indefinite nested sums. When the input sum depends furthermore on the dimensional
parameter ε, this machinery has been generalized in [81] to determine the coefficients of the
ε-expansion of (2) whenever they are expressible in terms of indefinite nested sums defined
over hypergeometric products. This toolbox is very general, but has a substantial drawback: it
reaches already with such simple sums like in (13) its limit. With the difference ring approach
described next, this situation can be improved substantially.

6.3. The difference ring approach

With the difference ring and field theories worked out in [72, 159, 161, 165, 167, 168] one can
simplify not only indefinite nested sums, but one can also apply Zeilberger’s creative telescop-
ing paradigm [177]. This means that one can try to compute a linear recurrence of order λ for a
definite sum, say S(n) =

∑n
k=0 f (n, k), where f (n, k) is given in terms of indefinite nested sums

defined over hypergeometric products w.r.t. the summation variable k. Given such a recurrence,
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Figure 2. Sigma’s summation spiral. Reproduced from [186]. CC BY 4.0.

Figure 3. Two-mass three-loop diagram.

one can solve it in terms of indefinite nested sums defined over hypergeometric products by
the algorithms given in section 3.1.1. If one succeeds in combining the solutions accordingly
(matching λ initial values), one obtains an alternative representation of S(n). If this expression
itself is summed over n, one can repeat this process w.r.t. another variable (over which one may
sum later again). In a nutshell, one can apply the summation spiral illustrated in figure 2 iter-
atively with the goal to transform a given multi-sum from inside to outside to a representation
purely in terms of indefinite nested sums.

This interplay has been automated in the package EvaluateMultiSums [78] based on
Sigma’s difference ring algorithms and produces the right-hand side in (13) in about 70 s. If
a sum depends also on the dimensional parameter ε, one can first expand the summand of the
multi-sum w.r.t. ε and can apply afterward the summation quantifiers to each of the coefficients
being free of ε. A clear drawback of this approach is that the summands blow up when higher
ε-orders are calculated. Nevertheless, the pure difference ring approach produces simplifica-
tions that currently no other toolbox can achieve. E.g., while treating the two-mass three-loop
integral given in figure 3 triple and quadruple sums between 0.4 to 1.6 GB of memory arose
in [187] that could be simplified to expressions in terms of binomial sums using 8.4 MB of
memory only. Further challenging calculations based on the difference ring/field approach can
be found, e.g., in [118, 187–189].

6.4. The holonomic-difference ring approach

Another prominent branch of symbolic summation is the holonomic system approach which
has been introduced in [190] and pushed further, e.g., in [191, 192] to determine recurrence
relations. Here the summand of a definite sum is described by a system of homogeneous recur-
rences with polynomial coefficients. Then given such a system, one can try to compute a linear
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recurrence system by introducing the next definite summation quantifier. Applying these algo-
rithms iteratively from inside to outside yields a linear recurrence in n for the input sum. How-
ever, the underlying recurrence systems may grow heavily and the holonomic approach usually
fails due to time and memory limitations. In [193] a hybrid strategy has been introduced and
developed further in [194, 195] that brings the holonomic and difference ring/field approach
under a common umbrella. This new approach allows one to deal with recurrence systems with
inhomogeneous parts in terms of indefinite nested sums that covers the pure holonomic and
difference ring approaches as special cases. So far this approach has been non-trivially applied
to obtain the first computer assisted proof [196] of Stembridge’s TSPP theorem [197] and to
provide the first proof of a non-trivial identity in [198] that is connected to irrationality proofs
of zeta-values. In QCD-calculations this new approach has been explored further to evaluate,
e.g., bubble topologies [199].

7. Symbolic integration

In the following we will present some of the most relevant tools of symbolic integration that
have been used (at least in parts) in particular for multi-loop calculations in the case of a few
number of external legs in elementary particle physics. Other tools suited for lower loop multi-
leg calculations are described in part e.g. in [12].

7.1. The hyperlogarithm approach

If a Feynman diagram of the form (1) has no pole terms in (2) (i.e., l = 0) or can be made finite
by certain transformations splitting off its pole terms [200], it can be calculated under certain
conditions by using the method of hyperlogarithms [201]. Since here the denominator of the
integral (1) is a multinomial in the Feynman parameters xi ∈ [0, 1], one may seek a sequence
of integrations, such that the denominator is always a linear function in the integration variable.
In this case the Feynman integral can be found as a linear combination of Kummer–Poincaré
iterated integrals (also known as Goncharov iterated integrals), [202–206]. The method has
been first devised for massless scalar integrals in [201], for a corresponding code see [207], and
it has been generalized to massive diagrams [208], dealing even with cases with no thorough
multi-linearity, which is an extension to [201, 207].

7.2. The multivariate Almkvist–Zeilberger approach

Similar to the WZ summation approach its continuous version, the multivariate
Almkvist–Zeilberger algorithm [185], can compute a linear recurrence/difference equation
for a Feynman integral of the form (1). Likewise, if the Feynman integral depends on a
continuous parameter x and the integrand is hyperexponential in x, one can search for a linear
differential equation of the form

λ∑
i=0

ai(x, ε) Di
xF(x, ε) = r(x, ε).

A refined and improved method for the input class of Feynman integrals has been devel-
oped [96, 118, 209] which can hunt efficiently for homogeneous recurrences or differential
equations. E.g., a recurrence in n of order 5 can be calculated in about 8 h for the master
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Figure 4. A three-loop ladder diagram with a central triangle. Reprinted from [118],
Copyright (2016), with permission from Elsevier.

integral

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1−u

0

(x + y − 1)N xε/2(1 − x)ε/2yε/2(1 − y)ε/2(1 − u − v)N
(

1 − u x
x−1 − v y

y−1

)−1+3/2ε

u1+ε/2v1+ε/2

× dx dy du dv

that arose in the context to tackle the highly non-trivial three-loop Feynman diagram given in
figure 4; see [118]. Then using the linear difference equation solver of Sigma one can compute
the first coefficients of the ε-expansion (2) in terms of harmonic sums and generalized harmonic
sums. More generally, one can utilize the algorithms from [81, 96] to solve linear difference
and differential equations in terms iterated sums and integrals; for further details see section 3.

