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Zusammenfassung

0.1. Einleitung

Die Erforschung von Schwerionnenkollisionen bei hohen Energien ist eines der aktivsten
Felder der modernen Kern- und Elementarteilchenphysik. In Kollisionen von schw-
eren Ionen an den modernen Beschleunigeranlagen RHIC an der Brookhaven National
Laboratory (BNL) und LHC am CERN in Genf wird Kernmaterie zu extremen En-
ergiedichten und Temperaturen komprimiert. Da die Kopplungskonstante der starken
Wechselwirkung auf kurzen Léngenskalen und bei hohen Energien kleiner wird, kann
extreme Verdichtung der normalen (kalten) Kernmaterie zu ihrem ’Schmelzen’ fiihren.
Aus der hadronischen Materie entsteht dabei ein ungebundener Zustand von Quarks und
Gluonen, den elementaren Konstituenten von Neutronen und Protonen. Dieser Zustand
der stark wechselwirkenden Materie ist extrem kurzlebig und entzieht sich jeglicher direk-
ter Beobachtung. Schlussfolgerungen iiber seine kurzzeitige Existenz und Eigenschaften
konnen ausschlieflich anhand von Messungen von sekundaren Teilchen deduziert werden.
Die dabei gemessenen Teilchen entstehen, wenn die Temperatur des Quark-Gluonischen
Mediums unter die kritische Temperatur sinkt und so der umgekehrte Phaseniibergang
stattfindet. Die extremen Dichten und Temperaturen, die so im Labor erzeugt werden,
sind dem Zustand des frithen Universums dhnlich, und die Erforschung des ungebundenen
Zustandes der stark wechselwirkenden Materie, des sogenannten ’Quark-Gluon-Plasmas’
(QGP) [1] ist somit von fundamentaler Bedeutung sowohl fiir die Kern- als auch fiir die
Astrophysik. Die aktive Erforschung der Eigenschaften des QGP lduft seit den spéten
70er Jahren (vgl. beispielsweise Referenzen [2, 3, 1]) bis heute.

In der Erforschung von Eigenschaften der Kernmaterie in hochenergetischen Schweri-
onenkollisionen kamen hydrodynamische Modelle bereits sehr frith zum Einsatz |2, 4, 5].
Analysen der Ergebnisse aus den Schwerionenexperimenten an den Beschleunigern RHIC
und LHC haben in der letzten Dekade dazu gefiihrt, dass Hydrodynamik mittlerweile zu
einem Standardmodell zur Beschreibung der Eigenschaften des in diesen Experimenten
erzeugten Mediums geworden ist. Dabei handelt es sich um eine relativistische For-
mulierung der hydrodynamischen Gleichungen, welche auch auferhalb der hochener-
getischen Schwerionenphysik Anwendung finden. Messungen der Winkelabhingigkeit
von Multiplizititen der sekundiren Teilchen [6, 7] und deren gute Ubereinstimmung mit
Ergebnissen hydrodynamischer Rechnungen |8, 9, 10, 11, 12] sind ein Hinweis darauf, dass
der in Schwerionenkollisionen erzeugte ungebundene Zustand der stark wechselwirkenden
Materie, bestehend aus Quarks und Gluonen, sich kollektiv verhdlt. Diese These wird
von weiteren Beobachtungen unterstiitzt, wie beispielsweise Unterdriickung der gebun-
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denen Zustédnde von Charm und Anti-Charm Quarks (sog. Quarkonia) [13, 14, 15] oder
Unterdriickung von hochenergetischen Teilchen (sog. Jets), welche durch das Medium
propagieren [16, 17, 18, 19, 20, 21, 22] . Aus dem direkten Vergleich aus den hydrody-
namischen Modellen gewonnener Ergebnisse mit den experimentellen Daten wurde die
Scherviskositit n des Quark-Gluonischen Gases extrahiert. Die mit der Entropiedichte
s reskalierte Scherviskositdt, n/s, ist eine dimensionslose Grosse und ein Maf fiir die
stiarke der dissipativen Effekte im Medium. Es zeigt sich, dak das n/s Verhéltnis des
Quark-Gluon Plasmas kleiner ist, als die entsprechenden Werte fiir die kalten Atomgase
— die kéltesten unter den bekannten Fliissigkeiten [23, 24]. Der kleine, jedoch endliche
n/s Wert von QGP liegt nah an der universellen unteren Grenze h/(4rkp), welche von
Kovtun, Son und Starinets gefunden wurde |25]. Dadurch wurde das Paradigma der Ent-
deckung der 'perfekten Fliissigkeit’ am RHIC [26], welches aus den frithen erfolgreichen
Anwendungen der idealen Hydrodynamik [8] resultierte, zwar relativiert, jedoch gilt das
Quark-Gluon Plasma als die womoglich “perfekteste’ unter den bekannten Fliissigkeiten.
Der Wert von 1/s des QGP darf als ein Kandidat fiir die Aufnahme ins sogenannte "Par-
ticle Data Book’ gelten, ein Standard-Nachschlagewerk mit den wichtigsten Werten und
Zusammenhéngen fiir die Elementarteilchenphysik.

Neben der dissipativen Hydrodynamik ist die kinetische Theorie das am meisten be-
nutzte Mittel zur Modellierung der Dynamik von Schwerionenkollisionen. Die kinetische
Transporttheorie basiert auf der Boltzmannschen Gleichung, welche die Evolution der
Phasenraumverteilung unter Beriicksichtigung von Wechselwirkungsprozessen beschriebt.
In der Form, in der sie am haufigsten verwendet wird, beschreibt die Boltzmann-Gleichung
die Ein-Teilchen Verteilungsfunktion. Sie ist somit die erste Approximation der soge-
nannten Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) Hierarchie. In Kaskades-
imulationen [27, 28, 29, 30, 31| sind die Konstituenten des QGP — Quarks und Gluo-
nen — durch Quasi-Teilchen, d.h. punktférmige Teilchen, représentiert. Die kinetische
Transporttheorie ist also eine mikroskopische Theorie, welche Prozesse auf der kurzen
Skala der mittleren freien Wegldnge der Teilchen beschreiben vermag. Im Gegensatz
dazu ist die hydrodynamische Theorie eine makroskopische Theorie. Die hydrodynamis-
chen Gleichungen folgen aus den Erhaltungssitzen fiir die Energie und den Impuls des
Systems zusammen mit weiteren, ebenfalls makroskopischen Eigenschaften des Systems
wie die Zustandsgleichung. Damit ist Hydrodynamik nicht in der Lage, die Prozesse
auf kiirzesten Léngenskalen zu beschreiben, denn die hydrodynamischen Gleichungen
basieren auf einer Mittlung iiber alle im System vorhandenen mikroskopischen Langen-
skalen.

Das Ziel dieser Arbeit besteht darin, in einer Reihe von Beispielen zu untersuchen,
welche Unterschiede zwischen der dissipativen hydrodynamischen und kinetischen Beschrei-
bung eines ultrarelativistischen Systems gibt. Diese Frage ist von grofer Relevanz fiir
die hochenergetische Schwerionenphysik, da dort die relativistische dissipative Hydro-
dynamik als ein Standard Modell zur Beschreibung der frithen Dynamik unmittelbar
nach dem Kollisionsprozess gilt. Indem die Grenzen der Giiltigkeit der dissipativen
hydrodynamischen Beschreibung untersucht werden, wird zugleich auch die Giiltigkeit
der auf hydrodynamischer Beschreibung basierenden Erkenntnisse kritisch hinterfragt.
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Eines der Ziele Dieser Arbeit besteht auch darin, die existierenden dissipativen hydro-
dynamischen Formalismen zu erweitern, sodaf ihr Anwendungsbereich nach Moglichkeit
erweitert wird. Die kinetische Theorie wird in dieser Arbeit verwendet um, einerseits ,
die dissipativen hydrodynamischen Gleichungen herzuleiten und um , andererseits, eine
Referenzlosung fiir die dissipativen hydrodynamischen Berechnungen zu finden.

Die vorliegende Dissertation basiert auf den folgen Publikationen:

e [32] Thermalization of a color glass condensate and review of the ’Bottom-Up’
scenario. A. El, Z. Xu, and C. Greiner, Nucl. Phys. A, 2008, 806, 287-304.

e 33| Shear viscosity and out of equilibrium dynamics. A. El, A. Muronga, Z. Xu
and C. Greiner, Physical Review C, 2009, 79, 044914.

e |34| Extension of relativistic dissipative hydrodynamics to third order. A. El, Z. Xu
and C. Greiner, Phys. Rev. C, 2010, 81, 041901

¢ |35] A Relativistic dissipative hydrodynamic description for systems including par-
ticle number changing processes, A. El, A. Muronga, Z. Xu and C. Greiner,
Nucl.Phys. A, 2010, 848, 428-442

e [36] Dissipative hydrodynamics for relativistic multi-component systems. A. El,I. Bouras,
F. Lauciello, Z. Xu and C. Greiner, 2011, arziv: 1103.4038 [hep-ph]

0.2. Herleitung und Erweiterung von dissipativen
hydrodynamischen Gleichungen

Ideale hydrodynamische Gleichungen folgen direkt aus den Erhaltungsgleichungen fiir die
Energie- und Impulsdichten (d.h.,Erhaltungsgleichung fiir den Energie-Impulstensor T#")
sowie der Zustandsgleichung, welche den Zusammenhang zwischen den Zustandsgrossen
eines Systems angibt, z.B. zwischen der Energiedichte und dem Druck eines idealen ul-
trarelativistischen Gases. Werden die dissipativen Terme beriicksichtigt, so reichen die
oben genannten Gleichungen nicht mehr aus und es miissen weitere fundamentale Gle-
ichungen herangezogen werden. Die dissipativen Terme sind durch tensorielle Strukturen
in den Darstellungen des Energie-Impulstensors 7% und des Teilchenfluss-Vektors N#
reprisentiert — entsprechend den Gleichungen (2.4), (2.5) und den Definitionen (2.11)
— (2.18). Die makroskopischen 'Felder’ T (x,p) und N*(z,p) sind jedoch als integrale
tiber die mikroskopische Phasenraumverteilungsfunktion f(z,p) = d;]ig% zu verstehen.
Die sogenannte Gradsche Methode stellt den Zusammenhang zwischen den Komponen-
ten des Energie-Impuls Tensors und der Teilchenfluss-Vektors und der entsprechenden
Verteilungsfunktion f(x,p) in konsistenter Weise her. Diese Zusammenhénge werden im
2 erkléart.

Fiir die Herleitung der Raum- und Zeit-Evolution der dissipativen Anteile des Energie-
Impuls Tensors und des Teilchenfluss-Vektors wird, neben den Erhaltungssédtzen und
der Zustandsgleichung, eine zuséitzliche Gleichung benétigt. Diese Gleichung kann die
Boltzmann-Gleichung sein, wie beispielsweise in den Referenzen [37, 38, 39| ausgefiihrt.
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Im Rahmen dieser Arbeit wird jedoch ein anderer Weg eingeschlagen. Die zusétzlich
benotigte Gleichung, oder viel mehr Prinzip, ist das zweite Gesetz der Thermodynamik,
welcher besagt, dafs die Entropie eines abgeschlossenen Systems nicht abnehmen kann.
Um dieses Prinzip in expliziter Form fiir die Herleitung dissipativer hydrodynamischer
Gleichungen nutzen zu kénnen, wird der Entropiedichte-Strom s* basierend auf der Ken-
ntnis der Verteilungsfunktion f(x,p) berechnet. Im klassischen, als Standard geltenden
Ansatz von Israel und Stewart [40]| wird angenommen, dass der Entropiedichte-Strom
eines nicht-idealen Systems Korrekturen zweiter Ordnung in dissipativen Grossen (wie
Schertensor, Wiarmefluss oder Volumenviskositidt) enthélt. Diese Annahme basiert auf
einer Reihenentwicklung, bei der die entsprechend reskalierten dissipativen Grossen als
Kleinheitsparameter dienen. Damit der so konstruierte Entropie-Strom den zweiten
Hauptsatz der Thermodynamik in Form der Ungleichung 0,s* > 0 erfiillt, miissen die
Evolutionsgleichungen fiir die dissipativen Grossen eine bestimmte Form haben. Die gle-
ichzeitige Forderung der Konvergenz zur Navier-Stoke’schen Theorie (welche auch in der
nicht-relativistischen Physik bekannt ist) fithrt auf die sog. dissipativen hydrodynamis-
chen Gleichungen zweiter Ordnung. In dieser Arbeit wir die klassische Theorie von Israel
und Stewart erweitert. Der Reihenentwicklung bei der Berechnung des Entropiedicht-
estromes wird bis zur dritten Ordnung in dissipativen Grossen durchgefithrt. Dadurch
entstehen neue Terme in der Evolutionsgleichung fiir den Schertensor 7 — dies wird in
Abschnitt 3.1.4 diskutiert (der Warmefluss sowie Volumenviskositét werden in dieser
Arbeit zur Vereinfachung vernachléssigt). Des weiteren ist in der klassischen, Israel-
Stewart’schen Hydrodynamik, die Teilchenzahl stets konstant. In dieser Arbeit werden
im Abschnitt 11 Teilchenproduktion und Teilchenvernichtung in den dissipativen hy-
drodynamischen Formalismus eingebaut. Des weiteren wird in Abschnitt 3.1.5 ein
dissipativer hydrodynamischer Formalismus fiir bindre Mischungen entwickelt. Solche
Systeme sind in der nicht-relativistischen Physik bekannt und kénnen beispielsweise als
Modell fiir Mischungen von einatomigen Gasen dienen. In dieser Arbeit werden hydro-
dynamische Gleichungen fiir ein relativistisches massenloses Gas entwickelt, welches aus
Teilchen mit unterschiedlichen Wirkungsquerschnitten zusammengesetzt ist.

Die in den Abschnitten 3.1.4, 3.1.5 und 11 behandelten Erweiterung der ’klassis-
chen’ relativistischen dissipativen Hydrodynamik haben grofe Relevanz fiir das Feld der
hochenergetischen Schwerionenphysik. Das System, welches durch relativistische dissi-
pative Hydrodynamik beschrieben wird — das QGP — durchlduft unmittelbar nach ihrer
Entstehung eine rasche Expansion und befindet sich weit weg vom Gleichgewicht. Unter
solchen Bedingungen sind die dissipativen Effekte stark und die Fahigkeit der hydro-
dynamischen Gleichungen, die Evolution eines solchen Systems zu beschreiben hingt
davon ab, welche Korrekturen und Terme in der Herleitung beriicksichtigt und welche
vernachléssigt worden sind. Beriicksichtigung von Termen hoherer Ordnung in dissipa-
tiven Grossen erscheint daher notwendig. Durch beriicksichtigung von Teilchenproduk-
tion und Annihilation wird der aus der pertubativen Quanten-Chromodynamik (QCD)
bekannte Effekt der pQCD Brehmsstrahlung modelliert. Sowohl die Brehmsstrahlung
als auch der umgekehrte Prozess der Annihilation (oder, Absorption) sind inhérente
eigenschaften eines QCD Mediums. Die entsprechenden Matrixelemente kénnen im per-
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tubativen Regime analytische Berechnet werden.

Das quark-gluonische Plasma ist eine Mischung. Die Quarks und Gluonen haben,
im Sinne der pertubativen QCD, unterschiedliche Wechselwirkungsraten. Auch sind die
Energie- und Teilchendichten fiir Gluonen und Quarks stark unterschiedlich. Bei sehr
hohen Energien werden die partonischen Verteilungsfunktionen im Inneren von Nukleo-
nen klar durch die Gluonen dominiert. Im quark-gluonischen Plasma werden Quarks und
Antiquarks jedoch produziert. Es stellt sich daher die Frage, inwiefern eine Mischung,
in der die Spezies stark unterschiedliche Wechselwirkungsraten und Dichten aufweisen,
durch einkomponentige Hydrodynamik beschrieben werden kann. Bleibt die innere Dy-
namik eines solchen Systems versteckt oder hat sie direkten und beobachtbaren Einfluss
auf die mikro- und makroskopischen Observablen wie die Energie- und Impulsdichten,
Flussanisotropien und Viskositit? Das QGP wird derzeit durch einkomponentige Hydro-
dynamik beschrieben. Eine Formulierung der dissipativen Hydrodynamik ist daher von
grofer Relevanz.

0.3. Diskussion der Ergebnisse

0.3.1. Berechnung der Scherviskositat

Aus dem sog. Entropieprinzip, auf welchem in dieser Arbeit die Herleitung hydro-
dynamischer Gleichungen basiert, folgen die Ausdriicke fiir die Transportkoeffizienten
wie die Scherviskositiat, Warmeleitfihigkeit und Volumenviskositéit. In dieser Arebit ist
lediglich die Scherviskositit vom Interesse gewesen. Fiir die Berechnung von Transportko-
effizienten muss aber — im Gegensatz zu den hydrodynamischen Gleichungen — zusétzlich
eine mikroskopische Gleichung verwendet werden, welche die Wechselwirkungsprozesse im
System beschreibt. Der im Kapitel 4 hergeleitete Ausdruck fiir die Scherviskositét n en-
télt den Kollisionsterm aus der Boltzmann-Gleichung. Dieser Term enthilt die Informa-
tion libder die differenziellen Wirkungsquerschnitte fiir die Prozesse im System. Fiir per-
tubative QCD Prozesse muss der Ausdruck fiir die Viskositdt numerisch ausgewertet wer-
den. Dafiir wurden die numerischen Methoden benutzt, die in der partonischen Kaskades-
imulation BAMPS [30, 41] — Boltzmann Approach to Multi-Parton Scattering — zum
Einsatz kommen. BAMPS ist ein mikroskopisches Modell, welches die partonische Phase
einer Schwerionenkollision beschreiben kann. Es beschreibt also die Dynamik eines quark-
gluonischen Gases und enthilt einer Reihe von auf pQCD Matrixelementen basierten
Wechselwirkungsprozessen. Unter Verwendung von Matrixelementen aus BAMPS wurde
in Kapitel 9 die Abhéngigkeit der Scherviskositét eines rein gluonischen Gases von der
Kopplungskonstanten ag berechnet. Es zeigt sich, dass fiir die Werte von as = 0.2..0.6 |
welche fiir die Schwerionenexperimente am RHIC und LHC relevant sind, die Viskositét
pro Entropiedichte 1/s zwischen 0.2 und 0.08, und somit nah am unteren physikalis-
chen Limit, liegt. Der Grund fiir die niedrigen Werte des dimensionslosen 7/s wurde in
den Teilchenerzeugung und -vernichtungsprozessen gefunden. Durch den sog. Landau-
Pomeranchyk-Migdal (LPM) Effekt, welcher kollineare Abstrahlung im QCD Medium
unterbindet, wirken die Erzeugungs- und Vernichtungsprozesse stark isotropisierend [42,
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41, 33]. Die in dieser Arbeit berechneten Werte fiir 7/s(as) wurden vor kurzen durch zwei
unabhéingige, auf der Green-Kubo Formel [43] sowie der Betrachtung eines Scherflusses
[44] basierte, Arbeiten mit hoher Genauigkeit bestétigt. Die Bedeutung von inelastischen
Prozessen, womit der Bremsstrahlungsprozess und der umgekehrte Kanal gemeint sind,
wurde bereits aus der Studie des Aquilibrierungsprozesses in der partonischen Kaskade
BAMPS deutlich und wird im Kapitel 7 diskutiert.

Extraktion von Transportkoeffizienten aus einer kinetischen Transportsimulation ist
von zentraler Bedeutung fiir die Erforschung von Transportprozessen in der Schwerio-
nenphysik. Damit wird die Briicke zwischen den beiden Ansétzen — dem makroskopis-
chen, hydrodynamischen und dem mikroskopischen, kinetischen — geschlagen. Nur unter
genauer Kenntnis der Korrespondenz zwischen den Werten von Wirkungsquerschnitt und
Viskositét sind konsistente und direkte Vergleiche zwischen den beiden Ansétzen mdoglich.
Die im Kapitel 4 hergeleitete Formel fiir die Scherviskositdt kann auch analytisch aus-
gewertet werden, falls der differentiale Wirkungsquerschnitt winkelunabhéngig ist. Das
erlaubt, zum Beispiel, die Viskositdt unter Beriicksichtigung von inelastischen Prozessen
als Funktion des inelastischen Wirkungsquerschnittes zu berechnen.

0.3.2. Anwendbarkeit von hydrodynamischen Formalismen

Um die Grenzen der Anwendbarkeit von hydrodynamischen Formalismen zu untersuchen,
wird in dieser Arbeit ein Spezialfall gewdhlt — ein longitudinal expandierendes System
mit transversaler Isotropie. Somit beschrinken sich die dissipativen Korrekturen auf eine
Dimension. Die longitudinale Expansion wird in Form des sog. Bjorken’schen Flusses
[45] realisiert. Ein solches System in analog zu einem in einer Dimension expandieren-
den Hubble-Universum. FEine detaillierte Beschreibung dieses von Bjorken geprigten
Szenario’s von Schwerionenkollisionen ist in Kapitel 5 gegeben. Reduktion der hydro-
dynamischen Gleichungen auf einer Dimension wird in Kapitel 6 diskutiert.

In einem longitudinal expandierenden System sorgt die Expansionsrate fiir Abweichung
vom globalen Gleichgewicht. Der Energie-Impuls Tensor (und die mikroskopische Im-
pulsraumverteilung) wird anisotrop und der longitudinale Druck sinkt. Dem entgegen
wirken im kinetischen Bild die mikroskopischen Kollisionsprozesse bzw. Relaxation zum
Gleichgewicht im hydrodynamischen Bild. Falls die Expansionsrate iiber die Aquilib-
rierungsrate dominiert, wird das System immer weiter weg vom Gleichgewicht getrieben.
Lésungen von hydrodynamischen Gleichungen zweiter Ordnung koénnen unter solchen
Umsténden zu unphysikalischen negativen Werten fiir den longitudinalen Druck fiihren,
wie im Kapitel 10 gezeigt wird. In einem voll-dimensionalen numerischen hydrody-
namische Algorithmus fiithren negative Werte fiir den Druck sofort zu einem Zusammen-
bruch des Codes. Im Kapitel 10 wird demonstriert dass dieses Problem in der Losung
der erweiterten hydrodynamischen Gleichungen nicht auftritt. Eine Erweiterung der
dissipativen hydrodynamischen Gleichungen iiber die standardméfige zweite Ordnung
hinaus kann also zu einer erhohten Stabilitdt von numerischen Algorithmen fithren und
unphysikalische Ergebnisse vermeiden helfen. Fiir die dissipativen hydrodynamischen
Berechnungen stellen die kinetischen Transportsimulation mit BAMPS eine Benchmark
dar. Dissipative Hydrodynamik wird als anwendbar erachtet, falls die relative Abwe-
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ichung zwischen den hydrodynamischen und BAMPS Ergebnissen unter 10% liegt. Diese
spezielle Wahl der Fehlertoleranz ist durch frithere Publikation [46] bedingt. Fiir die
Anfangszeit 79 = 0.4 fm/c, d.h. eine typische Anfangszeit fiir die meisten dissipativen
hydrodynamischen Simulationen [47], kann man feststellen dass die standardméfige dis-
sipative hydrodynamische Theorie zweiter ordnung fiir 77/s < 0.2 anwendbar ist. Dieser
Wert liegt in der Ndhe der Physikalischen Viskositdt des QGP (welche auch in dieser
Arbeit bestimmt wurde). Die erweiterte Theorie dritter Ordnung kann hingegen auch
fiir grokere Viskositaten im Bereich 7/s < 0.4 angewendet werden.

In Kapitel 11 werden die Ergebnisse dissipativer hydrodynamischer Rechnungen fiir
ein System mit Teilchenproduktion und Annihilation diskutiert. Es wird gezeigt, dass die
Beriicksichtigung dieser Prozesse im hydrodynamischen Formalismus einen grofien effekt
auf die Spektren und Temperatur des Mediums hat, auch wenn der Effekt auf andere
Observablen, wie die Energiedichte eher gering ist.

Die hydrodynamischen Gleichungen fiir ein mehrkomponentiges System unterscheiden
sich von denen fiir einkomponentiges System durch die Prasenz von mehreren Relaxation-
szeitskalen. Dies ist die Folge davon, dass die Wirkungsquerschnitte fiir Kollisionen von
Teilchen unterschiedlicher Sorten unterschiedlich grof sind. Wie in Kapitel 12 ausge-
fiihrt, unterscheidet sich das Verhalten eines mehrkomponentigen Systems vom Verhalten
eines einkomponentigen Systems, wenn man die Evolution des Schertensors betrachtet.
Man stellt auch fest, dass, unabhéngig von der Anfangsbedingung, sich ein bestimmtes
Verhiltnis zwischen den Komponenten des Schertensors der Mischungskonstituenten ein-
stellt. Dieses spezifische Verhiltnis ist eine Charakteristik der Mischung und hingt nur
von den Dichten und Wirkungsquerschnitten ab. Auch hier bringen die Vergleiche mit
BAMPS Ergebnissen eine Bestétigung der hydrodynamischen Berechnungen. Ebenfalls
in Kapitel 12 wird gezeigt, wie sich die Viskositit einer Mischung berechnen l&sst, falls
die differenziellen Wirkungsquerschnitte winkelunabhéngig sind.






1. Introduction

The farther you go, the less you know.

Lao Tzu (6th century BCE),
philosopher of ancient China.

1.1. This work

This work is dedicated to a study of various aspects of the theory of relativistic dissipative
hydrodynamics. In high-energy heavy-ion physics hydrodynamic framework has become a
standard theoretical tool, providing quite accurate description of a number of phenomena
observed in the experimantal facilities. Still work on proper formulation of hydrodynamic
formalisms for physical systems created in heavy-ion collisions is a continous processes
and a very active research field. This work aims to contribute to a deeper understanding of
the relativistic hydrodynamic formalism, its applicability limits and intrinsic parameters.

1.2. Quantum Chromodynamics.

Quantum Chromodynamics (QCD) is the theory of the strong interaction, which is one
of the four fundamental interactions of nature — along with the electromagnetic, weak
and gravitational interactions. For three of these interactions — strong, weak and elec-
tromagnetic — quantum field theories have been formulated. Together they constitute
the Standard Model of elementary particle physics. A quantum theory of gravity is still
to be developed. The ’quantum fields’ of QCD are quarks and gluons. Gluons are the
mediators of the strong interaction, in a similar way to which the photons are the medi-
ators of the electromagnetic force, which is represented by the simplest of the quantum
field theories. But in contrast to the photons, gluons can interact with each other. This
property of QCD, if formulated in a mathematical way, follows from its non-Abelian
structure. Analogous to the electromagnetic interaction, which exists between carriers
of the electric charge, strong interacting objects carry a so-called color charge, or sim-
ply Color. Whereas there is only one charge — namely the electric charge — in (Abelian)
electromagnetic quantum field theory, there are three colors in (non-Abelean) QCD, sym-
bolically labeled ’red’, ’green’ and ’blue’. Gluons, the carriers of the strong force, rotate
the color of the interacting objects. Thus, in contrast to the electromagnetic force which
is represented by the symmetry group U(1) and has one gauge field, the photon, the
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strong force is represented by the non-Abelian SU(3) group and has 3% — 1 = 8 gauge
fields — the gluons.

In nature the carriers of color charge do not exist in an isolated form. All objects
observed by any direct measurement — e.g. protons and neutrons — are color-neutral. If
one were to try to separate the two constituents of a quark—anti-quark pair, the most
simple color-neutral object, the attraction and potential energy between them would in-
crease with the distance. As the potential increases, it becomes more favorable to create
a new quark—anti-quark pair, so that another color-neutral object appears — but color
stays 'confined’. Color confinement is one of the basic properties of the strong inter-
action. In this example, increasing the distance corresponds, by virtue of Heisenberg’s
uncertainty principle, to decreasing the energy scale. Thus, color confinement means
that the coupling of the strong interaction increases with decreasing energy scale. In a
macroscopic world of large spacial and accordingly small energy scales strong coupling
is indeed infinitely strong. This conclusion can be made from the simple fact that single
quarks and gluons cannot be observed outside of protons and neutrons. One particular
implication of this conclusion is very intriguing — on the other end of the energy spec-
trum, on large energy and small length scale — color confinement should disappear and
quarks and gluons should become asymptotically free .
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Figure 1.1.: Strong coupling constant a,(Q) extracted from different experimental mea-
surements. Figure is taken from Ref. [48].

The two properties of QCD, confinement and asymptotic freedom, can be tested in
a variety of experiments, in which the strong coupling constant ag can be determined
at a specific energy scale ), which is associated with the momentum transfer involved
into the scattering considered process. To determine the coupling constant as one needs
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to investigate particle reactions involving quarks and gluons in either in- or outgoing
states. Due to confinement, they manifest themselves as hadrons during the measure-
ment. Examples of such processes are deep inelastic scattering, electron — anti-electron
annihilation, hadronic collisions or decays of heavy quark — anti-quark particles [49]. All
these processes are characterized by a specific energy scale (), which is the momentum
transfer involved. The results of a(@Q)) measurements in different experiments are sum-
marized in Fig. 1.1 [48]. The dependence of s on the energy scale is referred to as
running coupling’ and qualitatively demonstrates the concepts of color confinement and
asymptotic freedom. The intriguing implication of the asymptotic freedom is the possi-
bility to study a dynamic system of weakly coupled quarks and gluons at extremely high
energies. The search for this state of matter, which is believed to describe the very early
moments after the 'Big Bang’, is pursued in high energy hadronic colliders.
Here is a short story of a fast-forward journey to the origin of the universe.

1.3. Heavy-ion research: on the way to a 'Big Bang’'.

In the year 2000 a CERN press release announced the discovery of a new state of matter,
which became known as the Quark Gluon Plasma (QGP). Underlying this discovery have
been a number of phenomenological observations, which revealed the properties of the
new created medium. One of the most prominent of these properties is its collective, or
fluid-like, behavior.

The starting point for experimental research of heavy-ion collisions was the BEVALAC
at Berkeley, where in the mid-70s for the first time collisions of heavy atomic nuclei were
explored. The unique feature of such experiments is the possibility to investigate nuclear
matter at densities and temperatures which are much higher than the normal state of
so called ’cold’ matter, which we live in. However, with the establishment of a novel
fundamental theory of strong interactions — Quantum Chromodynamics — it became
clear that energies accessible at BEVALAC experiments were not high enough to observe
a transition between the hadronic phase and a deconfined phase of quarks and gluons,
predicted by QCD. Such a 'melting’ of the nucleons at extreme densities and temperatures
would imply not just an extreme, but a completely new state of matter, which, until the
start of heavy-ion research at high energies, could only exist in early universe.

The theoretical possibility to re-create a 'Big Bang’ in an experimental facility has thus
motivated heavy-ion research and the design of new experiments with higher available
energies. Though the challenge was not only to access higher collision energies, since these
were already possible in proton-proton collisions at the CERN, Geneva and the BNL,
Long Island, but as well to create higher densities at same time. This challenge was
solved at already existing facilities such as the Alternating Gradient Synchrotron (AGS)
at BNL and Super Proton Synchrotron (SPS) at CERN, where for the first time heavy
nuclei where accelerated to ultra-relativistic energies, i.e. kinetic energies much larger
than the rest mass of the constituents. In the year 1986 at the SPS accelerator two 60
beams with 60 GeV per nucleon (AGeV) where collided. Until 1993 the highest possible
energy was at 200 AGeV for experiments with sulfur nuclei and different targets. In 1994,
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with the development of a new ion source, operation with 2°“Pb beams at 160 AGeV
started and the led beam program was pursued until 2002. The next big step was done in
June 2000 with the start of the Relativistic Heavy-Ion Collider (RHIC) at BNL. In this
next generation collider, utilizing 20 years of experience at AGS and SPS, the maximal
available energy was 200 AGeV for Au+ Au collisions in the center of mass frame of the
colliding nuclei. Now the next, and probably the last of its art, facility has started its
heavy-ion program — the LHC at CERN. With 27 km circumference, which tops RHIC by
factor of 7, it will provide center of mass energies up to 5.5 ATeV for Pb+ Pb collisions.
For some time to come it will probably stay world’s largest and most powerful machine.

1.4. Phase diagram of QCD.
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Figure 1.2.: Schematic phase diagram of strongly interacting matter. The net baryon
density on the z-axis is normalized to the net baryon density in normal
nuclear matter [50].

From the properties of QCD it follows that a deconfined state of strongly interacting
matter can be created at conditions of extreme temperature (going to large energy scales)
and particle density (going to small spacial dimensions). A schematic view of the phase
diagram of QCD is presented in Fig. 1.2. The normal state of matter in the present
state of the universe is located at very low temperature around unity on the z-axis. The
collisions of heavy-ion at RHIC and LHC are supposed to create a fireball of a deconfined
state with high temperature and low baryon density — in other words, a charge-neutral
system of highly energetic quarks (¢), anti-quarks (g) and gluons with N, — Ng ~ 0.
This is believed to be the state of the early universe, before quarks and gluons combined
into hadrons. The very low net baryon density found in RHIC and LHC heavy-ion
experiments is due to the onset of transparency with increasing collision energy. At
highest energies, the colliding nuclei pass through each other creating a highly-excited
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mixture of gluons and pairs of quarks and anti-quarks. Other experimental facilities, like
the upcoming projects FAIR at GSI in Darmstadt or NICA at JINR in Dubna, operate
at lower energies and thus in the regime where the transparency effect is reduced and a
high net baryon density can be created [51, 52].

The critical temperature T, =~ 160 —180 MeV, at which a free gas of hadrons undergoes
a transition to a deconfined QGP phase at zero baryon density can be obtained by lattice
calculations — numerical solutions of QCD field equations[53, 54, 55].

The evidence of the existence of a short-lived deconfined phase of quarks and gluons
in heavy-ion collisions can only be of indirect nature. Studies of the final state of these
collisions, represented by high numbers of baryons, mesons and leptons, can give in-
sight into the evolution and properties of the QGP. The detector collaborations involved
into the investigation of QGP at RHIC are BRAHMS[56], PHOBOS|57|, STAR[58] and
PHENIX][59]. At LHC these are ALICE, ATLAS and CMS.

1.5. Heavy-lon phenomenology: a short overview

If you see a 'Buffalo’ sign on an
elephant’s cage, do not believe your
eyes.

Koz’'ma Proutkov (1801 — 1863),
russian writer (translated from Russian
by author).

Here 1 will give a short overview of some of the phenomena which are regarded as
signatures of the QGP phase.

1.5.1. Jet Quenching.

Upon collision of two nuclei, the constituent quarks and gluons (partons) of the nucleons
can undergo hard collision processes in which a highly energetic partons can be created.
Such partons can be observed since they give rise to a shower of hadrons in the finals
state. For every of such high-energy jet events detected in an experimental device, one
would expect to detect a correlated event at an azimuthal angle of 180 °. However, it was
observed that the correlated jet signal of jets with high transverse momentum component
(high-pr) at 180° is suppressed in a heavy-ion system. This observation is known as jet
quenching [16, 20, 21, 22]. If a jet pair is created at some point inside the QGP medium,
the two jets have to cover different distances as they travel outside. If one jet ('near side
jet’) is able to quickly escape the QGP medium, the other jet will pass through more
QGP matter and thus will most likely lose most of its energy to the medium due to
scattering processes with partons.

The observation of the jet quenching phenomenon is consistent with observed suppres-
sion of high-pp particles in Au + Awu collisions. This suppression is quantified by the
nuclear modification factor R4a, which is a ratio of particle yield measured in heavy-ion
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(e.g. Au+ Au) collision to the corresponding yield in a proton-proton collisions rescaled
by the estimated number of binary scatterings. R44 as function of the transverse mo-
mentum pr is found to be well below unity for hadrons [17, 18, 19], indicating a very
effective suppression of high-pr particles by the QGP medium. This is an indication of
a rather strong coupling inside the medium.

1.6.2. J/V suppression.

Quarkonia, e.g. the particles J/¥ and T, are bound states of a quark and its anti-quark
(charm—anti-charm for J/¥ and bottom—anti-bottom for Y). These particles are expected
to 'melt’ in a deconfined QCD medium due to the screening of their binding potential.
This screening is analogous to the Debye screening of electric charges in non-relativistic
plasmas. Thus, observation of a suppression of Quarkonia in the final state can be seen as
an indication of existence of a deconfined QCD plasma, as was proposed 1986 by SATZ
and MATSUI [13]. Analysis of the experimental data from RHIC demonstrated that
several puzzling features of the J/WU suppression [14]. The suppression at mid-rapidity
proved to be qualitatively the same at RHIC (measured by PHENIX) and SPS (mesured
by NA50) energies for same number of participants. Furthermore, a stronger degree of
suppression was observed at RHIC at forward rapidities in comparison to the central
rapidity region. Observation of these two effects places special emphasis on the role of
initial state effects and the role of possible secondary J/W¥ production from recombination
of charm quarks produced in heavy-ion collisions. Moreover, these effects are expected to
be more pronounced at LHC energies [14, 15]. Whereas a detailed understanding of the
interplay of suppression, initial state effects and regeneration of charomonia is an actual
subject of theoretical research [15], the presense of suppression due to melting of J/V in
a quark-gluon medium is an indication of presence of strong collectivity.

1.5.3. Collective Flow.

Observation of collective flow is related to observation of anisotropies in angular momen-
tum and spacial particle distributions. The particle yield at different azimuthal angles is
not constant, i.e. the flow pattern of the QGP medium is anisotropic. This anisotropy
was interpreted by OLLITRAULT [60] as a signature of collective behavior of the QGP.

The overlap region of the two colliding nuclei has a prolongated, roughly ellipsoidal
shape if the collision is off-central. As the created elliptic region starts expanding, pres-
sure gradients build up. In the direction of minor axis the pressure gradient is stronger
than in the direction of the major axis. Thus, the expansion will proceed faster in di-
rection of the minor axis, transforming the initially present spacial anisotropy into a
momentum-space anisotropy. Particles will be pushed into the direction of strongest
pressure gradient. Of course, such a behavior can only be expected in case the medium
does behave in a collective way.

