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Abstract

Understanding of near-threshold pion production is of significant importance since it allows a
direct test of chiral EFT, probes NN dynamics at intermediate energies and provides access
to isospin violation in few-nucleon processes.

It has been known since years that neutral pion production in pp — ppr® is the most
challenging process since the experimental cross-section in this channel is suppressed by more
than an order of magnitude, as compared to the charged channels near threshold. The experi-
mental evidence is fully in line with the chiral suppression of the leading production operators
in this channel and the important role of higher order effects, especially chiral loops.

We present the results of the full pion production operator near threshold calculated up-to-
and-including next-to-next-to-leading order (NNLO) in chiral effective field theory. We include
explicit Delta degrees of freedom and demonstrate that they provide essential contribution
required to understand neutral pion production data. Analysis of chiral loops at NNLO reveals
new mechanisms which are important, but haven’t been considered so far.

We perform a complete calculation of charge symmetry breaking effects for the reaction
pn — dr¥ at leading order in chiral perturbation theory. A new leading-order operator is
included. From our analysis we extract (Sm?\t]r, the strong contribution to the neutron—proton
mass difference. The value obtained, dm3* = (1.5 £ 0.8 (exp.) = 0.5 (th.)) MeV, is consistent
with the result based on the Cottingham sum rule and modern Lattice simulations. This
agreement provides a non—trivial test of our current understanding of the chiral structure of
QCD.

The methods developed in this work can be helpful in the study of charge symmetry

breaking in dd — an®.
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Introduction

Strong interaction is one of four fundamental interactions in nature. It describes processes
inside nucleus and its constituents. It reveals itself at very small distances of the order of
1-3 femtometers (fm). Depending on the energy scale, strong interactions have different
manifestations.

At high energies, which can be reached, for example, in cosmic rays or in powerful ac-
celerators, strong interactions can be described in terms of interactions between quarks and
gluons. The theory which describes strong interactions in the Standard Model is called quan-
tum chromodynamics (QCD). Due to asymptotic freedom [GWT73, [Pol73], QCD-equations at
high energy can be solved perturbatively, leading to very accurate predictions.

At lower energies typical for a daily life (e.g. nuclei in the atoms of surrounding objects),
one talks about strong interactions between hadrons: baryons and mesons. In this regime,
which is called the regime of confinement, strong interactions are not yet well understood.
QCD equations are still valid, but perturbative methods used to solve them at high energies
are not applicable in this region. The solution of QCD in this energy regime requires devel-
opment of special nonperturbative methods, such as lattice QCD, phenomenological models
and effective field theories.

Understanding of low-energy interactions between nucleons — the lowest mass baryons
— is very important for understanding nuclei and the surrounding matter, which is formed
from nuclei. This is especially important given the fast progress in developments of nuclear
lattice simulations a new method to study nuclei and their properties from the first principles
on the lattice of the finite volume [EKLMII] [EKL"13| [EKL"14|. The key ingredient for this
approach is the theory of nuclear forces, in particular the theory of NN interactions.

Nucleon-nucleon interactions are classified according to their range. Short-range inter-
actions correspond to distances below 1 fm, intermediate-range correspond to 1-2 fm, and
long-range to distances above 2 fm.

Nucleon-nucleon dynamics at low energy is significantly constrained by chiral symmetry
of QCD. Thus, it is natural to use an effective field theory (EFT) framework based on chiral
symmetry to study low-energy NN interactions [Wei90), (ORvK94, [ORvK96, EHMO09, Epe06].
Chiral EFT produces model-independent predictions, which can be systematically improved
by calculating higher order terms in low momentum expansion. Chiral EFT explicitly takes
into account long- and intermediate-range interactions. Short-range effects are taken into
account implicitly through a series of contact interactions with the corresponding low-energy
constants. Chiral EFT was successfully applied to many processes, including pion-pion, pion-
nucleon, and nucleon-nucleon interactions below pion production threshold.

The goal of this thesis is to make a step towards understanding of NN dynamics at inter-
mediate energies where a pion can be produced. Pion production in nucleon-nucleon collisions
is interesting for several reasons:

e The reaction NN — NN is the first inelastic channel of NN interaction, thus it is
essential for understanding intermediate-range NN dynamics.

e Despite extensive phenomenological and chiral EFT studies of NN — NN, mech-
anisms of pion production are still not really understood, see review articles [Han04]
BHM14]. While various phenomenological models can describe data equally well using



different essentially short-range mechanisms, it is still unclear which particular mecha-
nisms are important. Furthermore, the role of intermediate-range effects that contain
important long-range contributions (such as two-pion-exchanges) was not studied at all
in phenomenological calculations.

e Pion production is an extremely useful tool to study charge symmetry breaking (CSB)
— a special kind of isospin violation in QCD. Specifically, in the pn — dr® channel,
CSB effects are very pronounced. Observables in this channel can be used to extract the
important information about the proton-neutron mass difference, which is also a CSB
effect.

e Pion production can be used as a test ground for chiral EFTs at the energies above pion
mass. Since pion production involves relatively large momentum (required to produce a
pion), a modification of the standard chiral expansion is needed to properly account for
the new scale. The important goal is then to demonstrate that the modified expansion
is convergent, that is that the theory has predictive power. It can be shown that this
is indeed the case for NN — NNm [BHMI14]. Thus, pion production can be used to
develop methods to study reactions with a relatively large transferred momentum within
chiral EFT framework.

e The process NN — NN is also an important building block for many other low-energy
processes like:

— Three-nucleon forces since the leading short-range operator in, e.g., pd — pd scat-
tering provides also an important contribution to p-wave pion production [BHM14}
BEHT™09, HvKMO00, ENG™02, [EHM09, METT, [GQNQ9].

— md-scattering at low energies where NN — N N drives the strength of the impor-
tant dispersive correction due to td = NN — wd [LBHT07, BHH" 11a, BHH"11b].

— CSB in dd — a7, the reaction which is not allowed in the isospin limit.