7.3. The differential field and holonomic approach

Risch’s algorithm [210] for indefinite integration (for details see [211]) allows as input an
integrand from the class of elementary functions (they are recursively built by compositions of
algebraic, exponential or logarithmic functions and the standard operations+,−,×, /) and one
can decide, if the indefinite integral defined over the input function can be written again in terms
of elementary functions. Inspired by this result many further extensions have been derived. In
particular, with [211, 212] it is possible to deal with special classes of Liouvillian integrands
(recursively built by indefinite integrals and hyperexponentials). In this regard, e.g., the pack-
age Integrator [213] enables one to treat not only indefinite integration problems, but also
to compute difference/differential equations if the integrand depends on a discrete/continuous
parameter. These tools have been exploited, e.g., to study root-valued integrals in [66] that arise
within massive three-loop Feynman integral calculations.

In particular, the holonomic system approach [190–192] can be applied not only to multi-
sums, but also to multi-integrals of the form (1) to determine a linear recurrence in a discrete
parameter n or a linear differential equation in a continuous parameter x. Analogously to the
sum case, one can compute stepwise systems of linear differential/difference equations work-
ing from inside to outside of the multi-integral and ending up at a scalar equation of the
free parameter n or x. First examples have been elaborated in [192, 214] using the package
HolonomicFunctions that illustrate further possibilities in QCD-calculations.

8. The method of arbitrarily large moments

One is often interested in the calculation of a certain number of moments in the Mellin variable,
say n = 0, 1, 2, . . . , μ, to predict extra properties of physical quantities in terms of Feynman
integrals. Standard procedures, like Mincer [215] or MATAD [216], allow the calculation of a
comparable small number of Mellin moments, e.g., μ = 20. Recently, a new method has been
worked out in reference [217] and implemented within the packageSolveCoupledSystem
[50, 218, 219] to compute thousands of such moments.
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Figure 5. The large moment engine.

In general, this new method assumes that we are given a coupled system (9) with (10) where
already μ moments for the inhomogeneous part in (9) are computed (by applying this method
recursively). Then given such an input, one follows the calculation steps in figure 1 but instead
of solving the recurrence in step (3), one uses the recurrence together with a small number of
initial values of F1(n) (bounded by the order of the recurrence) to compute in linear time the
moments F1(0), . . . , F1(μ), and finally the corresponding moments for F2(n), . . . , Fλ(n). If the
Fi(n) depend also on ε, one can calculate the moments of the coefficients of the ε-expansions
by exploiting refined ideas from [81].

More generally, using IBP methods [105, 106], we suppose that a physical expression f̄ (x)
is given in terms of master integrals that are described in terms of recursively defined coupled
systems of differential equations. Then using the large moment method iteratively one can
calculate for a very large μ the moments of the master integrals. Assembling all the building
blocks in the physical expression f̄ (x), one finally derives at the coefficients F(0), . . . , F(μ) of
its power series (4) in terms of rational numbers (if ζ-values and other constants arise linearly,
they are separated accordingly).

While in traditional solving methods very complicated function spaces might arise in inter-
mediate steps, the large moment method deals simply with rational numbers and one can
represent physical quantities with such sequences without entering any structural challenges.

Given a large number of moments, one may follow various strategies illustrated in figure 5.
First, one can try to obtain interpolation expressions, e.g., by using orthogonal polynomials
[220] that provide numerical data of sufficient high precision being relevant for the experiments
at the LHC and other future colliders.

Second, one can apply the guessing methods from section 2.2 in order to produce linear
recurrences with minimal order for the physical quantities. In short, analyzing this quantity
amounts precisely to the exploration of the computed recurrence.

Next, one can try to solve the recurrences in terms of special functions by using the tools
form section 3. This strategy is particularly successful if the final result (but not necessarily
the intermediate results) can be given in terms of indefinite nested sums over hypergeometric
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Table 1. Special functions and numbers.

Nested sums Nested integrals Special numbers

Harmonic sums Harmonic polylogarithms Multiple zeta values∑n
k=1

1
k

∑k
l=1

(−1)l

l3

∫ z
0

dy
y

∫ y
0

dx
1+x

∫ 1
0 dx Li3(x)

1+x = −2Li4(1/2) + · · ·
Gen. Harmonic sums Gen. harmonic polylogarithms Gen. multiple zeta values∑n

k=1
(1/2)k

k

∑k
l=1

(−1)l

l3

∫ z
0

dy
y

∫ y
0

dx
x−3

∫ 1
0 dx ln(x+2)

x−3/2 = Li2(1/3) + · · ·
Cycl. Harmonic sums Cycl. harmonic polylogarithms Cycl. multiple zeta values∑n

k=1
1

(2k+1)

∑k
l=1

(−1)l

l3

∫ z
0

dy
1+y2

∫ y
0

dx
1−x+x2 C =

∑∞
k=0

(−1)k

(2k+1)2

Binomial sums Root-valued iterated integrals Associated numbers∑n
k=1

1
k2

(
2k
k

)
(−1)k

∫ z
0

dy
y

∫ y
0

dx
x
√

1+x
H8,w3 = 2 arccot(

√
7)2

Iterated integrals on 2F1’s Associated numbers∫ z
0

ln(x)
1+x 2F1

[ 4
3 , 5

3
2

; x2(x2−9)2

(x2+3)3

]
dx

∫ 1
0 2F1

[ 4
3 , 5

3
2

; x2(x2−9)2

(x2+3)3

]
dx

products. As demonstrated in [80], we could calculate from about μ = 5000 moments all the
recurrences that determine the massless unpolarized three-loop anomalous dimensions and
Wilson coefficients in deep-inelastic scattering [39–41] by solving the recurrences. Similarly,
we could calculate, e.g., the three-loop splitting functions [44], the massive two- and three-
loop form factor [49, 50], the anomalous dimensions from off shell operator matrix elements
[45, 46, 52], the polarized transition matrix element Agq(N) [53] and others, the logarithmic
contributions to the polarized O(α3

s ) asymptotic massive Wilson coefficients [54], and the two-
loop massless off-shell QCD operator matrix elements [47].