To obtain a quantitative measure of flow anisotropy the transverse momentum dis-
tribution is expanded into a Fourier series, which for a perfect ellipsoidal form can be
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written as

dN B dN
pr dpr dy dp 2w pr dpr dy

(1+ 2va(pr) cos2(p — Upp) +...) . (1.1)

The decomposition is done with respect to the reaction plane orientation angle ¥pp,
which is different for each event. For a perfect ellipsoidal form the coefficient v is the first
non-vanishing coefficient to be taken into account. Experimentally vy can be obtained
by weighting the measured particle multiplicities with cos 2(¢ — Wgp) and averaging over
the angle ¢. The coefficient vo(pr) is usually referred to as the differential elliptic flow .
The integrated elliptic flow vg is an average over transverse momenta.

The ability of ideal hydrodynamics to reproduce the first differential vo measurements
at RHIC [6] at small pr < 1.5 GeV (i.e. for more than 98% of all particles), reported in
2001 in Ref. [8] and later in Refs. [9, 10|, was considered a startling success. This suc-
cess lead to the two paradigms of ideal fluid creation at RHIC and early thermalization
[26]. The latter conclusion is based on the rather low initialization time for hydrody-
namic calculations. However, the quality of the matching of experimentally measured
va(pr) with ideal hydrodynamic calculations is dependent on the choice of initial time,
energy density and temperature values [12]. More importantly, the assumption of full
thermalization of produced matter in heavy-ion collisions is rather unrealistic. Full ther-
malization would require an infinitely strongly coupled medium. A step away from the
ideal hydrodynamics paradigm was made as TEANEY [61] and later HEINZ and SONG [11]
demonstrated that viscous effects can significantly suppress va(pr). These findings were
later confirmed by a number of non-ideal hydrodynamic calculations (e.g. in Refs. [62],
[47], [63]). However, the switch from ideal to viscous hydrodynamics brings an additional
unknown — along with the initial conditions — the values of the dissipative coefficients
in hydrodynamic theory. These have to be understood from first principles. Calculation
of the transport coefficients (in particular the shear viscosity 1) of a partonic medium is
one of the central aspects of this work.

1.5.4. Scaling of elliptic flow.

Some properties of the medium, in which the anisotropic flow is built up, can be deduced
from scaling properties of v2(pr). As was demonstrated by the PHENIX collaboration
in Ref. [64], by scaling the measured v2(pr) of mesons and baryons by the number n,
of constituent quarks (2 resp. 3) and relating it to the transverse kinetic energy Er
scaled by same factor, one obtains a universal curve, on which the measurements for
all particle species lie. The obtained universal vo/ng(E7/nq) increases at small kinetic
energy and saturates towards larger energies. This universality can be interpreted as an
indication, that hadronic elliptic flow is built up in the deconfined partonic phase and the
hadrons are produced by a coalescence of flowing partons (the so called recombination
model)|65, 66, 67, 68].

Observations of the elliptic flow, its properties and other indications of the existence
of a strongly coupled medium during the early stages of heavy-ion collisions turned the
attention of theory community to the deconfined phase of QCD matter and its dynamics.
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Figure 1.3.: Time evolution of a heavy-ion collision and ranges of applicability of theo-
retical tools [69]

1.6. Theoretical tools to description of Heavy-lon
phenomenology

The different stages through which a heavy-ion collision goes are characterized not only
by different time scales but as well by different energy scales and associated degrees of
freedom of the produced matter constituents. It is thus not possible to find a univer-
sal modelling approach for heavy-ion collisions — the different stages rather have to be
understood within different theoretical approaches.

The initial and the early pre-equilibrium states are characterized by a anisotropic
momentum distribution. A very prominent example of a model approach for the initial
state is the Color Glass Condensate |70, 71, 72|, which will be discussed later in this
work. another popular approach to initial state distribution is the Glauber model, as e.g.
employed in Ref. [8]. The very early pre-equilibrium stage is often modelled in terms
of plasma instabilities [73]. The appropriate theoretical concepts for such modelling of
early stages are formulated in the Classical Yang-Mills theory (CYM) or Lattice Gauge
Transport (LGT). These theories are able to describe the initial coherence of the produced
fields and can be employed to model the initial conditions for dynamical models used at
later stages. Examples of these approaches can be found for instance in Refs. |74, 75].

The late pre-equilibrium stage can be investigated by means of kinetic theory using
transport models (TM). Partonic Cascade Models (PCM), e.g. [27, 28, 29, 30, 31] are
based on a quasi-particle approach, i.e. the relevant degrees of freedom for these models
are (light) quarks and gluons, which are treated as an ultra-relativistic gas. The advan-
tage of the PCM approaches is their ability to describe the microscopic dynamics of the
quark-gluon gas basing on relevant cross sections, which for small coupling are known
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from the perturbative theory (perturbative QCD). PCMs are thus equally based on the
kinetic transport theory [76].

In this work the partonic cascade BAMPS will be employed. BAMPS is a Monte-Carlo
approach to solving the Boltzmann transport Equation

p'ouf =C[f]. (1.2)

Here f represents the phase-space particle distribution and the functional C|[f] accounts
for collisional processes between quasi-particles. BAMPS and related technical aspects
of numerical implementation of the Boltzmann Equation will be discussed in detail in
Chapter 7.

The range of applicability of a PCM approach can be extended to the hadronization
and freeze-out phases once the partonic degrees of freedom are translated into hadronic
ones. Using an appropriate procedure to model the phase transition, the hadronic phase
can be again investigated by means of the Monte-Carlo transport theory using the exper-
imentally known hadronic decay ratios and cross sections in a hadronic transport model,
as for example done in UrQMD |77, 78] or HSD [79].

Whereas transport models are microscopic approaches, a macroscopic description of
the evolution of the QGP can be given by a hydrodynamic models (nuclear fluid dynam-
ics, NFD), as already discussed in the context of heavy-ion phenomenology. A significant
difference between these two descriptions is the fact, that a hydrodynamic description is
only applicable if the considered system is close to local equilibrium, whereas the kinetic
transport theory can also be used to describe non-equilibrated systems. This shrinks
the applicability range of the hydrodynamic description considerably. In particular, hy-
drodynamics can most likely not be applied at early times when the medium is highly
anisotropic. One of the aims of this work is to investigate the applicability of relativis-
tic hydrodynamics to non-equilibrated systems by a direct comparison of hydrodynamic
calculations with results of kinetic transport calculations.

This work is dedicated to the investigation of the transition between the kinetic trans-
port and dissipative hydrodynamic theories for ultrarelativistic systems. The existing
hydrodynamic formalisms are improved in order to better extent their spectrum of appli-
cations to a broader class of transport scenarios. These improvements are related to the
inclusion of new terms neglected in previous works, the possibility of particle production
and annihilation and the possibility of descriprion of mixtures, i.e. fluids of several dis-
tinguishable components. A formal way to extract the transport coefficients from kinetic
transport theory has been established. Validity and limitations of hydrodynamic equa-
tions are demonstrated by direct comparisons of their solutions with kinetic transport
calculations. All these aspects can contribute to a better understanding of applications
of dissipative hydrodynamics to the description of the QGP dynamics.

1.7. The Roadmap.

This work is organized as follows: I will begin with a basic discussion of the formulation
of relativistic hydrodynamics in Chapter 2. In this Chapter also the mapping of hydro-
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dynamic theory onto kinetic theory — the so called Grad’s method of moments — will be
introduced. In Chapter 3 derivation of relativistic dissipative hydrodynamic equations
from the entropy principle will be discussed. After a review of the well-known first- and
second-order equations, derivation of a novel, third-order evolution equation for shear
tensor will be discussed. Both second- and third-order formalisms will be extended with
the possibility of particle creation and annihilation. In the same Chapter a novel dissi-
pative formalism for a multi-component system is derived. After the derivation of the
hydrodynamic evolution equations, in Chapter 4 I introduce an expression that allows to
calculate the shear viscosity coefficient in scope of kinetic transport theory. In Chapter 5
Bjorken’s picture of heavy-ion collisions is introduced; this picture constitutes the frame-
work for the analytic calculations discussed in the following. In Chapter 6 hydrodynamic
equation derived in Chapter 3 are given in one-dimensional boost-invariant geometry
from Bjorken’s scenario. The kinetic transport model BAMPS is introduced in Chapter
7. An overview of heavy-ion phenomena that can be studied with BAMPS is given in the
same Chapter. In Chapter 8 I investigate whether Grad’s approach, discussed in Chap-
ter 2, is consistent with the results of BAMPS calculations. Results of calculation of the
shear viscosity coefficient of a QCD medium employing BAMPS are presented in Chap-
ter 9. In Chapters 10 and 11 I compare solutions of second- and third-order dissipative
hydrodynamic equations with BAMPS results for a one-dimensional expanding system
with conserved net particle number and including particle production and annihilation.
In Chapter 12 solutions of the hydrodynamic equations for a two-component system
are compared with BAMPS calculations and some properties of the multi-component
equations are discussed.

1.8. Notation

In this work I will be using the following standard conventions
e Natural units h =c = kg = 1.
e The metric tensor is g = diag(1,—1,—1,—1).

e For any second-rank tensor the symmetrization operation is defined as
Alwr) — E(Al“/ + AVHY
2
The anti-symmetrization is defined as

Alwr] — (AP — AVFY)

1
2
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2. Construction of the hydrodynamic
framework.

Panta Rei (from greek: everything
flows)

Name of a bar in Frankfurt am Main

In this Chapter the basic fields and tensorial structures of the relativistic hydrody-
namic framework are introduced. Without yet considering the dynamics of these fields,
I will discuss their basic mathematical properties and physical interpretation. The two
basic choices of the computational frame — Eckart and Landau frames — are introduced.
Grad’s 14-moment theory is introduced in order to establish a connection between the
hydrodynamic, i.e. macroscopic, and kinetic, i.e. microscopic, descriptions.

The concepts introduced in this Chapter will be needed in the following Chapters
to derive dissipative hydrodynamic equations for applications in high-energy heavy-ion
physics.

2.1. Basic tensorial decompositions.

Relativistic hydrodynamics can be interpreted as an effective theory of the fields T+ (x),
which is the energy-momentum tensor, N (z), which is the particle number four-current,
and u*, which is the fluid four-velocity. In heavy-ion collisions the particle four-current
is usually associated with the net baryon number (indicated by the subscript B) and
thus is conserved due to baryon number conservation. The energy-momentum tensor
is conserved due to energy and momentum conservation in a closed system. Thus, the
hydrodynamic equations can be written in form of the conservation laws

0, T" =0 , 9Nt =0. (2.1)

For a dissipation-free (i.e. ideal) fluid, these two equations are the only ones needed to
describe the evolution of the system. However the focus of this work is on derivation
and analysis of dissipative hydrodynamic equations, since theoretical studies of the early
stages of heavy-ion collisions do provide certain indications, that dissipation is present in
the produced system. In a ideal fluid entropy is conserved, but if dissipation is present,
entropy is produced and an additional equation is needed to describe the amount of
entropy production, which is proportional to the strength of the dissipation. All these
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aspects will be addressed later in this work. At this stage it is necessary to discuss in
more detail the constructs Ng(z), T (x) and uH.

The energy-momentum tensor and particle number four-current can be decomposed
into orthogonal components with respect to the four-vector u#. The vector u* is normal-
ized to unity, i.e.

uput = uyu, gt =1. (2.2)

Here g"¥ ist the metric tensor as intoduced in Section 1.8. Using this property of u*, the
projector

AP = g —ubu” (2.3)

can be shown to be orthogonal to u*, i.e. A*u, = 0. With these definitions, the most
general orthogonal decompositions of 7" and N* can be written as

T = eutu” — (p+ I)A* + WHY + ul WY + 7t | (2.4)
Nt = nut 4+ VH. (2.5)

Note, that in the latter equations the subscript B, indicating that the number four-
current is related to the net baryon number, has been dropped. The particle four-current
could be defined via any charge, as e.g. the baryon number or also electrical charge and
strangeness. In a one-component system of particles without charge, the net particle
four-current is associated with the net particle number. In contrast to the net baryon
number, the net particle number is not necessary conserved in a system produced in
heavy-ion collisions.

The quantities I, W# V# and 7" are dissipative quantities, also referred to as dissi-
pative fluxes or dissipative fields. For systems in equilibrium they vanish, leading to the
following form of the energy-momentum tensor and particle number four-current:

T, = eulu” —pA”, (2.6)

JT— I
N¢, = nul.

The requirement of orthogonality leads to the following relations between the intro-
duced tensorial structures and u*:

u, VH =u,WH =0, u,m =0. (2.8)

The scalar and tensorial quantities entering the decompositions (2.4) and (2.5) can be
obtained as projections of T#”, N* and their deviation from the equilibrium

STH = TH — TH (2.9)

JN" = N* — NE. . (2.10)
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The projections of TH, N# 6T" and N* attain the following interpretation [80]:

n = u, N* net particle density , (2.11)
e = uyu, T energy density , (2.12)

1
IT= —gAu,jcsT“’” bulk pressure , (2.13)

1
p= _§A’“’TW —1I equilibrium pressure , (2.14)
VH = ABSNY net particle flow (relative to u*), (2.15)
WH = u, ALST energy flow (relative to u"), (2.16)
gt =whH — H—JV“ heat flow (relative to u"), (2.17)
n

T = §T ) shear stress tensor . (2.18)

with 6T0) = [ (ALAY + ABAL) = SAMA 5| 5728,
Now the mathematical notation and relevant physical quantities have been discussed.

We are now in a position to discuss the choice of the reference frame, which will be used
for all calculations throughout this work.

2.2. Choice of the reference frame.

For a given 'field’ configuration N*(x), T (x) the reference frame of a fluid element is
defined by the fluid four-velocity w*(z), which now has to be determined in terms of the
components of N*(z) and T""(z). In the set of Eq. (2.11) — (2.18) two independent
vectorial structures were introduced, the particle number flow V# and the energy flow
WH (which in principle can be replaced by ¢*). The velocity field u* can be associated
either with particle flow (in which case V# vanishes) or the energy flow (W*# vanishes)
[76].

Eckart frame

If u# is chosen to be parallel to the particle number flow N# than due to u,ut = 1 it
becomes

u = —. (2.19)

With this choice the net particle flow V# vanishes, since the reference frame follows the
flow of net particle number so that energy flow W# becomes identical with the heat
flow g*. This frame is known as Eckart or particle frame. If the particle four-current is
defined via the baryon number, Eckart’s frame is ill-defined in a system with vanishing
net baryon number, like the one produced at RHIC or LHC. However, for any other
non-vanishing net charge this definition can be applied.
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Landau frame

Alternatively, the velocity field u* can be chosen to be parallel to the energy flow w, TH".
Than it can be written as "
T, u”
wh = v (2.20)

1/uaT§‘T5u7

With this definition the reference frame follows the flow of energy density. The energy
flow W*# vanishes and the heat flow ¢* becomes proportional to the particle flow V#. This
frame is known as Landau and Lifshitz or energy frame. Due to the shortcoming of Eckart
frame, which is not applicable in systems with vanishing net baryon charge, Landau frame
is the first choice in applications of relativistic hydrodynamics. The disadvantage of the
energy frame is its implicit form, which leads in a general case to a polynomial equation
for the components of u*.

2.3. Equation of state.

The equation of state relates pressure to the other thermodynamic variables such as the
energy density e and particle density n (or alternatively the temperature 7"

p=nple,n). (2.21)

For QCD medium the equation of state can be obtained from lattice calculations. The
method and results of such calculations are reviewed by KARSCH in Ref. [54] and FODOR
and KATZ in Ref. [81]. In this work the most simple equation of state will be used — the
one of an ideal ultrarelativistic gas:

e=3p. (2.22)

This equation models a non-interacting gas of massless quarks and gluons. For analytic
calculations this choice is often the standard simplistic choice. For numerical implemen-
tations of hydrodynamic evolution, the major disadvantage of this equation of state is
its inability to describe the phase transition between partonic and hadronic phases. In
order to account for the latter, different equations of state can be chosen. The effect of
equation of state on hydrodynamic evolution is studied for instance in Ref. [47].

2.4. Grad’s 14-moment theory

2.4.1. Approximation of off-equilibrium distribution

A connection between the microscopic Boltzmann Equation (1.2), which is the underlying
equation of the kinetic theory, and the macroscopic hydrodynamic description is based on
the method of moments introduced by GRAD [82]. and adopted for relativistic systems by
ISRAEL and STEWART [40]. A macroscopic description of a system requires knowledge of
the independent components of the particle four-current N* and the energy-momentum
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tensor T" | as discussed in Section 2.1. In contrast to that, in kinetic theory the sys-
tem is characterized by the distribution function f(x,p), which describes the occupation
number in the phase-space. For a system in thermodynamic equilibrium the phase space
occupation density can be calculated analytically. For systems off thermal equilibrium
an exact analytic expression for the particle distribution is unknown. Moreover, the dis-
tribution could have a highly non-trivial analytic form. In this case the kinetic theory
has a major advantage, since in a numerical kinetic transport model, which simulates the
dynamics of an ensemble of microscopic constituents, the particle distribution is known
implicitly.

In order to establish a connection to the macroscopic theory of hydrodynamics, an
analytic expression for the off-equilibrium distribution function has to be found. Formally
an off-equilibrium distribution function can be written as [83, 84, 85|

flz,p) = Age?@P) (2.23)

In the latter equation Ay denotes the normalization factor dependent on the number
of degrees of freedom; in the presented form, Eq. (2.23) does not take into account
quantum effects like Bose enhancement or Fermi blocking — strictly it only applies to a
system of Boltzmann particles. Note that in Ref. [83] an analogous equation is given for
Fermi/Bose systems. For a system in thermal equilibrium the function y(x, p) is

Yeq(2,p) = (A" feq) = () — Bu(z)p” . (2.24)

with g¥(z) = u”/T, i.e. the equilibrium distribution is a Boltzmann distribution.
For a system off thermal equilibrium the deviation of the exponent can be formally
written as

Y(7,p) = Yeq(z,p) + ¢(2, D). (2.25)

The deviation of the exponent from its equilibrium form, ¢(x,p) = y(z,p) — Yeq(x, p),
is a function of momentum and space and can be expanded in terms of momentum in a
most general form as follows |83, 84|

Oa.p) ~ c(a) — eu(@)p" + € @)p'p” + ... . (2.26)

The latter expression is second order in momentum.

The unknowns needed for a complete determination of the macroscopic state of the
system are now the independent components of the new variables €(z), €,(z) and €, (z)
together with the chemical potential u(x) and the vector g#(z) = u/T.

Next, Eq.(2.23) can be linearized via Eqgs. (2.25) and (2.26):

f(@,p) = feq(x,p)(1 + €(x) — €u(2)p" + € (2)pp”) . (2.27)

Using the linearized expression for the off-equilibrium distribution function (2.27) one
can calculate the first and second moments of the latter. These moments are identical
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with the kinetic definition of the particle number four-current and the energy-momentum
tensor:

Nu_/pﬂf(a;,p)dr—Ngl + e/feq(m,p)pﬂdF—el,/feq(x,p)pupudl“
+ €ov / feq(z,p)p”p"p"dl’ (2.28)

™" = / P fla,p)dl =TH + € / feq(z, p)pH'p”dl — €5 / feq(z, p)p7p"p”dl

+ e / feq(w, p)p"p p!'p"dl (2.29)
where dI' denotes the integration measure dI' = %. Using the above equations, the

deviations of particle flow N# and energy-momentum tensor T#" from equilibrium values
Nlg and T!y can be now written in a compact form

SN" = eNt, — e, TH + ex, Fo " (2.30)

STH = ¢TI —  FM 4 ey, R, (2.31)

with Nig, Thy Fe)‘qw and Ré\g " denoting the first, second, third and fourth moments of
the equilibrium distribution function fe,(z,p) respectively. Note that these moments of
the equilibrium distribution can easily be calculated analytically.

2.4.2. Matching conditions

In order to obtain a closed expression for the off-equilibrium distribution function, the
unknown tensorial structures €, e’ e in Eqgs. (2.30) — (2.31) have to be calculated in
terms of T#”, N# and the fluid velocity field w#. In order to identify these unknowns
one can use equations (2.30) — (2.31) together with the decompositions of the dissipative
fluxes from Egs. (2.4) — (2.5).

But, before one starts calculating €, ¢* and €”, the following two additional equation
are needed:

u ON? = w,u, 0TH = 0. (2.32)

The meaning of these two equations, known as the Landau matching conditions |83, 84]
becomes apparent if one rewrites them using the decompositions (2.4) — (2.5) as follows:

e = €eq, (2.33)
no = MNeg- (2.34)

where e and n denote the energy and particle densities in the local rest frame and
same quantities with a subscript ’eq’ refer to an equilibrium state. The above equations
match the actual energy and particle densities in a system to the energy and particle
densities of a fictitious equilibrated state. If the particle distribution in equilibrium state
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is given by the Boltzmann distribution of massless particles, the effective temperature
of a non-equilibrium state can be defined by virtue of Landau matching conditions as a
temperature of a equilibrium state with the same energy and particle densities:

e

(&
T=—=—- (2.35)
3n 3neg

The latter equation implies for the energy and particle densities of as Boltzmann gas

3\

e = ﬂ—2gT4Ee€q (2.36)
A

n = W;;’T?’;neq. (2.37)

where g denotes the degeneracy factor. The factor A, which is interpreted as fugacity,
accounts for deviations from the chemical equilibrium state. A = 1 for an equilibrated
system. Fugacity is essentially needed to distinguish between a chemically equilibrated
and non-equilibrated states, as will be demonstrated later in Chapter 11.

Note that Landau matching conditions are essentially needed in order to define the
temperature no matter what reference frame — either Landau’s or Eckart’s — has been
chosen.

Using Eqs. (2.30) — (2.31) together with the definitions (2.11) — (2.18) and the prop-
erties (2.32), one can find the solutions for €(x), €,(x) and €, () in Eckart frame:

e = Aa(3upuy — Ap)IL — Brug,q,) + Compw (2.38)
e, = Al — By, (2.39)
e = Apll (2.40)

The values of the thermodynamic coefficients A;, B; and C; were calculated for example
in [83, 84]. They are combinations of moments of the equilibrium distribution and thus
are known analytically. Derivation of €,,, €,, € and calculation of the coefficients A;, B;
and C; are presented in Appendix A of this work.

The fields €,,, €, and € together have 14 independent components, which corresponds
to 14 unknowns in the set of Eqs. (2.4) — (2.5). Indeed, e and p are connected via the
chosen equation of state (which need not be the one of an ideal gas). In Eckarts frame
WH is equivalent to ¢#, which has only 3 independent components due to orthogonality
property g,ut = 0. 7 is diagonal-symmetric and 7% = 0 by virtue of the matching
condition 2.32, which leaves only 9 independent 7#*¥ components. In addition, shear
tensor is traceless, m, = 0, and there are only 8 independent components left. In total,
the number of unknowns in Eqs. (2.4) - (2.5) is

8 +.3 + 1 4+ 1 + 1 =14. (2.41)

mHY qt IT n e,p

Using these 14 unknowns, the hydrodynamic fields can be constructed.
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The off-equilibrium distribution is thus determined within the Grad’s theory of mo-
ments in terms of dissipative fluxes II, g, , m,, and the thermodynamic coefficients A;,
B;, C; according to Egs. (2.38), (2.39), (2.40) together with Eqs. (2.27):

[ = feq [1 + Aoll — (AIUZ/H - BOQV)pV =+ (A2(3Uuuu - A,uu)H - BIU(MQV) =+ Coﬂ'pw)pupy]

(2.42)
Hence any distribution f(z,p) now can be expressed in terms of the macroscopic fields
describing the system.

2.4.3. Moments of the Boltzmann Equation

Hydrodynamic equations can be derived from the Boltzmann Equation (1.2) using the
moments of its left and right hand side. Such derivations were reported e.g. in Refs.
[86, 38]. Although this particular approach to derivation of hydrodynamic equations is
not a subject of this work, the moments of the Boltzmann Equation will be needed to
derive an expression for the shear viscosity coefficient. Oth, 1st and 2nd moments of the
Boltzmann Equations are accordingly given by the following set of equations:

/ p o, f(z,p)dl = 8, N* = / Clf]dr = J (2.43)
[rrouspd = o, 1 = [ el - (2.44)
/ P p o, f(x,p)dl = 9, F'* = / p'pC[f]dl = P*A (2.45)

In the latter set of equations J and JY can be physically understood as the source
terms for particle production and energy-momentum deposition accordingly. For a closed
system J” = 0 and Eq.(2.44) simply states the conservation of energy and momentum.
In this work I will consider energy-momentum conservation, i.e. closed systems without
external source-terms, J¥ = 0. In a multi-component system energy and momentum
exchange between the species is possible, but the total energy-momentum tensor is still
conserved. In Eq.(2.43) J = 0 if the particle number is conserved. However, this is
not true in a gluonic system, where the bremsstrahlung and absorption processes have
an influence on the net particle number. Thus, in presence of bremsstrahlung and the
reverse channel J has to be calculated by evaluating the integral over the collision term
in Eq.(2.43). This will be done in Chapter 11. The second moment of the Boltzmann
Equation is in general not conserved, i.e. P** # 0. To give an analytical expression for
PY* one can consider its tensorial decomposition in terms of the dissipative fluxes, which
in most general form can be written as follows

4 1
PH = §CHA2(3u“u” — AM)IT + 2Cquq(“u”) + gC,rCow<“”>. (2.46)
Again, the decomposition above is introduced in the Eckart or particle frame. The

tensorial structures introduced in the latter equation are the same as in Eq. (2.42) for
the momentum-independent parts of the distribution function. The coefficients Cry g~
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are dependent on the transport coefficients bulk viscosity, heat conductivity and shear
viscosity accordingly. This becomes clear since they can be obtained as projections of
the left hand side of Eq. (2.46), which is an integral over the collision term:

—4CHA2H = ’U,MZLVPNV, (2.47)
Cquq“ = A‘,juAP”)‘, (2.48)

1

gc7rco7r<wf> = plw), (2.49)

Since the collision term and thus its moments depend on the collision cross section, the
right hand side of Eqgs. (2.47) — (2.49) must depend on the transport coefficients bulk
viscosity, heat conductivity and shear viscosity. These equations will be needed later,
when I derive an expression for the shear viscosity coefficient (comp. Section 4.2.1).

Now that the basic mathematical concepts and physical quantities have been discussed
and an analytic expression for off-equilibrium distribution has been constructed, deriva-
tion of dissipative hydrodynamic equations can be discussed.
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3. Derivation of the relativistic
dissipative hydrodynamic equations.

Wonder, rather than doubt, is the root
of knowledge.

Abraham Heschel (1907 — 1972),
Jewish theologian and philosopher.

3.1. Hydrodynamic equations from the entropy principle.

In this section I will first introduce derivation of the well-known first and second-order
dissipative hydrodynamic equations from the entropy principle. The approach I will be
using here is a phenomenological one. Its main advantage is that obtained equations
automatically satisfy the second law of thermodynamics, since they are obtained from
this requirement. One of the flaws of this approach is however its inability to recover
some terms, which can be obtained in scope of different approaches discussed in previous
section and at the end of this one. Derivation of hydrodynamic equations from the
entropy principle has been discussed by MURONGA in Ref. [80] and originates from
the earlier works by ISRAEL and STEWART [40]|. Israel and Stewarts formulation of
hydrodynamic equations has for a long time been the standard hydrodynamic theory for
relativistic systems. After discussing the established theories I will derive a novel, third-
oder relativistic hydrodynamic equation, which has been reported in Ref. [34], as well as
novel second-order hydrodynamic equations for a multi-component system [36]. At the
end of this Chapter I will also review other approaches to derivation of hydrodynamic
equations.

3.1.1. Preface

In this Section I partly follow the procedure introduced by MURONGA in Refs. [80, 83, 87].
The approach used in these works is based on the entropy production principle and
requires knowledge of the entropy current S*. From the phenomenological point of view
it can be written in the most general form as

s = pB¥ — %N” + BaT™ + QM(SNY,6T°) (3.1)
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with 8% = u”/T. NY and T are the particle current and the energy-momentum tensor,
defined in Section 2.1 in terms of the energy density n, particle density e and isotropic
pressure p and dissipative fields. @ the the chemical potential and is often replace by the
fugacity A = In(u/T). Q*(...) is the dissipative contribution to the entropy current. Its
exact form will be specified in the next Sections and is irrelevant for now.

In order to calculate the divergence 0,8 of the entropy vector constructed above one
sometimes uses the so-called Gibbs-Duham relation (which is a generalized form of Gibbs
equation in non-relativistic thermodynamics)

0,(pB") = Ny, (5) = 15 0u5 (3:2)

as for instance done in Ref. ([80]). To verify this relation one can use the definition of
the particle number four-vector

v o__ v_—Bap®+
Neq—/p e PaP™+uBgr (3.3)

with f = 1/T and ¥ = pu”. p denotes the chemical potential and is related to the
fugacity A via e# = A. The divergence 0, N, can be expressed in terms of the derivative
of the exponent:

81/N6Vq == /deVé)V (—Bapa + /’LB) . e_ﬁozp +/J/ﬁ —
= —/df‘pl/pa&,ﬁae_ﬂapa-l-uﬂ + /drpllay (,Uz,B) 6—5apa+,u,8 _
= ~Tiy0u0+ N0 (7) - (5.4)

On the other hand, in Eckart frame the particle number four-vector can be written using
the ideal equation of state as follows:
NY =¥ = By = pBY . (3.5)
T
Taking the divergence of the above equations together with calculations performed prior

to it, one verifies the Gibbs-Duham relation (3.2).
For the divergence of the entropy current (3.1) one now obtains

Bas® = O (pBY) — N8, (%) _ %aazva + Bu0aTH + THO, B, + aQ™ =
- —5N°‘8a% T 8By — %aazva +0,Q°. (3.6)

The definitions of N# = N¥ — N&; and §T* = TH” — T/ have been used together with
the conservation equation 9,T*” = 0 to obtain the latter relation. For the derivations of
hydrodynamic equations presented in this work, Equation (3.6) plays the most central
role. It has to satisfy the second law of thermodynamics, stating that the entropy pro-
duction 9,s* must be non-negative, which requires a specific mathematical form of Eq.
(3.6) which will be discussed in the following.
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At this point I want to notice that the evolution of the particle number current N¢
enters the entropy production ezplicitly via the term —%£0,N® = —InA9,N®. Hydro-
dynamic approaches — e.g. MOLNAR and HUOVINEN in Ref. [46] and MURONGA in [80]
— often assume conservation of the particle number current, 9, N® = 0. In Section 11.1.1
and Appendix D I will demonstrate that the divergence of the particle number current
can be written in the form of a rate equation 9, N® = n (%R23 - %Rgg) [87, 35, 88, 89],
where Ro3 and Rss are the rates of particle production and annihilation with the factors
1/2 and 1/3 accounting for the number of colliding particles in each process. The fugacity
A is a measure of deviation from chemical equilibrium. A > 1 denotes the oversaturated
regime characterized by particle annihilation, i.e. 1/3R32 > 1/2R23. The undersaturated
regime A\ < 1 is characterized by particle production, i.e. 1/3R32 < 1/2Ra3. Thus, the
term —In A0, N¢ is always a non-negative contribution to the entropy production in a
closed system.

3.1.2. First-order equations

I will begin the derivation of a first-order equation for dissipative fluid dynamics with an
ansatz for the entropy current, which is at most first order in dissipative currents:
T 3.7
st =su" + —. .
’ (37)
The above expression is given in the Eckart frame. Note, that this is the only possible
four-vector which can be constructed from the available tensors u*, ¢* and 7" and
contains only first-order terms in dissipative corrections. The scalar quantity s denotes
the local rest frame equilibrium entropy density. Comparing Eqs. (3.7) and (3.1), one can
identify Q* = ¢*/T. In order to calculate the divergence of the first-oder entropy current
one can use Eq. (3.6) with Q* = ¢"/T and 6T* = —AMII + 3 (¢"u” + ¢"w") + 7
(which is valid in Eckart frame). Note, that IN# = 0 in Eckart frame. Thus Eq. (3.6)
leads to the following form of the divergence of the entropy current:

1
Oy s® = (_AWH + 3 (¢"u” + ¢ uP) + WW) OBy — %aaN“ . (3.8)

With the defintion p* = w*/T and the properties 7*u, = 0, ¢"u, = 0 as well as
AF”u, = 0 the latter equation can be rewritten as follows:

1 1 1
Ops® = T II- A", u, + iq“ (Ouf + pu”Opuy) + TW‘“’GMUV —In\-J. (3.9)

where I have used the general from of the particle number current evolution equation,
0, N# = J, as motivated in the previous Section. In the limit of vanishing dissipative
currents II, ¢* and 7* and chemical equilibrium A = 1 the entropy production (3.9)
vanishes which means that entropy of equilibrium state is conserved. For a non-ideal
(off-equilibrium) system, the entropy production must be non-negative

Bus" >0 (3.10)



24 3. Derivation of the relativistic dissipative hydrodynamic equations.

which is satisfied in Eq. (3.9) if one postulates following linear relations

I = —(Vu, (3.11)
g = kKT (,6’718“5 + u” ,,u“) , (3.12)
™ = ;) = 2V i) (3.13)

The covariant gradient operator V# means V¥ = A*0,. Note that in the last of these
relations the projection (..) has been applied to the gradient in order to obtain a traceless
symmetric tensor since the shear stress tensor 7" also has this property. Application
of the projector (..) has no effect on the entropy production 0,s* since, as one can
easily check, 7,,0"u” = 7,,0%u”). Equations (3.11) — (3.13) for dissipative fluxes in
relativistic systems are known as Eckart/Landau-Lifschitz theory. For non-relativistic
systems first-order hydrodynamic theory is known as Navier-Stokes theory. However,
relativistic first-order equations are often referred to by this name as well.

With the relations postulated above the entropy production takes the non-negative

form ) ,
g T aud |
a (T kT 20T
The proportionality factors in Eqs. (3.11) — (3.13) are the transport coefficients bulk
viscosity ¢, heat conductivity « and shear viscosity 1 and have to be non-negative in
order to satisfy the second law of thermodynamics.
Equations (3.11) — (3.13) are of first order in gradients of thermodynamic variables and
velocity fields. Moreover, they can be interpreted as a linear relation between dissipative
thermodynamic forces and corresponding fluxes. The forces are

—InA-J. (3.14)

1
Vot — T@“f —u’dut, Vi) (3.15)

The algebraic Egs. (3.11) — (3.13) imply that thermodynamic forces can be switched on
and off instantaneously. Indeed, if one considers an initially equilibrated system which is
driven off equilibrium by expansion, the dissipative fluxes (and thus the related forces as
well) evolve from 0 to a finite value instantaneously, thus violating causality. The acausal
nature of first-order relativistic hydrodynamic equations as well as their instability under
small perturbations have been demonstrated by Hiscock in [90, 91, 92]. The problem
of acausality can be solved by introducing new terms into equations for dissipative fluxes
which turn them to equations of relaxation type. This was done for relativistic systems
by Israel and Stewart.

3.1.3. Second-order equations

The entropy current introduced in the previous section was up to first order in dissipative
currents. Second-order corrections can be introduced in a most general form as follows|[40,
80|

utagllgh anmq,
2T T T

B gl ﬂ_ 2 _ v apf
st = sul + Boll® — B1quq” + Bamapgm

T (3.16)
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The dissipative corrections have to be constructed in such way that the local rest frame
entropy density is maximal in equilibrium, i.e.

Boll? = B14uq” + Bamapm®’ > 0. (3.17)

This leads to requirement 3y 12 > 0. [; are thermodynamic functions, i.e. in general
they are functions of energy and particle densities: f;(e,n). Note that the argumentation
introduced so far is rather heuristic. An exact derivation of the entropy current in the
scope of Grad’s formalism is given in Appendix B. However the result of an exact
derivation is identical with the expression obtained here.

For the following derivations I will neglect heat conductivity and bulk pressure. A
complete discussion of second-order equations is given by MURONGA in Ref. [80]. In this
work I will investigate systems, for which bulk pressure and heat will vanish identically
and will thus concentrate on shear viscous corrections only.

The divergence of the second-order entropy current Eq.(3.16) can be written in a
factorized form

D5t = Tap Baaﬂ — 789, <B2u“> — %#aﬁ] — % . (3.18)

with 0@ = V(*yf) . The first term in Eq. (3.18) has been as well obtained from the
divergence of the first-order entropy current in Section 3.1.2 using Gibbs equation. The
last two terms cannot be recovered from first-order ansatz. To obtain an equation for
the shear tensor I will, in direct analogy to the procedure introduced in Section 3.1.2,
use the second law of thermodynamics Eq. (3.10). Equation (3.18) satisfies the second
law if one identifies

1 B2 Ba .
wo_ o uv v a) ny
7T 27)T[TU T O <2Tu > T ] . (3.19)

The choice of proportionality coefficient guarantees reduction of the obtained equation to
the first-order equation (3.13) if second-order terms are neglected. Again, in analogy to
the first-order theory, the expression in angular brackets in Eq. (3.19) can be understood
as an extended thermodynamic force. Dividing in Eq. (3.19) both parts by 2182 and
rearranging the terms, one obtains a dynamic equation for the shear tensor

T gt T Bo
e P T (B
BT B\ (3:20)
In the latter equation the relaxation time
e = 2ns. (3.21)

has been introduced. The notation 7 denotes the co-moving derivative 7 = u®0,m"",
i.e. derivative with respect to proper time 7 in the local rest frame. Different from the
constitutive equation of the first-order theory (3.13), Eq. (3.20) is a dynamic equation
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and has to be solved together with the equations for the energy and particle densities,
which follow from the conservation laws Eqgs. (2.43) and (2.44).

