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Zusammenfassung

0.1. Einleitung

Die Erforschung von Schwerionnenkollisionen bei hohen Energien ist eines der aktivsten
Felder der modernen Kern- und Elementarteilchenphysik. In Kollisionen von schw-
eren Ionen an den modernen Beschleunigeranlagen RHIC an der Brookhaven National
Laboratory (BNL) und LHC am CERN in Genf wird Kernmaterie zu extremen En-
ergiedichten und Temperaturen komprimiert. Da die Kopplungskonstante der starken
Wechselwirkung auf kurzen Längenskalen und bei hohen Energien kleiner wird, kann
extreme Verdichtung der normalen (kalten) Kernmaterie zu ihrem 'Schmelzen' führen.
Aus der hadronischen Materie entsteht dabei ein ungebundener Zustand von Quarks und
Gluonen, den elementaren Konstituenten von Neutronen und Protonen. Dieser Zustand
der stark wechselwirkenden Materie ist extrem kurzlebig und entzieht sich jeglicher direk-
ter Beobachtung. Schlussfolgerungen über seine kurzzeitige Existenz und Eigenschaften
können ausschlieÿlich anhand von Messungen von sekundären Teilchen deduziert werden.
Die dabei gemessenen Teilchen entstehen, wenn die Temperatur des Quark-Gluonischen
Mediums unter die kritische Temperatur sinkt und so der umgekehrte Phasenübergang
statt�ndet. Die extremen Dichten und Temperaturen, die so im Labor erzeugt werden,
sind dem Zustand des frühen Universums ähnlich, und die Erforschung des ungebundenen
Zustandes der stark wechselwirkenden Materie, des sogenannten 'Quark-Gluon-Plasmas'
(QGP) [1] ist somit von fundamentaler Bedeutung sowohl für die Kern- als auch für die
Astrophysik. Die aktive Erforschung der Eigenschaften des QGP läuft seit den späten
70er Jahren (vgl. beispielsweise Referenzen [2, 3, 1]) bis heute.
In der Erforschung von Eigenschaften der Kernmaterie in hochenergetischen Schweri-

onenkollisionen kamen hydrodynamische Modelle bereits sehr früh zum Einsatz [2, 4, 5].
Analysen der Ergebnisse aus den Schwerionenexperimenten an den Beschleunigern RHIC
und LHC haben in der letzten Dekade dazu geführt, dass Hydrodynamik mittlerweile zu
einem Standardmodell zur Beschreibung der Eigenschaften des in diesen Experimenten
erzeugten Mediums geworden ist. Dabei handelt es sich um eine relativistische For-
mulierung der hydrodynamischen Gleichungen, welche auch auÿerhalb der hochener-
getischen Schwerionenphysik Anwendung �nden. Messungen der Winkelabhängigkeit
von Multiplizitäten der sekundären Teilchen [6, 7] und deren gute Übereinstimmung mit
Ergebnissen hydrodynamischer Rechnungen [8, 9, 10, 11, 12] sind ein Hinweis darauf, dass
der in Schwerionenkollisionen erzeugte ungebundene Zustand der stark wechselwirkenden
Materie, bestehend aus Quarks und Gluonen, sich kollektiv verhält. Diese These wird
von weiteren Beobachtungen unterstützt, wie beispielsweise Unterdrückung der gebun-
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denen Zustände von Charm und Anti-Charm Quarks (sog. Quarkonia) [13, 14, 15] oder
Unterdrückung von hochenergetischen Teilchen (sog. Jets), welche durch das Medium
propagieren [16, 17, 18, 19, 20, 21, 22] . Aus dem direkten Vergleich aus den hydrody-
namischen Modellen gewonnener Ergebnisse mit den experimentellen Daten wurde die
Scherviskosität η des Quark-Gluonischen Gases extrahiert. Die mit der Entropiedichte
s reskalierte Scherviskosität, η/s, ist eine dimensionslose Grösse und ein Maÿ für die
stärke der dissipativen E�ekte im Medium. Es zeigt sich, daÿ das η/s Verhältnis des
Quark-Gluon Plasmas kleiner ist, als die entsprechenden Werte für die kalten Atomgase
� die kältesten unter den bekannten Flüssigkeiten [23, 24]. Der kleine, jedoch endliche
η/s Wert von QGP liegt nah an der universellen unteren Grenze ~/(4πkB), welche von
Kovtun, Son und Starinets gefunden wurde [25]. Dadurch wurde das Paradigma der Ent-
deckung der 'perfekten Flüssigkeit' am RHIC [26], welches aus den frühen erfolgreichen
Anwendungen der idealen Hydrodynamik [8] resultierte, zwar relativiert, jedoch gilt das
Quark-Gluon Plasma als die womöglich 'perfekteste' unter den bekannten Flüssigkeiten.
Der Wert von η/s des QGP darf als ein Kandidat für die Aufnahme ins sogenannte 'Par-
ticle Data Book' gelten, ein Standard-Nachschlagewerk mit den wichtigsten Werten und
Zusammenhängen für die Elementarteilchenphysik.

Neben der dissipativen Hydrodynamik ist die kinetische Theorie das am meisten be-
nutzte Mittel zur Modellierung der Dynamik von Schwerionenkollisionen. Die kinetische
Transporttheorie basiert auf der Boltzmannschen Gleichung, welche die Evolution der
Phasenraumverteilung unter Berücksichtigung vonWechselwirkungsprozessen beschriebt.
In der Form, in der sie am häu�gsten verwendet wird, beschreibt die Boltzmann-Gleichung
die Ein-Teilchen Verteilungsfunktion. Sie ist somit die erste Approximation der soge-
nannten Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) Hierarchie. In Kaskades-
imulationen [27, 28, 29, 30, 31] sind die Konstituenten des QGP � Quarks und Gluo-
nen � durch Quasi-Teilchen, d.h. punktförmige Teilchen, repräsentiert. Die kinetische
Transporttheorie ist also eine mikroskopische Theorie, welche Prozesse auf der kurzen
Skala der mittleren freien Weglänge der Teilchen beschreiben vermag. Im Gegensatz
dazu ist die hydrodynamische Theorie eine makroskopische Theorie. Die hydrodynamis-
chen Gleichungen folgen aus den Erhaltungssätzen für die Energie und den Impuls des
Systems zusammen mit weiteren, ebenfalls makroskopischen Eigenschaften des Systems
wie die Zustandsgleichung. Damit ist Hydrodynamik nicht in der Lage, die Prozesse
auf kürzesten Längenskalen zu beschreiben, denn die hydrodynamischen Gleichungen
basieren auf einer Mittlung über alle im System vorhandenen mikroskopischen Längen-
skalen.

Das Ziel dieser Arbeit besteht darin, in einer Reihe von Beispielen zu untersuchen,
welche Unterschiede zwischen der dissipativen hydrodynamischen und kinetischen Beschrei-
bung eines ultrarelativistischen Systems gibt. Diese Frage ist von groÿer Relevanz für
die hochenergetische Schwerionenphysik, da dort die relativistische dissipative Hydro-
dynamik als ein Standard Modell zur Beschreibung der frühen Dynamik unmittelbar
nach dem Kollisionsprozess gilt. Indem die Grenzen der Gültigkeit der dissipativen
hydrodynamischen Beschreibung untersucht werden, wird zugleich auch die Gültigkeit
der auf hydrodynamischer Beschreibung basierenden Erkenntnisse kritisch hinterfragt.
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Eines der Ziele Dieser Arbeit besteht auch darin, die existierenden dissipativen hydro-
dynamischen Formalismen zu erweitern, sodaÿ ihr Anwendungsbereich nach Möglichkeit
erweitert wird. Die kinetische Theorie wird in dieser Arbeit verwendet um, einerseits ,
die dissipativen hydrodynamischen Gleichungen herzuleiten und um , andererseits, eine
Referenzlösung für die dissipativen hydrodynamischen Berechnungen zu �nden.
Die vorliegende Dissertation basiert auf den folgen Publikationen:

• [32] Thermalization of a color glass condensate and review of the 'Bottom-Up'
scenario. A. El, Z. Xu, and C. Greiner, Nucl. Phys. A, 2008, 806, 287-304.

• [33] Shear viscosity and out of equilibrium dynamics. A. El, A. Muronga, Z. Xu
and C. Greiner, Physical Review C, 2009, 79, 044914.

• [34] Extension of relativistic dissipative hydrodynamics to third order. A. El, Z. Xu
and C. Greiner, Phys. Rev. C, 2010, 81, 041901

• [35] A Relativistic dissipative hydrodynamic description for systems including par-
ticle number changing processes, A. El, A. Muronga, Z. Xu and C. Greiner,
Nucl.Phys.A, 2010, 848, 428-442

• [36] Dissipative hydrodynamics for relativistic multi-component systems. A. El,I. Bouras,
F. Lauciello, Z. Xu and C. Greiner, 2011, arxiv: 1103.4038 [hep-ph]

0.2. Herleitung und Erweiterung von dissipativen

hydrodynamischen Gleichungen

Ideale hydrodynamische Gleichungen folgen direkt aus den Erhaltungsgleichungen für die
Energie- und Impulsdichten (d.h.,Erhaltungsgleichung für den Energie-Impulstensor Tµν)
sowie der Zustandsgleichung, welche den Zusammenhang zwischen den Zustandsgrössen
eines Systems angibt, z.B. zwischen der Energiedichte und dem Druck eines idealen ul-
trarelativistischen Gases. Werden die dissipativen Terme berücksichtigt, so reichen die
oben genannten Gleichungen nicht mehr aus und es müssen weitere fundamentale Gle-
ichungen herangezogen werden. Die dissipativen Terme sind durch tensorielle Strukturen
in den Darstellungen des Energie-Impulstensors Tµν und des Teilchen�uss-Vektors Nµ

repräsentiert � entsprechend den Gleichungen (2.4), (2.5) und den De�nitionen (2.11)
� (2.18). Die makroskopischen 'Felder' Tµν(x, p) und Nµ(x, p) sind jedoch als integrale
über die mikroskopische Phasenraumverteilungsfunktion f(x, p) = dN

d3pd3x
zu verstehen.

Die sogenannte Gradsche Methode stellt den Zusammenhang zwischen den Komponen-
ten des Energie-Impuls Tensors und der Teilchen�uss-Vektors und der entsprechenden
Verteilungsfunktion f(x, p) in konsistenter Weise her. Diese Zusammenhänge werden im
2 erklärt.
Für die Herleitung der Raum- und Zeit-Evolution der dissipativen Anteile des Energie-

Impuls Tensors und des Teilchen�uss-Vektors wird, neben den Erhaltungssätzen und
der Zustandsgleichung, eine zusätzliche Gleichung benötigt. Diese Gleichung kann die
Boltzmann-Gleichung sein, wie beispielsweise in den Referenzen [37, 38, 39] ausgeführt.



x Contents

Im Rahmen dieser Arbeit wird jedoch ein anderer Weg eingeschlagen. Die zusätzlich
benötigte Gleichung, oder viel mehr Prinzip, ist das zweite Gesetz der Thermodynamik,
welcher besagt, daÿ die Entropie eines abgeschlossenen Systems nicht abnehmen kann.
Um dieses Prinzip in expliziter Form für die Herleitung dissipativer hydrodynamischer
Gleichungen nutzen zu können, wird der Entropiedichte-Strom sµ basierend auf der Ken-
ntnis der Verteilungsfunktion f(x, p) berechnet. Im klassischen, als Standard geltenden
Ansatz von Israel und Stewart [40] wird angenommen, dass der Entropiedichte-Strom
eines nicht-idealen Systems Korrekturen zweiter Ordnung in dissipativen Grössen (wie
Schertensor, Wärme�uss oder Volumenviskosität) enthält. Diese Annahme basiert auf
einer Reihenentwicklung, bei der die entsprechend reskalierten dissipativen Grössen als
Kleinheitsparameter dienen. Damit der so konstruierte Entropie-Strom den zweiten
Hauptsatz der Thermodynamik in Form der Ungleichung ∂µs

µ ≥ 0 erfüllt, müssen die
Evolutionsgleichungen für die dissipativen Grössen eine bestimmte Form haben. Die gle-
ichzeitige Forderung der Konvergenz zur Navier-Stoke'schen Theorie (welche auch in der
nicht-relativistischen Physik bekannt ist) führt auf die sog. dissipativen hydrodynamis-
chen Gleichungen zweiter Ordnung. In dieser Arbeit wir die klassische Theorie von Israel
und Stewart erweitert. Der Reihenentwicklung bei der Berechnung des Entropiedicht-
estromes wird bis zur dritten Ordnung in dissipativen Grössen durchgeführt. Dadurch
entstehen neue Terme in der Evolutionsgleichung für den Schertensor πµν � dies wird in
Abschnitt 3.1.4 diskutiert (der Wärme�uss sowie Volumenviskosität werden in dieser
Arbeit zur Vereinfachung vernachlässigt). Des weiteren ist in der klassischen, Israel-
Stewart'schen Hydrodynamik, die Teilchenzahl stets konstant. In dieser Arbeit werden
im Abschnitt 11 Teilchenproduktion und Teilchenvernichtung in den dissipativen hy-
drodynamischen Formalismus eingebaut. Des weiteren wird in Abschnitt 3.1.5 ein
dissipativer hydrodynamischer Formalismus für binäre Mischungen entwickelt. Solche
Systeme sind in der nicht-relativistischen Physik bekannt und können beispielsweise als
Modell für Mischungen von einatomigen Gasen dienen. In dieser Arbeit werden hydro-
dynamische Gleichungen für ein relativistisches massenloses Gas entwickelt, welches aus
Teilchen mit unterschiedlichen Wirkungsquerschnitten zusammengesetzt ist.

Die in den Abschnitten 3.1.4, 3.1.5 und 11 behandelten Erweiterung der 'klassis-
chen' relativistischen dissipativen Hydrodynamik haben groÿe Relevanz für das Feld der
hochenergetischen Schwerionenphysik. Das System, welches durch relativistische dissi-
pative Hydrodynamik beschrieben wird � das QGP � durchläuft unmittelbar nach ihrer
Entstehung eine rasche Expansion und be�ndet sich weit weg vom Gleichgewicht. Unter
solchen Bedingungen sind die dissipativen E�ekte stark und die Fähigkeit der hydro-
dynamischen Gleichungen, die Evolution eines solchen Systems zu beschreiben hängt
davon ab, welche Korrekturen und Terme in der Herleitung berücksichtigt und welche
vernachlässigt worden sind. Berücksichtigung von Termen höherer Ordnung in dissipa-
tiven Grössen erscheint daher notwendig. Durch berücksichtigung von Teilchenproduk-
tion und Annihilation wird der aus der pertubativen Quanten-Chromodynamik (QCD)
bekannte E�ekt der pQCD Brehmsstrahlung modelliert. Sowohl die Brehmsstrahlung
als auch der umgekehrte Prozess der Annihilation (oder, Absorption) sind inhärente
eigenschaften eines QCD Mediums. Die entsprechenden Matrixelemente können im per-
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tubativen Regime analytische Berechnet werden.
Das quark-gluonische Plasma ist eine Mischung. Die Quarks und Gluonen haben,

im Sinne der pertubativen QCD, unterschiedliche Wechselwirkungsraten. Auch sind die
Energie- und Teilchendichten für Gluonen und Quarks stark unterschiedlich. Bei sehr
hohen Energien werden die partonischen Verteilungsfunktionen im Inneren von Nukleo-
nen klar durch die Gluonen dominiert. Im quark-gluonischen Plasma werden Quarks und
Antiquarks jedoch produziert. Es stellt sich daher die Frage, inwiefern eine Mischung,
in der die Spezies stark unterschiedliche Wechselwirkungsraten und Dichten aufweisen,
durch einkomponentige Hydrodynamik beschrieben werden kann. Bleibt die innere Dy-
namik eines solchen Systems versteckt oder hat sie direkten und beobachtbaren Ein�uss
auf die mikro- und makroskopischen Observablen wie die Energie- und Impulsdichten,
Flussanisotropien und Viskosität? Das QGP wird derzeit durch einkomponentige Hydro-
dynamik beschrieben. Eine Formulierung der dissipativen Hydrodynamik ist daher von
groÿer Relevanz.

0.3. Diskussion der Ergebnisse

0.3.1. Berechnung der Scherviskosität

Aus dem sog. Entropieprinzip, auf welchem in dieser Arbeit die Herleitung hydro-
dynamischer Gleichungen basiert, folgen die Ausdrücke für die Transportkoe�zienten
wie die Scherviskosität, Wärmeleitfähigkeit und Volumenviskosität. In dieser Arebit ist
lediglich die Scherviskosität vom Interesse gewesen. Für die Berechnung von Transportko-
e�zienten muss aber � im Gegensatz zu den hydrodynamischen Gleichungen � zusätzlich
eine mikroskopische Gleichung verwendet werden, welche die Wechselwirkungsprozesse im
System beschreibt. Der imKapitel 4 hergeleitete Ausdruck für die Scherviskosität η en-
tält den Kollisionsterm aus der Boltzmann-Gleichung. Dieser Term enthält die Informa-
tion übder die di�erenziellen Wirkungsquerschnitte für die Prozesse im System. Für per-
tubative QCD Prozesse muss der Ausdruck für die Viskosität numerisch ausgewertet wer-
den. Dafür wurden die numerischen Methoden benutzt, die in der partonischen Kaskades-
imulation BAMPS [30, 41] � Boltzmann Approach to Multi-Parton Scattering � zum
Einsatz kommen. BAMPS ist ein mikroskopisches Modell, welches die partonische Phase
einer Schwerionenkollision beschreiben kann. Es beschreibt also die Dynamik eines quark-
gluonischen Gases und enthält einer Reihe von auf pQCD Matrixelementen basierten
Wechselwirkungsprozessen. Unter Verwendung von Matrixelementen aus BAMPS wurde
in Kapitel 9 die Abhängigkeit der Scherviskosität eines rein gluonischen Gases von der
Kopplungskonstanten αs berechnet. Es zeigt sich, dass für die Werte von αs = 0.2..0.6 ,
welche für die Schwerionenexperimente am RHIC und LHC relevant sind, die Viskosität
pro Entropiedichte η/s zwischen 0.2 und 0.08, und somit nah am unteren physikalis-
chen Limit, liegt. Der Grund für die niedrigen Werte des dimensionslosen η/s wurde in
den Teilchenerzeugung und -vernichtungsprozessen gefunden. Durch den sog. Landau-
Pomeranchyk-Migdal (LPM) E�ekt, welcher kollineare Abstrahlung im QCD Medium
unterbindet, wirken die Erzeugungs- und Vernichtungsprozesse stark isotropisierend [42,
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41, 33]. Die in dieser Arbeit berechneten Werte für η/s(αs) wurden vor kurzen durch zwei
unabhängige, auf der Green-Kubo Formel [43] sowie der Betrachtung eines Scher�usses
[44] basierte, Arbeiten mit hoher Genauigkeit bestätigt. Die Bedeutung von inelastischen
Prozessen, womit der Bremsstrahlungsprozess und der umgekehrte Kanal gemeint sind,
wurde bereits aus der Studie des Äquilibrierungsprozesses in der partonischen Kaskade
BAMPS deutlich und wird im Kapitel 7 diskutiert.
Extraktion von Transportkoe�zienten aus einer kinetischen Transportsimulation ist

von zentraler Bedeutung für die Erforschung von Transportprozessen in der Schwerio-
nenphysik. Damit wird die Brücke zwischen den beiden Ansätzen � dem makroskopis-
chen, hydrodynamischen und dem mikroskopischen, kinetischen � geschlagen. Nur unter
genauer Kenntnis der Korrespondenz zwischen den Werten von Wirkungsquerschnitt und
Viskosität sind konsistente und direkte Vergleiche zwischen den beiden Ansätzen möglich.
Die im Kapitel 4 hergeleitete Formel für die Scherviskosität kann auch analytisch aus-
gewertet werden, falls der di�erentiale Wirkungsquerschnitt winkelunabhängig ist. Das
erlaubt, zum Beispiel, die Viskosität unter Berücksichtigung von inelastischen Prozessen
als Funktion des inelastischen Wirkungsquerschnittes zu berechnen.

0.3.2. Anwendbarkeit von hydrodynamischen Formalismen

Um die Grenzen der Anwendbarkeit von hydrodynamischen Formalismen zu untersuchen,
wird in dieser Arbeit ein Spezialfall gewählt � ein longitudinal expandierendes System
mit transversaler Isotropie. Somit beschränken sich die dissipativen Korrekturen auf eine
Dimension. Die longitudinale Expansion wird in Form des sog. Bjorken'schen Flusses
[45] realisiert. Ein solches System in analog zu einem in einer Dimension expandieren-
den Hubble-Universum. Eine detaillierte Beschreibung dieses von Bjorken geprägten
Szenario's von Schwerionenkollisionen ist in Kapitel 5 gegeben. Reduktion der hydro-
dynamischen Gleichungen auf einer Dimension wird in Kapitel 6 diskutiert.
In einem longitudinal expandierenden System sorgt die Expansionsrate für Abweichung

vom globalen Gleichgewicht. Der Energie-Impuls Tensor (und die mikroskopische Im-
pulsraumverteilung) wird anisotrop und der longitudinale Druck sinkt. Dem entgegen
wirken im kinetischen Bild die mikroskopischen Kollisionsprozesse bzw. Relaxation zum
Gleichgewicht im hydrodynamischen Bild. Falls die Expansionsrate über die Äquilib-
rierungsrate dominiert, wird das System immer weiter weg vom Gleichgewicht getrieben.
Lösungen von hydrodynamischen Gleichungen zweiter Ordnung können unter solchen
Umständen zu unphysikalischen negativen Werten für den longitudinalen Druck führen,
wie im Kapitel 10 gezeigt wird. In einem voll-dimensionalen numerischen hydrody-
namische Algorithmus führen negative Werte für den Druck sofort zu einem Zusammen-
bruch des Codes. Im Kapitel 10 wird demonstriert dass dieses Problem in der Lösung
der erweiterten hydrodynamischen Gleichungen nicht auftritt. Eine Erweiterung der
dissipativen hydrodynamischen Gleichungen über die standardmäÿige zweite Ordnung
hinaus kann also zu einer erhöhten Stabilität von numerischen Algorithmen führen und
unphysikalische Ergebnisse vermeiden helfen. Für die dissipativen hydrodynamischen
Berechnungen stellen die kinetischen Transportsimulation mit BAMPS eine Benchmark
dar. Dissipative Hydrodynamik wird als anwendbar erachtet, falls die relative Abwe-
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ichung zwischen den hydrodynamischen und BAMPS Ergebnissen unter 10% liegt. Diese
spezielle Wahl der Fehlertoleranz ist durch frühere Publikation [46] bedingt. Für die
Anfangszeit τ0 = 0.4 fm/c, d.h. eine typische Anfangszeit für die meisten dissipativen
hydrodynamischen Simulationen [47], kann man feststellen dass die standardmäÿige dis-
sipative hydrodynamische Theorie zweiter ordnung für η/s ≤ 0.2 anwendbar ist. Dieser
Wert liegt in der Nähe der Physikalischen Viskosität des QGP (welche auch in dieser
Arbeit bestimmt wurde). Die erweiterte Theorie dritter Ordnung kann hingegen auch
für gröÿere Viskositäten im Bereich η/s ≤ 0.4 angewendet werden.
In Kapitel 11 werden die Ergebnisse dissipativer hydrodynamischer Rechnungen für

ein System mit Teilchenproduktion und Annihilation diskutiert. Es wird gezeigt, dass die
Berücksichtigung dieser Prozesse im hydrodynamischen Formalismus einen groÿen e�ekt
auf die Spektren und Temperatur des Mediums hat, auch wenn der E�ekt auf andere
Observablen, wie die Energiedichte eher gering ist.
Die hydrodynamischen Gleichungen für ein mehrkomponentiges System unterscheiden

sich von denen für einkomponentiges System durch die Präsenz von mehreren Relaxation-
szeitskalen. Dies ist die Folge davon, dass die Wirkungsquerschnitte für Kollisionen von
Teilchen unterschiedlicher Sorten unterschiedlich groÿ sind. Wie in Kapitel 12 ausge-
führt, unterscheidet sich das Verhalten eines mehrkomponentigen Systems vom Verhalten
eines einkomponentigen Systems, wenn man die Evolution des Schertensors betrachtet.
Man stellt auch fest, dass, unabhängig von der Anfangsbedingung, sich ein bestimmtes
Verhältnis zwischen den Komponenten des Schertensors der Mischungskonstituenten ein-
stellt. Dieses spezi�sche Verhältnis ist eine Charakteristik der Mischung und hängt nur
von den Dichten und Wirkungsquerschnitten ab. Auch hier bringen die Vergleiche mit
BAMPS Ergebnissen eine Bestätigung der hydrodynamischen Berechnungen. Ebenfalls
in Kapitel 12 wird gezeigt, wie sich die Viskosität einer Mischung berechnen lässt, falls
die di�erenziellen Wirkungsquerschnitte winkelunabhängig sind.
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1. Introduction

The farther you go, the less you know.

Lao Tzu (6th century BCE),
philosopher of ancient China.

1.1. This work

This work is dedicated to a study of various aspects of the theory of relativistic dissipative
hydrodynamics. In high-energy heavy-ion physics hydrodynamic framework has become a
standard theoretical tool, providing quite accurate description of a number of phenomena
observed in the experimantal facilities. Still work on proper formulation of hydrodynamic
formalisms for physical systems created in heavy-ion collisions is a continous processes
and a very active research �eld. This work aims to contribute to a deeper understanding of
the relativistic hydrodynamic formalism, its applicability limits and intrinsic parameters.

1.2. Quantum Chromodynamics.

Quantum Chromodynamics (QCD) is the theory of the strong interaction, which is one
of the four fundamental interactions of nature � along with the electromagnetic, weak
and gravitational interactions. For three of these interactions � strong, weak and elec-
tromagnetic � quantum �eld theories have been formulated. Together they constitute
the Standard Model of elementary particle physics. A quantum theory of gravity is still
to be developed. The 'quantum �elds' of QCD are quarks and gluons. Gluons are the
mediators of the strong interaction, in a similar way to which the photons are the medi-
ators of the electromagnetic force, which is represented by the simplest of the quantum
�eld theories. But in contrast to the photons, gluons can interact with each other. This
property of QCD, if formulated in a mathematical way, follows from its non-Abelian
structure. Analogous to the electromagnetic interaction, which exists between carriers
of the electric charge, strong interacting objects carry a so-called color charge, or sim-
ply Color. Whereas there is only one charge � namely the electric charge � in (Abelian)
electromagnetic quantum �eld theory, there are three colors in (non-Abelean) QCD, sym-
bolically labeled 'red', 'green' and 'blue'. Gluons, the carriers of the strong force, rotate
the color of the interacting objects. Thus, in contrast to the electromagnetic force which
is represented by the symmetry group U(1) and has one gauge �eld, the photon, the
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strong force is represented by the non-Abelian SU(3) group and has 32 − 1 = 8 gauge
�elds � the gluons.
In nature the carriers of color charge do not exist in an isolated form. All objects

observed by any direct measurement � e.g. protons and neutrons � are color-neutral. If
one were to try to separate the two constituents of a quark�anti-quark pair, the most
simple color-neutral object, the attraction and potential energy between them would in-
crease with the distance. As the potential increases, it becomes more favorable to create
a new quark�anti-quark pair, so that another color-neutral object appears � but color
stays 'con�ned'. Color con�nement is one of the basic properties of the strong inter-
action. In this example, increasing the distance corresponds, by virtue of Heisenberg's
uncertainty principle, to decreasing the energy scale. Thus, color con�nement means
that the coupling of the strong interaction increases with decreasing energy scale. In a
macroscopic world of large spacial and accordingly small energy scales strong coupling
is indeed in�nitely strong. This conclusion can be made from the simple fact that single
quarks and gluons cannot be observed outside of protons and neutrons. One particular
implication of this conclusion is very intriguing � on the other end of the energy spec-
trum, on large energy and small length scale � color con�nement should disappear and
quarks and gluons should become asymptotically free .
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Figure 1.1.: Strong coupling constant αs(Q) extracted from di�erent experimental mea-
surements. Figure is taken from Ref. [48].

The two properties of QCD, con�nement and asymptotic freedom, can be tested in
a variety of experiments, in which the strong coupling constant αs can be determined
at a speci�c energy scale Q, which is associated with the momentum transfer involved
into the scattering considered process. To determine the coupling constant αs one needs
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to investigate particle reactions involving quarks and gluons in either in- or outgoing
states. Due to con�nement, they manifest themselves as hadrons during the measure-
ment. Examples of such processes are deep inelastic scattering, electron � anti-electron
annihilation, hadronic collisions or decays of heavy quark � anti-quark particles [49]. All
these processes are characterized by a speci�c energy scale Q, which is the momentum
transfer involved. The results of αs(Q) measurements in di�erent experiments are sum-
marized in Fig. 1.1 [48]. The dependence of αs on the energy scale is referred to as
'running coupling' and qualitatively demonstrates the concepts of color con�nement and
asymptotic freedom. The intriguing implication of the asymptotic freedom is the possi-
bility to study a dynamic system of weakly coupled quarks and gluons at extremely high
energies. The search for this state of matter, which is believed to describe the very early
moments after the 'Big Bang', is pursued in high energy hadronic colliders.
Here is a short story of a fast-forward journey to the origin of the universe.

1.3. Heavy-ion research: on the way to a 'Big Bang'.

In the year 2000 a CERN press release announced the discovery of a new state of matter,
which became known as the Quark Gluon Plasma (QGP). Underlying this discovery have
been a number of phenomenological observations, which revealed the properties of the
new created medium. One of the most prominent of these properties is its collective, or
�uid-like, behavior.
The starting point for experimental research of heavy-ion collisions was the BEVALAC

at Berkeley, where in the mid-70s for the �rst time collisions of heavy atomic nuclei were
explored. The unique feature of such experiments is the possibility to investigate nuclear
matter at densities and temperatures which are much higher than the normal state of
so called 'cold' matter, which we live in. However, with the establishment of a novel
fundamental theory of strong interactions � Quantum Chromodynamics � it became
clear that energies accessible at BEVALAC experiments were not high enough to observe
a transition between the hadronic phase and a decon�ned phase of quarks and gluons,
predicted by QCD. Such a 'melting' of the nucleons at extreme densities and temperatures
would imply not just an extreme, but a completely new state of matter, which, until the
start of heavy-ion research at high energies, could only exist in early universe.
The theoretical possibility to re-create a 'Big Bang' in an experimental facility has thus

motivated heavy-ion research and the design of new experiments with higher available
energies. Though the challenge was not only to access higher collision energies, since these
were already possible in proton-proton collisions at the CERN, Geneva and the BNL,
Long Island, but as well to create higher densities at same time. This challenge was
solved at already existing facilities such as the Alternating Gradient Synchrotron (AGS)
at BNL and Super Proton Synchrotron (SPS) at CERN, where for the �rst time heavy
nuclei where accelerated to ultra-relativistic energies, i.e. kinetic energies much larger
than the rest mass of the constituents. In the year 1986 at the SPS accelerator two 16O
beams with 60 GeV per nucleon (AGeV) where collided. Until 1993 the highest possible
energy was at 200 AGeV for experiments with sulfur nuclei and di�erent targets. In 1994,



4 1. Introduction

with the development of a new ion source, operation with 207Pb beams at 160 AGeV
started and the led beam program was pursued until 2002. The next big step was done in
June 2000 with the start of the Relativistic Heavy-Ion Collider (RHIC) at BNL. In this
next generation collider, utilizing 20 years of experience at AGS and SPS, the maximal
available energy was 200 AGeV for Au+Au collisions in the center of mass frame of the
colliding nuclei. Now the next, and probably the last of its art, facility has started its
heavy-ion program � the LHC at CERN. With 27 km circumference, which tops RHIC by
factor of 7, it will provide center of mass energies up to 5.5 ATeV for Pb+Pb collisions.
For some time to come it will probably stay world's largest and most powerful machine.

1.4. Phase diagram of QCD.

Figure 1.2.: Schematic phase diagram of strongly interacting matter. The net baryon
density on the x-axis is normalized to the net baryon density in normal
nuclear matter [50].

From the properties of QCD it follows that a decon�ned state of strongly interacting
matter can be created at conditions of extreme temperature (going to large energy scales)
and particle density (going to small spacial dimensions). A schematic view of the phase
diagram of QCD is presented in Fig. 1.2. The normal state of matter in the present
state of the universe is located at very low temperature around unity on the x-axis. The
collisions of heavy-ion at RHIC and LHC are supposed to create a �reball of a decon�ned
state with high temperature and low baryon density � in other words, a charge-neutral
system of highly energetic quarks (q), anti-quarks (q̄) and gluons with Nq − Nq̄ ≈ 0.
This is believed to be the state of the early universe, before quarks and gluons combined
into hadrons. The very low net baryon density found in RHIC and LHC heavy-ion
experiments is due to the onset of transparency with increasing collision energy. At
highest energies, the colliding nuclei pass through each other creating a highly-excited
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mixture of gluons and pairs of quarks and anti-quarks. Other experimental facilities, like
the upcoming projects FAIR at GSI in Darmstadt or NICA at JINR in Dubna, operate
at lower energies and thus in the regime where the transparency e�ect is reduced and a
high net baryon density can be created [51, 52].
The critical temperature Tc ≈ 160−180 MeV, at which a free gas of hadrons undergoes

a transition to a decon�ned QGP phase at zero baryon density can be obtained by lattice
calculations � numerical solutions of QCD �eld equations[53, 54, 55].
The evidence of the existence of a short-lived decon�ned phase of quarks and gluons

in heavy-ion collisions can only be of indirect nature. Studies of the �nal state of these
collisions, represented by high numbers of baryons, mesons and leptons, can give in-
sight into the evolution and properties of the QGP. The detector collaborations involved
into the investigation of QGP at RHIC are BRAHMS[56], PHOBOS[57], STAR[58] and
PHENIX[59]. At LHC these are ALICE, ATLAS and CMS.

1.5. Heavy-Ion phenomenology: a short overview

If you see a 'Bu�alo' sign on an
elephant's cage, do not believe your
eyes.

Koz'ma Proutkov (1801 � 1863),
russian writer (translated from Russian

by author).

Here I will give a short overview of some of the phenomena which are regarded as
signatures of the QGP phase.

1.5.1. Jet Quenching.

Upon collision of two nuclei, the constituent quarks and gluons (partons) of the nucleons
can undergo hard collision processes in which a highly energetic partons can be created.
Such partons can be observed since they give rise to a shower of hadrons in the �nals
state. For every of such high-energy jet events detected in an experimental device, one
would expect to detect a correlated event at an azimuthal angle of 180 ◦. However, it was
observed that the correlated jet signal of jets with high transverse momentum component
(high-pT ) at 180 ◦ is suppressed in a heavy-ion system. This observation is known as jet
quenching [16, 20, 21, 22]. If a jet pair is created at some point inside the QGP medium,
the two jets have to cover di�erent distances as they travel outside. If one jet ('near side
jet') is able to quickly escape the QGP medium, the other jet will pass through more
QGP matter and thus will most likely lose most of its energy to the medium due to
scattering processes with partons.
The observation of the jet quenching phenomenon is consistent with observed suppres-

sion of high-pT particles in Au + Au collisions. This suppression is quanti�ed by the
nuclear modi�cation factor RAA, which is a ratio of particle yield measured in heavy-ion
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(e.g. Au+Au) collision to the corresponding yield in a proton-proton collisions rescaled
by the estimated number of binary scatterings. RAA as function of the transverse mo-
mentum pT is found to be well below unity for hadrons [17, 18, 19], indicating a very
e�ective suppression of high-pT particles by the QGP medium. This is an indication of
a rather strong coupling inside the medium.

1.5.2. J/Ψ suppression.

Quarkonia, e.g. the particles J/Ψ and Υ, are bound states of a quark and its anti-quark
(charm�anti-charm for J/Ψ and bottom�anti-bottom forΥ). These particles are expected
to 'melt' in a decon�ned QCD medium due to the screening of their binding potential.
This screening is analogous to the Debye screening of electric charges in non-relativistic
plasmas. Thus, observation of a suppression of Quarkonia in the �nal state can be seen as
an indication of existence of a decon�ned QCD plasma, as was proposed 1986 by Satz
and Matsui [13]. Analysis of the experimental data from RHIC demonstrated that
several puzzling features of the J/Ψ suppression [14]. The suppression at mid-rapidity
proved to be qualitatively the same at RHIC (measured by PHENIX) and SPS (mesured
by NA50) energies for same number of participants. Furthermore, a stronger degree of
suppression was observed at RHIC at forward rapidities in comparison to the central
rapidity region. Observation of these two e�ects places special emphasis on the role of
initial state e�ects and the role of possible secondary J/Ψ production from recombination
of charm quarks produced in heavy-ion collisions. Moreover, these e�ects are expected to
be more pronounced at LHC energies [14, 15]. Whereas a detailed understanding of the
interplay of suppression, initial state e�ects and regeneration of charomonia is an actual
subject of theoretical research [15], the presense of suppression due to melting of J/Ψ in
a quark-gluon medium is an indication of presence of strong collectivity.

1.5.3. Collective Flow.

Observation of collective �ow is related to observation of anisotropies in angular momen-
tum and spacial particle distributions. The particle yield at di�erent azimuthal angles is
not constant, i.e. the �ow pattern of the QGP medium is anisotropic. This anisotropy
was interpreted by Ollitrault [60] as a signature of collective behavior of the QGP.
The overlap region of the two colliding nuclei has a prolongated, roughly ellipsoidal

shape if the collision is o�-central. As the created elliptic region starts expanding, pres-
sure gradients build up. In the direction of minor axis the pressure gradient is stronger
than in the direction of the major axis. Thus, the expansion will proceed faster in di-
rection of the minor axis, transforming the initially present spacial anisotropy into a
momentum-space anisotropy. Particles will be pushed into the direction of strongest
pressure gradient. Of course, such a behavior can only be expected in case the medium
does behave in a collective way.
To obtain a quantitative measure of �ow anisotropy the transverse momentum dis-

tribution is expanded into a Fourier series, which for a perfect ellipsoidal form can be
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written as

dN

pT dpT dy dϕ
=

dN

2π pT dpT dy

(
1 + 2v2(pT ) cos 2(ϕ−ΨRP ) + . . .

)
. (1.1)

The decomposition is done with respect to the reaction plane orientation angle ΨRP ,
which is di�erent for each event. For a perfect ellipsoidal form the coe�cient v2 is the �rst
non-vanishing coe�cient to be taken into account. Experimentally v2 can be obtained
by weighting the measured particle multiplicities with cos 2(ϕ−ΨRP ) and averaging over
the angle ϕ. The coe�cient v2(pT ) is usually referred to as the di�erential elliptic �ow .
The integrated elliptic �ow v2 is an average over transverse momenta.
The ability of ideal hydrodynamics to reproduce the �rst di�erential v2 measurements

at RHIC [6] at small pT < 1.5 GeV (i.e. for more than 98% of all particles), reported in
2001 in Ref. [8] and later in Refs. [9, 10], was considered a startling success. This suc-
cess lead to the two paradigms of ideal �uid creation at RHIC and early thermalization
[26]. The latter conclusion is based on the rather low initialization time for hydrody-
namic calculations. However, the quality of the matching of experimentally measured
v2(pT ) with ideal hydrodynamic calculations is dependent on the choice of initial time,
energy density and temperature values [12]. More importantly, the assumption of full
thermalization of produced matter in heavy-ion collisions is rather unrealistic. Full ther-
malization would require an in�nitely strongly coupled medium. A step away from the
ideal hydrodynamics paradigm was made as Teaney [61] and later Heinz and Song [11]
demonstrated that viscous e�ects can signi�cantly suppress v2(pT ). These �ndings were
later con�rmed by a number of non-ideal hydrodynamic calculations (e.g. in Refs. [62],
[47], [63]). However, the switch from ideal to viscous hydrodynamics brings an additional
unknown � along with the initial conditions � the values of the dissipative coe�cients
in hydrodynamic theory. These have to be understood from �rst principles. Calculation
of the transport coe�cients (in particular the shear viscosity η) of a partonic medium is
one of the central aspects of this work.