We remark that the found recurrences may also contribute substantially in the case that one
fails to find closed form solutions. For instance, one may extract the asymptotic behavior of
the physical quantities by using methods described in [221, 222].

9. Special functions and their algorithms

The representation of the results of calculations in QCD and QED are characterized by special
constants and functions. The former ones appear in zero scale calculations and as boundary
conditions in single and more scale problems. Since in particular in QCD and QED the Mellin
transform (see (3) where in the following x is replaced by z) relates nested sums at the one hand
to nested integrals at the other hand, and vice versa, two principle classes of special single scale
functions emerge: indefinitely nested sums over hypergeometric products and iterated integrals
over certain alphabets of letters. Both in the limit n →∞ of the sums and at z = 1 for the
iterated integrals special numbers are obtained. Examples on different classes of functions are
given in table 1. All these function spaces obey (quasi) shuffle relations, cf [172, 173], implying
algebraic relations, which allow to reduce to the respective algebraic bases [173, 176].

Historically, most of the Feynman diagram calculations in the time before 1998 were per-
formed using z-space representations leading to classical polylogarithms and Nielsen integrals
[223–228], partly with involved arguments.

A systematic description in terms of harmonic sums started in 1998 with [61, 62]. They are
defined by

Sb,�a(n) =
n∑

k=1

(sign(b))k

k|b|
S�a(k), S∅ = 1, b, ai ∈ Z\{0}, n ∈ N\{0}. (15)
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Related to that, the iterative integrals are the harmonic polylogarithms,

Hb,�a(z) =
∫ z

0
dy fb(y)H�a(y), H∅ = 1, b, ai ∈ {0, 1,−1}, (16)

with the alphabet

A =

{
f0 (z) =

1
z

, f1 (z) =
1

1 − z
, f−1 (z) =

1
1 + z

}
, (17)

[91]. A special definition is required for the case H�a(z), ∀ ai = 0, i = 1 . . . n, which has no
integral representation, but is defined as lnn(z)/n!, for completeness. In the case of infinite
sums we also allow for the symbol σ∞ :=

∑∞
k=1(1/k), which is not a number, but simplifies

various algebraic relations and is therefore useful.
The special numbers are multiple zeta values in both cases. Their representations at high

order can be found in [35].
At the next level, generalized harmonic sums [64, 65] contribute, e.g. in the case of the pure

singlet three-loop massive Wilson coefficients in the asymptotic region [43]. These quantities
are given by

Sb,�a({c,�d}; n) =
n∑

k=1

ck

kb
S�a({�d}; k), S∅ = 1,

b, ai ∈ N\{0}, c, di ∈ C\{0}, n ∈ N\{0}. (18)

The corresponding iterated integrals are also called Kummer–Poincaré iterated integrals
[202–206] and are given by

Hb,�a(z) =
∫ z

0
dy fb(y)H�a(y), H∅ = 1, (19)

with the alphabet

A =

{
fci (z) =

1
z − ci

, ci ∈ C

}
. (20)

Further, cyclotomic harmonic sums and polylogarithms [63] contribute. The letters of the
alphabet forming the iterated integrals are those of the harmonic polylogarithms extended with
letters of the type

f cycl.
k,a (z) =

za

Pk(z)
, k � 3, (21)

with k labeling the cyclotomic polynomials and a ∈ [0,ϕ(k)], and ϕ(k) is Euler’s totient
function. The associated cyclotomic harmonic sums iterate monomials of the type

sk

(ak + b)c
, a, c ∈ N+, b ∈ N, s ∈ C\{0}. (22)

Finite binomial sums [66] contribute for a series of topologies in the massive OMEs A(3)
gg

[229] and A(3)
Qg [118]. The corresponding sums are generalized sums with an additional factor of( 2k

k

)
in the numerator or denominator. The associated iterated integrals, obtained by a Mellin
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inversion, are formed out of letters containing square root valued structures, as e.g. shown in
table 1. Another example is

n∑
i=1

1( 2i
i

)
i3

=

∞∑
i=1

1( 2i
i

)
i3

+
1
4n

∫ 1

0
zn

(
3 ln (z)2 − 12 ln(2) ln(z) + 12 ln (2)2 − π2

6(−4 + z)

+

∫ z
0

1
τ1

∫ τ1
0

√
1−τ2−1
τ2

dτ2 dτ1 − 2
∫ z

0

√
1−τ−1
τ dτ

−4 + z

)
dz.

In particular, iterative application of integration by parts yield the asymptotic expansion

n∑
i=1

1( 2i
i

)
i3

∼ 2−2n√n
√
π

(
−34 924 547

884 736n7
+

91 999
9216n6

− 10 537
3456n5

+
77

72n4
− 1

3n3
+ O

(
1
n8

))
+

∞∑
i=1

1( 2i
i

)
i3
. (23)

Such expansions are extremely useful for limit calculations and for analyzing the expression
behavior for large values of n. Moreover, the sum and integral representations equipped with
their shuffle and quasi-shuffle algebras [172–175] give rise to algebraic relations of infinite
sums. In particular, attaching special constants to sums that cannot be simplified further, one
can discover evaluations such as

∞∑
i=1

2iS1(i)

i( 2i
i )

= 2 C − π log(2)
2

+
3
4
ζ(2),

where C =
∑∞

i=1
(−1)i

(2i+1)2 denotes the Catalan constant; for further details see [230, 231]. For
general classes, like nested binomial sums, more flexible methods were developed recently to
map between n- and z-space, cf [187]: given a recurrence of F(n) (resp. a differential equation of
f (z)), compute a differential equation for f (z) (resp. a recurrence for F(n)). In particular, using
the introduced solvers from section 3.1, one can check, if the Mellin transform (resp. inverse
Mellin transform) can be given in terms of indefinite nested sums (resp. integrals). Infinite
(inverse) binomial sums have been also studied in [67, 68]. For the simpler cases efficient
rewrite rules have been developed to switch between the sum and integral representations via
the (inverse) Mellin transform.

In more general cases, in particular in two-scale problems, the so called G-functions appear,
which are iterated integrals over larger alphabets, partly with root-valued letters. They are given
by

G
(

fa(x), f b1(x), . . . , f bn(x)
)
=

∫ x

0
dy fa(y)G

(
f b1 (y), . . . , f bn(y)

)
. (24)

Actually fc(x) even denotes in general a differentiable function, up to regularizations in special
cases.