The dynamic equation (3.20) has an advantage of modelling relaxation processes since
it is a differential equation, whereas equation (3.13) is of algebraic form. The necessity
of a relaxation-type theory was indicated by acausal character of the first-order order
theory. A purely phenomenological ansatz to cure the causality violation in Navier-
Stokes equations was to introduce a 77" term on the left hand side of Eq. (3.13).
Introducing this term one obtains a relaxation equation for the shear tensor

B oV ) — i

Tr

v (3.22)

which is also known as the 'truncated Israel-Stewart equation’ and is of covariant Maxwell-
Cattaneo form. Indeed, Eq. (3.22) can be obtained from the Israel-Stewart Eq. (3.20)
neglecting the last term in it. However, its neglect due to any power counting argu-
ments proves to be not legitimate. Moreover, this term proves to be essential in order
to achieve a good agreement between hydrodynamic and kinetic transport calculations.
These issues will be addressed later in this work.

Equation (3.22) allows a very clear understanding of the role of relaxation time 7,: this
is the time scale on which the shear stress tensor relaxes to the first-order value which in
turn converges to the equilibrium state where all dissipative corrections are zero in the
limit of vanishing viscosity n — 0. Although the Israel-Stewart theory contains one term
not included in Eq. (3.22), the interpretation of the relaxation time in Israel-Stewart
equation (3.20) is the same.

Recently it has been demonstrated that Israel and Stewart’s second-order hydrody-
namic equations are not complete. In fact a number of further terms can be recovered
if hydrodynamic equations are derived directly from the Boltzmann equation, as demon-
strated in [37, 38, 93]. Among others these are terms evolving the vorticity

—_

Wy = 3 (V,uuu - Vl,uu) = V[ﬂuy] . (323)

In the expression for the entropy production (3.18) a term of the form 7V, uy 7y can
be added since it is identically zero, as can be easily shown using Eq. (3.23). If 7 is
factored as happens in transition from Eq. (3.18) to Eq. (3.19), the contribution due to
terms involving vorticity is not zero any more in the equation for 7*”. However, terms
involving the vorticity (3.23) do not contribute to the entropy production and thus cannot
be recovered in scope of the entropy approach presented in this work. An overview of
second-order equations obtained by methods different from the entropy based one will
be given in Section 3.2 below.

3.1.4. Third-order equations

An extension of the Israel-Stewart approach to a third-order theory has been presented
recently by me together with Zhe Xu and Carsten Greiner in [34]. T extend the expression
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for the equilibrium current by terms third-order in shear tensor:

2
st = sput — éwagwaﬁu“ + a&mymr?wﬁ"u“ . (3.24)
2T T

The first two terms are already present in the entropy current from the second-order
theory. Note that the second and third-order terms are the only possible non-vanishing
contractions of the shear tensor 7 and the velocity field u* which are, in absence of heat
flow, the only tensorial structures present. However the entropy current constructed here
can also be derived directly using the Grad’s approximation for the distribution function

Eq. (2.27). This derivation is given in Appendix B.

In the last term of Eq. (3.24) a new dimensionless coefficient « is introduced. I
will assume « to be a constant. This will be demonstrated later in this work when
explicit expressions for both o and Sy will be derived in Section 6 resp. Appendix B. To
guarantee that the entropy density is maximal in equilibrium the following requirement
on the third-order term must be imposed:

2
a%waﬁwg‘wﬂau" <0. (3.25)

Now the entropy production for the third-order theory can be calculated:

1 B2 Ba .
oust = fwagao‘ﬁ — Wagwaﬂaﬂ <2Tu“> — ?ﬂa//jﬂ'aﬁ
2 2 In A
+ ad, <§3u“> TapmomP? 4 Sa%ﬂagﬂ'gﬁﬁo - HT -J. (3.26)

Here again the Gibbs-Duham relation Eq. (3.2) has been used. The next to last term
in Eq. (3.26) is different in its structure from the rest of the equation and should be
analyzed separately. It can be split into two parts in the following way:
3aﬁ—%ﬂ'a57ra7'r’3” =3(1—7,0) aﬁ—%ﬂ ToiP 4 37, Qaﬁ—gﬂ Toiho (3.27)
T o ™ T aflla ™ T afTe
In the latter equation ¢ = 9, u* denotes the so-called expansion scalar and 7, denotes the
relaxation time already known from the second-order theory. The expansion scalar is a
measure for the expansion rate of the system and should be compared to the relaxation
rate 7, 1. The relaxation rate should be dominant over the expansion rate in a non-
equilibrated system which relaxes to the equilibrium. A ratio of the two characteristic
scales - the relaxation time scale and the inverse of the expansion rate - thus can be
used to quantify the ability of the system to relax to equilibrium. This ratio is called
the (local) Knudsen number [94] and has to be small for hydrodynamic approach to be
applicable
Kn =10 = 70,u" < 1. (3.28)

For the first term on the right hand side of Eq. (3.27) two regimes can be considered.
As long as 7.0 > 1, i.e. 7, > 07!, the expansion dominates over the relaxation and
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the Knudsen number is larger than 1. An expansion-dominated system will be driven
out of equilibrium, since it cannot relax towards the equilibrium state. In this regime
amapme7P? will have same sign as am,smemP? which is negative as follows from the
discussion of Eq. (3.24). Since 1 — 7,0 is negative as well, in this regime the first
term on the left hand side of Eq. (3.27) will be overall positive. The other regime to
be considered is 7,0 < 1, i.e. T < 6~1. In this regime the relaxation dominates the
evolution of the system driving it towards equilibrium state. For a relaxation dominated
system awagﬁg‘irﬁ" will have an opposite sign than awagwg‘wﬁ" and thus will be positive.
Since 1 — 7,0 is positive as well, in this regime the first term on the left hand side of Eq.
(3.27) will be again positive. One can thus conclude that

2
3(1 — 740) a%waﬁwg‘#ﬁ" >0 (3.29)
holds throughout the entire evolution of the system. Rewriting Eq. (3.26) as
1 B B :
Ops!' = Tﬂaﬁaaﬁ — ﬂ'agwaﬂau (21271#‘) — %Wa/mraﬁ

2 2
+ ad, <§3u“> TapmlmP? + STﬂea%ﬂagwg‘ﬁﬁg

2

+ 3(1—7:0) a%wamgﬁﬁ” (3.30)

one thus realizes that the second law of thermodynamics can be satisfied by the require-
ment

1 2 2 .
oust = Tﬂ'agUa’B — ﬂaﬁﬂ'aﬁa“ <§ru“> — %ﬂ'agﬂ'a'g
I 33
+ ad, (;u") TapmlmP + 3Tﬂ0a?27ra57rg‘7'rﬁa >0 (3.31)

since the last term in Eq. (3.30) is always non-negative. Splitting the expression for
the entropy production into two parts and requiring non-negativeness of each of them
implicitly assumes that entropy production is maximal.

Writing Eq. (3.31) in a factorized form one obtains

1 2 2
Top [TUO‘B — %89, <ﬁ2u“> - %#aﬁ +ad, (%u“) w$enohf) 4 3T7r¢9aﬁ;7r(<,0‘7'r”5>] >0.
(3.32)

Note that the projection introduced in the last two terms the brackets represents the
symmetrized spatial and traceless part of the tensors. The second law of thermodynamics
is now satisfied if the dissipative flux is proportional to the expression in the brackets:

1
ﬂ_aﬁ — 277T |:T0.a5 _ Waﬂau <§;uﬂ> _ %ﬁ.aﬁ

2 2
+ ady (%u“) 7r§°‘7r‘76> + 3Tw9a%wéaﬁ”5>] . (3.33)
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The proportionality factor, in analogy to the Israel-Stewart theory discussed in Section
3.1.3, is chosen in such way that the obtained equation reduces to the Navier-Stockes
equation (3.13) if higher-order terms are neglected.

The order of each term in Eq. (3.33) can be estimated from the following quantitative
analysis. The coefficient (s, for which an explicit expression will be derived later in
this work, is a purely thermodynamic quantity. From dimensional reasons it has to be
proportional to 7~* and thus roughly inversely proportional to the isotropic pressure:
B2 o 1/p. The dissipative corrections, in particular the shear pressure, must be small
compared to the isotropic pressure in order for the Egs. (3.16) and (3.24) to be valid.
One thus can conclude, that S has to be small (component wise). The gradients
of the velocity field, which appear in Egs. (3.13), (3.19) and (3.33) can be roughly
approximated by the expansion scalar 6 and thus the product of 7, and gradient of u* is
of order Kn = 67, for which Kn < 1 must hold [comp. Eq. (3.28)]. Derivatives of 7"
with respect to proper time, 7 are roughly of order 7#”. Multiplying Eq. (3.33) by
B2 and using 7, = 2nf2 like in the second-order theory one thus can estimate the order
of its terms:

Bom®® = 7.0 — ﬂa'gTﬂﬁu @u“ T — Boic®Pr,
~—— —— 2T —_—_———
o) o) 0(2)
0(2)
2
+ arg0, (%u“) Trlon® 4 3r 002 rml7oP) (3.34)
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One thus realizes that the last term is of fourth order and has to be neglected for consis-

tency, since further terms of this order are still missing within the presented approach.
Finally, dividing Eq. (3.33) by 2nf2 = 7 and neglecting the last term one obtains the

third-order evolution equation for shear tensor

afs afs T T ﬁ2

g _ T 0 T (52 u> r (2 u) (o oB)

T = — + - 0, u! ) +a—0 ut | TP 3.35
w e " mo\ar B (3.35)

The last term is the only third-order term which comes from the extension of the entropy
current. The thermodynamic coefficients o and P are evaluated in Appendix B.

Recently the third-order hydrodynamic equations were derived independently from this
work by MURONGA [95]. The equations reported there confirm the result of this work
and contain contributions from heat flow and bulk pressure neglected here.

3.1.5. Second-order hydrodynamic equations for a multi-component
system

In this subsection I introduce a derivation of second-order hydrodynamic equations for
a system of multiple components. Fluid dynamical descriprion of systems of multiple
components is a highly interesting topic gaining a lot of attention in different fields
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of physics, like for example in physics of materials (physics of polymeric fluids [96]),
biophysics [97] or plasma physics [98], just to name some. Since the systems investigated
in high-energy heavy-ion research are mixtures of several particle species, there has always
existed a strong interest for physics of multi-component systems in heavy-ion community
as well (comp. for instance the discussion of hadronic mixture in Ref. [99]).

The derivation of dissipative hydrodynamic equations for multi-component systems
presented here is a generalization of the procedure discussed in Section 3.1.3. Let us
assume a mixture of N components, to which we refer as Flavor 1..N. The phase-space
distributions f;(z,p) have small deviations ¢;(x,p) from the equilibrium distributions

fo,i:
filz,p) = foi(z,p) (1 + ¢i(z,p)) - (3.36)
The equilibrium distributions fo; in the latter equation are Boltzmann distributions
foi = Nidgem P /T (3.37)

were d; are the respective degeneracy factors, A; are the fugacities and T; are the effective
temperatures. w, is the common velocity field of the considered fluid, which allows to
define a reference frame for further calculations. The total energy-momentum tensor and
particle flow four-vector can be obtained as sums over contributions from all components:

N N
T — ZTi’W - Z / pkp” f;dT (3.38)
% 7

N N
Nt = Y NF= Z/p“fidf. (3.39)

For the partial energy-momentum tensors and particle flow four-vectors one assumes the
standard decomposition in Eckart’s frame:

T = eufu” — (p; + 1) A" + qlgﬂu”) + 7T§W> , (3.40)

(2

NI = nut. (3.41)

(2

The partial dissipative fluxes ", ¢/, II; and thermodynamic quantities n;, €;, p; in
the latter decompositions were already defined in Section 2.1. In analogy to the one-
component case discussed in Section 2.4.2, one can impose the matching conditions on
the partial energy-momentum tensors and particle flow four-vectors:

d.;
n; = 'LLMNZM = Njeq = )\Z;;'IZLS (342)
d;
e = U T = ey = SAiW—;Tf. (3.43)

With these matching conditions and decompositions in Eqgs. (3.40) — (3.41) and neglecting
heat flow and bulk pressure one obtains for the deviations ¢;(x, p)

di(z,p) = Y e (3.44)

s
2(ei +pi))T2 "
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This is a generalization of the one-component result obtained in Section 2.4.2. One thus
easily realizes that the partial entropy currents can be obtained in the same way as for
a one-component fluid in Section 3.1.3:

sy’ = spu” — %Wi,wwfyuo‘, (3.45)
with
80,4 = 4ni 7 In )‘i . (346)

In analogy to the formalism presented in Section 3.1.3, the evolution equation for
the hydrodynamic equations can be obtained for a multi-component system from the
requirement that the total entropy production must be non-negative

Oust' > 0. (3.47)

This is nothing else but the second law of thermodynamics applied to the total system.
To calculate the entropy production from Eq. (3.45) one now needs to specify which
conservation laws apply in the system. Due to possible energy and momentum exchange
between the particles of different Flavors the partial energy momentum tensors are not
conserved. On the other hand the total energy-momentum tensor is always conserved
in closed system. For the formalism presented here particle number conservation for
each Flavor will be considered, i.e. the partial particle flow vectors are conserved. To
summarize, one has the following balance equations:

9T = 8, (3.48)
9T = 0, (3.49)
9.N! = 0. (3.50)

The source term S in Eq. (3.48) must be derived from the kinetic theory. In scope
of the entropy principle based approach used here this source term is unknown. Hence,
only Egs. (3.49) — (3.50) will be used for the further derivation. This means, in a
most general case the formalism is not able to describe energy balance for each of the
components correctly — only the total energy balance is known — and thus evolution of the
effective temperatures 7T; also cannot be described. However, one can assume a common
effective temperature for all components:

T,=T. (3.51)

This assumption is only valid if all Flavors thermalize on the same time scale and is
a good approximation in case the time scales are comparable. This will be proven in
comparisons of the solutions of hydrodynamic equations with kinetic transport calcula-
tions in Section 12. With Egs. (3.42) - (3.43) the assumption of a common effective
temperature immediately leads to the following expression:

I DL

3n Y.on;

(3.52)
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With the definition of the common effective temperature 7" and with the conservation
laws (3.49) — (3.50) the entropy production now can be calculated:

g
— 9, Z M _Z <MV”W6 (isz a) + B;“w,,m“”) . (3.53)

Note that the divergences of the partial entropy currents d,s{ cannot be calculated since
the partial energy-momentum tensors are not conserved. The right-hand side of Eq.
(3.53) is explicitly non-negative if the entropy production has the following algebraic
structure:

asaiiw>o (3.54)
i = wmT '

Splitting the first term in Eq. (3.53) into a sum over N Flavors and one can write
ot B, B .
S Zi:Wi’MV <T /W(‘? < 21_? a> + j_‘lﬂ';“/) . (355)

Comparing Egs. (3.54) and (3.55) one obtains the constitutive evolution equations for
the partial shear tensors in accordance with the second law of thermodynamics:

B — o (UO‘B — ﬂ?ﬁTau (?ﬁu“) - 52,i7i'?ﬁ) . (3.56)

The obtained evolution equations are analogous to the Israel-Stewart Equation (3.20)
for the one-component case.

In contrast to the formalism presented recently by MONNAT and HIRANO in Ref. [100],
the formalism presented here introduces separate transport coefficients 7; and shear stress
tensors m"” for each component of the fluid. This allows to quantify the equilibrium
deviations for each component and thus, the effect of dissipation on the phase-space
distribution (and spectra) can be quantified for each component according to the ansatz
for the off-equilibrium distribution function. The shear viscosity coefficients 7; and the
thermodynamic coefficients 82 ; yet must be specified. This will be done in Sections 4.2.2
and 12.1.

One also realizes that Egs. (3.56) in principle can be summed into an effective one-
component equation of form (3.19) with only one shear viscosity coefficient describing
the multi-component system as a whole. This will be discussed for the special case of a
one-dimensional system in Section 12.1.

3.2. Other known approaches

In Sections 3.1.2 — 3.1.4 I introduced a phenomenological way to obtain hydrodynamic
equations up to third order in small deviations from equilibrium with the focus on shear
viscous effects only. The approach I discussed is based on the entropy principle and
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the evolution equations for dissipative quantities are obtained from the requirement of
a particular algebraic form of divergence of the entropy current which guarantees that
the second law of thermodynamics is satisfied. The advantages of the introduced ap-
proach is that the second law is explicitly fulfilled and a functional relation between the
relaxation time and shear viscosity follows directly from the derivation (same is true for
bulk viscosity and heat conductivity). The obtained equations naturally had a relaxation
type form and thus could be reduced to the Navier-Stokes equation in the limit of small
equilibrium deviations. A disadvantage of the entropy production based derivation is
that it is not obvious whether the obtained evolution equations are fully compatible with
the underlying microscopic equation such as the Boltzmann Equation. Thus it might
be necessary to derive hydrodynamic equations directly from the Boltzmann Equation.
This can be done either by using the method of moments or by a systematic expansion of
the collision term. In addition, the equation of motion for dissipative quantities can be
obtained from a gradient expansion of the dissipative fluxes. This method does not yield
the expressions for the transport coefficients which have to be obtained from matching of
the derived equation to known solutions obtained from kinetic theory. Here I will review
the most significant works in which the hydrodynamic equations were derived by some
of these methods.

3.2.1. Second-order hydrodynamics from kinetic approach using method
of moments.

The starting point for this approach is an approximation for the off-equilibrium distri-
bution function, which can be seen as a truncated Taylor expansion in terms of small
deviations from equilibrium ¢(z, p):

f(l‘,p) :fo(l‘,p)'(1+¢($,p)) : (357)

The tensor decomposition of the deviation function ¢(z,p) has been already introduced
in Eq. (2.26), Section 2.4.1, in this work. In this method, the hydrodynamic equations
are obtained from the conservation equations for the particle number current, 0¥ N* = 0
and the energy momentum tensor 9,7"" = 0, which can be rewritten using moments of
the Boltzmann Equation as given by Eqgs. (2.43) — (2.45). The collision term is replaced
by the so-called relaxation time approximation

f—fo‘

Tr

Clf] = —puu” (3.58)

The relaxation time 7, is assumed to be momentum independent for the following deriva-
tion. This is a strong assumption since the different momentum scales can be expected
to relax toward equilibrium distribution on different time scales as was demonstrated for
example in Refs. [32, 30] for a gluon gas with leading order pQCD cross sections. Intro-
ducing the simplified form of the collision term from Eq. (3.58) into the expressions for
the moments Egs. (2.43) - (2.45) one obtains for a massless Boltzmann gas the evolution
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equation for the shear tensor [37]:

17
AZAZ;#O‘B = —ZL — gw’“’vaua + i—nv<“u”> - 27r°‘[”wgl ) (3.59)
™ ™
This equation is similar to the second-order equation obtained from the entropy pro-
duction, Eq. (3.20), but contains the vorticity terms which cannot be obtained from
the entropy based method since their contributions vanish as discussed in Section 3.1.3.
The relation between the shear viscosity coefficient 17 and the relaxation time 7, follows
directly from the calculation and reads 7, = % for a massless Boltzmann gas. Eq. (3.59)
is a kinetic version of the Israel-Stewart equations [38].

An alternative derivation of hydro equations up to second order in terms of the Knudsen
Number Kn = 7,6, which was introduced in Section 3.1.4, is presented in [38|. In this
derivation, the method of moments is used and the equations are consistently expanded
up to second order in Kn. Neglecting the heat conductivity and the bulk pressure, the
evolution equation for shear tensor reported in [38] takes the form

Ay _ ™20

2
— — 00T + gt 2P — 2mliger) (3.60)
Tr Tr Tr

This latter equation differs from Eq. (3.19) obtained from the entropy principle by the
last two terms, whereas in (3.59) only the last term is not present. This term can be
written in a different way if one makes use of the first-order relation 7 o o*¥ [comp.

Eq. (3.13)]. Then the last term in Eq. (3.60) takes the form Lpiinar) Tt is noteworthy
to mention that, if modified in such way, the last term in Eq. 23.60) is similar in its from
to the third-order term in Eq. (3.33) but is of second order in gradients.

3.2.2. Conformal second-order hydrodynamics from gradient expansion
method.

In Ref. [101]| the evolution equation for the shear tensor is derived using conformal
symmetry constrains. From the requirement of conformal symmetry all possible terms
second order in gradients are constructed. The number of such terms found in [101] is 8.
The conformal symmetry is defined by the Weyl transformations and only 5 combination
of the 8 possible terms transform homogeneously. From these combinations a general
decomposition of the shear tensor is found in [101] for flat space:

1
T = —not" + nry <D0<W> + 30’“’(Vaua)> + Moo 4 XgoiPw™) + Agwlitw™)

(3.61)
An evolution equation for 7#¥ is obtained from the latter equation by replacing 7" =
not”  i.e. using the first-order expression for 7#¥:
T4 A1 A2

S T T P TR N ) (3.62)

7lmw)
T 3 Tr n n

This equation is similar to Eq. (3.60) and 3.59, both obtained from the kinetic approach.
Again, the last two terms constitute the difference to the Israel-Stewart equation (3.19).



3.2. Other known approaches 35

3.2.3. Second-order hydrodynamic equations from kinetic theory.

Dissipative hydrodynamic equations can be derived from the Boltzmann Equation (1.2) in
a direct way by inserting a parametrization for the off-equilibrium distribution function
on the left and right-hand sides. A possible way to parametrize the off-equilibrium
distribution function is Grad’s approximation (2.42) used in this work. The results of
a derivation of this type were reported by DENICOL, KOIDE and RISCHKE in Ref. [39].
Formally, the obtained equation is similar to the one derived in Ref. [38]. However,
the expressions for the transport coefficients differ slightly from the forms, given in the
standard Israel-Stewart theory [102].

There are as well alternative ways of parametrization of the off-equilibrium distribu-
tion. One of them was reported by MARTINEZ and STRICKLAND in Ref. [103]. The
second-order hydrodynamic equations obtained inserting this particular parametrization
of anisotropic distribution function into the Boltzmann Equation were discussed in Ref.
[86]. The other approach by DENICOL criticizes Grad’s approximation as being incom-
plete due to truncation of the momentum power series. The authors demonstrate that
by considering more than 14 unknowns in the off-equilibirum distribution function, one
can obtain a better approximation of the solution of Boltzmann Equation.

These two approaches by MARTINEZ, STRICKLAND and DENICOL and RISCHKE are
highly interesting since they naturally lead to analytical expressions for the transport
coefficients. Moreover, the number of the transport coefficients appearing in the hydro-
dynamic equations is different form what is known form the Israel and Stewart’s theory.
Solutions of equations reported in Ref. [39] are in remarkably good agreement with direct
solutions of the Boltzmann Equation obtained from the partonic cascade BAMPS, which
will be employed in this work.
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4. Shear viscosity of a Boltzmann gas.

The observed good matching between ideal hydrodynamic calculations of flow and data
taken at RHIC can be interpreted as a indication that QGP is a nearly perfect fluid with
a very small shear viscosity 1. The shear viscosity is often rescaled by the entropy density
s and the ratio 7/s is used as a universal measure of the strength of dissipation in the
fluid. Fluids with low n/s ratio values are known outside the ultrarelativistic heavy-ion
physics. For instance, for helium, nitrogen and water under large pressures the 7/s ratio
as function of temperature has a pronounced minimum in the vicinity of the liquid-gas
transition [25, 24]. Similar to the hot quark-gluon plasma, cold atomic gases are as well
known to exhibit a hydrodynamic behavior and have a small 1/s ratio [24].

In this Chapter I address the question what approaches can be used to calculate the
shear viscosity of a massless Boltzmann gas consisting of one or several components.

4.1. Review of theoretical methods.

In the classical Newtonian mechanics the shear viscosity coefficient is defined in as the
proportionality coefficient between shear stress 7 and the velocity gradient existing be-
tween two layers in a fluid:

O0vg
T=n—.
Ui By
In the classical gas theory this definition leads to the expression of shear viscosity coef-
ficient in terms of the mean particle velocity (v) and the cross section o

m(v)

7723\/50'

For a ultra-relativistic gases one obtains [104]

3
N~ §7T’I?,T)\mfp (4.1)

with n denoting the particle density, T' the local temperature and Ang, the mean free
path.

For relativistic systems the Newtonian definition of shear viscosity corresponds to the
first-oder equation, which is often referred to as the Navier-Stokes equation

T = 2V
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Derivation of this equation was already discussed in this work (Section 3.1.2). Using these
considerations, which are based on the classical Newtonian picture, the shear viscosity
of a gluonic gas has been recently calculated using the partonic cascade BAMPS[105].

It is important to calculate the shear viscosity coefficient of the deconfined QCD matter
from first principles, i.e. from the underlining field theory. A formalism based on the
fluctuation-dissipation theorem and allowing to calculate the shear viscosity coefficient
in a standard field theory was introduced in by HOSOYvA, SAKAGAMI and TAKAO in
Ref. [106]. According to the Green-Kubo formalism, the linear transport coefficients are
related to the time dependence of equilibrium fluctuations in the conjugate flux via the
integral over its autocorrelation function in the zero frequency limit.

A number of approaches to calculate the shear viscosity coefficient are based on the
Chapman-Enskog method |76], which employs relaxation time approximation of Boltz-
mann equation, as was introduced in section 3.2.1. Such calculations for a quark-gluonic
system were first reported by HosovA and KAJANTIE in Ref. [107|. Further relax-
ation time approximation based approaches are by CHAKRABARTY[108|, by Czyz and
FLORKOWSKI for a quark—anti-quark system [109], by vON OERTZEN for a pure quark
and gluon matter, quark-anti-quark mixture and a zero baryon number quark-anti-
quark-gluon plasma [110], by THOMA for a quark-gluon plasma taking into account
screening effects by using an effective perturbation theory for the finite temperature
QCD in the weak coupling limit [111], by ILYIN, PANFEROV and SINYUKOV using a
Kubo-type formula for a QCD plasma in one-loop order [112]. The drawback of relax-
ation time calculations is the often neglected momentum dependence of the relaxation
time itself.

A more appropriate treatments are based on solutions of the Boltzmann equation with
the full collision term, which allows to take into account the momentum dependence of
the collisional process. Using the linearized form of the Boltzmann equation, BAYM,
MONIEN, PETHICK and RAVENHALL calculated the shear viscosity of a weakly coupled
QCD plasma in Ref. [113]|. By solving the Boltzmann equation analytically for quarks
and gluons including screening, the viscosity is calculated to leading orders in a; by
HEISELBERG in Ref. [114]. Finally, ARNOLD, MOORE and YAFFE obtained in their
leading-log calculations in Ref. [115] a result which essentially agrees with the one ob-
tained by BAYM et al. and HEISELBERG earlier.

A recent calculation of the shear viscosity coefficient in BAMPS reported by XU and
GREINER demonstrated that the n/s ratio is low for as ~ 0.3 if the pQCD bremsstrahlung
processes are implemented together with the particular treatment of the Landau-Pomeranchyk-
Migdal effect (cf. section 7.3). At the same time, the results obtained from BAMPS cal-
culations cannot be directly compared with those, reported in Refs. [113, 111, 115, 114]
due to different treatments of the Landau-Pomeranchyk-Migdal effect and of regulariza-
tion of infrared divergence in the perturbative cross sections.

A constrain on upper value of shear viscosity to entropy density ratio in q QGP can
be obtained from a direct comparison of hydrodynamic calculations with experimental
data. From a comparison of v calculations with RHIC data, ROMATSCHKE together with
LuzuM [116] and HEINZ together with SONG [47] deduced the upper limit /s < 0.5. The
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lower limit n/s = 1/(4m) was calculated by POLICASTRO, STARINETS and SON for the
strongly coupled finite-temperature N = 4 supersymmetric Yang-Mills theory using the
gravity /gauge theory duality of the AdS/CFT prescription [117]. This lower boundary
is valid for a large class of strongly interacting quantum-field theories.

4.2. Shear viscosity from Grad’s 14-moment theory

4.2.1. One-component system.

In this Section I will derive an expression for the shear viscosity coefficient for a one-
component gas using the 14-moments method by Grad [33]. The advantage of the method
introduced here is its compatibility with the kinetic transport models which are con-
structed to solve the Boltzmann equation.

I start the derivation with the kinetic expression for entropy four-current [33, 76, 83]

s = = [ Uy e.p) ) ~ 1] (4.2)

The divergence of the entropy current leads to the entropy production

Os" = —/dl“p“auf(fv,p) In f(z,p) = —/dFC[f(fﬁ,p)] In f(z,p). (4.3)

For the last equality the Boltzmann equation has been used to replace the derivative of
the distribution function. The logarithm on the right hand side can be simplified by in-
troducing the linearized form of the off-equilibrium distribution function f = feq (1 + ¢):

0" = = [drC(f] ]y (1+0)
= —/dFC[f] In feq —/dFC’[f] In(1+¢) . (4.4)

Now the logarithm can be expanded in terms of ¢ up to first order. This expansion is
in particular legitimated by the assumption that ¢(z,p) has to be small, which underlies
the linearization in Eq. (2.27). With the explicit form of ¢ from Eq. (2.26) and the
logarithm of the equilibrium distribution from Eq. (2.24) the expression for entropy
production becomes

uy,pt
Dt — —u/dPC[f] + /dF et
— e/dFC[f] —i—e#/dl“p“C[f] —ew,/dl“p“p”C[f]. (4.5)
In the latter equation moments of the collision term appear, of which the 1st is zero due

to energy-momentum conservation stated by Eq. (2.44). Thus the second and the fourth
terms vanish in Eq.(4.5). Introducing € and €, from Eqgs. (2.40) and (2.38) into Eq.
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(4.5) and using the short notation for the moments from Eqs. (2.43) — (2.45) one thus
obtains

8Ms“ = —uJ — [AQ (3uuu,, — A;w) P — AQJ] I+ BﬂL(MqV)P!W - CO’]TMVP’L“/ . (4.6)

Assuming conservation of net particle number, i.e. setting J = 0, Eq. (4.6) reduces to the
form obtained in Ref. [83]. In the form presented here the entropy production splits into
4 parts, which account for entropy production due to particle production, bulk viscosity
, heat conductivity and shear viscosity. In a general form the entropy production can be
written in a non-negative form [118|

Ous!' = pud + /BCAHQ — Bﬁflqu” + ﬂ(2n)*17rw7r“” (4.7)

with ¢, x and n denoting the transport coefficients bulk viscosity, heat conductivity
and shear viscosity. A more detailed motivation for Eq. (4.7) was already given in
Chapter 3, where I discussed derivation of the Israel-Stewart equations from the entropy
principle. Here it is sufficient to mention that the expression in Eq. (4.7) is non-negative
by construction and thus satisfies the second law of thermodynamics. It is now straight
forward to identify the expression for the shear viscosity coefficient from Eqs. (4.6) and
(4.7):

B mm

== 4,
QCoﬂ”VP/“’ ( 8)

n
The expression presented here is similar to the one presented by XU and GREINER
in Ref. [42]. First aspect to mention is that both approaches are based on calculation
of moments of the collision term. Approach in Ref. [42] is explicitly based on Navier-
Stokes, i.e. first-order, relativistic fluid equation. The approach presented here is based
on Grad’s method and thus, implicitly, on second-order relativistic hydrodynamics. A
more detailed comparison of the two approaches will be given in Chapter 9, where I apply
Eq. (4.8) to a special case of one-dimensional boost-invariant expanding system.

4.2.2. Multi-component system.

In this Section the expression for the shear viscosity coefficients in a multi-component
system will be derived as generalization of the one-component expression (4.8). Let us
consider a system of N components, to which I refer as Flavor ¢. Let us furthermore
assume that the phase-space distribution functions f; of each component obey the Boltz-
mann Equations

Poufi = Clfi)+ Y Clfi, f5]. (4.9)

J#

In the latter equation the collision term C[f;] accounts for collisions of particles of same
Flavor. These collisions will be called self-collisions. The collision term C[f;, f;] accounts
for collisions of particles of different Flavors and these processes will be called inter-
collisions. The N Boltzmann Equations describing a multi-component system are thus
coupled to each other via the collision terms. The off-equilibrium distribution functions



4.2. Shear viscosity from Grad’s 14-moment theory 41

fi are approximated by Eq. (3.36). The partial entropy currents are given by Eq. (4.2)
and the total entropy production can be obtained by summing the divergences of the
partial entropy currents. One then obtains an expression which is a sum of Equations
of form (4.4). Neglecting heat flow and bulk pressure contributions, one can obtain the
total entropy production in terms of partial shear stress tensors and chemical potentials:

N N
Ous" = = i = Y Coimiyu P . (4.10)
with
PZ-MV = /p“pu C; + ZCU drl’ (4.11)
J

where C; denotes the self-collision term and Cj; — the inter-collision term. Considering
only particle number conserving processes, i.e. neglecting J; = 9, N!" in accordance with
Eq. (3.50), one obtains by comparing Eq. (4.10) with (3.54):

= iy 4.12
" 2Co,imi [ PPPY Ciijl fis f5]dT (4.12)

with
Ciiislfis 11 = CLH + > Clfin £l - (4.13)

J#
The obtained expression proves to be a straight-forward generalization of the one-component
result: the shear viscosity coefficients are inversely proportional to the second moment
of the respective collision terms, which include elastic particle number conserving (i.e.
Flavor symmetric in initial and final states) self- and all possible inter-collision terms. It
is important to stress that the obtained expression is only valid in systems with conserved
particle flow vectors, i.e. in systems with constant particle numbers for each component.
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5. Bjorken's picture of heavy-ion
collisions

Make everything as simple as possible,
but not simpler.

Albert Einstein (1879 - 1955), physicist.

5.1. Bjorken’s assumptions

The CERN SPS results on charged particle multiplicities published 1981 by the U A5
collaboration indicated for p—p collisions that the pseudo-rapidity distributions dN.,/dy
were almost flat for different intervals of N, up to Nep ~ 30 [119]. Starting with N, ~ 30
the distribution still could be considered constant for |y| < 3 but revealed an enhancement
at y =~ 1.5. Based on this observation, Bjorken proposed a scenario for the evolution of
the central rapidity region in heavy-ion collisions [45].

The main assumptions made by Bjorken in his scenario for heavy-ion collisions are the
following

e The collision of two nuclei has to be transparent. This means that the net-baryon
content, N(B) — N(B), ends up at forward rapidities after the collision — i.e.,
the mid-rapidity region is completely void of original baryons thus having a zero
net-baryon density and high energy density. The complete transparency of the
collision proposed by Bjorken is an idealized assumption. The opposite limit is the
full stopping scenario, in which at central rapidity (y ~ 0) an excess of net-baryon
density is expected. A schematic picture of the rapidity distributions expected in
both full stopping and transparency scenarios is given in Fig.5.1. The experimental
data presented several years after Bjorken’s publication indicates that stopping is
observed for Au 4+ Auw collisions at AGS energies (\/sny ~ 5 GeV). A similar
scenario of non-zero net baryon density can be expected for the upcoming FAIR
project at GSI. The onset of transparency can be observed at higher energies in lead
collisions at SPS (y/syny =~ 17 GeV). However the assumption of zero net-baryon
density in the mid-rapidity region derived by Bjorken from p + p results is by far
not always realized in collisions of heavy nuclei but can be expected to be valid at
high energies[51, 52].
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5. Bjorken's picture of heavy-ion collisions

before collision

Ytarg Ynid Y proj
dN/dy full stopping
1 T |
Ytarg Ymitl YP' oj
transparency
T
Ytarg Ymicl Yl)'oj

Figure 5.1.: Schematic picture of the particle rapidity distributions before and after the

collision for the full stopping and complete transparency (Bjorken) scenarios.

e The second essential assumption of Bjorken scenario is the existence of a central

rapidity plateau in the inclusive particle production as function of the rapidity.
Le. the yield dN/dy is expected to be independent of the rapidity. This assump-
tion can be formulated as boost-invariance of the particle production, since the
yield is independent of the choice of reference frame characterized by the rapid-
ity y. Such a plateau has been observed for p + p collisions at SPS[119]. For
the nucleus-nucleus collisions at RHIC energies (\/syn = 200 GeV) the BRAHMS
Collaboration could observe an onset of boost-invariance in a rather small rapidity
interval y < 1 in charged meson rapidity distributions[120]. The conclusion made
based on BRAHMS data is that a certain degree of transparency can be observed
in heavy-ion collisions at high energies and the boost-invariance assumption holds
in a narrow rapidity range.

5.2. Velocity field in Bjorken’s model

Here the mathematical implications of the Bjorken assumptions will be discussed. The
existence of a plateau in particle yields as a function of rapidity leads according to
Bjorken to the conclusion, that throughout the central rapidity region the initial condi-
tions are invariant with respect to Lorentz transformations in longitudinal direction and
the subsequent evolution of the system as well possesses this symmetry. Moreover, in the
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Bjorken model the evolution of the QGP is assumed to be one-dimensional, i.e. the cre-
ated medium expands in longitudinal direction and is isotropic in transverse plane. This
assumption is reasonable only at very early times after the collision as long as transverse
expansion does not set in (i.e. on time scales comparable to the transverse size of the
collision region, which is the radius of the nuclei in central collisions).

The natural variables to describe an ultrarelativistic system are not the Cartesian
space coordinates Z and time ¢ but rather the space-time rapidity 7 and the proper time
7 connected to the Cartesian coordinates via

1. t+z
= 2] 1
n 2nt . (5.1)

T = Vit —22 (5.2)

For the definition above, the z axis has been chosen as the expansion axis and the xy
plane is isotropic. For massless particles travelling at speed of light with v, = z/t the
space-time rapidity is equal to the momentum rapidity y of a particle (often referred to
as the rapidity):

1 E—i—pz_l1 t+z

-] == :
4 2nEfpz 2ntfz (5:3)
All physical quantities now depend on this set of variables:
A(Z,t) — A(n, 7). (5.4)

However, according to Bjorken’s assumption the dependence on rapidity is trivial, since
all physical quantities are assumed to posses the symmetry of boost-invariance and thus
one can write

A(n, 1) — A(T). (5.5)

The most important feature of Bjorken’s model is the special form of the velocity field
ut. For a one-dimensionally expansing medium it has a general form

u? = (uo,0,0,uy) (5.6)
and is normalized
uyut =1, (5.7)
which leads to
u —u? =1. (5.8)

This relation is satisfied for the following parametrization of u* in terms of the space-time
rapidity n:

u? = (coshn,0,0,sinhn). (5.9)
Using the definitions of the rapidity and proper time, Eqs. (5.1) and (5.2), one thus
obtains the so called one-dimensional Bjorken flow

1
ut = —(¢,0,0, 2). (5.10)
T
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Thus in any point and at any time the velocity field is defined solely by its four-coordinate.
For the Bjorken flow velocity Eq.(5.9) one obtains

1 1 1
Oyuy, = ;gm, — ﬁmuacl, = ;(gw, — uyy) (5.11)
which in particular leads to
1
oput' = e (5.12)

Bjorken’s flow (5.9) is often referred to as “one-dimensional Hubble flow”, since regions
further away from a certain point move faster than the closer ones.
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6. Relativistic hydrodynamics for
one-dimensional boost-invariant
expanding systems.