The reaction NN — NN7 has been extensively studied both theoretically and exper-
imentally over the past decades. However, the near-threshold regime is still not yet fully
understood. After the first high-quality data for pp — ppr® [MHNT92] became availableﬂ
it quickly became clear that the original models failed to reproduce the new data. For ex-
ample, the model of Ref. [KR66] fell short by a factor of two for the reaction pp — dr™
and by an order of magnitude for pp — ppr®. Various attempts were made to identify the
phenomenological mechanisms responsible for this discrepancy.

The first theoretical paper to explain quantitatively the cross section pp — ppr® was
Ref. [LR93|]. The new contribution in |[LR93] originated from the short ranged, irreducible
currents constructed directly from the nucleon-nucleon potential. A phenomenological inter-
pretation of this mechanism was provided in Ref. [HMG94|, where the exchange of heavy
mesons (mostly o and w) followed by a pion emission via a nucleon-antinucleon pair (the so-
called z-mechanism) was calculated. The mechanism was also shown to provide the missing
strength for pp — dn™ in Refs. [Hor93, Nis96]. An alternative mechanism is based on the

! Further experimental data can be found in, e.g., the review article [Han04], with the latest measurements
in Refs. [T712, D712, [D*13].



pion-nucleon rescattering diagram where the off-shell pion-nucleon amplitude plays a crucial
role. It is well-known that the isoscalar pion nucleon scattering length is very small — see
Refs. [BHH"11b, BHH" 11a] for its most recent determination — as a result of a cancellation
of individually sizable terms which have different energy dependences. It therefore appeared
natural that in the off-shell kinematics relevant for the pion production reaction the ampli-
tudes are significantly enhanced. This mechanism was also shown to be capable of describing
the experimental data in both pp — ppr® [HO95, HHR.F95| as well as pp — dr* [HHHT 98] re-
actions. At this point there was no way to decide which of the mechanisms described captures
the correct physics.

Since pion interactions are largely controlled by the chiral symmetry of the strong interac-
tion, one might naturally expect that chiral perturbation theory (ChPT) provides the proper
tool to resolve the above mentioned discrepancy. However, the use of the standard ChPT
power counting, which is based on the assumption that all relevant momenta are effectively of
the order of the pion mass, was not very successful. The first calculations in this framework
were done at tree level up to N2LO for both pp — ppr® [CEMvK96, [PMMT96| [SLMK97]
as well as for pp — dr™ [dRMvKO0, HHH'98]. These studies revealed, in particular, that
the discrepancy between theory and experiment increases for the neutral channel due to a
destructive interference of the direct pion production and the isoscalar rescattering contribu-
tions at NLO in standard counting. In addition, some loop contributions at N?LO were found
in Refs. [DKMS99, [APMOI] to be larger than the NLO contribution, revealing a problem
regarding the convergence of the standard ChPT power counting.

It was soon realized that the large initial nucleon momentum at threshold || = \/mym, ~
360 MeV, which is significantly larger than the pion mass m,; =~ 140 MeV, requires the
modification of the standard power counting. The corresponding expansion parameter in the
new scheme is

X = [P[/Ay = 0.4,

with A, being the chiral symmetry breaking scale of the order of 1 GeV. Here and in what
follows, this power counting will be referred to as the momentum counting scheme (MCS).
This modification was proposed in Refs. [CFMvK96, [dRMvKO00] while the proper way to
treat this scale was first presented in Ref. [HvKMO0O] and implemented in Ref. [HK02], see
Ref. [Han04, BHM14] for a review article. The MCS expansion is performed with two distinct
parameters, namely the initial nucleon momentum |p'| and the pion mass m,, where m, /|| ~
|p'|/Ay. Pion loop diagrams start to contribute at a given order in the expansion parameter,
which can be identified based on the power counting, and, unlike the standard ChPT power
counting, continue to contribute at all higher MCS orders.

Due to the fact that the Delta-nucleon mass splitting is numerically of the order of |p,
the Delta-isobar should be explicitly included as a dynamical degree of freedom [CFMvK96].
This general argument was confirmed numerically in phenomenological calculations [Nis78|
HHKS98, [HHKS00], see also Refs. [CEMvK96, [dRMvKO0Q, [HK02, BHH'07] where the effect
of the A 'in NN — NNr was studied within chiral EFT.

In the MCS, pion p-waves are given by tree level diagrams up to N2LO and the corre-
sponding calculations of Refs. [HvKMO0, BEH™09] showed a satisfactory agreement with the
data. Meanwhile, for pion s-waves loop diagrams start to contribute individually already
at NLO. However, they turned out to cancel completely both for the neutral [HK02] and
charged [LBH™06|] pion production, a result which is reproduced in this thesis. To obtain this



result for charged pion production, it is crucial to consistently take into account a contribution
related to nucleon recoil in the 7N vertex as explained in detail in Ref. [LBHT06|. As a by-
product of the consistent treatment of nucleon recoil effects in Ref. [LBHT06], the rescattering
one-pion exchange amplitude at LO was found to be enhanced by a factor of 4/3 which was
sufficient to overcome the apparent discrepancy with the data in the charged channel. The first
attempts to study the subleading loop contributions were taken in Refs. [HW07, KSMKQ9].
The full N?2LO MCS calculation of s-wave pion production amplitudes have not been done
yet.

Charge symmetry breaking in particle physics have been studied for a long time. The
comprehensive reviews can be found in Refs. [MNS90, MOS06]. The sources of CSB are quark
mass difference and electromagnetic effects. In pion production, CSB is of specific interest. In
the channel pn — dn® CSB causes an asymmetry of the differential cross section with respect
to the interchange of the initial nucleons. In fact, no other types of isospin violation except
for CSB contribute to the asymmetry in this reaction. In particular, there are no long-range
electromagnetic effects (Coulomb interaction) between particles in this reaction. This allows
one to get information about the quark mass difference from the asymmetry data, which
makes this reaction so interesting.