At higher and higher orders in perturbation theory, new building blocks arise that can-
not be represented in terms of indefinite nested sums or iterated integrals. In particular, one
ends up at linear difference/differential equations, that cannot be solved completely in terms
of d’Alembertian/Liouvillian solutions. For this reason, the class of iterative non-iterative
integrals have been introduced in 2016 [232].
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Probably the first case in which complete elliptic integrals emerged in a quantum field
theoretic calculation has been the fourth order spectral functions for the electron propaga-
tor by Sabry 1962 [233]. For complete physical processes more recently elliptic integrals
were needed. This is the case in massive three-loop calculations for the QCD corrections of
the ρ parameter [98, 99] 2017 and in massless three–three loop calculations 2018 and later
[235, 236]9. There is a series of well-known examples of individual integrals of a certain
structure in the literature as the sun-rise integral, cf e.g. [237–239] and the kite-integral
[233, 240, 241]; for a collection of recent surveys see reference [242]10. In general, these
classes of integrals form iterative non-iterative integrals, cf [98]. Beyond this level one has
Abel-integrals [246] and Calabi–Yau structures, cf [24, 247, 248]. Even more involved struc-
tures will occur at higher topologies. In Mellin space they have the common characteristics of
difference equations with rational coefficients which are not factorizing at first order. Any of
the corresponding solutions also needs efficient numerical representations, as e.g. [249–251],
for phenomenological and experimental applications. This also applies to Mellin space repre-
sentations for n ∈ C, [174, 175, 252–254]. Feynman integrals will imply a multitude of new
function spaces in the future.

10. Calculations in quantum field theory

Our major topic concerns analytic Feynman diagram calculations. As has been shown, this is
deeply rooted in solving large systems of differential or difference equations. The single scale
cases are mathematically widely understood and one may project to the zero scale case, i.e.
to special numbers. However, just by this one will probably not be able to find all relations
between these special numbers by using, e.g., the techniques described in section 2.1, begin-
ning at a certain level of complexity, which requires further advanced methods in these cases.
On the other side, as experience shows, certain two-scale problems can still be solved analyti-
cally, as we will discuss in section 10.4. But already starting at that level, one has to deal with
partial differential and difference equations, on which is much less known, cf [255, 256]. In the
single scale case, going to higher and higher orders, one will face non-first order factorizing
differential and difference equations of higher and higher order [246, 257, 258]11, for which
only the properties of very few concrete classes have been studied so far and a very wide field
of future mathematical investigation is opening up.

For more scales, one probably will have to rely on using numerical precision methods in the
first place, because of the wide variety of structures [25]. Computational quantum field theory
(QFT) is urged to invest much more efforts to obtain fast and highly reliable methods in this
direction to be able to cope with the challenges in future precision measurements. Develop-
ments of this kind may take quite a long time and need intense collaboration with experts in
the field of numerical mathematics.

10.1. Zero scale calculations

Zero scale quantities in QFTs, as QED and QCD, are characterized by color factors, rational
coefficients and special numbers like multiple zeta values [35]. Examples are fixed moments

9 The same differential equations rule the non first-order factorizing cases in the calculation of the massive three-loop
operator matrix element AQg in the single mass case [234], found together with the calculation [99].
10 Very naturally, as now the technical aspects on complete elliptic integrals are very well known in particle physics,
many applications find these contributions, cf e.g. [243–245], the reason being the occurrence of the corresponding
Heun and 2F1-type differential equations, cf e.g. [98].
11 For more literature on elliptic integrals and modular forms see references [26, 98, 242].
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for massive three-loop OMEs [259] and massless four-loop anomalous dimensions [260]. Par-
ticularly for massive problems more special numbers contribute, as those related to generalized
harmonic sums [65], cyclotomic harmonic sums [63], binomial sums [66], and those related
to elliptic integrals [261], see also table 1. More and more different sets will emerge includ-
ing even higher topologies. One also may calculate moments of single scale quantities, which
depend on an integer parameter n, by obtaining sequences of rational numbers. These numbers
incorporate thus an essential part of the more involved single scale dependence for general
values of n. It is sometimes of advantage to first work with these moments, despite the fact
that the general n relation is determined by a difference equation, which does not factorize at
first order. This is often the case for master integrals in the massive case. However, the cor-
responding recurrences for anomalous dimensions are factorizing at first order. One inserts
first the master integrals for fixed moments and then determines the difference equation for the
anomalous dimension, see [44, 52].

10.2. Massless single scale calculations

These quantities are the anomalous dimensions, currently known to three-loop order
[39, 40, 43–46, 52, 262], the massless Wilson coefficients for deep-inelastic scattering [263] up
to O(α3

s ) [41], the Drell–Yan process and Higgs production to two-loop order [264–267]. All
these quantities can be expressed by harmonic sums [61, 62] in Mellin space and by harmonic
polylogarithms in z-space [91]. For Higgs production and the Drell–Yan process at three-loop
order [235, 236] also elliptic integrals contribute. It is generally expected that a further nesting
in the Feynman diagram topologies leads to new mathematical structures also in the massless
case in higher orders of the coupling constant.

For massless single scale calculations one may very efficiently apply the method of arbi-
trarily high moments [217], together with guessing to obtain the recurrences, which may either
be solved or reduced, by factoring of the first order factors, using Sigma. This also applies to
the case of massive single scale calculations, to which we turn now.

10.3. Massive single scale calculations

The method of massive OMEs [268] allowed to calculate single scale quantities, such as the
heavy flavor Wilson coefficients to three-loop order in the asymptotic region, obtaining all log-
arithmic contributions [54, 269] and also the constant term. The method has also been applied
to problems in QED, cf [270–272], see section 10.3.1. In some cases even full results have
been obtained at two-loop order [268, 270, 273–275], cf section 10.3.2.