In this chapter hydrodynamic equations derived in chapters 2.4.3 and 3.1.2 — 3.1.4 will
be rewritten for a one-dimensionally expanding gas of massless Boltzmann particles. I
assume a longitudinally expanding system following the Bjorken flow according to Eq.
(5.9). For a massless Boltzmann gas the ideal equation of state holds (comp. Section
2.3)

e=3p. (6.1)

The equation presented in this Chapter are given for a one-component system.

I will consider the Eckart frame for the discussion to follow in this Chapter. As already
discussed in Chapter 2.2, in the Eckart frame the particle four-current and the energy-
momentum tensor are decomposed as follows:

Nt = nut, (6.2)
T = eulu’ — (p+ AP + 2¢Wy”) + 7k (6.3)

It is straightforward to demonstrate that for a massless Boltzmann gas undergoing a
one-dimensional expansion with boost-invariance both bulk pressure and heat flux vanish
identically. According to the definitions in Egs. (2.11) — (2.18) one obtains for the bulk
pressure
1 1 1
II= —gAWT“V —p= —gTﬁ + guuuyT‘“’ —-p=0 (6.4)
since the trace of T"" is equal to the rest mass of the particles and the ideal equation of
state (6.1) is assumed. For the heat flow one obtains

g" = uVA’;T”)‘ =u, TH —eut = /pgp“fdf —eut. (6.5)

Boost-invariance implies symmetry of the distribution f(pr,p.) = f(pr, —p.), which
means that the integral in Eq. (6.5) does not vanish only if 4 = 0. On the other hand
for u = 0 both terms in (6.5) cancel, so that heat flow ¢* vanishes component-wise in a
one-dimensional boost-invariant case.

In the local rest frame the energy-momentum tensor

TH = eul'u” — (e + p) AFY + 7h* (6.6)
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is diagonal and traceless for massless particles:

TV = / pup” f(z,p)dl = / (5 — 7%)f(x.p)dT = 0 (6.7)

and thus 7 has this property as well. Off-diagonal components of the energy-momentum
tensor vanish due to the longitudinal symmetry f(pr,p.) = f(pr, —p.) and transverse
isotropy:

Tane = [ P2 fep)dp =0, i #ji i =0.1,2,3. (6.5)
Thus the energy-momentum and the shear tensors take the form
e 0 0 0
0 p+3% 0 0
w 2
r 0 0 p+35 0 (6.9)
0 0 0 p—
00 0 O
0% 0 0
ny _ 2
T 001 0 (6.10)
00 0 —7

The fourth diagonal component of the shear tensor is negative and @ > 0 denotes the
shear pressure. For a one-dimensionally expanding system the longitudinal pressure Tss =
p — 7 is thus reduced due to dissipation whereas in transverse directions the effective
pressure is enhanced.

Since the heat flow ¢* and the bulk pressure II vanish for one-dimensional geometry and
massless particles the expression for the off-equilibrium distribution function simplifies
to

[ = feq(l + COﬂ'qu'upy) . (611)

Introducing the diagonal form of the shear tensor, Eq. (6.10), into the latter equation
one finds for a boost-invariant expansion

I0) = o) (14 ColrIn(r) 02— 573) ). (6.12)

where fo(7,p) is the Boltzmann distribution

Po

Jo(m,p) = gre™ T (6.13)
with the fugacity A and the degeneracy factor g.
The coefficient Cy was already calculated for a general case in Appendix A. Alter-

natively, in the one-dimensional geometry chosen here Cjy can be obtained from the
condition T53 = T34 — m according to Eq. (6.9):

16 1o\

1= Gy
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where the degeneracy factor g = 2(N2 — 1) has been set to 16 for gluon gas with N, = 3.
For the coefficient Cy one thus obtains

3

Co = gegz -

(6.15)
Although obtained using a one-dimensional geometry, this value of Cy is universal for
a gas of massless Boltzmann particles since it is consistent with the results obtained in
Appendix A and Refs. [33, 83]. With the known factor C the approximation for the one-
dimensional form of the off-equilibrium distribution function, Eq. (6.12), is determined
completely.

6.1. Thermodynamic coefficients 5, and «

In order to give the one-dimensional form of second and third-oder hydrodynamic equa-
tions, (3.20) and (3.35), the thermodynamic coefficients 82 and a need to be specified.
Since they are purely thermodynamic functions, i.e. dependent only on e and T, their
functional form does not depend on the symmetry of the system. One thus can choose
a one-dimensional expanding system of Bjorken type to find the functional forms for S
and «|33]. The entropy current in Eq. (3.24) can be rewritten using the one-dimensional
representation of the shear tensor, Eq. (6.10), as follows:

2
st = (so - %WQ + aTﬁQ7r3> ut . (6.16)

On the other hand the entropy density can be calculated using the kinetic theory ap-
proach. The kinetic definition of the entropy density |76|

5 =uys! = —/uup“f(lnf — 1)dr. (6.17)
is based on Boltzmann’s H-function. The distribution f(z,p) in Eq. (6.17) is a off-

equilibrium phase-space distribution and has been discussed for a one-dimensional boost-
invariant expansion in the previous section. Writing Eq. (6.12) in a compact form

f=rfl+9¢), (6.18)

and introducing this compact form into Eq. (6.17) one obtains
s== [ oo (14 6) (mlfo(1 + )] - 1T (6.19)
The deviation from equilibrium, ¢(x, p), is supposed to be small and thus the logarithm

can be expanded up to third order in ¢. Introducing ¢ = Com(p? — p2) into Eq. (6.19)
after expanding the logarithm, one obtains for the entropy density|[33]

SR S) — o — (6.20)
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The equilibrium entropy sp in Eqgs. (6.16) and (6.20) is given by
so=4n—nlnA\. (6.21)

Comparing the two equations, (6.16) and (6.20), one can identify the unknown thermo-
dynamic coefficients

9
P = (6.22)
a = —g. (6.23)

These coefficients are pure thermodynamic functions and thus do not depend on the
symmetry properties of the considered system. The obtained expressions are consistent
with calculation of the third-order entropy current from Grad’s approximation for the
distribution function in Appendix B.

6.2. Evolution equations for the energy and particle
densities with particle number conservation.

The evolution equations for the particle and energy densities follow from the conservation
laws Eqgs. (2.43) and (2.44). At this point both source terms for particle production
and energy-momentum deposition will be set to zero, i.e. I assume particle number
conservation and energy conservation

0,T" = 0, (6.24)
OuN* = 0. (6.25)

From the conservation of particle four-number via Eq. (6.2) then follows
utOun = n = —nd,ut . (6.26)

The & notation denotes the co-moving derivative u,0", i.e. derivative with respect to 7
in the local rest frame. Energy conservation follows from Eqs. (2.44) or (6.25):

u, 0, T" =0. (6.27)

For a one-dimensional boost-invariant expansion, in absence of the heat flow and bulk
pressure terms, via Eq. (6.3) one obtains

uoe = é = —(e+p) Ao, ut + 0, uy, . (6.28)

For the latter equation one uses the orthogonality property of the shear tensor u, 7" = 0
to eliminate its derivative from the equation.
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Using the symmetry properties of the shear tensor, the ideal equation of state as well
as the Bjorken flow velocity Eq. (5.9) one obtains from Eqgs. (6.26) and (6.28)

n

n = ——, (6.29)
T
4de w
b = ——— 4 —. 6.30
é 37 + - ( )

From these two equations one easily deduces an evolution equation for the temperature

. 1T 1xT
o AT 17T

37 der (6:31)

Note that the evolution equation for the energy density does not explicitly depend
on the details of microscopic processes considered in the system as long as these are
energy-conserving, since Eq. (6.30) is obtained from the energy-momentum conservation
equation (6.28). The particle production and annihilation will affect the evolution of
e only implicitly via the shear viscosity coefficient n (comp. Eq. (4.8) and Refs. [42,
33]) which influences 7 via the corresponding evolution equation. Thus, Eq. (6.30)
is applicable even if the particle number is not conserved. On the other hand, the
particle density evolution will of course be explicitly affected by particle production and
annihilation processes once these are considered in a consistent way.

6.3. Ideal hydrodynamics in Bjorken's model

Equations (6.29) and (6.30) constitute the local rest frame evolution equations for the
particle and energy densities for a one-dimensionally expanding boost-invariant system
of massless Boltzmann particles. Neglecting the shear pressure in Eq. (6.30) one obtains
two independent ideal hydrodynamic equations, which are solved by

n = no?, (6.32)
s
e = e (%)“ (6.33)

One thus obtains for the effective temperature T'= 5 of an ideal fluid
N
T=T, (ﬁ) ’ (6.34)
T
6.4. Dissipative hydrodynamics in Bjorken’'s model with

conserved particle number

In order to solve Eq. (6.30) for a non-ideal fluid one needs a one-dimensional evolution
equation for the shear pressure. The effect of dissipation is however qualitatively clear
from Eq. (6.30) resp. (6.31). Since m > 0, the energy density and temperature decrease
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slower than in ideal case because the dissipated energy is turned into the inner energy of
the system.

Evolution equations for 7 follow from Egs. (3.13), (3.20) and (3.35). Introducing the
symmetry properties of Bjorken flow into these equations and using the expressions for So
and «a from Eqgs. (6.22) and (6.23) one obtains first, second and third-order hydrodynamic
equations for the shear pressure:

4n
first- : = —-= .
rst-order: T 37 (6.35)
. T 47 8 e
second-order: 7 = T 37 + o7 (6.36)
. . T 41 8S8e 7
third-order: 7« = —a - g; + 277; — 3; . (637)

The power counting is based on the following considerations: both 7/e and 7/7 have
to be small to ensure validity of hydrodynamic approach. After multiplying the corre-
sponding equation by 7. /e on both sides, I consider terms of form (7/7)% (7/e)? to be
of g-th order. In an equation of ¢-th order terms of all higher orders are omitted. This
kind of power-counting was applied in Ref. [34, 35].

For a system with conserved particle number, each of the equations (6.35) — (6.37) is
coupled to the evolution equations for the particle and energy densities, Egs. (6.29) and
(6.30). A complete overview of first, second and third-order hydrodynamic equations
for boost-invariant one-dimensional one-component systems of massless particles with
particle number conservation is given in Appendix C.1.
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7. Partonic cascade BAMPS

Mind moves matter.

Virgil (70 BCE - 19 BCE), Roman
poet.

7.1. Numerical solution of Boltzmann Equation

The abbreviation BAMPS is for Boltzmann Approach to MultiParton Scattering. This
model was developed to solve the Boltzmann Equation

P'Ouf(x,p) = Clf(z,p)] (7.1)

in presence of both elastic and inelastic processes [30]. The Boltzmann Equation (7.1) de-
scribes evolution of the single parton phase-space distribution function f(x,p) = (13(;%'
Its evolution is on the one hand governed by drift and diffusion — formally described by
the left hand side of Eq. (7.1) — and on the other hand by change of the phase space
distribution due to scattering processes — which is given by the collision term on the right
hand side of Eq.(7.1). The collision term contains all the information about structure
of the interaction processes. Since f(x,p) is interpreted as a single particle distribution
function, Eq. (7.1) is a semi-classical formulation of parton dynamics. The partons are
treated as particles with classical trajectories. The single-particle distribution function
averages over correlations in a many-parton wave function of a single nucleon.

BAMPS is one of the most recent transport models and ranks among a number of
approaches dealing with numerical solution of the Boltzmann Equation. The cascade
models ZPC [28, 121] and MPC [29] implemented parton dynamics with elastic scatter-
ing and a geometric interpretation of the cross section. In the MPC model a parton
subdivision technique is introduced, which is necessary to preserve covariance. The VNI
partonic cascade model [27] for the first time implemented parton emission and fusion
processes calculated in the framework of perturbative QCD. Further models studying the
evolution of a quark and gluonic gas with pQCD based cross sections are introduced in
[122, 123]. In contrast to the already introduced models, UrQMD][77, 78] is a hadronic
transport algorithm describing hadronic interactions in terms of interactions between
known hadrons and their resonances.

As already mentioned before, BAMPS is a semi-classical approach. The partonic de-
grees of freedom are treated as independent point-like particles in 6 dimensional phase
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space (Z,p). The interactions between particles are implemented in BAMPS using the
stochastic interpretation of the collision rate [124, 125, 126, 31]. At any time step a par-
ticle can undergo a scattering process with a certain probability which is calculated for a
given number of participating particles dynamically. Since the stochastic interpretation
of the collision rates in principal allows particles to interact without regarding their rel-
ative distance, the space has to be discretized into small cells in order to avoid acausal
interactions between remote regions.

BAMPS implements three types of processes: elastic 2 — 2 scattering, bremsstrahlung
process 2 — 3 and its reverse channel 3 — 2. Implementation of the reverse bremsstrahlung
channel is essential to maintain detailed balance. The collision probabilities are calcu-
lated for the 2 — n processes by the expression

oon At
P2n = Uprel77—

Ntest A?’JE ’ (72)

where n = 2,3 and o9, is the cross section, v,¢; the relative velocity of the two participant
in initial state, At the intrinsic time step and A3z the volume of a cell in which the
collision happens. Ny denotes the number of test particles. The method of test particles
increases the number of particles in the system by factor Ngg:, so that the physical
observables calculated by averaging over the ensemble of particles have to be rescaled
accordingly. The relative velocity of two particle is calculated via

s _ E\Ey — pipo
FE1FEy FE1FE5

Vpel = (7.3)
with the invariant mass of particle pair s. For the 3 — 2 processes which are implemented
in BAMPS the collision probability is given by the expression

B 1 132 At
N 8E1E2E3 NtQ (A3l‘)2 '

est

Py (7.4)

The expression I3z replaces the cross section which cannot be defined for a process with
three particles in initial state.

In presence of multi-particle processes the collision term C[f] in the Boltzmann equa-
tion can be written as

C[f] = Canlf] + Cas[f]. (7.5)

For elastic 2 — 2 processes the collision term is given for a one-component system by
1 [dly1 [dIYydlYs
Copo = = | —= "o X
> 2 / 22) 2 3 i
X |Myya?@m) AW (0 + 0y — p1 — p2) —

l/ml/dFlldFIfox
2/ 2 2 9 g /12

X !M12—>1'2'!2(27T)45(4) (Pl + D2 —p/1 - P’2) : (7.6)
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For the inelastic processes the corresponding expression reads

Coz3 = 22, @%5 dF/l @f 1y %
X |Mygy03)*(2m) 46 (p 1Py —p1—p2—p3) +
1/d12_‘23‘ dF, dF’ng’f1f2f3X
X !M1'2'3'—>12! (277) (P +0o+p3—p1—p2) —
dFQ dl's 1 dl_" dF/ f1f2f3 o

X |M123—>1'2'\ 2(2m)? (p1 +p2 +p3 — 13 —p’g) -

22' 2 2

1 dT dF’ dF’ dF’
X |M12—>1/2/3/! (27T) (Pl +P2—P1—P2—Pl3)- (7.7)

The prefactors 1/2! and 1/3! in front of the integrals in Eqs. (7.6) and (7.7) indicate
that particles in the initial and final state are identical. The Boltzmann Equation (1.2)
is a one-particle equation, and thus one particle can be considered distinguished. In Eqgs.
(7.6) and (7.7) this is the particle with the four-momentum p;. For all other particles
both in initial and final state all possible permutations must be considered, which is done
by the introduced prefactors (comp. Refs. [30, 41, 127]). The explicit expressions for the
collision term components contain the usual definitions for the total cross sections [76]

dr’ dF
0922 = 2 2 2 1 2 ’M12‘)1/2/’ (27‘(‘)45(4) (pl +p2 _pll _p/2) , (78)
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For the 3 — 2 process the expression corresponding to the cross section is I32 defined
as follows

dr’, dr’
I3p = — 7172|M123—>1'2/| (2m)ts™ (p1+p2+ps—11—-15) . (7.10)

2' 2
The matrix elements M, ., are in general momentum dependent and given by the
underlying field theory. They will be defined later in this work for a perturbative QCD
approach. In case of momentum-independent matrix elements, i.e. for isotropic 2 — 3
cross sections, I is related to o93 by the expression

132 = 192/g7r2023. (7.11)

In a case of momentum-dependent matrix elements, i.e. non-isotropic cross section, the
integration in Eq.(7.10) is calculated in BAMPS using numerical integration techniques
(comp. Ref. [30] for details).
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7.2. Boost-invariant expansion in BAMPS.

2R

Figure 7.1.: Boost-invariant BAMPS box. In longitudinal direction the bin are con-
structed in rapidity space and have a fixed size An. All the cells have the
same transverse area. Particles are reflected on a cylindric outer wall width
fixed radius R = 5fm.

In this work BAMPS with a special geometry of the box, in which particles are confined,
is used. The main focus of my work lies on investigation of hydrodynamic phenomena
and comparisons with BAMPS for the case of boost-invariant expanding medium. The
cells in the present BAMPS version are thus constructed not in the Cartesian coordinates
(z,y,2) but in the coordinates (x,y,7n). In longitudinal direction, which corresponds to
the Cartesian z-axis the binning is done in terms of rapidity 7: particles with rapidity
n € [ : 1+ An] are found in a same bin of fixed size An. Rapidity interval n € [—3 : 3]
is covered by initial sampling. In transverse direction the shape of the ’box’ is circular
with a fized radius R = 5fm. The particles are reflected at the cylindric outer wall. In
transverse direction the cells are constructed to have same transverse area. A schematic
picture of this ‘tube’ geometry is given in Fig. 7.1.

Physical observables are calculated as average over an ensemble of particle in BAMPS
in each cell (due to transverse isotropy in case of one-dimensional boost-invariant ex-
pansion the average can be built over all cells in a n-bin in order to suppress statistical
fluctuations). The integration over the distribution function by four-momentum depen-
dent weight w(p) correspond to a discrete summation over the particles in a cell (bin):

B 1 Neen w(pi)
DI R D

(7.12)

If not stated otherwise the results presented in this work are extracted in the central
rapidity bin n € [—0.1 : 0.1]. Most results are obtained from simulations with a thermal
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initial condition
ﬂ%p%=%ﬁﬂmw*WT- (7.13)
T

7.3. Implementation of Leading Order pQCD processes in
BAMPS

The stochastic interpretation of collision rates is a central feature of BAMPS. It allows
to include both bremsstrahlung processes and the reverse process of gluon absorption in
a consistent way. With geometrical interpretation of collision cross section a consistent
implementation of the 3 — 2 process is not possible. Inclusion of both channels ensures
that full detailed balance is maintained in the evolution. Implementation of leading-order
(LO) pQCD processes in BAMPS is thus important to study chemical equilibration in a
partonic matter as well as a number of further phenomena to be discussed later in this
work.

For the differential cross section of pQCD elastic scattering among gluons BAMPS
employs the expression [30, 128, 129]

do99799 9oy,

= : 7.14
i @ ) (7.14)

where qf_ is the transverse component of the momentum transfer in the center-of-mass
frame of the colliding particles, as denotes the strong coupling constant. The total cross
section is then obtained via

1 [s/* doc99799 9 Ta?
99—99 _ * 2 == 5 . 7.15
Ttot 2 /0 L dg? 2m3, (1+4m3)/s) (7.15)

The infrared divergence in the differential cross section is regularized by the effective
screening mass m%, [128] which is calculated in each cell dynamically in BAMPS via

m%——Hhai/dFNdﬁmp) (7.16)

with the choice of N, = 3 for SU(3) of QCD throughout this work. The thus defined
screening mass does not have a directional dependence, as it should be in general [130],
but can rather be interpreted as an average over the transverse and the longitudinal
screening masses.

The matrix elements for bremsstrahlung processes are of Gunion-Bertsch form[131,

128, 88]:

O (|kL|[Ag —coshy) . (7.17)

M, 2= 9 (4ma2)? - 52 48ma2q?
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The first part of the above expression is the already introduced differential cross section
of elastic gg — gg process. The second part describes emission of one additional gluon
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with transverse momentum component k; and rapidity y in the center-of-mass frame of
the two-body collision. In a dense partonic medium the radiation of an additional parton
is suppressed by the Landau-Pomeranchuk-Migdal (LPM) effect[132], which reduces the
bremsstrahlung cross section at high densities due to coherent interaction with scattering
centers in the medium. Since the coherent effects cannot be taken into account within
the semi-classical BAMPS approach, the LPM effect is accounted for by the ©-function
in Eq. (7.17). Inclusion of the O-function has the consequence that only independent
processes (Bethe-Heitler regime) are considered in BAMPS. The formal treatment of the
LPM effect is based on its following effective interpretation: the radiated gluon cannot
scatter before its emission is completed. The emission (or formation) time of a gluon

is typically given by 7 =~ % and should be smaller than the mean free path in the

medium Ay, leading to the requirement A, > % Such implementation of the LPM
effect leads to a suppression of emission of soft (i.e. low k) gluons if mean free path A, is
large. Already from these qualitative arguments it becomes clear that inelastic processes
will be important for isotropization of the momentum distribution, since large k; and
thus large emission angles are preferred whereas small k] and angles are suppressed. In
fact, this effect has been discussed in Refs. [41, 33] and will be addressed later in this
work.

The strong coupling constant o is not dependent on the momentum transfer in present
BAMPS calculations, i.e. the effect of running coupling (comp. Section 1.2) is not imple-
mented. According to the recent experimental and theoretical estimates, as reviewed e.g.
in Refs. [49, 133, 134], for a color glass condensate initial condition with Qs ~ 1—3 GeV,
which could apply for RHIC energies, the value of as(Qs) is 0.25 — 0.5. For studies of
the elliptic flow and jet suppression in BAMPS [22, 135, 136] as = 0.3..0.6 were applied.

7.4. Application of BAMPS to heavy-ion phenomenology

In this section I will review some of the applications of BAMPS to investigation of
phenomena in relativistic heavy-ion collisions and briefly summarize the results of these
studies. BAMPS is an appropriate tool to study off-equilibrium phenomena in a partonic
medium. Since it solves the Boltzmann Equation exactly, deviations from equilibrium
can be arbitrary large without exceeding the applicability limitations of the model. This
is a major advantage of a kinetic transport model as compared to hydrodynamic mod-
els. The most interesting questions that can be addressed by BAMPS calculations are
investigations of collective phenomena and dynamics of the equilibration processes in a
QCD medium at weak coupling.

7.4.1. Thermalization of gluon matter in BAMPS

The issue of thermal and chemical equilibration of a quark-gluon plasma has been
addressed in a number of studies, both analytic using relaxation time approximation
[137, 138, 139, 128, 140| and numerical using Monte-Carlo techniques to solve the Boltz-
mann Equation in a cascade [27, 28, 29, 122, 123|. Thermalization process was also
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studied using analytic pQCD estimates of the collision rates, like e.g. in Refs. [141] and
[142|. In BAMPS thermalization and onset of hydrodynamic behavior were studied in
[30] using mini-jet initial conditions whereas thermalization of a color glass condensate
(CGC) inspired initial configuration is investigated in [143, 32]. In the study reported
in [32| the emphasis lies on detailed understanding of the thermalization mechanism and
of the associated time scales. The question addressed there was whether the thermal-
ization of the highly anisotropic, CGC inspired initial condition is well described by the
’bottom-up’ scenario [142]. In this section I will summarize the review of ’bottom-up’
scenario given in Ref. [32].

Color Glass Condensate was proposed as a possible state of hadrons at ultrarelativistic
energies achieved in heavy ion collisions [70, 144]. The CGC calculation framework (see
[145] and references therein) allows to calculate systematically n-point gluon correlation
functions and their evolution with the momentum fraction = order by order in perturba-
tion theory and thus gives access to understanding of the collective dynamics of QCD at
high parton densities. The CGC formalism is embedded into the saturation scenario in
which the density of partons per unit transverse area becomes very large at high energies
leading to a saturation of partonic distributions due to unitarity constrains. When the
saturation scale Q)s, which is given by the density of color sources per transverse area,
becomes large compared to Agcp the coupling constant ag(Qs) becomes weak and thus
the high energy limit of QCD may be studied using weak coupling techniques. This way
the behavior of the small z components of the hadronic wave function in QCD can be
studied analytically in an effective theory which is the CGC.

The CGC initial condition used in BAMPS simulations consists of gluons with pr < @,
which are produced by the non-perturbative part of the nucleus-nucleus interaction. The
saturation momentum s is the typical momentum of gluons in the CGC. It is close to
2 GeV at RHIC and is expected to be 4 — 6 GeV at LHC [71, 146]. The Color Glass
Condensate is a state with high parton occupation number where the transverse momenta
reach up to Qs, whereas the occupation number drops to 0 for transverse momenta much
larger than @Q)s. Initially, most gluons have transverse momenta close to ()5, whereas the
longitudinal momentum of gluons in the central rapidity bin is approximately zero.

As a possible scenario of thermalization of the CGC initial condition the "Bottom-
Up” scenario was proposed [142]. According to this scenario the thermalization process

goes through three stages. The first stage, Q;! < t < Q;1a§3/2, is dominated by
hard gluons, i.e. gluons with transverse momenta pr ~ Qs, as is characteristic for
the CGC initial state. The second stage, Qs_las_?’/z <t K Q;las_5/2, is the stage
where soft gluons (pr ~ «@sQs) are produced in inelastic collisions. In the "Bottom-
Up” picture the production of hard gluons is suppressed by the Landau-Pomeranchuk
effect, discussed in Section 7.3. The multiplicity of soft gluons increases. The soft
gluons thermalize among themselves and build up a thermal bath. In the third stage,
Q;la;‘%ﬂ Lt K Q;laglg/Q the initially present hard gluons lose their energy to the
thermal bath of soft particles and thus thermalize as well. The parametric estimate
of the thermalization time scale in "Bottom-Up” scenario is 13, ~ Q;la;13/2. In this
Section the thermalization process in BAMPS will be reviewed and the findings will be
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contrasted with "Bottom-Up” predictions.
For the initial gluon distribution of CGC we employ an idealized and boost-invariant

form [147]

c 1

flz,p) = ach;5(y—n)@(Q§ — 7). (7.18)

Because boost-invariance is assumed, the momentum and space-time rapidity are equal,
i.e.,, n = y for the initial gluons. N, = 3 for SU(3) is used. The factor ¢ in Eq. (7.18)
is the "parton liberation coefficient” which accounts for the transformation of virtual
partons in the initial state into on-shell partons in the final state, as introduced in [148].
SU(3) gauge theory calculations yield a value of ¢ >~ 0.4 [71, 146], which is employed for
the following calculations. The initial particle density in the CGC approach is given by
[147, 149, 150]

1 dN NZ—-1

W% = 6747r2045NCQS' (7.19)

For the application of the Boltzmann equation, the phase space density has to be smaller

than unity. If phase space density is high, Bose enhancement factors should be considered
in the collision integrals, which is not done in BAMPS model.

The initial gluons are produced at proper time 7 ~ é and the initial phase space

density f(z,p) from Eq. (7.18) is infinite due to the delta function 6(p,) ~ A%z‘ Later
the distribution in longitudinal momentum space broadens due to 2 — 2 (or 2 — 3)
collisions and the occupation number becomes finite. BAMPS calculations start at time
T = ﬁn where 7; & 1/Qs. At this time the parton distribution function in Eq.
(7.18) is still larger than unity. The same initial time has been applied in [147]. In the
"Bottom-Up” picture at a time 7 ~ as 3/ 2@;1 the distribution should become less than
1. One has to note that the Bose enhancement factor (1 + f) is not employed within the
Boltzmann collision terms in BAMPS. Hence, as long as f is larger than 1 the collision
rates are underestimated.

In the following the results of simulations for Qs = 3 and as = 0.3 are presented. A
more detailed analysis can be found in [32]. The thermalization process is best illustrated
by the time evolution of the normalized particle distribution in transverse momentum

plane
dN

—_— = dydep . 7.20
Nore = [ midud (7.20)

The initial CGC distribution given by Eq. (7.18) is highly anisotropic. At early times
the initially empty hard part of the spectrum (pr > Q) is filled up with gluons. This
is demonstrated in Fig.7.2 for BAMPS calculations with the initial time 79 = 0.04 fm/c

From Fig.7.2 one observes that the spectrum of high momentum gluons achieves a
nearly-exponential shape on a short time scale and almost as quick as the soft gluons.
However, they have different slopes. At 7 = 0.5 fm/c the entire spectrum is to a good
extent in agreement with a thermal fit using fe, from Eq. (6.13) in Eq. (7.20) with
T ~ 0.67 GeV , which is indeed very close to the effective temperature of the system at
this time [Tog (7 = 0.5 fm/c) = E/3N = 0.6 GeV]. The transverse momentum spectrum
achieves a thermal shape in hard and soft regions almost simultaneously. The subsequent
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log;o dN/ N pt dpt

Figure 7.2.: Transverse momentum spectra in the central space time rapidity and at
various early times. The initial condition for the BAMPS calculation is a
CGC with a; = 0.3 and Qs = 3 GeV.

time evolution of the transverse momentum distributions is shown in Fig. 7.3. At late
times (7 > 0.5 fm/c) the spectra are very good approximated by a thermal distribution,
however the values of temperature which have to be chosen for the fit are slightly larger
than the actual temperature of the system. This is explained by the fact that the system
is still not completely equilibrated and the distribution function is better approximated
by Grad’s expression Eq. (6.12) rather than by the Boltzmann distribution. A higher
temperature has to be chosen if off-equilibrium contribution to the distribution function
is neglected.

The ratio of the numbers of the soft, medium and hard gluons to the total number
of gluons is depicted in Fig. 7.4. The total gluon number is dominated by the medium
sector until 0.5 fm/c and then by the soft sector after ~ 1 fm/c. Contrary to the
"Bottom-Up” picture, Fig. 7.4 shows that the soft gluon number increases over a long
period of time at the cost of the primary "medium” gluons (pr ~ @s). The production
of soft gluons is effectively hindered by 3 — 2 processes and, thus, cannot exhibit a
huge increase as predicted in the "Bottom-Up” scenario. The presence of a thermal
bath of soft gluons seems not to be a necessary condition for the equilibration of hard
gluons. The hard gluons produced in inelastic 3 — 2 collisions at early times are close
to thermal distribution which underlines the importance of inelastic processes for kinetic
equilibration in BAMPS. This leads, as discussed in Ref. [32]| in more detail, to a faster
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Figure 7.3.: Same as Fig.7.2 for later times.

thermalization than in "Bottom-Up” picture.

The study presented in this Chapter demonstrates qualitatively how equilibration of
an extremely anisotropic initial distribution is achieved in BAMPS. The role of inelastic
collision processes will be quantified in the following in this work.

7.4.2. Jet suppression.

Studies of jet quenching in BAMPS simulations of Au + Awu collisions at RHIC were
performed and reported by FOCHLER et. al. in Refs. [22, 135]. In BAMPS simulations
the jet is represented by a high energetic gluon traversing the medium. Due to large
energy scales involved, the energy loss of a jet can be studied by means of perturbative
QCD, which is implemented in BAMPS. With the mini-jet initial conditions and applying
free-streaming to model freeze-out in regions (cells) where the energy density drops below
a critical value (gluon-hadron duality is used in BAMPS; i.e. one gluon correspond to one
pion), the nuclear modification factor R44 was found to be below the experimental results
for neutral pions and charged hadrons for different centrality classes but at the same time
in good agreement with other theoretical calculations for central collisions (c.f. Refs.
|22, 135] for details). Studies of energy loss in a static medium in BAMPS demonstrated,
that the pQCD bremsstrahlung process gg — ¢ggg has a dominant contribution to the
energy loss, leading to a large and linearly growing differential energy loss. The reason
for this is the impact of LPM cut-off on momentum distribution of radiated particles. As
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Figure 7.4.: Ratio of the numbers of the soft, medium and hard gluons to the total
number.

already discussed in the previous Section, large-angle radiation is preferred if the LPM
effect is taken into account via the O-function in the Gunion-Bertsch matrix elements
(7.17). In addition, the influence of the particular implementation of the LPM cut-off
was studied in more detail in Ref. [135].

7.4.3. Flow phenomena.

A major advantage of the kinetic transport model BAMPS is its ability to describe
both low- and high-pr regions of the spectrum, i.e. to provide a unified understanding
of the bulk and jet properties of the QCD medium in perturbative coupling regime.
Calculations of the elliptic flow vy with BAMPS were reported by XU and GREINER
in Ref. [136] for initial conditions which are a combination of the so-called 'mini-jets’
scenario (for large momentum scale) and Glauber profile (for soft momentum scale).
The results on integrated ve were found to be in good agreement with experimental
data for the coupling regimes oz = 0.3...0.6. For these calculations a simple picture
of hadronization was employed, in which the gluons were turned into hadrons (pions)
in a space region, where the energy density dropped below the specified critical value.
In a further study of this problem the differential elliptic flow ve(pr) was found to be
slightly below the experimental data, which however could be corrected by a splitting
(fragmentation) of a gluons into several hadrons (pions)[151] — a process which tends
to increase average pr of a particle. Whereas the elliptic flow calculations demonstrate
a good agreement with experimental results, the nuclear modification factor Raa(pr)
is found to be below the data, although it was found to be sensitive to the details of
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implementation of the LPM effect in BAMPS. For both R4 4 and vs the inelastic pQCD
processes are important in order to reproduce the experimental results: implementation
of only elastic processes leads to a significantly lower amount of suppression of jets and
lower elliptic flow. These findings are consistent with the effect of inelastic processes on
the n/s ratio calculated in Ref. [33, 42] and to be discussed in Chapter 9 of this work.

A very challenging task for dissipative hydrodynamic formalisms is solution of the Rie-
mann problem. In the Riemann problem two fluids with different pressures are initially
separated by a membrane. After the membrane is removed (in a Gedankenerperiment
this can happen instantaneously), the matter is pushed from the region with higher
pressure towards the lower pressure region. On the border of the regions a shock wave
develops, which then propagates through the medium. This setup is connected with an
infinitely large pressure gradient, which takes the existing numerical implementations of
dissipative fluid dynamics formalisms to the limits of their applicability [85]. Evolution
of shock waves in the afore-mentioned setup was investigated using the partonic model
BAMPS [94]. This study demonstrated that BAMPS can be employed to investigate
critical fluid dynamic phenomena, to which the Riemann problem and its variations [85]
belong. BAMPS is able to reproduce ideal hydrodynamic solutions with high accuracy
and at the same time to produce solutions of viscous hydrodynamic problems, which for
the first time demonstrated that numerical solutions of relativistic kinetic transport the-
ory can be regarded as benchmark for relativistic hydrodynamic calculations. Existence
of shock waves in relativistic medium means that Mach Cone structures can be observed
as well. Mach Cones are reaction of the medium to propagation of a super sonic object,
like the jets in a quark-gluon plasma, and their surface is a shock front. Thus propagation
of Mach Cones in a partonic medium with finite shear viscosity can also be studied using
BAMPS. So far systematic fluid dynamic studies of Mach Cones were only within ideal
hydrodynamic formalism [152].
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8. Off-equilibrium distribution function
in BAMPS.

In this section I evaluate with what accuracy Grad’s approximation of the distribution
function can reproduced the off-equilibrium distribution extracted from BAMPS calcu-
lations. Such comparison is in particular important in order to understand whether the
derivations of hydrodynamic equations are based on correct assumptions, since the ap-
proximate form of the off-equilibrium distribution function is crucial for the derivations
presented in Chapters 3.1.2 — 3.1.4.

The effect of viscous corrections to the distribution function on experimentally acces-
sible observables like vy, HBT radii and particle multiplicities has been investigated in
Ref. [61]. There it is demonstrated that viscous corrections play an essential role already
at pr ~ 1 GeV even at small viscosity to entropy density ratio. The differential vy (pr)
is significantly suppressed, longitudinal pressure and HBT radius are reduced. There
are as well significant corrections to particle multiplicities. Hence, it is important to
evaluate the accuracy of the viscous corrections by a direct comparison of the analytic
approximation with the kinetic transport results, as will be done here.

In one-dimensional boost-invariant geometry the off-equilibrium distribution of gluons
is approximated by [comp. Eq. (6.12)]

—pp coshy 3 m 1 .
f=16 e T <1 + @gp%‘(i — sinh? y)) (8.1)

The quality of this approximation is to be investigated in this chapter by comparing the
normalized transverse particle distributions

dN

- dyd 8.2
Nprdp, /pofyso (8.2)

as calculated using Eq. (8.1) and by BAMPS.