The data on the forward-backward asymmetry exist thank to a precise measurement per-
formed at TRIUMF [OKHT03| which yielded A, = (17.2 & 8(stat.) & 5.5(sys.)) x 1074,

The first near-threshold phenomenological calculation of CSB in pn — dr® was done in
[Nis99]E|, where the main mechanism was identified as 77 mixing.

The first chiral EFT studies Ref. [tKNMO00] found that at leading order in chiral expansion
the main mechanism corresponds to the pion rescattering operator with the CSB 7N seagull
vertex. The problem is that this mechanism leads to the significant overestimation of data
by about the factor of four Ay, = 69 x 10~*. The difference between experiment and theory
is much larger than the uncertainty of the chiral EFT calculation [vKNMO00]. An update of
the chiral EFT calculation was made in Ref. [BM10], but overestimation of the asymmetry
remained.

In this thesis we will show that there is one more leading order contribution to the asym-
metry in pn — dr¥, not considered in previous studies and its inclusion brings the EFT
calculation in agreement to the data already at leading 0rderE|

In this thesis we pursue several goals. First, we want to perform a complete N2LO analysis
of isospin symmetric amplitudes of NN — N N7 at threshold. Second, we want to investigate
the role of the delta resonance in pion production up to N2LO. These two calculations can
accurately answer the question about the mechanisms of pion production in various channels,
and clarify the role of intermediate-range effects in such reactions. They are also important
building blocks for studying CSB effects. Finally, we want to perform a complete study of
CSB effects in pn — dn® at leading order. Matching our LO CSB calculation to data we
extract the strong contribution to the proton-neutron mass difference and compare it to the
corresponding result from lattice simulations [BOS07, [BZDT10, dDDF*12] and dispersive
studies [GL82, WLCM12].

2An extensive list of references about CSB in pn — dn° at higher energies can be found in the review
[MOS06].

3 After publication of Ref. [FBE"09] discussed in this Thesis, the complete leading order CSB operator was
confirmed in Ref. [Boll1].



This thesis is organized as follows. In Chapter 1, the main concepts of chiral EFT and
specialties of pion production are discussed. In Chapter 2, we present a complete N2LO chiral
EFT calculation of the pion production at threshold with only nucleons and pions as explicit
degrees of freedom. Next, in Chapter 3, we calculate all additional corrections appearing in
chiral EFT where the delta-isobar is included as an explicit degree of freedom up to N2LO. We
also compare our results with phenomenological studies. In Chapter 4, we perform complete
LO calculation of CSB effects in pn — dn®. Finally, in Conclusion, we formulate the main
results of our study and present an outlook for future studies.






Chapter 1

Theory and methods

All calculations in this thesis are made in the framework of chiral EFT. In this chapter we
give an introduction to the chiral EFT and discuss specific methods required to deal with
pion production in nucleon-nucleon collisions. In particular, we focus on the following topics:

e Chiral perturbation theory (ChPT) — effective field theory of QCD which describes
low-energy interactions of pions and nucleons.

e Heavy baryon formulation of ChPT (HBChPT) — a formalism to deal with nucleon
propagators in loop-diagrams.

e Explicit inclusion of delta resonance — extension of ChPT to more general chiral EFT,
in which delta resonance is considered as an explicit degree of freedom (in addition to
pions and nucleons).

e Momentum counting scheme (MCS) — a special power counting which takes into ac-
count relatively large momentum required to produce a pion.

e Hybrid approach — a method to take into account non-perturbative NN interactions in
the initial and final state.

1.1 Chiral perturbation theory (ChPT)

ChPT is a well established theory. A pedagogical introduction can be found in the book
by Scherer and Schindler [SS12]. Other introduction articles and reviews can be found, for
example, in Refs. [BKM95| [Pic95] [Sch03]. The latest review of different aspects of ChPT can
be found in Ref. [Ber0g|. In this section we summarize the basic principles of ChPT.

1.1.1 Strong interactions at low energies

At high energies the strong interactions are described with a high accuracy by Quantum
Chromodynamics (QCD). The relevant degrees of freedom in the QCD Lagrangian are quarks
and gluons. Observables are calculated using perturbation theory in the coupling constant a.
At high energies the value of renormalized coupling «; is very small, such that corresponding

7



QCD perturbation series converges fast. Such small coupling constant allows one to make
accurate predictions for high energy observables using QCD Lagrangian.

At low energies, the value of renormalized coupling «s becomes large. This makes the
application of perturbation theory impossible. To make QCD-based calculations in the low-
energy sector, several types of non-perturbative methods were developed.

Non-perturbative methods to study strong interactions at low-energies include lattice
QCD, phenomenological models, and effective field theories.

Lattice QCD calculations are direct numerical solutions of QCD equations in discretized
Euclidean space-time. This method allows one to obtain exact QCD results in the non-
perturbative regime. This method has high computational complexity. In order to accurately
simulate particles with small masses (such as pions), one has to use a very large lattices, which
require huge computational resources. Lattice QCD already gives interesting results and in
future, with advance of computational algorithms and technology, it could be used to study
processes like pion production.

Phenomenological models are based on phenomenological Lagrangians. These models al-
low one to get a good description of data in a wide energy range. They can also provide useful
insights. In particular, one can use them to estimate values of various coupling constants used
in the EFT studies. However, the uncertainty and the model dependence of phenomenological
calculations cannot be estimated reliably. One cannot unambiguously understand the mech-
anism of a particular process using such models, because it can happen that several different
phenomenological models describe data equally well.

Chiral effective field theory — the method we use in this thesis — is based on the effective
Lagrangian, which is consistent with all symmetries of QCD. At low energies one can organize
systematic expansion in terms of small momenta. Chiral EFT allows one to understand
the role of the chiral symmetry and the “pion cloud” in low-energy processes and predict
observables with controlled uncertainty. However, this method can only be applied for energies
which are much smaller than 1 GeV. Chiral Lagrangian contains unknown parameters, which
should be fitted to data or calculated using lattice EFT. Once fixed, these parameters can be
used to link different processes to each other or to predict new observables. These and other
aspects of chiral EFT will be discussed in the next section.