1.5.4. Scaling of elliptic �ow.

Some properties of the medium, in which the anisotropic �ow is built up, can be deduced
from scaling properties of v2(pT ). As was demonstrated by the PHENIX collaboration
in Ref. [64], by scaling the measured v2(pT ) of mesons and baryons by the number nq

of constituent quarks (2 resp. 3) and relating it to the transverse kinetic energy ET

scaled by same factor, one obtains a universal curve, on which the measurements for
all particle species lie. The obtained universal v2/nq(ET /nq) increases at small kinetic
energy and saturates towards larger energies. This universality can be interpreted as an
indication, that hadronic elliptic �ow is built up in the decon�ned partonic phase and the
hadrons are produced by a coalescence of �owing partons (the so called recombination
model)[65, 66, 67, 68].
Observations of the elliptic �ow, its properties and other indications of the existence

of a strongly coupled medium during the early stages of heavy-ion collisions turned the
attention of theory community to the decon�ned phase of QCD matter and its dynamics.
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Figure 1.3.: Time evolution of a heavy-ion collision and ranges of applicability of theo-
retical tools [69]

1.6. Theoretical tools to description of Heavy-Ion

phenomenology

The di�erent stages through which a heavy-ion collision goes are characterized not only
by di�erent time scales but as well by di�erent energy scales and associated degrees of
freedom of the produced matter constituents. It is thus not possible to �nd a univer-
sal modelling approach for heavy-ion collisions � the di�erent stages rather have to be
understood within di�erent theoretical approaches.

The initial and the early pre-equilibrium states are characterized by a anisotropic
momentum distribution. A very prominent example of a model approach for the initial
state is the Color Glass Condensate [70, 71, 72], which will be discussed later in this
work. another popular approach to initial state distribution is the Glauber model, as e.g.
employed in Ref. [8]. The very early pre-equilibrium stage is often modelled in terms
of plasma instabilities [73]. The appropriate theoretical concepts for such modelling of
early stages are formulated in the Classical Yang-Mills theory (CYM) or Lattice Gauge
Transport (LGT). These theories are able to describe the initial coherence of the produced
�elds and can be employed to model the initial conditions for dynamical models used at
later stages. Examples of these approaches can be found for instance in Refs. [74, 75].

The late pre-equilibrium stage can be investigated by means of kinetic theory using
transport models (TM). Partonic Cascade Models (PCM), e.g. [27, 28, 29, 30, 31] are
based on a quasi-particle approach, i.e. the relevant degrees of freedom for these models
are (light) quarks and gluons, which are treated as an ultra-relativistic gas. The advan-
tage of the PCM approaches is their ability to describe the microscopic dynamics of the
quark-gluon gas basing on relevant cross sections, which for small coupling are known
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from the perturbative theory (perturbative QCD). PCMs are thus equally based on the
kinetic transport theory [76].
In this work the partonic cascade BAMPS will be employed. BAMPS is a Monte-Carlo

approach to solving the Boltzmann transport Equation

pµ∂µf = C[f ] . (1.2)

Here f represents the phase-space particle distribution and the functional C[f ] accounts
for collisional processes between quasi-particles. BAMPS and related technical aspects
of numerical implementation of the Boltzmann Equation will be discussed in detail in
Chapter 7.
The range of applicability of a PCM approach can be extended to the hadronization

and freeze-out phases once the partonic degrees of freedom are translated into hadronic
ones. Using an appropriate procedure to model the phase transition, the hadronic phase
can be again investigated by means of the Monte-Carlo transport theory using the exper-
imentally known hadronic decay ratios and cross sections in a hadronic transport model,
as for example done in UrQMD [77, 78] or HSD [79].
Whereas transport models are microscopic approaches, a macroscopic description of

the evolution of the QGP can be given by a hydrodynamic models (nuclear �uid dynam-
ics, NFD), as already discussed in the context of heavy-ion phenomenology. A signi�cant
di�erence between these two descriptions is the fact, that a hydrodynamic description is
only applicable if the considered system is close to local equilibrium, whereas the kinetic
transport theory can also be used to describe non-equilibrated systems. This shrinks
the applicability range of the hydrodynamic description considerably. In particular, hy-
drodynamics can most likely not be applied at early times when the medium is highly
anisotropic. One of the aims of this work is to investigate the applicability of relativis-
tic hydrodynamics to non-equilibrated systems by a direct comparison of hydrodynamic
calculations with results of kinetic transport calculations.
This work is dedicated to the investigation of the transition between the kinetic trans-

port and dissipative hydrodynamic theories for ultrarelativistic systems. The existing
hydrodynamic formalisms are improved in order to better extent their spectrum of appli-
cations to a broader class of transport scenarios. These improvements are related to the
inclusion of new terms neglected in previous works, the possibility of particle production
and annihilation and the possibility of descriprion of mixtures, i.e. �uids of several dis-
tinguishable components. A formal way to extract the transport coe�cients from kinetic
transport theory has been established. Validity and limitations of hydrodynamic equa-
tions are demonstrated by direct comparisons of their solutions with kinetic transport
calculations. All these aspects can contribute to a better understanding of applications
of dissipative hydrodynamics to the description of the QGP dynamics.

1.7. The Roadmap.

This work is organized as follows: I will begin with a basic discussion of the formulation
of relativistic hydrodynamics in Chapter 2. In this Chapter also the mapping of hydro-
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dynamic theory onto kinetic theory � the so called Grad's method of moments � will be
introduced. In Chapter 3 derivation of relativistic dissipative hydrodynamic equations
from the entropy principle will be discussed. After a review of the well-known �rst- and
second-order equations, derivation of a novel, third-order evolution equation for shear
tensor will be discussed. Both second- and third-order formalisms will be extended with
the possibility of particle creation and annihilation. In the same Chapter a novel dissi-
pative formalism for a multi-component system is derived. After the derivation of the
hydrodynamic evolution equations, in Chapter 4 I introduce an expression that allows to
calculate the shear viscosity coe�cient in scope of kinetic transport theory. In Chapter 5
Bjorken's picture of heavy-ion collisions is introduced; this picture constitutes the frame-
work for the analytic calculations discussed in the following. In Chapter 6 hydrodynamic
equation derived in Chapter 3 are given in one-dimensional boost-invariant geometry
from Bjorken's scenario. The kinetic transport model BAMPS is introduced in Chapter
7. An overview of heavy-ion phenomena that can be studied with BAMPS is given in the
same Chapter. In Chapter 8 I investigate whether Grad's approach, discussed in Chap-
ter 2, is consistent with the results of BAMPS calculations. Results of calculation of the
shear viscosity coe�cient of a QCD medium employing BAMPS are presented in Chap-
ter 9. In Chapters 10 and 11 I compare solutions of second- and third-order dissipative
hydrodynamic equations with BAMPS results for a one-dimensional expanding system
with conserved net particle number and including particle production and annihilation.
In Chapter 12 solutions of the hydrodynamic equations for a two-component system
are compared with BAMPS calculations and some properties of the multi-component
equations are discussed.

1.8. Notation

In this work I will be using the following standard conventions

• Natural units ~ = c = kB = 1.

• The metric tensor is gµν = diag(1,−1,−1,−1).

• For any second-rank tensor the symmetrization operation is de�ned as

A(µν) =
1

2
(Aµν +Aνµ) .

The anti-symmetrization is de�ned as

A[µν] =
1

2
(Aµν −Aνµ) .
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2. Construction of the hydrodynamic

framework.

Panta Rei (from greek: everything
�ows)

Name of a bar in Frankfurt am Main

In this Chapter the basic �elds and tensorial structures of the relativistic hydrody-
namic framework are introduced. Without yet considering the dynamics of these �elds,
I will discuss their basic mathematical properties and physical interpretation. The two
basic choices of the computational frame � Eckart and Landau frames � are introduced.
Grad's 14-moment theory is introduced in order to establish a connection between the
hydrodynamic, i.e. macroscopic, and kinetic, i.e. microscopic, descriptions.
The concepts introduced in this Chapter will be needed in the following Chapters

to derive dissipative hydrodynamic equations for applications in high-energy heavy-ion
physics.

2.1. Basic tensorial decompositions.

Relativistic hydrodynamics can be interpreted as an e�ective theory of the �elds Tµν(x),
which is the energy-momentum tensor, Nµ

B(x), which is the particle number four-current,
and uµ, which is the �uid four-velocity. In heavy-ion collisions the particle four-current
is usually associated with the net baryon number (indicated by the subscript B) and
thus is conserved due to baryon number conservation. The energy-momentum tensor
is conserved due to energy and momentum conservation in a closed system. Thus, the
hydrodynamic equations can be written in form of the conservation laws

∂µT
µν = 0 , ∂µN

µ
B = 0 . (2.1)

For a dissipation-free (i.e. ideal) �uid, these two equations are the only ones needed to
describe the evolution of the system. However the focus of this work is on derivation
and analysis of dissipative hydrodynamic equations, since theoretical studies of the early
stages of heavy-ion collisions do provide certain indications, that dissipation is present in
the produced system. In a ideal �uid entropy is conserved, but if dissipation is present,
entropy is produced and an additional equation is needed to describe the amount of
entropy production, which is proportional to the strength of the dissipation. All these
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aspects will be addressed later in this work. At this stage it is necessary to discuss in
more detail the constructs Nµ

B(x), T
µν(x) and uµ.

The energy-momentum tensor and particle number four-current can be decomposed
into orthogonal components with respect to the four-vector uµ. The vector uµ is normal-
ized to unity, i.e.

uµu
µ = uµuνg

µν = 1 . (2.2)

Here gµν ist the metric tensor as intoduced in Section 1.8. Using this property of uµ, the
projector

∆µν = gµν − uµuν , (2.3)

can be shown to be orthogonal to uµ, i.e. ∆µνuµ = 0. With these de�nitions, the most
general orthogonal decompositions of Tµν and Nµ can be written as

Tµν = euµuν − (p+Π)∆µν +Wµuν + uµW ν + πµν , (2.4)

Nµ = nuµ + V µ . (2.5)

Note, that in the latter equations the subscript B, indicating that the number four-
current is related to the net baryon number, has been dropped. The particle four-current
could be de�ned via any charge, as e.g. the baryon number or also electrical charge and
strangeness. In a one-component system of particles without charge, the net particle
four-current is associated with the net particle number. In contrast to the net baryon
number, the net particle number is not necessary conserved in a system produced in
heavy-ion collisions.
The quantities Π, Wµ, V µ and πµν are dissipative quantities, also referred to as dissi-

pative �uxes or dissipative �elds. For systems in equilibrium they vanish, leading to the
following form of the energy-momentum tensor and particle number four-current:

Tµν
eq = euµuν − p∆µν , (2.6)

Nµ
eq = nuµ . (2.7)

The requirement of orthogonality leads to the following relations between the intro-
duced tensorial structures and uµ:

uµV
µ = uµW

µ = 0 , uµπ
µν = 0 . (2.8)

The scalar and tensorial quantities entering the decompositions (2.4) and (2.5) can be
obtained as projections of Tµν , Nµ and their deviation from the equilibrium

δT µν = Tµν − Tµν
eq , (2.9)

δNµ = Nµ −Nµ
eq . (2.10)
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The projections of Tµν , Nµ, δTµν and δNµ attain the following interpretation [80]:

n = uµN
µ net particle density , (2.11)

e = uµuνT
µν energy density , (2.12)

Π = −1

3
∆µνδT

µν bulk pressure , (2.13)

p = −1

3
∆µνT

µν −Π equilibrium pressure , (2.14)

V µ = ∆µ
νδN

ν net particle �ow (relative to uµ), (2.15)

Wµ = uν∆
µ
λδT

νλ energy �ow (relative to uµ), (2.16)

qµ = Wµ − e+ p

n
V µ heat �ow (relative to uµ), (2.17)

πµν = δT 〈µν〉 shear stress tensor . (2.18)

with δT 〈µν〉 =
[
1
2

(
∆µ

α∆ν
β +∆µ

β∆
ν
α

)
− 1

3∆
µν∆αβ

]
δTαβ .

Now the mathematical notation and relevant physical quantities have been discussed.
We are now in a position to discuss the choice of the reference frame, which will be used
for all calculations throughout this work.

2.2. Choice of the reference frame.

For a given '�eld' con�guration Nµ(x), Tµν(x) the reference frame of a �uid element is
de�ned by the �uid four-velocity uµ(x), which now has to be determined in terms of the
components of Nµ(x) and Tµν(x). In the set of Eq. (2.11) � (2.18) two independent
vectorial structures were introduced, the particle number �ow V µ and the energy �ow
Wµ (which in principle can be replaced by qµ). The velocity �eld uµ can be associated
either with particle �ow (in which case V µ vanishes) or the energy �ow (Wµ vanishes)
[76].

Eckart frame

If uµ is chosen to be parallel to the particle number �ow Nµ than due to uµu
µ = 1 it

becomes

uµ =
Nµ√
NµNµ

. (2.19)

With this choice the net particle �ow V µ vanishes, since the reference frame follows the
�ow of net particle number so that energy �ow Wµ becomes identical with the heat
�ow qµ. This frame is known as Eckart or particle frame. If the particle four-current is
de�ned via the baryon number, Eckart's frame is ill-de�ned in a system with vanishing
net baryon number, like the one produced at RHIC or LHC. However, for any other
non-vanishing net charge this de�nition can be applied.
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Landau frame

Alternatively, the velocity �eld uµ can be chosen to be parallel to the energy �ow uνT
µν .

Than it can be written as

uµ =
Tµ
ν uν√

uαTα
β T

β
γ uγ

. (2.20)

With this de�nition the reference frame follows the �ow of energy density. The energy
�owWµ vanishes and the heat �ow qµ becomes proportional to the particle �ow V µ. This
frame is known as Landau and Lifshitz or energy frame. Due to the shortcoming of Eckart
frame, which is not applicable in systems with vanishing net baryon charge, Landau frame
is the �rst choice in applications of relativistic hydrodynamics. The disadvantage of the
energy frame is its implicit form, which leads in a general case to a polynomial equation
for the components of uµ.

2.3. Equation of state.

The equation of state relates pressure to the other thermodynamic variables such as the
energy density e and particle density n (or alternatively the temperature T :

p = p(e, n) . (2.21)

For QCD medium the equation of state can be obtained from lattice calculations. The
method and results of such calculations are reviewed by Karsch in Ref. [54] and Fodor
and Katz in Ref. [81]. In this work the most simple equation of state will be used � the
one of an ideal ultrarelativistic gas:

e = 3p . (2.22)

This equation models a non-interacting gas of massless quarks and gluons. For analytic
calculations this choice is often the standard simplistic choice. For numerical implemen-
tations of hydrodynamic evolution, the major disadvantage of this equation of state is
its inability to describe the phase transition between partonic and hadronic phases. In
order to account for the latter, di�erent equations of state can be chosen. The e�ect of
equation of state on hydrodynamic evolution is studied for instance in Ref. [47].

2.4. Grad's 14-moment theory

2.4.1. Approximation of o�-equilibrium distribution

A connection between the microscopic Boltzmann Equation (1.2), which is the underlying
equation of the kinetic theory, and the macroscopic hydrodynamic description is based on
the method of moments introduced by Grad [82]. and adopted for relativistic systems by
Israel and Stewart [40]. A macroscopic description of a system requires knowledge of
the independent components of the particle four-current Nµ and the energy-momentum
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tensor Tµν , as discussed in Section 2.1. In contrast to that, in kinetic theory the sys-
tem is characterized by the distribution function f(x, p), which describes the occupation
number in the phase-space. For a system in thermodynamic equilibrium the phase space
occupation density can be calculated analytically. For systems o� thermal equilibrium
an exact analytic expression for the particle distribution is unknown. Moreover, the dis-
tribution could have a highly non-trivial analytic form. In this case the kinetic theory
has a major advantage, since in a numerical kinetic transport model, which simulates the
dynamics of an ensemble of microscopic constituents, the particle distribution is known
implicitly.
In order to establish a connection to the macroscopic theory of hydrodynamics, an

analytic expression for the o�-equilibrium distribution function has to be found. Formally
an o�-equilibrium distribution function can be written as [83, 84, 85]

f(x, p) = A0e
y(x,p) . (2.23)

In the latter equation A0 denotes the normalization factor dependent on the number
of degrees of freedom; in the presented form, Eq. (2.23) does not take into account
quantum e�ects like Bose enhancement or Fermi blocking � strictly it only applies to a
system of Boltzmann particles. Note that in Ref. [83] an analogous equation is given for
Fermi/Bose systems. For a system in thermal equilibrium the function y(x, p) is

yeq(x, p) = ln(A−1
0 feq) = µ(x)− βν(x)p

ν . (2.24)

with βν(x) = uν/T , i.e. the equilibrium distribution is a Boltzmann distribution.
For a system o� thermal equilibrium the deviation of the exponent can be formally

written as

y(x, p) = yeq(x, p) + φ(x, p). (2.25)

The deviation of the exponent from its equilibrium form, φ(x, p) = y(x, p)− yeq(x, p),
is a function of momentum and space and can be expanded in terms of momentum in a
most general form as follows [83, 84]

φ(x, p) ≈ ε(x)− εµ(x)p
µ + εµν(x)p

µpν + . . . . (2.26)

The latter expression is second order in momentum.
The unknowns needed for a complete determination of the macroscopic state of the

system are now the independent components of the new variables ε(x), εµ(x) and εµν(x)
together with the chemical potential µ(x) and the vector βµ(x) = uµ/T .
Next, Eq.(2.23) can be linearized via Eqs. (2.25) and (2.26):

f(x, p) ≈ feq(x, p)(1 + ε(x)− εµ(x)p
µ + εµν(x)p

µpν) . (2.27)

Using the linearized expression for the o�-equilibrium distribution function (2.27) one
can calculate the �rst and second moments of the latter. These moments are identical
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with the kinetic de�nition of the particle number four-current and the energy-momentum
tensor:

Nµ =

∫
pµf(x, p)dΓ = Nµ

eq + ε

∫
feq(x, p)p

µdΓ− εν

∫
feq(x, p)p

νpµdΓ

+ εσν

∫
feq(x, p)p

σpνpµdΓ (2.28)

Tµν =

∫
pµpνf(x, p)dΓ = Tµν

eq + ε

∫
feq(x, p)p

µpνdΓ− εσ

∫
feq(x, p)p

σpµpνdΓ

+ ελσ

∫
feq(x, p)p

σpλpµpνdΓ (2.29)

where dΓ denotes the integration measure dΓ = d3p
(2π)3p0

. Using the above equations, the
deviations of particle �ow Nµ and energy-momentum tensor Tµν from equilibrium values
Nµ

eq and Tµν
eq can be now written in a compact form

δNµ = εÑµ
eq − εν T̃

νµ
eq + ελνF̃

λνµ
eq (2.30)

δT µν = εT̃µν
eq − ελF̃

λµν
eq + ελσR̃

λσµν
eq . (2.31)

with Ñµ
eq, T̃

µν
eq , F̃

λνµ
eq and Rλσµν

eq denoting the �rst, second, third and fourth moments of
the equilibrium distribution function feq(x, p) respectively. Note that these moments of
the equilibrium distribution can easily be calculated analytically.

2.4.2. Matching conditions

In order to obtain a closed expression for the o�-equilibrium distribution function, the
unknown tensorial structures ε, εµ, εµν in Eqs. (2.30) � (2.31) have to be calculated in
terms of Tµν , Nµ and the �uid velocity �eld uµ. In order to identify these unknowns
one can use equations (2.30) � (2.31) together with the decompositions of the dissipative
�uxes from Eqs. (2.4) � (2.5).
But, before one starts calculating ε, εµ and εµν , the following two additional equation

are needed:

uµδN
µ = uµuνδT

µν = 0 . (2.32)

The meaning of these two equations, known as the Landau matching conditions [83, 84]
becomes apparent if one rewrites them using the decompositions (2.4) � (2.5) as follows:

e = eeq , (2.33)

n = neq . (2.34)

where e and n denote the energy and particle densities in the local rest frame and
same quantities with a subscript 'eq' refer to an equilibrium state. The above equations
match the actual energy and particle densities in a system to the energy and particle
densities of a �ctitious equilibrated state. If the particle distribution in equilibrium state
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is given by the Boltzmann distribution of massless particles, the e�ective temperature
of a non-equilibrium state can be de�ned by virtue of Landau matching conditions as a
temperature of a equilibrium state with the same energy and particle densities:

T =
e

3n
=

eeq
3neq

(2.35)

The latter equation implies for the energy and particle densities of as Boltzmann gas

e =
3λg

π2
T 4 ≡ eeq (2.36)

n =
λg

π2
T 3 ≡ neq. (2.37)

where g denotes the degeneracy factor. The factor λ, which is interpreted as fugacity,
accounts for deviations from the chemical equilibrium state. λ = 1 for an equilibrated
system. Fugacity is essentially needed to distinguish between a chemically equilibrated
and non-equilibrated states, as will be demonstrated later in Chapter 11.
Note that Landau matching conditions are essentially needed in order to de�ne the

temperature no matter what reference frame � either Landau's or Eckart's � has been
chosen.
Using Eqs. (2.30) � (2.31) together with the de�nitions (2.11) � (2.18) and the prop-

erties (2.32), one can �nd the solutions for ε(x), εµ(x) and εµν(x) in Eckart frame:

εµν = A2(3uµuν −∆µν)Π−B1u(µqν) + C0πµν (2.38)

εν = A1uνΠ−B0qν (2.39)

ε = A0Π (2.40)

The values of the thermodynamic coe�cients Ai, Bi and Ci were calculated for example
in [83, 84]. They are combinations of moments of the equilibrium distribution and thus
are known analytically. Derivation of εµν , εν , ε and calculation of the coe�cients Ai, Bi

and Ci are presented in Appendix A of this work.
The �elds εµν , εν and ε together have 14 independent components, which corresponds

to 14 unknowns in the set of Eqs. (2.4) � (2.5). Indeed, e and p are connected via the
chosen equation of state (which need not be the one of an ideal gas). In Eckarts frame
Wµ is equivalent to qµ, which has only 3 independent components due to orthogonality
property qµu

µ = 0. πµν is diagonal-symmetric and π00 = 0 by virtue of the matching
condition 2.32, which leaves only 9 independent πµν components. In addition, shear
tensor is traceless, πν

ν = 0, and there are only 8 independent components left. In total,
the number of unknowns in Eqs. (2.4) � (2.5) is

8︸︷︷︸
πµν

+ 3︸︷︷︸
qµ

+ 1︸︷︷︸
Π

+ 1︸︷︷︸
n

+ 1︸︷︷︸
e,p

= 14 . (2.41)

Using these 14 unknowns, the hydrodynamic �elds can be constructed.
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The o�-equilibrium distribution is thus determined within the Grad's theory of mo-
ments in terms of dissipative �uxes Π, qµ , πµν and the thermodynamic coe�cients Ai,
Bi, Ci according to Eqs. (2.38), (2.39), (2.40) together with Eqs. (2.27):

f = feq
[
1 +A0Π−

(
A1uνΠ−B0qν

)
pν +

(
A2(3uµuν −∆µν)Π−B1u(µqν) +C0πµν

)
pµpν

]
(2.42)

Hence any distribution f(x, p) now can be expressed in terms of the macroscopic �elds
describing the system.

2.4.3. Moments of the Boltzmann Equation

Hydrodynamic equations can be derived from the Boltzmann Equation (1.2) using the
moments of its left and right hand side. Such derivations were reported e.g. in Refs.
[86, 38]. Although this particular approach to derivation of hydrodynamic equations is
not a subject of this work, the moments of the Boltzmann Equation will be needed to
derive an expression for the shear viscosity coe�cient. 0th, 1st and 2nd moments of the
Boltzmann Equations are accordingly given by the following set of equations:∫

pµ∂µf(x, p)dΓ = ∂µ Nµ =

∫
C[f ]dΓ = J (2.43)∫

pµpν∂µf(x, p)dΓ = ∂µ Tµν =

∫
pνC[f ]dΓ = Jν (2.44)∫

pµpνpλ∂µf(x, p)dΓ = ∂µ Fµνλ =

∫
pνpλC[f ]dΓ = P νλ (2.45)

In the latter set of equations J and Jν can be physically understood as the source
terms for particle production and energy-momentum deposition accordingly. For a closed
system Jν = 0 and Eq.(2.44) simply states the conservation of energy and momentum.
In this work I will consider energy-momentum conservation, i.e. closed systems without
external source-terms, Jν = 0. In a multi-component system energy and momentum
exchange between the species is possible, but the total energy-momentum tensor is still
conserved. In Eq.(2.43) J = 0 if the particle number is conserved. However, this is
not true in a gluonic system, where the bremsstrahlung and absorption processes have
an in�uence on the net particle number. Thus, in presence of bremsstrahlung and the
reverse channel J has to be calculated by evaluating the integral over the collision term
in Eq.(2.43). This will be done in Chapter 11. The second moment of the Boltzmann
Equation is in general not conserved, i.e. P νλ 6= 0. To give an analytical expression for
P νλ one can consider its tensorial decomposition in terms of the dissipative �uxes, which
in most general form can be written as follows

Pµν =
4

3
CΠA2(3u

µuν −∆µν)Π + 2CqB1q
(µuν) +

1

5
CπC0π

〈µν〉. (2.46)

Again, the decomposition above is introduced in the Eckart or particle frame. The
tensorial structures introduced in the latter equation are the same as in Eq. (2.42) for
the momentum-independent parts of the distribution function. The coe�cients CΠ,q,π
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are dependent on the transport coe�cients bulk viscosity, heat conductivity and shear
viscosity accordingly. This becomes clear since they can be obtained as projections of
the left hand side of Eq. (2.46), which is an integral over the collision term:

− 4CΠA2Π = uµuνP
µν , (2.47)

CqB1q
µ = ∆µ

νuλP
νλ, (2.48)

1

5
CπC0π

〈µν〉 = P 〈µν〉. (2.49)

Since the collision term and thus its moments depend on the collision cross section, the
right hand side of Eqs. (2.47) � (2.49) must depend on the transport coe�cients bulk
viscosity, heat conductivity and shear viscosity. These equations will be needed later,
when I derive an expression for the shear viscosity coe�cient (comp. Section 4.2.1).
Now that the basic mathematical concepts and physical quantities have been discussed

and an analytic expression for o�-equilibrium distribution has been constructed, deriva-
tion of dissipative hydrodynamic equations can be discussed.
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3. Derivation of the relativistic

dissipative hydrodynamic equations.

Wonder, rather than doubt, is the root
of knowledge.

Abraham Heschel (1907 � 1972),
Jewish theologian and philosopher.

3.1. Hydrodynamic equations from the entropy principle.

In this section I will �rst introduce derivation of the well-known �rst and second-order
dissipative hydrodynamic equations from the entropy principle. The approach I will be
using here is a phenomenological one. Its main advantage is that obtained equations
automatically satisfy the second law of thermodynamics, since they are obtained from
this requirement. One of the �aws of this approach is however its inability to recover
some terms, which can be obtained in scope of di�erent approaches discussed in previous
section and at the end of this one. Derivation of hydrodynamic equations from the
entropy principle has been discussed by Muronga in Ref. [80] and originates from
the earlier works by Israel and Stewart [40]. Israel and Stewarts formulation of
hydrodynamic equations has for a long time been the standard hydrodynamic theory for
relativistic systems. After discussing the established theories I will derive a novel, third-
oder relativistic hydrodynamic equation, which has been reported in Ref. [34], as well as
novel second-order hydrodynamic equations for a multi-component system [36]. At the
end of this Chapter I will also review other approaches to derivation of hydrodynamic
equations.

3.1.1. Preface

In this Section I partly follow the procedure introduced byMuronga in Refs. [80, 83, 87].
The approach used in these works is based on the entropy production principle and
requires knowledge of the entropy current Sµ. From the phenomenological point of view
it can be written in the most general form as

sν = pβν − µ

T
Nν + βαT

αν +Qµ(δNν , δTαν) (3.1)
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with βν = uν/T . Nν and Tµν are the particle current and the energy-momentum tensor,
de�ned in Section 2.1 in terms of the energy density n, particle density e and isotropic
pressure p and dissipative �elds. µ the the chemical potential and is often replace by the
fugacity λ = ln(µ/T ). Qµ(. . .) is the dissipative contribution to the entropy current. Its
exact form will be speci�ed in the next Sections and is irrelevant for now.
In order to calculate the divergence ∂νs

ν of the entropy vector constructed above one
sometimes uses the so-called Gibbs-Duham relation (which is a generalized form of Gibbs
equation in non-relativistic thermodynamics)

∂ν(pβ
ν) = Nν

eq∂ν

(µ

T

)
− Tαν

eq ∂αβν , (3.2)

as for instance done in Ref. ([80]). To verify this relation one can use the de�nition of
the particle number four-vector

Nν
eq =

∫
pνe−βαpα+µβdΓ (3.3)

with β = 1/T and βν = βuν . µ denotes the chemical potential and is related to the
fugacity λ via eµ = λ. The divergence ∂νNν

eq can be expressed in terms of the derivative
of the exponent:

∂νN
ν
eq =

∫
dΓpν∂ν (−βαp

α + µβ) · e−βαpα+µβ =

= −
∫

dΓpνpα∂νβαe
−βαpα+µβ +

∫
dΓpν∂ν (µβ) e

−βαpα+µβ =

= −T να
eq ∂νβα +Nν

eq∂ν

(µ

T

)
. (3.4)

On the other hand, in Eckart frame the particle number four-vector can be written using
the ideal equation of state as follows:

Nν = nuν =
p

T
uν = pβν . (3.5)

Taking the divergence of the above equations together with calculations performed prior
to it, one veri�es the Gibbs-Duham relation (3.2).
For the divergence of the entropy current (3.1) one now obtains

∂αs
α = ∂α (pβ

α)−Nα∂α

(µ

T

)
− µ

T
∂αN

α + βµ∂αT
µα + Tµα∂αβµ + ∂αQ

α =

= −δNα∂α
µ

T
+ δTαν∂αβν −

µ

T
∂αN

α + ∂αQ
α . (3.6)

The de�nitions of δNµ = Nµ−Nµ
eq and δT µν = Tµν −Tµν

eq have been used together with
the conservation equation ∂µT

µν = 0 to obtain the latter relation. For the derivations of
hydrodynamic equations presented in this work, Equation (3.6) plays the most central
role. It has to satisfy the second law of thermodynamics, stating that the entropy pro-
duction ∂αs

α must be non-negative, which requires a speci�c mathematical form of Eq.
(3.6) which will be discussed in the following.
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At this point I want to notice that the evolution of the particle number current Nα

enters the entropy production explicitly via the term − µ
T ∂αN

α = − lnλ∂αN
α. Hydro-

dynamic approaches � e.g. Molnar and Huovinen in Ref. [46] and Muronga in [80]
� often assume conservation of the particle number current, ∂αNα = 0. In Section 11.1.1
and Appendix D I will demonstrate that the divergence of the particle number current
can be written in the form of a rate equation ∂αN

α = n
(
1
2R23 − 1

3R32

)
[87, 35, 88, 89],

where R23 and R32 are the rates of particle production and annihilation with the factors
1/2 and 1/3 accounting for the number of colliding particles in each process. The fugacity
λ is a measure of deviation from chemical equilibrium. λ > 1 denotes the oversaturated
regime characterized by particle annihilation, i.e. 1/3R32 > 1/2R23. The undersaturated
regime λ < 1 is characterized by particle production, i.e. 1/3R32 < 1/2R23. Thus, the
term − lnλ∂αN

α is always a non-negative contribution to the entropy production in a
closed system.

3.1.2. First-order equations

I will begin the derivation of a �rst-order equation for dissipative �uid dynamics with an
ansatz for the entropy current, which is at most �rst order in dissipative currents:

sµ = suµ +
qµ

T
. (3.7)

The above expression is given in the Eckart frame. Note, that this is the only possible
four-vector which can be constructed from the available tensors uµ, qµ and πµν and
contains only �rst-order terms in dissipative corrections. The scalar quantity s denotes
the local rest frame equilibrium entropy density. Comparing Eqs. (3.7) and (3.1), one can
identify Qµ = qµ/T . In order to calculate the divergence of the �rst-oder entropy current
one can use Eq. (3.6) with Qµ = qµ/T and δT µν = −∆µνΠ + 1

2 (q
µuν + qνuµ) + πµν

(which is valid in Eckart frame). Note, that δNµ = 0 in Eckart frame. Thus Eq. (3.6)
leads to the following form of the divergence of the entropy current:

∂αs
α =

(
−∆µνΠ+

1

2
(qµuν + qνuµ) + πµν

)
∂µβν −

µ

T
∂αN

α . (3.8)

With the de�ntion βµ = uµ/T and the properties πµνuµ = 0, qµuµ = 0 as well as
∆µνuµ = 0 the latter equation can be rewritten as follows:

∂αs
α = − 1

T
·Π ·∆µν∂µuν +

1

2
qµ (∂µβ + βuν∂νuµ) +

1

T
πµν∂µuν − lnλ · J . (3.9)

where I have used the general from of the particle number current evolution equation,
∂µN

µ = J , as motivated in the previous Section. In the limit of vanishing dissipative
currents Π, qµ and πµν and chemical equilibrium λ = 1 the entropy production (3.9)
vanishes which means that entropy of equilibrium state is conserved. For a non-ideal
(o�-equilibrium) system, the entropy production must be non-negative

∂µs
µ ≥ 0 (3.10)
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which is satis�ed in Eq. (3.9) if one postulates following linear relations

Π = −ζ∇µu
µ , (3.11)

qµ = κT
(
β−1∂µβ + uν∂νu

µ
)
, (3.12)

πµν = 2η∂〈µuν〉 = 2η∇〈µuν〉 . (3.13)

The covariant gradient operator ∇µ means ∇µ = ∆µν∂ν . Note that in the last of these
relations the projection 〈..〉 has been applied to the gradient in order to obtain a traceless
symmetric tensor since the shear stress tensor πµν also has this property. Application
of the projector 〈..〉 has no e�ect on the entropy production ∂µs

µ since, as one can
easily check, πµν∂µuν = πµν∂

〈µuν〉. Equations (3.11) � (3.13) for dissipative �uxes in
relativistic systems are known as Eckart/Landau-Lifschitz theory. For non-relativistic
systems �rst-order hydrodynamic theory is known as Navier-Stokes theory. However,
relativistic �rst-order equations are often referred to by this name as well.
With the relations postulated above the entropy production takes the non-negative

form

∂µs
µ =

Π2

ζT
− qµq

µ

κT
+

πµνπ
µν

2ηT
− lnλ · J . (3.14)

The proportionality factors in Eqs. (3.11) � (3.13) are the transport coe�cients bulk
viscosity ζ, heat conductivity κ and shear viscosity η and have to be non-negative in
order to satisfy the second law of thermodynamics.
Equations (3.11) � (3.13) are of �rst order in gradients of thermodynamic variables and

velocity �elds. Moreover, they can be interpreted as a linear relation between dissipative
thermodynamic forces and corresponding �uxes. The forces are

∇µu
µ, − T∂µ 1

T
− uν∂νu

µ, ∇〈µuν〉 . (3.15)

The algebraic Eqs. (3.11) � (3.13) imply that thermodynamic forces can be switched on
and o� instantaneously. Indeed, if one considers an initially equilibrated system which is
driven o� equilibrium by expansion, the dissipative �uxes (and thus the related forces as
well) evolve from 0 to a �nite value instantaneously, thus violating causality. The acausal
nature of �rst-order relativistic hydrodynamic equations as well as their instability under
small perturbations have been demonstrated by Hiscock in [90, 91, 92]. The problem
of acausality can be solved by introducing new terms into equations for dissipative �uxes
which turn them to equations of relaxation type. This was done for relativistic systems
by Israel and Stewart.

3.1.3. Second-order equations

The entropy current introduced in the previous section was up to �rst order in dissipative
currents. Second-order corrections can be introduced in a most general form as follows[40,
80]

sµ = suµ +
qµ

T
−

(
β0Π

2 − β1qνq
ν + β2παβπ

αβ
) uµ

2T
− α0Πq

µ

T
+

α1π
µνqν
T

. (3.16)
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The dissipative corrections have to be constructed in such way that the local rest frame
entropy density is maximal in equilibrium, i.e.

β0Π
2 − β1qνq

ν + β2παβπ
αβ ≥ 0 . (3.17)

This leads to requirement β0,1,2 ≥ 0. βi are thermodynamic functions, i.e. in general
they are functions of energy and particle densities: βi(e, n). Note that the argumentation
introduced so far is rather heuristic. An exact derivation of the entropy current in the
scope of Grad's formalism is given in Appendix B. However the result of an exact
derivation is identical with the expression obtained here.
For the following derivations I will neglect heat conductivity and bulk pressure. A

complete discussion of second-order equations is given by Muronga in Ref. [80]. In this
work I will investigate systems, for which bulk pressure and heat will vanish identically
and will thus concentrate on shear viscous corrections only.
The divergence of the second-order entropy current Eq.(3.16) can be written in a

factorized form

∂µs
µ = παβ

[
1

T
σαβ − παβ∂µ

(
β2
2T

uµ
)
− β2

T
π̇αβ

]
− lnλ

T
· J . (3.18)

with σαβ = ∇〈αuβ〉. The �rst term in Eq. (3.18) has been as well obtained from the
divergence of the �rst-order entropy current in Section 3.1.2 using Gibbs equation. The
last two terms cannot be recovered from �rst-order ansatz. To obtain an equation for
the shear tensor I will, in direct analogy to the procedure introduced in Section 3.1.2,
use the second law of thermodynamics Eq. (3.10). Equation (3.18) satis�es the second
law if one identi�es

πµν = 2ηT

[
1

T
σµν − πµν∂α

(
β2
2T

uα
)
− β2

T
π̇µν

]
. (3.19)

The choice of proportionality coe�cient guarantees reduction of the obtained equation to
the �rst-order equation (3.13) if second-order terms are neglected. Again, in analogy to
the �rst-order theory, the expression in angular brackets in Eq. (3.19) can be understood
as an extended thermodynamic force. Dividing in Eq. (3.19) both parts by 2ηβ2 and
rearranging the terms, one obtains a dynamic equation for the shear tensor

π̇µν = −πµν

τπ
+

σµν

β2
− πµν T

β2
∂α

(
β2
2T

uα
)

. (3.20)

In the latter equation the relaxation time

τπ = 2ηβ2. (3.21)

has been introduced. The notation π̇µν denotes the co-moving derivative π̇µν = uα∂απ
µν ,

i.e. derivative with respect to proper time τ in the local rest frame. Di�erent from the
constitutive equation of the �rst-order theory (3.13), Eq. (3.20) is a dynamic equation
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and has to be solved together with the equations for the energy and particle densities,
which follow from the conservation laws Eqs. (2.43) and (2.44).
The dynamic equation (3.20) has an advantage of modelling relaxation processes since

it is a di�erential equation, whereas equation (3.13) is of algebraic form. The necessity
of a relaxation-type theory was indicated by acausal character of the �rst-order order
theory. A purely phenomenological ansatz to cure the causality violation in Navier-
Stokes equations was to introduce a τππ̇

µν term on the left hand side of Eq. (3.13).
Introducing this term one obtains a relaxation equation for the shear tensor

π̇µν =
2η∇〈µuν〉 − πµν

τπ
(3.22)

which is also known as the 'truncated Israel-Stewart equation' and is of covariant Maxwell-
Cattaneo form. Indeed, Eq. (3.22) can be obtained from the Israel-Stewart Eq. (3.20)
neglecting the last term in it. However, its neglect due to any power counting argu-
ments proves to be not legitimate. Moreover, this term proves to be essential in order
to achieve a good agreement between hydrodynamic and kinetic transport calculations.
These issues will be addressed later in this work.
Equation (3.22) allows a very clear understanding of the role of relaxation time τπ: this

is the time scale on which the shear stress tensor relaxes to the �rst-order value which in
turn converges to the equilibrium state where all dissipative corrections are zero in the
limit of vanishing viscosity η → 0. Although the Israel-Stewart theory contains one term
not included in Eq. (3.22), the interpretation of the relaxation time in Israel-Stewart
equation (3.20) is the same.
Recently it has been demonstrated that Israel and Stewart's second-order hydrody-

namic equations are not complete. In fact a number of further terms can be recovered
if hydrodynamic equations are derived directly from the Boltzmann equation, as demon-
strated in [37, 38, 93]. Among others these are terms evolving the vorticity

ωµν =
1

2
(∇µuν −∇νuµ) ≡ ∇[µuν] . (3.23)

In the expression for the entropy production (3.18) a term of the form πµν∇[µuα]π
α
ν can

be added since it is identically zero, as can be easily shown using Eq. (3.23). If πµν is
factored as happens in transition from Eq. (3.18) to Eq. (3.19), the contribution due to
terms involving vorticity is not zero any more in the equation for πµν . However, terms
involving the vorticity (3.23) do not contribute to the entropy production and thus cannot
be recovered in scope of the entropy approach presented in this work. An overview of
second-order equations obtained by methods di�erent from the entropy based one will
be given in Section 3.2 below.