8.1. Generic properties of Grad’s approximation.

First it is interesting to discuss some generic properties of Grad’s approximation. For
this purpose I calculate the ratio of rapidity and angle averaged product pofo¢ and the
rapidity and angle average of pg fo: %

off-equilibrium distribution given by Grad’s approximation from equilibrium. If the ratio

. This ratio quantifies the deviation of the
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Figure 8.1.: Ratio of rapidity and angle average of the deviation function
foly,pr/T)p(w/e,y,pr/T) to the rapidity and angle average of the equi-
librium distribution function fo(y, pr/T") by weight pg as function of pr/T.
Results are shown for different values of 7/e.

is larger than 1, the deviation ¢ is too large and the expansion underlying Eq. (2.27) is
not valid. Thus the criterion of validity of Grad’s approach I investigate here is

5. — <p0f0¢>y,<p
D pofo)ye

For a one-dimensional problem with transverse isotropy the average over rapidity and
angle yields the transverse distribution, % = (pof)y,e- Grad’s ansatz for ¢ contains
a 7 dependence. For this study the value of 7 is a free parameter. However its natural
range for a system evolving toward kinetic equilibrium should be 0 < g < % The lower
value describes a kinetically equilibrated system. The upper value guarantees that the
effective pressure p.gy = T33 = p—7 = § —7 is non-negative for a free evolving system. If
the initial condition is such that p.ss < 0, one can expect that p.rs will become positive
and relax to 0 after a certain time. In fact the phenomenon of negative effective pressure
has been discussed in Ref. [153] as a possible criterion for evaluation of applicability
limits of hydrodynamic description in heavy-ion systems. More discussion on evolution
of the effective pressure in viscous one-dimensional systems will follow later in this work.
In Fig. 8.1 the ratio is shown for £ = 0.01, 0.1, %

Figure 8.1 demonstrates that Grad’s approximation fails for transverse momenta pyr 2
5T if dissipation is strong. This failure is a generic property of Grad’s approximation in
the geometry considered here. For a partonic system the lower bound for the effective
temperature is the phase transition temperature, i.e. roughly 7" 2 0.2 GeV. For the
upper limit I will use an estimate based on the simple Color Glass Condensate model
which was used in Ref. [149, 150, 32, 147]. For LHC conditions the simple CGC estimate

<1. (8.3)
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is T < 0.7 GeV. Thus the break down of Grad’s approximation is associated in a partonic
system with the transverse momentum scale pr ~ 1 — 3 GeV. This value increases with
decreasing strength of dissipative effects, as Fig. 8.1 demonstrates for 7/e = 0.1. In
Fig. 8.1 the transition from 7/e = 1/3 to m/e = 0.01 demonstrates the evolution of
the deviations with ongoing thermalization of the system. With 7/e = 1/3 the soft
sector (pr < 27T) is not thermal, the deviation of the distribution is around 20% but is
considerably reduced with /e = 0.1.

From the discussion of Fig. 8.1 one can draw a general conclusion that an evolution
equation for the shear pressure 7, or alternatively m/e, derived using Eq. (2.27) as
demonstrated in Sections 3.1.3 — 3.1.4, will fail to describe dynamics of the system on all
scales. Indeed, a transverse momentum scale pr can be associated with a length scale
A ~ 1/pr. The evolution equation for shear pressure has an intrinsic time scale 7, which
is interpreted as a relaxation time, as discussed in Section 3.1.3. Since hydrodynamics is
a macroscopic theory, the relaxation time is momentum independent. It is thus natural
that a relaxation-type equation cannot describe dynamics on scales which are smaller
than the intrinsic relaxation time, which applies to the hard part of the pr spectrum.

8.2. Deviations of transverse particle distributions in
BAMPS from equilibrium.

In this section the distributions extracted from BAMPS simulations are compared to
equilibrium distributions in order to obtain a qualitative understanding of the evolution
towards equilibrium. For this study a BAMPS simulation with constant isotropic elastic
cross section (i.e. angle independent differential cross section) is used:
6 T

0929 — 57“ s . (84)
where 7' is the temperature and s the entropy density. In the above expression r is a
constant parameter. This particular parametrization is inspired by the expression for
the shear viscosity coefficient derived in Ref. [76] (and used for instance in Ref. [46, 34])
for applications with Israel-Stewart theory. The parameter r is identical with the ratio
1146, 34]. For the study presented here r = n/s = 0.4 is taken. BAMPS is initialized
with thermal initial condition. In the kinetic theory, for a gas of massless Boltzmann
particles (gluons), the thermal distribution function is given by

feqg = dgre™ PP = d xe™ T = dyre PTeoshy/T (8.5)

with T" and E denoting temperature and energy of the particle in the local rest frame of
a fluid element with four-velocity u*. d, = 16 is the gluon degeneracy factor considering
3 flavors. The initial time is 7p = 0.4 fm/c and the initial temperature Ty = T'(79) =
0.5 GeV. The system is initialized in chemical equilibrium, A(7p) = 1.

The initially equilibrated system evolves off-equilibrium due to the initial expansion and
then starts relaxing towards equilibrium again. Throughout the evolution the tempera-
ture is decreasing which leads to a continuous ”steepening” of the transverse spectrum.
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Figure 8.2.: Transverse spectra from BAMPS simulations at different times with initial
thermal condition 79 = 0.4 fm/c, Tp = 0.5 GeV (a) and the relative deviation
of BAMPS distribution from equilibrium calculated by Eq.(8.6) (b). Results
are obtained with r =n/s = 0.4.

In Fig. 8.2(a) the transverse spectra from BAMPS at different times are depicted. The
behavior observed here is analogous to the behavior discussed in section 7.4.1 around
Fig. 7.3. The spectra in Fig. 8.2(a) can in principle be fitted by a thermal distribution
using an effective temperature which is larger than the actual temperature of the system.
However a thermal fit using the actual temperature is not possible. In Fig. 8.2(b) the
ratio

(dN/N/pr/dpr)panips _ (PoSBAMPS)ye
(dN/N/pT/de)thermal <p0f0>y#’

is plotted. An analogous ratio has been already defined in Eq. (8.3). For the analysis in
Fig. 8.2(b) the numerator is calculated in BAMPS using the actual particle distribution.
The denominator of Eq.(8.6) is calculated using Eq. (8.5) with effective temperature T’
and fugacity A extracted from the same BAMPS calculation. Fig. 8.2(b) thus demon-
strates the relative deviation of the particle distribution in BAMPS from equilibrium.
Even at late times (7 = 3 fm/c) the distribution is far from being thermal at high mo-
menta. The time evolution of the deviation 5§1AM PS at different momentum scales is
shown in Fig. 8.3. At the soft momentum scale, pr = 0.4 GeV, the ongoing thermal-
ization can be observed as the deviation 651AM PS starts relaxing towards 1 after going
through a minimum. At larger momentum scales pr = 2, 4 GeV the deviation growth
with time. At this scales kinetic equilibration can be achieved only on a very long time
scale exceeding the life span of the partonic medium in heavy-ion collisions.

BAMPS
58 (8.6)
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Figure 8.3.: Relative deviation of BAMPS distribution from equilibrium calculated by
Eq.(8.6) at different values of pr. Results are obtained with r =n/s = 0.4.

8.3. Deviations of transverse particle distributions in
BAMPS from Grad’s approximation.

In this section I address the question how accurate Grad’s approximation describes off-
equilibrium distributions in BAMPS. The differences between the BAMPS and thermal
distributions observed in Fig. 8.2(b) underline the necessity of dissipative corrections
to feq. These corrections are introduced in the Grad’s approximation, as discussed in
Section 2.4.1. The one-dimensional form of Grad’s approximation is given by Eq. (8.1)
earlier in this chapter. For the quantitative comparisons of Grad’s approximation with
BAMPS the thermodynamic quantities 7, A, e and T in Eq. (8.1) are extracted from
BAMPS. In particular, the shear pressure 7 is extracted using

TSI — TBAMPS _ ) piBAMPS _ ¢ TBAMPS

3

m =

Fig. 8.4 demonstrates the transverse spectra from BAMPS compared to the ones
calculated by Grad’s approximation using Eq. (8.1) and BAMPS data. Clearly Grad’s
approximation fails to describe the high momentum region (pr 2 4 GeV) of the spectrum
at late times 7 > 2 fm/c. In order to quantify and understand the deviations observed

at high momentum we introduce in Fig. 8.5(a) the ratio 6ZAMPS calculated as follows

SBAMPS _ (AN/N/pr/dpr)amps _ <p0fBAMPS>y7Lp
ra dN N d —p cosh
AN/ P2/ 4T ) Grad <p016AeTT ’ <1+8%22p%(§ — sinh’ y)>>
yp
8.

(8.7)
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Figure 8.4.: Transverse spectra from BAMPS simulations at different times with initial
thermal condition 79 = 0.4 fm/c, Tp = 0.5 GeV and the corresponding
spectra from Grad’s approximation. Results are obtained with r = n/s =
0.4.

In Fig. 8.5(a) we observe that the deviation between BAMPS and Grad’s transverse
distributions increases at high momentum at later times, however, comparing Fig. 8.5(a)
and Fig. 8.2(b) one can conclude that it is considerably smaller than between BAMPS
and thermal distribution at high momentum. The deviations at high momentum clearly
indicate that this sector is far from complete thermalization whereas Grad’s approxima-
tion is closer to a thermal distribution. Dissipative correction in Grad’s approximation
is proportional to the ratio £ (comp. Eq. (8.1)), which can be seen as a measure of
overall degree of equilibration in the system. The time evolution of this ratio is shown in
Fig. 8.5(b). As the system evolves the 7 ratio reaches a maximum, indicating a strong
deviation from equilibrium, and starts relaxing to 0 again. The value of % is clearly dom-
inated by the soft momentum sector of the spectrum since it contains the largest particle
number. Hence a small 7 indicates a high degree of equilibration of the soft sector, which
dominates the overall multiplicity, but same is not true for hard momentum particles,
which are still far from equilibrium. Thus, the correction in Grad’s approximation is
not large enough at high momentum since it is weighted by Z. This explains the large
deviations observed in Fig. 8.5(a).

Finally, in analogy to the study presented in Fig. 8.3, we can study time evolution of
5571%“35 for a fixed value of pp. This is presented in Fig. 8.6 for pr = 0.4, 2 and 4 GeV.
The conclusion that can be drawn from Fig. 8.6 is that Grad’s approximation works
remarkably good in the low momentum region and moreover provides a reasonably good
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Figure 8.5.: (a) Ratio of transverse distribution from BAMPS simulations and the corre-
sponding spectra from Grad’s approximation and (b) the shear pressure to
energy density ratio % from same BAMPS simulation.

approximation of BAMPS distribution at intermediate pr = 2 GeV, where the deviations
are around 5% and large pr = 4 GeV where the deviations are up to 20%. A fairly
good agreement between BAMPS results and Grad’s approximation even at high pr is
remarkable since Grad’s approximation is known to become invalid at this momentum,
as has been already discussed in section 8.1. To demonstrate the formal breakdown of
Grad’s approximation in the situation discussed here the ratio (52]“‘1 as introduced in
Eq. (8.3) is calculated using BAMPS data to reconstruct ¢. The result is shown in
Fig.8.7. Formally, Grad’s approximation is not valid anymore at pr = 4 GeV except
at very early times since the (averaged) correction (pofo¢)y,, becomes larger than the
corresponding average over the equilibrium function itself, (po fo)y,,. Nevertheless,Grad’s
approximation describes BAMPS distribution reasonably good at pr = 4 GeV as Fig.
8.6(c) demonstrates.

Applicability of Grad’s approximation for distribution function to kinetic transport
results has been investigated in this Chapter using the transverse particle distributions.
For this comparison BAMPS simulations with time dependent isotropic elastic cross
section and constant particle number have been used corresponding to /s = 0.4. Grad’s
approximation has been found to provide a good description of kinetic results for this
moderately viscous system. For transverse momenta below 4 GeV the difference between
BAMPS and Grad’s approximation do not exceed 20%. Moreover, the agreement is still
reasonably good in the momentum region where Grad’s approximation formally becomes
invalid (pr ~ 4 GeV).
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rium distribution function fo(y, pr/T) by weight pg calculated using BAMPS
data. Results are obtained with r = n/s = 0.4.
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9. Shear viscosity of a pQCD interacting
gluon gas.

In this Chapter, the formalism presented in Chapter 4.2.1 is applied to calculate the
shear viscosity coefficient in a one-dimensionally expanding boost-invariant gluon gas.
The interactions between the gluons are modelled using 2 — 2 and 2 < 3 leading order
pQCD cross sections. The results presented here are obtained by two approaches, which
both use the LO pQCD matrix elements as implemented in BAMPS and discussed in
Chapter 7.3. Both approaches are dynamical and differ in the way the dynamics of the
expansion is implemented.

9.1. Shear viscosity of a gluon gas from BAMPS.

I first present results on extraction of the shear viscosity coefficient from BAMPS cal-
culations. The initial condition for these calculations is a kinetically and chemically
equilibrated gluon gas, with the distribution given by the Boltzmann distribution (8.5)
with A = 1. The initial time 7¢ is chosen to be 0.4 fm/c and the initial temperature Tj
is 500 MeV for the results presented here.

The shear viscosity is calculated by Eq. (4.8). For a one dimensional system, if the
third spatial coordinate is chosen as the expansion axis, in the local rest frame the shear
tensor takes the form

00 0 O
02 0 0
p _ 2
T 00 = 0 (9.1)
00 0 —m

Due to the transverse isotropy, an inherent property of the boost invariant scenario
considered here, and for a massless gas the P*” tensor, being the second moment of the
collision term, is traceless and has a diagonal form with two degenerate components:

Py 0 0 0
0 3(Pyo— Ps3) 0 0
py _ 2
P 0 0 5(Poo— Ps3) 0 (9.2)
0 0 0 P33

With the value of Cy from Egs. (6.15) resp. (A.31) the expression for shear viscosity
reduces to
~T?r

77:4”1333_%]300'

(9.3)



74 9. Shear viscosity of a pQCD interacting gluon gas.

Figure 9.1 shows 7/s extracted within the space time rapidity interval ns € [—0.1: 0.1],
where 7; = 1 In[(t+2)/(t—z)]. The entropy density is calculated using the kinetic equilib-
rium expression s = 4n—nln A. The three values of ag shown in Fig. 9.1 demonstrate the
transition between a weakly coupled and a strongly coupled gluon system. For o = 0.3
and 0.6 the extracted n/s value is in a good approximation constant in time:
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Figure 9.1.: Shear viscosity to entropy density ratio extracted from BAMPS using Eq. 9.3
and the kinetic equilibrium expression s = 4n — nln A. BAMPS results are
calculated with the initial conditions given by 79 = 0.4 fm/c, Ty = 500 MeV.
Both elastic and inelastic pQCD processes are included with constant values
of as.

For as = 0.6, the obtained value is approximately 0.08 and thus very close to the
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conjecture bound for relativistic quantum field theories at finite temperature, n/s =
ﬁ [154]. Thus, the results for agy = 0.3 and 0.6 indicate that the pQCD interacting
gluonic matter behaves in BAMPS like a strongly coupled system. The fact that already
at finite coupling within a perturbative QCD description BAMPS calculations yield a
low, close to the lower bound, value of 1/s ratio is the result of high efficiency of the
inelastic 2 <> 3 processes in driving the system to isotropy in the momentum space.
For the first time this was discussed by XU and GREINER in Ref. [41] and investigated
in various applications of BAMPS in Refs. [22, 135, 33, 42]. For instance in Refs.
[22, 135| the energy loss of gluon jets in BAMPS is demonstrated to be larger if pQCD
interactions are implemented in comparison with BAMPS simulations with only elastic
processes with isotropic differential cross section. Comparable values of energy loss can
be achieved if the isotropic elastic cross section is scaled by a considerable factor. In a
pQCD interacting medium, the energy loss is found to be clearly dominated by radiative
processes. Correspondingly, the nuclear modification factor R4 4 is found to be small but
comparable to recent calculations based on GLV formalism. Simultaneously, a sizable
amount of elliptic flow can be observed in BAMPS simulations [135, 151, 136], which
is not possible with elastic only processes [22]. The observed collectiveness in BAMPS
simulations is consistent with the low values of 1/s ratio, as obtained in this work and
earlier publications [33, 42].
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Figure 9.2.: PQCD cross sections, 22 and o923, extracted from BAMPS simulations with
as = 0.6. The value of elastic isotropic cross section, corresponding to
n/s ~ 0.08, which was extracted from BAMPS simulations, is calculated
using BAMPS data.

The high efficiency of inelastic processes in BAMPS is demonstrated in Fig. 9.2, where
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the pQCD cross sections are extracted from BAMPS simulation with as = 0.6. From
this run the value n/s ~ 0.08 was extracted. On the other hand, Eq. (8.4) can be
used to calculate an elastic isotropic cross section which would support this n/s value.
The results of such calculation, for which actual temperature and particle density from
BAMPS run are used, is demonstrated in Fig. 9.2 together with the values of pQCD
cross sections. In order to obtain a medium with properties close to a strongly interacting
system (n/s ~ 1/(4m)) with isotropic angle distribution, the elastic cross section has to be
chosen almost factor 10 larger than the inelastic a3 cross section in BAMPS. The reason
for this is the angle distribution of the particles produced in inelastic 2 — 3 collisions.
This distribution indicates that in BAMPS the large-angle radiation is favored [41, 135].
This increases the transport cross section|41], o' ~ [ sin? 93—6, and thus essentially
speeds up isotropization in momentum space. In our study of thermalization of the
Color Glass Condensate initial conditions in BAMPS, presented in Chapter 7.4.1 and
Refs. [143, 32|, we found that thermalization of hard momentum sector proceeds on a
short time scale, which is explained by the large angle dominance of radiated particle
distributions. The conclusion, that a large value of elastic cross section is needed to
describe the collective behavior observed in experiment by STAR was as well obtained
by MOLNAR and GYULASSY in Ref. [155] from calculations of elliptic flow by kinetic
transport model MPC [28, 29].

9.2. Shear viscosity to entropy density ratio as function of
Q.

In this Section the shear viscosity to the entropy density ratio 1/s is calculated for a
gluonic system, which undergoes a one-dimensional expansion with Bjorken boost invari-
ance, i.e., a (0+1) dimensional expansion. In contrast to the results presented in Section
9.1, BAMPS will not be employed for calculations presented here. Instead, an iterative
and self-consistent prescription to calculate the 7/s ratio using Grad’s approximation for
the distribution function, second-order hydrodynamic equations and LO pQCD matrix
elements will be introduced. This prescription was reported in Ref. [33].

In Sections 4.2.1 and 9.1 the expression for the shear viscosity coefficient was derived
using Grad’s approximation for the distribution function, Eqs. (2.42) resp. (8.1). The
obtained expression, as given for a one dimensional system of massless gluons by Eq.
(9.3), depends on macroscopic observables 7, e, n and on the moments of the collision
term Py and Ps3. Since the collision term itself, Eqs. (7.6) and (7.7), is a (complicated)
functional of the distribution function, it as well depends on 7, e, n if the distribution
function is replaced by Grad’s approximation. Thus, once the values of 7, e, n are
known and the matrix elements, entering the collision term are given, the shear viscosity
coefficient can be calculated using Eq. (9.3). In the previous Section the time evolution of
the macroscopic quantities 7, e and n was obtained from BAMPS calculations. But since
the derivation of Eq. (9.3) is based on Grad’s approximation, for which compatibility
with kinetic transport results is limited, as discussed in Section 8.2, it is a natural choice
to obtain the time evolution of 7, e and n from hydrodynamic equations and not from
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kinetic transport calculations. Derivation of second-order, Israel-Stewart equations was
discussed in Section 3.1.3. For a one-dimensional system of massless Boltzmann particles
they read (comp. Section 6)

. 4e 1
. ™ 47 8 e
I
Tr = —
2e

Evolution equation for shear pressure m depends explicitly on the shear viscosity coeffi-
cient 77 and is coupled to the evolution equation for the energy density. Thus the problem
of calculation of by Eq. (9.3) via Egs. (9.5) — (9.7) and Grad’s approximation becomes
iterative.

Considering the self-iterative nature of the problem, the following algorithm is pro-
posed:

1. Equations (9.5) — (9.7) are solved with a guessed value of 1. The guessed value can
be chosen arbitrarily because the final result does not depend on it. 1/n is assumed to
be a constant of time (i.e. the system is assumed to be close to chemical equilibrium).

2. The obtained n(7), e(7) and 7(7) at a time 7 are used to calculate 7(7) according
to (9.3). For doing so, first the moments P% and P33 are calculated using f(z,p) in
Eq. (8.1) with given n(7),e(7) and 7(7) and the cross sections in Egs. (7.14), (7.9),
(7.10) and (7.17).

3. Averaging over the n values calculated in several previous steps is done to obtain the
actual n(7). The algorithm turns back to step 1. The actual n(7) is used to solve Egs.
(9.5) - (9.7).

In the second step of the iterative algorithm the collision term C[f] is evaluated us-
ing the approximated distribution function, Eq. (8.1), according to which particles are
sampled, and the matrix elements as implemented in BAMPS, which allow to simulate
collision processes between pairs of sampled particles. The sampling according to Eq.
(8.1) faces the problem, that the distribution function becomes negative at a certain
value of pr, as demonstrated in the discussion around Fig. 8.1. For pr larger than
the critical value, a cut-off is applied, i.e. no particles are sampled in this region. The
critical momentum depends on actual values of m, e and T and is of order of 3 GeV
for the situation considered here. But since the distribution function becomes small at
this momentum, as BAMPS transverse spectra, Fig. 8.2, demonstrate, the effect of the
cut-off is negligible.

The particle number is assumed to be constant in the algorithm presented here. Indeed,
Eq. (9.5) is solved by n(7) = ngro/7. Since the volume is proportional to 7, the
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Figure 9.3.: Fugacity (a) and particle multiplicity (b) extracted from BAMPS simulations
with different values of as.

particle number N = nV ~ ng7y is constant. This assumption is not valid if one
takes into account particle production and annihilation processes. In presence of particle
number changing processes the initial expansion will drive the system off kinetic and
chemical equilibrium. This can be illustrated by BAMPS calculations. In Fig. 9.3 the
fugacity A = n/ney and the particle multiplicity in central rapidity bin from BAMPS
simulations are demonstrated. Time evolution of the fugacity, Fig. 9.3(a) reflects the
ongoing chemical equilibration in the system which is driven off equilibrium initially. The
fugacity relaxes to 1 at strong coupling as ~ 0.3 — 0.6). For as = 0.05 the relaxation
does not set in on time scale shown in the figure. The particle multiplicity increases due
to ongoing particle production, which accompanies chemical and kinetic equilibration of
the system.

BAMPS results presented in Fig. 9.3 demonstrate that the assumption of chemical
equilibrium and constant particle number is in a certain approximation valid at very
early times. Thus, the iterative calculation of 7 by the algorithm presented earlier has
to be done at a early time point within proximity of the initial equilibrium state. The
convergence of iterative calculations is demonstrated in Fig. 9.4, where the values of 1/s
calculated at each iteration step are shown. Calculations are performed at different time
steps. At small coupling, as = 0.08 the choice of the time point becomes important: at
later time points the system is far from kinetic and chemical equilibrium; nevertheless,
at each of the time points a fast convergence is observed.

Finally, /s as function of ay, as calculated by the iterative algorithm within proximity
of initial equilibrium state, 7 = 279 = 0.8 fm/c, is shown in Fig. 9.5. To demonstrate
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Figure 9.4.: Results of iterative calculations of /s for different ;s and time steps.

the influence of the inelastic processes on 7/s, its value is calculated iteratively both
with and without taking into account inelastic processes. For the calculations with
elastic, 2 — 2, pQCD processes only, the moments of the collision term in Eq. (9.3) are
P = [ dUptp” Cos[ fGraa). 1f both elastic and inelastic, 2 <+ 3, processes are considered,
the moments are calculated according to P = [ dUp*p” (Caz[fGrad) + Coslfcrad)). As
demonstrated in Fig. 9.5, with elastic processes only, the n/s value is large — roughly by
factor 7 compared to values obtained implementing both elastic and inelastic processes.
Thus, elastic pQCD processes are clearly not efficient enough to support small /s values
close to the lower bound 1/(4). Only if an isotropic angle distribution and large values of
cross section are implemented, the 1/s ratio can become low, as was already demonstrated
in Fig. 9.2. This conclusion is consistent with the results on 7/s in Ref. [115], where the
obtained 7/s ratio was shown to be much larger than 1/(4) for elastic pQCD processes
only. Note that at weak coupling, as < 0.05, the dominance of 2 <+ 3 collisions becomes
weaker; for small « the difference between 2 — 2 and full calculations becomes smaller.
This is because at weak coupling the bremsstrahlung, 2 — 3, processes become collinear,
i.e. small angle dominated[42, 156].

A similar approach to calculation of the shear viscosity coefficient was introduced in
Ref. [42], though there are important conceptual differences between the formalisms
presented there and the one discussed in this work. For the formalism in Ref. [42], the
Navier-Stokes equation (3.13) was considered, which is a first-order equation, whereas
the formalism presented here and in Ref. [33] is fully consistent with Israel and Stewart’s
second-order theory. Nevertheless, the expression obtained in Ref. [42] has a form
similar to Eq. (4.8). The differences between this work and Ref. [42| are definitions of
the moments of the collision term and a term o 9 In A, which appears in the denominator
of the expression in Ref. [42], but is missing in the formalism presented here. As Fig.
9.5 demonstrates, values calculated by present formalism are systematically larger than
in Ref. [42| but converge with increasing 5. At large a, the difference between second-
order and Navier-Stokes based calculations is approximately 50% (a5 = 0.2), 20% (a5 =
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Figure 9.5.: /s as function of as. The results are calculated implementing both elastic
and inelastic processes (red lines) and with elastic processes only (green
lines).

0.3) and 0% (as = 0.6). If the n/s value, extracted from BAMPS, is to be employed in
second-order hydrodynamic equations, it is more consistent to calculate it by Eq. (4.8),
since it is consistent with the second-order Israel-Stewart formalism.

9.3. Applicability limits of the second-order hydrodynamic
formalism.

The formalism presented in previous section is based on Grad’s approximation and
second-order dissipative hydrodynamic equations. Since both are truncated expansions
in terms of dissipative fluxes, and in particular, for the problems considered here, in term
of m*¥ the applicability of the formalism is limited.

The time evolution of 7, e and n can be calculated by the iterative algorithm discussed
above. With the obtained solutions, the deviations from equilibrium can be quantified
using the following observable, proposed by us in Ref. [33]:

O¢p = \/ <¢2>eq = i/de0f6q¢2- (98)

In the latter expression, ¢ denotes the dissipative correction to the equilibrium distribu-
tion function, as given by Eq. (8.1). In chapter 8 I have demonstrated that ¢ can be
both positive and negative, dependent on the momentum. The positive-definite observ-
able 04 is a measure of the absolute deviation from equilibrium. When averaged over
the momentum, ¢ should be smaller than unity to guarantee validity of both Grad’s
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approximation, which is linear in ¢, and of second-order hydrodynamic equations, which
are obtained from the expansion of the entropy current.
Inserting ¢ = S%Ep%(% — sinh? y) (comp. Eq. (8.1)) into the definition of oy, Eq.
(9.8), one obtains
_ 92 |r

79 4 e

The value of 0y, as calculated by the iterative algorithm, is presented in Fig. 9.6.

(9.9)

0 05 1 15 2 25 3 35 4
T (fm/c)

Figure 9.6.: Deviation from equilibrium, oy, calculated using solutions of the iterative
algorithm for different values of as.

Formally, for initial conditions chosen here, the second-order formalism breaks down
for oy < 0.1, as Fig. 9.6 demonstrates. Although oy is still below 1 for ag = 0.1, it grows
larger than unity already at 7 ~ 1 fm/c for a; = 0.05. With o4 > 1, the hydrodynamic
equations are well outside their validity range, and the entire algorithm becomes invalid.

Considering Fig. 9.6, one has to keep in mind that strictly speaking the iterative
algorithm is only applicable at early times, because the net particle number is assumed
to be constant which leads to a loss of chemical equilibrium and continuous decrease of the
fugacity at late times. Thus, the results of iterative hydrodynamic calculations cannot
be directly compared with BAMPS results, since particle production and annihilation
lead to restoration of chemical equilibrium in BAMPS. Nevertheless, it is interesting
to quantify the equilibrium deviations in BAMPS by calculating o4. This is shown in
Fig. 9.7. In BAMPS o4 cannot grow larger than 1.06 since 7 < % in kinetic theory
for an expanding one-dimensional system. Even with as = 0.05 the value of oy is still
slightly below unity and definitely below the maximum value of 1.06. It is necessary to
mention, that the value oz = 0.05 employed for some analysis in this work, is rather
unphysical, since it corresponds to extremely large momentum transfer; as follows from
recent experimental and theoretical results[49, 133]. One can thus regard as ~ 0.05 as a
limit of applicability of the expression in Eq. (9.3).
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Figure 9.7.: Deviation from equilibrium, oy, calculated using solutions of the iterative
algorithm for different values of as.

9.4. Limits of the transport approach.

The transport approach itself is limited in its applicability. The particular implemen-
tation of the Boltzmann Equation (7.1) in BAMPS does not include quantum statistic
effects which become important in a dense and strongly interacting system. The par-
tonic degrees of freedom in BAMPS are represented by 'quasi-particles’, obeying a fixed
dispersion relation. The spectral functions of quasi-particles are d-functions, describing
infinitely long living, i.e. stable objects. For heavy-ion collisions at high energies the
applicability ’quasi-particle’ model is rather questionable in the high density and/or high
energy regime, where particles are expected to achieve a finite width due to collision
processes. For a strongly coupled system, the quasi-particle picture is appropriate in
the limit of high temperature, at which the coupling becomes small. An effective ki-
netic treatment of such a system was given for example by ARNOLD MOORE and
YAFFE in Ref. [157]. In the collision term of the Boltzmann Equation as implemented
in BAMPS, explicitly given in Eq. (7.6) and (7.7), the broadening is neglected. The
quasi-particle picture becomes inapplicable if the mean free path A, which is the inverse
of the collision rate R, A = R™!, becomes of order of the thermal size of the particles,
which is given by the inverse of the mean energy per particle (E) = 37

The ratio of the mean free path to the thermal size of particles extracted from BAMPS
simulations is demonstrated in Fig. 9.8. At large coupling, oy 2 0.6 the quasi-particle
picture in BAMPS becomes rather questionable.
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Figure 9.8.: Ratio of the collisional broadening to mean energy per particle.

Conclusion

To conclude, the 7/s has been calculated in this chapter as function of «; using a self-
consistent iterative algorithm. The core of this algorithm are second-order Israel-Stewart
hydrodynamic equations and the expression for shear viscosity, which was derived, in full
consistency with Israel-Stewart equations, using Grad’s approximation for distribution
function. For the calculation of the shear viscosity coefficient, LO pQCD matrix ele-
ments were employed. The obtained results on 7/s(as) are in good agreement with the
earlier published Navier-Stokes based calculations [42]. The inelastic pQCD processes
are demonstrated to be much more efficient for restoration of isotropy in the momentum
space than the elastic ones thus leading to a low values of the 7/s ratio extracted from
BAMPS. For the realistic effective coupling values ag = 0.3..0.6 the ratio n/s is found to
be in the range 0.18..0.08, thus close to the lower value for a infinitely strongly coupled
System.
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10. Comparison of dissipative
hydrodynamic calculations with
BAMPS results for a one-component
system with conserved particle
number.

In this chapter solutions of the dissipative hydrodynamic equations with conserved par-
ticle four-current, as derived in Sections 3.1.3 and 3.1.4 and summarized in section 6 and
C.1, will be compared with results of BAMPS calculations. The main objective of this
comparison is to evaluate the applicability limitations of hydrodynamic equations. For
the comparison introduced in this chapter, only elastic processes with angle independent
(i.e. isotropic) differential cross sections are considered. In order to compare the results
of hydrodynamic and kinetic transport calculations, a correspondence between the trans-
port coefficients on the hydrodynamic side and scattering cross section on the other side
has to be established. For isotropic cross section, such a correspondence was found by
DE GROOT, VAN LEEUWEN and VAN WEERT in Ref. [76]. For instance, in Ref. [76] the
shear viscosity coefficient is given in terms of the elastic transport cross section:

4T
n=

=—. 10.1
Sor (10.1)

The transport cross section gy, is defined in terms of a weighted integral over the differ-

ential cross section g—g in the center-off-mass frame:

d
oty = /m dQ sin29d—g . (10.2)

If the differential cross section is angle independent, i.e. isotropic, the transport cross
section is proportional to the total cross section

2
0% = 302, (10.3)

and the shear viscosity coefficient becomes
6T

— . 10.4
=5 (10.4)
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In the latter two expressions g29 denotes the total elastic cross section.

The expression in Eq. (10.4) was obtained in Ref. [76] for the second-order, Israel-
Stewart, hydrodynamic theory. In Ref. [46] HUOVINEN and MOLNAR employed this func-
tional dependence between the shear viscosity coefficient and the total cross section for a
detailed comparison of Israel-Stewart results for one-dimensional boost-invariant system
with kinetic transport calculations by MPC |28, 29, 155|. In this chapter I will introduce
an analogous comparison employing the BAMPS model. In addition to the second-order
Israel-Stewart equations, I will present the solutions of third-order equations, derived in
Section 3.1.4 and in Refs. [34, 158]. Comparison of the two hydrodynamic approaches
with BAMPS will, on the one hand, help finding the applicability limits of Israel-Stewart
and third-order equations; on the other hand, it will demonstrate the effect of inclusion of
higher-order terms into the equations and advantage of higher-order equations compared
with Israel-Stewart theory.

Unless otherwise stated, the initial conditions for both BAMPS and hydrodynamic
calculations will be of thermal type and given by Eq. (8.5). Like for the results presented
in sections 8.2 and 9.1, the initial time and temperature are chosen to be 79 = 0.4 fm/c
and Tp = T'(19) = 0.5 GeV. The results presented in this section are extracted from the
central rapidity region n € [—0.1 : 0.1]. For BAMPS as well as hydrodynamic calculations
the local rest frame entropy density s is calculated using the kinetic equilibrium expression
s=4n—nlnA.

10.1. Relevant observables.

To obtain a quantitative measure for the strength of dissipation in a system, a set of
proper observable should be introduced. The case to be studied here, a one-dimensional
boost-invariant expansion of a Boltzmann gas, has the advantage of simple geometry
leading to a relatively simple structure of hydrodynamic equations, as given in Section
6 and Section C.1 of Appendix C.1. For the derivation of hydrodynamic equations in
Sections 3.1.2 — 3.1.4 and Appendix B, the entropy current is constructed for a disequi-
librated system by introducing a small deviation ¢ of the distribution function from its
equilibrium from [comp. Egs. (3.16) and (3.24) and discussion around Eq. (B.3)|. For
a one-dimensional system, the deviation ¢ can be found in Eq. (8.1). The expansion
leading to the expressions (3.16) and (3.24) clearly breaks down if ¢ becomes larger than
1. Since ¢ is a momentum-dependent quantity, for a macroscopic theory like hydrody-
namics it is natural to introduce a momentum averaged measure of the deviation from
the equilibrium distribution, o4, which was introduced in Eq. (9.8). Both ¢ and oy are
proportional to the ratio of the shear pressure to energy density 7, resp. % using the
ideal gas equation of state, which is thus a smallness parameter of the expansion (comp.
the discussion in Section 3.1.4).

The formal role of the ratio ¥ can alternatively be motivated by a closer investigation
of the one-dimensional second-order evolution equation for the shear pressure 7 [comp.
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Egs. (3.20) resp. (6.36)]:
f=——m =2 (10.5)

Note, that in the first-order, Navier-Stokes theory, the corresponding equation is not a
dynamical equation and contains only two terms [comp. Egs. (3.13) resp. (6.35)]:

_4n

= 10.6
T=g (10.6)

Dividing the first-order equation by the relaxation time 7, = 212, which appears in the
second-order equation, and using the expression (6.22) for 32, one obtains

T ée

—=——. 10.7
Tr 27T ( )
Thus the terms - and 2%% on the right-hand side of Eq. (10.5) are first-order terms
originating from a first-order term in the entropy current. The term %% is a second-order

term. The ratio of the second-order term and the both first-oder terms, one obtains

4/3-m/r _9m 4/3-7/T A1

=2 = 77 . 10.8
8/27-e/T 2e’ T|T: 3T (108)

The expressions obtained this way are indicators of the formal break down of hydrody-
namic approach. Indeed, if the conditions

T 2 Tr 3
=>Z > 10.
=25 and — 27 (10.9)
are fulfilled, the second-order terms become larger than the first-order ones and thus the
series of terms cannot be truncated. On the other hand, one realizes that the second-order
theory is well applicable if the conditions

T 2 T 3

- d —< - 10.10

c < g and — < 1 ( )

hold, since then the series of terms can be expected to converge.

The ratios 7 and "= are thus smallness parameters for hydrodynamic equations and
control their applicability. Their meaning can as well be understood from the kinetic
theory point of view. The shear stress tensor is the anisotropic part of the energy-
momentum tensor, as follows from its definition in Section 2.1. The ratio Z thus can be
rewritten as |67r{;)z3‘ and thus quantifies the deformation of the energy-momentum tensor.
From the kinetic theory point of view, the ratio == can be identified with the Knudsen

number (comp. discussion in section 3.1.4 and Refs. [94, 34])

A
Kn= 2202 (10.11)

T

In the latter expression A, denotes the microscopic scale of the system, which is the
mean free path. For a one-dimensional boost-invariant system the expansion scalar 6
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(comp. discussion in section 3.1.4) is given by d,u* = 1/7. Thus, the ratio = can be
understood as the product A - 9,u* describing a competition between the microscopic
scale A, rp, which drives the system towards local equilibrium due to collisions, and the
macroscopic expansion rate  driving the system off equilibrium globally. Tf 7= oc A,z is
small, the equilibration process dominates over the expansion. Otherwise, the expansion
prevails, the local equilibration due to collisional processes is slower than the loss of
global equilibrium due to expansion and the system cannot equilibrate. In this regime
hydrodynamic description breaks down, which follows from Eq. (10.9). This line of
argumentation was already applied in this work in section 3.1.4 and in Ref. [34], where
derivation of third-order hydrodynamic equations is introduced.