10.3.1. Massive single scale calculations: logarithmic and constant corrections. The asymp-
totic heavy flavor Wilson coefficients of deep-inelastic scattering contain single scale
logarithmic and constant contributions. At two-loop order all contributions are known
[153, 268, 276–279]. At three-loop order all but the massive OME A(3)

Qg have been calcu-
lated analytically in complete form both in the unpolarized and polarized case. In Mellin
n space they can be expressed by harmonic sums for all NF-terms [122, 280], and for A(3),NS

qq,Q ,

A(3),PS
qq,Q , A(3)

qg,Q and A(3)
gq,Q [54, 123, 188, 269, 281]. Generalized harmonic sums contribute in the

pure singlet case A(3),PS
Qq [43, 282] and finite binomial sums for A(3)

gg,Q [229]. Finally, A(3)
Qg receives

also contributions by complete elliptic integrals [234].
Another case belonging to this class of integrals are the contributions to the massive

form factor at three-loop order. The first order factorizing contributions can be expressed by
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harmonic and cyclotomic harmonic polylogarithms in the variable x

q2

m2
= − (1 − x)2

x
, (25)

with q2 the virtuality and m the heavy quark mass, [49, 50, 117, 283–285].
The method of massive OMEs has also been applied for the calculation of the initial

state radiation to the process e+e− → Z∗/γ∗. These corrections are of importance for planned
future high luminosity measurements at the ILC, CLIC, and FCC_ee. The results at O(α2)
[270] showed disagreement with an earlier direct calculation [286]. The only way to find
the correct results has been a complete diagrammatic calculation, without expansion in the
small parameter ρ = m2

e/s, with me the electron mass and s the cms energy. This has been
performed in reference [287]. Furthermore, we expanded in ρ through different steps, con-
trolled by high precision numerics, and confirmed the results of [270]. The fermionic integrals
could be represented using iterated Kummer-elliptic integrals over larger alphabets. Numerical
results were presented in [288, 289]. The method of massive OMEs has then been extended
to calculate the first three logarithmic series up to O(α6L5), where L = ln(s/m2

e) in [271].
Here in Mellin space also generalized harmonic sums contribute. Higher order corrections for
the forward–backward asymmetry were calculated in [272], where also cyclotomic harmonic
polylogarithms contribute to the radiators12.

10.3.2. Massive single scale calculations: including also power corrections. In some cases,
massive two-loop problems can be integrated analytically in the whole kinematic region. This
applies to the flavor non-singlet contributions [268, 273] and the pure singlet contributions
[274, 275]. While in the non-singlet case classical polylogarithms with root-valued arguments
suffice for the representation, in the pure singlet case iterated integrals over alphabets con-
taining Kummer-elliptic letters are necessary. Part of them integrates to incomplete elliptic
integrals, which do not destroy the iterated integral structure, unlike the case in the iterative
non-iterative integrals [291]. In establishing the contributing alphabet also rationalization of
roots is performed as far as possible; for other investigations see also [292]. Examples for these
letters are, cf [274]

fw11 (t) =
t√

1 − t2
√

1 − k2t2
(26)

fw12 (t) =
t√

1 − t2
√

1 − k2t2(k2(1 − t2(1 − z2)) − z2)
, (27)

with k =
√

z/
√

1 − (1 − z)β2, β =
√

1 − 4m2z/
(
Q2(1 − z) and z is the momentum fraction

variable. Depth-three iterated integrals over the contributing integrals emerge.
The fact that one finds analytic integral representations in these cases is related to the

tree-like structure of the contributing diagrams. At higher orders or for other processes,
correspondingly, one has to perform corresponding expansions in m2/Q2, to successively
obtain analytic results, improving the logarithmic and constant orders obtained in the region
Q2 
 m2. The possibility to analytically calculate the pure-singlet corrections, conjectured
by van Neerven and JB around 2000, turned out to be correct, however, the necessary tech-
nologies for this became only available with [274] later and Nielsen integrals with whatsoever
complicated argument are not sufficient to represent the final result.

12 For a recent survey on the QED corrections see [290].
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10.4. Massive double scale calculations

In the case of deep-inelastic scattering from the level of three loop onward, diagrams con-
tribute, which contain charm and bottom quarks. This leads to a double scale problem, as
similarly also in the case of the massive from factor and for other processes. In the following
we will consider the case of deep-inelastic scattering. In all cases but the massive OMEs
A(3)

Qg and its polarized counterpart ΔA(3)
Qg, complete analytic solutions are possible either in

Mellin n or momentum fraction z-space. The different OMEs have been calculated in refer-
ences [187–189, 293–295]. They can be expressed by G-functions, cf (24). One example is
[187]

G37 = G

({
1

1 − x + ηx
,
√

1 − x
√

1 − x + ηx

}
, z

)

= − η2

(1 − η)5/2

{
1

16
ln
(

2 − η + 2
√

1 − η
)
+

1
4

arcsin2

(
1
√
η

)

+
i
2

[
− ln

(
1 −

√
1 − η

)
+ ln(η) − ln(2)

]
arcsin

(
1
√
η

)

+
1
4

Li2

(
η + 2

√
1 − η − 2
η

)
+

i
2

arcsin

(√
1 − z + ηz

√
η

)
ln(1 + χ)

− 1
8

ln
(√

1 − η
√

1 − z +
√

1 − z + ηz
)
− 1

4
arcsin2

(√
1 − z + ηz

√
η

)

+
1
4

ln(1 − z + ηz)

[
− ln

(
1 − η +

√
1 − η

)
+

ln(η)
2

+
1
2

ln(1 − η) − iπ
2

]

− 1
4

Li2(−χ)

}
+

3η − 2
8(1 − η)2

− (2 − η)
4(1 − η)2

ln(1 − z + ηz)

+
√

1 − z
√

1 − z + ηz
(2 − 3η + 2ηz − 2z)

8(1 − η)2
, (28)

where η = m2
1/m2

2 andχ = (1/η)(
√

1 − η
√

1 − z −
√

1 − z + ηz)2. In the case of the pure sin-
glet two-mass contributions [189, 294] we work in z-space by using Mellin–Barnes integrals
[140–142]. One also obtains G-functions and in part integrals over them, with a different sup-
port than usual, expressed by Heaviside functions. These problems cannot be solved in Mellin
n space.