3.1.4. Third-order equations

An extension of the Israel-Stewart approach to a third-order theory has been presented
recently by me together with Zhe Xu and Carsten Greiner in [34]. I extend the expression
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for the equilibrium current by terms third-order in shear tensor:

sµ = s0u
µ − β2

2T
παβπ

αβuµ + α
β2
2

T
παβπ

α
σπ

βσuµ . (3.24)

The �rst two terms are already present in the entropy current from the second-order
theory. Note that the second and third-order terms are the only possible non-vanishing
contractions of the shear tensor πµν and the velocity �eld uµ which are, in absence of heat
�ow, the only tensorial structures present. However the entropy current constructed here
can also be derived directly using the Grad's approximation for the distribution function
Eq. (2.27). This derivation is given in Appendix B.
In the last term of Eq. (3.24) a new dimensionless coe�cient α is introduced. I

will assume α to be a constant. This will be demonstrated later in this work when
explicit expressions for both α and β2 will be derived in Section 6 resp. Appendix B. To
guarantee that the entropy density is maximal in equilibrium the following requirement
on the third-order term must be imposed:

α
β2
2

T
παβπ

α
σπ

βσuµ ≤ 0 . (3.25)

Now the entropy production for the third-order theory can be calculated:

∂µs
µ =

1

T
παβσ

αβ − παβπ
αβ∂µ

(
β2
2T

uµ
)
− β2

T
παβπ̇

αβ

+ α∂µ

(
β2
2

T
uµ

)
παβπ

α
σπ

βσ + 3α
β2
2

T
παβπ

α
σ π̇

βσ − lnλ

T
· J . (3.26)

Here again the Gibbs-Duham relation Eq. (3.2) has been used. The next to last term
in Eq. (3.26) is di�erent in its structure from the rest of the equation and should be
analyzed separately. It can be split into two parts in the following way:

3α
β2
2

T
παβπ

α
σ π̇

βσ = 3 (1− τπθ)α
β2
2

T
παβπ

α
σ π̇

βσ + 3τπθα
β2
2

T
παβπ

α
σ π̇

βσ . (3.27)

In the latter equation θ = ∂µu
µ denotes the so-called expansion scalar and τπ denotes the

relaxation time already known from the second-order theory. The expansion scalar is a
measure for the expansion rate of the system and should be compared to the relaxation
rate τ−1

π . The relaxation rate should be dominant over the expansion rate in a non-
equilibrated system which relaxes to the equilibrium. A ratio of the two characteristic
scales - the relaxation time scale and the inverse of the expansion rate - thus can be
used to quantify the ability of the system to relax to equilibrium. This ratio is called
the (local) Knudsen number [94] and has to be small for hydrodynamic approach to be
applicable

Kn = τπθ ≡ τπ∂µu
µ � 1 . (3.28)

For the �rst term on the right hand side of Eq. (3.27) two regimes can be considered.
As long as τπθ > 1, i.e. τπ > θ−1, the expansion dominates over the relaxation and
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the Knudsen number is larger than 1. An expansion-dominated system will be driven
out of equilibrium, since it cannot relax towards the equilibrium state. In this regime
απαβπ

α
σ π̇

βσ will have same sign as απαβπ
α
σπ

βσ which is negative as follows from the
discussion of Eq. (3.24). Since 1 − τπθ is negative as well, in this regime the �rst
term on the left hand side of Eq. (3.27) will be overall positive. The other regime to
be considered is τπθ < 1, i.e. τπ < θ−1. In this regime the relaxation dominates the
evolution of the system driving it towards equilibrium state. For a relaxation dominated
system απαβπ

α
σ π̇

βσ will have an opposite sign than απαβπ
α
σπ

βσ and thus will be positive.
Since 1− τπθ is positive as well, in this regime the �rst term on the left hand side of Eq.
(3.27) will be again positive. One can thus conclude that

3 (1− τπθ)α
β2
2

T
παβπ

α
σ π̇

βσ ≥ 0 (3.29)

holds throughout the entire evolution of the system. Rewriting Eq. (3.26) as

∂µs
µ =

1

T
παβσ

αβ − παβπ
αβ∂µ

(
β2
2T

uµ
)
− β2

T
παβπ̇

αβ

+ α∂µ

(
β2
2

T
uµ

)
παβπ

α
σπ

βσ + 3τπθα
β2
2

T
παβπ

α
σ π̇

βσ

+ 3 (1− τπθ)α
β2
2

T
παβπ

α
σ π̇

βσ (3.30)

one thus realizes that the second law of thermodynamics can be satis�ed by the require-
ment

∂µs
µ =

1

T
παβσ

αβ − παβπ
αβ∂µ

(
β2
2T

uµ
)
− β2

T
παβπ̇

αβ

+ α∂µ

(
β2
2

T
uµ

)
παβπ

α
σπ

βσ + 3τπθα
β2
2

T
παβπ

α
σ π̇

βσ ≥ 0 (3.31)

since the last term in Eq. (3.30) is always non-negative. Splitting the expression for
the entropy production into two parts and requiring non-negativeness of each of them
implicitly assumes that entropy production is maximal.
Writing Eq. (3.31) in a factorized form one obtains

παβ

[
1

T
σαβ − παβ∂µ

(
β2
2T

uµ
)
− β2

T
π̇αβ +α∂µ

(
β2
2

T
uµ

)
π〈α
σ πσβ〉 +3τπθα

β2
2

T
π〈α
σ π̇σβ〉

]
≥ 0 .

(3.32)
Note that the projection introduced in the last two terms the brackets represents the
symmetrized spatial and traceless part of the tensors. The second law of thermodynamics
is now satis�ed if the dissipative �ux is proportional to the expression in the brackets:

παβ = 2ηT

[
1

T
σαβ − παβ∂µ

(
β2
2T

uµ
)
− β2

T
π̇αβ

+ α∂µ

(
β2
2

T
uµ

)
π〈α
σ πσβ〉 + 3τπθα

β2
2

T
π〈α
σ π̇σβ〉

]
. (3.33)
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The proportionality factor, in analogy to the Israel-Stewart theory discussed in Section
3.1.3, is chosen in such way that the obtained equation reduces to the Navier-Stockes
equation (3.13) if higher-order terms are neglected.
The order of each term in Eq. (3.33) can be estimated from the following quantitative

analysis. The coe�cient β2, for which an explicit expression will be derived later in
this work, is a purely thermodynamic quantity. From dimensional reasons it has to be
proportional to T−4 and thus roughly inversely proportional to the isotropic pressure:
β2 ∝ 1/p. The dissipative corrections, in particular the shear pressure, must be small
compared to the isotropic pressure in order for the Eqs. (3.16) and (3.24) to be valid.
One thus can conclude, that β2π

µν has to be small (component wise). The gradients
of the velocity �eld, which appear in Eqs. (3.13), (3.19) and (3.33) can be roughly
approximated by the expansion scalar θ and thus the product of τπ and gradient of uµ is
of order Kn = θτπ for which Kn � 1 must hold [comp. Eq. (3.28)]. Derivatives of πµν

with respect to proper time, π̇µν are roughly of order θπµν . Multiplying Eq. (3.33) by
β2 and using τπ = 2ηβ2 like in the second-order theory one thus can estimate the order
of its terms:

β2π
αβ︸ ︷︷ ︸

O(1)

= τπσ
αβ︸ ︷︷ ︸

O(1)

−παβτπ∂µ

(
β2
2T

uµ
)
T︸ ︷︷ ︸

O(2)

−β2π̇
αβτπ︸ ︷︷ ︸

O(2)

+ ατπ∂µ

(
β2
2

T
uµ

)
Tπ〈α

σ πσβ〉︸ ︷︷ ︸
O(3)

+3τπθαβ
2
2τππ

〈α
σ π̇σβ〉︸ ︷︷ ︸

O(4)

. (3.34)

One thus realizes that the last term is of fourth order and has to be neglected for consis-
tency, since further terms of this order are still missing within the presented approach.
Finally, dividing Eq. (3.33) by 2ηβ2 = τπ and neglecting the last term one obtains the

third-order evolution equation for shear tensor

π̇αβ = −παβ

τπ
+

σαβ

β2
− παβ T

β2
∂µ

(
β2
2T

uµ
)
+ α

T

β2
∂µ

(
β2
2

T
uµ

)
π〈α
σ πσβ〉 . (3.35)

The last term is the only third-order term which comes from the extension of the entropy
current. The thermodynamic coe�cients α and β2 are evaluated in Appendix B.
Recently the third-order hydrodynamic equations were derived independently from this

work by Muronga [95]. The equations reported there con�rm the result of this work
and contain contributions from heat �ow and bulk pressure neglected here.

3.1.5. Second-order hydrodynamic equations for a multi-component
system

In this subsection I introduce a derivation of second-order hydrodynamic equations for
a system of multiple components. Fluid dynamical descriprion of systems of multiple
components is a highly interesting topic gaining a lot of attention in di�erent �elds
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of physics, like for example in physics of materials (physics of polymeric �uids [96]),
biophysics [97] or plasma physics [98], just to name some. Since the systems investigated
in high-energy heavy-ion research are mixtures of several particle species, there has always
existed a strong interest for physics of multi-component systems in heavy-ion community
as well (comp. for instance the discussion of hadronic mixture in Ref. [99]).
The derivation of dissipative hydrodynamic equations for multi-component systems

presented here is a generalization of the procedure discussed in Section 3.1.3. Let us
assume a mixture of N components, to which we refer as Flavor 1..N . The phase-space
distributions fi(x, p) have small deviations φi(x, p) from the equilibrium distributions
f0,i:

fi(x, p) = f0,i(x, p) (1 + φi(x, p)) . (3.36)

The equilibrium distributions f0,i in the latter equation are Boltzmann distributions

f0,i = λidie
−uµpµ/Ti , (3.37)

were di are the respective degeneracy factors, λi are the fugacities and Ti are the e�ective
temperatures. uµ is the common velocity �eld of the considered �uid, which allows to
de�ne a reference frame for further calculations. The total energy-momentum tensor and
particle �ow four-vector can be obtained as sums over contributions from all components:

Tµν =
N∑
i

Tµν
i =

N∑
i

∫
pµpνfidΓ (3.38)

Nµ =

N∑
i

Nµ
i =

N∑
i

∫
pµfidΓ . (3.39)

For the partial energy-momentum tensors and particle �ow four-vectors one assumes the
standard decomposition in Eckart's frame:

Tµν
i = eiu

µuν − (pi +Πi)∆
µν + q

(µ
i uν) + π

〈µν〉
i , (3.40)

Nµ
i = niu

µ . (3.41)

The partial dissipative �uxes πµν
i , qµi , Πi and thermodynamic quantities ni, ei, pi in

the latter decompositions were already de�ned in Section 2.1. In analogy to the one-
component case discussed in Section 2.4.2, one can impose the matching conditions on
the partial energy-momentum tensors and particle �ow four-vectors:

ni = uµN
µ
i = ni,eq = λi

di
π2

T 3
i (3.42)

ei = uνuµT
µν
i = ei,eq = 3λi

di
π2

T 4
i . (3.43)

With these matching conditions and decompositions in Eqs. (3.40) � (3.41) and neglecting
heat �ow and bulk pressure one obtains for the deviations φi(x, p)

φi(x, p) =
1

2(ei + pi)T 2
i

πi,µνp
µpν . (3.44)
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This is a generalization of the one-component result obtained in Section 2.4.2. One thus
easily realizes that the partial entropy currents can be obtained in the same way as for
a one-component �uid in Section 3.1.3:

sαi = s0,iu
α − β2,i

2T
πi,µνπ

µν
i uα , (3.45)

with
s0,i = 4ni − ni lnλi . (3.46)

In analogy to the formalism presented in Section 3.1.3, the evolution equation for
the hydrodynamic equations can be obtained for a multi-component system from the
requirement that the total entropy production must be non-negative

∂µs
µ ≥ 0 . (3.47)

This is nothing else but the second law of thermodynamics applied to the total system.
To calculate the entropy production from Eq. (3.45) one now needs to specify which
conservation laws apply in the system. Due to possible energy and momentum exchange
between the particles of di�erent Flavors the partial energy momentum tensors are not
conserved. On the other hand the total energy-momentum tensor is always conserved
in closed system. For the formalism presented here particle number conservation for
each Flavor will be considered, i.e. the partial particle �ow vectors are conserved. To
summarize, one has the following balance equations:

∂µT
µν
i = Sν , (3.48)

∂µT
µν = 0 , (3.49)

∂µN
µ
i = 0 . (3.50)

The source term Sν in Eq. (3.48) must be derived from the kinetic theory. In scope
of the entropy principle based approach used here this source term is unknown. Hence,
only Eqs. (3.49) � (3.50) will be used for the further derivation. This means, in a
most general case the formalism is not able to describe energy balance for each of the
components correctly � only the total energy balance is known � and thus evolution of the
e�ective temperatures Ti also cannot be described. However, one can assume a common
e�ective temperature for all components:

Ti = T . (3.51)

This assumption is only valid if all Flavors thermalize on the same time scale and is
a good approximation in case the time scales are comparable. This will be proven in
comparisons of the solutions of hydrodynamic equations with kinetic transport calcula-
tions in Section 12. With Eqs. (3.42) � (3.43) the assumption of a common e�ective
temperature immediately leads to the following expression:

T =
e

3n
=

∑
ei∑
ni

. (3.52)
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With the de�nition of the common e�ective temperature T and with the conservation
laws (3.49) � (3.50) the entropy production now can be calculated:

∂αs
α = ∂α

N∑
i

sαi =
πµνσ

µν

T
−

∑
i

(
πi,µνπ

µν
i ∂α

(
β2,i
2T

uα
)
+

β2,i
T

πi,µν π̇
µν
i

)
. (3.53)

Note that the divergences of the partial entropy currents ∂αsαi cannot be calculated since
the partial energy-momentum tensors are not conserved. The right-hand side of Eq.
(3.53) is explicitly non-negative if the entropy production has the following algebraic
structure:

∂αs
α !
=

N∑
i=1

πi,µνπ
µν
i

2ηiT
≥ 0 . (3.54)

Splitting the �rst term in Eq. (3.53) into a sum over N Flavors and one can write

∂αs
α =

∑
i

πi,µν

(
σµν

T
− πµν

i ∂α

(
β2,i
2T

uα
)
+

β2,i
T

π̇µν
i

)
. (3.55)

Comparing Eqs. (3.54) and (3.55) one obtains the constitutive evolution equations for
the partial shear tensors in accordance with the second law of thermodynamics:

παβ
i = 2ηi

(
σαβ − παβ

i T∂µ

(
β2,i
2T

uµ
)
− β2,iπ̇

αβ
i

)
. (3.56)

The obtained evolution equations are analogous to the Israel-Stewart Equation (3.20)
for the one-component case.
In contrast to the formalism presented recently byMonnai and Hirano in Ref. [100],

the formalism presented here introduces separate transport coe�cients ηi and shear stress
tensors πµν

i for each component of the �uid. This allows to quantify the equilibrium
deviations for each component and thus, the e�ect of dissipation on the phase-space
distribution (and spectra) can be quanti�ed for each component according to the ansatz
for the o�-equilibrium distribution function. The shear viscosity coe�cients ηi and the
thermodynamic coe�cients β2,i yet must be speci�ed. This will be done in Sections 4.2.2
and 12.1.
One also realizes that Eqs. (3.56) in principle can be summed into an e�ective one-

component equation of form (3.19) with only one shear viscosity coe�cient describing
the multi-component system as a whole. This will be discussed for the special case of a
one-dimensional system in Section 12.1.

3.2. Other known approaches

In Sections 3.1.2 � 3.1.4 I introduced a phenomenological way to obtain hydrodynamic
equations up to third order in small deviations from equilibrium with the focus on shear
viscous e�ects only. The approach I discussed is based on the entropy principle and
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the evolution equations for dissipative quantities are obtained from the requirement of
a particular algebraic form of divergence of the entropy current which guarantees that
the second law of thermodynamics is satis�ed. The advantages of the introduced ap-
proach is that the second law is explicitly ful�lled and a functional relation between the
relaxation time and shear viscosity follows directly from the derivation (same is true for
bulk viscosity and heat conductivity). The obtained equations naturally had a relaxation
type form and thus could be reduced to the Navier-Stokes equation in the limit of small
equilibrium deviations. A disadvantage of the entropy production based derivation is
that it is not obvious whether the obtained evolution equations are fully compatible with
the underlying microscopic equation such as the Boltzmann Equation. Thus it might
be necessary to derive hydrodynamic equations directly from the Boltzmann Equation.
This can be done either by using the method of moments or by a systematic expansion of
the collision term. In addition, the equation of motion for dissipative quantities can be
obtained from a gradient expansion of the dissipative �uxes. This method does not yield
the expressions for the transport coe�cients which have to be obtained from matching of
the derived equation to known solutions obtained from kinetic theory. Here I will review
the most signi�cant works in which the hydrodynamic equations were derived by some
of these methods.

3.2.1. Second-order hydrodynamics from kinetic approach using method
of moments.

The starting point for this approach is an approximation for the o�-equilibrium distri-
bution function, which can be seen as a truncated Taylor expansion in terms of small
deviations from equilibrium φ(x, p):

f(x, p) = f0(x, p) · (1 + φ(x, p)) . (3.57)

The tensor decomposition of the deviation function φ(x, p) has been already introduced
in Eq. (2.26), Section 2.4.1, in this work. In this method, the hydrodynamic equations
are obtained from the conservation equations for the particle number current, ∂µNµ = 0
and the energy momentum tensor ∂µTµν = 0, which can be rewritten using moments of
the Boltzmann Equation as given by Eqs. (2.43) � (2.45). The collision term is replaced
by the so-called relaxation time approximation

C[f ] = −pµu
µ f − f0

τπ
. (3.58)

The relaxation time τπ is assumed to be momentum independent for the following deriva-
tion. This is a strong assumption since the di�erent momentum scales can be expected
to relax toward equilibrium distribution on di�erent time scales as was demonstrated for
example in Refs. [32, 30] for a gluon gas with leading order pQCD cross sections. Intro-
ducing the simpli�ed form of the collision term from Eq. (3.58) into the expressions for
the moments Eqs. (2.43) � (2.45) one obtains for a massless Boltzmann gas the evolution
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equation for the shear tensor [37]:

∆µ
α∆

ν
βπ̇

αβ = −πµν

τπ
− 4

3
πµν∇αu

α +
2η

τπ
∇〈µuν〉 − 2πα[µων]

α . (3.59)

This equation is similar to the second-order equation obtained from the entropy pro-
duction, Eq. (3.20), but contains the vorticity terms which cannot be obtained from
the entropy based method since their contributions vanish as discussed in Section 3.1.3.
The relation between the shear viscosity coe�cient η and the relaxation time τπ follows
directly from the calculation and reads τπ = 6η

sT for a massless Boltzmann gas. Eq. (3.59)
is a kinetic version of the Israel-Stewart equations [38].
An alternative derivation of hydro equations up to second order in terms of the Knudsen

Number Kn ≡ τπθ, which was introduced in Section 3.1.4, is presented in [38]. In this
derivation, the method of moments is used and the equations are consistently expanded
up to second order in Kn. Neglecting the heat conductivity and the bulk pressure, the
evolution equation for shear tensor reported in [38] takes the form

π̇〈µν〉 = −πµν

τπ
− 2η

τπ
δ2θπ

µν +
2η

τπ
∇〈µuµ〉 + 2π〈µ

α ωαν〉 − 2π〈µ
α σαν〉 . (3.60)

This latter equation di�ers from Eq. (3.19) obtained from the entropy principle by the
last two terms, whereas in (3.59) only the last term is not present. This term can be
written in a di�erent way if one makes use of the �rst-order relation πµν ∝ σµν [comp.

Eq. (3.13)]. Then the last term in Eq. (3.60) takes the form 1
ηπ

〈µ
α παν〉. It is noteworthy

to mention that, if modi�ed in such way, the last term in Eq. (3.60) is similar in its from
to the third-order term in Eq. (3.33) but is of second order in gradients.

3.2.2. Conformal second-order hydrodynamics from gradient expansion
method.

In Ref. [101] the evolution equation for the shear tensor is derived using conformal
symmetry constrains. From the requirement of conformal symmetry all possible terms
second order in gradients are constructed. The number of such terms found in [101] is 8.
The conformal symmetry is de�ned by the Weyl transformations and only 5 combination
of the 8 possible terms transform homogeneously. From these combinations a general
decomposition of the shear tensor is found in [101] for �at space:

πµν = −ησµν + ητπ

(
Dσ〈µν〉 +

1

3
σµν(∇αu

α)

)
+ λ1σ

〈µ
α σαν〉 + λ2σ

〈µ
α ωαν〉 + λ3ω

〈µ
α ωαν〉 .

(3.61)
An evolution equation for πµν is obtained from the latter equation by replacing πµν =
ησµν , i.e. using the �rst-order expression for πµν :

π̇〈µν〉 = −πµν

τπ
− 4

3
θπµν +

η

τπ
σµν +

λ1

η2
π〈µ
α παν〉 − λ2

η
π〈µ
α ωαν〉. (3.62)

This equation is similar to Eq. (3.60) and 3.59, both obtained from the kinetic approach.
Again, the last two terms constitute the di�erence to the Israel-Stewart equation (3.19).
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3.2.3. Second-order hydrodynamic equations from kinetic theory.

Dissipative hydrodynamic equations can be derived from the Boltzmann Equation (1.2) in
a direct way by inserting a parametrization for the o�-equilibrium distribution function
on the left and right-hand sides. A possible way to parametrize the o�-equilibrium
distribution function is Grad's approximation (2.42) used in this work. The results of
a derivation of this type were reported by Denicol, Koide and Rischke in Ref. [39].
Formally, the obtained equation is similar to the one derived in Ref. [38]. However,
the expressions for the transport coe�cients di�er slightly from the forms, given in the
standard Israel-Stewart theory [102].
There are as well alternative ways of parametrization of the o�-equilibrium distribu-

tion. One of them was reported by Martinez and Strickland in Ref. [103]. The
second-order hydrodynamic equations obtained inserting this particular parametrization
of anisotropic distribution function into the Boltzmann Equation were discussed in Ref.
[86]. The other approach by Denicol criticizes Grad's approximation as being incom-
plete due to truncation of the momentum power series. The authors demonstrate that
by considering more than 14 unknowns in the o�-equilibirum distribution function, one
can obtain a better approximation of the solution of Boltzmann Equation.
These two approaches by Martinez, Strickland and Denicol and Rischke are

highly interesting since they naturally lead to analytical expressions for the transport
coe�cients. Moreover, the number of the transport coe�cients appearing in the hydro-
dynamic equations is di�erent form what is known form the Israel and Stewart's theory.
Solutions of equations reported in Ref. [39] are in remarkably good agreement with direct
solutions of the Boltzmann Equation obtained from the partonic cascade BAMPS, which
will be employed in this work.
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4. Shear viscosity of a Boltzmann gas.

The observed good matching between ideal hydrodynamic calculations of �ow and data
taken at RHIC can be interpreted as a indication that QGP is a nearly perfect �uid with
a very small shear viscosity η. The shear viscosity is often rescaled by the entropy density
s and the ratio η/s is used as a universal measure of the strength of dissipation in the
�uid. Fluids with low η/s ratio values are known outside the ultrarelativistic heavy-ion
physics. For instance, for helium, nitrogen and water under large pressures the η/s ratio
as function of temperature has a pronounced minimum in the vicinity of the liquid-gas
transition [25, 24]. Similar to the hot quark-gluon plasma, cold atomic gases are as well
known to exhibit a hydrodynamic behavior and have a small η/s ratio [24].
In this Chapter I address the question what approaches can be used to calculate the

shear viscosity of a massless Boltzmann gas consisting of one or several components.

4.1. Review of theoretical methods.

In the classical Newtonian mechanics the shear viscosity coe�cient is de�ned in as the
proportionality coe�cient between shear stress τ and the velocity gradient existing be-
tween two layers in a �uid:

τ = η
∂vx
∂y

.

In the classical gas theory this de�nition leads to the expression of shear viscosity coef-
�cient in terms of the mean particle velocity 〈v〉 and the cross section σ:

η =
m〈v〉
3
√
2σ

.

For a ultra-relativistic gases one obtains [104]

η ≈ 3

2
πnTλmfp (4.1)

with n denoting the particle density, T the local temperature and λmfp the mean free
path.
For relativistic systems the Newtonian de�nition of shear viscosity corresponds to the

�rst-oder equation, which is often referred to as the Navier-Stokes equation

πµν = 2η∇µuν .
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Derivation of this equation was already discussed in this work (Section 3.1.2). Using these
considerations, which are based on the classical Newtonian picture, the shear viscosity
of a gluonic gas has been recently calculated using the partonic cascade BAMPS[105].

It is important to calculate the shear viscosity coe�cient of the decon�ned QCD matter
from �rst principles, i.e. from the underlining �eld theory. A formalism based on the
�uctuation-dissipation theorem and allowing to calculate the shear viscosity coe�cient
in a standard �eld theory was introduced in by Hosoya, Sakagami and Takao in
Ref. [106]. According to the Green-Kubo formalism, the linear transport coe�cients are
related to the time dependence of equilibrium �uctuations in the conjugate �ux via the
integral over its autocorrelation function in the zero frequency limit.

A number of approaches to calculate the shear viscosity coe�cient are based on the
Chapman-Enskog method [76], which employs relaxation time approximation of Boltz-
mann equation, as was introduced in section 3.2.1. Such calculations for a quark-gluonic
system were �rst reported by Hosoya and Kajantie in Ref. [107]. Further relax-
ation time approximation based approaches are by Chakrabarty[108], by Czyz and
Florkowski for a quark�anti-quark system [109], by von Oertzen for a pure quark
and gluon matter, quark�anti-quark mixture and a zero baryon number quark�anti-
quark-gluon plasma [110], by Thoma for a quark-gluon plasma taking into account
screening e�ects by using an e�ective perturbation theory for the �nite temperature
QCD in the weak coupling limit [111], by Ilyin, Panferov and Sinyukov using a
Kubo-type formula for a QCD plasma in one-loop order [112]. The drawback of relax-
ation time calculations is the often neglected momentum dependence of the relaxation
time itself.

A more appropriate treatments are based on solutions of the Boltzmann equation with
the full collision term, which allows to take into account the momentum dependence of
the collisional process. Using the linearized form of the Boltzmann equation, Baym,
Monien, Pethick and Ravenhall calculated the shear viscosity of a weakly coupled
QCD plasma in Ref. [113]. By solving the Boltzmann equation analytically for quarks
and gluons including screening, the viscosity is calculated to leading orders in αs by
Heiselberg in Ref. [114]. Finally, Arnold, Moore and Yaffe obtained in their
leading-log calculations in Ref. [115] a result which essentially agrees with the one ob-
tained by Baym et al. and Heiselberg earlier.

A recent calculation of the shear viscosity coe�cient in BAMPS reported by Xu and
Greiner demonstrated that the η/s ratio is low for αs ∼ 0.3 if the pQCD bremsstrahlung
processes are implemented together with the particular treatment of the Landau-Pomeranchyk-
Migdal e�ect (cf. section 7.3). At the same time, the results obtained from BAMPS cal-
culations cannot be directly compared with those, reported in Refs. [113, 111, 115, 114]
due to di�erent treatments of the Landau-Pomeranchyk-Migdal e�ect and of regulariza-
tion of infrared divergence in the perturbative cross sections.

A constrain on upper value of shear viscosity to entropy density ratio in q QGP can
be obtained from a direct comparison of hydrodynamic calculations with experimental
data. From a comparison of v2 calculations with RHIC data, Romatschke together with
Luzum [116] and Heinz together with Song [47] deduced the upper limit η/s < 0.5. The
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lower limit η/s = 1/(4π) was calculated by Policastro, Starinets and Son for the
strongly coupled �nite-temperature N = 4 supersymmetric Yang-Mills theory using the
gravity/gauge theory duality of the AdS/CFT prescription [117]. This lower boundary
is valid for a large class of strongly interacting quantum-�eld theories.

4.2. Shear viscosity from Grad's 14-moment theory

4.2.1. One-component system.

In this Section I will derive an expression for the shear viscosity coe�cient for a one-
component gas using the 14-moments method by Grad [33]. The advantage of the method
introduced here is its compatibility with the kinetic transport models which are con-
structed to solve the Boltzmann equation.
I start the derivation with the kinetic expression for entropy four-current [33, 76, 83]

sµ = −
∫

dΓpµf(x, p) [ln(f(x, p))− 1] . (4.2)

The divergence of the entropy current leads to the entropy production

∂µs
µ = −

∫
dΓpµ∂µf(x, p) ln f(x, p) = −

∫
dΓC[f(x, p)] ln f(x, p) . (4.3)

For the last equality the Boltzmann equation has been used to replace the derivative of
the distribution function. The logarithm on the right hand side can be simpli�ed by in-
troducing the linearized form of the o�-equilibrium distribution function f = feq (1 + φ):

∂µs
µ = −

∫
dΓC[f ] ln [feq (1 + φ)]

= −
∫

dΓC[f ] ln feq −
∫

dΓC[f ] ln (1 + φ) . (4.4)

Now the logarithm can be expanded in terms of φ up to �rst order. This expansion is
in particular legitimated by the assumption that φ(x, p) has to be small, which underlies
the linearization in Eq. (2.27). With the explicit form of φ from Eq. (2.26) and the
logarithm of the equilibrium distribution from Eq. (2.24) the expression for entropy
production becomes

∂µs
µ = −µ

∫
dΓC[f ] +

∫
dΓ

uµp
µ

T
C[f ]

− ε

∫
dΓC[f ] + εµ

∫
dΓpµC[f ]− εµν

∫
dΓpµpνC[f ] . (4.5)

In the latter equation moments of the collision term appear, of which the 1st is zero due
to energy-momentum conservation stated by Eq. (2.44). Thus the second and the fourth
terms vanish in Eq.(4.5). Introducing ε and εµν from Eqs. (2.40) and (2.38) into Eq.
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(4.5) and using the short notation for the moments from Eqs. (2.43) � (2.45) one thus
obtains

∂µs
µ = −µJ − [A2 (3uµuν −∆µν)P

µν −A0J ] Π +B1u(µqν)P
µν − C0πµνP

µν . (4.6)

Assuming conservation of net particle number, i.e. setting J = 0, Eq. (4.6) reduces to the
form obtained in Ref. [83]. In the form presented here the entropy production splits into
4 parts, which account for entropy production due to particle production, bulk viscosity
, heat conductivity and shear viscosity. In a general form the entropy production can be
written in a non-negative form [118]

∂µs
µ = βµJ + βζ−1Π2 − βκ−1qνq

ν + β(2η)−1πµνπ
µν (4.7)

with ζ, κ and η denoting the transport coe�cients bulk viscosity, heat conductivity
and shear viscosity. A more detailed motivation for Eq. (4.7) was already given in
Chapter 3, where I discussed derivation of the Israel-Stewart equations from the entropy
principle. Here it is su�cient to mention that the expression in Eq. (4.7) is non-negative
by construction and thus satis�es the second law of thermodynamics. It is now straight
forward to identify the expression for the shear viscosity coe�cient from Eqs. (4.6) and
(4.7):

η =
β

2

πµνπ
µν

C0πµνPµν
. (4.8)

The expression presented here is similar to the one presented by Xu and Greiner

in Ref. [42]. First aspect to mention is that both approaches are based on calculation
of moments of the collision term. Approach in Ref. [42] is explicitly based on Navier-
Stokes, i.e. �rst-order, relativistic �uid equation. The approach presented here is based
on Grad's method and thus, implicitly, on second-order relativistic hydrodynamics. A
more detailed comparison of the two approaches will be given in Chapter 9, where I apply
Eq. (4.8) to a special case of one-dimensional boost-invariant expanding system.

4.2.2. Multi-component system.

In this Section the expression for the shear viscosity coe�cients in a multi-component
system will be derived as generalization of the one-component expression (4.8). Let us
consider a system of N components, to which I refer as Flavor i. Let us furthermore
assume that the phase-space distribution functions fi of each component obey the Boltz-
mann Equations

pµ∂µfi = C[fi] +
∑
j 6=i

C[fi, fj ] . (4.9)

In the latter equation the collision term C[fi] accounts for collisions of particles of same
Flavor. These collisions will be called self-collisions. The collision term C[fi, fj ] accounts
for collisions of particles of di�erent Flavors and these processes will be called inter-
collisions. The N Boltzmann Equations describing a multi-component system are thus
coupled to each other via the collision terms. The o�-equilibrium distribution functions
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fi are approximated by Eq. (3.36). The partial entropy currents are given by Eq. (4.2)
and the total entropy production can be obtained by summing the divergences of the
partial entropy currents. One then obtains an expression which is a sum of Equations
of form (4.4). Neglecting heat �ow and bulk pressure contributions, one can obtain the
total entropy production in terms of partial shear stress tensors and chemical potentials:

∂µs
µ = −

N∑
i

µiJi −
N∑
i

C0,iπi,µνP
µν
i . (4.10)

with

Pµν
i =

∫
pµpν

Ci +
∑
j

Cij

 dΓ (4.11)

where Ci denotes the self-collision term and Cij � the inter-collision term. Considering
only particle number conserving processes, i.e. neglecting Ji ≡ ∂µN

µ
i in accordance with

Eq. (3.50), one obtains by comparing Eq. (4.10) with (3.54):

ηi =
πi,µνπ

µν
i

2C0,iπi,µν
∫
pµpνCii,ij [fi, fj ]dΓ

. (4.12)

with
Cii,ij [fi, fj ] ≡ C[fi] +

∑
j 6=i

C[fi, fj ] . (4.13)

The obtained expression proves to be a straight-forward generalization of the one-component
result: the shear viscosity coe�cients are inversely proportional to the second moment
of the respective collision terms, which include elastic particle number conserving (i.e.
Flavor symmetric in initial and �nal states) self- and all possible inter-collision terms. It
is important to stress that the obtained expression is only valid in systems with conserved
particle �ow vectors, i.e. in systems with constant particle numbers for each component.
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5. Bjorken's picture of heavy-ion

collisions

Make everything as simple as possible,
but not simpler.

Albert Einstein (1879 - 1955), physicist.

5.1. Bjorken's assumptions

The CERN SPS results on charged particle multiplicities published 1981 by the UA5
collaboration indicated for p−p collisions that the pseudo-rapidity distributions dNch/dy
were almost �at for di�erent intervals ofNch up toNch ≈ 30 [119]. Starting withNch ≈ 30
the distribution still could be considered constant for |y| < 3 but revealed an enhancement
at y ≈ 1.5. Based on this observation, Bjorken proposed a scenario for the evolution of
the central rapidity region in heavy-ion collisions [45].
The main assumptions made by Bjorken in his scenario for heavy-ion collisions are the

following

• The collision of two nuclei has to be transparent. This means that the net-baryon
content, N(B) − N(B̄), ends up at forward rapidities after the collision � i.e.,
the mid-rapidity region is completely void of original baryons thus having a zero
net-baryon density and high energy density. The complete transparency of the
collision proposed by Bjorken is an idealized assumption. The opposite limit is the
full stopping scenario, in which at central rapidity (y ≈ 0) an excess of net-baryon
density is expected. A schematic picture of the rapidity distributions expected in
both full stopping and transparency scenarios is given in Fig.5.1. The experimental
data presented several years after Bjorken's publication indicates that stopping is
observed for Au + Au collisions at AGS energies (

√
sNN ≈ 5 GeV). A similar

scenario of non-zero net baryon density can be expected for the upcoming FAIR
project at GSI. The onset of transparency can be observed at higher energies in lead
collisions at SPS (

√
sNN ≈ 17 GeV). However the assumption of zero net-baryon

density in the mid-rapidity region derived by Bjorken from p + p results is by far
not always realized in collisions of heavy nuclei but can be expected to be valid at
high energies[51, 52].
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Figure 5.1.: Schematic picture of the particle rapidity distributions before and after the
collision for the full stopping and complete transparency (Bjorken) scenarios.

• The second essential assumption of Bjorken scenario is the existence of a central
rapidity plateau in the inclusive particle production as function of the rapidity.
I.e. the yield dN/dy is expected to be independent of the rapidity. This assump-
tion can be formulated as boost-invariance of the particle production, since the
yield is independent of the choice of reference frame characterized by the rapid-
ity y. Such a plateau has been observed for p + p collisions at SPS[119]. For
the nucleus-nucleus collisions at RHIC energies (

√
sNN = 200 GeV) the BRAHMS

Collaboration could observe an onset of boost-invariance in a rather small rapidity
interval y < 1 in charged meson rapidity distributions[120]. The conclusion made
based on BRAHMS data is that a certain degree of transparency can be observed
in heavy-ion collisions at high energies and the boost-invariance assumption holds
in a narrow rapidity range.

5.2. Velocity �eld in Bjorken's model

Here the mathematical implications of the Bjorken assumptions will be discussed. The
existence of a plateau in particle yields as a function of rapidity leads according to
Bjorken to the conclusion, that throughout the central rapidity region the initial condi-
tions are invariant with respect to Lorentz transformations in longitudinal direction and
the subsequent evolution of the system as well possesses this symmetry. Moreover, in the
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Bjorken model the evolution of the QGP is assumed to be one-dimensional, i.e. the cre-
ated medium expands in longitudinal direction and is isotropic in transverse plane. This
assumption is reasonable only at very early times after the collision as long as transverse
expansion does not set in (i.e. on time scales comparable to the transverse size of the
collision region, which is the radius of the nuclei in central collisions).
The natural variables to describe an ultrarelativistic system are not the Cartesian

space coordinates ~x and time t but rather the space-time rapidity η and the proper time
τ connected to the Cartesian coordinates via

η =
1

2
ln

t+ z

t− z
, (5.1)

τ =
√

t2 − z2. (5.2)

For the de�nition above, the z axis has been chosen as the expansion axis and the xy
plane is isotropic. For massless particles travelling at speed of light with vz = z/t the
space-time rapidity is equal to the momentum rapidity y of a particle (often referred to
as the rapidity):

y =
1

2
ln

E + pz
E − pz

=
1

2
ln

t+ z

t− z
(5.3)

All physical quantities now depend on this set of variables:

A(~x, t) → A(η, τ). (5.4)

However, according to Bjorken's assumption the dependence on rapidity is trivial, since
all physical quantities are assumed to posses the symmetry of boost-invariance and thus
one can write

A(η, τ) → A(τ). (5.5)

The most important feature of Bjorken's model is the special form of the velocity �eld
uµ. For a one-dimensionally expansing medium it has a general form

uµ = (u0, 0, 0, uz) (5.6)

and is normalized
uµu

µ = 1, (5.7)

which leads to
u20 − u2z = 1. (5.8)

This relation is satis�ed for the following parametrization of uµ in terms of the space-time
rapidity η:

uµ = (cosh η, 0, 0, sinh η). (5.9)

Using the de�nitions of the rapidity and proper time, Eqs. (5.1) and (5.2), one thus
obtains the so called one-dimensional Bjorken �ow

uµ =
1

τ
(t, 0, 0, z). (5.10)
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Thus in any point and at any time the velocity �eld is de�ned solely by its four-coordinate.
For the Bjorken �ow velocity Eq.(5.9) one obtains

∂νuµ =
1

τ
gµν −

1

τ3
xµxν =

1

τ
(gµν − uµuν) (5.11)

which in particular leads to

∂µu
µ =

1

τ
. (5.12)

Bjorken's �ow (5.9) is often referred to as �one-dimensional Hubble �ow�, since regions
further away from a certain point move faster than the closer ones.
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6. Relativistic hydrodynamics for

one-dimensional boost-invariant

expanding systems.