Another observable which can be used to quantify the degree of disequilibration of the
system is the pressure isotropy [153], i.e. the ratio of the longitudinal and transverse
components of the energy-momentum tensor

,P_piL_ T33 _ p—T7
Tor (MU TR)2 T paa)2

For a free expanding system, as considered in Bjorken model, 7 is usually positive so
that the third component of the shear stress tensor, 733 = —, is negative. This is in par-
ticular true for an initially equilibrated system undergoing the expansion, which reduces
the longitudinal pressure. Throughout the evolution towards equilibrium 7 should not
become larger than p = £, which is equivalent to the restriction that the third diagonal
component of the energy-momentum tensor,

(10.12)

T33 = /dff(pT,pz) pP=p-m, (10.13)

is always non-negative. For a disequilibrated system with a longitudinal expansion direc-
tion the third energy-momentum tensor component is often called the longitudinal pres-
sure, pp = T3 = p—m [159, 153]. Accordingly, the transverse components of the energy-
momentum tensor are related to the transverse pressure, pr = (Tt +1722)/2 = p+ 7/2.
The longitudinal pressure may become negative as the system undergoes a phase tran-
sition as a result of expansion and cooling, as for example discussed in Ref. [159]. In
this case, the reason for a negative pressure can be the attractive nuclear interaction.
Another scenario in which the longitudinal pressure can be negative is the coherent field
picture of the quark-gluon plasma with instabilities, which are analogous to the Weibel
instabilities in non-relativistic plasmas. The coherent field description in presence of
instabilities is relevant for the early-time evolution of the quark-gluonic system; its evo-
lution was studied in Refs. [160, 161, 162, 74|. RAJAGOPAL and TRIPURANENI argued
in Ref. [163] that a transition between positive and non-negative longitudinal pressure
can be interpreted as an onset of cavitation with subsequent hadronization of a system
fallen apart.

However, in a system with homogeneous phase structure without attractive interactions
among the (quasi-) particles, i.e. a system which is typically considered in the kinetic
transport theory, the occurrence of negative longitudinal pressure is not physical. Dissi-
pative hydrodynamic equations derived in this work in Sections 3.1.2 — 3.1.4 for an ideal
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gas equation of state should not lead to negative longitudinal pressure. This conclusion
was used by MARTINEZ and STRICKLAND in Ref. [153] to evaluate constrains on ini-
tial conditions for second-order dissipative hydrodynamic equations. Thus the pressure
isotropy defined in Eq. (10.12) can be an indicator either of a high degree of equilibration
in the system (P = 1) or of a breakdown of hydrodynamic description (P < 0).

10.2. Comparison of numerical results.

The parameters of BAMPS resp. dissipative hydrodynamic hydrodynamic calculations,
which results are to be presented in this section, are summarized in the following table:

Parameter Value
T0 0.1, 0.4, 1.0 fm/c
To(To) 0.5 GeV
Type of interactions | Elastic processes, isotropic cross section
Hydro n/s 0.05, 0.2, 0.4, 1.0, 3.0
BAMPS | o9 6 (m)~! SRR

10.2.1. Effect of initial time.

In this subsection the initial time is varied whereas the parametrization of the elastic
cross section resp. the 7/s value are fixed in BAMPS resp. hydrodynamic calculations.
In Fig. 10.1(a) — (c) energy per unit transverse area and unit rapidity #b;’ln =e-T,
effective temperature 7' = e/(3n) and the 7/e ratio from BAMPS, second and third-
order hydrodynamic calculations with 7/s = 1 are presented.

A good agreement is observed between BAMPS and hydrodynamic calculations consid-
ering the energy in Fig. 10.1(a). The depicted observable is directly related to the energy
density, which thus exhibits very weak sensitivity to dissipative corrections. On the other
hand, second-order hydrodynamics fails to describe evolution of the effective temperature
with reasonable accuracy except if the initial time is large. The combination of very low
initial time 79 = 0.1 fm/c and strong dissipation /s = 1 leads in BAMPS calculations
to a behavior which is very similar to free-streaming: the effective temperature decreases
initially and stays approximately constant later on. Indeed, in the free-streaming limit
in one-dimension both energy and particle densities scale with the inverse of the proper
time, e = eg7o/7T and n x ng7y/T, leading to T" = const. Accordingly, the m/e ratio
saturates at m/e ~ 1/3. This is consistent with the observed saturation of the temper-
ature considering Eqgs. (6.30) and (6.29). Such free-streaming similar behavior cannot
be described by hydrodynamic equations, which produce unphysical solutions, as Fig.
10.1(b) demonstrates: second-order hydrodynamics leads to increase of the temperature,
i.e. reheating. This happens because the system becomes over-stressed, since m/e grows
larger than 1/3 and consequently the shear pressure m exceeds the isotropic pressure
p = €/3. Such anomalies are not observed in the solutions of third-order hydrodynamics.
In the extreme limit of free-streaming similar behavior, 79 = 0.1 fm/c, third-order hydro-
dynamics fails as well, although its solutions are still physically valid. However, for larger
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Figure 10.1.: Evolution of energy per unit transverse area and rapidity (a), effective tem-
perature (b) and shear pressure to energy density ratio (c¢) from BAMPS
and hydrodynamic calculations with different initial times 79 and n/s = 1.0.

initial time the differences between BAMPS and hydrodynamic results are considerably
reduced if third-order equations are considered.

The pressure isotropy from BAMPS and hydrodynamic calculations is shown in Fig.
10.2(a). BAMPS results for 7p = 0.1 fm/c demonstrate that in the free-streaming limit
longitudinal pressure vanishes since the pressure isotropy saturates at 0; at the same
time the second-order hydrodynamics leads to negative pressure isotropy due to negative
longitudinal pressure. For neither of the demonstrated initial times an onset of relax-
ation towards equilibrium can be observed. The reason for this can be understood from
Fig. 10.2(b), where the hydrodynamic relaxation time to expansion time ratio 7./7 is
demonstrated. Using Eqs. (3.21) and (6.22) the 7 /7 ratio can be rewritten as

T 31 (77)
—=——(=)-4—-1InX 10.14

T 2T7 \s ( A, ( )
where the entropy density was approximated by its kinetic equilibrium value s = 4n —
nln . Thus, for a fixed n/s the initial value of 7./7 ratio is inversely proportional to
the initial time and temperature. A sufficiently small 79 can make relaxation towards
equilibrium on a reasonable time scale impossible even for small 77/s. The hydrodynamic
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Figure 10.2.: Evolution of pressure isotropy (a) and the Knudsen number ™= (b) from
BAMPS and hydrodynamic calculations with different initial times 7y and
n/s = 1.0.

evolution in Fig. 10.2(b) is dominated by expansion for 7p < 1 fm/c. The consequence
is a strong increase of the shear pressure, as observed and discussed earlier.

In fact, Eq. (10.14) allows to make a rough estimate of the possible value of the initial
time 79, for which a partonic system will be able to start to relax towards equilibrium
immediately, i.e. will be initialized within the applicability limit of hydrodynamic de-
scription. Imposing the condition %’ < 1 and setting A = 1, one obtains from Eq. (10.14)
the constraint

Tr> 62 . (10.15)

Taking n/s = 0.2 — approximately the value we extracted from BAMPS for as = 0.3 in
chapter 9 — one obtains T'7 > 1.2. For the initial temperature in range Ty = 0.2..0.6 GeV
— where the upper value might be characteristic temperature of the color glass condensate
initial temperature at RHIC (comp. chapter 7.4.1) — one obtains 79 = 0.4..1.2 fm for the
time at which hydrodynamic description is formally correct. This simple estimate is
in agreement with the results obtained by MARTINEZ and STRICKLAND in Ref. [153].
At the same time, this estimate for 79 agrees with the range of thermalization times
~ 0.5 —2 fm/c used in Refs. [8, 9, 10, 164, 116] to initialize hydrodynamic calculations,
which were found to be able to describe the collective flow at RHIC. With /s = 1, the
minimal 7y is smaller for the chosen temperature range, 0.08 — 0.24, which is consistent
with the observation in Fig. 10.2(b). Also, contrary to the assumption leading to Eq.
(10.15), the fugacity is not 1 if particle number is conserved, which additionally increases
70-
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In order to obtain a more quantitative comparison of hydrodynamic and kinetic trans-
port results, the relative deviations, obtained as ratio of hydrodynamic results and
BAMPS results, are shown in Fig. 10.3(a)-(d). The observables presented there are the
diagonal components of the energy momentum tensor in the local rest frame, 7% = e,
1/2(T +T22) = p+ 7/2 and T3 = p — 7, as well as the momentum isotropy P.
Since the particle number is the same in hydrodynamic and kinetic transport calcula-
tions, the deviations of the effective temperature are given by the deviations of energy
density and are not shown. Considering the energy density, Fig. 10.3(a), and the trans-
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Figure 10.3.: Relative difference between hydrodynamic and BAMPS results for compo-
nents of the energy momentum tensor for /s = 1 and different 7.

verse pressure, Fig. 10.3(b), second-order hydrodynamic results are within 10% accuracy
only for 79 = 1 fm/c with the chosen value of /s = 1. However, considering the lon-
gitudinal pressure, Fig. 10.3(c), and the pressure isotropy, Fig. 10.3(d), applicability
of second-order hydrodynamics becomes questionable even for 79 = 1 fm/c. One can
conclude that the second-order hydrodynamic description is clearly beyond the edge of
its applicability for 79 ~ 1 fm/c, Tp = 0.5 GeV and n/s = 1 and cannot be consid-
ered applicable for the shown initial times. At the same time, inclusion of third-order
terms into the evolution equation for shear pressure leads to a significant reduction of
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deviation between hydrodynamic results and BAMPS calculations. Even for lower ini-
tial times, 79 = 0.4 fm/c, third-order hydrodynamic calculations lead to less than 10%
deviations from kinetic transport results considering energy density and transverse pres-
sure. Deviations are around 20% for the longitudinal pressure and pressure isotropy.
Thus, third-order hydrodynamic description becomes inapplicable for 79 ~ 0.4 fm/c,
To = 0.5 GeV and n/s = 1 but is still well applicable for 79 ~ 1 fm/c.

Applicability of hydrodynamic description was investigated by HUOVINEN and MOL-
NAR in Ref. [46] with respect to the variable

K =T1/\", (10.16)

K is the inverse of the Knudsen number used in this work, if defined via the transport
mean free path A" instead of the usual mean free path A:

- T
K =1/Kn'" = T (10.17)

The transport mean free path is given in terms of the transport cross section o' as

defined by Eq. (10.2). For the elastic isotropic collisional processes, that are implemented
in BAMPS for the results presented here, the transport mean free path A\ = 1/(no'")
is simply proportional to the usual mean free path, A = 3/2X. From a comparison
of second-order hydrodynamic calculations with kinetic transport calculation by MPC
HUoVINEN and MOLNAR concluded in [46] that second-order hydrodynamics is applicable
if the initial conditions are such that Ko = K (79, To,n/s) 2, 2. Their conclusion was based
on the requirement that the relative deviations of pressure isotropy must be below 10%
for hydrodynamics to be well applicable. In particular, the relative deviations were found
to be ~ 20% for Ky = 1 and ~ 10% for Ky = 2. The values of Ky(7p) corresponding to
the initial conditions employed here are

Ko(0.1 fm/c) = 0.05, Kp(0.4 fm/c) = 0.2, Ko(1.0 fm/c) =0.5. (10.18)

From the comparisons demonstrated in this section in Figs. 10.2 and 10.3 we can conclude
that second-order hydrodynamic description is already inapplicable for Ky < 0.5, whereas
the third-order description is still well applicable for Ky = 0.5 .

The relative deviation of second-order hydrodynamics from kinetic transport results
observed in Ref. [46] are larger than the ones reported here for same values of Ky. In
particular, we observe a ~ 20% deviation of momentum isotropy for Ky = 0.5, whereas in
Ref. [46] this magnitude of deviation is observed already for Ky = 1, which corresponds
to a larger initial time. This difference can be explained by a slightly different form
of second-order hydrodynamic equations. Whereas Eq. (6.36) — resp. the full set of
equations as given in section C.1 of Appendix C — is strictly of second order in small
quantities 7/e and 7 /7, the evolution equation for 7 used in Ref. [46] explicitly contains
a term of third order, ~ 72/(er), which should be neglected for consistency, unless other
terms of same order are included into the equations, like it is done in this work in scope
of third-order formalism. In a regime, where 7/e is large but still below 1/3, the third-
order term kept in Ref. [46] is not small and positive, thus increasing 7 and driving the
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system further away from equilibrium. Note that if all third-order terms are consistently
included, as done here — comp. Eq. (6.37) — their effect on 7 is opposite, i.e. damping
instead enhancing thus leading to a smaller shear pressure as compared to solutions of
second-order equations. Thus, the equations used in Ref. [46] have to lead to a larger
critical value of K. This will be verified in the next section.

Finally, it is interesting to note that inclusion of third-order terms into the evolution
equation for shear pressure leads to a significant reduction of deviations from kinetic
transport results even in the regime of Kn being larger than unity, as demonstrated for
70 = 0.4 fm/c in this section. This might indicate that the (truncated) higher-order
terms in the evolution equation for shear pressure 7 are proportional to powers of 7/e
rather than 7 /7. This is certainly true for the third-order term derived in this work.

10.2.2. Effect of shear viscosity to entropy density ratio.
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Figure 10.4.: Evolution of energy per unit transverse area and rapidity (a), effective tem-
perature (b) and shear pressure to energy density ratio (c¢) from BAMPS
and hydrodynamic calculations with different values of 77/s and initial time
70 = 0.4 fm/c.

In this subsection the initial time is fixed, 79 = 0.4 fm/c, whereas the parametrization
of the elastic cross section resp. the n/s value is varied in BAMPS resp. hydrodynamic
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Figure 10.5.: Evolution of pressure isotropy (a) and the Knudsen number ™= (b) from
BAMPS and hydrodynamic calculations with initial time 79 = 0.4 fm/c
and different /s values.

calculations. The scheme for the analysis presented here is similar to the one in previous
subsection.

In Fig. 10.4(a)-(c) energy per unit transverse area and unit rapidity % =e-T,
effective temperature 7' = e/(3n) and the 7/e ratio from BAMPS, second and third-
order hydrodynamic calculations with 7/s = 0.05 — 3 are presented. The second-order
hydrodynamic solution becomes unphysical for /s = 3, leading to increase of energy
density and effective temperature. This behavior was already observed in Fig.10.1 (a)-(b)
in previous subsection for /s = 1 and 79 = 0.1 fm/c. Accordingly, the pressure isotropy,
shown in Fig. 10.5(a), becomes negative in second-order hydrodynamic calculations for
n/s = 3. However, in kinetic transport calculations the free-streaming similar behavior,
which was observed in Fig. 10.1, is still not observed even with /s = 3. The third-
order results are closer to kinetic transport and the unphysical reheating is prevented.
Evolution of the Knudsen number Kn = 7./7 is shown in Fig. 10.5(b). For n/s =
0.05 the system is initialized within the relaxation regime — accordingly, the deviations
between kinetic transport and both second and third-order hydrodynamic equations are
marginal.

The relative deviations of dissipative hydrodynamic results from BAMPS calculations
are shown in Fig. 10.6 for the components of energy-momentum tensor. This allows
to constrain the applicability of hydrodynamic description using the same criteria as
in previous subsection: all four energy momentum components must be described by
hydrodynamics within 10% accuracy. This criterion is still fulfilled in second-order
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Figure 10.6.: Relative difference between hydrodynamic and BAMPS results for compo-
nents of the energy momentum tensor with 79 = 0.4 fm/c and different n/s
values.

theory for /s < 0.2, which is corresponding to Ky 2 1 for 79 = 0.4 fm/c chosen in this
section. This value is smaller than the one obtained by HUOVINEN and MOLNAR in Ref.
[46] for reasons discussed at the end of previous section. The third-order description is
sufficiently accurate for n/s < 0.4, corresponding to Ky 2 0.5, as already concluded in
previous section.

Again, the fact that hydrodynamics is applicable (with less than 10% accuracy) even
in the regime of Kn > 1 (comp. Fig. 10.5(b) for n/s = 0.2 —0.4) might indicate that the
omitted higher-order terms are a converging series of powers of /e, which is still below
1/3 (comp. Fig. 10.4(d) for n/s = 0.2 — 0.4) rather than 7/7. Indeed, in Refs. [34] and
[158] we have demonstrated that the series of higher-order terms, omitted in Eqgs. (6.36)
resp. (6.37), can be effectively resummed in free-streaming limit and thus included into
hydrodynamic equations. This procedure will be discussed in the next chapter.
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10.2.3. Inclusion of beyond-third-order terms into one-dimensional
hydrodynamic equations

In Chapter 3.1.4 I demonstrate how the standard Israel-Stewart formalism can be ex-
tended to a third-order formalism. The corresponding equations are obtained from the
divergence of the third-order entropy current according to the second-law of thermo-
dynamics. The effect of third-order terms is shown to be considerable in the regime
where the second-order formalism is not accurate enough in comparison to kinetic the-
ory. The question thus arises, how strong is the effect of fourth and higher-order terms,
not included into the equations discussed here.

An attempt to construct an effective equation, containing terms which are usually
neglected in the standard, Israel-Stewart, formalism is the so-called effective hydrody-
namics, introduced recently by SHURYAK and LUBINSKY in Ref. [165] and considered
for application in calculations of shock waves in a strongly coupled plasmas in Ref. [166].
Effective hydrodynamic approach attempts to include the higher-order terms in the gra-
dient expansion of T"” in an effective way by introducing terms that are of high order
in derivatives but linear in velocity — i.e. terms like V2u but not (Vu)2. The strategy of
the effective hydrodynamic approach is to introduce a hydrodynamic-like representation
of TH¥ containing all possible terms including terms of different orders in gradients of the
velocity. Effectively these terms are included into the expansion of T by introducing
a generalized transport coefficient, dependent on operators of form V™, in front of the
gradient Vu. Using the linear response theory the generalized shear coefficient can be ex-
pressed in terms of the retarded correlator of the energy-momentum tensor. By virtue of
the AdS/CFT correspondence|117], the result of such calculations can be compared with
the solutions of linearized gravity equations in the background of the AdS-Schwarzschild
black hole.

The approach I introduce here is different in its philosophy; in the form introduced
here it is applicable only for one-dimensional boost-invariant expansion. As the starting
point, the following phenomenological evolution equation for the shear pressure can be
considered:

. T oAn 8 e & T\" e
R

Te 3T 27T (10.19)

p
The latter expression is just the standard Israel-Stewart, i.e. second-order, equation
(6.36) with an infinite series of higher-order terms added. The functional form of these
terms is inspired by the third-order term in Eq. (6.37) and the coefficients x,, are supposed
to be time-independent. Thus Eq. (10.19) is supposed to contain all orders of corrections
to the standard causal dissipative hydrodynamic formalism.

Since all orders of corrections are included into it, Eq. (10.19) can be applied to the
free-streaming limit. From th kinetic theory point of view, the free-streaming limit is the
limit of vanishing collision rate or, in other words, vanishing cross section, ¢ — 0. A free-
streaming similar behavior can be observed if the mean free path is large in comparison
to the expansion scale, A/7 > 1, as was demonstrated in Fig. 10.2 for 7o = 0.1 fm/c
and /s = 1. In hydrodynamics the mean free path corresponds to the relaxation time



98 10. Hydrodynamics vs BAMPS

Tr — and the free-streaming limit is the 7, — oo limit. In the free-streaming limit the
longitudinal pressure p;, = p — 7 is zero since it cannot be built up by interactions. This
means 7 = p = 5. Together with Eqgs. (6.29) and (6.30) the conclusions obtained above
lead to the following equations in the free-streaming limit:

s 1 T e .
Z_Z =0 é=—-—=. T=0. 10.2
; 3@(6) 6 . (10.20)

Before proceeding further, one rewrites Eq. (10.19) as follows

T 47 8 e T\ " T 47 8 e 2
= — —— + —— —E — :———f— —— X— 10.21
T Tr 3T+27T+€Tn:0xn(6) Tr +27T+ er’ ( )

=X

where &' is a new, in general time-dependent, coefficient. Inserting the relations from
Eq. (10.20) into Eq. (10.21) in the 7 — oo limit one obtains

X=—. (10.22)
3
In this value the series Y 2 @, (%)n is resummed using the free-streaming limit relation
/e = 1/3. For the resummation scheme presented here, the exact form of the coefficients
Ty is not important. The evolution equation for shear pressure takes the form

. T 47 8 e Hn2
T T3 s 3er (10.23)

The latter equations will be referred to as "all orders” equations since the value X = —%

effectively takes into account all orders of dissipative corrections, which are resummed
using their maximum values. One can expect that Eq. (10.23) will be well applicable
as long as dissipation is strong and the behavior tends towards free-streaming, i.e. when
Kn = = is large.

To investigate the solutions of Eq. (10.23), in Fig. 10.7 I show the pressure isotropy
in comparison with second and third-order hydrodynamics and BAMPS calculations.
If the initial time is fixed (Fig. 10.7(a)), solution of Eq. (10.23) seems to be in best
agreement with kinetic transport for the largest 1/s ratio — this is the regime of largest
Kn. However, on a time scale long enough in comparison to the initial time, i.e. the
deviation between kinetic transport and "all orders” solutions starts growing and third-
order solutions gives a better description of kinetic transport results. This is because
as soon as the system is in relaxation regime the ratio 7/e, which is a measure of the
strength of dissipation, starts decreasing and thus the higher-order corrections should
become weaker — but they are included into X = —g by their maximum, 7/e = 1/3,
values and the "all orders” solution relaxes slower than the kinetic transport one. On
the other hand, terms of the form (7/e)™ - e/7, are not included into the ansatz Eq.
(10.19) and, furthermore, the coefficients in front of these terms cannot be determined
in the 7 — oo limit. Such terms might be important in the regime 7, < 7, which
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Figure 10.7.: Pressure isotropy from BAMPS, second, third-order and ”all orders” hydro-
dynamic calculations.

again can explain the deviation between 7all orders” and kinetic transport calculations
for n/s < 0.4 in Fig. 10.7(a). Note, that a second-order term of form (m/e)? - e/7x
indeed was found in a some publications, where hydrodynamic equations were derived
from the Boltzmann equation — as e.g. in Refs. [93, 101]. Despite of its phenomenological
nature, the "all-orders” equation offers an interesting possibility to push hydrodynamics
to the free-streaming limit and to investigate the impact of higher-order terms on the
hydrodynamic evolution in a one-dimensional system.

Although the 7all-orders” equation includes the effect of higher orders of dissipative
corrections, it is still a relaxation-type equation, in which the higher-order terms play
the role of damping, which is weakest in the Israel-Stewart’s equation. To make the
relaxation type nature of Eqgs. (6.36) — (6.37) clear, it is instructive to rewrite them in
the following form:

NS us 2
e

(i)zg,(;(Jrl)L

. 10.24
T e2r ( )

In the latter equation X = 0 for Israel-Stewart equation, so that the last, third-order,
term cancels with the one originating from the proper time derivative of e on the left
hand side; X = 3 for the third-order equation and X = 5/3, as obtained before. mxng
denotes the first-order expression for 7, given by Egs. (3.11) resp. (6.35). The relaxation
form of the evolution equation for 7 leads to a clear interpretation of the higher-order
terms: they damp relaxation of the shear pressure 7 towards the Navier-Stokes solution.
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This damping is not present in the Israel-Stewart form of equation (X = 0), and in the
third-order equation it is stronger (X = 3) than if all orders are included (X = 5/3),
which indicates a possibility of oscillating behavior of the higher-order terms.
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Figure 10.8.: Pressure isotropy from BAMPS, second, third-order and ”all orders” hydro-
dynamic calculations from calculations with constant isotropic cross section.

An interesting test case for a relaxation-type equation of this kind is the case of constant
cross section, og9o = const. If the isotropic cross section is held constant, the relaxation
is frozen’, since the Knudsen number is constant, according to Eqgs. (3.21) and (10.4):

9 _
Kn=1"= 5(710227) U= const. (10.25)
T

Since the relaxation towards equilibrium is not possible, 7/e ratio and pressure isotropy
pr/pr will saturate at a certain value. The transition from the "all-orders” towards
the third-order solution can be illustrated using the constant cross section regime. Fig.
10.8 demonstrates that at large Kn, which in this study is constant, the "all-orders”
formalism is in best agreement with kinetic transport, whereas the third-order solution
is over-damped, leading to larger values for pressure isotropy. At Kn < 1 the third-order
calculations are much closer to kinetic transport than both ”all-orders” and second-order
formalism, which is in agreement with the conclusions made earlier in this chapter.
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Conclusions.

A direct comparison of the second-oder Israel-Stewart and novel third-order dissipative
hydrodynamic and kinetic transport calculations for systems with conserved net particle
number has demonstrated that consistent inclusion of third-order terms into hydrody-
namic formalism extends its applicability range and helps preventing unphysical behavior
of the solutions. If the initial conditions are characterized by value K according to Eq.
(10.16), the second-order formalism deviates from kinetic transport calculations by less
than 10% for K 2> 1, which corresponds to n/s < 0.2 for 79 = 0.4 fm/c. Third-order
calculations can be performed at /s < 0.4, corresponding to Ky 2 0.5. An effective way
to include all orders of corrections into hydrodynamic equations has been introduced. In
the limit of large Kn the solutions of this formalism reproduce the solutions of kinetic
transport theory remarkably good. However, this so-called “all-orders” formalism is re-
stricted to the one-dimensional case. The novel third-order equations can be applied in
a general geometry.
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11. Hydrodynamic evolution of a
chemically equilibrating Gluon
Plasma.

A kinetically equilibrated one-component system is a system with isotropic momentum
space distribution, described by a appropriate distribution function. For a gas of ultra-
relativistic massless particles (gluons) this is the Boltzmann distribution, which in a most
general case can be written as

dN p—uap®
flz,p) = Podr d-e 7 (11.1)
with the degeneracy factor d chemical potential @ and temperature T'. The factor et/ T
often appears under the name of fugacity

A=etT (11.2)

and the Boltzmann distribution is then rewritten in the form already given by Eq. (8.5).
The fugacity factor is the degree of undersaturation of the phase-space density. In QCD
medium the phase space is populated in leading order by the inelastic, 2 <» 3, processes,
which were already introduced in chapter 7. In the particular example of a CGC initial
condition, discussed in section 7.4.1, the momentum space contained a oversaturated hard
sector and a undersaturated soft sector, which both relaxed — in a almost synchronous
way — towards equilibrium via the inelastic pQCD processes.

A chemically equilibrated one-component system is a system of vanishing chemical
potential i = 0 corresponding to A = 1. The usual assumption of the most hydrodynamic
models is the one of permanent chemical equilibrium, A\ = const = 1 [167]. Historically,
this assumption was supported by the success of statistical (thermal) models to reproduce
hadron multiplicities by assuming their origin to be a thermal source with a temperature
T =~ 170 MeV and a nearly zero light quark chemical potential. (see Refs. [168] and
[169] for comprehensive overviews). The assumption that the quark-gluonic medium
achieves a state close to chemical and kinetic equilibrium prior to the phase transition is
supported by the recent observations of saturation of the strange sector particle yields.
It was observed in Refs. [170, 171, 172| that the fugacity factor of strangeness rises from
approximately 0.7 to 1 if going from peripheral to central Au 4+ Au collisions at RHIC,
which indicates that a complete chemical equilibration might be achieved as the density
and interaction rate in the system increases.
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However, on what time scale an almost complete chemical and kinetic equilibration of
quarks and gluons can be achieved in heavy-ion systems — and thus what is the initial time
for hydrodynamic approaches which assume chemical and kinetic equilibration — is not
completely clear. Moreover, light quarks are expected to be less abundant than gluons in
the systems produced in ultrarelativistic heavy-ion collisions and thus the initial quark
phase space distribution is far from equilibrium both kinetically and chemically. However,
the first attempts to describe the dynamics of a initially disequilibrated quark-gluon sys-
tem neglected kinetic off-equilibrium effects. Evolution of a chemically disequilibrated
but kinetically equilibrated partonic plasma was first studied by MATSUI, SVATITSKY
and MCLERRAN in Ref. [173]|, by BIrRO et. al. in Ref. [88] and by SRIVASTAVA et.
al. in Ref. [174]. Employing this scenario numerous studies of heavy-ion phenomenol-
ogy were performed, like e.g. studies of hard photon production rate [175], strangeness
[176, 177, 178, 179]|, open charm [180] and dilepton production [181]. The quite strong
assumption of permanent kinetic equilibrium was dropped in the late 90th: dissipative
effects [182] and photon and lepton pair production [183, 184, 185] in a chemically and
kinetically disequilibrated quark-gluon plasma were studied employing a first-order hy-
drodynamic formalism. The first application of second-order hydrodynamics to study
of a disequilibrated plasma was reported by MURONGA in Ref. [87]. A connection to
kinetic theory was attempted by WONG who introduced a study of kinetic and chemical
equilibration of a quark-gluonic system employing a relaxation time approximation of the
Boltzmann Equation [140]. A Fokker-Planck equation based approach to study shifts of
hadron transverse spectra due to collisional energy loss of high energy partons passing
through a chemically equilibrating quark-gluon plasma was reported in Ref. [186]. Al-
ternatively, GELIS, KAJANTIE and LAPPI demonstrated how the quark—anti-quark pair
production rate — and thus chemical equilibration of the quark sector — can be calculated
by numerical integration of the Dirac equation using a classical gluon field model with
an ensemble of initial conditions, as demonstrated in Ref. [187].

The issue of chemical equilibration is of central importance for multi-component sys-
tems, i.e. mixtures of quarks and gluons in the heavy-ion phenomenology. An approach
to hydrodynamic description of relativistic dissipative multi-component systems was re-
ported by MONNAI and HIRANO in Ref. [100]. A multi-component hydrodynamic for-
malism is important, since different component of a quark-gluon mixture are expected to
equilibrate chemically and kinetically on different time scales [88, 89| — in particular the
gluonic sector is expected to equilibrate on a shorter time scale. However, the formalism
presented in Ref. [100] cannot describe kinetic evolution of each separate component. An
alternative multi-component formalism, solving this problem, was derived in this work
in Section 3.1.5, but does not include inelastic, i.e. particle number changing, processes.

To what degree chemical equilibration of quark and gluons is achieved at the phase
transition might be crucial for modelling of the hadronization process using recombi-
nation models [66, 65, 188, 68, 67, 189, 190|, which are sensitive to the phase space
distribution of quarks and gluons. Since the effect of chemical equilibration will influ-
ence the temperature of the system (as Egs. (11.8) and (11.13) indicate and as will be
demonstrated later in this Chapter), it is important for such experimental observables
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as dilepton [174, 191, 103, 192, 193] and photon [194, 195] yields in heavy-ion collisions.

11.1. Dissipative hydrodynamics in Bjorken’'s model
including particle production and annihilation
processes

11.1.1. Rate equation for particle production in anisotropic systems.

In this section I will consider Eq. (2.43) with non-vanishing source term, i.e. the particle
number will not be conserved. Particle number changing processes are essential for the
chemical equilibration in the system. They are in particular of great importance for
modelling of a quark-gluon plasma, since partons can be created in 'bremsstrahlung’
pQCD processes and annihilated in the reverse channel.

The importance of radiative processes for an expanding partonic system can be easily
understood as follows. In an initially thermalized expanding system with conserved
particle number the particle density decreases with time, n oc 77!, For an ideal fluid
the temperature would evolve according to Eq.(6.34), T' « 771/3 and the fugacity would
thus stay constant, A oc n/T? = const. If dissipation is present, the dissipated energy is
turned into the inner energy of the system, i.e. into heat, as follows from Eq.(6.31), and
the temperature decreases slower than in ideal hydrodynamics: T o< 77 1/3%9 with § > 0.
This leads to a continuous decrease of the fugacity: A oc n/T% o< 7739 The system is
thus driven off chemical equilibrium, which is the A\ = 1 state. Chemical equilibrium
can be restored if the particle number increases and thus the particle density decreases
slower than 771, i.e. if particles are produced in inelastic processes.

As already discussed in Section 2.4.3, in presence of inelastic particle number changing
processes — which are in lowest order QCD the 2 — 3 and reverse processes — the particle
number four-current N* is not conserved. From the point of view of kinetic theory the
particle number current is defined as the 1st moment of the phase space distribution

f(z,p):
N = /p“f(a:,p)df. (11.3)

The divergence of the particle four-current 9, N* can be written as Oth moment of the
collision term, as already demonstrated earlier in Eq. (2.43):

9, N# = /dFC[f] =J. (11.4)

The explicit form of the collision term is given in Egs. (7.6) and (7.7). For a one-
dimensional boost-invariant expansion the left hand side of the latter equation can be
rewritten as follows n

8NN“:7'L+;=J. (11.5)

If particle number conservation is considered, the source term J is identical 0. From the
kinetic theory point of view, the origin of J is the inelastic part of the collision term Cas,
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comp. Eq. (7.7). As demonstrated in Appendix D, if one considers the differential cross
section doa3/dS) for the inelastic 2 — 3 processes to be angle independent (isotropic),
Eq. (11.5) can be written for a one-dimensional boost-invariant system in the following
form:

1 1 1
n + g = §nR23 — §HR32 = 5”2 (1 - )\) 023, (11'6)

with 023 being the total — i.e. angle integrated — cross section.

Equation (11.6) constitutes the evolution equation for the particle density in a anisotropic
system in presence of inelastic processes. The derivation of Eq. (11.6) given in Appendix
D is consistent with Grad’s approximation for the off-equilibrium, anisotropic, distribu-
tion function, which means that it can be included into the set of second and third-order
dissipative hydrodynamic equations derived in this work. However, before I discuss the
hydrodynamic equations including particle production, I remark that the concept of
particle density and particle number, as used here, is an "artifact” of the microscopic,
kinetic picture of the QGP. In numerous implementations of dissipative hydrodynamics
[62, 47, 116, 196, 197] the authors do not introduce an independent evolution equation
for the particle number density for each particle species. Rather, the temperature 7' is
often defined via the energy density e:. For a Boltzmann gas this means

2 1/4
T=[—. . 11.
(39 e) (1L7)

This definition implies full chemical equilibration of the system, A = 1, at all times during
the evolution. However, this assumption leads to a contradiction with the assumption of
non-vanishing viscosity, as demonstrated in the following. For a one dimensional boost-
invariant system from Egs. (11.7) and (6.30) follows

T 1 1
=—— 4. 11.8
T 37’+4e7' ( )

On the other hand, using the Boltzmann distribution (6.13) with A = 1 one obtains
n/T? = const, which leads using Eq. (11.8) to

n T 1 3

E—ST——;—FZ;. (11.9)
If A = 1 the latter equation is only consistent with Eq. (11.6) if 7/e = 0, i.e. if the evolu-
tion of the medium is in fact ideal. Thus, Eq. (11.7) — and the A = const = 1 assumption
— is inconsistent with the assumption of finite shear viscosity or relaxation time, which
means it is only applicable in the limit of infinitely large inelastic collision rates. In this
sense A = 1 scenario can be interpreted as instantaneous chemical equilibration scenario.
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11.1.2. Second-order hydrodynamic evolution equations including number
changing processes.

For a one-dimensional boost-invariant system Eq. (3.19) can be written using Eq. (6.30)
as

. 1 r
F=——F ——— o=+ T + T (11.10)
T (&

Dependent on the considered scenario of chemical evolution, either Eq. (11.8) or 7' =
e/(3n) together with Eq. (11.6) can be used in the evolution equation for 7. However,
one finds that for the both scenarios — the one of instantaneous chemical equilibration
A(T) = 1 and the one of chemical equilibration via particle production and annihilation
with a given inelastic cross section 093 — the second-order evolution equation for 7 can
be written in a universal way.

ﬁ:—;—gj—F;j—iﬂn(l—)\)Jgg. (11.11)
I refer to the latter equation as the second-order equation. The case of instantaneous
chemical equilibration is realized by setting A = 1 in Eq. (11.11), which has to be solved
together with Eq. (6.30). If only elastic processes are considered, the inelastic cross
section o093 is identical 0 and Eq. (11.11) is identical with Eq. (6.36). In the case of
finite inelastic cross section, i.e. in a system with particle production and annihilation
processes, Eq. (11.11) is coupled to Egs. (6.30) and (11.6). A compact overview of the
different scenarios and corresponding equations is given in Appendix C.

11.1.3. Third-order hydrodynamic evolution equations including number
changing processes.

For a one-dimensional system of Boltzmann particles the general third-order equation
(3.33) can be written as

= —— — —— =+ +o——F+-———4—. (1112

T 8e 1m 1T 1 é 32 3m*T 3n%¢ n?
oo+ 2
Te 207 27 2T 2 e 2er 2eT 2ce¢ee er

In the third-order formalism the scenario of instantaneous chemical equilibration will not
be considered. Indeed, since instantaneous chemical equilibration implies infinite inelastic
collision rates and small /e ratio (as demonstrated in the discussion after Eq. (11.9))
the use of the third-order formalism is rather inconsistent in this case. In a chemically
equilibrating system in presence of inelastic processes the temperature T' = e/(3n) evolves
according to '

Keeping only terms up to third order one thus obtains

s 47 8 e T 1 ™
P T _aT 77_37_7(1 37) 1— Ao 11.14
T=- gy gy T8 T (L)l = Moz (11.14)
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I refer to the latter equation as the third-order equation. It has to be solved together
with Eqgs. (6.30) and (11.6). The scenario of conserved particle number is realized by
setting 093 = 0, in which case Eq. (11.14) is identical with Eq. (6.37) obtained earlier.