10.5. Classical gravity

The classical kinematics of massive astrophysical objects, such as black holes and neutron
stars, can be calculated by using methods of effective field theory developed for QFT. Concepts
like the path integral [296] and Feynman diagrams are also applicable at the classical level.
This is an enormous bonus to the field of general relativity and classical gravity, since very
advanced computation technologies, starting from Feynman diagram generation [297], effec-
tive performance of Lorentz algebra [298, 299], integration-by-parts reduction [107], and the
calculation of master integrals already exist. One expands Einstein–Hilbert gravity in terms of
auxiliary fields [300]. Furthermore, one performs the classical limit using the method of expan-
sion by regions, cf [301, 302], where only the potential and radiation modes are contributing.
These methods can be applied for the inspiraling process of the massive objects [303–308],
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Figure 6. The computer algebra and special function tools in interaction.

as well as for their scattering process, cf [309, 310]. The main challenge is here to deal with
the ever growing effective vertex structures and the integration by parts reduction, which can
be performed by packages like Crusher, cf [107]. The bound state kinematics is described
by the post-Newtonian (PN) approach, having reached now 6PN order [306, 308, 311] and
the scattering process by the post-Minkowskian approach, now available at O(G4

N), where GN

denotes Newton’s constant [309, 310]. After expanding the potential contributions of the post-
Minkowskain results, a part of the PN results is re-obtained, which has been shown to 6PN
in [306, 311]. This applies to the potential contributions. In principle, the method of guessing
could be used obtaining post-Minkowskian results, again from potential contributions, [312].
While agreement has been reached for the 4PN level between various approaches, the level
of 5PN is still under discussion because of the non-potential contributions. For their descrip-
tion the different methods proposed in the literature do not lead to consistent results as of yet,
requiring both more clear theoretical foundations and also more work to obtain the final result
for bound state problems.

11. Conclusion

For less than the last quarter century, a technological revolution has happened in the field of
perturbative analytic calculations in renormalizable quantum field theories, which is accom-
panying this field since. Considering single scale Feynman diagrams, in the time until 1998,
the analytic integration of these amplitudes has been an art based on hypergeometric function
structures and maximally Nielsen integrals dealing with sets of up to O(50) Feynman dia-
grams mostly to two-loop order. Before about this time computer algebra has been inspired
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and motivated often by its own discipline or by other mathematical research areas, such as
combinatorics, number theory, or special functions. In this survey article we introduced recent
methods from both communities and showed how they can be combined in non-trivial ways to
new methods that may be instrumental for current and future precision calculations in particle
physics. For a graphical summary of the different interactions presented in this article we refer
to figure 6.

Elements of the revolution in quantum field theories were also (quasi)shuffle algebras and
the discovery of a hierarchy of function spaces both in Mellin n and momentum fraction z
space. For all quantities considered one may find recurrences by applying the methods of arbi-
trary large moments and guessing, which delivers closed form equations in the first place. In
the moment technology presented in section 8 one simply deals with rational numbers ignor-
ing completely the possible function spaces that may arise there. At the end of the day, one
can apply the computer algebra tools introduced above and obtains from this data numerical
representations or even symbolic representations of the final physical problem. In general, we
feel that such new strategies will be crucial for future calculations and we are curious to see
how these techniques can be developed further or can be outperformed with new ideas and
strategies.

Systematic mathematical methods, like difference ring theory, allowed to reveal various new
structures. Nowadays first order factorizing difference and differential equations (or systems
thereof) are fully understood. Non-first order factorizing systems, leading to 2F1-solutions,
complete elliptic integrals and modular forms are understood as well and steps in the direction
of equations related to Calabi–Yau manifolds are done. Yet these are rather special systems
only and Feynman diagrams can in principle cause more general, yet unknown structures also
belonging to non-first order factorizing equations. They are fascinating as such and their com-
plex analysis is a highly interesting topic. One may intend to derive general characteristics
for these quantities [313]. Many of the present massless and massive three-loop problems of
single and double scales could be solved by the technologies described in the present survey
and new structures challenge further innovative mathematical solutions and efficient computer-
algebraic implementations. All present achievements have in various instances been achieved
by sophisticated computer algebra algorithms. Another challenge comes from the experimental
possibilities at future colliders, operating at high luminosity, with which the theoretical results
have to cope. All methods described do not only apply to relativistic renormalizable quantum
field theories, but also to effective field theories, e.g. dealing with (non-linear) Einstein gen-
eral relativity in post-Newtonian and post-Minkowskian expansions at the classical level and
various applications more, e.g. also to solid state physics. Problems with more scales do still
escape complete analytic solutions at present and require more research in the future.

The close collaboration of theoretical physicist, mathematicians and researchers in the field
of computer algebra led both to the use of known algorithms from quite different fields in
QFT, but have also triggered new mathematical and algorithmic research. The success reached
has only been possible due to this symbiosis. This process will continue in full strength in the
future.

Acknowledgments

We would like to thank D Kreimer for a discussion. This work was supported by the European
Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-
Curie Grant Agreement No. 764850 ‘SAGEX’. We also acknowledge support from the Austrian
Science Fund (FWF) Grants SFB F50 (F5009-N15) and P33530. The Feynman diagrams have
been drawn using Axodraw [314].

28



J. Phys. A: Math. Theor. 55 (2022) 443005 Topical Review

Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Johannes Blümlein https://orcid.org/0000-0002-0565-4906
Carsten Schneider https://orcid.org/0000-0002-5703-4530

References

[1] Boer D et al 2011 Gluons and the quark sea at high energies: distributions, polarization,
tomography (arXiv:1108.1713)

[2] Agostini P et al (LHeC, FCC-he Study Group) 2021 J. Phys. G: Nucl. Part. Phys. 48 110501
[3] Abelleira Fernandez J L et al (LHeC Study Group) 2012 J. Phys. G: Nucl. Part. Phys. 39 075001
[4] Accomando E et al (ECFA/DESY LC Physics Working Group) 1998 Phys. Rep. 299 1–78
[5] Aguilar-Saavedra J A et al (ECFA/DESY LC Physics Working Group) 2001 TESLA: the super-

conducting electron positron linear collider with an integrated x-ray laser laboratory. Technical
design report: III. Physics at an e+e− linear collider (arXiv:hep-ph/0106315)