In this chapter hydrodynamic equations derived in chapters 2.4.3 and 3.1.2 � 3.1.4 will
be rewritten for a one-dimensionally expanding gas of massless Boltzmann particles. I
assume a longitudinally expanding system following the Bjorken �ow according to Eq.
(5.9). For a massless Boltzmann gas the ideal equation of state holds (comp. Section
2.3)

e = 3p . (6.1)

The equation presented in this Chapter are given for a one-component system.
I will consider the Eckart frame for the discussion to follow in this Chapter. As already

discussed in Chapter 2.2, in the Eckart frame the particle four-current and the energy-
momentum tensor are decomposed as follows:

Nµ = nuµ , (6.2)

Tµν = euµuν − (p+Π)∆µν + 2q(µuν) + πµν . (6.3)

It is straightforward to demonstrate that for a massless Boltzmann gas undergoing a
one-dimensional expansion with boost-invariance both bulk pressure and heat �ux vanish
identically. According to the de�nitions in Eqs. (2.11) � (2.18) one obtains for the bulk
pressure

Π = −1

3
∆µνT

µν − p = −1

3
Tµ
µ +

1

3
uµuνT

µν − p = 0 (6.4)

since the trace of Tµν is equal to the rest mass of the particles and the ideal equation of
state (6.1) is assumed. For the heat �ow one obtains

qµ = uν∆
µ
λT

νλ = uνT
µν − euµ =

∫
p0p

µfdΓ− euµ . (6.5)

Boost-invariance implies symmetry of the distribution f(pT , pz) = f(pT ,−pz), which
means that the integral in Eq. (6.5) does not vanish only if µ = 0. On the other hand
for µ = 0 both terms in (6.5) cancel, so that heat �ow qµ vanishes component-wise in a
one-dimensional boost-invariant case.
In the local rest frame the energy-momentum tensor

Tµν = euµuν − (e+ p)∆µν + πµν (6.6)
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is diagonal and traceless for massless particles:

T ν
ν =

∫
pνp

νf(x, p)dΓ =

∫
(p20 − ~p 2)f(x, p)dΓ = 0 (6.7)

and thus πµν has this property as well. O�-diagonal components of the energy-momentum
tensor vanish due to the longitudinal symmetry f(pT , pz) = f(pT ,−pz) and transverse
isotropy:

Tij,LRF =

∫
pipj
p0

f(x, p)d3p = 0, i 6= j; i, j = 0, 1, 2, 3 . (6.8)

Thus the energy-momentum and the shear tensors take the form

Tµν =


e 0 0 0
0 p+ π

2 0 0
0 0 p+ π

2 0
0 0 0 p− π

 (6.9)

πµν =


0 0 0 0
0 π

2 0 0
0 0 π

2 0
0 0 0 −π

 (6.10)

The fourth diagonal component of the shear tensor is negative and π ≥ 0 denotes the
shear pressure. For a one-dimensionally expanding system the longitudinal pressure T33 =
p − π is thus reduced due to dissipation whereas in transverse directions the e�ective
pressure is enhanced.
Since the heat �ow qµ and the bulk pressure Π vanish for one-dimensional geometry and

massless particles the expression for the o�-equilibrium distribution function simpli�es
to

f = feq
(
1 + C0πµνp

µpν
)
. (6.11)

Introducing the diagonal form of the shear tensor, Eq. (6.10), into the latter equation
one �nds for a boost-invariant expansion

f(τ, p) = f0(τ, p)

(
1 + C0(τ)π(τ)

(
p2z −

1

2
p2T

))
, (6.12)

where f0(τ, p) is the Boltzmann distribution

f0(τ, p) = gλe−
p0
T (6.13)

with the fugacity λ and the degeneracy factor g.
The coe�cient C0 was already calculated for a general case in Appendix A. Alter-

natively, in the one-dimensional geometry chosen here C0 can be obtained from the
condition T33 = T eq

33 − π according to Eq. (6.9):

T33 =
16λ

(2π)3

∫
e−p0/T p2z

(
1 + C0π

(
p2z −

1

2
p2T

))d3p

p0

!
= p− π , (6.14)
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where the degeneracy factor g = 2(N2
c − 1) has been set to 16 for gluon gas with Nc = 3.

For the coe�cient C0 one thus obtains

C0 =
3

8eT 2
. (6.15)

Although obtained using a one-dimensional geometry, this value of C0 is universal for
a gas of massless Boltzmann particles since it is consistent with the results obtained in
Appendix A and Refs. [33, 83]. With the known factor C0 the approximation for the one-
dimensional form of the o�-equilibrium distribution function, Eq. (6.12), is determined
completely.

6.1. Thermodynamic coe�cients β2 and α

In order to give the one-dimensional form of second and third-oder hydrodynamic equa-
tions, (3.20) and (3.35), the thermodynamic coe�cients β2 and α need to be speci�ed.
Since they are purely thermodynamic functions, i.e. dependent only on e and T , their
functional form does not depend on the symmetry of the system. One thus can choose
a one-dimensional expanding system of Bjorken type to �nd the functional forms for β2
and α[33]. The entropy current in Eq. (3.24) can be rewritten using the one-dimensional
representation of the shear tensor, Eq. (6.10), as follows:

sµ =

(
s0 −

β2
T
π2 +

αβ2
2

T
π3

)
uµ . (6.16)

On the other hand the entropy density can be calculated using the kinetic theory ap-
proach. The kinetic de�nition of the entropy density [76]

s = uµs
µ = −

∫
uµp

µf(ln f − 1)dΓ . (6.17)

is based on Boltzmann's H-function. The distribution f(x, p) in Eq. (6.17) is a o�-
equilibrium phase-space distribution and has been discussed for a one-dimensional boost-
invariant expansion in the previous section. Writing Eq. (6.12) in a compact form

f = f0(1 + φ) , (6.18)

and introducing this compact form into Eq. (6.17) one obtains

s = −
∫

p0f0 (1 + φ) (ln [f0(1 + φ)]− 1) dΓ . (6.19)

The deviation from equilibrium, φ(x, p), is supposed to be small and thus the logarithm
can be expanded up to third order in φ. Introducing φ = C0π(p

2
z − p2T ) into Eq. (6.19)

after expanding the logarithm, one obtains for the entropy density[33]

s ≈ s0 −
27

16

π2

eT
− 27

8

π3

e2T
. (6.20)
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The equilibrium entropy s0 in Eqs. (6.16) and (6.20) is given by

s0 = 4n− n lnλ . (6.21)

Comparing the two equations, (6.16) and (6.20), one can identify the unknown thermo-
dynamic coe�cients

β2 =
9

4e
, (6.22)

α = −8

9
. (6.23)

These coe�cients are pure thermodynamic functions and thus do not depend on the
symmetry properties of the considered system. The obtained expressions are consistent
with calculation of the third-order entropy current from Grad's approximation for the
distribution function in Appendix B.

6.2. Evolution equations for the energy and particle

densities with particle number conservation.

The evolution equations for the particle and energy densities follow from the conservation
laws Eqs. (2.43) and (2.44). At this point both source terms for particle production
and energy-momentum deposition will be set to zero, i.e. I assume particle number
conservation and energy conservation

∂µT
µν = 0 , (6.24)

∂µN
µ = 0 . (6.25)

From the conservation of particle four-number via Eq. (6.2) then follows

uµ∂µn ≡ ṅ = −n∂µu
µ . (6.26)

The ẋ notation denotes the co-moving derivative uµ∂
µ, i.e. derivative with respect to τ

in the local rest frame. Energy conservation follows from Eqs. (2.44) or (6.25):

uν∂µT
µν = 0 . (6.27)

For a one-dimensional boost-invariant expansion, in absence of the heat �ow and bulk
pressure terms, via Eq. (6.3) one obtains

uµ∂µe ≡ ė = −(e+ p)∆µν∂νu
µ + πµν∂νuµ . (6.28)

For the latter equation one uses the orthogonality property of the shear tensor uµπµν = 0
to eliminate its derivative from the equation.
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Using the symmetry properties of the shear tensor, the ideal equation of state as well
as the Bjorken �ow velocity Eq. (5.9) one obtains from Eqs. (6.26) and (6.28)

ṅ = −n

τ
, (6.29)

ė = −4

3

e

τ
+

π

τ
. (6.30)

From these two equations one easily deduces an evolution equation for the temperature

Ṫ = −1

3

T

τ
+

1

4

πT

eτ
. (6.31)

Note that the evolution equation for the energy density does not explicitly depend
on the details of microscopic processes considered in the system as long as these are
energy-conserving, since Eq. (6.30) is obtained from the energy-momentum conservation
equation (6.28). The particle production and annihilation will a�ect the evolution of
e only implicitly via the shear viscosity coe�cient η (comp. Eq. (4.8) and Refs. [42,
33]) which in�uences π via the corresponding evolution equation. Thus, Eq. (6.30)
is applicable even if the particle number is not conserved. On the other hand, the
particle density evolution will of course be explicitly a�ected by particle production and
annihilation processes once these are considered in a consistent way.

6.3. Ideal hydrodynamics in Bjorken's model

Equations (6.29) and (6.30) constitute the local rest frame evolution equations for the
particle and energy densities for a one-dimensionally expanding boost-invariant system
of massless Boltzmann particles. Neglecting the shear pressure in Eq. (6.30) one obtains
two independent ideal hydrodynamic equations, which are solved by

n = n0
τ0
τ
, (6.32)

e = e0

(τ0
τ

) 4
3
. (6.33)

One thus obtains for the e�ective temperature T = e
3n of an ideal �uid

T = T0

(τ0
τ

) 1
3
. (6.34)

6.4. Dissipative hydrodynamics in Bjorken's model with

conserved particle number

In order to solve Eq. (6.30) for a non-ideal �uid one needs a one-dimensional evolution
equation for the shear pressure. The e�ect of dissipation is however qualitatively clear
from Eq. (6.30) resp. (6.31). Since π ≥ 0, the energy density and temperature decrease
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slower than in ideal case because the dissipated energy is turned into the inner energy of
the system.
Evolution equations for π follow from Eqs. (3.13), (3.20) and (3.35). Introducing the

symmetry properties of Bjorken �ow into these equations and using the expressions for β2
and α from Eqs. (6.22) and (6.23) one obtains �rst, second and third-order hydrodynamic
equations for the shear pressure:

�rst-order: π =
4

3

η

τ
, (6.35)

second-order: π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
, (6.36)

third-order: π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
− 3

π2

eτ
. (6.37)

The power counting is based on the following considerations: both π/e and τπ/τ have
to be small to ensure validity of hydrodynamic approach. After multiplying the corre-
sponding equation by τπ/e on both sides, I consider terms of form (τπ/τ)

q1(π/e)q2 to be
of q-th order. In an equation of q-th order terms of all higher orders are omitted. This
kind of power-counting was applied in Ref. [34, 35].
For a system with conserved particle number, each of the equations (6.35) � (6.37) is

coupled to the evolution equations for the particle and energy densities, Eqs. (6.29) and
(6.30). A complete overview of �rst, second and third-order hydrodynamic equations
for boost-invariant one-dimensional one-component systems of massless particles with
particle number conservation is given in Appendix C.1.
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7. Partonic cascade BAMPS

Mind moves matter.

Virgil (70 BCE � 19 BCE), Roman
poet.

7.1. Numerical solution of Boltzmann Equation

The abbreviation BAMPS is for Boltzmann Approach to MultiParton Scattering. This
model was developed to solve the Boltzmann Equation

pµ∂µf(x, p) = C[f(x, p)] (7.1)

in presence of both elastic and inelastic processes [30]. The Boltzmann Equation (7.1) de-
scribes evolution of the single parton phase-space distribution function f(x, p) = dN

d3pd3x
.

Its evolution is on the one hand governed by drift and di�usion � formally described by
the left hand side of Eq. (7.1) � and on the other hand by change of the phase space
distribution due to scattering processes � which is given by the collision term on the right
hand side of Eq.(7.1). The collision term contains all the information about structure
of the interaction processes. Since f(x, p) is interpreted as a single particle distribution
function, Eq. (7.1) is a semi-classical formulation of parton dynamics. The partons are
treated as particles with classical trajectories. The single-particle distribution function
averages over correlations in a many-parton wave function of a single nucleon.
BAMPS is one of the most recent transport models and ranks among a number of

approaches dealing with numerical solution of the Boltzmann Equation. The cascade
models ZPC [28, 121] and MPC [29] implemented parton dynamics with elastic scatter-
ing and a geometric interpretation of the cross section. In the MPC model a parton
subdivision technique is introduced, which is necessary to preserve covariance. The VNI
partonic cascade model [27] for the �rst time implemented parton emission and fusion
processes calculated in the framework of perturbative QCD. Further models studying the
evolution of a quark and gluonic gas with pQCD based cross sections are introduced in
[122, 123]. In contrast to the already introduced models, UrQMD[77, 78] is a hadronic
transport algorithm describing hadronic interactions in terms of interactions between
known hadrons and their resonances.
As already mentioned before, BAMPS is a semi-classical approach. The partonic de-

grees of freedom are treated as independent point-like particles in 6 dimensional phase
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space (~x, ~p). The interactions between particles are implemented in BAMPS using the
stochastic interpretation of the collision rate [124, 125, 126, 31]. At any time step a par-
ticle can undergo a scattering process with a certain probability which is calculated for a
given number of participating particles dynamically. Since the stochastic interpretation
of the collision rates in principal allows particles to interact without regarding their rel-
ative distance, the space has to be discretized into small cells in order to avoid acausal
interactions between remote regions.
BAMPS implements three types of processes: elastic 2 → 2 scattering, bremsstrahlung

process 2 → 3 and its reverse channel 3 → 2. Implementation of the reverse bremsstrahlung
channel is essential to maintain detailed balance. The collision probabilities are calcu-
lated for the 2 → n processes by the expression

P2n = vrel
σ2n
Ntest

∆t

∆3x
, (7.2)

where n = 2, 3 and σ2n is the cross section, vrel the relative velocity of the two participant
in initial state, ∆t the intrinsic time step and ∆3x the volume of a cell in which the
collision happens. Ntest denotes the number of test particles. The method of test particles
increases the number of particles in the system by factor Ntest, so that the physical
observables calculated by averaging over the ensemble of particles have to be rescaled
accordingly. The relative velocity of two particle is calculated via

vrel =
s

E1E2
=

E1E2 − ~p1~p2
E1E2

(7.3)

with the invariant mass of particle pair s. For the 3 → 2 processes which are implemented
in BAMPS the collision probability is given by the expression

P32 =
1

8E1E2E3

I32
N2

test

∆t

(∆3x)2
. (7.4)

The expression I32 replaces the cross section which cannot be de�ned for a process with
three particles in initial state.
In presence of multi-particle processes the collision term C[f ] in the Boltzmann equa-

tion can be written as
C[f ] = C22[f ] + C23[f ] . (7.5)

For elastic 2 → 2 processes the collision term is given for a one-component system by

C22 =
1

2

∫
dΓ2

2

1

2

∫
dΓ′

1

2

dΓ′
2

2
f ′

1f
′
2 ×

× |M1′2′→12|2(2π)4δ(4)
(
p′1 + p′2 − p1 − p2

)
−

− 1

2

∫
dΓ2

2

1

2

∫
dΓ′

1

2

dΓ′
2

2
f1f2 ×

× |M12→1′2′ |2(2π)4δ(4)
(
p1 + p2 − p′1 − p′2

)
. (7.6)
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For the inelastic processes the corresponding expression reads

C23 =
1

2

1

2!

∫
dΓ2

2

dΓ3

2

1

2!

∫
dΓ′

1

2

dΓ′
2

2
f ′

1f
′
2 ×

× |M1′2′→123|2(2π)4δ(4)
(
p′1 + p′2 − p1 − p2 − p3

)
+

+
1

2

∫
dΓ2

2

1

3!

∫
dΓ′

1

2

dΓ′
2

2

dΓ′
3

2
f ′

1f
′
2f

′
3 ×

× |M1′2′3′→12|2(2π)2
(
p′1 + p′2 + p′3 − p1 − p2

)
−

− 1

2

1

2!

∫
dΓ2

2

dΓ3

2

1

2!

∫
dΓ′

1

2

dΓ′
2

2
f1f2f3 ×

× |M123→1′2′ |2(2π)2
(
p1 + p2 + p3 − p′1 − p′2

)
−

− 1

2

∫
dΓ2

2

1

3!

∫
dΓ′

1

2

dΓ′
2

2

dΓ′
3

2
f1f2f

′
3 ×

× |M12→1′2′3′ |2(2π)2
(
p1 + p2 − p′1 − p′2 − p′3

)
. (7.7)

The prefactors 1/2! and 1/3! in front of the integrals in Eqs. (7.6) and (7.7) indicate
that particles in the initial and �nal state are identical. The Boltzmann Equation (1.2)
is a one-particle equation, and thus one particle can be considered distinguished. In Eqs.
(7.6) and (7.7) this is the particle with the four-momentum p1. For all other particles
both in initial and �nal state all possible permutations must be considered, which is done
by the introduced prefactors (comp. Refs. [30, 41, 127]). The explicit expressions for the
collision term components contain the usual de�nitions for the total cross sections [76]

σ22 =
1

2s

1

2

∫
dΓ′

1

2

dΓ′
2

2
|M12→1′2′ |2(2π)4δ(4)

(
p1 + p2 − p′1 − p′2

)
, (7.8)

σ23 =
1

2s

1

3!

∫
dΓ′

1

2

dΓ′
2

2

dΓ′
3

2
|M12→1′2′3′ |2(2π)4δ(4)

(
p1 + p2 − p′1 − p′2 − p′3

)
. (7.9)

For the 3 → 2 process the expression corresponding to the cross section is I32 de�ned
as follows

I32 =
1

2!

∫
dΓ′

1

2

dΓ′
2

2
|M123→1′2′ |2(2π)4δ(4)

(
p1 + p2 + p3 − p′1 − p′2

)
. (7.10)

The matrix elements Mn→m are in general momentum dependent and given by the
underlying �eld theory. They will be de�ned later in this work for a perturbative QCD
approach. In case of momentum-independent matrix elements, i.e. for isotropic 2 → 3
cross sections, I32 is related to σ23 by the expression

I32 = 192/gπ2σ23 . (7.11)

In a case of momentum-dependent matrix elements, i.e. non-isotropic cross section, the
integration in Eq.(7.10) is calculated in BAMPS using numerical integration techniques
(comp. Ref. [30] for details).
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7.2. Boost-invariant expansion in BAMPS.

Figure 7.1.: Boost-invariant BAMPS box. In longitudinal direction the bin are con-
structed in rapidity space and have a �xed size ∆η. All the cells have the
same transverse area. Particles are re�ected on a cylindric outer wall width
�xed radius R = 5fm.

In this work BAMPS with a special geometry of the box, in which particles are con�ned,
is used. The main focus of my work lies on investigation of hydrodynamic phenomena
and comparisons with BAMPS for the case of boost-invariant expanding medium. The
cells in the present BAMPS version are thus constructed not in the Cartesian coordinates
(x, y, z) but in the coordinates (x, y, η). In longitudinal direction, which corresponds to
the Cartesian z-axis the binning is done in terms of rapidity η: particles with rapidity
η ∈ [η̄ : η̄ +∆η] are found in a same bin of �xed size ∆η. Rapidity interval η ∈ [−3 : 3]
is covered by initial sampling. In transverse direction the shape of the 'box' is circular
with a �xed radius R = 5fm. The particles are re�ected at the cylindric outer wall. In
transverse direction the cells are constructed to have same transverse area. A schematic
picture of this 'tube' geometry is given in Fig. 7.1.
Physical observables are calculated as average over an ensemble of particle in BAMPS

in each cell (due to transverse isotropy in case of one-dimensional boost-invariant ex-
pansion the average can be built over all cells in a η-bin in order to suppress statistical
�uctuations). The integration over the distribution function by four-momentum depen-
dent weight w(p) correspond to a discrete summation over the particles in a cell (bin):

∫
dΓ w(p)f(x, p) ≡ 1

Vcell

Ncell∑
i

w(pi)

Ei
. (7.12)

If not stated otherwise the results presented in this work are extracted in the central
rapidity bin η ∈ [−0.1 : 0.1]. Most results are obtained from simulations with a thermal
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initial condition
f(x, p) =

g

π2
e−pT ·cosh y/T . (7.13)

7.3. Implementation of Leading Order pQCD processes in

BAMPS

The stochastic interpretation of collision rates is a central feature of BAMPS. It allows
to include both bremsstrahlung processes and the reverse process of gluon absorption in
a consistent way. With geometrical interpretation of collision cross section a consistent
implementation of the 3 → 2 process is not possible. Inclusion of both channels ensures
that full detailed balance is maintained in the evolution. Implementation of leading-order
(LO) pQCD processes in BAMPS is thus important to study chemical equilibration in a
partonic matter as well as a number of further phenomena to be discussed later in this
work.
For the di�erential cross section of pQCD elastic scattering among gluons BAMPS

employs the expression [30, 128, 129]

dσgg→gg

dq2⊥
=

9παs

(q2⊥ +m2
D)

2
, (7.14)

where q2⊥ is the transverse component of the momentum transfer in the center-of-mass
frame of the colliding particles, αs denotes the strong coupling constant. The total cross
section is then obtained via

σgg→gg
tot =

1

2

∫ s/4

0
dq2⊥

dσgg→gg

dq2⊥
=

9

2

πα2
s

m2
D

(
1 + 4m2

D/s
) . (7.15)

The infrared divergence in the di�erential cross section is regularized by the e�ective
screening mass m2

D [128] which is calculated in each cell dynamically in BAMPS via

m2
D = 16παs

∫
dΓNcf(x, p) (7.16)

with the choice of Nc = 3 for SU(3) of QCD throughout this work. The thus de�ned
screening mass does not have a directional dependence, as it should be in general [130],
but can rather be interpreted as an average over the transverse and the longitudinal
screening masses.
The matrix elements for bremsstrahlung processes are of Gunion-Bertsch form[131,

128, 88]:

|Mgg→ggg|2 =
9

2

(4πα2
s)

2 · s2(
q2⊥ +m2

D

)2 48πα2
sq

2
⊥

k2⊥

((
k⊥ − q⊥

)2
+m2

D

) ·Θ(|k⊥|Λg − cosh y) . (7.17)

The �rst part of the above expression is the already introduced di�erential cross section
of elastic gg → gg process. The second part describes emission of one additional gluon
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with transverse momentum component k⊥ and rapidity y in the center-of-mass frame of
the two-body collision. In a dense partonic medium the radiation of an additional parton
is suppressed by the Landau-Pomeranchuk-Migdal (LPM) e�ect[132], which reduces the
bremsstrahlung cross section at high densities due to coherent interaction with scattering
centers in the medium. Since the coherent e�ects cannot be taken into account within
the semi-classical BAMPS approach, the LPM e�ect is accounted for by the Θ-function
in Eq. (7.17). Inclusion of the Θ-function has the consequence that only independent
processes (Bethe-Heitler regime) are considered in BAMPS. The formal treatment of the
LPM e�ect is based on its following e�ective interpretation: the radiated gluon cannot
scatter before its emission is completed. The emission (or formation) time of a gluon
is typically given by τ ≈ cosh y

k⊥
and should be smaller than the mean free path in the

medium Λg, leading to the requirement Λg > cosh y
k⊥

. Such implementation of the LPM
e�ect leads to a suppression of emission of soft (i.e. low k⊥) gluons if mean free path Λg is
large. Already from these qualitative arguments it becomes clear that inelastic processes
will be important for isotropization of the momentum distribution, since large k⊥ and
thus large emission angles are preferred whereas small k⊥ and angles are suppressed. In
fact, this e�ect has been discussed in Refs. [41, 33] and will be addressed later in this
work.
The strong coupling constant αs is not dependent on the momentum transfer in present

BAMPS calculations, i.e. the e�ect of running coupling (comp. Section 1.2) is not imple-
mented. According to the recent experimental and theoretical estimates, as reviewed e.g.
in Refs. [49, 133, 134], for a color glass condensate initial condition with Qs ∼ 1−3 GeV,
which could apply for RHIC energies, the value of αs(Qs) is 0.25 − 0.5. For studies of
the elliptic �ow and jet suppression in BAMPS [22, 135, 136] αs = 0.3..0.6 were applied.

7.4. Application of BAMPS to heavy-ion phenomenology

In this section I will review some of the applications of BAMPS to investigation of
phenomena in relativistic heavy-ion collisions and brie�y summarize the results of these
studies. BAMPS is an appropriate tool to study o�-equilibrium phenomena in a partonic
medium. Since it solves the Boltzmann Equation exactly, deviations from equilibrium
can be arbitrary large without exceeding the applicability limitations of the model. This
is a major advantage of a kinetic transport model as compared to hydrodynamic mod-
els. The most interesting questions that can be addressed by BAMPS calculations are
investigations of collective phenomena and dynamics of the equilibration processes in a
QCD medium at weak coupling.

7.4.1. Thermalization of gluon matter in BAMPS

The issue of thermal and chemical equilibration of a quark-gluon plasma has been
addressed in a number of studies, both analytic using relaxation time approximation
[137, 138, 139, 128, 140] and numerical using Monte-Carlo techniques to solve the Boltz-
mann Equation in a cascade [27, 28, 29, 122, 123]. Thermalization process was also
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studied using analytic pQCD estimates of the collision rates, like e.g. in Refs. [141] and
[142]. In BAMPS thermalization and onset of hydrodynamic behavior were studied in
[30] using mini-jet initial conditions whereas thermalization of a color glass condensate
(CGC) inspired initial con�guration is investigated in [143, 32]. In the study reported
in [32] the emphasis lies on detailed understanding of the thermalization mechanism and
of the associated time scales. The question addressed there was whether the thermal-
ization of the highly anisotropic, CGC inspired initial condition is well described by the
'bottom-up' scenario [142]. In this section I will summarize the review of 'bottom-up'
scenario given in Ref. [32].
Color Glass Condensate was proposed as a possible state of hadrons at ultrarelativistic

energies achieved in heavy ion collisions [70, 144]. The CGC calculation framework (see
[145] and references therein) allows to calculate systematically n-point gluon correlation
functions and their evolution with the momentum fraction x order by order in perturba-
tion theory and thus gives access to understanding of the collective dynamics of QCD at
high parton densities. The CGC formalism is embedded into the saturation scenario in
which the density of partons per unit transverse area becomes very large at high energies
leading to a saturation of partonic distributions due to unitarity constrains. When the
saturation scale Qs, which is given by the density of color sources per transverse area,
becomes large compared to ΛQCD the coupling constant αS(Qs) becomes weak and thus
the high energy limit of QCD may be studied using weak coupling techniques. This way
the behavior of the small x components of the hadronic wave function in QCD can be
studied analytically in an e�ective theory which is the CGC.
The CGC initial condition used in BAMPS simulations consists of gluons with pT < Qs,

which are produced by the non-perturbative part of the nucleus-nucleus interaction. The
saturation momentum Qs is the typical momentum of gluons in the CGC. It is close to
2 GeV at RHIC and is expected to be 4 − 6 GeV at LHC [71, 146]. The Color Glass
Condensate is a state with high parton occupation number where the transverse momenta
reach up to Qs, whereas the occupation number drops to 0 for transverse momenta much
larger than Qs. Initially, most gluons have transverse momenta close to Qs, whereas the
longitudinal momentum of gluons in the central rapidity bin is approximately zero.
As a possible scenario of thermalization of the CGC initial condition the �Bottom-

Up� scenario was proposed [142]. According to this scenario the thermalization process

goes through three stages. The �rst stage, Q−1
s � t � Q−1

s α
−3/2
s , is dominated by

hard gluons, i.e. gluons with transverse momenta pT ∼ Qs, as is characteristic for
the CGC initial state. The second stage, Q−1

s α
−3/2
s � t � Q−1

s α
−5/2
s , is the stage

where soft gluons (pT ∼ αsQs) are produced in inelastic collisions. In the �Bottom-
Up� picture the production of hard gluons is suppressed by the Landau-Pomeranchuk
e�ect, discussed in Section 7.3. The multiplicity of soft gluons increases. The soft
gluons thermalize among themselves and build up a thermal bath. In the third stage,
Q−1

s α
−5/2
s � t � Q−1

s α
−13/2
s the initially present hard gluons lose their energy to the

thermal bath of soft particles and thus thermalize as well. The parametric estimate
of the thermalization time scale in �Bottom-Up� scenario is τth ∼ Q−1

s α
−13/2
s . In this

Section the thermalization process in BAMPS will be reviewed and the �ndings will be
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contrasted with �Bottom-Up� predictions.
For the initial gluon distribution of CGC we employ an idealized and boost-invariant

form [147]

f(x, p) =
c

αsNc

1

τ
δ(y − η)Θ(Q2

s − p2T ) . (7.18)

Because boost-invariance is assumed, the momentum and space-time rapidity are equal,
i.e., η = y for the initial gluons. Nc = 3 for SU(3) is used. The factor c in Eq. (7.18)
is the �parton liberation coe�cient� which accounts for the transformation of virtual
partons in the initial state into on-shell partons in the �nal state, as introduced in [148].
SU(3) gauge theory calculations yield a value of c ' 0.4 [71, 146], which is employed for
the following calculations. The initial particle density in the CGC approach is given by
[147, 149, 150]

1

πR2

dN

dη
= c

N2
c − 1

4π2αsNc
Q2

s . (7.19)

For the application of the Boltzmann equation, the phase space density has to be smaller
than unity. If phase space density is high, Bose enhancement factors should be considered
in the collision integrals, which is not done in BAMPS model.
The initial gluons are produced at proper time τ ∼ 1

Qs
and the initial phase space

density f(x, p) from Eq. (7.18) is in�nite due to the delta function δ(pz) ∼ 1
∆pz

. Later
the distribution in longitudinal momentum space broadens due to 2 → 2 (or 2 → 3)
collisions and the occupation number becomes �nite. BAMPS calculations start at time
τ0 = c

αsNc
τi where τi ∼= 1/Qs. At this time the parton distribution function in Eq.

(7.18) is still larger than unity. The same initial time has been applied in [147]. In the

�Bottom-Up� picture at a time τ ∼ α
−3/2
s Q−1

s the distribution should become less than
1. One has to note that the Bose enhancement factor (1+ f) is not employed within the
Boltzmann collision terms in BAMPS. Hence, as long as f is larger than 1 the collision
rates are underestimated.
In the following the results of simulations for Qs = 3 and αs = 0.3 are presented. A

more detailed analysis can be found in [32]. The thermalization process is best illustrated
by the time evolution of the normalized particle distribution in transverse momentum
plane

dN

NpTdpt
=

∫
p0fdydϕ . (7.20)

The initial CGC distribution given by Eq. (7.18) is highly anisotropic. At early times
the initially empty hard part of the spectrum (pT > Qs) is �lled up with gluons. This
is demonstrated in Fig.7.2 for BAMPS calculations with the initial time τ0 = 0.04 fm/c
. From Fig.7.2 one observes that the spectrum of high momentum gluons achieves a
nearly-exponential shape on a short time scale and almost as quick as the soft gluons.
However, they have di�erent slopes. At τ = 0.5 fm/c the entire spectrum is to a good
extent in agreement with a thermal �t using feq from Eq. (6.13) in Eq. (7.20) with
T ' 0.67 GeV , which is indeed very close to the e�ective temperature of the system at
this time [Teff(τ = 0.5 fm/c) = E/3N = 0.6 GeV]. The transverse momentum spectrum
achieves a thermal shape in hard and soft regions almost simultaneously. The subsequent
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Figure 7.2.: Transverse momentum spectra in the central space time rapidity and at
various early times. The initial condition for the BAMPS calculation is a
CGC with αs = 0.3 and Qs = 3 GeV.

time evolution of the transverse momentum distributions is shown in Fig. 7.3. At late
times (τ > 0.5 fm/c) the spectra are very good approximated by a thermal distribution,
however the values of temperature which have to be chosen for the �t are slightly larger
than the actual temperature of the system. This is explained by the fact that the system
is still not completely equilibrated and the distribution function is better approximated
by Grad's expression Eq. (6.12) rather than by the Boltzmann distribution. A higher
temperature has to be chosen if o�-equilibrium contribution to the distribution function
is neglected.

The ratio of the numbers of the soft, medium and hard gluons to the total number
of gluons is depicted in Fig. 7.4. The total gluon number is dominated by the medium
sector until 0.5 fm/c and then by the soft sector after ∼ 1 fm/c. Contrary to the
�Bottom-Up� picture, Fig. 7.4 shows that the soft gluon number increases over a long
period of time at the cost of the primary �medium� gluons (pT ≈ Qs). The production
of soft gluons is e�ectively hindered by 3 → 2 processes and, thus, cannot exhibit a
huge increase as predicted in the �Bottom-Up� scenario. The presence of a thermal
bath of soft gluons seems not to be a necessary condition for the equilibration of hard
gluons. The hard gluons produced in inelastic 3 → 2 collisions at early times are close
to thermal distribution which underlines the importance of inelastic processes for kinetic
equilibration in BAMPS. This leads, as discussed in Ref. [32] in more detail, to a faster
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thermalization than in �Bottom-Up� picture.
The study presented in this Chapter demonstrates qualitatively how equilibration of

an extremely anisotropic initial distribution is achieved in BAMPS. The role of inelastic
collision processes will be quanti�ed in the following in this work.

7.4.2. Jet suppression.

Studies of jet quenching in BAMPS simulations of Au + Au collisions at RHIC were
performed and reported by Fochler et. al. in Refs. [22, 135]. In BAMPS simulations
the jet is represented by a high energetic gluon traversing the medium. Due to large
energy scales involved, the energy loss of a jet can be studied by means of perturbative
QCD, which is implemented in BAMPS. With the mini-jet initial conditions and applying
free-streaming to model freeze-out in regions (cells) where the energy density drops below
a critical value (gluon-hadron duality is used in BAMPS, i.e. one gluon correspond to one
pion), the nuclear modi�cation factor RAA was found to be below the experimental results
for neutral pions and charged hadrons for di�erent centrality classes but at the same time
in good agreement with other theoretical calculations for central collisions (c.f. Refs.
[22, 135] for details). Studies of energy loss in a static medium in BAMPS demonstrated,
that the pQCD bremsstrahlung process gg → ggg has a dominant contribution to the
energy loss, leading to a large and linearly growing di�erential energy loss. The reason
for this is the impact of LPM cut-o� on momentum distribution of radiated particles. As
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already discussed in the previous Section, large-angle radiation is preferred if the LPM
e�ect is taken into account via the Θ-function in the Gunion-Bertsch matrix elements
(7.17). In addition, the in�uence of the particular implementation of the LPM cut-o�
was studied in more detail in Ref. [135].

7.4.3. Flow phenomena.

A major advantage of the kinetic transport model BAMPS is its ability to describe
both low- and high-pT regions of the spectrum, i.e. to provide a uni�ed understanding
of the bulk and jet properties of the QCD medium in perturbative coupling regime.
Calculations of the elliptic �ow v2 with BAMPS were reported by Xu and Greiner

in Ref. [136] for initial conditions which are a combination of the so-called 'mini-jets'
scenario (for large momentum scale) and Glauber pro�le (for soft momentum scale).
The results on integrated v2 were found to be in good agreement with experimental
data for the coupling regimes αs = 0.3 . . . 0.6. For these calculations a simple picture
of hadronization was employed, in which the gluons were turned into hadrons (pions)
in a space region, where the energy density dropped below the speci�ed critical value.
In a further study of this problem the di�erential elliptic �ow v2(pT ) was found to be
slightly below the experimental data, which however could be corrected by a splitting
(fragmentation) of a gluons into several hadrons (pions)[151] � a process which tends
to increase average pT of a particle. Whereas the elliptic �ow calculations demonstrate
a good agreement with experimental results, the nuclear modi�cation factor RAA(pT )
is found to be below the data, although it was found to be sensitive to the details of
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implementation of the LPM e�ect in BAMPS. For both RAA and v2 the inelastic pQCD
processes are important in order to reproduce the experimental results: implementation
of only elastic processes leads to a signi�cantly lower amount of suppression of jets and
lower elliptic �ow. These �ndings are consistent with the e�ect of inelastic processes on
the η/s ratio calculated in Ref. [33, 42] and to be discussed in Chapter 9 of this work.
A very challenging task for dissipative hydrodynamic formalisms is solution of the Rie-

mann problem. In the Riemann problem two �uids with di�erent pressures are initially
separated by a membrane. After the membrane is removed (in a Gedankenexperiment
this can happen instantaneously), the matter is pushed from the region with higher
pressure towards the lower pressure region. On the border of the regions a shock wave
develops, which then propagates through the medium. This setup is connected with an
in�nitely large pressure gradient, which takes the existing numerical implementations of
dissipative �uid dynamics formalisms to the limits of their applicability [85]. Evolution
of shock waves in the afore-mentioned setup was investigated using the partonic model
BAMPS [94]. This study demonstrated that BAMPS can be employed to investigate
critical �uid dynamic phenomena, to which the Riemann problem and its variations [85]
belong. BAMPS is able to reproduce ideal hydrodynamic solutions with high accuracy
and at the same time to produce solutions of viscous hydrodynamic problems, which for
the �rst time demonstrated that numerical solutions of relativistic kinetic transport the-
ory can be regarded as benchmark for relativistic hydrodynamic calculations. Existence
of shock waves in relativistic medium means that Mach Cone structures can be observed
as well. Mach Cones are reaction of the medium to propagation of a super sonic object,
like the jets in a quark-gluon plasma, and their surface is a shock front. Thus propagation
of Mach Cones in a partonic medium with �nite shear viscosity can also be studied using
BAMPS. So far systematic �uid dynamic studies of Mach Cones were only within ideal
hydrodynamic formalism [152].
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8. O�-equilibrium distribution function

in BAMPS.

In this section I evaluate with what accuracy Grad's approximation of the distribution
function can reproduced the o�-equilibrium distribution extracted from BAMPS calcu-
lations. Such comparison is in particular important in order to understand whether the
derivations of hydrodynamic equations are based on correct assumptions, since the ap-
proximate form of the o�-equilibrium distribution function is crucial for the derivations
presented in Chapters 3.1.2 � 3.1.4.
The e�ect of viscous corrections to the distribution function on experimentally acces-

sible observables like v2, HBT radii and particle multiplicities has been investigated in
Ref. [61]. There it is demonstrated that viscous corrections play an essential role already
at pT ∼ 1 GeV even at small viscosity to entropy density ratio. The di�erential v2(pT )
is signi�cantly suppressed, longitudinal pressure and HBT radius are reduced. There
are as well signi�cant corrections to particle multiplicities. Hence, it is important to
evaluate the accuracy of the viscous corrections by a direct comparison of the analytic
approximation with the kinetic transport results, as will be done here.
In one-dimensional boost-invariant geometry the o�-equilibrium distribution of gluons

is approximated by [comp. Eq. (6.12)]

f = 16λe
−pT cosh y

T

(
1 +

3

8T 2

π

e
p2T

(1
2
− sinh2 y

))
(8.1)

The quality of this approximation is to be investigated in this chapter by comparing the
normalized transverse particle distributions

dN

NpTdpt
=

∫
p0fdydϕ (8.2)

as calculated using Eq. (8.1) and by BAMPS.

8.1. Generic properties of Grad's approximation.

First it is interesting to discuss some generic properties of Grad's approximation. For
this purpose I calculate the ratio of rapidity and angle averaged product p0f0φ and the
rapidity and angle average of p0f0:

〈p0f0φ〉y,ϕ
〈p0f0〉y,ϕ . This ratio quanti�es the deviation of the

o�-equilibrium distribution given by Grad's approximation from equilibrium. If the ratio
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is larger than 1, the deviation φ is too large and the expansion underlying Eq. (2.27) is
not valid. Thus the criterion of validity of Grad's approach I investigate here is

δeq =
〈p0f0φ〉y,ϕ
〈p0f0〉y,ϕ

� 1. (8.3)

For a one-dimensional problem with transverse isotropy the average over rapidity and
angle yields the transverse distribution, dN

NpT dpt
= 〈p0f〉y,ϕ. Grad's ansatz for φ contains

a π
e dependence. For this study the value of π

e is a free parameter. However its natural
range for a system evolving toward kinetic equilibrium should be 0 ≤ π

e ≤ 1
3 . The lower

value describes a kinetically equilibrated system. The upper value guarantees that the
e�ective pressure peff = T33 = p−π = e

3−π is non-negative for a free evolving system. If
the initial condition is such that peff < 0, one can expect that peff will become positive
and relax to 0 after a certain time. In fact the phenomenon of negative e�ective pressure
has been discussed in Ref. [153] as a possible criterion for evaluation of applicability
limits of hydrodynamic description in heavy-ion systems. More discussion on evolution
of the e�ective pressure in viscous one-dimensional systems will follow later in this work.
In Fig. 8.1 the ratio is shown for π

e = 0.01, 0.1, 1
3 .

Figure 8.1 demonstrates that Grad's approximation fails for transverse momenta pT &
5T if dissipation is strong. This failure is a generic property of Grad's approximation in
the geometry considered here. For a partonic system the lower bound for the e�ective
temperature is the phase transition temperature, i.e. roughly T & 0.2 GeV. For the
upper limit I will use an estimate based on the simple Color Glass Condensate model
which was used in Ref. [149, 150, 32, 147]. For LHC conditions the simple CGC estimate
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is T . 0.7 GeV. Thus the break down of Grad's approximation is associated in a partonic
system with the transverse momentum scale pT ∼ 1− 3 GeV. This value increases with
decreasing strength of dissipative e�ects, as Fig. 8.1 demonstrates for π/e = 0.1. In
Fig. 8.1 the transition from π/e = 1/3 to π/e = 0.01 demonstrates the evolution of
the deviations with ongoing thermalization of the system. With π/e = 1/3 the soft
sector (pT . 2T ) is not thermal, the deviation of the distribution is around 20% but is
considerably reduced with π/e = 0.1.
From the discussion of Fig. 8.1 one can draw a general conclusion that an evolution

equation for the shear pressure π, or alternatively π/e, derived using Eq. (2.27) as
demonstrated in Sections 3.1.3 � 3.1.4, will fail to describe dynamics of the system on all
scales. Indeed, a transverse momentum scale pT can be associated with a length scale
λ ∼ 1/pT . The evolution equation for shear pressure has an intrinsic time scale τπ, which
is interpreted as a relaxation time, as discussed in Section 3.1.3. Since hydrodynamics is
a macroscopic theory, the relaxation time is momentum independent. It is thus natural
that a relaxation-type equation cannot describe dynamics on scales which are smaller
than the intrinsic relaxation time, which applies to the hard part of the pT spectrum.