1.1.2 Basic principles of ChPT

Any EFT is based on the ideas of symmetries and separation of scales. In this section we
discuss these ideas applied to the specific example of EF'T, namely, chiral perturbation theory
(ChPT).

Before discussion of symmetries and scales, a remark about the degrees of freedom in chiral
EFT should be made. In nature, quarks and gluons are never observed as free states (at least,
under normal conditions). In the energy range accessible by experiment, they always form
composite particles like mesons and baryons. This property of QCD is called confinement.
At high energies the interactions between quarks become very weak, such that quarks can
be considered as quasi-free particles. Due to this asymptotic freedom, in high-energy QCD-
calculations, quarks and gluons are used as degrees of freedom. At low energies, as was
mentioned before, the interaction between quarks and gluons becomes very strong, and the
contributions of individual quarks cannot be tracked. For this reason, in low-energy EFT



calculations it is convenient to use mesons and baryons as effective degrees of freedom.

The main idea of any EFT is to use the symmetries of the underlying fundamental theory.
In our case the fundamental theory is QCD. The Lagrangian of QCD describes the interaction
of quarks and gluons and has certain symmetries. At high energies, this Lagrangian is used
to calculate observables employing perturbation theory in coupling constant. At low energies
perturbation theory does not converge, but the Lagrangian and its symmetries are still valid.
The symmetries of the QCD Lagrangian constrain strong interactions even at low energies.
These symmetry constraints can be used to make predictions for observables. EFT incorpo-
rates all relevant symmetries of the fundamental theory and allows to make predictions for
observables at low energies.

The second idea behind EFT is a separation of scales. Dynamics of a low-energy process
should not be affected by any heavy resonances. In QCD, the processes well below 1 GeV
are only affected by the dynamics of the lightest quarks: up- and down-quarks, while the
contributions from heavier quarks are negligible. It is important that the observed hadron
spectrum at low energies has an energy gap between lightest resonance (pion at about 140
MeV) and the next resonance (rho-meson at about 700 MeV). This natural separation of
scales suggests that at low energies pions should be considered as dynamic degrees of freedom
and the dynamics associated with heavier resonances can be treated implicitly.

The smallness of the pion mass can be explained by the symmetries of QCD Lagrangian.
Namely, if the masses of up- and down-quarks are equal to zero, the QCD Lagrangian has an
extra symmetry — the chiral symmetry. However the ground state (vacuum) is not invariant
under this transformation. This means that the chiral symmetry is spontaneously broken.
According to the Goldstone theorem [Gol61], a spontaneously broken symmetry leads to the
appearance of massless Goldstone bosons. But since u- and d-quarks are not exactly massless,
chiral symmetry is also explicitly broken, and the Goldstone bosons receive a small mass. In
QCD, pions are identified with Goldstone bosons of spontaneously broken chiral symmetry.

The ideas discussed above were used to construct the ChPT. In ChPT pions are the effec-
tive degrees of freedomﬂ The most general effective Lagrangian is constructed consistently
with all symmetries of QCD including the chiral symmetry. Chiral symmetry breaking terms
are accounted for as perturbation. According to Weinberg’s theorem, the result obtained by
using this Lagrangian will be the most general S-matrix consistent with Lorentz-invariance,
analyticity, unitarity and all symmetries of QCD. Such S-matrix is equivalent to the result of
QCD, but it includes unknown coefficients, which come from the effective Lagrangian.

Each term in the effective Lagrangian has an unknown numerical coefficient, which is
not fixed by the symmetries of underlying theory. These coefficients are called low-energy
constants (LECs). They parametrize high-energy (short-range) effects which are not included
dynamically. Usually the values of LECs are determined by fitting to data, but they can be
also calculated using lattice QCD simulations. LECs are, in general, dimensionful quantities.
Since they parametrize the short-range physics they are expected to have the form a/ AL, where
a is a dimensionless number, A, is the chiral symmetry breaking scale, and n is a positive
power which depends on the structure of particular Lagrangian term. The renormalized values
of LECs are expected to be of natural size, which means that the dimensionless coefficient a
should be of order of 1.

nclusion of the lightest baryons in EFT will be discussed in the next section.
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Because the most general effective Lagrangian has infinite number of terms, chiral EFT
requires a special estimation procedure — power counting. In order to make practical calcu-
lations one has to design a method to distinguish more important Lagrangian terms from less
important ones. More precisely, one needs a method to estimate and classify terms according
to the size of their contributions to observables.

Power counting relies on the separation of scales. To illustrate the power counting for the
Lagrangian, let’s consider an example of generic Lagrangian term for pion-pion interaction.
Each term in the effective Lagrangian consists of one low-energy constant and some combina-
tion of pion fields, derivatives of pion fields and pion masses. The LEC gives a contribution of
order 1/AY, pion fields produce dimensionless contributions, and the derivatives of pion fields
will generate a pion momentum, which we denote by p. As a result, in the numerator of each
Lagrangian term there is always a small-scale quantity of order of p (to some power) and in
the denominator there is a large scale A}. Due to separation of scales, the typical momenta p
is much smaller than A, and thus the natural expansion parameter is the ratio of small and
large scales x = p/A,, < 1. Using this expansion parameter, the Lagrangian terms can be
easily classified according to the number of p/A, suppressions. To denote terms of different
importance the following notation is used. The effective Lagrangian terms with minimal num-
ber of small-scale quantities are called leading-order or lowest-order Lagrangian (LO). Terms
with one extra (compared to LO) insertion of the small scale are called next-to-leading-order
Lagrangian (NLO), terms with two extra small scale insertions (again, compared to LO) are
called next-to-next-to-leading order N>LO, and so on. In this way, the power counting scheme
allows one to estimate importance of any effective Lagrangian term by counting the number
of p/A, suppressions.