11.2. Results of hydrodynamic calculations.

In this Section I discuss solutions of the hydrodynamic equations derived previously
for systems with non-conserved net particle number. The production and annihilation
channels 2 <> 3 are included via the rate equation (11.6). In order to calculate the rates
inelastic cross section has to be introduced. In the calculations presented here the total
isotropic inelastic cross section oa3 is parametrized as follows

k

T AT2(4—In )’ (1L15)

023

where T' denotes the effective temperature, A the fugacity and k is a numerical factor
which can be chosen arbitrary. With the inelastic cross section parametrized this way,
the n/s ratio is approximately a constant, as demonstrated in Ref. [35] and will be
discussed later in this work. However, the value of 1/s is not completely determined
by the inelastic cross section (or, to be more precise, transport rate), since the elastic
processes do contribute to it as well. Although it was demonstrated in Chapter 9 in this
work and in Refs. |41, 33] that within pQCD framework the contribution from inelastic
processes is dominant, with isotropic cross sections considered in this Section this is not
necessary the case. Thus, the value of 77/s can be chosen arbitrary for the hydrodynamic
calculations which will be presented here. In calculations with constant 7/s the value
0.35 is chosen, i.e. roughly the upper limit deduced from comparisons with elliptic flow
measurements at RHIC [116]. The solutions presented in this section are obtained using
the setups summarized in the following table:

Type of initial condition Parameters
I. Chemically and kinetically equilibrated T=/T = 0.5, 7190 = 0.4 fm/c
with constant 7 /7 and o3 To=0.5 GeV, \g =1, mg/eg =0
II. Chemically and kinetically equilibrated n/s =0.35, 7o = 0.4 fm/c,

To =0.5 GeV, )\0 == 17 71'0/60 =0

III. Chemically and kinetically disequilibrated n/s =0.35, 19 = 0.4 fm/c,

Ty = 0.5/0.21/4 GeV, Ao = 0.2,
7T()/60 =0.1

The solutions to be discussed in the following Sections are obtained employing second and
third-order hydrodynamics equations including particle production processes. In addi-
tion, the particle number conservation and instantaneous chemical equilibration scenarios
are considered within the second-order formalism.
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11.2.1. Constant Knudsen number and inelastic cross section with
chemically and kinetically equilibrated initial condition.
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Figure 11.1.: Rescaled particle density (a), fugacity b), energy density (c), w/e ratio (d),
effective temperature (e) and entropy density (f) from solutions of second
and third-order hydrodynamic equations with chemically and kinetically
equilibrated initial condition, constant Kn = 7,/7 = 0.5 and constant
inelastic cross section oo3 = 2 GeV 2.

With the setup chosen here the interplay between the chemical and kinetic equilibration
processes can be studied. For the one-dimensional system considered throughout this
work, the relaxation time 7, = Kn - 7 is the same for all scenarios to be discussed here
— due to the choice of a constant Knudsen number the relaxation time is independent
of the dynamics. Since the inelastic cross section is constant, the possible differences of
the solutions can only be due to different forms of equations. The scenario of constant
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Knudsen number and constant inelastic cross section is rather academic, as the results
of BAMPS calculations including pQCD processes, presented in Chapter 9, indicate.

For the results presented in Fig. 11.1 the second-order formalism is solved considering
particle number changing processes (solid red lines), particle number conservation (solid
blue lines) and instantaneous chemical equilibration (solid green lines). The third-order
formalism is solved including particle number changing processes (dashed magenta lines).
The results on n, e and T are rescaled by the ideal hydrodynamic evolution factors [comp.
Egs. (6.32)-(6.34)]. Comparing the results on shear pressure to energy density ration
in Fig. 11.1(d) one can conclude that kinetic equilibration is rather independent of the
chemical processes in the system. If 7 is the same, both particle conservation and
particle production scenarios lead to nearly same values of 7/e. Same is observed for
the energy density in Fig. 11.1(c), since its evolution is determined by 7 /e according to
Eq. (6.30). The solutions of the third-order formalism are closer to kinetic equilibrium,
as indicated by the smaller /e ratio in 11.1(d) and a smaller rescaled energy density in
11.1(c). This is the effect of the additional, third-order damping term in the evolution
equation for 7, as already discussed in Chapter 10.

On the other hand, the chemical evolution of the system is only slightly affected by the
degree of kinetic equilibration, as demonstrated by the particle number density evolution
in Fig. 11.1(a) for second and third order calculations with non-vanishing inelastic cross
section. The particle number density is nearly the same although a more significant
difference is observed for 7 /e from second and third-order calculations. Accordingly, the
effective temperature and the fugacity are nearly the same in both cases.

Inclusion of particle number changing processes has of course a significant effect on
particle number density, fugacity and temperature if they are compared to the results
obtained from the particle number conservation and instantaneous chemical equilibration
scenarios. A constant A = 1 is associated to the largest amount of particle and entropy
production, as shown in Fig. 11.1(a) and (e). Temperature decreases much slower if
particle number is conserved, as shown in Fig. 11.1(e). This, together with 7/e being
insensitive to particle production, should have a significant effect on transverse spectra,
according to Eq. (8.1). The effect of hydrodynamic evolution on the spectra will be
studied later in this Chapter.

Main conclusion that can be drawn from the comparison of the results presented in
this Section for constant Kn and o3 is that the chemical and kinetic evolution of the
system are only weakly coupled to each other in scope of the formalism considered here.

11.2.2. Constant 7/s and time-dependent inelastic cross section with
chemically and kinetically equilibrated initial condition.

The results presented in Fig. 11.2 are obtained using a constant 7/s value and a time-
dependent inelastic cross section, parametrized according to Eq. (11.15) with & = 1
(comp. discussion in Ref. |[35|, where Fig. 11.2 was first published). The results are
rescaled in the same manner as in Fig. 11.1. With the time-dependent inelastic cross
section and constant 7/s the system is able to relax towards equilibrium chemically
and kinetically after a certain time, as indicated by increasing fugacity in 11.2(b) and
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Figure 11.2.: Solution of second and third-order hydrodynamic equations with chemically
and kinetically equilibrated initial condition, constant /s = 0.35 and time
dependent inelastic cross section given by Eq. (11.15) with k£ = 1.

decreasing 7 /e ratio in 11.2(d). Similar to the situation in Fig. 11.1, the kinetic evolution
is marginally influenced by the details of microscopic interactions, since the scenarios
with conserved and time-dependent particle number lead to approximately same values
of m/e, as demonstrated in Fig. 11.2(d). Correspondingly, the energy density in 11.2(c)
is insensitive to the chemical evolution of the system.

The particle number density evolution is only weakly sensitive to the kinetic equili-
bration process, as follows from the comparison of second and third-order calculations
in Fig. 11.2(a) and (b). This is consistent with the observations from previous Section.
The effect of chemical equilibration on evolution of the temperature is significant — a
runaway loss of chemical equilibrium observed in Fig. 11.2(b) for the o23 = 0 scenario
leads to a significantly slower decrease of the temperature in Fig. 11.2(e) in comparison
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to the scenario with non-vanishing o23. The possibility of particle production and anni-
hilation leads to an increased entropy density; at the same time, inclusion of third-order
terms decreases the entropy density, as demonstrated in Fig. 11.2(f). If particle number
changing processes are included, the solutions converge to the solutions obtained for the
scenario of instantaneous chemical equilibration after a certain time. However, there are
observable differences in the temperature and particle density evolution.

Comparison of the results obtained with constant /s and time-dependent o293 confirms
the conclusion made from the analysis of constant Kn and 023 scenario. The chemical and
kinetic evolutions are weakly coupled to each other. Inclusion of chemical equilibration
via particle number changing processes has a significant effect on the temperature of the
system.

11.2.3. Constant 7/s, chemically and kinetically disequilibrated initial
condition.

If the initial condition is chemically and kinetically equilibrated, the evolution of the sys-
tem goes through a phase of disequilibrium to a phase of relaxation towards equilibrium.
In this case evolution of the instantaneous chemical equilibration scenario differs only
marginally from evolution of a chemically equilibrating system, as one could observe in
the previous Section. However, the assumption of an equilibrated initial state for the
QGP is a strong assumption. An examples of chemically and kinetically disequilibrated
initial conditions is the color glass condensate discussed in Chapter 7.4.1 and in Refs.
[147, 142, 150, 198, 199, 71, 72]. In this section I consider a system with constant 1/s
, time-dependent 093 and a disequilibrated initial condition with 7 (79)/e(m9) = 0.1 and
A(10) = 0.2 in order to demonstrate the sensitivity of the results to the initial loss of
equilibrium. The results are shown in Fig. 11.3 and are rescaled like in the previous two
sections.

With the disequilibrated initial condition the difference between the instantaneous
chemical equilibration scenario and and a scenario with finite inelastic cross section be-
comes more pronounced than in previous two sections. The particle, energy and entropy
densities from calculations with finite inelastic cross section converge slower towards the
A =1 result, as shown in Fig. 11.3(a), (c) and (f).

The particle number conservation scenario leads to a significantly larger temperature
than the chemical equilibration scenarios — comp. Fig. 11.3(c). This difference is even
larger than the one observed with equilibrated initial conditions. This again stresses the
importance of the proper treatment of particle number evolution in scope of hydrody-
namic formalisms.

The differences between second and third-order calculations also become more pro-
nounced with disequilibrated initial conditions. The particle, energy and entropy densi-
ties calculated with third-order formalism are smaller than the second-order results, as
shown in Fig. 11.3(a), (¢) and (f).
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Figure 11.3.: Solution of second and third-order hydrodynamic equations with chemically
and kinetically disequilibrated initial condition, constant n/s = 0.35 and
time dependent inelastic cross section given by Eq. (11.15) with k£ = 1.

11.2.4. Effect of chemical evolution on transverse spectra.

In the previous three Sections a proper treatment of chemical evolution in hydrodynamic
formalism was shown to have a significant effect on the effective temperature 7. This
observable is accessible in the heavy-ion experiments via the transverse spectra of such
electromagnetic probes as photons or dileptons, which do not interact with the system
after the production time point and for this reason already in the late 70s were considered
a good probe of the early stage of heavy-ion collisions [200, 3|. The effect of momentum-
space anisotropy on the dilepton spectra was studied by MARTINEZ and STRICKLAND

employing second-order hydrodynamic formalism with conserved particle number in Ref.
[103].
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In this section I present the transverse spectra reconstructed from hydrodynamic cal-
culations presented in Sections 11.2.2 and 11.2.3. Hydrodynamic evolution equations
(11.11), (11.14) and (11.6) were derived using the off-equilibrium distribution from Eq.
(8.1). The normalized transverse spectrum

dN

e dyd 11.16
Noprdor /pof yde ( )

can be calculated by a numerical integration of Eq. (8.1) using the results of second-order
hydrodynamic calculations presented in Figs. 11.2 and 11.3.
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Figure 11.4.: Transverse spectra reconstructed from the results presented in Fig. 11.2 at
7 = 0.4, 1.0, 4.0 and 8.0 fm/c. Initial condition is equilibrated chemically
and kinetically and thus unique for all three scenarios. Arrows indicate the
transitions between sequential time points.

The normalized transverse spectra at different time points obtained from calculations
with equilibrated initial conditions for different scenarios of chemical evolution (particle
number conservation, particle production and annihilation and instantaneous chemical
equilibration) are shown in Fig. 11.4. In all three scenarios the evolution starts with
the same, equilibrated, initial condition. One observes that the spectra are sensitive
to the chemical evolution of the system: without the inelastic collisions (red lines) a
strong deviation from chemical equilibrium leads to a significantly flatter spectrum. The
difference between the spectra obtained with and without inclusion of inelastic processes
(blue and red lines) becomes more pronounced at later times (7 = 8 fm/c). The spectra
obtained with the scenario of instantaneous chemical equilibration (red lines) are nearly
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identical with the ones of a chemically equilibrating system (blue lines) although small
differences are observable at intermediate time 7 = 4 fm/c.
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Figure 11.5.: Transverse spectra reconstructed from the results presented in Fig. 11.3
at 7 = 0.4, 1.0, 4.0 and 8.0 fm/c. Initial condition is disequilibrated both
chemically and kinetically. For the A = 1 scenario the initial condition is
disequilibrated only kinetically. Arrows indicate the transitions between
sequential time points.

If a chemically and kinetically disequilibrated initial condition is considered, as for
the results presented in Fig. 11.3, the difference between the spectra from the three
scenarios becomes larger than in the case of fully equilibrated initial conditions. Fig.
11.5 demonstrates the spectra reconstructed using the results from Fig.11.3. If the initial
state is chemically disequilibrated, there is a clear difference between the spectra from
the scenarios of instantaneous (green lines) and dynamical (blue lines) chemical equili-
bration at early (7 = 1.0 fm/c) times. At late times (7 = 8.0 fm/c), as equilibrium is
nearly restored, both scenarios are again almost indistinguishable. Again, if only elastic
scatterings are considered (red lines), the spectra are considerably flatter throughout the
evolution, since the deviation from chemical equilibrium increases dramatically.

The observed differences of the spectra obtained using Grad’s approximation from Eq.
(8.1) are clearly due to different evolution of the effective temperature, which is mainly
sensitive to the evolution of the particle number density (since 7/e ratio shows only weak
sensitivity to the chemical evolution of the system, as shown in Figs. 11.1, 11.2 and 11.3).
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Conclusions I.

To conclude, the inclusion of chemical equilibration via particle production and annihi-
lation processes into hydrodynamic formalism proves to be important — in the first place
with respect to evolution of the effective temperature 7. This observable reveals the
strongest sensitivity to the details of microscopic processes considered in an expanding
system with finite interaction rates, such as the QGP. The transverse spectra are highly
sensitive to the degree of chemical equilibration in the system. Strong deviations from
chemical equilibration lead to strong modifications of the temperature 7' and thus of
the slopes of transverse spectra, which are both important observables with respect to
electromagnetic probes in heavy-ions collisions.

11.3. Comparison between dissipative hydrodynamic
calculations and BAMPS results for a system with
non-conserved particle number.

In this section the results of hydrodynamic calculations including particle production
and annihilation are compared to the results obtained from kinetic transport model
BAMPS, which was introduced in Chapter 7. The comparisons presented in this section
are analogous to the ones presented in Chapter 10, where the particle number in the
system was assumed to be constant. The results presented in this Section were previously
published in Ref. [35].

In BAMPS we consider isotropic cross sections. For the inelastic processes the total
cross section is calculated via Eq. (11.15) and for the 3 — 2 channel one obtains 73y =
12gm2093. For the elastic channel 2 — 2 the cross section is chosen to be identical with
the inelastic one: o922 = o923. The choice of isotropic cross sections for the collision
processes makes a comparison with hydrodynamic formalism easier, since the rates Ras
and Rsg in the rate equation (11.6) can be calculated analytically and Eq. (11.6) can be
solved directly without any input from BAMPS.

In order to find a parametrization for the shear viscosity coefficient 1, the n/s ratio
is extracted from BAMPS calculations. This is done via Eq. (9.3) with s =4n —nln A
in the same manner as for pQCD cross sections in Section 9.1. The results on 1/s as
function of proper time 7 in BAMPS calculations with £ = 0.5, 1, 3 and 6 in Eq. (11.15)
are shown in Fig. 11.6. The extracted /s ratio is in a good approximation constant in
time.

The values

n/s (k) =0.05 (6), 0.1 (3), 0.35(1), 0.75(0.5)

are used together with Eq. (11.15) to solve the set of hydrodynamic equations (11.6),
(6.30), (11.11) and (11.14). The solutions of second (Israel-Stewart) and third-order
hydrodynamic equations are compared with the corresponding BAMPS calculations in
Figs.11.7-11.11.

In Figs. 11.7 and 11.8 we observe that the energy density and the shear pressure from
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Figure 11.6.: Shear viscosity to entropy density ratio as function of time extracted from
BAMPS calculations using Eq. (9.3). In BAMPS calculations isotropic elas-
tic and inelastic cross sections o992 = 093 are parametrized via Eq. (11.15)
with & = 0.5, 1, 3 and 6.

the third-order hydrodynamic calculations agree perfectly with the BAMPS results even
for large 7/s values. In contrast, the viscous effect is overestimated by the second-order
equations. This becomes significant for large /s values, which mark the applicability
boundary of the second-order approach. These findings are in line with observations
in Chapter 10 and in Ref. [34], where particle changing processes were not taken into
account.

The difference in the particle number density (Fig. 11.9) between the hydrodynamic
and BAMPS results is large at large n/s values. Although both second and third-order
equations give larger densities than those in BAMPS, the third-order results are closer
to the ones from BAMPS . On the other hand, looking at the temperature T' (Fig.
11.10) and the fugacity A (Fig. 11.11) one observes that the second-order results show
better agreement with the BAMPS results than the third-order ones. However, it is
difficult to make conclusions about applicability of a hydrodynamic approach based on
the observables 7" and A. These quantities are defined via e and n, but not solved directly
from the hydrodynamic equations. If we consider the particle number conservation, the
results on T"and A from the third-order calculations are in very good agreement with those
from BAMPS, as can be concluded from the observations in Chapter 10 and Ref. [34].
In the situation considered here, small differences between hydrodynamic and kinetic
transport results on both key observables e and n translate into differences in 7" and A
in a non-trivial way.

To understand the differences in particle number densities between the hydrodynamic
and BAMPS results, I examine Eq. (11.6), which is valid by virtue of Grad’s approxi-



118 11.

[y

Hydrodynamic evolution of a chemically equilibrating Gluon Plasma.

e ()" (Geviim®) e - (1119)*® (GeV/im®)

35 L L L L L L L L
05 1 15 2 25 3 35 05 1 15 2 25 3 35 4

1(fm/c) (fm/c)

Figure 11.7.: Rescaled energy density e from BAMPS, second and third-order hydrody-

namic calculations. Particle production included via isotropic cross section
given by Eq. (11.15).

mation (8.1). For this calculate the difference of the rates and the right hand side of Eq.
(11.6) are calculated using the actual values of Ra3, R32, n, A, and o923 extracted from
the BAMPS. The results are shown in Fig. 11.12. Except for the case of n/s = 0.05,
n?(1 — N)oaz/2 is always larger than n - Ro3/2 — n - R3a/3, which leads to a stronger
particle production in the hydrodynamic than in the transport approach, as seen in Fig.
11.9. This indicates that the approximate distribution (8.1) must deviate from the one
extracted from BAMPS. In fact, the deviations between Grad’s approximation and the
particle distribution extracted from BAMPS were already quantified and discussed in
Chapter 8. In Fig. 11.13 the differences between BAMPS and hydrodynamic spectra
are shown for calculations with & = 0.5, 1 and 3. The hydrodynamic spectra are re-
constructed using the results of BAMPS calculations together with Eq. (8.1). With
the values of k = 0.5 — 1, the deviations are of order of 10% for pr < 3 GeV, which
is consistent with the observations in Chapter 8. For these values of k, correspond-
ing to /s = 0.35 — 0.75, Eq. (11.6) is not exactly satisfied, as demonstrated in Fig.
11.12. Thus, the differences in evolution of the particle number density in hydrodynamic
formalism and in BAMPS can be explained due to insufficient accuracy of Grad’s ap-
proximation for the off-equilibrium distribution function. Since the evolution equations
for the shear pressure 7 and the expression for the viscosity coefficient 1 are derived using
Grad’s approximation, the observed non-conformance between the latter and the actual
off-equilibrium distribution in kinetic transport calculation leads to non-conformance of
the macroscopic observables.
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Figure 11.8.: Shear pressure to energy density ratio 7/e from BAMPS, second and third-
order hydrodynamic calculations. Particle production included via isotropic
cross section given by Eq. (11.15).

Conclusions IlI.

In this section the shear viscosity to entropy density ratio n/s was extracted from BAMPS
calculations with isotropic elastic and inelastic cross sections and employed to solve
hydrodynamic equations for systems with non-constant particle number. Comparisons
between hydrodynamic and kinetic transport calculations demonstrated a reasonably
good agreement concerning the bulk observables e and n. The visible deviations in
particle number are due to insufficient accuracy of the rate equation (11.6). The third-
order equations provide a better description of kinetic transport results considering the
energy and particle densities e and n and the shear pressure to energy density ratio
m/e; they lead to a faster decrease of the temperature and larger values of fugacity.
The second-order equations provide a better description of 7" and A, but lead to larger
deviations considering all other observables.

Since the approximation-based evolution equations for n, e and 7 are solved directly
in hydrodynamic formalism, these quantities should be used to quantify the accuracy of
hydrodynamic description. However, the interplay between the values of 7, e and n is non-
trivial and a straight-forward quantitative analysis of deviations between hydrodynamic
and BAMPS results like in Chapter 10 becomes complicated. Quantitatively, the third-
order formalism provides a better description of kinetic transport results on the key
observables n, e and m/e. Considering these three observables the deviations do not
exceed 10% even for /s = 0.75 (k = 0.5) which is larger than the critical values of /s
found in Chapter 10 for identical initial condition. The possible explanation for smaller
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Figure 11.9.: Rescaled particle number density n from BAMPS, second and third-order

hydrodynamic calculations. Particle production included via isotropic cross
section given by Eq. (11.15).

deviations might be in fact the possibility of particle production, which is an additional

mechanism of cooling and thus a counter-weight to the reheating due to energy dissipation
in the hydrodynamic formalism.
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12. Hydrodynamic evolution of a
two-component system with
conserved particle numbers.

In this Chapter dissipative hydrodynamic equations for a two-component system will
be given for a one-dimensional system with transverse symmetry, following the same
premises as in Chapter 6. The shear viscosity coefficients for the two components, given
in a general form by Eq. (4.12), will be evaluated for a one-dimensional system using
Grad’s ansatz for the distribution functions and isotropic elastic cross sections. The
results of hydrodynamic calculations will be compared with kinetic transport ones. In
addition I will discuss whether the obtained evolution equations for the components of
a mixture can be summed up into a effective, one-component equation. The question to
be addressed in this respect is whether a one-component hydrodynamic theory can be
applied to describe a multi-component system. This is of course highly relevant for heavy-
ion systems produced in experiments at RHIC and LHC, since the QGP is a mixture of
quarks and gluons.

Note that hydrodynamics of mixtures is a highly interesting topic not for for the heavy-
ion research community (comp. for instance the discussion of hadronic mixture in Ref.
[99]), but also in physics of materials (like physics of polymeric fluids [96]), biophysics
[97] and plasma physics [98], just to name some.

12.1. Hydrodynamic equations for a two-component system
in one dimension.

Let us consider a system of two components, Flavor 1 and Flavor 2. In analogy to
Chapter 6, Bjorken flow is assumed, i.e. d,u* = 1/7. The evolution equations for the
particle densities follow from the conservation of the partial particle flow vectors (3.50):
. n;

n;=——. 12.1

=1 (12.1)

The evolution equations for the energy densities cannot be obtained for a general
situation, since the partial energy-momentum tensors are not conserved and the form of
the source terms, describing energy-momentum exchange between components are not
known in scope of the approach discussed in this work. However, assuming same effective
temperature for all components, as expressed by Eq. (3.51), one can obtain evolution
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equations for the partial energy densities. Since Eq. (3.49), expressing total energy

conservation, leads to
de 7
6 = ——— + — 12.2
e 37 + - ( )
for the total energy density e (as already discussed in Section 6.2), and since from Eq.
(3.52) follows that

e =e—, (12.3)

G=—mm—m =2 (12.4)

where n denotes the total particle density.

To complete the set of hydrodynamic equations, B2 ; first must be specified. Since the
Grad’s ansatz for the off-equilibrium distribution function is formally identical for one-
and multi-component case, the 82; are analogous to the one-component coefficient [,
calculated in Section 6.1 and Appendix B:

9

Pa,i = 10 (12.5)

From Eq. (3.56) now follows

5 471',‘ 8 €;

C28m; 3T 21T

T = (12.6)

Finally, the expression (4.12) for the shear viscosity coefficients n; must be evaluated
for a one-dimensional system. The integrals in Eq. (4.12) can be evaluated analytically
for the case of binary cross sections with isotropic angle distributions. Only this case will
be considered here. The details of this calculation are given in Appendix E. One obtains

[201, 36]
5 7 nj 17 5 -1
ni=T (6%‘ + Enj-aij - 37r,-0ij> : (12.7)
In the latter equation 011 and o922 denote total cross sections for scattering of particles
of same Flavor (self-collisions), whereas 012 = 091 refers to scattering of particles of
different Flavors (inter-collisions).

Inserting Eq. (12.7 ) into (12.6) one finally obtains the evolution equations for partial
shear pressures in a two-component system [36]:

4,

. ) 7 2 8 ¢;
T = —T; * <9nicm + gnjaij> + ;- (9??401']') — §7 + 277?1 . (12.8)

The equations are coupled, as one would expect, via the inter-collision cross section. In
the limit of two identical species, which can be realized either by setting 11 = 092 = 0
or by setting A1 = A2, Eq. (12.8) is identical with the one-component Israel-Stewart
equation (6.36).
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12.2. Effective shear viscosity of a multi-component system.

The deconfined state of QCD matter produced at early stages of ultrarelativistic heavy-
ion collisions at RHIC and LHC is a multi-component system with quark and gluon
degrees of freedom. Although the initially produced quark-gluon plasma (QGP) might
be dominated by gluons, as follows from the CGC framework [202], a considerable amount
of quarks is produced on the way to thermal and chemical equilibration [187, 89, 88|.
However, most of the presently known relativistic dissipative hydrodynamic formalisms
[40, 80, 93, 39] and their applications are based on a one-component picture of the QGP.
From comparisons with experimental results on the elliptic flow v9 at RHIC [7] and LHC
[203] the shear viscosity to entropy density ratio of the QGP was extracted in Refs.
[47, 204, 205, 206] using one-component formalisms. Still it is now clear whether a multi-
component system behaves like a one-component system. In case it does not, the shear
viscosity to entropy density ratio cannot be chosen freely and can be expected to have a
complicated time dependence due to complicated dynamics of the mixture.

A dissipative hydrodynamic formalism reported recently in Ref. [100] allows to cal-
culate global properties of a multi-component system, but does not allow for describing
each component separately. Since the equilibration time scales for quarks and gluons
in QGP might be significantly different, as pQCD based kinetic transport calculations
indicate [30], it is important to consider a multi-component hydrodynamic formalism
which is able to describe the dissipative properties of each component properly and thus
able to describe the complicated dynamics of the mixture. Such formalism was for the
first time reported in Ref. [36] and in this work.

In this section I will discuss hydrodynamic behaviour of a mixture of two components.
This means the system as a whole will be considered. Adding up Egs. (12.8) for all
components one obtains the evolution equation for the total shear pressure m = my + 7o,
which can be written as follows:

2 me 4T Qe

T=—— ——— 4 ——. 12.
T INerr 37 + 27T (12.9)

In the latter equation the effective shear viscosity of the mixture 7.s; is defined via

e 5
= — (7T1n10'11 + m1noo19 + Tongo92 + 7r2n10'12) . (12.10)
Neff 2

Using the expressions for the mean free paths \; = n1011+n2012 and Ay = ngoos+n1012
one thus can write

2 _ _1y -1
Neff = 5e(a1>\11+a2A21) (12.11)
with the coefficients .
= —. (12.12)
71'

The effective shear viscosity (12.11) explicitly depends on the partial shear pressures.
Thus in general it is not a unique characteristic of the mixture, but rather depends on
the dynamics.Nevertheless it is possible to apply Eq. (12.11) in the quasi-stationary
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limit, i.e. in proximity of equilibrium, when the coefficients a; become constant. The
expectation that «; become constant is reasonable, since the partial shear pressures
approach zero as the system approaches equilibrium, whereas the shear viscosity can be
defined for a equilibrated medium by means of the Green-Kubo relation [207].

Let us now consider the (quasi-) stationary limit

Gi=0e 2 (7”> =0. (12.13)

ot \ o

Using Eqgs. (12.8) and neglecting any terms explicitly proportional to 1/7 (i.e. in the
T — oo limit) one obtains the stationary solution for my /ma:

N S Ry (12.14)
0i1=0i2=0 n2

) 1 1 1 n1
= ([——=)+=z(1-—=). 12.1
" 4n2012 <)\1 /\2) + 2 < ng) ( 5)

With 71 /m from Eq. (12.14) the effective shear viscosity (12.11) can be calculated in
terms of the energy and particle densities and cross sections only.

1

2

where

12.3. Comparison with kinetic transport calculations.

Static setup.

Dissipative hydrodynamic equations for multi-components systems presented in this work
are novel. For the first time they were reported in Ref. [36]. In the kinetic transport
theory multi-component systems were studied for example in Refs. [140, 30]. In this
Section solutions of hydrodynamic equations are compared with kinetic transport results
obtained from BAMPS. All calculations are done for the case of isotropic distribution of
scattering angles.

We first consider a spatially isotropic medium. This means, all gradients 0,u* vanish
and terms explicitly proportional to 1/7 are neglected in Eqs. (12.8), (12.4) and (12.1).
In such static setup the energy and particle densities are conserved, é = 0 and n = 0.
In BAMPS this is realized by confining the medium in a static box. This setup allows
to verify validity of the transition between kinetic transport theory and hydrodynamics,
since all non-vanishing terms in Eq. (12.8) originate from kinetic transport theory.

Solutions of Eq. (12.8) are compared with BAMPS calculations in Fig. 12.1. The
results are shown for following initial conditions: o3 = 10 GeV~2, g9 = 011/2,
0992 = 011/4, T =04 GeV, 7T1/61 =0.3. In Fig. 12.1(&) 7T2/€2 = 0 and n1/77,2 = 1.
In Fig. 12.1(b) m/ea = m/e1 = 0.3 and ni/ny = 5. The solid gray lines show a one-
component solution, given by Eq. (6.36), with the effective shear viscosity calculated
according to Eq. (12.11). A good agreement — with deviations below 10% — between hy-
drodynamic and kinetic transport calculations can be observed for both initial conditions,
which demonstrates validity of the derived hydrodynamic equations. One clearly observes
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Figure 12.1.: Evolution of partial and total shear pressures from multi-component hy-
drodynamic (lines) and BAMPS (symbols) calculations. Solid gray lines
show solutions of one-component equations with an effective shear viscos-
ity of the mixture. Initial conditions are ma/ea = 0, n1/ne = 1 (a) and
ma/ea = m/e1, ni/ne =5 (b). See text for further details. Inlays demon-
strate relative deviation between hydrodynamic results and BAMPS.

development of shear pressure in the initially equilibrated Flavor 2 in Fig. 12.1(a). The
one-component solution cannot describe evolution of the total shear pressure at all times.
Only after a certain time, which is needed to achieve a quasi-stationary state, the system
can be described by a one-component equation with an effective shear viscosity coeffi-
cient. One can draw this conclusion since the one-component solution and total shear
pressure from BAMPS become parallel at late times. Existence of quasi-stationary limit
in kinetic transport calculations is demonstrated in Fig. 12.2, where the ratio me/m is
shown for the situation depicted in Fig. 12.1. Note that due to low values of the partial
shear pressure, at late times BAMPS results are fluctuating strongly, although the results
presented here are obtained with very large, ~ 107, particle numbers per rumn.

To give a stronger proof of applicability of the one-component description at late times
one can consider a system where the initial 7 /72 ratio is exactly the one in stationary
limit. This is done for example for the situation depicted in Fig. 12.1(b) and the result
is demonstrated in Fig. 12.3. One clearly observes that a one-component description is
applicable only in the quasi-static limit defined via Eq. (12.14).

Note that the shear viscosities 7; of the components of the mixture are not positive
definite, as follows from Eq. (12.7). The initial conditions can be chosen such that
one of them becomes negative in a two-component mixture. Thus 7; cannot always be
interpreted as transport coefficients in the usual sense. Still, negative values do have
a physical meaning: a negative viscosity 7; means, according to Eq. (12.6), that the
corresponding partial shear pressure increases, i.e. the component of the mixture is
brought from equilibrium. This can happen if the shear pressures of the two components
are very different, so that one of the components is brought out of equilibrium during the
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Figure 12.2.: Ratio of partial shear pressures shown in Fig. 12.1 from hydrodynamic
(lines) and BAMPS (symbols) calculations.

other one relaxes towards equilibrium. In fact, the shear viscosity 72 becomes negative
in the situation shown in Fig. 12.1 (a), and as long as it is negative shear pressure 7y
increases. As 12 becomes positive, mo starts decreasing. Evolution of 72 is shown in Fig.
12.4. The viscosity coefficients 12 has a divergence, which means that the corresponding
relaxation rate 1/(21n202,2) becomes zero and changes its sign. Note that in the quasi-
static limit m /m2 = const both coefficients 71 and 72 are strictly non-negative and thus
only then attain the usual meaning of viscosity coefficients.

Longitudinal expansion.

In an expanding system the energy density is not conserved due to volume change. In
addition to expansion, also dissipation has an effect on evolution of the energy density,
as Eq. (12.4) states. Thus the assumption of equal temperatures in a mixture in general
cannot hold as soon as expansion is considered. For a comparison with kinetic transport
calculation I consider the following initial conditions: 79 = 0.4 fm/c, T'(19) = 420 MeV.
The degeneracy of both Flavors is chosen to be 16 and the initial fugacities are Ay = Ag =
1. The cross sections are o117 = 20 GeV™2 ~ 7.8 mb and 099 = 0.2 - 013 together with
o012 = 0.5-011 resp. 012 = 0.001-0711. The results on shear pressure and temperature are
shown in Fig. 12.5. One observes that the temperatures of the two components indeed
evolve differently in the case of non-equal cross sections for self-collisions, though the
difference of the temperatures is significantly reduced as the inter-collision cross section
becomes larger (as follows from comparison of Fig. 12.5 (a) and (b)).

The obtained hydrodynamic equations can be applied to estimate dissipative effects
in a quark-gluonic system. In order to mimic the gluons and quarks in a QGP I choose
the degeneracy factors to be di = 16 and dz = 24, thus considering two flavours, Ny =
2. Only momentum-independent differential cross sections and elastic processes can be
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Figure 12.3.: Evolution of shear pressure with initial conditions corresponding to the
quasi-static limit defined by Eq. (12.14). Cross sections and densities are
same as for Fig. 12.1(b).

considered. The cross sections are parametrized as follows:
O'ij = ]i‘@'j/T2 . (12.16)

These cross sections are meant to mimic the following processes: gg <> gg, gq <> gq and
qq <> qq. Quarks and anti-quarks are considered indistinguishable for these studies. For
these processes the existing leading order pQCD calculations yield the following ratios
of differential cross sections |30, 208|:

dagg(—)gg dqung

4999099\ / (1090590 -, /4 12.1

( a )\ Ta s —

Q9990099 ) / (B%aacaa’) o (9/)2 (12.18)
dt dt ' '

These ratios will be used to mimic the elastic processes in a quark-gluon plasma using
parametrization (12.16).

To gauge the initial conditions for RHIC and LHC energies, the charged particle mul-
tiplicity in the central rapidity region can be used. For the initial fugacities A1 and Ay
of gluons and quarks accordingly the two cases Ay = Ao =1 and A\; = 1, Ay = 0.2 will
be used for both RHIC and LHC conditions. For sake of simplification parton-hadron
duality will be assumed, i.e. at the phase transition one parton will correspond to one
hadron. For RHIC energies the initial time 79 = 0.4 fm/c is used. The initial temper-
ature at initial time 79 = 0.4 fm/c is chosen to be such that the final total transverse
energy per unit rapidity at mid-rapidity is dE7/dy ~ 600 GeV|[209] at T ~ 4 fm/c. At
this time the energy density drops below 1 GeV/fm? and thus the phase transition can
be expected to take place. Assuming initial thermal equilibrium one then obtains the
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Figure 12.4.: Evolution of shear viscosity coefficients 7o for situation shown in Fig.
12.1(a).

initial temperatures Tp = 300 MeV with A\j(79) = A2(79) = 1 and Ty = 340 MeV with
A(70) = 1, Aa(19) = 0.2.

Currently no data on average transverse energy per particle in the LHC experiments
with center-of-mass energy /s = 2760 GeV is available. To estimate the initial tem-
perature for this scenario one can use the observation, that average transverse energy
per particle Ep/N saturates for SPS and RHIC energies [210] and thus one can assume
that the value dE7/dy ~ 600 GeV observed at RHIC can be rescaled with the ratio of
multiplicities at LHC and RHIC. Using dN/dy ~ 1600 at LHC [211] and dN,/dy ~ 700
at RHIC [209] one obtains

dEp
dy

 dEr

LHC dy

Assuming the lifetime of QGP at LHC to be ~ 9 fm/c (which is the final time 4 fm/c
for RHIC conditions rescaled with the ratio of multiplicities) and the initial time 7 =
0.25 fm/c, we obtain for the initial temperature Ty = 450 MeV with A\; = A9 = 1 resp.
T(] = 510 MeV with )\1 == 1, )\2 =0.2.

Using Eq. (12.11) discussed in Section 12.2 one can calculate the effective 7/s ratio
of the quark-gluon mixture for the conditions discussed so far in this Section. For both
RHIC and LHC conditions one obtains /s = 0.23 in case A\; = A2 and /s = 0.28 in
case A1 = 1, Ay = 0.2. These values are within the range currently discussed in literature
for both RHIC and LHC experiments [206, 116, 204].

The results presented in Fig. 12.5 demonstrate that the temperature (and thus the
energy density as well) does not differ much for the two components of the mixture in
case the inter-cross section is not too small. Thus for the parametrization of cross sec-
tions (12.16) and (12.18) chosen here to mimic LO pQCD processes the strongest effect is
expected to be observed in evolution of the shear pressure. The shear pressure is in turn

. dN/dy|ppc )
rirc AN/dYlrprc

(12.19)
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Figure 12.5.: Evolution of partial shear pressures and effective temperatures in a expand-
ing system with two components. Results in panels (a) and (b) are obtained
with different inter-collision cross sections.

relevant for dissipative corrections to the transverse spectra, as already demonstrated in
Section 8 of this work and in Refs. [33, 35]. Here the dissipative corrections to transverse
spectra for a quark-gluonic mixture will be quantified using the model assumptions dis-
cussed above. A quantitative measure of the dissipative corrections to transverse spectra
can be defined as follows:

0dN (AN /pr/dpr)Grad _ Jprcoshy foo dydy

(pr) = —1= : (12.20)
dN, (AN/pr/dpT) thermal J prcoshy fo dydy
where ¢ is the off-equilibrium correction to the distribution function according to Grad’s
ansatz given by Eq. (8.1) (with the degeneracy factor 24 for quarks and 16 for gluons).
The ratio (12.20) describes change multiplicity due to dissipative correction relative to
the thermal yield.
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Figure 12.6.: Ratio defined in Eq. (12.20) extracted from hydrodynamic calculations
with RHIC typical initial conditions (see text) for different values of pr.
Results are shown for Flavour I (solid lines) and Flavour 2 (dashed lines)
and the total system (grey solid lines). The initial values of fugacities are
Ao, = Ao2 =1 (a)and A1 =1, Ag2 = 0.2 (b). The cross sections are time
dependent according to Egs. (12.16) and (12.18) with k11 = 0.9.