8.2. Deviations of transverse particle distributions in

BAMPS from equilibrium.

In this section the distributions extracted from BAMPS simulations are compared to
equilibrium distributions in order to obtain a qualitative understanding of the evolution
towards equilibrium. For this study a BAMPS simulation with constant isotropic elastic
cross section (i.e. angle independent di�erential cross section) is used:

σ22 =
6

5
r
T

s
. (8.4)

where T is the temperature and s the entropy density. In the above expression r is a
constant parameter. This particular parametrization is inspired by the expression for
the shear viscosity coe�cient derived in Ref. [76] (and used for instance in Ref. [46, 34])
for applications with Israel-Stewart theory. The parameter r is identical with the ratio
η
s [46, 34]. For the study presented here r = η/s = 0.4 is taken. BAMPS is initialized
with thermal initial condition. In the kinetic theory, for a gas of massless Boltzmann
particles (gluons), the thermal distribution function is given by

feq = dgλe
−βuµpµ = dgλe

−E
T = dgλe

−pT ·cosh y/T (8.5)

with T and E denoting temperature and energy of the particle in the local rest frame of
a �uid element with four-velocity uµ. dg = 16 is the gluon degeneracy factor considering
3 �avors. The initial time is τ0 = 0.4 fm/c and the initial temperature T0 = T (τ0) =
0.5 GeV. The system is initialized in chemical equilibrium, λ(τ0) = 1.
The initially equilibrated system evolves o�-equilibrium due to the initial expansion and

then starts relaxing towards equilibrium again. Throughout the evolution the tempera-
ture is decreasing which leads to a continuous �steepening� of the transverse spectrum.
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Figure 8.2.: Transverse spectra from BAMPS simulations at di�erent times with initial
thermal condition τ0 = 0.4 fm/c, T0 = 0.5 GeV (a) and the relative deviation
of BAMPS distribution from equilibrium calculated by Eq.(8.6) (b). Results
are obtained with r = η/s = 0.4.

In Fig. 8.2(a) the transverse spectra from BAMPS at di�erent times are depicted. The
behavior observed here is analogous to the behavior discussed in section 7.4.1 around
Fig. 7.3. The spectra in Fig. 8.2(a) can in principle be �tted by a thermal distribution
using an e�ective temperature which is larger than the actual temperature of the system.
However a thermal �t using the actual temperature is not possible. In Fig. 8.2(b) the
ratio

δBAMPS
eq =

(dN/N/pT /dpT )BAMPS

(dN/N/pT /dpT )thermal

=
〈p0fBAMPS〉y,ϕ

〈p0f0〉y,ϕ
(8.6)

is plotted. An analogous ratio has been already de�ned in Eq. (8.3). For the analysis in
Fig. 8.2(b) the numerator is calculated in BAMPS using the actual particle distribution.
The denominator of Eq.(8.6) is calculated using Eq. (8.5) with e�ective temperature T
and fugacity λ extracted from the same BAMPS calculation. Fig. 8.2(b) thus demon-
strates the relative deviation of the particle distribution in BAMPS from equilibrium.
Even at late times (τ = 3 fm/c) the distribution is far from being thermal at high mo-
menta. The time evolution of the deviation δBAMPS

eq at di�erent momentum scales is
shown in Fig. 8.3. At the soft momentum scale, pT = 0.4 GeV, the ongoing thermal-
ization can be observed as the deviation δBAMPS

eq starts relaxing towards 1 after going
through a minimum. At larger momentum scales pT = 2, 4 GeV the deviation growth
with time. At this scales kinetic equilibration can be achieved only on a very long time
scale exceeding the life span of the partonic medium in heavy-ion collisions.
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Figure 8.3.: Relative deviation of BAMPS distribution from equilibrium calculated by
Eq.(8.6) at di�erent values of pT . Results are obtained with r = η/s = 0.4.

8.3. Deviations of transverse particle distributions in

BAMPS from Grad's approximation.

In this section I address the question how accurate Grad's approximation describes o�-
equilibrium distributions in BAMPS. The di�erences between the BAMPS and thermal
distributions observed in Fig. 8.2(b) underline the necessity of dissipative corrections
to feq. These corrections are introduced in the Grad's approximation, as discussed in
Section 2.4.1. The one-dimensional form of Grad's approximation is given by Eq. (8.1)
earlier in this chapter. For the quantitative comparisons of Grad's approximation with
BAMPS the thermodynamic quantities π, λ, e and T in Eq. (8.1) are extracted from
BAMPS. In particular, the shear pressure π is extracted using

π = T eq
33 − TBAMPS

33 = p− TBAMPS
33 =

e

3
− TBAMPS

33 .

Fig. 8.4 demonstrates the transverse spectra from BAMPS compared to the ones
calculated by Grad's approximation using Eq. (8.1) and BAMPS data. Clearly Grad's
approximation fails to describe the high momentum region (pT & 4 GeV) of the spectrum
at late times τ > 2 fm/c. In order to quantify and understand the deviations observed
at high momentum we introduce in Fig. 8.5(a) the ratio δBAMPS

Grad calculated as follows

δBAMPS
Grad =

(dN/N/pT /dpT )BAMPS

(dN/N/pT /dpT )Grad

=

〈
p0fBAMPS

〉
y,ϕ〈

p016λe
−pT cosh y

T

(
1 + 3

8T 2
π
e p

2
T

(
1
2 − sinh2 y

))〉
y,ϕ

.

(8.7)
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Figure 8.4.: Transverse spectra from BAMPS simulations at di�erent times with initial
thermal condition τ0 = 0.4 fm/c, T0 = 0.5 GeV and the corresponding
spectra from Grad's approximation. Results are obtained with r = η/s =
0.4.

In Fig. 8.5(a) we observe that the deviation between BAMPS and Grad's transverse
distributions increases at high momentum at later times, however, comparing Fig. 8.5(a)
and Fig. 8.2(b) one can conclude that it is considerably smaller than between BAMPS
and thermal distribution at high momentum. The deviations at high momentum clearly
indicate that this sector is far from complete thermalization whereas Grad's approxima-
tion is closer to a thermal distribution. Dissipative correction in Grad's approximation
is proportional to the ratio π

e (comp. Eq. (8.1)), which can be seen as a measure of
overall degree of equilibration in the system. The time evolution of this ratio is shown in
Fig. 8.5(b). As the system evolves the π

e ratio reaches a maximum, indicating a strong
deviation from equilibrium, and starts relaxing to 0 again. The value of π

e is clearly dom-
inated by the soft momentum sector of the spectrum since it contains the largest particle
number. Hence a small π

e indicates a high degree of equilibration of the soft sector, which
dominates the overall multiplicity, but same is not true for hard momentum particles,
which are still far from equilibrium. Thus, the correction in Grad's approximation is
not large enough at high momentum since it is weighted by π

e . This explains the large
deviations observed in Fig. 8.5(a).

Finally, in analogy to the study presented in Fig. 8.3, we can study time evolution of
δBAMPS
Grad for a �xed value of pT . This is presented in Fig. 8.6 for pT = 0.4, 2 and 4 GeV.
The conclusion that can be drawn from Fig. 8.6 is that Grad's approximation works
remarkably good in the low momentum region and moreover provides a reasonably good



8.3. Deviations of transverse particle distributions in BAMPS from Grad's approximation.71

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  1  2  3  4  5  6(d
N

/N
/p

T
/d

p
T
) B

A
M

P
S
/(

d
N

/N
/p

T
/d

p
T
) G

ra
d

pT (GeV)

(a)

at τ=0.41 fm/c
at τ=1.2 fm/c
at τ=2.0 fm/c
at τ=3.0 fm/c

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2  2.5  3  3.5  4

π 
/ 

e
τ(fm/c)

(b)

BAMPS, η/s=0.4

Figure 8.5.: (a) Ratio of transverse distribution from BAMPS simulations and the corre-
sponding spectra from Grad's approximation and (b) the shear pressure to
energy density ratio π

e from same BAMPS simulation.

approximation of BAMPS distribution at intermediate pT = 2 GeV, where the deviations
are around 5% and large pT = 4 GeV where the deviations are up to 20%. A fairly
good agreement between BAMPS results and Grad's approximation even at high pT is
remarkable since Grad's approximation is known to become invalid at this momentum,
as has been already discussed in section 8.1. To demonstrate the formal breakdown of
Grad's approximation in the situation discussed here the ratio δGrad

eq as introduced in
Eq. (8.3) is calculated using BAMPS data to reconstruct φ. The result is shown in
Fig.8.7. Formally, Grad's approximation is not valid anymore at pT = 4 GeV except
at very early times since the (averaged) correction 〈p0f0φ〉y,ϕ becomes larger than the
corresponding average over the equilibrium function itself, 〈p0f0〉y,ϕ. Nevertheless,Grad's
approximation describes BAMPS distribution reasonably good at pT = 4 GeV as Fig.
8.6(c) demonstrates.
Applicability of Grad's approximation for distribution function to kinetic transport

results has been investigated in this Chapter using the transverse particle distributions.
For this comparison BAMPS simulations with time dependent isotropic elastic cross
section and constant particle number have been used corresponding to η/s = 0.4. Grad's
approximation has been found to provide a good description of kinetic results for this
moderately viscous system. For transverse momenta below 4 GeV the di�erence between
BAMPS and Grad's approximation do not exceed 20%. Moreover, the agreement is still
reasonably good in the momentum region where Grad's approximation formally becomes
invalid (pT ∼ 4 GeV).
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Figure 8.6.: Ratio of transverse distribution from BAMPS to the ones calculated by
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pT as function of time. Results are obtained with r = η/s = 0.4.
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9. Shear viscosity of a pQCD interacting

gluon gas.

In this Chapter, the formalism presented in Chapter 4.2.1 is applied to calculate the
shear viscosity coe�cient in a one-dimensionally expanding boost-invariant gluon gas.
The interactions between the gluons are modelled using 2 → 2 and 2 ↔ 3 leading order
pQCD cross sections. The results presented here are obtained by two approaches, which
both use the LO pQCD matrix elements as implemented in BAMPS and discussed in
Chapter 7.3. Both approaches are dynamical and di�er in the way the dynamics of the
expansion is implemented.

9.1. Shear viscosity of a gluon gas from BAMPS.

I �rst present results on extraction of the shear viscosity coe�cient from BAMPS cal-
culations. The initial condition for these calculations is a kinetically and chemically
equilibrated gluon gas, with the distribution given by the Boltzmann distribution (8.5)
with λ = 1. The initial time τ0 is chosen to be 0.4 fm/c and the initial temperature T0

is 500 MeV for the results presented here.
The shear viscosity is calculated by Eq. (4.8). For a one dimensional system, if the

third spatial coordinate is chosen as the expansion axis, in the local rest frame the shear
tensor takes the form

πµν =


0 0 0 0
0 π

2 0 0
0 0 π

2 0
0 0 0 −π

 (9.1)

Due to the transverse isotropy, an inherent property of the boost invariant scenario
considered here, and for a massless gas the Pµν tensor, being the second moment of the
collision term, is traceless and has a diagonal form with two degenerate components:

Pµν =


P00 0 0 0
0 1

2(P00 − P33) 0 0
0 0 1

2(P00 − P33) 0
0 0 0 P33

 (9.2)

With the value of C0 from Eqs. (6.15) resp. (A.31) the expression for shear viscosity
reduces to

η = 4n
−T 2π

P 33 − 1
3P

00
. (9.3)



74 9. Shear viscosity of a pQCD interacting gluon gas.

Figure 9.1 shows η/s extracted within the space time rapidity interval ηs ∈ [−0.1 : 0.1],
where ηs = 1

2 ln[(t+z)/(t−z)]. The entropy density is calculated using the kinetic equilib-
rium expression s = 4n−n lnλ. The three values of αs shown in Fig. 9.1 demonstrate the
transition between a weakly coupled and a strongly coupled gluon system. For αs = 0.3
and 0.6 the extracted η/s value is in a good approximation constant in time:

η

s
≈ 0.08 (αs = 0.6)

η

s
≈ 0.17 (αs = 0.3)

η

s
≈ 2.6 − 3.2 (αs = 0.05)

(9.4)
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Figure 9.1.: Shear viscosity to entropy density ratio extracted from BAMPS using Eq. 9.3
and the kinetic equilibrium expression s = 4n − n lnλ. BAMPS results are
calculated with the initial conditions given by τ0 = 0.4 fm/c, T0 = 500 MeV.
Both elastic and inelastic pQCD processes are included with constant values
of αs.

For αs = 0.6, the obtained value is approximately 0.08 and thus very close to the
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conjecture bound for relativistic quantum �eld theories at �nite temperature, η/s =
1
4π [154]. Thus, the results for αs = 0.3 and 0.6 indicate that the pQCD interacting
gluonic matter behaves in BAMPS like a strongly coupled system. The fact that already
at �nite coupling within a perturbative QCD description BAMPS calculations yield a
low, close to the lower bound, value of η/s ratio is the result of high e�ciency of the
inelastic 2 ↔ 3 processes in driving the system to isotropy in the momentum space.
For the �rst time this was discussed by Xu and Greiner in Ref. [41] and investigated
in various applications of BAMPS in Refs. [22, 135, 33, 42]. For instance in Refs.
[22, 135] the energy loss of gluon jets in BAMPS is demonstrated to be larger if pQCD
interactions are implemented in comparison with BAMPS simulations with only elastic
processes with isotropic di�erential cross section. Comparable values of energy loss can
be achieved if the isotropic elastic cross section is scaled by a considerable factor. In a
pQCD interacting medium, the energy loss is found to be clearly dominated by radiative
processes. Correspondingly, the nuclear modi�cation factor RAA is found to be small but
comparable to recent calculations based on GLV formalism. Simultaneously, a sizable
amount of elliptic �ow can be observed in BAMPS simulations [135, 151, 136], which
is not possible with elastic only processes [22]. The observed collectiveness in BAMPS
simulations is consistent with the low values of η/s ratio, as obtained in this work and
earlier publications [33, 42].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3

σ 2
2
,σ

2
3
 (

fm
2
)

τ (fm/c)

BAMPS: σ23 (αs=0.6)
BAMPS: σ22 (αs=0.6)

elastic isotropic  σ22 (η/s ≈ 0.08)

Figure 9.2.: PQCD cross sections, σ22 and σ23, extracted from BAMPS simulations with
αs = 0.6. The value of elastic isotropic cross section, corresponding to
η/s ≈ 0.08, which was extracted from BAMPS simulations, is calculated
using BAMPS data.

The high e�ciency of inelastic processes in BAMPS is demonstrated in Fig. 9.2, where
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the pQCD cross sections are extracted from BAMPS simulation with αs = 0.6. From
this run the value η/s ≈ 0.08 was extracted. On the other hand, Eq. (8.4) can be
used to calculate an elastic isotropic cross section which would support this η/s value.
The results of such calculation, for which actual temperature and particle density from
BAMPS run are used, is demonstrated in Fig. 9.2 together with the values of pQCD
cross sections. In order to obtain a medium with properties close to a strongly interacting
system (η/s ∼ 1/(4π)) with isotropic angle distribution, the elastic cross section has to be
chosen almost factor 10 larger than the inelastic σ23 cross section in BAMPS. The reason
for this is the angle distribution of the particles produced in inelastic 2 → 3 collisions.
This distribution indicates that in BAMPS the large-angle radiation is favored [41, 135].
This increases the transport cross section[41], σtr ∼

∫
sin2 θ dσ

dΩ , and thus essentially
speeds up isotropization in momentum space. In our study of thermalization of the
Color Glass Condensate initial conditions in BAMPS, presented in Chapter 7.4.1 and
Refs. [143, 32], we found that thermalization of hard momentum sector proceeds on a
short time scale, which is explained by the large angle dominance of radiated particle
distributions. The conclusion, that a large value of elastic cross section is needed to
describe the collective behavior observed in experiment by STAR was as well obtained
by Molnar and Gyulassy in Ref. [155] from calculations of elliptic �ow by kinetic
transport model MPC [28, 29].

9.2. Shear viscosity to entropy density ratio as function of

αs.

In this Section the shear viscosity to the entropy density ratio η/s is calculated for a
gluonic system, which undergoes a one-dimensional expansion with Bjorken boost invari-
ance, i.e., a (0+1) dimensional expansion. In contrast to the results presented in Section
9.1, BAMPS will not be employed for calculations presented here. Instead, an iterative
and self-consistent prescription to calculate the η/s ratio using Grad's approximation for
the distribution function, second-order hydrodynamic equations and LO pQCD matrix
elements will be introduced. This prescription was reported in Ref. [33].
In Sections 4.2.1 and 9.1 the expression for the shear viscosity coe�cient was derived

using Grad's approximation for the distribution function, Eqs. (2.42) resp. (8.1). The
obtained expression, as given for a one dimensional system of massless gluons by Eq.
(9.3), depends on macroscopic observables π, e, n and on the moments of the collision
term P00 and P33. Since the collision term itself, Eqs. (7.6) and (7.7), is a (complicated)
functional of the distribution function, it as well depends on π, e, n if the distribution
function is replaced by Grad's approximation. Thus, once the values of π, e, n are
known and the matrix elements, entering the collision term are given, the shear viscosity
coe�cient can be calculated using Eq. (9.3). In the previous Section the time evolution of
the macroscopic quantities π, e and n was obtained from BAMPS calculations. But since
the derivation of Eq. (9.3) is based on Grad's approximation, for which compatibility
with kinetic transport results is limited, as discussed in Section 8.2, it is a natural choice
to obtain the time evolution of π, e and n from hydrodynamic equations and not from
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kinetic transport calculations. Derivation of second-order, Israel-Stewart equations was
discussed in Section 3.1.3. For a one-dimensional system of massless Boltzmann particles
they read (comp. Section 6)

ṅ = −n

τ
(9.5)

ė = −4

3

e

τ
+

π

τ
(9.6)

π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
(9.7)

τπ =
9η

2e

Evolution equation for shear pressure π depends explicitly on the shear viscosity coe�-
cient η and is coupled to the evolution equation for the energy density. Thus the problem
of calculation of η by Eq. (9.3) via Eqs. (9.5) � (9.7) and Grad's approximation becomes
iterative.
Considering the self-iterative nature of the problem, the following algorithm is pro-

posed:

1. Equations (9.5) � (9.7) are solved with a guessed value of η. The guessed value can

be chosen arbitrarily because the �nal result does not depend on it. η/n is assumed to

be a constant of time (i.e. the system is assumed to be close to chemical equilibrium).

2. The obtained n(τ), e(τ) and π(τ) at a time τ are used to calculate η(τ) according

to (9.3). For doing so, �rst the moments P 00 and P 33 are calculated using f(x, p) in
Eq. (8.1) with given n(τ), e(τ) and π(τ) and the cross sections in Eqs. (7.14), (7.9),

(7.10) and (7.17).

3. Averaging over the η values calculated in several previous steps is done to obtain the

actual η(τ). The algorithm turns back to step 1. The actual η(τ) is used to solve Eqs.

(9.5) � (9.7).

In the second step of the iterative algorithm the collision term C[f ] is evaluated us-
ing the approximated distribution function, Eq. (8.1), according to which particles are
sampled, and the matrix elements as implemented in BAMPS, which allow to simulate
collision processes between pairs of sampled particles. The sampling according to Eq.
(8.1) faces the problem, that the distribution function becomes negative at a certain
value of pT , as demonstrated in the discussion around Fig. 8.1. For pT larger than
the critical value, a cut-o� is applied, i.e. no particles are sampled in this region. The
critical momentum depends on actual values of π, e and T and is of order of 3 GeV
for the situation considered here. But since the distribution function becomes small at
this momentum, as BAMPS transverse spectra, Fig. 8.2, demonstrate, the e�ect of the
cut-o� is negligible.
The particle number is assumed to be constant in the algorithm presented here. Indeed,

Eq. (9.5) is solved by n(τ) = n0τ0/τ . Since the volume is proportional to τ , the
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Figure 9.3.: Fugacity (a) and particle multiplicity (b) extracted from BAMPS simulations
with di�erent values of αs.

particle number N = nV ∼ n0τ0 is constant. This assumption is not valid if one
takes into account particle production and annihilation processes. In presence of particle
number changing processes the initial expansion will drive the system o� kinetic and
chemical equilibrium. This can be illustrated by BAMPS calculations. In Fig. 9.3 the
fugacity λ = n/neq and the particle multiplicity in central rapidity bin from BAMPS
simulations are demonstrated. Time evolution of the fugacity, Fig. 9.3(a) re�ects the
ongoing chemical equilibration in the system which is driven o� equilibrium initially. The
fugacity relaxes to 1 at strong coupling αs ∼ 0.3 − 0.6). For αs = 0.05 the relaxation
does not set in on time scale shown in the �gure. The particle multiplicity increases due
to ongoing particle production, which accompanies chemical and kinetic equilibration of
the system.

BAMPS results presented in Fig. 9.3 demonstrate that the assumption of chemical
equilibrium and constant particle number is in a certain approximation valid at very
early times. Thus, the iterative calculation of η by the algorithm presented earlier has
to be done at a early time point within proximity of the initial equilibrium state. The
convergence of iterative calculations is demonstrated in Fig. 9.4, where the values of η/s
calculated at each iteration step are shown. Calculations are performed at di�erent time
steps. At small coupling, αs = 0.08 the choice of the time point becomes important: at
later time points the system is far from kinetic and chemical equilibrium; nevertheless,
at each of the time points a fast convergence is observed.

Finally, η/s as function of αs, as calculated by the iterative algorithm within proximity
of initial equilibrium state, τ = 2τ0 = 0.8 fm/c, is shown in Fig. 9.5. To demonstrate
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Figure 9.4.: Results of iterative calculations of η/s for di�erent αs and time steps.

the in�uence of the inelastic processes on η/s, its value is calculated iteratively both
with and without taking into account inelastic processes. For the calculations with
elastic, 2 → 2, pQCD processes only, the moments of the collision term in Eq. (9.3) are
Pµν =

∫
dΓpµpνC22[fGrad]. If both elastic and inelastic, 2 ↔ 3, processes are considered,

the moments are calculated according to Pµν =
∫
dΓpµpν (C22[fGrad] + C23[fGrad]). As

demonstrated in Fig. 9.5, with elastic processes only, the η/s value is large � roughly by
factor 7 compared to values obtained implementing both elastic and inelastic processes.
Thus, elastic pQCD processes are clearly not e�cient enough to support small η/s values
close to the lower bound 1/(4π). Only if an isotropic angle distribution and large values of
cross section are implemented, the η/s ratio can become low, as was already demonstrated
in Fig. 9.2. This conclusion is consistent with the results on η/s in Ref. [115], where the
obtained η/s ratio was shown to be much larger than 1/(4π) for elastic pQCD processes
only. Note that at weak coupling, αs . 0.05, the dominance of 2 ↔ 3 collisions becomes
weaker; for small αs the di�erence between 2 → 2 and full calculations becomes smaller.
This is because at weak coupling the bremsstrahlung, 2 → 3, processes become collinear,
i.e. small angle dominated[42, 156].
A similar approach to calculation of the shear viscosity coe�cient was introduced in

Ref. [42], though there are important conceptual di�erences between the formalisms
presented there and the one discussed in this work. For the formalism in Ref. [42], the
Navier-Stokes equation (3.13) was considered, which is a �rst-order equation, whereas
the formalism presented here and in Ref. [33] is fully consistent with Israel and Stewart's
second-order theory. Nevertheless, the expression obtained in Ref. [42] has a form
similar to Eq. (4.8). The di�erences between this work and Ref. [42] are de�nitions of
the moments of the collision term and a term ∝ ∂t lnλ, which appears in the denominator
of the expression in Ref. [42], but is missing in the formalism presented here. As Fig.
9.5 demonstrates, values calculated by present formalism are systematically larger than
in Ref. [42] but converge with increasing αs. At large αs, the di�erence between second-
order and Navier-Stokes based calculations is approximately 50% (αs = 0.2), 20% (αs =
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Figure 9.5.: η/s as function of αs. The results are calculated implementing both elastic
and inelastic processes (red lines) and with elastic processes only (green
lines).

0.3) and 0% (αs = 0.6). If the η/s value, extracted from BAMPS, is to be employed in
second-order hydrodynamic equations, it is more consistent to calculate it by Eq. (4.8),
since it is consistent with the second-order Israel-Stewart formalism.

9.3. Applicability limits of the second-order hydrodynamic

formalism.

The formalism presented in previous section is based on Grad's approximation and
second-order dissipative hydrodynamic equations. Since both are truncated expansions
in terms of dissipative �uxes, and in particular, for the problems considered here, in term
of πµν , the applicability of the formalism is limited.
The time evolution of π, e and n can be calculated by the iterative algorithm discussed

above. With the obtained solutions, the deviations from equilibrium can be quanti�ed
using the following observable, proposed by us in Ref. [33]:

σφ =
√

〈φ2〉eq =
1

n

∫
dΓp0feqφ

2. (9.8)

In the latter expression, φ denotes the dissipative correction to the equilibrium distribu-
tion function, as given by Eq. (8.1). In chapter 8 I have demonstrated that φ can be
both positive and negative, dependent on the momentum. The positive-de�nite observ-
able σφ is a measure of the absolute deviation from equilibrium. When averaged over
the momentum, φ should be smaller than unity to guarantee validity of both Grad's
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approximation, which is linear in φ, and of second-order hydrodynamic equations, which
are obtained from the expansion of the entropy current.
Inserting φ = 3

8T 2
π
e p

2
T

(
1
2 − sinh2 y

)
(comp. Eq. (8.1)) into the de�nition of σφ, Eq.

(9.8), one obtains

σφ =
9
√
2

4

|π|
e

, (9.9)

The value of σφ, as calculated by the iterative algorithm, is presented in Fig. 9.6.
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Figure 9.6.: Deviation from equilibrium, σφ, calculated using solutions of the iterative
algorithm for di�erent values of αs.

Formally, for initial conditions chosen here, the second-order formalism breaks down
for αs . 0.1, as Fig. 9.6 demonstrates. Although σφ is still below 1 for αs = 0.1, it grows
larger than unity already at τ ∼ 1 fm/c for αs = 0.05. With σφ > 1, the hydrodynamic
equations are well outside their validity range, and the entire algorithm becomes invalid.
Considering Fig. 9.6, one has to keep in mind that strictly speaking the iterative

algorithm is only applicable at early times, because the net particle number is assumed
to be constant which leads to a loss of chemical equilibrium and continuous decrease of the
fugacity at late times. Thus, the results of iterative hydrodynamic calculations cannot
be directly compared with BAMPS results, since particle production and annihilation
lead to restoration of chemical equilibrium in BAMPS. Nevertheless, it is interesting
to quantify the equilibrium deviations in BAMPS by calculating σφ. This is shown in
Fig. 9.7. In BAMPS σφ cannot grow larger than 1.06 since π

e ≤ 1
3 in kinetic theory

for an expanding one-dimensional system. Even with αs = 0.05 the value of σφ is still
slightly below unity and de�nitely below the maximum value of 1.06. It is necessary to
mention, that the value αs = 0.05 employed for some analysis in this work, is rather
unphysical, since it corresponds to extremely large momentum transfer, as follows from
recent experimental and theoretical results[49, 133]. One can thus regard αs ∼ 0.05 as a
limit of applicability of the expression in Eq. (9.3).
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Figure 9.7.: Deviation from equilibrium, σφ, calculated using solutions of the iterative
algorithm for di�erent values of αs.

9.4. Limits of the transport approach.

The transport approach itself is limited in its applicability. The particular implemen-
tation of the Boltzmann Equation (7.1) in BAMPS does not include quantum statistic
e�ects which become important in a dense and strongly interacting system. The par-
tonic degrees of freedom in BAMPS are represented by 'quasi-particles', obeying a �xed
dispersion relation. The spectral functions of quasi-particles are δ-functions, describing
in�nitely long living, i.e. stable objects. For heavy-ion collisions at high energies the
applicability 'quasi-particle' model is rather questionable in the high density and/or high
energy regime, where particles are expected to achieve a �nite width due to collision
processes. For a strongly coupled system, the quasi-particle picture is appropriate in
the limit of high temperature, at which the coupling becomes small. An e�ective ki-
netic treatment of such a system was given for example by ARNOLD,MOORE and
YAFFE in Ref. [157]. In the collision term of the Boltzmann Equation as implemented
in BAMPS, explicitly given in Eq. (7.6) and (7.7), the broadening is neglected. The
quasi-particle picture becomes inapplicable if the mean free path λ, which is the inverse
of the collision rate R, λ = R−1, becomes of order of the thermal size of the particles,
which is given by the inverse of the mean energy per particle 〈E〉 = 3T .

The ratio of the mean free path to the thermal size of particles extracted from BAMPS
simulations is demonstrated in Fig. 9.8. At large coupling, αs & 0.6 the quasi-particle
picture in BAMPS becomes rather questionable.
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Conclusion

To conclude, the η/s has been calculated in this chapter as function of αs using a self-
consistent iterative algorithm. The core of this algorithm are second-order Israel-Stewart
hydrodynamic equations and the expression for shear viscosity, which was derived, in full
consistency with Israel-Stewart equations, using Grad's approximation for distribution
function. For the calculation of the shear viscosity coe�cient, LO pQCD matrix ele-
ments were employed. The obtained results on η/s(αs) are in good agreement with the
earlier published Navier-Stokes based calculations [42]. The inelastic pQCD processes
are demonstrated to be much more e�cient for restoration of isotropy in the momentum
space than the elastic ones thus leading to a low values of the η/s ratio extracted from
BAMPS. For the realistic e�ective coupling values αs = 0.3..0.6 the ratio η/s is found to
be in the range 0.18..0.08, thus close to the lower value for a in�nitely strongly coupled
system.
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10. Comparison of dissipative

hydrodynamic calculations with

BAMPS results for a one-component

system with conserved particle

number.

In this chapter solutions of the dissipative hydrodynamic equations with conserved par-
ticle four-current, as derived in Sections 3.1.3 and 3.1.4 and summarized in section 6 and
C.1, will be compared with results of BAMPS calculations. The main objective of this
comparison is to evaluate the applicability limitations of hydrodynamic equations. For
the comparison introduced in this chapter, only elastic processes with angle independent
(i.e. isotropic) di�erential cross sections are considered. In order to compare the results
of hydrodynamic and kinetic transport calculations, a correspondence between the trans-
port coe�cients on the hydrodynamic side and scattering cross section on the other side
has to be established. For isotropic cross section, such a correspondence was found by
de Groot, van Leeuwen and van Weert in Ref. [76]. For instance, in Ref. [76] the
shear viscosity coe�cient is given in terms of the elastic transport cross section:

η =
4T

5σtr
. (10.1)

The transport cross section σtr is de�ned in terms of a weighted integral over the di�er-
ential cross section dσ

dΩ in the center-o�-mass frame:

σtr =

∫
cm

dΩ sin2θ
dσ

dΩ
. (10.2)

If the di�erential cross section is angle independent, i.e. isotropic, the transport cross
section is proportional to the total cross section

σtr
22 =

2

3
σ22 , (10.3)

and the shear viscosity coe�cient becomes

η =
6

5

T

σ22
. (10.4)
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In the latter two expressions σ22 denotes the total elastic cross section.

The expression in Eq. (10.4) was obtained in Ref. [76] for the second-order, Israel-
Stewart, hydrodynamic theory. In Ref. [46]Huovinen andMolnar employed this func-
tional dependence between the shear viscosity coe�cient and the total cross section for a
detailed comparison of Israel-Stewart results for one-dimensional boost-invariant system
with kinetic transport calculations by MPC [28, 29, 155]. In this chapter I will introduce
an analogous comparison employing the BAMPS model. In addition to the second-order
Israel-Stewart equations, I will present the solutions of third-order equations, derived in
Section 3.1.4 and in Refs. [34, 158]. Comparison of the two hydrodynamic approaches
with BAMPS will, on the one hand, help �nding the applicability limits of Israel-Stewart
and third-order equations; on the other hand, it will demonstrate the e�ect of inclusion of
higher-order terms into the equations and advantage of higher-order equations compared
with Israel-Stewart theory.

Unless otherwise stated, the initial conditions for both BAMPS and hydrodynamic
calculations will be of thermal type and given by Eq. (8.5). Like for the results presented
in sections 8.2 and 9.1, the initial time and temperature are chosen to be τ0 = 0.4 fm/c
and T0 = T (τ0) = 0.5 GeV. The results presented in this section are extracted from the
central rapidity region η ∈ [−0.1 : 0.1]. For BAMPS as well as hydrodynamic calculations
the local rest frame entropy density s is calculated using the kinetic equilibrium expression
s = 4n− n lnλ.

10.1. Relevant observables.

To obtain a quantitative measure for the strength of dissipation in a system, a set of
proper observable should be introduced. The case to be studied here, a one-dimensional
boost-invariant expansion of a Boltzmann gas, has the advantage of simple geometry
leading to a relatively simple structure of hydrodynamic equations, as given in Section
6 and Section C.1 of Appendix C.1. For the derivation of hydrodynamic equations in
Sections 3.1.2 � 3.1.4 and Appendix B, the entropy current is constructed for a disequi-
librated system by introducing a small deviation φ of the distribution function from its
equilibrium from [comp. Eqs. (3.16) and (3.24) and discussion around Eq. (B.3)]. For
a one-dimensional system, the deviation φ can be found in Eq. (8.1). The expansion
leading to the expressions (3.16) and (3.24) clearly breaks down if φ becomes larger than
1. Since φ is a momentum-dependent quantity, for a macroscopic theory like hydrody-
namics it is natural to introduce a momentum averaged measure of the deviation from
the equilibrium distribution, σφ, which was introduced in Eq. (9.8). Both φ and σφ are
proportional to the ratio of the shear pressure to energy density π

e , resp.
π
p using the

ideal gas equation of state, which is thus a smallness parameter of the expansion (comp.
the discussion in Section 3.1.4).

The formal role of the ratio π
e can alternatively be motivated by a closer investigation

of the one-dimensional second-order evolution equation for the shear pressure π [comp.
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Eqs. (3.20) resp. (6.36)]:

π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
. (10.5)

Note, that in the �rst-order, Navier-Stokes theory, the corresponding equation is not a
dynamical equation and contains only two terms [comp. Eqs. (3.13) resp. (6.35)]:

π =
4

3

η

τ
. (10.6)

Dividing the �rst-order equation by the relaxation time τπ = 2ηβ2, which appears in the
second-order equation, and using the expression (6.22) for β2, one obtains

π

τπ
=

8

27

e

τ
. (10.7)

Thus the terms π
τπ

and 8
27

e
τ on the right-hand side of Eq. (10.5) are �rst-order terms

originating from a �rst-order term in the entropy current. The term 4
3
π
τ is a second-order

term. The ratio of the second-order term and the both �rst-oder terms, one obtains

4/3 · π/τ
8/27 · e/τ

=
9

2

π

e
,
4/3 · π/τ
π/τπ

=
4

3

τπ
τ

. (10.8)

The expressions obtained this way are indicators of the formal break down of hydrody-
namic approach. Indeed, if the conditions

π

e
≥ 2

9
and

τπ
τ

≥ 3

4
(10.9)

are ful�lled, the second-order terms become larger than the �rst-order ones and thus the
series of terms cannot be truncated. On the other hand, one realizes that the second-order
theory is well applicable if the conditions

π

e
� 2

9
and

τπ
τ

� 3

4
(10.10)

hold, since then the series of terms can be expected to converge.
The ratios π

e and τπ
τ are thus smallness parameters for hydrodynamic equations and

control their applicability. Their meaning can as well be understood from the kinetic
theory point of view. The shear stress tensor is the anisotropic part of the energy-
momentum tensor, as follows from its de�nition in Section 2.1. The ratio π

e thus can be

rewritten as |δT 33|
T 00 and thus quanti�es the deformation of the energy-momentum tensor.

From the kinetic theory point of view, the ratio τπ
τ can be identi�ed with the Knudsen

number (comp. discussion in section 3.1.4 and Refs. [94, 34])

Kn =
λmfp

τ
. (10.11)

In the latter expression λmfp denotes the microscopic scale of the system, which is the
mean free path. For a one-dimensional boost-invariant system the expansion scalar θ
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(comp. discussion in section 3.1.4) is given by ∂µu
µ = 1/τ . Thus, the ratio τπ

τ can be
understood as the product λ · ∂µuµ describing a competition between the microscopic
scale λmfp, which drives the system towards local equilibrium due to collisions, and the
macroscopic expansion rate θ driving the system o� equilibrium globally. If τπ

τ ∝ λmfpθ is
small, the equilibration process dominates over the expansion. Otherwise, the expansion
prevails, the local equilibration due to collisional processes is slower than the loss of
global equilibrium due to expansion and the system cannot equilibrate. In this regime
hydrodynamic description breaks down, which follows from Eq. (10.9). This line of
argumentation was already applied in this work in section 3.1.4 and in Ref. [34], where
derivation of third-order hydrodynamic equations is introduced.
Another observable which can be used to quantify the degree of disequilibration of the

system is the pressure isotropy [153], i.e. the ratio of the longitudinal and transverse
components of the energy-momentum tensor

P =
pL
pT

=
T 33

(T 11 + T 22)/2
=

p− π

p+ π/2
. (10.12)

For a free expanding system, as considered in Bjorken model, π is usually positive so
that the third component of the shear stress tensor, π33 = −π, is negative. This is in par-
ticular true for an initially equilibrated system undergoing the expansion, which reduces
the longitudinal pressure. Throughout the evolution towards equilibrium π should not
become larger than p = e

3 , which is equivalent to the restriction that the third diagonal
component of the energy-momentum tensor,

T 33 =

∫
dΓf(pT , pz) p

2
z = p− π , (10.13)

is always non-negative. For a disequilibrated system with a longitudinal expansion direc-
tion the third energy-momentum tensor component is often called the longitudinal pres-
sure, pL = T 33 = p−π [159, 153]. Accordingly, the transverse components of the energy-
momentum tensor are related to the transverse pressure, pT = (T 11 + T 22)/2 = p+ π/2.
The longitudinal pressure may become negative as the system undergoes a phase tran-
sition as a result of expansion and cooling, as for example discussed in Ref. [159]. In
this case, the reason for a negative pressure can be the attractive nuclear interaction.
Another scenario in which the longitudinal pressure can be negative is the coherent �eld
picture of the quark-gluon plasma with instabilities, which are analogous to the Weibel
instabilities in non-relativistic plasmas. The coherent �eld description in presence of
instabilities is relevant for the early-time evolution of the quark-gluonic system; its evo-
lution was studied in Refs. [160, 161, 162, 74]. Rajagopal and Tripuraneni argued
in Ref. [163] that a transition between positive and non-negative longitudinal pressure
can be interpreted as an onset of cavitation with subsequent hadronization of a system
fallen apart.
However, in a system with homogeneous phase structure without attractive interactions

among the (quasi-) particles, i.e. a system which is typically considered in the kinetic
transport theory, the occurrence of negative longitudinal pressure is not physical. Dissi-
pative hydrodynamic equations derived in this work in Sections 3.1.2 � 3.1.4 for an ideal
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gas equation of state should not lead to negative longitudinal pressure. This conclusion
was used by Martinez and Strickland in Ref. [153] to evaluate constrains on ini-
tial conditions for second-order dissipative hydrodynamic equations. Thus the pressure
isotropy de�ned in Eq. (10.12) can be an indicator either of a high degree of equilibration
in the system (P = 1) or of a breakdown of hydrodynamic description (P < 0).