Power counting is also required for Feynman diagrams, because even from the leading-
order Lagrangian one can construct an infinite number of Feynman diagrams (e.g. with pion
loops). To select which diagrams give the most important contribution to the amplitude,
the power counting is defined for diagrams in a similar way as for individual Lagrangian
terms. To estimate the whole diagram, each of its constituents is estimated. Vertices are
estimated in the same way as Lagrangian termsﬂ Pion propagators give the factor p~2. And
each loop-integral gives the factor of p*/(47 f,)? due to loop integration. The factor (47 f) is
typically associated with the large scale A, . Product of estimations of all parts of the diagram
gives the total estimation of the diagram. As well as the Lagrangian, diagrams are classified
according to the number of p/A,-suppressions, and the naming convention for diagrams is
the same: diagrams with minimal number of p/A,-suppressions are called LO, diagrams with
one suppression are called NLO, and so on.

Using power counting for Feynman diagrams, one classify them according to their contri-
bution to observables. This gives a perturbation series not in a coupling constant, but rather
in low momenta. Perturbation series allows one to estimate the uncertainty due to omitted
higher-order terms. It also allows one to calculate higher order terms to increase the accuracy,
i.e. results of chiral EFT are systematically improvable.

There are several counting schemes, which differ in some details. The most commonly
used one is the so-called Weinberg counting scheme [Wei79]. In this scheme, all momenta p
are taken to be of order of the pion mass m, and diagrams are counted exactly in the same

2 Except that p is not always taken of order of m,, but depends on the kinematics of particular diagram.
This issue will be discussed in sec.
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way as Lagrangian terms. Weinberg’s scheme is applicable to problems with a single small
scale.

A slightly different counting scheme, which we will use in this thesis, is the momentum
counting scheme (MCS). It is designed to deal with two small scaleeﬂ In MCS, all vertices
are still taken from the usual ChPT Lagrangian, although the momentum scale p is not always
identified with pion mass. Both these small scales must be correctly taken into account when
estimating the order of diagrams.

Power counting is essential for renormalization of EFT. In general, EFT is not renormal-
izable, because one cannot renormalize an infinite number of coupling constants (LECs) in
the effective Lagrangian. However, it is possible to renormalize EFT up to a given order in
power counting [GL84]. Up to any given order there are only finite number of Lagrangian
terms and corresponding coupling constants. One can thus perform standard renormalization
procedure. In this way, the EFT is renormalizable order-by-order.

In the next sections we describe the construction of effective Lagrangian for pion-pion
interactions and inclusion of the lightest baryons in the effective field theory.

1.1.3 Pion-pion interactions

Chiral perturbation theory was first formulated to describe low-energy meson-meson interac-
tions, such as pion-pion scattering. In this section we provide basic information about the
effective chiral Lagrangian which is relevant to our study.

For our study we use an SU(2) formulation of chiral perturbation theory. In this formula-
tion, u- and d-quarks are considered as light, and all other quarks as heavy. In principle, there
is also an SU(3) formulation of ChPT, where s-quark is also considered to be light. However,
the formalism of SU(3) theory is more complicated, and the convergence is slower [BKM95]|.
Since the study of pion production is already related to slow convergence due to relatively
large momentum involved in the reaction, it is reasonable to use SU(2) formulation of ChPT
to study pion production.

ChPT is based on the effective Lagrangian. This Lagrangian should satisfy all symmetries
of the underlying theory. To construct the effective Lagrangian one can first write down all
possible building blocks with well-defined transformation properties and symmetries, and then
take all possible combinations of building blocks, which satisfy symmetries required by the
underlying theory (QCD).

We start with a brief description of the building blocks of chiral Lagrangian for meson-
meson interactions. Systematic review of Lagrangian construction procedure can be found in
Refs. [Kra90, BK99]. The effective chiral Lagrangian includes SU(2) matrix U(x). Pion fields
7 = (m1, T2, m3) are connected non-linearly with the U-field

. ‘ 2 4
_’T;?QHT ;(x)—l—i-iy—;ﬁ—;}#‘i‘“'; (1.1)

U(x) =4/1

where fr is a pion decay constant in chiral limit and 7 = (71, 72, 73) are Pauli matrices. It is

3Tn pion production there are two small scales: m, and \/m.mn, where my stands for the nucleon mass.
Extended discussion of this topic is provided in the MCS section.
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also convenient to introduce matrix u(x)

2

M@:ﬁ@pyﬂgjékﬂﬁ£;

3
T (1.2)

The expressions and correspond to one particular pion field representation called
sigma-gauge. The choice of pion field representation is not unique. Other possible pion field
representations can be found, for example, in [HWQT7]. Observables are, however, invariant
under change of pion field parametrization.

Due to nonzero masses of light quarks, the chiral symmetry is explicitly broken. To take
this effect into account the chiral Lagrangian also includes a mass term, which is related to the
matrix xy = 2Bys, where s is the SU(2) quark mass matrix and By is a quantity proportional
to SU(2) quark condensate in the chiral limit. Neglecting isospin breaking corrections (effects
coming from the mass difference of the u and d quarks and their electromagnetic interactions)
one can write x = m21;, where 1; is the unit matrix in the isospin space and m. is a physical
pion massﬁ In this section we consider only isospin symmetric Lagrangian. Isospin violating
terms are presented in Chapter

Leading-order pion-interaction Lagrangian includes the following building blocks: the chi-
ral vielbein u,, and mass term x

U, = 1 ((%uuT + uTauu) , (1.3)
e = ulyul +uxtu. (1.4)

The lowest order pion-pion Lagrangian has the form

2 2
£0) = I ) + 22 (), (1.5)

where (---) denotes a trace in the isospin space Using explicit expression (1.2)) for u(x) we
get the Lagrangian density for the pion propagator and the leading four-pion vertex (in the
sigma-gauge):

1 1 1 2
E7('r272 = 5(3u7l' -ofr) — §m72'r7r2 + ﬁ(ﬂ Ota)(m - Q) — 877%7;"4 +o (1.6)

where the dots stand for terms with six or more pion fields.
The next higher-order mesonic Lagrangian £§r4,2
starts to contribute at much high orders.

is not relevant for our study, because it

1.1.4 Pion-nucleon interactions

Chiral EFT can be extended to include interactions of pions with nucleons [BKM95]. The
construction procedure of the Lagrangian is similar to the pure mesonic case. This procedure

“In general, one should use bare pion mass before all renormalization procedures are carried out. But in
our study all renormalization corrections to pion mass start to contribute at very high orders. Thus we use
physical pion mass in all relations throughout this work.
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is described in the reference [FMMS00], where the pion-nucleon covariant Lagrangian was

constructed up to Efj\),rel.