[6] Aarons G et al (ILC) 2007 International Linear Collider reference design report volume: 2.
Physics at the ILC A Djouadi, J Lykken, K Mönig, Y Okada, M Oreglia and S Yamashita
(arXiv:0709.1893)

[7] Aihara H et al (ILC) 2019 The international linear collider. A global project (arXiv:1901.09829)
[8] van der Meer S 1988 The CLIC project and design for an e+e− collider INFN Int. School on

Electromagnetic Radiation and Particle Beams Acceleration: Physics and Applications
[9] Accomando E et al (CLIC Physics Working Group) 2004 Physics at the CLIC multi-TeV lin-

ear collider 11th Int. Conf. on Hadron Spectroscopy CERN Yellow Reports: Monographs
(arXiv:hep-ph/0412251)

[10] Roloff P et al (CLIC, CLICdp) 2018 The compact linear e+e− collider (CLIC): physics potential
P Roloff, R Franceschini, U Schnoor and A Wulzer (arXiv:1812.07986)

[11] Abada A et al (FCC) 2019 Eur. Phys. J. Spec. Top. 228 261–623
[12] Abreu S, Britto R and Duhr C 2022 (arXiv:2203.13014)
[13] Duhr C, Gangl H and Rhodes J R 2012 J. High Energy Phys. JHEP10(2012)075
[14] Connes A and Kreimer D 1998 Commun. Math. Phys. 199 203–42
[15] Connes A and Kreimer D 2000 Commun. Math. Phys. 210 249–73
[16] Connes A and Kreimer D 2001 Commun. Math. Phys. 216 215–41
[17] Manin Y I 2005 Iterated integrals of modular forms and noncommutative modular symbols Alge-

braic Geometry and Number Theory (Progress in Mathematics vol 253) (Boston: Birkhäuser)
pp 565–97

[18] Bloch S, Esnault H and Kreimer D 2006 Commun. Math. Phys. 267 181–225
[19] Bloch S and Kreimer D 2010 Commun. Number Theor. Phys. 4 709–53
[20] Brown F 2011 On the decomposition of motivic multiple zeta values Galois–Teichmüller Theory

and Arithmetic Geometry (Advanced Studies in Pure Mathematics vol 68) (Tokyo: Mathemati-
cal Society of Japan) pp 31–58

[21] Golden J, Goncharov A B, Spradlin M, Vergu C and Volovich A 2014 J. High Energy Phys.
JHEP01(2014)091

[22] Broadhurst D and Schnetz O 2014 PoS LL2014 078 arXiv:1409.5570
[23] Brown F 2017 Commun. Number Theor. Phys. 11 453–556
[24] Bönisch K, Duhr C, Fischbach F, Klemm A and Nega C 2021 Feynman integrals in dimensional

regularization and extensions of Calabi–Yau motives (arXiv:2108.05310)
[25] Heinrich G 2021 Phys. Rep. 922 1–69
[26] Blümlein J and Schneider C 2018 Int. J. Mod. Phys. A 33 1830015
[27] Blümlein J 2021 Analytic integration methods in quantum field theory: an introduction Anti-

Differentiation and the Calculation of Feynman Amplitudes ed J Blümlein and C Schneider
(Berlin: Springer) pp 1–33

29

https://orcid.org/0000-0002-0565-4906
https://orcid.org/0000-0002-0565-4906
https://orcid.org/0000-0002-5703-4530
https://orcid.org/0000-0002-5703-4530
https://arxiv.org/abs/1108.1713
https://doi.org/10.1088/1361-6471/abf3ba
https://doi.org/10.1088/1361-6471/abf3ba
https://doi.org/10.1088/0954-3899/39/7/075001
https://doi.org/10.1088/0954-3899/39/7/075001
https://doi.org/10.1016/S0370-1573(97)00086-0
https://doi.org/10.1016/S0370-1573(97)00086-0
https://doi.org/10.1016/S0370-1573(97)00086-0
https://doi.org/10.1016/S0370-1573(97)00086-0
https://arxiv.org/abs/hep-ph/0106315
https://arxiv.org/abs/0709.1893
https://arxiv.org/abs/1901.09829
https://arxiv.org/abs/hep-ph/0412251
https://arxiv.org/abs/1812.07986
https://doi.org/10.1140/epjst/e2019-900045-4
https://doi.org/10.1140/epjst/e2019-900045-4
https://doi.org/10.1140/epjst/e2019-900045-4
https://doi.org/10.1140/epjst/e2019-900045-4
https://arxiv.org/abs/2203.13014
https://doi.org/10.1007/JHEP10(2012)075
https://doi.org/10.1007/s002200050499
https://doi.org/10.1007/s002200050499
https://doi.org/10.1007/s002200050499
https://doi.org/10.1007/s002200050499
https://doi.org/10.1007/s002200050779
https://doi.org/10.1007/s002200050779
https://doi.org/10.1007/s002200050779
https://doi.org/10.1007/s002200050779
https://doi.org/10.1007/pl00005547
https://doi.org/10.1007/pl00005547
https://doi.org/10.1007/pl00005547
https://doi.org/10.1007/pl00005547
https://doi.org/10.1007/s00220-006-0040-2
https://doi.org/10.1007/s00220-006-0040-2
https://doi.org/10.1007/s00220-006-0040-2
https://doi.org/10.1007/s00220-006-0040-2
https://doi.org/10.4310/cntp.2010.v4.n4.a4
https://doi.org/10.4310/cntp.2010.v4.n4.a4
https://doi.org/10.4310/cntp.2010.v4.n4.a4
https://doi.org/10.4310/cntp.2010.v4.n4.a4
https://doi.org/10.1007/JHEP01(2014)091
https://arxiv.org/abs/1409.5570
https://doi.org/10.4310/cntp.2017.v11.n3.a1
https://doi.org/10.4310/cntp.2017.v11.n3.a1
https://doi.org/10.4310/cntp.2017.v11.n3.a1
https://doi.org/10.4310/cntp.2017.v11.n3.a1
https://arxiv.org/abs/2108.05310
https://doi.org/10.1016/j.physrep.2021.03.006
https://doi.org/10.1016/j.physrep.2021.03.006
https://doi.org/10.1016/j.physrep.2021.03.006
https://doi.org/10.1016/j.physrep.2021.03.006
https://doi.org/10.1142/s0217751x18300156
https://doi.org/10.1142/s0217751x18300156
https://doi.org/10.1007/978-3-030-80219-6_1
https://doi.org/10.1007/978-3-030-80219-6_1