10.2. Comparison of numerical results.

The parameters of BAMPS resp. dissipative hydrodynamic hydrodynamic calculations,
which results are to be presented in this section, are summarized in the following table:

Parameter Value
τ0 0.1, 0.4, 1.0 fm/c

T0(τ0) 0.5 GeV

Type of interactions Elastic processes, isotropic cross section
Hydro η/s 0.05, 0.2, 0.4, 1.0, 3.0

BAMPS σ22
6
5

(η
s

)−1 T
n(4−lnλ)

10.2.1. E�ect of initial time.

In this subsection the initial time is varied whereas the parametrization of the elastic
cross section resp. the η/s value are �xed in BAMPS resp. hydrodynamic calculations.
In Fig. 10.1(a) � (c) energy per unit transverse area and unit rapidity dE

dAdη = e · τ ,
e�ective temperature T = e/(3n) and the π/e ratio from BAMPS, second and third-
order hydrodynamic calculations with η/s = 1 are presented.
A good agreement is observed between BAMPS and hydrodynamic calculations consid-

ering the energy in Fig. 10.1(a). The depicted observable is directly related to the energy
density, which thus exhibits very weak sensitivity to dissipative corrections. On the other
hand, second-order hydrodynamics fails to describe evolution of the e�ective temperature
with reasonable accuracy except if the initial time is large. The combination of very low
initial time τ0 = 0.1 fm/c and strong dissipation η/s = 1 leads in BAMPS calculations
to a behavior which is very similar to free-streaming: the e�ective temperature decreases
initially and stays approximately constant later on. Indeed, in the free-streaming limit
in one-dimension both energy and particle densities scale with the inverse of the proper
time, e = e0τ0/τ and n ∝ n0τ0/τ , leading to T = const. Accordingly, the π/e ratio
saturates at π/e ≈ 1/3. This is consistent with the observed saturation of the temper-
ature considering Eqs. (6.30) and (6.29). Such free-streaming similar behavior cannot
be described by hydrodynamic equations, which produce unphysical solutions, as Fig.
10.1(b) demonstrates: second-order hydrodynamics leads to increase of the temperature,
i.e. reheating. This happens because the system becomes over-stressed, since π/e grows
larger than 1/3 and consequently the shear pressure π exceeds the isotropic pressure
p = e/3. Such anomalies are not observed in the solutions of third-order hydrodynamics.
In the extreme limit of free-streaming similar behavior, τ0 = 0.1 fm/c, third-order hydro-
dynamics fails as well, although its solutions are still physically valid. However, for larger
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Figure 10.1.: Evolution of energy per unit transverse area and rapidity (a), e�ective tem-
perature (b) and shear pressure to energy density ratio (c) from BAMPS
and hydrodynamic calculations with di�erent initial times τ0 and η/s = 1.0.

initial time the di�erences between BAMPS and hydrodynamic results are considerably
reduced if third-order equations are considered.
The pressure isotropy from BAMPS and hydrodynamic calculations is shown in Fig.

10.2(a). BAMPS results for τ0 = 0.1 fm/c demonstrate that in the free-streaming limit
longitudinal pressure vanishes since the pressure isotropy saturates at 0; at the same
time the second-order hydrodynamics leads to negative pressure isotropy due to negative
longitudinal pressure. For neither of the demonstrated initial times an onset of relax-
ation towards equilibrium can be observed. The reason for this can be understood from
Fig. 10.2(b), where the hydrodynamic relaxation time to expansion time ratio τπ/τ is
demonstrated. Using Eqs. (3.21) and (6.22) the τπ/τ ratio can be rewritten as

τπ
τ

=
3

2

1

Tτ

(η
s

)
· (4− lnλ) , (10.14)

where the entropy density was approximated by its kinetic equilibrium value s = 4n −
n lnλ. Thus, for a �xed η/s the initial value of τπ/τ ratio is inversely proportional to
the initial time and temperature. A su�ciently small τ0 can make relaxation towards
equilibrium on a reasonable time scale impossible even for small η/s. The hydrodynamic
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Figure 10.2.: Evolution of pressure isotropy (a) and the Knudsen number τπ
τ (b) from

BAMPS and hydrodynamic calculations with di�erent initial times τ0 and
η/s = 1.0.

evolution in Fig. 10.2(b) is dominated by expansion for τ0 ≤ 1 fm/c. The consequence
is a strong increase of the shear pressure, as observed and discussed earlier.
In fact, Eq. (10.14) allows to make a rough estimate of the possible value of the initial

time τ0, for which a partonic system will be able to start to relax towards equilibrium
immediately, i.e. will be initialized within the applicability limit of hydrodynamic de-
scription. Imposing the condition τπ

τf
≤ 1 and setting λ = 1, one obtains from Eq. (10.14)

the constraint
Tτ & 6

η

s
. (10.15)

Taking η/s = 0.2 � approximately the value we extracted from BAMPS for αs = 0.3 in
chapter 9 � one obtains Tτ ≥ 1.2. For the initial temperature in range T0 = 0.2..0.6 GeV
� where the upper value might be characteristic temperature of the color glass condensate
initial temperature at RHIC (comp. chapter 7.4.1) � one obtains τ0 = 0.4..1.2fm for the
time at which hydrodynamic description is formally correct. This simple estimate is
in agreement with the results obtained by Martinez and Strickland in Ref. [153].
At the same time, this estimate for τ0 agrees with the range of thermalization times
∼ 0.5− 2 fm/c used in Refs. [8, 9, 10, 164, 116] to initialize hydrodynamic calculations,
which were found to be able to describe the collective �ow at RHIC. With η/s = 1, the
minimal τ0 is smaller for the chosen temperature range, 0.08− 0.24, which is consistent
with the observation in Fig. 10.2(b). Also, contrary to the assumption leading to Eq.
(10.15), the fugacity is not 1 if particle number is conserved, which additionally increases
τ0.
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In order to obtain a more quantitative comparison of hydrodynamic and kinetic trans-
port results, the relative deviations, obtained as ratio of hydrodynamic results and
BAMPS results, are shown in Fig. 10.3(a)�(d). The observables presented there are the
diagonal components of the energy momentum tensor in the local rest frame, T 00 = e,
1/2(T 11 + T22) = p + π/2 and T 33 = p − π, as well as the momentum isotropy P.
Since the particle number is the same in hydrodynamic and kinetic transport calcula-
tions, the deviations of the e�ective temperature are given by the deviations of energy
density and are not shown. Considering the energy density, Fig. 10.3(a), and the trans-
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Figure 10.3.: Relative di�erence between hydrodynamic and BAMPS results for compo-
nents of the energy momentum tensor for η/s = 1 and di�erent τ0.

verse pressure, Fig. 10.3(b), second-order hydrodynamic results are within 10% accuracy
only for τ0 = 1 fm/c with the chosen value of η/s = 1. However, considering the lon-
gitudinal pressure, Fig. 10.3(c), and the pressure isotropy, Fig. 10.3(d), applicability
of second-order hydrodynamics becomes questionable even for τ0 = 1 fm/c. One can
conclude that the second-order hydrodynamic description is clearly beyond the edge of
its applicability for τ0 ≈ 1 fm/c, T0 = 0.5 GeV and η/s = 1 and cannot be consid-
ered applicable for the shown initial times. At the same time, inclusion of third-order
terms into the evolution equation for shear pressure leads to a signi�cant reduction of
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deviation between hydrodynamic results and BAMPS calculations. Even for lower ini-
tial times, τ0 = 0.4 fm/c, third-order hydrodynamic calculations lead to less than 10%
deviations from kinetic transport results considering energy density and transverse pres-
sure. Deviations are around 20% for the longitudinal pressure and pressure isotropy.
Thus, third-order hydrodynamic description becomes inapplicable for τ0 ≈ 0.4 fm/c,
T0 = 0.5 GeV and η/s = 1 but is still well applicable for τ0 ≈ 1 fm/c.
Applicability of hydrodynamic description was investigated by Huovinen and Mol-

nar in Ref. [46] with respect to the variable

K = τ/λtr . (10.16)

K is the inverse of the Knudsen number used in this work, if de�ned via the transport
mean free path λtr instead of the usual mean free path λ:

K = 1/Kntr =
τ

λtr
. (10.17)

The transport mean free path is given in terms of the transport cross section σtr as
de�ned by Eq. (10.2). For the elastic isotropic collisional processes, that are implemented
in BAMPS for the results presented here, the transport mean free path λtr = 1/〈nσtr〉
is simply proportional to the usual mean free path, λtr = 3/2λ. From a comparison
of second-order hydrodynamic calculations with kinetic transport calculation by MPC
Huovinen andMolnar concluded in [46] that second-order hydrodynamics is applicable
if the initial conditions are such thatK0 = K(τ0, T0, η/s) & 2. Their conclusion was based
on the requirement that the relative deviations of pressure isotropy must be below 10%
for hydrodynamics to be well applicable. In particular, the relative deviations were found
to be ∼ 20% for K0 = 1 and ∼ 10% for K0 = 2. The values of K0(τ0) corresponding to
the initial conditions employed here are

K0(0.1 fm/c) = 0.05, K0(0.4 fm/c) = 0.2, K0(1.0 fm/c) = 0.5 . (10.18)

From the comparisons demonstrated in this section in Figs. 10.2 and 10.3 we can conclude
that second-order hydrodynamic description is already inapplicable forK0 . 0.5, whereas
the third-order description is still well applicable for K0 = 0.5 .
The relative deviation of second-order hydrodynamics from kinetic transport results

observed in Ref. [46] are larger than the ones reported here for same values of K0. In
particular, we observe a ∼ 20% deviation of momentum isotropy for K0 = 0.5, whereas in
Ref. [46] this magnitude of deviation is observed already for K0 = 1, which corresponds
to a larger initial time. This di�erence can be explained by a slightly di�erent form
of second-order hydrodynamic equations. Whereas Eq. (6.36) � resp. the full set of
equations as given in section C.1 of Appendix C � is strictly of second order in small
quantities π/e and τπ/τ , the evolution equation for π used in Ref. [46] explicitly contains
a term of third order, ∼ π2/(eτ), which should be neglected for consistency, unless other
terms of same order are included into the equations, like it is done in this work in scope
of third-order formalism. In a regime, where π/e is large but still below 1/3, the third-
order term kept in Ref. [46] is not small and positive, thus increasing π̇ and driving the
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system further away from equilibrium. Note that if all third-order terms are consistently
included, as done here � comp. Eq. (6.37) � their e�ect on π̇ is opposite, i.e. damping
instead enhancing thus leading to a smaller shear pressure as compared to solutions of
second-order equations. Thus, the equations used in Ref. [46] have to lead to a larger
critical value of K0. This will be veri�ed in the next section.
Finally, it is interesting to note that inclusion of third-order terms into the evolution

equation for shear pressure leads to a signi�cant reduction of deviations from kinetic
transport results even in the regime of Kn being larger than unity, as demonstrated for
τ0 = 0.4 fm/c in this section. This might indicate that the (truncated) higher-order
terms in the evolution equation for shear pressure π are proportional to powers of π/e
rather than τπ/τ . This is certainly true for the third-order term derived in this work.

10.2.2. E�ect of shear viscosity to entropy density ratio.
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Figure 10.4.: Evolution of energy per unit transverse area and rapidity (a), e�ective tem-
perature (b) and shear pressure to energy density ratio (c) from BAMPS
and hydrodynamic calculations with di�erent values of η/s and initial time
τ0 = 0.4 fm/c.

In this subsection the initial time is �xed, τ0 = 0.4 fm/c, whereas the parametrization
of the elastic cross section resp. the η/s value is varied in BAMPS resp. hydrodynamic
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BAMPS and hydrodynamic calculations with initial time τ0 = 0.4 fm/c
and di�erent η/s values.

calculations. The scheme for the analysis presented here is similar to the one in previous
subsection.

In Fig. 10.4(a)-(c) energy per unit transverse area and unit rapidity dE
dAdη = e · τ ,

e�ective temperature T = e/(3n) and the π/e ratio from BAMPS, second and third-
order hydrodynamic calculations with η/s = 0.05 − 3 are presented. The second-order
hydrodynamic solution becomes unphysical for η/s = 3, leading to increase of energy
density and e�ective temperature. This behavior was already observed in Fig.10.1 (a)-(b)
in previous subsection for η/s = 1 and τ0 = 0.1 fm/c. Accordingly, the pressure isotropy,
shown in Fig. 10.5(a), becomes negative in second-order hydrodynamic calculations for
η/s = 3. However, in kinetic transport calculations the free-streaming similar behavior,
which was observed in Fig. 10.1, is still not observed even with η/s = 3. The third-
order results are closer to kinetic transport and the unphysical reheating is prevented.
Evolution of the Knudsen number Kn = τπ/τ is shown in Fig. 10.5(b). For η/s =
0.05 the system is initialized within the relaxation regime � accordingly, the deviations
between kinetic transport and both second and third-order hydrodynamic equations are
marginal.

The relative deviations of dissipative hydrodynamic results from BAMPS calculations
are shown in Fig. 10.6 for the components of energy-momentum tensor. This allows
to constrain the applicability of hydrodynamic description using the same criteria as
in previous subsection: all four energy momentum components must be described by
hydrodynamics within 10% accuracy. This criterion is still ful�lled in second-order
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Figure 10.6.: Relative di�erence between hydrodynamic and BAMPS results for compo-
nents of the energy momentum tensor with τ0 = 0.4 fm/c and di�erent η/s
values.

theory for η/s . 0.2, which is corresponding to K0 & 1 for τ0 = 0.4 fm/c chosen in this
section. This value is smaller than the one obtained by Huovinen and Molnar in Ref.
[46] for reasons discussed at the end of previous section. The third-order description is
su�ciently accurate for η/s . 0.4, corresponding to K0 & 0.5 , as already concluded in
previous section.

Again, the fact that hydrodynamics is applicable (with less than 10% accuracy) even
in the regime of Kn ≥ 1 (comp. Fig. 10.5(b) for η/s = 0.2−0.4) might indicate that the
omitted higher-order terms are a converging series of powers of π/e, which is still below
1/3 (comp. Fig. 10.4(d) for η/s = 0.2− 0.4) rather than τπ/τ . Indeed, in Refs. [34] and
[158] we have demonstrated that the series of higher-order terms, omitted in Eqs. (6.36)
resp. (6.37), can be e�ectively resummed in free-streaming limit and thus included into
hydrodynamic equations. This procedure will be discussed in the next chapter.
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10.2.3. Inclusion of beyond-third-order terms into one-dimensional
hydrodynamic equations

In Chapter 3.1.4 I demonstrate how the standard Israel-Stewart formalism can be ex-
tended to a third-order formalism. The corresponding equations are obtained from the
divergence of the third-order entropy current according to the second-law of thermo-
dynamics. The e�ect of third-order terms is shown to be considerable in the regime
where the second-order formalism is not accurate enough in comparison to kinetic the-
ory. The question thus arises, how strong is the e�ect of fourth and higher-order terms,
not included into the equations discussed here.
An attempt to construct an e�ective equation, containing terms which are usually

neglected in the standard, Israel-Stewart, formalism is the so-called e�ective hydrody-
namics, introduced recently by Shuryak and Lubinsky in Ref. [165] and considered
for application in calculations of shock waves in a strongly coupled plasmas in Ref. [166].
E�ective hydrodynamic approach attempts to include the higher-order terms in the gra-
dient expansion of Tµν in an e�ective way by introducing terms that are of high order
in derivatives but linear in velocity � i.e. terms like ∇2u but not (∇u)2. The strategy of
the e�ective hydrodynamic approach is to introduce a hydrodynamic-like representation
of Tµν containing all possible terms including terms of di�erent orders in gradients of the
velocity. E�ectively these terms are included into the expansion of Tµν by introducing
a generalized transport coe�cient, dependent on operators of form ∇n, in front of the
gradient ∇u. Using the linear response theory the generalized shear coe�cient can be ex-
pressed in terms of the retarded correlator of the energy-momentum tensor. By virtue of
the AdS/CFT correspondence[117], the result of such calculations can be compared with
the solutions of linearized gravity equations in the background of the AdS-Schwarzschild
black hole.
The approach I introduce here is di�erent in its philosophy; in the form introduced

here it is applicable only for one-dimensional boost-invariant expansion. As the starting
point, the following phenomenological evolution equation for the shear pressure can be
considered:

π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
+

∞∑
n=2

xn

(π
e

)n e

τ
. (10.19)

The latter expression is just the standard Israel-Stewart, i.e. second-order, equation
(6.36) with an in�nite series of higher-order terms added. The functional form of these
terms is inspired by the third-order term in Eq. (6.37) and the coe�cients xn are supposed
to be time-independent. Thus Eq. (10.19) is supposed to contain all orders of corrections
to the standard causal dissipative hydrodynamic formalism.
Since all orders of corrections are included into it, Eq. (10.19) can be applied to the

free-streaming limit. From th kinetic theory point of view, the free-streaming limit is the
limit of vanishing collision rate or, in other words, vanishing cross section, σ → 0. A free-
streaming similar behavior can be observed if the mean free path is large in comparison
to the expansion scale, λ/τ � 1, as was demonstrated in Fig. 10.2 for τ0 = 0.1 fm/c
and η/s = 1. In hydrodynamics the mean free path corresponds to the relaxation time
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τπ � and the free-streaming limit is the τπ → ∞ limit. In the free-streaming limit the
longitudinal pressure pL = p− π is zero since it cannot be built up by interactions. This
means π = p = e

3 . Together with Eqs. (6.29) and (6.30) the conclusions obtained above
lead to the following equations in the free-streaming limit:

π

e
=

1

3
⇔

˙(π
e

)
= 0, ė = − e

τ
, Ṫ = 0 . (10.20)

Before proceeding further, one rewrites Eq. (10.19) as follows

π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
+

π2

eτ

∞∑
n=0

xn

(π
e

)n

︸ ︷︷ ︸
=X

= − π

τπ
− 4

3

π

τ
+

8

27

e

τ
+ X π2

eτ
, (10.21)

where X is a new, in general time-dependent, coe�cient. Inserting the relations from
Eq. (10.20) into Eq. (10.21) in the τπ → ∞ limit one obtains

X = −5

3
. (10.22)

In this value the series
∑∞

n=0 xn
(
π
e

)n
is resummed using the free-streaming limit relation

π/e = 1/3. For the resummation scheme presented here, the exact form of the coe�cients
xn is not important. The evolution equation for shear pressure takes the form

π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
− 5

3

π2

eτ
. (10.23)

The latter equations will be referred to as �all orders� equations since the value X = −5
3

e�ectively takes into account all orders of dissipative corrections, which are resummed
using their maximum values. One can expect that Eq. (10.23) will be well applicable
as long as dissipation is strong and the behavior tends towards free-streaming, i.e. when
Kn = τπ

τ is large.
To investigate the solutions of Eq. (10.23), in Fig. 10.7 I show the pressure isotropy

in comparison with second and third-order hydrodynamics and BAMPS calculations.
If the initial time is �xed (Fig. 10.7(a)), solution of Eq. (10.23) seems to be in best
agreement with kinetic transport for the largest η/s ratio � this is the regime of largest
Kn. However, on a time scale long enough in comparison to the initial time, i.e. the
deviation between kinetic transport and �all orders� solutions starts growing and third-
order solutions gives a better description of kinetic transport results. This is because
as soon as the system is in relaxation regime the ratio π/e, which is a measure of the
strength of dissipation, starts decreasing and thus the higher-order corrections should
become weaker � but they are included into X = −5

3 by their maximum, π/e = 1/3,
values and the �all orders� solution relaxes slower than the kinetic transport one. On
the other hand, terms of the form (π/e)n · e/τπ are not included into the ansatz Eq.
(10.19) and, furthermore, the coe�cients in front of these terms cannot be determined
in the τπ → ∞ limit. Such terms might be important in the regime τπ . τ , which
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Figure 10.7.: Pressure isotropy from BAMPS, second, third-order and �all orders� hydro-
dynamic calculations.

again can explain the deviation between �all orders� and kinetic transport calculations
for η/s < 0.4 in Fig. 10.7(a). Note, that a second-order term of form (π/e)2 · e/τπ
indeed was found in a some publications, where hydrodynamic equations were derived
from the Boltzmann equation � as e.g. in Refs. [93, 101]. Despite of its phenomenological
nature, the �all-orders� equation o�ers an interesting possibility to push hydrodynamics
to the free-streaming limit and to investigate the impact of higher-order terms on the
hydrodynamic evolution in a one-dimensional system.
Although the �all-orders� equation includes the e�ect of higher orders of dissipative

corrections, it is still a relaxation-type equation, in which the higher-order terms play
the role of damping, which is weakest in the Israel-Stewart's equation. To make the
relaxation type nature of Eqs. (6.36) � (6.37) clear, it is instructive to rewrite them in
the following form:

˙(π
e

)
=

πNS
e − π

e

τπ
− (X + 1)

π2

e2τ
. (10.24)

In the latter equation X = 0 for Israel-Stewart equation, so that the last, third-order,
term cancels with the one originating from the proper time derivative of e on the left
hand side; X = 3 for the third-order equation and X = 5/3, as obtained before. πNS

denotes the �rst-order expression for π, given by Eqs. (3.11) resp. (6.35). The relaxation
form of the evolution equation for π leads to a clear interpretation of the higher-order
terms: they damp relaxation of the shear pressure π towards the Navier-Stokes solution.
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This damping is not present in the Israel-Stewart form of equation (X = 0), and in the
third-order equation it is stronger (X = 3) than if all orders are included (X = 5/3),
which indicates a possibility of oscillating behavior of the higher-order terms.
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Figure 10.8.: Pressure isotropy from BAMPS, second, third-order and �all orders� hydro-
dynamic calculations from calculations with constant isotropic cross section.

An interesting test case for a relaxation-type equation of this kind is the case of constant
cross section, σ22 = const. If the isotropic cross section is held constant, the relaxation
is 'frozen', since the Knudsen number is constant, according to Eqs. (3.21) and (10.4):

Kn =
τπ
τ

=
9

5
(nσ22τ)

−1 = const . (10.25)

Since the relaxation towards equilibrium is not possible, π/e ratio and pressure isotropy
pL/pT will saturate at a certain value. The transition from the �all-orders� towards
the third-order solution can be illustrated using the constant cross section regime. Fig.
10.8 demonstrates that at large Kn, which in this study is constant, the �all-orders�
formalism is in best agreement with kinetic transport, whereas the third-order solution
is over-damped, leading to larger values for pressure isotropy. At Kn . 1 the third-order
calculations are much closer to kinetic transport than both �all-orders� and second-order
formalism, which is in agreement with the conclusions made earlier in this chapter.
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Conclusions.

A direct comparison of the second-oder Israel-Stewart and novel third-order dissipative
hydrodynamic and kinetic transport calculations for systems with conserved net particle
number has demonstrated that consistent inclusion of third-order terms into hydrody-
namic formalism extends its applicability range and helps preventing unphysical behavior
of the solutions. If the initial conditions are characterized by value K according to Eq.
(10.16), the second-order formalism deviates from kinetic transport calculations by less
than 10% for K & 1, which corresponds to η/s . 0.2 for τ0 = 0.4 fm/c. Third-order
calculations can be performed at η/s . 0.4, corresponding to K0 & 0.5. An e�ective way
to include all orders of corrections into hydrodynamic equations has been introduced. In
the limit of large Kn the solutions of this formalism reproduce the solutions of kinetic
transport theory remarkably good. However, this so-called �all-orders� formalism is re-
stricted to the one-dimensional case. The novel third-order equations can be applied in
a general geometry.
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11. Hydrodynamic evolution of a

chemically equilibrating Gluon

Plasma.

A kinetically equilibrated one-component system is a system with isotropic momentum
space distribution, described by a appropriate distribution function. For a gas of ultra-
relativistic massless particles (gluons) this is the Boltzmann distribution, which in a most
general case can be written as

f(x, p) =
dN

d3pd3x
= d · e

µ−uαpα

T (11.1)

with the degeneracy factor d chemical potential µ and temperature T . The factor eµ/T

often appears under the name of fugacity

λ ≡ eµ/T (11.2)

and the Boltzmann distribution is then rewritten in the form already given by Eq. (8.5).
The fugacity factor is the degree of undersaturation of the phase-space density. In QCD
medium the phase space is populated in leading order by the inelastic, 2 ↔ 3, processes,
which were already introduced in chapter 7. In the particular example of a CGC initial
condition, discussed in section 7.4.1, the momentum space contained a oversaturated hard
sector and a undersaturated soft sector, which both relaxed � in a almost synchronous
way � towards equilibrium via the inelastic pQCD processes.
A chemically equilibrated one-component system is a system of vanishing chemical

potential µ = 0 corresponding to λ = 1. The usual assumption of the most hydrodynamic
models is the one of permanent chemical equilibrium, λ = const = 1 [167]. Historically,
this assumption was supported by the success of statistical (thermal) models to reproduce
hadron multiplicities by assuming their origin to be a thermal source with a temperature
T ≈ 170 MeV and a nearly zero light quark chemical potential. (see Refs. [168] and
[169] for comprehensive overviews). The assumption that the quark-gluonic medium
achieves a state close to chemical and kinetic equilibrium prior to the phase transition is
supported by the recent observations of saturation of the strange sector particle yields.
It was observed in Refs. [170, 171, 172] that the fugacity factor of strangeness rises from
approximately 0.7 to 1 if going from peripheral to central Au+ Au collisions at RHIC,
which indicates that a complete chemical equilibration might be achieved as the density
and interaction rate in the system increases.
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However, on what time scale an almost complete chemical and kinetic equilibration of
quarks and gluons can be achieved in heavy-ion systems � and thus what is the initial time
for hydrodynamic approaches which assume chemical and kinetic equilibration � is not
completely clear. Moreover, light quarks are expected to be less abundant than gluons in
the systems produced in ultrarelativistic heavy-ion collisions and thus the initial quark
phase space distribution is far from equilibrium both kinetically and chemically. However,
the �rst attempts to describe the dynamics of a initially disequilibrated quark-gluon sys-
tem neglected kinetic o�-equilibrium e�ects. Evolution of a chemically disequilibrated
but kinetically equilibrated partonic plasma was �rst studied by Matsui, Svatitsky
and Mclerran in Ref. [173], by Biro et. al. in Ref. [88] and by Srivastava et.
al. in Ref. [174]. Employing this scenario numerous studies of heavy-ion phenomenol-
ogy were performed, like e.g. studies of hard photon production rate [175], strangeness
[176, 177, 178, 179], open charm [180] and dilepton production [181]. The quite strong
assumption of permanent kinetic equilibrium was dropped in the late 90th: dissipative
e�ects [182] and photon and lepton pair production [183, 184, 185] in a chemically and
kinetically disequilibrated quark-gluon plasma were studied employing a �rst-order hy-
drodynamic formalism. The �rst application of second-order hydrodynamics to study
of a disequilibrated plasma was reported by Muronga in Ref. [87]. A connection to
kinetic theory was attempted by Wong who introduced a study of kinetic and chemical
equilibration of a quark-gluonic system employing a relaxation time approximation of the
Boltzmann Equation [140]. A Fokker-Planck equation based approach to study shifts of
hadron transverse spectra due to collisional energy loss of high energy partons passing
through a chemically equilibrating quark-gluon plasma was reported in Ref. [186]. Al-
ternatively, Gelis, Kajantie and Lappi demonstrated how the quark�anti-quark pair
production rate � and thus chemical equilibration of the quark sector � can be calculated
by numerical integration of the Dirac equation using a classical gluon �eld model with
an ensemble of initial conditions, as demonstrated in Ref. [187].

The issue of chemical equilibration is of central importance for multi-component sys-
tems, i.e. mixtures of quarks and gluons in the heavy-ion phenomenology. An approach
to hydrodynamic description of relativistic dissipative multi-component systems was re-
ported by Monnai and Hirano in Ref. [100]. A multi-component hydrodynamic for-
malism is important, since di�erent component of a quark-gluon mixture are expected to
equilibrate chemically and kinetically on di�erent time scales [88, 89] � in particular the
gluonic sector is expected to equilibrate on a shorter time scale. However, the formalism
presented in Ref. [100] cannot describe kinetic evolution of each separate component. An
alternative multi-component formalism, solving this problem, was derived in this work
in Section 3.1.5, but does not include inelastic, i.e. particle number changing, processes.

To what degree chemical equilibration of quark and gluons is achieved at the phase
transition might be crucial for modelling of the hadronization process using recombi-
nation models [66, 65, 188, 68, 67, 189, 190], which are sensitive to the phase space
distribution of quarks and gluons. Since the e�ect of chemical equilibration will in�u-
ence the temperature of the system (as Eqs. (11.8) and (11.13) indicate and as will be
demonstrated later in this Chapter), it is important for such experimental observables
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as dilepton [174, 191, 103, 192, 193] and photon [194, 195] yields in heavy-ion collisions.

11.1. Dissipative hydrodynamics in Bjorken's model

including particle production and annihilation

processes

11.1.1. Rate equation for particle production in anisotropic systems.

In this section I will consider Eq. (2.43) with non-vanishing source term, i.e. the particle
number will not be conserved. Particle number changing processes are essential for the
chemical equilibration in the system. They are in particular of great importance for
modelling of a quark-gluon plasma, since partons can be created in 'bremsstrahlung'
pQCD processes and annihilated in the reverse channel.
The importance of radiative processes for an expanding partonic system can be easily

understood as follows. In an initially thermalized expanding system with conserved
particle number the particle density decreases with time, n ∝ τ−1. For an ideal �uid
the temperature would evolve according to Eq.(6.34), T ∝ τ−1/3, and the fugacity would
thus stay constant, λ ∝ n/T 3 = const. If dissipation is present, the dissipated energy is
turned into the inner energy of the system, i.e. into heat, as follows from Eq.(6.31), and
the temperature decreases slower than in ideal hydrodynamics: T ∝ τ−1/3+δ with δ > 0.
This leads to a continuous decrease of the fugacity: λ ∝ n/T 3 ∝ τ−3δ. The system is
thus driven o� chemical equilibrium, which is the λ = 1 state. Chemical equilibrium
can be restored if the particle number increases and thus the particle density decreases
slower than τ−1, i.e. if particles are produced in inelastic processes.
As already discussed in Section 2.4.3, in presence of inelastic particle number changing

processes � which are in lowest order QCD the 2 → 3 and reverse processes � the particle
number four-current Nµ is not conserved. From the point of view of kinetic theory the
particle number current is de�ned as the 1st moment of the phase space distribution
f(x, p):

Nµ ≡
∫

pµf(x, p)dΓ . (11.3)

The divergence of the particle four-current ∂µNµ can be written as 0th moment of the
collision term, as already demonstrated earlier in Eq. (2.43):

∂µN
µ =

∫
dΓC[f ] = J . (11.4)

The explicit form of the collision term is given in Eqs. (7.6) and (7.7). For a one-
dimensional boost-invariant expansion the left hand side of the latter equation can be
rewritten as follows

∂µN
µ = ṅ+

n

τ
= J . (11.5)

If particle number conservation is considered, the source term J is identical 0. From the
kinetic theory point of view, the origin of J is the inelastic part of the collision term C23,
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comp. Eq. (7.7). As demonstrated in Appendix D, if one considers the di�erential cross
section dσ23/dΩ for the inelastic 2 → 3 processes to be angle independent (isotropic),
Eq. (11.5) can be written for a one-dimensional boost-invariant system in the following
form:

ṅ+
n

τ
=

1

2
nR23 −

1

3
nR32 =

1

2
n2 (1− λ)σ23 , (11.6)

with σ23 being the total � i.e. angle integrated � cross section.
Equation (11.6) constitutes the evolution equation for the particle density in a anisotropic

system in presence of inelastic processes. The derivation of Eq. (11.6) given in Appendix
D is consistent with Grad's approximation for the o�-equilibrium, anisotropic, distribu-
tion function, which means that it can be included into the set of second and third-order
dissipative hydrodynamic equations derived in this work. However, before I discuss the
hydrodynamic equations including particle production, I remark that the concept of
particle density and particle number, as used here, is an �artifact� of the microscopic,
kinetic picture of the QGP. In numerous implementations of dissipative hydrodynamics
[62, 47, 116, 196, 197] the authors do not introduce an independent evolution equation
for the particle number density for each particle species. Rather, the temperature T is
often de�ned via the energy density e:. For a Boltzmann gas this means

T =

(
π2

3g
· e
)1/4

. (11.7)

This de�nition implies full chemical equilibration of the system, λ = 1, at all times during
the evolution. However, this assumption leads to a contradiction with the assumption of
non-vanishing viscosity, as demonstrated in the following. For a one dimensional boost-
invariant system from Eqs. (11.7) and (6.30) follows

Ṫ

T
= − 1

3τ
+

1

4

π

eτ
. (11.8)

On the other hand, using the Boltzmann distribution (6.13) with λ = 1 one obtains
n/T 3 = const, which leads using Eq. (11.8) to

ṅ

n
= 3

Ṫ

T
= −1

τ
+

3

4

π

eτ
. (11.9)

If λ = 1 the latter equation is only consistent with Eq. (11.6) if π/e = 0, i.e. if the evolu-
tion of the medium is in fact ideal. Thus, Eq. (11.7) � and the λ = const = 1 assumption
� is inconsistent with the assumption of �nite shear viscosity or relaxation time, which
means it is only applicable in the limit of in�nitely large inelastic collision rates. In this
sense λ = 1 scenario can be interpreted as instantaneous chemical equilibration scenario.



11.1. Bjorken's model including particle production and annihilation processes 107

11.1.2. Second-order hydrodynamic evolution equations including number
changing processes.

For a one-dimensional boost-invariant system Eq. (3.19) can be written using Eq. (6.30)
as

π̇ = − π

τπ
+

8

27

e

τ
− 1

2

π

τ
++

1

2
π
ė

e
+

1

2
π
Ṫ

T
. (11.10)

Dependent on the considered scenario of chemical evolution, either Eq. (11.8) or T =
e/(3n) together with Eq. (11.6) can be used in the evolution equation for π. However,
one �nds that for the both scenarios � the one of instantaneous chemical equilibration
λ(τ) = 1 and the one of chemical equilibration via particle production and annihilation
with a given inelastic cross section σ23 � the second-order evolution equation for π can
be written in a universal way.

π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
− 1

4
πn (1− λ)σ23 . (11.11)

I refer to the latter equation as the second-order equation. The case of instantaneous
chemical equilibration is realized by setting λ = 1 in Eq. (11.11), which has to be solved
together with Eq. (6.30). If only elastic processes are considered, the inelastic cross
section σ23 is identical 0 and Eq. (11.11) is identical with Eq. (6.36). In the case of
�nite inelastic cross section, i.e. in a system with particle production and annihilation
processes, Eq. (11.11) is coupled to Eqs. (6.30) and (11.6). A compact overview of the
di�erent scenarios and corresponding equations is given in Appendix C.

11.1.3. Third-order hydrodynamic evolution equations including number
changing processes.

For a one-dimensional system of Boltzmann particles the general third-order equation
(3.33) can be written as

π̇ = − π

τπ
+

8

27

e

τ
− 1

2

π

τ
+

1

2
π
Ṫ

T
+

1

2
π
ė

e
+

3

2

π2

eτ
+

3

2

π2

e

Ṫ

T
+

3

2

π2

e

ė

e
− 4

π2

eτ
. (11.12)

In the third-order formalism the scenario of instantaneous chemical equilibration will not
be considered. Indeed, since instantaneous chemical equilibration implies in�nite inelastic
collision rates and small π/e ratio (as demonstrated in the discussion after Eq. (11.9))
the use of the third-order formalism is rather inconsistent in this case. In a chemically
equilibrating system in presence of inelastic processes the temperature T = e/(3n) evolves
according to

Ṫ

T
=

ė

e
− ṅ

n
= − 1

3τ
+

π

eτ
− 1

2
n (1− λ)σ23 . (11.13)

Keeping only terms up to third order one thus obtains

π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
− 3

π2

eτ
− 1

4

(
1 + 3

π

e

)
πn(1− λ)σ23 . (11.14)
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I refer to the latter equation as the third-order equation. It has to be solved together
with Eqs. (6.30) and (11.6). The scenario of conserved particle number is realized by
setting σ23 = 0, in which case Eq. (11.14) is identical with Eq. (6.37) obtained earlier.

11.2. Results of hydrodynamic calculations.

In this Section I discuss solutions of the hydrodynamic equations derived previously
for systems with non-conserved net particle number. The production and annihilation
channels 2 ↔ 3 are included via the rate equation (11.6). In order to calculate the rates
inelastic cross section has to be introduced. In the calculations presented here the total
isotropic inelastic cross section σ23 is parametrized as follows

σ23 =
k

λT 2(4− lnλ)
, (11.15)

where T denotes the e�ective temperature, λ the fugacity and k is a numerical factor
which can be chosen arbitrary. With the inelastic cross section parametrized this way,
the η/s ratio is approximately a constant, as demonstrated in Ref. [35] and will be
discussed later in this work. However, the value of η/s is not completely determined
by the inelastic cross section (or, to be more precise, transport rate), since the elastic
processes do contribute to it as well. Although it was demonstrated in Chapter 9 in this
work and in Refs. [41, 33] that within pQCD framework the contribution from inelastic
processes is dominant, with isotropic cross sections considered in this Section this is not
necessary the case. Thus, the value of η/s can be chosen arbitrary for the hydrodynamic
calculations which will be presented here. In calculations with constant η/s the value
0.35 is chosen, i.e. roughly the upper limit deduced from comparisons with elliptic �ow
measurements at RHIC [116]. The solutions presented in this section are obtained using
the setups summarized in the following table:

Type of initial condition Parameters
I. Chemically and kinetically equilibrated τπ/τ = 0.5, τ0 = 0.4 fm/c

with constant τπ/τ and σ23 T0 = 0.5 GeV, λ0 = 1, π0/e0 = 0

II. Chemically and kinetically equilibrated η/s = 0.35, τ0 = 0.4 fm/c,
T0 = 0.5 GeV, λ0 = 1, π0/e0 = 0

III. Chemically and kinetically disequilibrated η/s = 0.35, τ0 = 0.4 fm/c,
T0 = 0.5/0.21/4 GeV, λ0 = 0.2,

π0/e0 = 0.1

The solutions to be discussed in the following Sections are obtained employing second and
third-order hydrodynamics equations including particle production processes. In addi-
tion, the particle number conservation and instantaneous chemical equilibration scenarios
are considered within the second-order formalism.
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11.2.1. Constant Knudsen number and inelastic cross section with
chemically and kinetically equilibrated initial condition.

 37.5

 42.5

 47.5

 52.5

 57.5

 62.5

e
 ·
 (

τ/
τ 0

)4
/3

 (
G

e
V

/f
m

3
)

(c)

 16.5

 20

 23.5

 27

 30.5

 34

 37.5

n
 ·
 (

τ/
τ 0

) 
(1

/f
m

3
)

(a)

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5  6  7  8  9  10

T
 ·
 (

τ/
τ 0

)1
/3

 (
G

e
V

)

(e)

 0.2

 0.4

 0.6

 0.8

 1

F
u
g
a
c
it
y
 λ

(b)

 95

 105

 115

 125

 135

 145

 0  1  2  3  4  5  6  7  8  9  10

s
 ·
 (

τ/
τ 0

) 
(1

/f
m

3
)

(f)

τ (fm/c)

 0

 0.05

 0.1

 0.15

 0.2
π/

e

(d)

τ (fm/c)

IS, τπ/τ=0.5, σ23=2 GeV
-2

IS, τπ/τ=0.5, σ23=0

IS, τπ/τ=0.5, constant λ=1

3
rd

 O, τπ/τ=0.5, σ23=2 GeV
-2

Figure 11.1.: Rescaled particle density (a), fugacity b), energy density (c), π/e ratio (d),
e�ective temperature (e) and entropy density (f) from solutions of second
and third-order hydrodynamic equations with chemically and kinetically
equilibrated initial condition, constant Kn = τπ/τ = 0.5 and constant
inelastic cross section σ23 = 2 GeV−2.

With the setup chosen here the interplay between the chemical and kinetic equilibration
processes can be studied. For the one-dimensional system considered throughout this
work, the relaxation time τπ = Kn · τ is the same for all scenarios to be discussed here
� due to the choice of a constant Knudsen number the relaxation time is independent
of the dynamics. Since the inelastic cross section is constant, the possible di�erences of
the solutions can only be due to di�erent forms of equations. The scenario of constant
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Knudsen number and constant inelastic cross section is rather academic, as the results
of BAMPS calculations including pQCD processes, presented in Chapter 9, indicate.
For the results presented in Fig. 11.1 the second-order formalism is solved considering

particle number changing processes (solid red lines), particle number conservation (solid
blue lines) and instantaneous chemical equilibration (solid green lines). The third-order
formalism is solved including particle number changing processes (dashed magenta lines).
The results on n, e and T are rescaled by the ideal hydrodynamic evolution factors [comp.
Eqs. (6.32)-(6.34)]. Comparing the results on shear pressure to energy density ration
in Fig. 11.1(d) one can conclude that kinetic equilibration is rather independent of the
chemical processes in the system. If τπ is the same, both particle conservation and
particle production scenarios lead to nearly same values of π/e. Same is observed for
the energy density in Fig. 11.1(c), since its evolution is determined by π/e according to
Eq. (6.30). The solutions of the third-order formalism are closer to kinetic equilibrium,
as indicated by the smaller π/e ratio in 11.1(d) and a smaller rescaled energy density in
11.1(c). This is the e�ect of the additional, third-order damping term in the evolution
equation for π, as already discussed in Chapter 10.
On the other hand, the chemical evolution of the system is only slightly a�ected by the

degree of kinetic equilibration, as demonstrated by the particle number density evolution
in Fig. 11.1(a) for second and third order calculations with non-vanishing inelastic cross
section. The particle number density is nearly the same although a more signi�cant
di�erence is observed for π/e from second and third-order calculations. Accordingly, the
e�ective temperature and the fugacity are nearly the same in both cases.
Inclusion of particle number changing processes has of course a signi�cant e�ect on

particle number density, fugacity and temperature if they are compared to the results
obtained from the particle number conservation and instantaneous chemical equilibration
scenarios. A constant λ = 1 is associated to the largest amount of particle and entropy
production, as shown in Fig. 11.1(a) and (e). Temperature decreases much slower if
particle number is conserved, as shown in Fig. 11.1(e). This, together with π/e being
insensitive to particle production, should have a signi�cant e�ect on transverse spectra,
according to Eq. (8.1). The e�ect of hydrodynamic evolution on the spectra will be
studied later in this Chapter.
Main conclusion that can be drawn from the comparison of the results presented in

this Section for constant Kn and σ23 is that the chemical and kinetic evolution of the
system are only weakly coupled to each other in scope of the formalism considered here.