To describe interactions of pions with nucleons one should introduce nucleons as an explicit
degree of freedom. One introduces the isodoublet representation of the nucleon

v (g) , (L.7)

where p stands for the proton and n for the neutron. It is also convenient to introduce
following building blocks: the chiral connection I';, and the covariant derivative D, of the
baryon field

1
r, = 3 (uT Ouu + uf)ﬂuT) , (1.8)
D, = 0, +T,. (1.9)
The most general leading-order relativistic pion-nucleon Lagrangian reads [GSS88]
£Q =0 (i — m + L) v, (1.10)

where g4 denotes the axial-vector coupling of the nucleon and my denotes mass of the nucleon.
The next-to-leading order pion-nucleon Lagrangian has the following form:

re T 1 v
553\)/ b= ‘I’<01<X+> g ((upuy) {D", D"} + h.c.)
My
1 1
+03§<u“uu> +C4Z[U’H7UV]U“V+ )\II, (1.11)

where the dots stand for terms not relevant for our calculation (isospin breaking and in-
teractions with external sources). The coefficients ¢; are low-energy constants. They are
dimensionful and expected to be of order of 1/A,. And o*” = i[y*,+"]/2 is proportional to
the commutator of two Dirac matrices.

For this work we need ES\),rel and several terms from ££§\),rel. Terms from covariant La-

grangian .Cgr?\),rel produce diagrams which are of a higher order than we consider in this Work

Inclusion of nucleons as dynamic degrees of freedom introduces a new scale m . This scale
doesn’t vanish in the chiral limit and leads to additional difficulties with power counting. In
particular, the four-momentum of a nucleon will appear in the numerator in loop-integrals.
This four-momentum momentum includes the nucleon mass and is therefore much larger
than the small scale. One cannot organize convergent series with the expansion parameter
mn /Ay ~ 1. A special method is required.

Several approaches were developed to define convergent chiral EFT with nucleons. They
include heavy-baryon formalism (HBChPT) [JM91], infrared regularization [BL99], and ex-
tended on-mass-shell regularization [SGS04].

In this thesis we use heavy baryon formalism. It allows one to transform the pion-nucleon
Lagrangian in a way that heavy nucleon mass contributions are moved from propagators into
vertices. This method is discussed in the next section.

®Note, however, that after carrying out the heavy baryon expansion (discussed in the next section), there
will be terms in ESS’\),HB relevant for our calculation. They emerge from 1/my-expansion of C;?,rel and Eﬁarel.



14

1.2 The heavy baryon formulation of ChPT

To define convergent chiral EFT for pion-nucleon systems, one needs to specify a procedure
to deal with nucleon propagators in loop-integrals. Without such a procedure, multi-loop
diagrams with nucleons will not be suppressed. Historically, the first solution to deal with
baryons in chiral EFT was proposed by [JM91] and is called heavy baryon formulation of
CHPT (HBChPT). It exploits the fact that nucleons can be treated nonrelativistically in
low-energy reactions. This allows one to separate small dynamical parts from the nucleon
four-momenta and the nucleon field, and treat them perturbatively.
In HBChPT, the total four-momentum P, of the nucleon is separated into two terms:

P =mnvu + pu, (1.12)

where v is a nucleon four-velocity (v? = 1), and p, is a small residual nucleon momentum,
which satisfies the relation v-p < my. The first term myv, corresponds to the large nucleon
mass, which doesn’t affect dynamics significantly, while the second term p, corresponds to
small nucleon momenta which governs its dynamics.

The covariant baryon field is also separated into the “light” component N,(z) and the
“heavy” component h,(z) using the projection operators (1 £ %)/2

Ny(z) = exp(iva-x)1;¢W(x), (1.13)
ho(z) = exp(imyv-x) ;7‘5\11(:5). (1.14)

The light component is considered explicitly, while the heavy one is integrated out. The
contribution of the heavy field generates additional Lagrangian terms which are suppressed
as 1/mf;, with n ranging from 1 to co. In this way, the contribution of the heavy part of
baryon field is pushed to 1/my-suppressed vertices. In this work, we refer to all 1/m? -terms
as recoil corrections (for any n, not necessary n = 1). Heavy baryon expansion allows one to
organize consistent power counting with the expansion parameter being |7|/mxy.

The Dirac algebra is simplified considerably in the heavy baryon formalism. Instead of all
gamma-matrices and their combinations, there are only two nontrivial operators, namely the
four-velocity v* and the covariant spin-operator S,,, defined as

;
Sy = 575(7“,,11”. (1.15)
To regularize loop-diagrams in this study we use the dimensional regularization scheme. For
this purpose we should keep all relations in general d-dimensional space-time. In d-dimensional
space-time, the operators v and S obey the following simple relations
1 1—-d
S-v=0, {SM,SV}zi(vuvy—gW), SQZT, v? =1, (1.16)
where g,,g"" = d. In addition to the relations (1.16)), in the physical four-dimensional space-
time, one can define the commutator of two spin-operators in terms of four-dimensional Levi-
Civita tensor
[S,1, 8] = i€usv?S°  only if d =4, (1.17)
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where we use the convention ¢’123 = —1 (or equivalently egio3 = 1).

To calculate the constant part of the divergent loop diagrams correctly it is important
to work in d-dimensional space-time until the renormalization procedure is complete. The
reason for that is that loop diagrams in dimensional regularization scheme contain divergent
1/(d — 4)-terms, which can produce additional finite contribution when multiplied with the
factor d coming from spin coefficients.