Results on %—ﬁ(pT) with the cross sections parametrized according to Eqgs. (12.16)

and (12.18) with kgy = k11 = 0.9 are shown in Fig. 12.6 and 12.7 for RHIC respectively
LHC initial conditions as discussed above. The results are shown for different values of
the transverse momentum pr. Panel (a) demonstrates the results for initial A\ = Ao =1
and panel (b) for initial \y = 1, Ao = 0.2. Significant effects of dissipation are observed
in both quark and gluonic distributions already for pr = 1 GeV ~ 3T (with T being
the initial temperature) for RHIC conditions and pr = 2 GeV ~ 4T\ for LHC setup.
The dissipative effects are stronger for quarks due to larger mean free path. At the
times at which the phase transition is expected to take place (4 fm/c for RHIC and
9 fm/c for LHC conditions) the difference between dissipative corrections to quark and
gluonic spectra is almost factor of 2. The transverse spectra are important for the so-
called recombination and coalescence models of hadronization [65, 66, 67, 68], in which
the hadrons are built up from partons which are close to each other in the phase space.
It is not sufficient to assume a thermal distribution at the freeze-out, since the parton
yields are significantly different in a dissipative QGP at moderately large pr ~ 3 — 47j.
It is furthermore important to properly account for the dissipative effects on quark and
gluonic spectra, since the yields are a gain different for the both species, as demonstrated
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Figure 12.7.: Same as in Fig. 12.6 for LHC typical initial conditions (see text) and
different values of pr.

in this Section. Same applies to calculations of yields for direct photons and dileptons
[195, 193].

Conclusions.

The analysis presented in this Chapter demonstrates the importance of a proper treat-
ment of the hydrodynamic evolution in a multi-component medium. The global behaviour
of a multi-component fluid in general cannot be described by the standard one-component
formalisms, since a certain time is needed for the medium to establish an effective one-
component behaviour. At early time the evolution can only be understood in terms
of a multi-component hydrodynamic formalism, such as the one derived and applied in
this work. The effective shear viscosity to entropy density ratio, /s, is a characteristic
of a medium very close to equilibrium. For a multi-component medium the effective
n/s ratio can be consistently defined only after a certain time, before which the evo-
lution does not follow the known one-component descriptions. Since the Quarks-Gluon
Plasma produced in heavy-ion collisions at RHIC and LHC is a multi-component fluid,
it is essential to solve multi-component hydrodynamic equations instead of treating it
as a one-component system. The dissipative effects on quark and gluonic spectra differ
significantly for conditions typical for RHIC resp. LHC experiments which is of great
significance for modelling of the hadronization process.
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13. Summary, Conclusions and Outlook

Education is a progressive discovery of
our tgnorance.

Will Durant (1885 — 1981), American
writer, historian, and philosopher.

Summary

The intention of this work was to investigate the correspondence between the kinetic
transport theory, based on the relativistic Boltzmann equation, and relativistic dissipative
hydrodynamics.

These two theories are widely accepted and applied tools for modelling the space-time
evolution of the quark-gluonic plasma produced during the early stages of heavy-ion colli-
sions at the experimental facilities RHIC and LHC. Whereas the kinetic theory allows to
model the microscopic dynamics of a system, the hydrodynamic theory is of macroscopic
nature and thus averages over the intrinsic microscopic scales. Furthermore, the hydro-
dynamic equations are obtained considering a small deviation from the equilibrium state
and thus their solutions become unreliable as the departure from equilibrium becomes
too large.

In this work possibilities of extension of the standard dissipative hydrodynamic for-
malism by Israel and Stewart were explored. The discussed extensions are inclusion of
particle production and annihilation processes into the hydrodynamic formalism, inclu-
sion of higher-order terms, neglected in the standard approach, and the construction of
a hydrodynamic formalism for a multi-component mixture. The limits of applicability of
dissipative hydrodynamic formalisms wre studied by direct comparisons of the relevant
observables with results of kinetic transport calculations. Another aspect of this work
was calculation of the shear viscosity coefficient as a function of the microscopic cross
sections and extraction of this coefficient from kinetic transport calculations.

The main pillars on which this work is based are publications in Refs. [32], [33], [34],
[35] and [36].

Dissipative hydrodynamic equations can be obtained from using the so-called en-
tropy principle together with balance equations for the particle flow vector and energy-
momentum tensor. The entropy principle was used to derive the standard dissipative
hydrodynamic formalism by Israel and Stewart [40]. In scope of this formalism the en-
tropy four-current is calculated using a heuristic ansatz for the phase-space distribution
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for a non equilibrium system. The construction of the off-equilibrium distribution func-
tion was discussed in this work in Chapter 2 in order to lay a foundation for further
calculations.

In the entropy principle based formalism, the hydrodynamic equations for dissipative
currents are obtained by applying the second law of thermodynamics to the divergence
of the entropy current, which is also referred to as entropy production. In this work, in
Chapter 3, an extended form of the entropy current from the Israel-Stewart theory was
used to obtain hydrodynamic equations, which contain terms of higher (third) order in
dissipative currents than the Israel-Stewart theory. Another extension of the standard
hydrodynamic formalism presented in this work is inclusion of particle number-changing
processes into hydrodynamic formalism. This was done using inelastic cross sections
with isotropic angle distributions and in consistency with the Boltzmann Equation based
kinetic theory. Finally, the entropy principle was applied to derive a set of dissipative
hydrodynamic equations for a multi-component system.

In Chapter 4 a formal expression for the shear viscosity coefficient  was derived in
terms of the collision integral from the Boltzmann equation. This derivation was again
based on the entropy principle and established a direct connection between the hydro-
dynamic and kinetic theories. The obtained expression was applied in Chapter 9 to
calculate the shear viscosity to entropy density ratio of a gluonic gas using leading or-
der perturbative QCD scattering cross sections. For the values of the strong coupling
constant oz = 0.3...0.6 typical for quark-gluonic systems produced in RHIC and LHC
experiments the obtained 7/s values lie within the range 0.18...0.08, in consistentcy
with the recent estimates from dissipative hydrodynamic calculations [206, 116, 204].
The obtained expression was also applied to calculate the shear viscosity coefficients for
the components of a multi-component mixture. This calculation can be done analytically
for the special case of isotropic angle distribution, i.e. angle-independent differential cross
sections.

Solutions of the derived hydrodynamic equations were compared with the results of
kinetic transport calculations by the partonic cascade BAMPS [30, 41| in Chapters 10,
11 and 12. This comparisons were done for the special case of a one-dimensional boost-
invariant system, which was introduced in Chapter 5 and can be used as a simplified
model for the early stage of a heavy-ion collision [45]. These comparisons demonstrated
that the standard second-order hydrodynamic formalism can be applied if /s < 0.2
and the initial time 79 = 0.4 fm/c. Earlier initial times require an even smaller 7/s
ratio. At the same time, the third-order formalism derived in this work is applicable if
n/s < 0.4. Thus inclusion of higher-order terms extends the applicability limits of the
hydrodynamic formalism. If particle number changing processes are included into the
third-order hydrodynamic formalism, it can be considered applicable even for n/s = 0.75.
This can be explained by the fact that particle production is an additional mechanism of
cooling and thus a counter-weight to the reheating due to dissipation in the hydrodynamic
formalism.

The reason for systematic deviations between dissipative hydrodynamic and kinetic
transport results can be found in the ansatz for the off-equilibrium distribution function,
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which is underlying the derivation of hydrodynamic equations. By extracting the particle
distributions from kinetic transport calculations on the one hand and calculating the
distribution using analytic expression on the other hand, it was demonstrated that the
heuristic analytic ansatz for the distribution function, which is used for derivation of
hydrodynamic equations, does not exactly describe the actual solution of the Boltzmann
Equation. The deviations are moderate if isotropic cross sections are used, but become
more pronounced if the perturbative QCD interactions are considered.

The obtained dissipative hydrodynamic equations for the components of a multi-
component mixture reveal an interesting feature — in a general situation they cannot be
summed up into a one-component hydrodynamic equation of the standard form known
from the Israel-Stewart [40| formalism. In the formalism presented here both the vis-
cosity coefficients for each component and the viscosity coefficient for the whole system
depend on the partial shear pressures. Only in the stationary limit ¢ — oo the shear
viscosity coefficients do become independent of the partial shear pressures and thus at-
tain a physical meaning. For this reason a one-component hydrodynamic formalism can
be applied to a mixture only after a certain time, which is needed to establish an effec-
tive one-component behaviour and depends on the intrinsic microscopic scales and initial
conditions. Whereas the one-component formalism fails to describe hydrodynamic evolu-
tion of the system as whole, evolution of each single component can be described by the
obtained multi-component equations with good accuracy, as was verified by consistent
comparisons with kinetic transport results from BAMPS in Chapter 12. The findings
in Chapter 12 put certain constrains on the initial conditions for one-component dissi-
pative hydrodynamic formalisms. These constrains on applicability of one-component
dissipative hydrodynamics are a step towards a more detailed understanding of the early
phase of heavy-ion collisions, since the initial conditions for dissipative hydrodynamic
calculations are still unknown and the medium produced in early stages is a mixture of
quarks and gluons.

Outlook

The extensions of standard hydrodynamic formalism presented in this work are a step
towards a higher versatility of dissipative hydrodynamic as a tool to investigation of
heavy-ion phenomenology. Inclusion of thir-order terms has corrected the problem of
occurance of negative pressure in hydrodynamic calculations and helped to reduce devi-
ations between the results of hydrodynamic and kinetic transport calculations. However,
in the formalisms presented here the effects of heat flow and bulk viscosity were neglected.
Their inclusion into the third-order formalism was completed just recently by different
authors |95, 201]. It is important to implement the obtained thrid-order equations in a
full three dimensional hydrodynamic algorithm.

Inclusion of heat transport and bulk pressure into the multi-component hydrodynamic
formalism is a topic for future work. It is also important to modify the multi-component
hydrodynamic formalism in such a way that it can be coupled to different equations of
state. This will allow to apply the multi-component hydrodynamic formalism to systems
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of massive particles, such as hadronic mixtures. In this context it is also necessary to
extract the bulk viscosity coefficients from kinetic transport calculations, in a similar way
as was done in this work for the shear viscosity.

The ability to describe a medium with a realisitc equation of state is one of the ad-
vantages of the hydrodynamic approach. In the quasi-particle model like BAMPS the
equation of state can be modified by implementing a temperature-dependent mass of the
particles. This is a challenging task, since a temperature-dependent mass also means that
evolution of each individual quasi-particle will be affected by the global properties of the
medium. Formally, this leads to an additional term in the Boltzmann Equation, which
than becomes th Vlasov-Boltzmann Equation. The additional Vlasov term accounts for
the effect of the medium on evolution of a single-particle distribution. This effect can be
interpreted as presence of a 'mean-field’, which is an effective field acting on particles and
influencing their dynamics. Implementation of temperature-dependent mass in BAMPS
will lead to a higher versatility of this kinetic model and will help to cover yet another
gap between kinetic transport and hydrodynamic formalisms.

For the simulations of heavy-ion collisions, kinetic transport and dissipative hydrody-
namics have different rages of applicability. Kinetic transport can be applied for initial
states which are more extreme than those available for hydrodynamics. However it is
important to mention that up to now there is no clarity on how the initial conditions for
dissipative hydrodynamic calculations of early stages of heavy-ion collisions should look
like. This leads to a very promising possibility to use kinetic transport calculations in
order to generate energy density, temperature, pressure and flow velosity profiles which
can be used as initial conditions for hydrodynamic formalisms. This can be accoplished
using the standard initial conditions of Glauber type or Color Glass Condensate, which
can be used within a kinetic transport model even at early times, at which hydrody-
namic approach might become invalid due to presence of large gradients, that cannot
be resolved by hydrodynamic equations. Also for mixtures the very early stage must be
simulated using the kinetic transport theory up to a point, where either multi-component
or standard one-component hydrodynamic calculations can be initialized.

To summarize, the ultimate goal must be to establish the kinetic transport theory as
a standard approach to simulate the early, far-from-equilibrium phase of the heavy ion
collisions and to obtain more realistic and reliable initial conditions for hydrodynamic
calculations.
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A. Components of the off-equilibrium
distribution function in Grad’s
14-moment theory.

For the calculations presented here the Eckart frame is chosen. This choice leads to a
vanishing particle flow and the following form of the energy-momentum tensor:

™ = euu” — (p+ A" + ¢*u” + ut'q” + 7, (A1)

NH = nut, (A.2)
1

o = —gA’“’cSTW , (A.3)

¢ = u, AT, (A.4)

™= T (A.5)

Using the velocity field four-vector u#, an orthogonal tensorial basis can be constructed
and the moments of the equilibrium distribution can be decomposed in this basis as
follows:

Nty = /p“feqdF = biou”, (A.6)

T = / PP fugdT = bagutu” + bay A, (A7)

Fom = / PP feqdl = byou®utu” + bay (U AP + uF A + u” AFY) (A.8)
Rep - = / PP feqdl = byou®uPutn” +

4+ ba (uo‘uﬁAW + U U AP 4l AP 4 Byt AN Pyl AR u“u”AO‘B> +

+ ba (AaﬂAW +ARCAPY 4 AWAW) . (A.9)

The coefficients bj; can be obtained by taking appropriate projections of the integrals in
Egs. (A.6) — (A.9). Using the Boltzmann distribution for massless particles, Eq. (6.13),
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and the identities A}, = 3, u,p" = po and p,p" = 0 one obtains:

bo = u,NK = / Pofegdl =1 (A.10)

by = uuuyf’éf]”:/pgfeqdf‘:e (A.11)
1, -p 1 1

byy = gAw,ng] :—3/p%feqdf‘:—3e (A.12)

bsg = uauuuyﬁ'%“”:/p%fequZZleT (A.13)
1 | 4

by = guaAWFeq“ =3 / Do feqdl' = —5eT (A.14)

by = uaugu#uyég‘qﬁ“” :/péfeqdfz 20eT? (A.15)
1 | 20

by = guau5AwReqﬂ“ :—3/péfeqdfz—3eT2 (A.16)

by = LN Ro‘ﬁw’:l/p4f dr = 2ot (A.17)
15 @f=miteq 15 ) F07e 3 ‘

(A.18)

The non-ideal parts 6T*” and §N* of the energy-momentum tensor and the particle
flow vector can be written in terms of N, Tt Fed” and RZ‘(IBW according to Egs. (2.31)
and (2.30). Without loss of generality one can assume the following form for the tensors
€uv, €y and e

1
e = Aa(Buyu, — Ay )T — §Bl (upqy + uvqu) + Comp (A.19)
€ = AluVH — Boqy (A.20)
e = Apll (A.21)

In the latter set of equations €,,, was assumed to be traceless, since its trace can always
be absorbed into the scalar e. The coefficients A;, B;, C; are to be determined yet. To do
so one first inserts (A.19) — (A.21) into the decompositions of I N* and 67", (2.30) and
(2.31). Then one can insert IN* and 07" into the definitions of the dissipative fields
(A.3) — (A.5). In addition one will have to use the Landau matching coditions

uyu, 0TH =0, (A.22)
u, ON* =0, (A.23)

and the constitutive equation of Eckart’s frame
ANt =0. (A.24)

The sets of equations to be solved are:
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For Ag, A1, Ay (after inserting 6T into the definition of IT and using the Landau
conditions)

1
I+ gA‘“’(ST‘“’(bij, € €u, €u) =0,
0T (bij, €, €1, €) =0,

u N (bij, €, €4, €00) =0,

For By, B (after inserting 6T into the definition of ¢* and using the constitutive
equation of Eckart’s frame)

g%+ u  ALOTH (bij, €, €4, €u) =0,
AZ‘&N“(bij, € €u, €u) =0,
For Cy (after inserting T into the definition of 7#):

T — 5T<’“’>(bz~j, €€y, €u) =0 (A.25)

It is now a matter of straight-forward algebraic operations to obtain the expressions
for the coefficients A;, B;, C;, which prove to be complicated functions of b;;:

Ao = — (b3 — bsobs1 + baobao — baoba1) X
(bo1b3y — baobaobsr — b21bsobsy + baobsq + baob21bag
+ Diobsibao — b3oba1 — baobarbar — biobsobar — brobsibar + gb%ob@ + 2510630642 )~
(A.26)
A1 = — (baobso — bagbs1 — biobao + b1oba1) X
(b21b3y — Daobsobsi — baibsobs1 + baob3; + bagb21bao

5

5 _
3530542 + —b1obsobaz ) !

+  biobsibao — b3gbar — baobarbar — biobsobar — biobsibar + 3
(A.27)
Ay = — (b3 + biobso) x
(—3byb3y + 3boobsobst + 3baibsobsr — 3baob3; — 3bagba1bag

— 3biob31bao + 3b3gba1 + 3b20ba1bar + 3b10bsobar + 3b1ob31ba1 — 5b3gbaz — Sbiobzobaz )

(A.28)
B = b f317121541 429
b= (82, f2l7121b41) 30
Co = 2;42 (A.31)
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B. Entropy current up to third order in
shear stress tensor.

In this Appendix the entropy current is derived up to third order in shear tensor using
Grad’s ansatz for the off-equilibrium distribution function and kinetic definition of the
entropy.

The entropy current s* can be calculated according to the kinetic definition:

st = —/de“f(lnf -1). (B.1)

In Grad’s approach the off-equilibrium distribution function f(x,p) is expanded up to
linear order in deviations from equilibrium (comp. discussion in Section 2.4.1):

f=fol+9) (B.2)

Using the linear order approximation for the distribution function we expand the loga-
rithm in Eq. (B.1) up to third order in ¢ and obtain

2 3
s“%—/dffop“ (1nf0—1+¢+¢lnf0+q;—6> =sh+s)+sh+sh.  (B.3)

with
s = - [drip(nf-1).
= = [drip o+ o).
4 = - [

¢3
sy = / dr fop''-o-

The Oth order contribution is the equilibrium entropy current in kinetic equilibrium
and is given for massless Boltzmann gas by|33]

sh = sou” = (4n — nln \) u# (B.4)

with the fugacity A = -2~. The first-order contributions vanish due to the properties of

Neq

¢, as discussed in Ref. [33].
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For the second-order contribution s5 one obtains

1 1
$5 = —3 / dl fop“ ¢* = —503 / dl (7 p"p”)?p* fo =
1 1
= —f&mw / P ppPp fo = —§C§7rw7ra51"”°‘ﬁw, (B.5)
with
rves — / dUpHp” p*pPp” fo . (B.6)

The moment TP of the equilibrium distribution can be decomposed into orthogonal
parts with thermodynamic coefficients a,; as follows:

quoz,@w

I{u/aﬂw + Iéwaﬁw +I§waﬁw o
= asourutuulu” +

+ as (A‘”’uauﬁu“’ + permutations) +
+  as (A’“’Aaﬁuw + permutations) .

We realize that the products Wﬂywang vabe and Wuyﬁa/gzg vabw Ganish because shear
tensor is traceless and component-wise orthogonal to the flow velocity, mogu® = 0 and
ﬂagAaB = 0. Thus the only relevant contribution is Z' vep ¥, though here all permutations
containing explicitly u”,u”,u®, u® will vanish immediately after contraction with the
shear tensor due the orthogonality properties discussed above. Thus the relevant parts
of Z¥ vabe are

I:ﬁf”aﬁw = azy - (AP AYPYY 4 AFCAPY e 4 AFB Ay ) (B.7)
In order to obtain asy one uses Eq. (B.7) to calculate the projection
UWAMVAQBIuVaﬁw — uwAMVAaﬁl—é,LVOéBW =a52 - (32 + 3+ 3) = 15@52, (B8)

Note, that products involving Z}' vabydw JIY vaBy0w Lanish in this contraction because of
AMy, = 0. On the other hand one obtains using Eq. (B.6)

A A ggu, TP = / AT (A p"p") uap® fo = / dT'p} fo - (B.9)
which leads to e
S 1§0f° = 8eT. (B.10)

If the decomposition Eq. (B.7) is contracted with 7, 7,3 only the last 2 summands
contribute and give identical results. One obtains

Wuyﬂaglum'&" =2 a5 - ﬂagﬂaﬁuw. (B.11)
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Using the value of Cpy we realize that the contribution to the entropy density second order

in shear stress is 01
s5 = —ge—Tﬂagﬂo‘ﬁu”. (B.12)
This corresponds to the expression in Eq. (3.24) with 8y = % which is the value obtained
by Israel and Stewart[40].

Now I evaluate the third-order contribution in Eq. (B.3), which is analogous to the

calculation of the second-order term.

1 1
sy = G/dffopwqbg = 608’/d1‘(7ru,,p“p”)3pwfo -
1 1

= ECSWWWaﬁma / P ppPpp’p” fo = 5

C’S’WWWM;W,MIWO‘BVM (B.13)
with

Trvebrie — / dCpHp” p*pPp p°p* fo . (B.14)
The moment ZH**A7%% of the equilibrium distribution is decomposed into orthogonal
parts with thermodynamic coefficients a,; as follows:

I;waﬁfyéw I{wcxﬁw&u + Iéwaﬂwéw + Iguaﬁ'yéw + Iiwa,@v&u _

aroutu’ utuPur vl u® +

an (A“l’u"‘uﬁzﬂu‘suw + permutations) +

a7 (A“”A“ﬁu7u5uw + permutations) +

+ + +

ars (A“VAaﬁAWSu“ + permutations) . (B.15)

Like in the derivation of the second-order component, we realize that the products
T Ty L) vapydw T T BT Ly vaBy0w anish because shear tensor is traceless and
component-wise orthogonal to the flow velocity. Thus the only relevant contribution is
now Zj vep 7&”, though also here some permutations vanish if contracted with the shear
tensor. For instance, all permutations containing explicitly u*, u”, u®, uB,ul, uY will van-
ish immediately after contraction as discussed above. The relevant parts of ZJ vafyow
are

T = agy - (AYPAT AU AT AT 4 N AT ARy
AFCAV AP+ A AT ARy 4

AP ATy AP AT AR 4

AN APy 4 A NTO Ny

APCATY AR G 4 AT AFTAP Y

ACTAPY ARG 4 A AFT APy

AT AFPA 4 AP AT Ay (B.16)

+ o+ + + +
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The total number of relevant permutations is 15. To calculate the thermodynamic coef-
ficient a73 one evaluates the contraction AWAa/gAvguwI’W“fBV‘S“’ using Eq. (B.16) (note,

ghvedrde | iveB1% Ganish in this contraction):

that products involving
A Aap A su TP = q75. (3% 4632 + 8- 3) = 105ar3 (B.17)

On the other hand one can use Eq. (B.14) to obtain

AWAQBAWSUWIWO‘BV‘S“ = /df (Am,p“p”)?’ uap® fo = —/dfpgfo. (B.18)
One thus obtains for ars :
dar
ars = —fm’;o‘ﬁ) = 192¢T7 . (B.19)

Now the product wu,,wagm(;zwaww = Wuyﬂaﬂﬂfygl—f vaByow an be completely evaluated.
If the decomposition Eq. (B.16) is contracted with 7., Tagms only the last 8 summands
contribute and give identical results. One obtains

oo, W

7ru,,7ra57r7,51“"0‘576“ =8 ary - TapmoTTU® . (B.20)

Thus the contribution to the entropy density third order in shear stress is

91

Scéj = —§ﬁﬂ'aﬁﬂ'£ﬂ'aguw . (B21)
This corresponds to the expression in Eq. (3.24) with s = % and a = —% which is

consistent with the values in Egs. (6.22) and (6.23).
Up to third order in shear stress the entropy current calculated directly using Grad’s
approximation thus reads
91 af 9

1
st =59 — 3 o "8 ut — 562—T7Ta57r57ra”u“. (B.22)
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C. Hydrodynamic equations for
one-dimensional boost-invariant
systems

I consider longitudinally expanding boost-invariant systems of massless Boltzmann par-
ticles (gluons). The equations are given in the local rest frame of the fluid.

C.1. Systems with conserved particle number

n
= (1)
e
€= ;g; = (C.2)
first-order: 7 = gg 4 8 (C.3)
second-order: 7 = _:: = §§ + 2—72 (C.4)
2
third-order: 7 = —% - gg + %; - 32—7_ (C.5)
9
T = o0 (C.6)
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C.2. Systems with particle creation and annihilation
processes

Here the case of isotropic inelastic cross section is considered, ooz = o93(T).

n 1,
1= ——+-n*(1— .
n — g (1 —X)oas (C.7)
de 7
. _=*¢ C.8
€ 37 T ( )
4n
first- : == :
rst-order: w e (C.9)
. T 47 8 e 1
second-order: W——a—g;—i—ﬁ;—zwn(l—)\)agg (C.10)
T 47 8 e 72 1 T
hird-order: ##=—— —-—+—- -3 —— (143> 11—\ 11
third-order: 7 p 3T+27T 36’7‘ 4( +36)7m( Joas| (C.11)
9
e 12
T, 5 (C.12)
n n
A: pr— .].
Negq Lng (C 3)
o
3n
(C.14)

The following scenarios of chemical evolution are considered:

e Instantaneous chemical equilibration: Eqs. (C.9)-(C.10) coupled to Eq. (C.8) with
A=1

e Chemical equilibration via particle production and annihilation with finite inelastic

collision rate: Eqs. (C.9)-(C.11) coupled to Egs. (C.7) and (C.8) with A = %
2
and T = £

The case of instantaneous chemical equilibration is not considered within the third-order
formalism since it requires an infinitely large inelastic collision rates corresponding to
infinitely small dissipative corrections.
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C.3. System of two components with conserved particle
numbers.

A system consisting of two components with isotropic elastic cross sections is considered.

n=mni+ng (C.15)
e=-e| + e (C-16)
T =T + T2 (C-17)
. n
fy = _7:1 (C.18)
fiy = _47_2 (C.19)
eEn m™n

R Ry (C.20)
ae i e
7T = —gmnlan - gmnzalz + 3772711012 - %% + 2%% (C.22)
Trg = —gmngagg - 57?2”10’12 + 3771”20'12 - g? ;7% (C.23)
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D. Evolution equation for particle
density in presence of inelastic

processes.

In this appendix I derive the evolution equation for the particle number in presence of
particle production and annihilation processes.
d3p

3
8HN“:/(2i)€EC[f]:/(27r)3E(022[f]+C23[f]):J

In the following, the phase space distribution function f(z,p) is denoted by f; in case
it is related to the particle with the four-momentum p;. Integrating the inelastic part
Cas[f], given in Eq. (7.7), over momentum p; one obtains

d3p
[ GoyrCs =
1 1
5 /dwldwgdw32 /dw’ldwéf{fé\Ml,g,_)123|2(27r)45(4)(pll +ph—p1—po—p3)+
1
+ /dwldw26 /dwidwédwéf{féfé\M1,2,3,%12‘2(27r)45(4) P+ ph + sy — p1 — pa) —

1 1
- 2/dw1dw2dw32/dwidw§f1f2f3\M123—>1'2'|2(27T)45(4)(Pl +p2+p3— Py —ph) —

1
a /dwldeG /dwidwédwéf1f2|M12—>1'2'3’|2(27T)45(4) (p1 + p2 — Py — Py — ph)
(D.1)

with the integration measure dw = (27‘3%. The first and the last summands contain
an integration over the transition matrix element squared |Ms .3|? and the momenta of
the final three-particle state. This integration can be absorbed into the definition of the

total cross section a3 of an inelastic two-particle process|76, 41]:
1
20502 =5 /dw/ldw/deé|M12—>1’2/3/’2(27{)46(4)(]91 +p2—py—ph—py)  (D.2)

with s = plupg = FE1 - E5 — p1 - po being the invariant center of mass energy of the two
colliding particles. The prefactor 1/3! indicates that the three particles in the final state
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are identical and thus all possible 3! permutations have to be taken into account. The
origin of other numerical prefactors in front of the integrals in the collision term was
already discussed after Eqgs. (7.6) and (7.7) in Section 7.1. In the remaining part of
the first and the last summands in Eq. (D.1) the relative velocity of the two colliding

particles can be introduced
s

2E1Es
With Eq. (D.3) the first and the last summand can be written as

(D.3)

Urel =

1 1
5 [ dwidwsdws / duwydw) f{ f5| My —123/* (2m) '8 (p +py — p1 — p2 — p3) -
/ widwa— /dwgdwédwéflfﬂMH%l’Z’?ﬂ|2(27r)46(4) (p1+p2— Py — 1Dy —Ps) =

1
/d3P1d3P2f1f20rel0'23 = —n*(v,e1023)2 - (D.4)

T2 2

In the latter equation the angular brackets denote an average over all possible multiplets
(pairs, triplets) of particles (c.f. Refs. |41, 127, 35]):

1 / d3p 1 d3pm

(Qm = nm | (2r)3 77 (27)3

Analogously, the second and the third summands in Eq. (D.1) can be rewritten absorbing
integration over the final two-particle states into the definition

Iy = ;/d’wldwz|M1’2'3'—>12|2(27f)45(4) (P +Ph + P —p1 —p2) - (D.6)
One then obtains
/dwld“@é /dw’ldw’gdwgf{féfé]M1/2,3,%12]2(27r)45(4) (P} +ph+ Dy —p1 —p2) —
— ; /dwldwgdwg = /dwldw2f1f2f3|M123_>l,2,| (2m)20W (p1 + pa 4+ ps — Py — Py) =

Ts 14, T
B e Y B D.
8E\ExEs 6 <8E1E2E3>3 (D.7)

1
— 6/d3p1d3p2d3p3f1f2f3

Putting together Eqgs. (D.4)-(D.7) one thus can write

I3

d3 1 1
[ Cnlf@p) i = yntenaom)  gntlge ),

(2m)3E 2 6

With the definitions of the inelastic collision rates

_ 1 o I3
Ra3 = n(vre1023)2,  Raz = gn <8E1E2E3> : (D.9)



155

one thus obtains a rate equation for the divergence of the particle number current:

1 1
c’“)MN” = §TLR23 — gnRgg . (D.lO)

In Eq. (D.5) f; represent the off-equilibrium phase space distribution, which in this
work is approximated by introducing a small deviation from the isotropic equilibrium
distribution fo;:

fi= foi (14 ¢:) (D.11)

with fo = ghe P/T. g denotes the degeneracy factor and is 16 for applications presented
in this work. A is the fugacity, describing deviations from chemical equilibrium. The
deviation ¢; describes deformation of the momentum space distribution.

In order to obtain an evolution equation for the particle number in a anisotropic system,
the rates Ros and Rss have to be evaluated using the approximated distribution function.
In particular, one has to evaluate the averages (...)s and (...)3. Inserting Eq. (D.11)
into the definition Eq. (D.5, one obtains

1/ dp1 dPps s
n2 (271')3 (27‘{')3 2E1E2

1 d3p1 dpa
S 1) (E By — - -
2ene | B b oo3forfor( ¢1 + @2 + d1do + ) - (E1E2 — De1Pa2 — Dy1Dy2 — D21D22)

@ @ @ @

(Vrel023)2 = o3 forfor (P1 + d2 + P12+ 1) =

(D.12)
I39 1 1 dBp1 dBps d3p3
<m>3_$8.(2ﬂ)9 B B, Es Z32 fo1 fo2.fos X
X | o1 + 2 + @3 +d1d2+ D203+ P1d3+ 1oz + 1
= = = S = ——
8 G (3D & o

The total cross section o923 and Zs2 can be put in front of the integral. Due to symmetry
of the indices, there three groups of identical integrals — these are integrals containing
the following terms:

and@;
, and@;
Bd),Be) and(39).

First, it is necessary to evaluate the integrals and. This will be done in the
following.

The equilibrium deviation ¢; needed to evaluate@ and is modeled using Grad’s
method, discussed in chapters 2.4.1 and 8. In particular I will employ its one-dimensional
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form, given in Eq. (8.1). Evaluating the integral containing one obtains

2y2 =
g-A T 4 2 _—pr1/T cosh —pr2/T cosh
_ doridorodor dosdud PT1 Y1 ,—PT2 v2
n2(27r)6023 166T2/ PT1apT20P1a920Y1aY2PT1 PT2€ €

1
x (cosh y; cosh ya — cos 1 cos pg — sin pj sin o — sinh y; sinh ys) - <sinh2 Y1 — 2) = 0.

(D.14)

By analogy to Eq. (D.14), parts@ and@ evaluate to 0 as well. The reason for this are
the properties of the deviation functions ¢; and ¢, which have to satisfy the matching
conditions Eqs. (2.36) and (2.37), as discussed in section 2.4.2, and which are symmetric,
due to the particular form Eq.(8.1) used here, under the transformation p’— —p. The
only non-vanishing parts of Eq. (D.12) is the part which does not contain either ¢; or
¢2. Thus, Eq. (D.12) reduces to averaging over the equilibrium distribution functions
foi of the two incoming particles.

The term. describes a three-particle initial state. Evaluating it one obtains

I 7 93A3 3 —pr1/T coshyy s 1.2 1
Ba) = 8 eT? (21)° dpridy1dp1pre sinh”y; — 3 dl'2dTs fo2 fo3 = 0.

Note that all integrals in Eq. (D.13) factorize into products of three independent in-
tegrals. Since vanishes, seven of eight integrals, in particular, in Eq. (D.13)
vanish as well. The non-vanishing part of Eq. (D.13) does not contain the deviations
functions ¢; from Grad’s approximation but only fy;.

Thus, Eq. (D.13) reduces, just like Eq. (D.12), to averaging over the equilibrium
distribution functions fo; of the three incoming particles. I.e. we obtain the identity

3 3
/(;T)];EC%[med] = (Z?T)];ECQ?’UO] : (D.15)

Evaluating the non-vanishing parts of Egs. (D.12) and (D.13) using the equilibrium
distribution for gluons fo = 16 e Z/T one obtains
d? AT 32 \3T0
oNH= | ——=C = 128—— - — Iso. D.1
/(27r)3E 23[fol 108~ 55 Is (D.16)

With isotropic cross sections the integrals in Z32 can be evaluated analytically and one
obtains for a gluon gas|30, 41|

Tsp = 1272093 . (D.17)

Using Eq. (D.16) together with (D.17) one thus obtains the evolution equation for the
particle density for the Bjorken scenario considered in this work:

1
OuN* =7 + n_ 5712(1 — N)oas . (D.18)
T

which is the same as in Refs. [89, 88, 87, 174, 182]. The kinetic off-equilibrium ef-
fects, corresponding to the deviation function ¢(x,p) do not explicitly affect the particle
production.
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E. Shear viscosity coefficients for a
multi-component fluid.

In this Chapter the integrals in Eq. (4.12) will be evaluated assuming a one-dimensional
setup. Let us consider a system with isotropic momentum distribution in transverse xy
plane and anisotropy in longitudinal z dirction. The shear stress tensor is then diagonal

™ = diag(0,7/2,7/2,—7), (E.1)

with 7 denoting the shear pressure. Without the heat and bulk contributions the off-
equilibirum distributions can be written in local rest frame as

Fiep) = foi (U ) = N (14 Com2 = 1)) . (82)

Two components — which will be denoted as Flavor a and Flavor b — and only elastic
binary processes will be considered since we have used particle number conservation
for all components to obtain Eq. (4.12). We will calculate n, here. Using the binary
collision term Ch;y[..] [30] one now can write contraction of its second moment with the

shear tensor as follows:

3
s [ 1 <cbm [l + Counlfe fb]> Eéf_)g _
d3
= [ = 593) (Conlfl + Conlfon ) 555 =
1

1
pg,T)drldFQ U /drlldrlzfé,l é,2|M1'2912|2(277)45(4) (p1 +p2 — Py — py)—
aa

\V]

= / . -

1 1
- /(P% z 7 §p%,T)dF1dF2 o AT dTh fo1 fa 2l Mia—ai|*(27) 6@ (p1 + p2 — P} — ph)+
aa
1 1
4 [0h ~ Gphodrudrs o [ AU £ ol Mol (25 o+ pa 1~ )
a
1 1
- /(p% 2 §piT)dF1dF2 ' Vb/drﬁdflgfa,lfb,2|M12—>1'2/|2(27F)45(4) (p1+p2 — P — 1pa).-
a

(E.3)

with dI' = d3p/(2E)/(2m)3. The factors vy, = 2 and v4 = 1 account for the fact that
particles are indistinguishable in case of two identical Flavors and distinguishable in case

their Flavors are different.
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Now the distribution functions fq (e, €qs Ta, T, p*) and fp( Ny, €p, T, T, p*) must be in-
serted into Eq. (E.3). In the integrals expressions of the following from will appear:

7= / / dT1ds - g(p})| My 1a]® - 89 (p1 + pa — i — pb) (E.4)

These integrals can be transformed to the following form |76, 212]:

_ 2sv , doga .,
J= zm/g(plTR)dQ*dQ : (E.5)

In the latter equation p) ;5 denotes Lorentz transformation from the center-of-mass (CM)
frame of two particles with four-momenta p; and po into the lab frame. This transfor-
mation is given by the Loretz faktor 5 = (71 + f2)/(E1 + E2). In the CM frame the
momentum pj is given by pj = %(1, cos 0* cos ¢*, cos 6* sin ¢*, sin 6*), with /s being the
center-of-mass energy of the colliding particles, s = (p; +p2)?. The integral (E.5) can be
evaluated if the differental cross section dogg/dS) is momentum independent. This means
that the scattering angle is isotropically distributed.. Here only this type of scattering
processes is considered.

For the trivial case g(p]) = 1 one obtains J = 2svogs. In case of non-trivial g(p})
the integral J additionally depends on four-momenta p; and p2, which are relevant for
evaluation of the remaining integrals in Eq. (E.3).

After all integrals are solved in Eq. (E.3) one obtains by inserting (E.3) into (4.12) the
following expression for the shear viscosity coefficient of component a:

5} n 1x -1
Na=T (6%“ + gn—ZUQb — 3@30@) . (E.6)

This result, reported in Refs. [201] and [36] is only valid for systems with binary collision
processes and isotropic scattering angle distribution.
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