11.2.2. Constant η/s and time-dependent inelastic cross section with
chemically and kinetically equilibrated initial condition.

The results presented in Fig. 11.2 are obtained using a constant η/s value and a time-
dependent inelastic cross section, parametrized according to Eq. (11.15) with k = 1
(comp. discussion in Ref. [35], where Fig. 11.2 was �rst published). The results are
rescaled in the same manner as in Fig. 11.1. With the time-dependent inelastic cross
section and constant η/s the system is able to relax towards equilibrium chemically
and kinetically after a certain time, as indicated by increasing fugacity in 11.2(b) and
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Figure 11.2.: Solution of second and third-order hydrodynamic equations with chemically
and kinetically equilibrated initial condition, constant η/s = 0.35 and time
dependent inelastic cross section given by Eq. (11.15) with k = 1.

decreasing π/e ratio in 11.2(d). Similar to the situation in Fig. 11.1, the kinetic evolution
is marginally in�uenced by the details of microscopic interactions, since the scenarios
with conserved and time-dependent particle number lead to approximately same values
of π/e, as demonstrated in Fig. 11.2(d). Correspondingly, the energy density in 11.2(c)
is insensitive to the chemical evolution of the system.
The particle number density evolution is only weakly sensitive to the kinetic equili-

bration process, as follows from the comparison of second and third-order calculations
in Fig. 11.2(a) and (b). This is consistent with the observations from previous Section.
The e�ect of chemical equilibration on evolution of the temperature is signi�cant � a
runaway loss of chemical equilibrium observed in Fig. 11.2(b) for the σ23 = 0 scenario
leads to a signi�cantly slower decrease of the temperature in Fig. 11.2(e) in comparison
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to the scenario with non-vanishing σ23. The possibility of particle production and anni-
hilation leads to an increased entropy density; at the same time, inclusion of third-order
terms decreases the entropy density, as demonstrated in Fig. 11.2(f). If particle number
changing processes are included, the solutions converge to the solutions obtained for the
scenario of instantaneous chemical equilibration after a certain time. However, there are
observable di�erences in the temperature and particle density evolution.
Comparison of the results obtained with constant η/s and time-dependent σ23 con�rms

the conclusion made from the analysis of constantKn and σ23 scenario. The chemical and
kinetic evolutions are weakly coupled to each other. Inclusion of chemical equilibration
via particle number changing processes has a signi�cant e�ect on the temperature of the
system.

11.2.3. Constant η/s, chemically and kinetically disequilibrated initial
condition.

If the initial condition is chemically and kinetically equilibrated, the evolution of the sys-
tem goes through a phase of disequilibrium to a phase of relaxation towards equilibrium.
In this case evolution of the instantaneous chemical equilibration scenario di�ers only
marginally from evolution of a chemically equilibrating system, as one could observe in
the previous Section. However, the assumption of an equilibrated initial state for the
QGP is a strong assumption. An examples of chemically and kinetically disequilibrated
initial conditions is the color glass condensate discussed in Chapter 7.4.1 and in Refs.
[147, 142, 150, 198, 199, 71, 72]. In this section I consider a system with constant η/s
, time-dependent σ23 and a disequilibrated initial condition with π(τ0)/e(τ0) = 0.1 and
λ(τ0) = 0.2 in order to demonstrate the sensitivity of the results to the initial loss of
equilibrium. The results are shown in Fig. 11.3 and are rescaled like in the previous two
sections.
With the disequilibrated initial condition the di�erence between the instantaneous

chemical equilibration scenario and and a scenario with �nite inelastic cross section be-
comes more pronounced than in previous two sections. The particle, energy and entropy
densities from calculations with �nite inelastic cross section converge slower towards the
λ = 1 result, as shown in Fig. 11.3(a), (c) and (f).
The particle number conservation scenario leads to a signi�cantly larger temperature

than the chemical equilibration scenarios � comp. Fig. 11.3(c). This di�erence is even
larger than the one observed with equilibrated initial conditions. This again stresses the
importance of the proper treatment of particle number evolution in scope of hydrody-
namic formalisms.
The di�erences between second and third-order calculations also become more pro-

nounced with disequilibrated initial conditions. The particle, energy and entropy densi-
ties calculated with third-order formalism are smaller than the second-order results, as
shown in Fig. 11.3(a), (c) and (f).
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Figure 11.3.: Solution of second and third-order hydrodynamic equations with chemically
and kinetically disequilibrated initial condition, constant η/s = 0.35 and
time dependent inelastic cross section given by Eq. (11.15) with k = 1.

11.2.4. E�ect of chemical evolution on transverse spectra.

In the previous three Sections a proper treatment of chemical evolution in hydrodynamic
formalism was shown to have a signi�cant e�ect on the e�ective temperature T . This
observable is accessible in the heavy-ion experiments via the transverse spectra of such
electromagnetic probes as photons or dileptons, which do not interact with the system
after the production time point and for this reason already in the late 70s were considered
a good probe of the early stage of heavy-ion collisions [200, 3]. The e�ect of momentum-
space anisotropy on the dilepton spectra was studied by Martinez and Strickland
employing second-order hydrodynamic formalism with conserved particle number in Ref.
[103].
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In this section I present the transverse spectra reconstructed from hydrodynamic cal-
culations presented in Sections 11.2.2 and 11.2.3. Hydrodynamic evolution equations
(11.11), (11.14) and (11.6) were derived using the o�-equilibrium distribution from Eq.
(8.1). The normalized transverse spectrum

dN

NpTdpT
=

∫
p0fdydϕ (11.16)

can be calculated by a numerical integration of Eq. (8.1) using the results of second-order
hydrodynamic calculations presented in Figs. 11.2 and 11.3.
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Figure 11.4.: Transverse spectra reconstructed from the results presented in Fig. 11.2 at
τ = 0.4, 1.0, 4.0 and 8.0 fm/c. Initial condition is equilibrated chemically
and kinetically and thus unique for all three scenarios. Arrows indicate the
transitions between sequential time points.

The normalized transverse spectra at di�erent time points obtained from calculations
with equilibrated initial conditions for di�erent scenarios of chemical evolution (particle
number conservation, particle production and annihilation and instantaneous chemical
equilibration) are shown in Fig. 11.4. In all three scenarios the evolution starts with
the same, equilibrated, initial condition. One observes that the spectra are sensitive
to the chemical evolution of the system: without the inelastic collisions (red lines) a
strong deviation from chemical equilibrium leads to a signi�cantly �atter spectrum. The
di�erence between the spectra obtained with and without inclusion of inelastic processes
(blue and red lines) becomes more pronounced at later times (τ = 8 fm/c). The spectra
obtained with the scenario of instantaneous chemical equilibration (red lines) are nearly
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identical with the ones of a chemically equilibrating system (blue lines) although small
di�erences are observable at intermediate time τ = 4 fm/c.
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Figure 11.5.: Transverse spectra reconstructed from the results presented in Fig. 11.3
at τ = 0.4, 1.0, 4.0 and 8.0 fm/c. Initial condition is disequilibrated both
chemically and kinetically. For the λ = 1 scenario the initial condition is
disequilibrated only kinetically. Arrows indicate the transitions between
sequential time points.

If a chemically and kinetically disequilibrated initial condition is considered, as for
the results presented in Fig. 11.3, the di�erence between the spectra from the three
scenarios becomes larger than in the case of fully equilibrated initial conditions. Fig.
11.5 demonstrates the spectra reconstructed using the results from Fig.11.3. If the initial
state is chemically disequilibrated, there is a clear di�erence between the spectra from
the scenarios of instantaneous (green lines) and dynamical (blue lines) chemical equili-
bration at early (τ = 1.0 fm/c) times. At late times (τ = 8.0 fm/c), as equilibrium is
nearly restored, both scenarios are again almost indistinguishable. Again, if only elastic
scatterings are considered (red lines), the spectra are considerably �atter throughout the
evolution, since the deviation from chemical equilibrium increases dramatically.

The observed di�erences of the spectra obtained using Grad's approximation from Eq.
(8.1) are clearly due to di�erent evolution of the e�ective temperature, which is mainly
sensitive to the evolution of the particle number density (since π/e ratio shows only weak
sensitivity to the chemical evolution of the system, as shown in Figs. 11.1, 11.2 and 11.3).
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Conclusions I.

To conclude, the inclusion of chemical equilibration via particle production and annihi-
lation processes into hydrodynamic formalism proves to be important � in the �rst place
with respect to evolution of the e�ective temperature T . This observable reveals the
strongest sensitivity to the details of microscopic processes considered in an expanding
system with �nite interaction rates, such as the QGP. The transverse spectra are highly
sensitive to the degree of chemical equilibration in the system. Strong deviations from
chemical equilibration lead to strong modi�cations of the temperature T and thus of
the slopes of transverse spectra, which are both important observables with respect to
electromagnetic probes in heavy-ions collisions.

11.3. Comparison between dissipative hydrodynamic

calculations and BAMPS results for a system with

non-conserved particle number.

In this section the results of hydrodynamic calculations including particle production
and annihilation are compared to the results obtained from kinetic transport model
BAMPS, which was introduced in Chapter 7. The comparisons presented in this section
are analogous to the ones presented in Chapter 10, where the particle number in the
system was assumed to be constant. The results presented in this Section were previously
published in Ref. [35].
In BAMPS we consider isotropic cross sections. For the inelastic processes the total

cross section is calculated via Eq. (11.15) and for the 3 → 2 channel one obtains I32 =
12gπ2σ23. For the elastic channel 2 → 2 the cross section is chosen to be identical with
the inelastic one: σ22 = σ23. The choice of isotropic cross sections for the collision
processes makes a comparison with hydrodynamic formalism easier, since the rates R23

and R32 in the rate equation (11.6) can be calculated analytically and Eq. (11.6) can be
solved directly without any input from BAMPS.
In order to �nd a parametrization for the shear viscosity coe�cient η, the η/s ratio

is extracted from BAMPS calculations. This is done via Eq. (9.3) with s = 4n − n lnλ
in the same manner as for pQCD cross sections in Section 9.1. The results on η/s as
function of proper time τ in BAMPS calculations with k = 0.5, 1, 3 and 6 in Eq. (11.15)
are shown in Fig. 11.6. The extracted η/s ratio is in a good approximation constant in
time.
The values

η/s (k) = 0.05 (6), 0.1 (3), 0.35 (1), 0.75 (0.5)

are used together with Eq. (11.15) to solve the set of hydrodynamic equations (11.6),
(6.30), (11.11) and (11.14). The solutions of second (Israel-Stewart) and third-order
hydrodynamic equations are compared with the corresponding BAMPS calculations in
Figs.11.7-11.11.
In Figs. 11.7 and 11.8 we observe that the energy density and the shear pressure from
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Figure 11.6.: Shear viscosity to entropy density ratio as function of time extracted from
BAMPS calculations using Eq. (9.3). In BAMPS calculations isotropic elas-
tic and inelastic cross sections σ22 = σ23 are parametrized via Eq. (11.15)
with k = 0.5, 1, 3 and 6.

the third-order hydrodynamic calculations agree perfectly with the BAMPS results even
for large η/s values. In contrast, the viscous e�ect is overestimated by the second-order
equations. This becomes signi�cant for large η/s values, which mark the applicability
boundary of the second-order approach. These �ndings are in line with observations
in Chapter 10 and in Ref. [34], where particle changing processes were not taken into
account.

The di�erence in the particle number density (Fig. 11.9) between the hydrodynamic
and BAMPS results is large at large η/s values. Although both second and third-order
equations give larger densities than those in BAMPS, the third-order results are closer
to the ones from BAMPS . On the other hand, looking at the temperature T (Fig.
11.10) and the fugacity λ (Fig. 11.11) one observes that the second-order results show
better agreement with the BAMPS results than the third-order ones. However, it is
di�cult to make conclusions about applicability of a hydrodynamic approach based on
the observables T and λ. These quantities are de�ned via e and n, but not solved directly
from the hydrodynamic equations. If we consider the particle number conservation, the
results on T and λ from the third-order calculations are in very good agreement with those
from BAMPS, as can be concluded from the observations in Chapter 10 and Ref. [34].
In the situation considered here, small di�erences between hydrodynamic and kinetic
transport results on both key observables e and n translate into di�erences in T and λ
in a non-trivial way.

To understand the di�erences in particle number densities between the hydrodynamic
and BAMPS results, I examine Eq. (11.6), which is valid by virtue of Grad's approxi-
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Figure 11.7.: Rescaled energy density e from BAMPS, second and third-order hydrody-
namic calculations. Particle production included via isotropic cross section
given by Eq. (11.15).

mation (8.1). For this calculate the di�erence of the rates and the right hand side of Eq.
(11.6) are calculated using the actual values of R23, R32, n, λ, and σ23 extracted from
the BAMPS. The results are shown in Fig. 11.12. Except for the case of η/s = 0.05,
n2(1 − λ)σ23/2 is always larger than n · R23/2 − n · R32/3, which leads to a stronger
particle production in the hydrodynamic than in the transport approach, as seen in Fig.
11.9. This indicates that the approximate distribution (8.1) must deviate from the one
extracted from BAMPS. In fact, the deviations between Grad's approximation and the
particle distribution extracted from BAMPS were already quanti�ed and discussed in
Chapter 8. In Fig. 11.13 the di�erences between BAMPS and hydrodynamic spectra
are shown for calculations with k = 0.5, 1 and 3. The hydrodynamic spectra are re-
constructed using the results of BAMPS calculations together with Eq. (8.1). With
the values of k = 0.5 − 1, the deviations are of order of 10% for pT < 3 GeV, which
is consistent with the observations in Chapter 8. For these values of k, correspond-
ing to η/s = 0.35 − 0.75, Eq. (11.6) is not exactly satis�ed, as demonstrated in Fig.
11.12. Thus, the di�erences in evolution of the particle number density in hydrodynamic
formalism and in BAMPS can be explained due to insu�cient accuracy of Grad's ap-
proximation for the o�-equilibrium distribution function. Since the evolution equations
for the shear pressure π and the expression for the viscosity coe�cient η are derived using
Grad's approximation, the observed non-conformance between the latter and the actual
o�-equilibrium distribution in kinetic transport calculation leads to non-conformance of
the macroscopic observables.
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Conclusions II.

In this section the shear viscosity to entropy density ratio η/s was extracted from BAMPS
calculations with isotropic elastic and inelastic cross sections and employed to solve
hydrodynamic equations for systems with non-constant particle number. Comparisons
between hydrodynamic and kinetic transport calculations demonstrated a reasonably
good agreement concerning the bulk observables e and n. The visible deviations in
particle number are due to insu�cient accuracy of the rate equation (11.6). The third-
order equations provide a better description of kinetic transport results considering the
energy and particle densities e and n and the shear pressure to energy density ratio
π/e; they lead to a faster decrease of the temperature and larger values of fugacity.
The second-order equations provide a better description of T and λ, but lead to larger
deviations considering all other observables.
Since the approximation-based evolution equations for n, e and π are solved directly

in hydrodynamic formalism, these quantities should be used to quantify the accuracy of
hydrodynamic description. However, the interplay between the values of π, e and n is non-
trivial and a straight-forward quantitative analysis of deviations between hydrodynamic
and BAMPS results like in Chapter 10 becomes complicated. Quantitatively, the third-
order formalism provides a better description of kinetic transport results on the key
observables n, e and π/e. Considering these three observables the deviations do not
exceed 10% even for η/s = 0.75 (k = 0.5) which is larger than the critical values of η/s
found in Chapter 10 for identical initial condition. The possible explanation for smaller
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deviations might be in fact the possibility of particle production, which is an additional
mechanism of cooling and thus a counter-weight to the reheating due to energy dissipation
in the hydrodynamic formalism.



11.3. Comparison between dissipative hydrodynamic calculations and BAMPS results for a

system with non-conserved particle number.
121

 0.5

 0.55

 0.6

 0.65

 0.7
T

 ·
 (

τ/
τ 0

)1
/3

 (
G

e
V

)

 

η/s=0.05BAMPS
IS

3rd O

 0.5

 0.55

 0.6

 0.65

 0.5  1  1.5  2  2.5  3  3.5

T
 ·
 (

τ/
τ 0

)1
/3

 (
G

e
V

)

τ(fm/c)

η/s=0.1
 

η/s=0.35

 0.5  1  1.5  2  2.5  3  3.5  4

τ(fm/c)

η/s=0.75

Figure 11.10.: Rescaled e�ective temperature T from BAMPS, second and third-order hy-
drodynamic calculations. Particle production included via isotropic cross
section given by Eq. (11.15).

 0.2

 0.4

 0.6

 0.8

 1

F
u
g
a
c
it
y
 λ

 

η/s=0.05

BAMPS
IS

3rd O

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3  3.5

F
u
g
a
c
it
y
 λ

τ(fm/c)

η/s=0.1

 

η/s=0.35

 0.5  1  1.5  2  2.5  3  3.5  4

τ(fm/c)

η/s=0.75

Figure 11.11.: Fugacity λ from BAMPS, second and third-order hydrodynamic calcula-
tions. Particle production included via isotropic cross section given by Eq.
(11.15).



122 11. Hydrodynamic evolution of a chemically equilibrating Gluon Plasma.

 0

 0.001

 0.002

 0.003

(G
e

V
4
)

 

1/2 n
2
 (1-λ)σ23

nR23/2-nR32/3

η/s=0.05

 0

 0.001

 0.002

 0.003

 0.5  1  1.5  2  2.5  3  3.5

(G
e

V
4
)

τ(fm/c)

η/s=0.1

 

η/s=0.35

 0.5  1  1.5  2  2.5  3  3.5

τ(fm/c)

η/s=0.75

Figure 11.12.: Veri�cation of Eq. (11.6). The values nR23/2 − nR32/3 on the left hand
side and 1/2n2(1 − λ)σ23 on the right hand side are calculated using the
actual values of R23, R32, n, λ and σ23 from BAMPS.



11.3. Comparison between dissipative hydrodynamic calculations and BAMPS results for a

system with non-conserved particle number.
123

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

 

pT (GeV)

k=0.5

 0.8

 1

 1.2

 1.4

(d
N

/N
/p

T
/d

p
T
) B

A
M

P
S
/(

d
N

/N
/p

T
/d

p
T
) G

ra
d

 

τ = 0.41 fm/c ≈ τ0 
τ=0.8 fm/c = 2 τ0τ=2.0 fm/c = 5 τ0

k=1

 0.8

 1

 1.2

 1.4

 

 

k=3

Figure 11.13.: Ratio of transverse distribution from BAMPS to the ones calculated by
Grad's approximation based on actual values of e, π, λ and T extracted
from BAMPS.





125

12. Hydrodynamic evolution of a

two-component system with

conserved particle numbers.

In this Chapter dissipative hydrodynamic equations for a two-component system will
be given for a one-dimensional system with transverse symmetry, following the same
premises as in Chapter 6. The shear viscosity coe�cients for the two components, given
in a general form by Eq. (4.12), will be evaluated for a one-dimensional system using
Grad's ansatz for the distribution functions and isotropic elastic cross sections. The
results of hydrodynamic calculations will be compared with kinetic transport ones. In
addition I will discuss whether the obtained evolution equations for the components of
a mixture can be summed up into a e�ective, one-component equation. The question to
be addressed in this respect is whether a one-component hydrodynamic theory can be
applied to describe a multi-component system. This is of course highly relevant for heavy-
ion systems produced in experiments at RHIC and LHC, since the QGP is a mixture of
quarks and gluons.
Note that hydrodynamics of mixtures is a highly interesting topic not for for the heavy-

ion research community (comp. for instance the discussion of hadronic mixture in Ref.
[99]), but also in physics of materials (like physics of polymeric �uids [96]), biophysics
[97] and plasma physics [98], just to name some.

12.1. Hydrodynamic equations for a two-component system

in one dimension.

Let us consider a system of two components, Flavor 1 and Flavor 2. In analogy to
Chapter 6, Bjorken �ow is assumed, i.e. ∂µu

µ = 1/τ . The evolution equations for the
particle densities follow from the conservation of the partial particle �ow vectors (3.50):

ṅi = −ni

τ
. (12.1)

The evolution equations for the energy densities cannot be obtained for a general
situation, since the partial energy-momentum tensors are not conserved and the form of
the source terms, describing energy-momentum exchange between components are not
known in scope of the approach discussed in this work. However, assuming same e�ective
temperature for all components, as expressed by Eq. (3.51), one can obtain evolution
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equations for the partial energy densities. Since Eq. (3.49), expressing total energy
conservation, leads to

ė = −4

3

e

τ
+

π

τ
(12.2)

for the total energy density e (as already discussed in Section 6.2), and since from Eq.
(3.52) follows that

ei = e
ni

n
, (12.3)

one obtains for the partial energy densities

ėi = −4

3

e

τ

ni

n
+

πi
τ

ni

n
(12.4)

where n denotes the total particle density.
To complete the set of hydrodynamic equations, β2,i �rst must be speci�ed. Since the

Grad's ansatz for the o�-equilibrium distribution function is formally identical for one-
and multi-component case, the β2,i are analogous to the one-component coe�cient β2,
calculated in Section 6.1 and Appendix B:

β2,i =
9

4ei
. (12.5)

From Eq. (3.56) now follows

π̇i = − πi
2βiηi

− 4

3

πi
τ

+
8

27

ei
τ
. (12.6)

Finally, the expression (4.12) for the shear viscosity coe�cients ηi must be evaluated
for a one-dimensional system. The integrals in Eq. (4.12) can be evaluated analytically
for the case of binary cross sections with isotropic angle distributions. Only this case will
be considered here. The details of this calculation are given in Appendix E. One obtains
[201, 36]

ηi = T

(
5

6
σii +

7

6

nj

ni
σij −

1

3

πj
πi

σij

)−1

. (12.7)

In the latter equation σ11 and σ22 denote total cross sections for scattering of particles
of same Flavor (self-collisions), whereas σ12 = σ21 refers to scattering of particles of
di�erent Flavors (inter-collisions).
Inserting Eq. (12.7 ) into (12.6) one �nally obtains the evolution equations for partial

shear pressures in a two-component system [36]:

π̇i = −πi ·
(
5

9
niσii +

7

9
njσij

)
+ πj ·

(
2

9
niσij

)
− 4

3

πi
τ

+
8

27

ei
τ
. (12.8)

The equations are coupled, as one would expect, via the inter-collision cross section. In
the limit of two identical species, which can be realized either by setting σ11 = σ22 = 0
or by setting λ1 = λ2, Eq. (12.8) is identical with the one-component Israel-Stewart
equation (6.36).
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12.2. E�ective shear viscosity of a multi-component system.

The decon�ned state of QCD matter produced at early stages of ultrarelativistic heavy-
ion collisions at RHIC and LHC is a multi-component system with quark and gluon
degrees of freedom. Although the initially produced quark-gluon plasma (QGP) might
be dominated by gluons, as follows from the CGC framework [202], a considerable amount
of quarks is produced on the way to thermal and chemical equilibration [187, 89, 88].
However, most of the presently known relativistic dissipative hydrodynamic formalisms
[40, 80, 93, 39] and their applications are based on a one-component picture of the QGP.
From comparisons with experimental results on the elliptic �ow v2 at RHIC [7] and LHC
[203] the shear viscosity to entropy density ratio of the QGP was extracted in Refs.
[47, 204, 205, 206] using one-component formalisms. Still it is now clear whether a multi-
component system behaves like a one-component system. In case it does not, the shear
viscosity to entropy density ratio cannot be chosen freely and can be expected to have a
complicated time dependence due to complicated dynamics of the mixture.
A dissipative hydrodynamic formalism reported recently in Ref. [100] allows to cal-

culate global properties of a multi-component system, but does not allow for describing
each component separately. Since the equilibration time scales for quarks and gluons
in QGP might be signi�cantly di�erent, as pQCD based kinetic transport calculations
indicate [30], it is important to consider a multi-component hydrodynamic formalism
which is able to describe the dissipative properties of each component properly and thus
able to describe the complicated dynamics of the mixture. Such formalism was for the
�rst time reported in Ref. [36] and in this work.
In this section I will discuss hydrodynamic behaviour of a mixture of two components.

This means the system as a whole will be considered. Adding up Eqs. (12.8) for all
components one obtains the evolution equation for the total shear pressure π = π1 + π2,
which can be written as follows:

π̇ = −2

9

πe

ηeff
− 4

3

π

τ
+

8

27

e

τ
. (12.9)

In the latter equation the e�ective shear viscosity of the mixture ηeff is de�ned via

πe

ηeff
=

5

2
(π1n1σ11 + π1n2σ12 + π2n2σ22 + π2n1σ12) . (12.10)

Using the expressions for the mean free paths λ1 = n1σ11+n2σ12 and λ2 = n2σ22+n1σ12
one thus can write

ηeff =
2

5
e
(
α1λ

−1
1 + α2λ

−1
2

)−1
(12.11)

with the coe�cients
αi =

πi
π

. (12.12)

The e�ective shear viscosity (12.11) explicitly depends on the partial shear pressures.
Thus in general it is not a unique characteristic of the mixture, but rather depends on
the dynamics.Nevertheless it is possible to apply Eq. (12.11) in the quasi-stationary
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limit, i.e. in proximity of equilibrium, when the coe�cients αi become constant. The
expectation that αi become constant is reasonable, since the partial shear pressures
approach zero as the system approaches equilibrium, whereas the shear viscosity can be
de�ned for a equilibrated medium by means of the Green-Kubo relation [207].
Let us now consider the (quasi-) stationary limit

α̇i = 0 ⇔ ∂

∂τ

(
π1
π2

)
= 0 . (12.13)

Using Eqs. (12.8) and neglecting any terms explicitly proportional to 1/τ (i.e. in the
τ → ∞ limit) one obtains the stationary solution for π1/π2:

π1
π2

∣∣∣∣
α̇1=α̇2=0

=

√
γ2 +

n1

n2
− γ , (12.14)

where

γ =
5

4n2σ12

(
1

λ1
− 1

λ2

)
+

1

2

(
1− n1

n2

)
. (12.15)

With π1/π2 from Eq. (12.14) the e�ective shear viscosity (12.11) can be calculated in
terms of the energy and particle densities and cross sections only.

12.3. Comparison with kinetic transport calculations.

Static setup.

Dissipative hydrodynamic equations for multi-components systems presented in this work
are novel. For the �rst time they were reported in Ref. [36]. In the kinetic transport
theory multi-component systems were studied for example in Refs. [140, 30]. In this
Section solutions of hydrodynamic equations are compared with kinetic transport results
obtained from BAMPS. All calculations are done for the case of isotropic distribution of
scattering angles.
We �rst consider a spatially isotropic medium. This means, all gradients ∂µuµ vanish

and terms explicitly proportional to 1/τ are neglected in Eqs. (12.8), (12.4) and (12.1).
In such static setup the energy and particle densities are conserved, ė = 0 and ṅ = 0.
In BAMPS this is realized by con�ning the medium in a static box. This setup allows
to verify validity of the transition between kinetic transport theory and hydrodynamics,
since all non-vanishing terms in Eq. (12.8) originate from kinetic transport theory.
Solutions of Eq. (12.8) are compared with BAMPS calculations in Fig. 12.1. The

results are shown for following initial conditions: σ11 = 10 GeV−2, σ12 = σ11/2,
σ22 = σ11/4, T = 0.4 GeV, π1/e1 = 0.3. In Fig. 12.1(a) π2/e2 = 0 and n1/n2 = 1.
In Fig. 12.1(b) π2/e2 = π1/e1 = 0.3 and n1/n2 = 5. The solid gray lines show a one-
component solution, given by Eq. (6.36), with the e�ective shear viscosity calculated
according to Eq. (12.11). A good agreement � with deviations below 10% � between hy-
drodynamic and kinetic transport calculations can be observed for both initial conditions,
which demonstrates validity of the derived hydrodynamic equations. One clearly observes
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Figure 12.1.: Evolution of partial and total shear pressures from multi-component hy-
drodynamic (lines) and BAMPS (symbols) calculations. Solid gray lines
show solutions of one-component equations with an e�ective shear viscos-
ity of the mixture. Initial conditions are π2/e2 = 0, n1/n2 = 1 (a) and
π2/e2 = π1/e1, n1/n2 = 5 (b). See text for further details. Inlays demon-
strate relative deviation between hydrodynamic results and BAMPS.

development of shear pressure in the initially equilibrated Flavor 2 in Fig. 12.1(a). The
one-component solution cannot describe evolution of the total shear pressure at all times.
Only after a certain time, which is needed to achieve a quasi-stationary state, the system
can be described by a one-component equation with an e�ective shear viscosity coe�-
cient. One can draw this conclusion since the one-component solution and total shear
pressure from BAMPS become parallel at late times. Existence of quasi-stationary limit
in kinetic transport calculations is demonstrated in Fig. 12.2, where the ratio π2/π1 is
shown for the situation depicted in Fig. 12.1. Note that due to low values of the partial
shear pressure, at late times BAMPS results are �uctuating strongly, although the results
presented here are obtained with very large, ∼ 107, particle numbers per run.

To give a stronger proof of applicability of the one-component description at late times
one can consider a system where the initial π1/π2 ratio is exactly the one in stationary
limit. This is done for example for the situation depicted in Fig. 12.1(b) and the result
is demonstrated in Fig. 12.3. One clearly observes that a one-component description is
applicable only in the quasi-static limit de�ned via Eq. (12.14).

Note that the shear viscosities ηi of the components of the mixture are not positive
de�nite, as follows from Eq. (12.7). The initial conditions can be chosen such that
one of them becomes negative in a two-component mixture. Thus ηi cannot always be
interpreted as transport coe�cients in the usual sense. Still, negative values do have
a physical meaning: a negative viscosity ηi means, according to Eq. (12.6), that the
corresponding partial shear pressure increases, i.e. the component of the mixture is
brought from equilibrium. This can happen if the shear pressures of the two components
are very di�erent, so that one of the components is brought out of equilibrium during the
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Figure 12.2.: Ratio of partial shear pressures shown in Fig. 12.1 from hydrodynamic
(lines) and BAMPS (symbols) calculations.

other one relaxes towards equilibrium. In fact, the shear viscosity η2 becomes negative
in the situation shown in Fig. 12.1 (a), and as long as it is negative shear pressure π2
increases. As η2 becomes positive, π2 starts decreasing. Evolution of η2 is shown in Fig.
12.4. The viscosity coe�cients η2 has a divergence, which means that the corresponding
relaxation rate 1/(2η2β2,2) becomes zero and changes its sign. Note that in the quasi-
static limit π1/π2 = const both coe�cients η1 and η2 are strictly non-negative and thus
only then attain the usual meaning of viscosity coe�cients.

Longitudinal expansion.

In an expanding system the energy density is not conserved due to volume change. In
addition to expansion, also dissipation has an e�ect on evolution of the energy density,
as Eq. (12.4) states. Thus the assumption of equal temperatures in a mixture in general
cannot hold as soon as expansion is considered. For a comparison with kinetic transport
calculation I consider the following initial conditions: τ0 = 0.4 fm/c, T (τ0) = 420 MeV.
The degeneracy of both Flavors is chosen to be 16 and the initial fugacities are λ1 = λ2 =
1. The cross sections are σ11 = 20 GeV−2 ≈ 7.8 mb and σ22 = 0.2 · σ11 together with
σ12 = 0.5 ·σ11 resp. σ12 = 0.001 ·σ11. The results on shear pressure and temperature are
shown in Fig. 12.5. One observes that the temperatures of the two components indeed
evolve di�erently in the case of non-equal cross sections for self-collisions, though the
di�erence of the temperatures is signi�cantly reduced as the inter-collision cross section
becomes larger (as follows from comparison of Fig. 12.5 (a) and (b)).

The obtained hydrodynamic equations can be applied to estimate dissipative e�ects
in a quark-gluonic system. In order to mimic the gluons and quarks in a QGP I choose
the degeneracy factors to be d1 = 16 and d2 = 24, thus considering two �avours, Nf =
2. Only momentum-independent di�erential cross sections and elastic processes can be
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Figure 12.3.: Evolution of shear pressure with initial conditions corresponding to the
quasi-static limit de�ned by Eq. (12.14). Cross sections and densities are
same as for Fig. 12.1(b).

considered. The cross sections are parametrized as follows:

σij = kij/T
2 . (12.16)

These cross sections are meant to mimic the following processes: gg ↔ gg, gq ↔ gq and
qq ↔ qq. Quarks and anti-quarks are considered indistinguishable for these studies. For
these processes the existing leading order pQCD calculations yield the following ratios
of di�erential cross sections [30, 208]:(

dσgg↔gg

dt

)
/

(
dσgq↔gq

dt

)
≈ 9/4 , (12.17)(

dσgg↔gg

dt

)
/

(
dσqq↔qq

dt

)
≈ (9/4)2 . (12.18)

These ratios will be used to mimic the elastic processes in a quark-gluon plasma using
parametrization (12.16).
To gauge the initial conditions for RHIC and LHC energies, the charged particle mul-

tiplicity in the central rapidity region can be used. For the initial fugacities λ1 and λ2

of gluons and quarks accordingly the two cases λ1 = λ2 = 1 and λ1 = 1, λ2 = 0.2 will
be used for both RHIC and LHC conditions. For sake of simpli�cation parton-hadron
duality will be assumed, i.e. at the phase transition one parton will correspond to one
hadron. For RHIC energies the initial time τ0 = 0.4 fm/c is used. The initial temper-
ature at initial time τ0 = 0.4 fm/c is chosen to be such that the �nal total transverse
energy per unit rapidity at mid-rapidity is dET /dy ≈ 600 GeV[209] at τ ≈ 4 fm/c. At
this time the energy density drops below 1 GeV/fm3 and thus the phase transition can
be expected to take place. Assuming initial thermal equilibrium one then obtains the
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initial temperatures T0 = 300 MeV with λ1(τ0) = λ2(τ0) = 1 and T0 = 340 MeV with
λ1(τ0) = 1, λ2(τ0) = 0.2.
Currently no data on average transverse energy per particle in the LHC experiments

with center-of-mass energy
√
s = 2760 GeV is available. To estimate the initial tem-

perature for this scenario one can use the observation, that average transverse energy
per particle ET /N saturates for SPS and RHIC energies [210] and thus one can assume
that the value dET /dy ≈ 600 GeV observed at RHIC can be rescaled with the ratio of
multiplicities at LHC and RHIC. Using dN/dy ≈ 1600 at LHC [211] and dNch/dy ≈ 700
at RHIC [209] one obtains

dET

dy

∣∣∣∣
LHC

=
dET

dy

∣∣∣∣
RHIC

·
dN/dy|LHC

dN/dy|RHIC

. (12.19)

Assuming the lifetime of QGP at LHC to be ≈ 9 fm/c (which is the �nal time 4 fm/c
for RHIC conditions rescaled with the ratio of multiplicities) and the initial time τ0 =
0.25 fm/c, we obtain for the initial temperature T0 = 450 MeV with λ1 = λ2 = 1 resp.
T0 = 510 MeV with λ1 = 1, λ2 = 0.2.
Using Eq. (12.11) discussed in Section 12.2 one can calculate the e�ective η/s ratio

of the quark-gluon mixture for the conditions discussed so far in this Section. For both
RHIC and LHC conditions one obtains η/s = 0.23 in case λ1 = λ2 and η/s = 0.28 in
case λ1 = 1, λ2 = 0.2. These values are within the range currently discussed in literature
for both RHIC and LHC experiments [206, 116, 204].
The results presented in Fig. 12.5 demonstrate that the temperature (and thus the

energy density as well) does not di�er much for the two components of the mixture in
case the inter-cross section is not too small. Thus for the parametrization of cross sec-
tions (12.16) and (12.18) chosen here to mimic LO pQCD processes the strongest e�ect is
expected to be observed in evolution of the shear pressure. The shear pressure is in turn
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Figure 12.5.: Evolution of partial shear pressures and e�ective temperatures in a expand-
ing system with two components. Results in panels (a) and (b) are obtained
with di�erent inter-collision cross sections.

relevant for dissipative corrections to the transverse spectra, as already demonstrated in
Section 8 of this work and in Refs. [33, 35]. Here the dissipative corrections to transverse
spectra for a quark-gluonic mixture will be quanti�ed using the model assumptions dis-
cussed above. A quantitative measure of the dissipative corrections to transverse spectra
can be de�ned as follows:

δdN

dNth
(pT ) ≡

(dN/pT /dpT )Grad

(dN/pT /dpT )thermal

− 1 =

∫
pT cosh y f0φ dydϕ∫
pT cosh y f0 dydϕ

, (12.20)

where φ is the o�-equilibrium correction to the distribution function according to Grad's
ansatz given by Eq. (8.1) (with the degeneracy factor 24 for quarks and 16 for gluons).
The ratio (12.20) describes change multiplicity due to dissipative correction relative to
the thermal yield.
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Figure 12.6.: Ratio de�ned in Eq. (12.20) extracted from hydrodynamic calculations
with RHIC typical initial conditions (see text) for di�erent values of pT .
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λ0,1 = λ0,2 = 1 (a) and λ0,1 = 1, λ0,2 = 0.2 (b). The cross sections are time
dependent according to Eqs. (12.16) and (12.18) with k11 = 0.9.

Results on δdN
dNth

(pT ) with the cross sections parametrized according to Eqs. (12.16)
and (12.18) with kgg ≡ k11 = 0.9 are shown in Fig. 12.6 and 12.7 for RHIC respectively
LHC initial conditions as discussed above. The results are shown for di�erent values of
the transverse momentum pT . Panel (a) demonstrates the results for initial λ1 = λ2 = 1
and panel (b) for initial λ1 = 1, λ2 = 0.2. Signi�cant e�ects of dissipation are observed
in both quark and gluonic distributions already for pT = 1 GeV ≈ 3T0 (with T0 being
the initial temperature) for RHIC conditions and pT = 2 GeV ≈ 4T0 for LHC setup.
The dissipative e�ects are stronger for quarks due to larger mean free path. At the
times at which the phase transition is expected to take place (4 fm/c for RHIC and
9 fm/c for LHC conditions) the di�erence between dissipative corrections to quark and
gluonic spectra is almost factor of 2. The transverse spectra are important for the so-
called recombination and coalescence models of hadronization [65, 66, 67, 68], in which
the hadrons are built up from partons which are close to each other in the phase space.
It is not su�cient to assume a thermal distribution at the freeze-out, since the parton
yields are signi�cantly di�erent in a dissipative QGP at moderately large pT ∼ 3− 4T0.
It is furthermore important to properly account for the dissipative e�ects on quark and
gluonic spectra, since the yields are a gain di�erent for the both species, as demonstrated
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Figure 12.7.: Same as in Fig. 12.6 for LHC typical initial conditions (see text) and
di�erent values of pT .

in this Section. Same applies to calculations of yields for direct photons and dileptons
[195, 193].

Conclusions.

The analysis presented in this Chapter demonstrates the importance of a proper treat-
ment of the hydrodynamic evolution in a multi-component medium. The global behaviour
of a multi-component �uid in general cannot be described by the standard one-component
formalisms, since a certain time is needed for the medium to establish an e�ective one-
component behaviour. At early time the evolution can only be understood in terms
of a multi-component hydrodynamic formalism, such as the one derived and applied in
this work. The e�ective shear viscosity to entropy density ratio, η/s, is a characteristic
of a medium very close to equilibrium. For a multi-component medium the e�ective
η/s ratio can be consistently de�ned only after a certain time, before which the evo-
lution does not follow the known one-component descriptions. Since the Quarks-Gluon
Plasma produced in heavy-ion collisions at RHIC and LHC is a multi-component �uid,
it is essential to solve multi-component hydrodynamic equations instead of treating it
as a one-component system. The dissipative e�ects on quark and gluonic spectra di�er
signi�cantly for conditions typical for RHIC resp. LHC experiments which is of great
signi�cance for modelling of the hadronization process.
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13. Summary, Conclusions and Outlook

Education is a progressive discovery of
our ignorance.