After all renormalization procedures are carried out, spin operators can be further simpli-
fied. Namely, one can reduce the operators S to the three-dimensional form, represented by
Pauli matrices. Examples of such reduction are shown below:

1. -
S1-k1 = —3 1 k1, (1.18)
4[Sop, So,) SYEY = 4ie®Pyyky 81,895 = iky - (71 X Ga), (1.19)

where & is a three-vector of Pauli matrices, and the indices 1 or 2 of the operators S and &
are nucleon labels.

After performing the heavy baryon reduction of the covariant pion-nucleon Lagrangian,
one gets

LU = N, (iv- D+ ga S - u) Ny, (1.20)

where explicit degrees of freedom are only light components of the baryon field.
In a similar fashion, the next-to-leading Lagrangian is reduced to

/1 1 iga
O N (——@ -D?--—D-D-— S-D,v-u} )N,
™ 2mN (’U ) 2mN 2mN { P v u}
- 2
+N, <01<X+> + (CQ _ 94 > (v-u)?+ cau - u
8mN
1 v
# (et g ) 158 ) Ny (121

Note that in addition to the ¢;-terms, the heavy baryon NLO Lagrangian contains 1/my-
corrections. The 1/my-corrections in the first line correspond to the nucleon recoil correc-
tions to the LO Lagrangian, while the 1/my-corrections in the second and third line are
contributions of the heavy part of the baryon field (anti-nucleon contribution).

In a similar way, the N2LO pion-nucleon Lagrangian contains terms from the covariant
N2LO Lagrangian proportional to the LECs d; as well as 1/my- and 1/m3,-corrections to
the LO and NLO Lagrangians. Terms proportional to d; are not relevant for our study since
they start to contribute at much higher orders. We will, however, need several 1/my- and
1/ m?\,—corrections from N?LO Lagrangian. These terms are listed in the Appendix

Although the expressions in terms of the matrix u are convenient for the construction of
the Lagrangian, in order to derive the Feynman rules, all Lagrangians should be expanded in
terms of pion fields. Expanded Lagrangians are provided in the Appendix [A]l

1.3 Explicit inclusion of the Delta resonance

In standard baryon ChPT, only pions and nucleons are considered as explicit degrees of
freedom. All other resonances of the nucleon (such as Delta, Roper, etc) are considered
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heavy and taken into account implicitly through low-energy constants (LECs). However, the
lightest nucleon resonance — delta-isobar — has a very low excitation energy. The delta-
nucleon mass difference is only about two pion masses. This is particularly important for the
pion production process, where the initial nucleon momentum (required to produce a pion) is
numerically of the same order as the delta-nucleon mass difference. In addition, if the delta
is only included in the theory through LECs, the values of LECs required to describe a given
process can become unnaturally large. This can lead to slow convergence of the theory. Thus,
it might be advantageous to consider dynamical long-range effects of delta resonance in chiral
EFT.

The solution is to extend baryon ChPT to more general chiral EFT which includes delta
explicitly. This EFT includes all the diagrams with pion-nucleon interactions from the baryon
ChPTﬂ and, in addition, it includes new diagrams with explicit deltas.

The construction of chiral EFT with explicit delta using Rarita—Schwinger formalism
[RS41] was done in the work by Hemmert [Hem90, HHKQSE Here we present the main ideas
of this formalism and expressions required for our study.

The inclusion of the delta-resonance into an effective field theory is analogous to the
inclusion of the nucleons. The heavy-baryon formalism can also be applied to the nucleon and
delta simultaneously. Due to the inclusion of delta, an additional numerically small parameter
enters the calculation, namely the delta-nucleon mass difference:

0 =ma —my. (1.22)

Note that this quantity doesn’t vanish in the chiral limit. It is nevertheless possible to define
a consistent power counting scheme by assigning this new scale to one of the small scales in
the problem. This issue is discussed in Chapter

To properly take into account the spin-3/2 and isospin-3/2 components of the delta, the
special spin and isospin operators should be introduced. One should also take care to project
out unphysical states with spin-1/2 which appear in this formalism [Hem96, [HHK98]. For
this purpose the spin-3/2 and isospin-3/2 transition operators (S and T) are introduced. In
d-dimensional space-time they have the following normalization:

4
1—d

1
S,S,, TT! =2 (26 —iejnm), i,j=1,2,3.

SuSJL = Gu — Vuly — i =3

After carrying out all renormalization procedures, the combinations of spin operators S inside

bilinears constructed from the nucleon fields can be further simplified by reducing them to
three-dimensional Pauli matrices:

1, - - o
SuShptq” — g(a'ﬁ)(a Q) =P (1.23)

where & = (01, 09, 03) are Pauli matrices.

5The values of LECs will be different in these two theories and should be fitted to data in each case
separately.

"Note that conventions used in this thesis is slightly different from those of Ref. [IIK98]. Namely, we use
sigma-gauge for pion field parametrization, instead of exponential gauge in [HHK98|. And we place spin/isospin
projection operators into tNA and wAA vertices, but not into delta propagators.



17

Using these operators, the effective Lagrangian for pion-nucleon-delta interactions ex-
panded in pion fields in the sigma-gauge can be written as:

Lona = —Uh(iv-0-6)0a+ %qﬁA S S8S, Tyt - 5w Ty U

_;ﬁ\lﬁa [(7% x ) - T e Ty + 2i ((TT cm)(T - 7) — (T - 7)(T - ’T)) ]‘DA

ha Tt 7 1 "
hA a7t .
+m[uv T-7rS-8\I!A+h.c}+~~, (1.24)

where WA is a light component of the delta field in heavy-baryon formulation, g; is the leading
wAA coupling constant, and hg = 2¢g.na is the leading 7 NA coupling constant. Covariant
form of this Lagrangian can be found in the Refs. [Hem96, [HHK9S].