J. Phys. A: Math. Theor. 55 (2022) 443005 Topical Review

[28] Weinzierl S 2022 Feynman integrals (arXiv:2201.03593 [hep-th])
[29] Lenstra A K, Lenstra H W and Lovasz L 1982 Math. Ann. 261 515–34
[30] Ferguson H R P and Forcade R W 1979 Bull. Am. Math. Soc. 1 912–4
[31] Ferguson H R P and Bailey D H 1991 A polynomial time, numerically stable integer relation

algorithm Tech. Rep. RNR-91-032 Ames Research Center Report
[32] Bailey D H and Broadhurst D J 1999 Math. Comput. 70 1719–36
[33] Luthe T, Maier A, Marquard P and Schröder Y 2017 J. High Energy Phys. JHEP10(2017)166
[34] Acres K and Broadhurst D 2021 Empirical determinations of Feynman integrals using integer rela-

tion algorithms Anti-Differentiation and the Calculation of Feynman Amplitudes ed J Blümlein
and C Schneider (Berlin: Springer) pp 63–82

[35] Blümlein J, Broadhurst D J and Vermaseren J A M 2010 Comput. Phys. Commun. 181 582–625
[36] Salvy B and Zimmermann P 1994 ACM Trans. Math. Softw. 20 163–77
[37] Mallinger C 1996 Algorithmic manipulations and transformations of univariate holonomic func-

tions and sequences Master’s Thesis RISC Johannes Kepler University, Linz
[38] Kauers M 2008 Nucl. Phys. B 183 245–50
[39] Moch S, Vermaseren J A M and Vogt A 2004 Nucl. Phys. B 688 101–34
[40] Vogt A, Moch S and Vermaseren J 2004 Nucl. Phys. B 691 129–81
[41] Vermaseren J, Vogt A and Moch S 2005 Nucl. Phys. B 724 3–182
[42] Blümlein J, Kauers M, Klein S and Schneider C 2008 PoS ACAT08 106 arXiv:0902.4095
[43] Ablinger J, Behring A, Blümlein J, De Freitas A, von Manteuffel A and Schneider C 2014 Nucl.

Phys. B 890 48–151
[44] Ablinger J, Behring A, Blümlein J, De Freitas A, von Manteuffel A and Schneider C 2017 Nucl.

Phys. B 922 1–40
[45] Blümlein J, Marquard P, Schneider C and Schönwald K 2021 Nucl. Phys. B 971 115542
[46] Blümlein J, Marquard P, Schneider C and Schönwald K 2022 J. High Energy Phys.

JHEP01(2022)193
[47] Blümlein J, Marquard P, Schneider C and Schönwald K 2022 Nucl. Phys. B 980 115794
[48] Kauers M, Jaroschek M and Johansson F 2014 Ore polynomials in sage Computer Algebra and

Polynomials (Lecture Notes in Computer Science) (Cham: Springer) ed J Gutierrez, J Schicho
and M Weimann pp 105–25

[49] Ablinger J, Blümlein J, Marquard P, Rana N and Schneider C 2018 Phys. Lett. B 782 528–32
[50] Blümlein J, Marquard P, Rana N and Schneider C 2019 Nucl. Phys. B 949 114751
[51] Ablinger J, Behring A, Blümlein J, De Freitas A, von Manteuffel A and Schneider C 2017 Heavy

flavor Wilson coefficients in deep-inelastic scattering: recent results PoS QCDEV2017 031
[52] Behring A, Blümlein J, De Freitas A, Goedicke A, Klein S, von Manteuffel A, Schneider C and

Schönwald K 2019 Nucl. Phys. B 948 114753
[53] Behring A, Blümlein J, De Freitas A, von Manteuffel A, Schönwald K and Schneider C 2021 Nucl.

Phys. B 964 115331
[54] Blümlein J, De Freitas A, Saragnese M, Schneider C and Schönwald K 2021 Phys. Rev. D 104

034030
[55] Abramov S 1989 USSR Comput. Math. Math. Phys. 29 7–12
[56] Van Hoeij M 1997 J. Symb. Comput. 24 537–61
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[74] Schneider C 2004 An. Univ. Timişoara Ser. Mat.-Inform. 42 163–79 extended version of Proc.

SYNASC’04
[75] Schneider C 2005 J. Differ. Equ. Appl. 11 799–821
[76] Schneider C 2005 Appl. Algebra Eng. Commun. Comput. 16 1–32
[77] Schneider C 2007 Sém. Lothar. Combin. 56 1–36 article B56b
[78] Schneider C 2014 Modern summation methods for loop integrals in quantum field theory: the

packages Sigma, EvaluateMultiSums and SumProduction Proc. ACAT 2013 (J. Phys.: Conf.
Ser. vol 523) pp 1–17

[79] Schneider C 2021 Term algebras, canonical representations and difference ring theory for symbolic
summation Anti-Differentiation and the Calculation of Feynman Amplitudes ed J Blümlein and
C Schneider (Berlin: Springer) pp 423–85

[80] Blümlein J, Kauers M, Klein S and Schneider C 2009 Comput. Phys. Commun. 180 2143–65
[81] Blümlein J, Klein S, Schneider C and Stan F 2012 J. Symb. Comput. 47 1267–89
[82] Nielsen N 1906 Die Gammafunktion (Leipzig: Teubner)
[83] Landau E 1906 Sitzungsber. Kgl. Bayer. Akademie der Wissenschaften vol 36 pp 151–221
[84] Nørlund N E 1924 Vorlesungen über Differenzenrechnung (Berlin: Springer)
[85] Milne-Thomson L M 1932 Math. Proc. Camb. Phil. Soc. 28 311–8
[86] Laporta S 2001 Phys. Lett. B 504 188–94
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