Will Durant (1885 � 1981), American
writer, historian, and philosopher.

Summary

The intention of this work was to investigate the correspondence between the kinetic
transport theory, based on the relativistic Boltzmann equation, and relativistic dissipative
hydrodynamics.
These two theories are widely accepted and applied tools for modelling the space-time

evolution of the quark-gluonic plasma produced during the early stages of heavy-ion colli-
sions at the experimental facilities RHIC and LHC. Whereas the kinetic theory allows to
model the microscopic dynamics of a system, the hydrodynamic theory is of macroscopic
nature and thus averages over the intrinsic microscopic scales. Furthermore, the hydro-
dynamic equations are obtained considering a small deviation from the equilibrium state
and thus their solutions become unreliable as the departure from equilibrium becomes
too large.
In this work possibilities of extension of the standard dissipative hydrodynamic for-

malism by Israel and Stewart were explored. The discussed extensions are inclusion of
particle production and annihilation processes into the hydrodynamic formalism, inclu-
sion of higher-order terms, neglected in the standard approach, and the construction of
a hydrodynamic formalism for a multi-component mixture. The limits of applicability of
dissipative hydrodynamic formalisms wre studied by direct comparisons of the relevant
observables with results of kinetic transport calculations. Another aspect of this work
was calculation of the shear viscosity coe�cient as a function of the microscopic cross
sections and extraction of this coe�cient from kinetic transport calculations.
The main pillars on which this work is based are publications in Refs. [32], [33], [34],

[35] and [36].
Dissipative hydrodynamic equations can be obtained from using the so-called en-

tropy principle together with balance equations for the particle �ow vector and energy-
momentum tensor. The entropy principle was used to derive the standard dissipative
hydrodynamic formalism by Israel and Stewart [40]. In scope of this formalism the en-
tropy four-current is calculated using a heuristic ansatz for the phase-space distribution
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for a non equilibrium system. The construction of the o�-equilibrium distribution func-
tion was discussed in this work in Chapter 2 in order to lay a foundation for further
calculations.

In the entropy principle based formalism, the hydrodynamic equations for dissipative
currents are obtained by applying the second law of thermodynamics to the divergence
of the entropy current, which is also referred to as entropy production. In this work, in
Chapter 3, an extended form of the entropy current from the Israel-Stewart theory was
used to obtain hydrodynamic equations, which contain terms of higher (third) order in
dissipative currents than the Israel-Stewart theory. Another extension of the standard
hydrodynamic formalism presented in this work is inclusion of particle number-changing
processes into hydrodynamic formalism. This was done using inelastic cross sections
with isotropic angle distributions and in consistency with the Boltzmann Equation based
kinetic theory. Finally, the entropy principle was applied to derive a set of dissipative
hydrodynamic equations for a multi-component system.

In Chapter 4 a formal expression for the shear viscosity coe�cient η was derived in
terms of the collision integral from the Boltzmann equation. This derivation was again
based on the entropy principle and established a direct connection between the hydro-
dynamic and kinetic theories. The obtained expression was applied in Chapter 9 to
calculate the shear viscosity to entropy density ratio of a gluonic gas using leading or-
der perturbative QCD scattering cross sections. For the values of the strong coupling
constant αs = 0.3 . . . 0.6 typical for quark-gluonic systems produced in RHIC and LHC
experiments the obtained η/s values lie within the range 0.18 . . . 0.08, in consistentcy
with the recent estimates from dissipative hydrodynamic calculations [206, 116, 204].
The obtained expression was also applied to calculate the shear viscosity coe�cients for
the components of a multi-component mixture. This calculation can be done analytically
for the special case of isotropic angle distribution, i.e. angle-independent di�erential cross
sections.

Solutions of the derived hydrodynamic equations were compared with the results of
kinetic transport calculations by the partonic cascade BAMPS [30, 41] in Chapters 10,
11 and 12. This comparisons were done for the special case of a one-dimensional boost-
invariant system, which was introduced in Chapter 5 and can be used as a simpli�ed
model for the early stage of a heavy-ion collision [45]. These comparisons demonstrated
that the standard second-order hydrodynamic formalism can be applied if η/s . 0.2
and the initial time τ0 = 0.4 fm/c. Earlier initial times require an even smaller η/s
ratio. At the same time, the third-order formalism derived in this work is applicable if
η/s . 0.4. Thus inclusion of higher-order terms extends the applicability limits of the
hydrodynamic formalism. If particle number changing processes are included into the
third-order hydrodynamic formalism, it can be considered applicable even for η/s = 0.75.
This can be explained by the fact that particle production is an additional mechanism of
cooling and thus a counter-weight to the reheating due to dissipation in the hydrodynamic
formalism.

The reason for systematic deviations between dissipative hydrodynamic and kinetic
transport results can be found in the ansatz for the o�-equilibrium distribution function,
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which is underlying the derivation of hydrodynamic equations. By extracting the particle
distributions from kinetic transport calculations on the one hand and calculating the
distribution using analytic expression on the other hand, it was demonstrated that the
heuristic analytic ansatz for the distribution function, which is used for derivation of
hydrodynamic equations, does not exactly describe the actual solution of the Boltzmann
Equation. The deviations are moderate if isotropic cross sections are used, but become
more pronounced if the perturbative QCD interactions are considered.
The obtained dissipative hydrodynamic equations for the components of a multi-

component mixture reveal an interesting feature � in a general situation they cannot be
summed up into a one-component hydrodynamic equation of the standard form known
from the Israel-Stewart [40] formalism. In the formalism presented here both the vis-
cosity coe�cients for each component and the viscosity coe�cient for the whole system
depend on the partial shear pressures. Only in the stationary limit t → ∞ the shear
viscosity coe�cients do become independent of the partial shear pressures and thus at-
tain a physical meaning. For this reason a one-component hydrodynamic formalism can
be applied to a mixture only after a certain time, which is needed to establish an e�ec-
tive one-component behaviour and depends on the intrinsic microscopic scales and initial
conditions. Whereas the one-component formalism fails to describe hydrodynamic evolu-
tion of the system as whole, evolution of each single component can be described by the
obtained multi-component equations with good accuracy, as was veri�ed by consistent
comparisons with kinetic transport results from BAMPS in Chapter 12. The �ndings
in Chapter 12 put certain constrains on the initial conditions for one-component dissi-
pative hydrodynamic formalisms. These constrains on applicability of one-component
dissipative hydrodynamics are a step towards a more detailed understanding of the early
phase of heavy-ion collisions, since the initial conditions for dissipative hydrodynamic
calculations are still unknown and the medium produced in early stages is a mixture of
quarks and gluons.

Outlook

The extensions of standard hydrodynamic formalism presented in this work are a step
towards a higher versatility of dissipative hydrodynamic as a tool to investigation of
heavy-ion phenomenology. Inclusion of thir-order terms has corrected the problem of
occurance of negative pressure in hydrodynamic calculations and helped to reduce devi-
ations between the results of hydrodynamic and kinetic transport calculations. However,
in the formalisms presented here the e�ects of heat �ow and bulk viscosity were neglected.
Their inclusion into the third-order formalism was completed just recently by di�erent
authors [95, 201]. It is important to implement the obtained thrid-order equations in a
full three dimensional hydrodynamic algorithm.
Inclusion of heat transport and bulk pressure into the multi-component hydrodynamic

formalism is a topic for future work. It is also important to modify the multi-component
hydrodynamic formalism in such a way that it can be coupled to di�erent equations of
state. This will allow to apply the multi-component hydrodynamic formalism to systems
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of massive particles, such as hadronic mixtures. In this context it is also necessary to
extract the bulk viscosity coe�cients from kinetic transport calculations, in a similar way
as was done in this work for the shear viscosity.
The ability to describe a medium with a realisitc equation of state is one of the ad-

vantages of the hydrodynamic approach. In the quasi-particle model like BAMPS the
equation of state can be modi�ed by implementing a temperature-dependent mass of the
particles. This is a challenging task, since a temperature-dependent mass also means that
evolution of each individual quasi-particle will be a�ected by the global properties of the
medium. Formally, this leads to an additional term in the Boltzmann Equation, which
than becomes th Vlasov-Boltzmann Equation. The additional Vlasov term accounts for
the e�ect of the medium on evolution of a single-particle distribution. This e�ect can be
interpreted as presence of a 'mean-�eld', which is an e�ective �eld acting on particles and
in�uencing their dynamics. Implementation of temperature-dependent mass in BAMPS
will lead to a higher versatility of this kinetic model and will help to cover yet another
gap between kinetic transport and hydrodynamic formalisms.
For the simulations of heavy-ion collisions, kinetic transport and dissipative hydrody-

namics have di�erent rages of applicability. Kinetic transport can be applied for initial
states which are more extreme than those available for hydrodynamics. However it is
important to mention that up to now there is no clarity on how the initial conditions for
dissipative hydrodynamic calculations of early stages of heavy-ion collisions should look
like. This leads to a very promising possibility to use kinetic transport calculations in
order to generate energy density, temperature, pressure and �ow velosity pro�les which
can be used as initial conditions for hydrodynamic formalisms. This can be accoplished
using the standard initial conditions of Glauber type or Color Glass Condensate, which
can be used within a kinetic transport model even at early times, at which hydrody-
namic approach might become invalid due to presence of large gradients, that cannot
be resolved by hydrodynamic equations. Also for mixtures the very early stage must be
simulated using the kinetic transport theory up to a point, where either multi-component
or standard one-component hydrodynamic calculations can be initialized.
To summarize, the ultimate goal must be to establish the kinetic transport theory as

a standard approach to simulate the early, far-from-equilibrium phase of the heavy ion
collisions and to obtain more realistic and reliable initial conditions for hydrodynamic
calculations.
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A. Components of the o�-equilibrium

distribution function in Grad's

14-moment theory.

For the calculations presented here the Eckart frame is chosen. This choice leads to a
vanishing particle �ow and the following form of the energy-momentum tensor:

Tµν = euµuν − (p+Π)∆µν + qµuν + uµqν + πµν , (A.1)

Nµ = nuµ , (A.2)

Π = −1

3
∆µνδT µν , (A.3)

qµ = uν∆
µ
λδT

νλ , (A.4)

πµν = δT 〈µν〉 . (A.5)

Using the velocity �eld four-vector uµ, an orthogonal tensorial basis can be constructed
and the moments of the equilibrium distribution can be decomposed in this basis as
follows:

Ñµν
eq =

∫
pµfeqdΓ = b10u

µ , (A.6)

T̃µν
eq =

∫
pµpνfeqdΓ = b20u

µuν + b21∆
µν , (A.7)

F̃αµν
eq =

∫
pαpµpνfeqdΓ = b30u

αuµuν + b31 (u
α∆µν + uµ∆αν + uν∆µα) . (A.8)

R̃αβµν
eq =

∫
pαpβpµpνfeqdΓ = b40u

αuβuµuν +

+ b41

(
uαuβ∆µν + uαuµ∆βν + uαuν∆µβ + uβuµ∆αν + uβuν∆µα + uµuν∆αβ

)
+

+ b42

(
∆αβ∆µν +∆µα∆βν +∆αν∆µβ

)
. (A.9)

The coe�cients bij can be obtained by taking appropriate projections of the integrals in
Eqs. (A.6) � (A.9). Using the Boltzmann distribution for massless particles, Eq. (6.13),



142A. Components of the o�-equilibrium distribution function in Grad's 14-moment theory.

and the identities ∆µ
µ = 3, uµpµ = p0 and pµp

µ = 0 one obtains:

b10 = uµÑ
µ
eq =

∫
p0feqdΓ = n (A.10)

b20 = uµuν T̃
µν
eq =

∫
p20feqdΓ = e (A.11)

b21 =
1

3
∆µν T̃

µν
eq = −1

3

∫
p20feqdΓ = −1

3
e (A.12)

b30 = uαuµuνF̃
αµν
eq =

∫
p30feqdΓ = 4eT (A.13)

b31 =
1

3
uα∆µνF̃

αµν
eq = −1

3

∫
p30feqdΓ = −4

3
eT (A.14)

b40 = uαuβuµuνR̃
αβµν
eq =

∫
p40feqdΓ = 20eT 2 (A.15)

b41 =
1

3
uαuβ∆µνR̃

αβµν
eq = −1

3

∫
p40feqdΓ = −20

3
eT 2 (A.16)

b42 =
1

15
∆αβ∆µνR̃

αβµν
eq =

1

15

∫
p40feqdΓ =

4

3
eT 2 (A.17)

(A.18)

The non-ideal parts δT µν and δNµ of the energy-momentum tensor and the particle
�ow vector can be written in terms of Ñµ

eq, T̃
µν
eq , F̃

αµν
eq and R̃αβµν

eq according to Eqs. (2.31)
and (2.30). Without loss of generality one can assume the following form for the tensors
εµν , εµ and ε:

εµν = A2(3uµuν −∆µν)Π− 1

2
B1 (uµqν + uνqµ) + C0πµν (A.19)

εν = A1uνΠ−B0qν (A.20)

ε = A0Π (A.21)

In the latter set of equations εµν was assumed to be traceless, since its trace can always
be absorbed into the scalar ε. The coe�cients Ai, Bi, Ci are to be determined yet. To do
so one �rst inserts (A.19) � (A.21) into the decompositions of δNµ and δT µν , (2.30) and
(2.31). Then one can insert δNµ and δT µν into the de�nitions of the dissipative �elds
(A.3) � (A.5). In addition one will have to use the Landau matching coditions

uµuνδT
µν = 0 , (A.22)

uµδN
µ = 0 , (A.23)

and the constitutive equation of Eckart's frame

∆ν
µN

µ = 0 . (A.24)

The sets of equations to be solved are:
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For A0, A1, A2 (after inserting δT µν into the de�nition of Π and using the Landau
conditions)

Π+
1

3
∆µνδT µν(bij , ε, εµ, εµν) = 0 ,

uµuνδT
µν(bij , ε, εµ, εµν) = 0 ,

uµδN
µ(bij , ε, εµ, εµν) = 0 ,

For B0, B1 (after inserting δT µν into the de�nition of qµ and using the constitutive
equation of Eckart's frame)

qα + uµ∆
α
ν δT

µν(bij , ε, εµ, εµν) = 0 ,

∆α
µδN

µ(bij , ε, εµ, εµν) = 0 ,

For C0 (after inserting δT µν into the de�nition of πµν):

πµν − δT 〈µν〉(bij , ε, εµ, εµν) = 0 (A.25)

It is now a matter of straight-forward algebraic operations to obtain the expressions
for the coe�cients Ai, Bi, Ci, which prove to be complicated functions of bij :

A0 = −
(
b230 − b30b31 + b20b40 − b20b41

)
×

( b21b
2
30 − b20b30b31 − b21b30b31 + b20b

2
31 + b20b21b40

+ b10b31b40 − b220b41 − b20b21b41 − b10b30b41 − b10b31b41 +
5

3
b220b42 +

5

3
b10b30b42 )

−1

(A.26)

A1 = − (b20b30 − b20b31 − b10b40 + b10b41)×
( b21b

2
30 − b20b30b31 − b21b30b31 + b20b

2
31 + b20b21b40

+ b10b31b40 − b220b41 − b20b21b41 − b10b30b41 − b10b31b41 +
5

3
b220b42 +

5

3
b10b30b42 )

−1

(A.27)

A2 = −
(
b220 + b10b30

)
×

( − 3b21b
2
30 + 3b20b30b31 + 3b21b30b31 − 3b20b

2
31 − 3b20b21b40

− 3b10b31b40 + 3b220b41 + 3b20b21b41 + 3b10b30b41 + 3b10b31b41 − 5b220b42 − 5b10b30b42 )
−1

(A.28)

B0 = − b31
b231 + b21b41

(A.29)

B1 = − b21(
b231 + b21b41

) (A.30)

C0 =
1

2b42
(A.31)
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B. Entropy current up to third order in

shear stress tensor.

In this Appendix the entropy current is derived up to third order in shear tensor using
Grad's ansatz for the o�-equilibrium distribution function and kinetic de�nition of the
entropy.
The entropy current sµ can be calculated according to the kinetic de�nition:

sµ = −
∫

dΓpµf(ln f − 1) . (B.1)

In Grad's approach the o�-equilibrium distribution function f(x, p) is expanded up to
linear order in deviations from equilibrium (comp. discussion in Section 2.4.1):

f = f0(1 + φ) (B.2)

Using the linear order approximation for the distribution function we expand the loga-
rithm in Eq. (B.1) up to third order in φ and obtain

sµ ≈ −
∫

dΓf0p
µ

(
ln f0 − 1 + φ+ φ ln f0 +

φ2

2
− φ3

6

)
= sµ0 + sµ1 + sµ2 + sµ3 . (B.3)

with

sµ0 = −
∫

dΓf0p
µ (ln f0 − 1) ,

sµ1 = −
∫

dΓf0p
µ (φ+ φ ln f0) ,

sµ2 = −
∫

dΓf0p
µφ

2

2
,

sµ3 =

∫
dΓf0p

µφ
3

6
.

The 0th order contribution is the equilibrium entropy current in kinetic equilibrium
and is given for massless Boltzmann gas by[33]

sµ0 = s0u
µ = (4n− n lnλ)uµ (B.4)

with the fugacity λ = n
neq

. The �rst-order contributions vanish due to the properties of
φ, as discussed in Ref. [33].
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For the second-order contribution sω2 one obtains

sω2 = −1

2

∫
dΓf0p

ωφ2 = −1

2
C2
0

∫
dΓ(πµνp

µpν)2pωf0 =

= −1

2
C2
0πµνπαβ

∫
pµpνpαpβpωf0 = −1

2
C2
0πµνπαβIµναβω , (B.5)

with

Iµναβω =

∫
dΓpµpνpαpβpωf0 . (B.6)

The moment Iµναβω of the equilibrium distribution can be decomposed into orthogonal
parts with thermodynamic coe�cients ank as follows:

Iµναβω = Iµναβω
1 + Iµναβω

2 + Iµναβω
3 =

= a50u
µuνuαuβuω +

+ a51

(
∆µνuαuβuω + permutations

)
+

+ a52

(
∆µν∆αβuω + permutations

)
.

We realize that the products πµνπαβIµναβω
1 and πµνπαβIµναβω

2 vanish because shear
tensor is traceless and component-wise orthogonal to the �ow velocity, παβuα = 0 and

παβ∆
αβ = 0. Thus the only relevant contribution is Iµναβω

3 , though here all permutations
containing explicitly uµ, uν , uα, uβ will vanish immediately after contraction with the
shear tensor due the orthogonality properties discussed above. Thus the relevant parts
of Iµναβω

3 are

Iµναβω
3 ≡ a52 · (∆µν∆αβuω +∆µα∆βνuω +∆µβ∆ανuω) . (B.7)

In order to obtain a52 one uses Eq. (B.7) to calculate the projection

uω∆µν∆αβIµναβω = uω∆µν∆αβIµναβω
3 = a52 ·

(
32 + 3 + 3

)
= 15a52. (B.8)

Note, that products involving Iµναβγδω
1 . . . Iµναβγδω

2 vanish in this contraction because of
∆µνuν = 0. On the other hand one obtains using Eq. (B.6)

∆µν∆αβuωIµναβω =

∫
dΓ (∆µνp

µpν)2 uαp
αf0 =

∫
dΓp50f0 . (B.9)

which leads to

a52 =

∫
dΓp50f0
15

= 8eT 3 . (B.10)

If the decomposition Eq. (B.7) is contracted with πµνπαβ only the last 2 summands
contribute and give identical results. One obtains

πµνπαβIµναβω = 2 · a52 · παβπαβuω. (B.11)
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Using the value of C0 we realize that the contribution to the entropy density second order
in shear stress is

sω2 = −9

8

1

eT
παβπ

αβuω . (B.12)

This corresponds to the expression in Eq. (3.24) with β2 =
9
4e which is the value obtained

by Israel and Stewart[40].
Now I evaluate the third-order contribution in Eq. (B.3), which is analogous to the

calculation of the second-order term.

sω3 =
1

6

∫
dΓf0p

ωφ3 =
1

6
C3
0

∫
dΓ(πµνp

µpν)3pωf0 =

=
1

6
C3
0πµνπαβπγδ

∫
pµpνpαpβpγpδpωf0 =

1

6
C3
0πµνπαβπγδIµναβγδω (B.13)

with

Iµναβγδω =

∫
dΓpµpνpαpβpγpδpωf0 . (B.14)

The moment Iµναβγδω of the equilibrium distribution is decomposed into orthogonal
parts with thermodynamic coe�cients ank as follows:

Iµναβγδω = Iµναβγδω
1 + Iµναβγδω

2 + Iµναβγδω
3 + Iµναβγδω

4 =

= a70u
µuνuαuβuγuδuω +

+ a71

(
∆µνuαuβuγuδuω + permutations

)
+

+ a72

(
∆µν∆αβuγuδuω + permutations

)
+

+ a73

(
∆µν∆αβ∆γδuω + permutations

)
. (B.15)

Like in the derivation of the second-order component, we realize that the products
πµνπαβπγδIµναβγδω

1 . . . πµνπαβπγδIµναβγδω
3 vanish because shear tensor is traceless and

component-wise orthogonal to the �ow velocity. Thus the only relevant contribution is
now Iµναβγδω

4 , though also here some permutations vanish if contracted with the shear
tensor. For instance, all permutations containing explicitly uµ, uν , uα, uβ , uδ, uγ will van-
ish immediately after contraction as discussed above. The relevant parts of Iµναβγδω

4

are

Iµναβγδω
4 ≡ a73 · (∆αβ∆γδ∆µνuω +∆αγ∆βδ∆µνuω +∆αδ∆γβ∆µνuω

+ ∆µα∆γδ∆βνuω +∆αν∆γδ∆µβuω +

+ ∆αβ∆µγ∆δνuω +∆αβ∆γν∆µδuω +

+ ∆αδ∆γν∆µβuω +∆αν∆γβ∆µδuω +

+ ∆µα∆γν∆βδuω +∆αδ∆µγ∆βνuω +

+ ∆αγ∆βν∆µδuω +∆αν∆µγ∆βδuω +

+ ∆αγ∆µβ∆δνuω +∆µα∆γβ∆δνuω) . (B.16)
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The total number of relevant permutations is 15. To calculate the thermodynamic coef-
�cient a73 one evaluates the contraction ∆µν∆αβ∆γδuωIµναβγδω using Eq. (B.16) (note,

that products involving Iµναβγδω
1 . . . Iµναβγδω

3 vanish in this contraction):

∆µν∆αβ∆γδuωIµναβγδω = a73 · (33 + 6 · 32 + 8 · 3) = 105a73 (B.17)

On the other hand one can use Eq. (B.14) to obtain

∆µν∆αβ∆γδuωIµναβγδω =

∫
dΓ (∆µνp

µpν)3 uαp
αf0 = −

∫
dΓp70f0 . (B.18)

One thus obtains for a73

a73 = −
∫
dΓp70f0
105

= 192eT 5 . (B.19)

Now the product πµνπαβπγδIµναβγδω = πµνπαβπγδIµναβγδω
4 can be completely evaluated.

If the decomposition Eq. (B.16) is contracted with πµνπαβπγδ only the last 8 summands
contribute and give identical results. One obtains

πµνπαβπγδIµναβγδω = 8 · a73 · παβπβ
σπ

ασuω . (B.20)

Thus the contribution to the entropy density third order in shear stress is

sω3 = −9

2

1

e2T
παβπ

β
σπ

ασuω . (B.21)

This corresponds to the expression in Eq. (3.24) with β2 = 9
4e and α = −8

9 which is
consistent with the values in Eqs. (6.22) and (6.23).
Up to third order in shear stress the entropy current calculated directly using Grad's

approximation thus reads

sµ = s0 −
9

8

1

eT
παβπ

αβuµ − 9

2

1

e2T
παβπ

β
σπ

ασuµ . (B.22)
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C. Hydrodynamic equations for

one-dimensional boost-invariant

systems

I consider longitudinally expanding boost-invariant systems of massless Boltzmann par-
ticles (gluons). The equations are given in the local rest frame of the �uid.

C.1. Systems with conserved particle number

ṅ = −n

τ

ė = −4

3

e

τ
+

π

τ

�rst-order: π =
4

3

η

τ

second-order: π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ

third-order: π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
− 3

π2

eτ

τπ =
9η

2e

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)



150 C. Hydrodynamic equations for one-dimensional boost-invariant systems

C.2. Systems with particle creation and annihilation

processes

Here the case of isotropic inelastic cross section is considered, σ23 = σ23(T ).

ṅ = −n

τ
+

1

2
n2 (1− λ)σ23

ė = −4

3

e

τ
+

π

τ

�rst-order: π =
4

3

η

τ

second-order: π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
− 1

4
πn (1− λ)σ23

third-order: π̇ = − π

τπ
− 4

3

π

τ
+

8

27

e

τ
− 3

π2

eτ
− 1

4

(
1 + 3

π

e

)
πn (1− λ)σ23

τπ =
9η

2e

λ =
n

neq
=

n
16
π2T 3

T =
e

3n

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

The following scenarios of chemical evolution are considered:

• Instantaneous chemical equilibration: Eqs. (C.9)-(C.10) coupled to Eq. (C.8) with
λ = 1.

• Chemical equilibration via particle production and annihilation with �nite inelastic
collision rate: Eqs. (C.9)-(C.11) coupled to Eqs. (C.7) and (C.8) with λ = n

16
π2 T

3

and T = e
3n .

The case of instantaneous chemical equilibration is not considered within the third-order
formalism since it requires an in�nitely large inelastic collision rates corresponding to
in�nitely small dissipative corrections.
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C.3. System of two components with conserved particle

numbers.

A system consisting of two components with isotropic elastic cross sections is considered.

n = n1 + n2

e = e1 + e2

π = π1 + π2

ṅ1 = −n1

τ

ṅ2 = −n2

τ

ė1 = −4

3

e

τ

n1

n
+

π

τ

n1

n

ė2 = −4

3

e

τ

n2

n
+

π

τ

n2

n

π̇1 = −5

9
π1n1σ11 −

7

9
π1n2σ12 +

2

9
π2n1σ12 −

4

3

π1
τ

+
8

27

e1
τ

π̇2 = −5

9
π2n2σ22 −

7

9
π2n1σ12 +

2

9
π1n2σ12 −

4

3

π2
τ

+
8

27

e2
τ

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)
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D. Evolution equation for particle

density in presence of inelastic

processes.

In this appendix I derive the evolution equation for the particle number in presence of
particle production and annihilation processes.

∂µN
µ =

∫
d3p

(2π)3E
C[f ] =

∫
d3p

(2π)3E
(C22[f ] + C23[f ]) = J

In the following, the phase space distribution function f(x, p) is denoted by fi in case
it is related to the particle with the four-momentum pi. Integrating the inelastic part
C23[f ], given in Eq. (7.7), over momentum p1 one obtains∫

d3p

(2π)3E
C23 =

1

2

∫
dw1dw2dw3

1

2

∫
dw′

1dw
′
2f

′
1f

′
2|M1′2′→123|2(2π)4δ(4)(p′1 + p′2 − p1 − p2 − p3) +

+

∫
dw1dw2

1

6

∫
dw′

1dw
′
2dw

′
3f

′
1f

′
2f

′
3|M1′2′3′→12|2(2π)4δ(4)(p′1 + p′2 + p′3 − p1 − p2)−

− 1

2

∫
dw1dw2dw3

1

2

∫
dw′

1dw
′
2f1f2f3|M123→1′2′ |2(2π)4δ(4)(p1 + p2 + p3 − p′1 − p′2)−

−
∫

dw1dw2
1

6

∫
dw′

1dw
′
2dw

′
3f1f2|M12→1′2′3′ |2(2π)4δ(4)(p1 + p2 − p′1 − p′2 − p′3)

(D.1)

with the integration measure dw = d3p
(2π)32E

. The �rst and the last summands contain

an integration over the transition matrix element squared |M2→3|2 and the momenta of
the �nal three-particle state. This integration can be absorbed into the de�nition of the
total cross section σ23 of an inelastic two-particle process[76, 41]:

2 · s · σ23 ≡
1

3!

∫
dw′

1dw
′
2dw

′
3|M12→1′2′3′ |2(2π)4δ(4)(p1 + p2 − p′1 − p′2 − p′3) (D.2)

with s = p1µp
µ
2 = E1 · E2 − ~p1 · ~p2 being the invariant center of mass energy of the two

colliding particles. The prefactor 1/3! indicates that the three particles in the �nal state
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are identical and thus all possible 3! permutations have to be taken into account. The
origin of other numerical prefactors in front of the integrals in the collision term was
already discussed after Eqs. (7.6) and (7.7) in Section 7.1. In the remaining part of
the �rst and the last summands in Eq. (D.1) the relative velocity of the two colliding
particles can be introduced

vrel =
s

2E1E2
. (D.3)

With Eq. (D.3) the �rst and the last summand can be written as

1

2

∫
dw1dw2dw3

1

2

∫
dw′

1dw
′
2f

′
1f

′
2|M1′2′→123|2(2π)4δ(4)(p′1 + p′2 − p1 − p2 − p3)−

−
∫

dw1dw2
1

6

∫
dw′

1dw
′
2dw

′
3f1f2|M12→1′2′3′ |2(2π)4δ(4)(p1 + p2 − p′1 − p′2 − p′3) =

=
1

2

∫
d3p1d

3p2f1f2vrelσ23 ≡
1

2
n2〈vrelσ23〉2 . (D.4)

In the latter equation the angular brackets denote an average over all possible multiplets
(pairs, triplets) of particles (c.f. Refs. [41, 127, 35]):

〈Q〉m ≡ 1

nm

∫
d3p1
(2π)3

. . .
d3pm
(2π)3

f1 . . . fmQ . (D.5)

Analogously, the second and the third summands in Eq. (D.1) can be rewritten absorbing
integration over the �nal two-particle states into the de�nition

I32 =
1

2

∫
dw1dw2|M1′2′3′→12|2(2π)4δ(4)(p′1 + p′2 + p′3 − p1 − p2) . (D.6)

One then obtains∫
dw1dw2

1

6

∫
dw′

1dw
′
2dw

′
3f

′
1f

′
2f

′
3|M1′2′3′→12|2(2π)4δ(4)(p′1 + p′2 + p′3 − p1 − p2)−

− 1

2

∫
dw1dw2dw3

1

2

∫
dw′

1dw
′
2f1f2f3|M123→1′2′ |2(2π)4δ(4)(p1 + p2 + p3 − p′1 − p′2) =

− 1

6

∫
d3p1d

3p2d
3p3f1f2f3

I32
8E1E2E3

≡ 1

6
n3〈 I32

8E1E2E3
〉3 . (D.7)

Putting together Eqs. (D.4)-(D.7) one thus can write∫
C23[f(x, p)]

d3p

(2π)3E
=

1

2
n2〈vrelσ23〉 −

1

6
n3〈 I32

8E1E2E3
〉3 . (D.8)

With the de�nitions of the inelastic collision rates

R23 = n〈vrelσ23〉2 , R32 =
1

2
n2

〈
I32

8E1E2E3

〉
3

, (D.9)
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one thus obtains a rate equation for the divergence of the particle number current:

∂µN
µ =

1

2
nR23 −

1

3
nR32 . (D.10)

In Eq. (D.5) fi represent the o�-equilibrium phase space distribution, which in this
work is approximated by introducing a small deviation from the isotropic equilibrium
distribution f0i:

fi = f0i (1 + φi) (D.11)

with f0 ≡ gλe−E/T . g denotes the degeneracy factor and is 16 for applications presented
in this work. λ is the fugacity, describing deviations from chemical equilibrium. The
deviation φi describes deformation of the momentum space distribution.
In order to obtain an evolution equation for the particle number in a anisotropic system,

the rates R23 and R32 have to be evaluated using the approximated distribution function.
In particular, one has to evaluate the averages 〈. . .〉2 and 〈. . .〉3. Inserting Eq. (D.11)
into the de�nition Eq. (D.5, one obtains

〈vrelσ23〉2 =
1

n2

∫
d3p1
(2π)3

d3p2
(2π)3

s

2E1E2
σ23f01f02 (φ1 + φ2 + φ1φ2 + 1) =

=
1

n2

1

(2π)6

∫
d3p1
E1

d3p2
E2

σ23f01f02( φ1︸︷︷︸m2a
+ φ2︸︷︷︸m2b

+φ1φ2︸︷︷︸m2c
+ 1︸︷︷︸m2d

) · (E1E2 − px1px2 − py1py2 − pz1pz2)

(D.12)

〈 I32
8E1E2E3

〉3 =
1

n3

1

8 · (2π)9

∫
d3p1
E1

d3p2
E2

d3p3
E3

I32f01f02f03 ×

×

 φ1︸︷︷︸m3a
+ φ2︸︷︷︸m3b

+ φ3︸︷︷︸m3c
+φ1φ2︸︷︷︸m3d

+φ2φ3︸︷︷︸m3e
+φ1φ3︸︷︷︸m3f

+φ1φ2φ3︸ ︷︷ ︸m3g
+ 1︸︷︷︸m3h

 .

(D.13)

The total cross section σ23 and I32 can be put in front of the integral. Due to symmetry
of the indices, there three groups of identical integrals � these are integrals containing
the following terms:m2a and m2b ;m3a , m3b and m3c ;m3d , m3e and m3f .
First, it is necessary to evaluate the integrals m2a and m3a . This will be done in the
following.

The equilibrium deviation φi needed to evaluate m2a and m3a is modeled using Grad's
method, discussed in chapters 2.4.1 and 8. In particular I will employ its one-dimensional
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form, given in Eq. (8.1). Evaluating the integral containing m2a one obtains

m2a =
g2λ2

n2(2π)6
σ23

π̄

16eT 2

∫
dpT1dpT2dϕ1dϕ2dy1dy2p

4
T1p

2
T2e

−pT1/T cosh y1e−pT2/T cosh y2 ×

× (cosh y1 cosh y2 − cosϕ1 cosϕ2 − sinϕ1 sinϕ2 − sinh y1 sinh y2) ·
(
sinh2 y1 −

1

2

)
= 0 .

(D.14)

By analogy to Eq. (D.14), parts m2b and m2c evaluate to 0 as well. The reason for this are
the properties of the deviation functions φ1 and φ2, which have to satisfy the matching
conditions Eqs. (2.36) and (2.37), as discussed in section 2.4.2, and which are symmetric,
due to the particular form Eq.(8.1) used here, under the transformation ~p → −~p. The
only non-vanishing parts of Eq. (D.12) is the part which does not contain either φ1 or
φ2. Thus, Eq. (D.12) reduces to averaging over the equilibrium distribution functions
f0i of the two incoming particles.
The term m3a describes a three-particle initial state. Evaluating it one obtains

m3a =
1

8

π̄

eT 2

g3λ3

(2π)9

∫
dpT1dy1dϕ1p

3
T1e

−pT1/T cosh y1

(
sinh2 y1 −

1

2

)∫
dΓ2dΓ3f02f03 = 0 .

Note that all integrals in Eq. (D.13) factorize into products of three independent in-

tegrals. Since m3a vanishes, seven of eight integrals, in particular m3a - m3g , in Eq. (D.13)
vanish as well. The non-vanishing part of Eq. (D.13) does not contain the deviations
functions φi from Grad's approximation but only f0i.
Thus, Eq. (D.13) reduces, just like Eq. (D.12), to averaging over the equilibrium

distribution functions f0i of the three incoming particles. I.e. we obtain the identity∫
d3p

(2π)3E
C23[fGrad] =

d3p

(2π)3E
C23[f0] . (D.15)

Evaluating the non-vanishing parts of Eqs. (D.12) and (D.13) using the equilibrium
distribution for gluons f0 = 16λe−E/T one obtains

∂µN
µ =

∫
d3

(2π)3E
C23[f0] = 128

λ2T 6

π4
σ23 −

32

3

λ3T 6

π6
I32 . (D.16)

With isotropic cross sections the integrals in I32 can be evaluated analytically and one
obtains for a gluon gas[30, 41]

I32 = 12π2σ23 . (D.17)

Using Eq. (D.16) together with (D.17) one thus obtains the evolution equation for the
particle density for the Bjorken scenario considered in this work:

∂µN
µ = ṅ+

n

τ
=

1

2
n2(1− λ)σ23 . (D.18)

which is the same as in Refs. [89, 88, 87, 174, 182]. The kinetic o�-equilibrium ef-
fects, corresponding to the deviation function φ(x, p) do not explicitly a�ect the particle
production.
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E. Shear viscosity coe�cients for a

multi-component �uid.

In this Chapter the integrals in Eq. (4.12) will be evaluated assuming a one-dimensional
setup. Let us consider a system with isotropic momentum distribution in transverse xy
plane and anisotropy in longitudinal z dirction. The shear stress tensor is then diagonal

πµν = diag(0, π/2, π/2,−π) , (E.1)

with π denoting the shear pressure. Without the heat and bulk contributions the o�-
equilibirum distributions can be written in local rest frame as

fi(x, p) = f0,i (1 + φi(x, p)) = λidie
−Ei

(
1 + C0,iπi(p

2
z −

1

2
p2T )

)
. (E.2)

Two components � which will be denoted as Flavor a and Flavor b � and only elastic
binary processes will be considered since we have used particle number conservation
for all components to obtain Eq. (4.12). We will calculate ηa here. Using the binary
collision term Cbin[..] [30] one now can write contraction of its second moment with the
shear tensor as follows:

πµν

∫
pµpν

(
Cbin[fa] + Cbin[fa, fb]

)
d3p

E(2π)3
=

= π

∫
(p2z −

1

2
p2T )

(
Cbin[fa] + Cbin[fa, fb]

)
d3p

E(2π)3
=

=

∫
(p21,z −

1

2
p22,T )dΓ1dΓ2 ·

1

νaa

∫
dΓ′

1dΓ
′
2f

′
a,1f

′
a,2|M1′2′→12|2(2π)4δ(4)(p1 + p2 − p′1 − p′2)−

−
∫

(p21,z −
1

2
p21,T )dΓ1dΓ2 ·

1

νaa

∫
dΓ′

1dΓ
′
2fa,1fa,2|M12→1′2′ |2(2π)4δ(4)(p1 + p2 − p′1 − p′2)+

+

∫
(p21,z −

1

2
p21,T )dΓ1dΓ2 ·

1

νab

∫
dΓ′

1dΓ
′
2f

′
a,1f

′
b,2|M1′2′→12|2(2π)4δ(4)(p1 + p2 − p′1 − p′2)−

−
∫

(p21,z −
1

2
p21,T )dΓ1dΓ2 ·

1

νab

∫
dΓ′

1dΓ
′
2fa,1fb,2|M12→1′2′ |2(2π)4δ(4)(p1 + p2 − p′1 − p′2) .

(E.3)

with dΓ ≡ d3p/(2E)/(2π)3. The factors νaa = 2 and νab = 1 account for the fact that
particles are indistinguishable in case of two identical Flavors and distinguishable in case
their Flavors are di�erent.
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Now the distribution functions fa(λa, ea, πa, T, p
µ) and fb(λb, eb, πb, T, p

µ) must be in-
serted into Eq. (E.3). In the integrals expressions of the following from will appear:

I ≡
∫ ∫

dΓ1dΓ2 · g(p′1)|M1′2′→12|2 · δ(4)(p1 + p2 − p′1 − p′2) (E.4)

These integrals can be transformed to the following form [76, 212]:

I =
2sν

4π

∫
g(p′1TR)

dσ22
dΩ∗ dΩ

∗ . (E.5)

In the latter equation p′1TR denotes Lorentz transformation from the center-of-mass (CM)
frame of two particles with four-momenta p1 and p2 into the lab frame. This transfor-
mation is given by the Loretz faktor ~β = (~p1 + ~p2)/(E1 + E2). In the CM frame the

momentum p′1 is given by p′1 =
√
s
2 (1, cos θ∗ cosφ∗, cos θ∗ sinφ∗, sin θ∗), with

√
s being the

center-of-mass energy of the colliding particles, s = (p1+ p2)
2. The integral (E.5) can be

evaluated if the di�erental cross section dσ22/dΩ is momentum independent. This means
that the scattering angle is isotropically distributed.. Here only this type of scattering
processes is considered.
For the trivial case g(p′1) = 1 one obtains I = 2sνσ22. In case of non-trivial g(p′1)

the integral I additionally depends on four-momenta p1 and p2, which are relevant for
evaluation of the remaining integrals in Eq. (E.3).
After all integrals are solved in Eq. (E.3) one obtains by inserting (E.3) into (4.12) the

following expression for the shear viscosity coe�cient of component a:

ηa = T

(
5

6
σaa +

7

6

nb

na
σab −

1

3

πb
πa

σab

)−1

. (E.6)

This result, reported in Refs. [201] and [36] is only valid for systems with binary collision
processes and isotropic scattering angle distribution.
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