1.4 Momentum counting scheme for the pion production pro-
cess

A power counting scheme is an essential part of the chiral EF T, required to classify Lagrangian
terms and Feynman diagrams according to their importance. A counting scheme relies on the
importance of different scales involved in the process. In most processes that were studied
in chiral EFT, the only small scale is the pion mass m,. In contrast, the pion production
process involves a second small scale, related to relatively large initial momentum required to
produce a pion. To deal with two small scales in pion production reactions the momentum
counting scheme (MCS) was designed.

Historically the first power counting scheme used in chiral EF'T was the Weinberg power
counting scheme [Wei79]. In this scheme all small scale parametersﬂ are estimated to be of
order of the pion mass. All large parameters like the scale associated with loops 4 f and the
nucleon mass my are treated as the heavy scale A,. This leads to the Weinberg expansion
parameter xyw = mx/Ay. To estimate the order of the Lagrangian term or the order the
diagram one only has to count the number of the small-scale quantities in the corresponding
term or diagram. Each additional inclusion of the small scale gives a suppression by the factor
xw. Weinberg’s counting works very well for processes with small transferred momenta: for
example, mr-scattering [Wei79, |GL84, [CGLO1], 7 N-Scattering [FMO01al, few-nucleon processes
[ORvK94, [ORvK96, BBH™00, [EGM98, [EGMO05, [Epe06, ENGT02], vd — 7NN [LBHT05,
LBE™07], and md — yNN [GP06]. For these low-energy processes the explicitly calculated
amplitudes are in a good agreement with the counting estimations.

First studies of pion production in HBChPT formalism were also made using Weinberg’s
power counting [CEMvK96, PMM™96, HHHT98]. It was, however, shown that Weinberg’s
counting give inaccurate estimations for some diagrams. The source of the problem was
already pointed out in [CFMvKO96|, where it was noted that the pion production process
includes a new scale, namely, the initial momentum of nucleons, which is larger than the pion

8Small-scale parameters can include pion mass, momenta of pions, residual momenta of heavy baryons, and
the delta-nucleon mass difference. Exact set of small parameters depends on the particular process.
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_ q:(m/ﬂao)
y
p=(E, p) Py =1(0,0)
p2 = (B,7) %= (0.0)

Figure 1.1: The kinematics of the reaction NN — NN in the heavy baryon formalism.
Nucleon mass is subtracted from the momentum of each nucleon (i.e. p; = P; —my v, where
P is the full four-momentum of the first nucleon; see Eq. . Threshold values for energy
and three-momenta are shown in brackets.

mass. This idea was further developed in [dRMvEKO00, HvKMO00, HEKO02], see also Ref. [Han04]
for a review article. In this section we give an introduction to momentum counting scheme
including recent developments.

One of the main specifics of pion production, compared to other processes studied in
ChPT, is its kinematics, more precisely, the large transferred momenta. The kinematics of
the pion production reaction is shown in Fig. To produce a pion at threshold, the kinetic
energy of each nucleon should be E = m, /2. The corresponding three-momenta can be easily
estimated in the non-relativistic limit:

)

~

B 2mN

D] >~ \/mzmn. (1.25)

The exact value of three-momenta can be found from the nucleon on-mass-shell condition
pP? = m?v, which leads to

17| = VE? 4 2myE = /m2/4 + mymn. (1.26)

However, for power counting estimations the simpler estimate Eq. is sufficient.

In the production process, the momentum 7 is transferred from one nucleon to another.
This transferred momentum is several times larger than the pion mass, but still much smaller
than the large scale A, . Effectively, this is a second small scale in the problem (in addition to
the small scale m;). In total, there are two different small scales in pion production process.
The momentum counting scheme allows for a more accurate estimation of Feynman diagrams
by distinguishing these two small scales.

Because of the two small scales, one can expect to end up with two expansion parametersﬂ:
X1 = |P|/Ay = /mz/my and x2 = my/Ay ~ my/my. However, due to the simple relation
between these expansion parameters (x2 = X?), it is convenient to introduce a single expansion
parameter corresponding to the ratio |p’|/my. Thus, the expansion parameter in MCS is

~ =~ T (1.27)

XMCS = 7 .= Ai
large scale x My my

9In MCS the large scale A, is associated with nucleon mass my, because both are of order of 1 GeV.
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Figure 1.2: Rescattering diagram constructed from the leading-order vertices. According to
the MCS estimation Eq. (1.29) it contributes to the amplitude at LO.

where the larger one of two small scales is used. Note that the ratio of two small scaleﬂ
mx/|P| is also equal to xmcs.

The MCS expansion parameter (xycs ~ 0.4) is larger than the one in Weinberg scheme
(xw =~ 0.15), so the convergence of the perturbation series in MCS is expected to be slower.
Slower convergence of chiral expansion is one of the motivations to calculate higher orders in
MCS studies.

Feynman diagrams in MCS are estimated in a special way. Unlike standard ChPT, in
momentum counting scheme the expansion parameter for diagrams doesn’t exactly coincide
with the expansion of the Lagrangian. While the Lagrangian is classified using the Weinberg
expansion parameter xy, Feynman diagrams in MCS are estimated using the larger expansion
parameter xnycs >~ /Xw-

The main point of the MCS is the proper identification of the small scales in the Feynman
diagrams. By using the proper kinematics for a particular diagram, one can identify which
momenta are of order m, and which are of order of |p’|. This method allows one to make
accurate estimations of pion production diagrams.

In MCS, to estimate a particular diagram, one has to write down the expression for this
diagram using the Feynman rules and then use the reaction kinematics to estimate different
dimensionful quantities in the expression. The rules to assign a proper small scale to typical
structures are following:

S-pi— gl pi =07 vepi—mag
S pi — my p2 —m2 vl — my
S-q—0 qQ—wmfr Vg —> My, (1.28)

where ¢ = 1 or 2 denotes the first or the second nucleon. Note that terms proportional to
(S - q) are neglected, because they do not contribute to the amplitude at threshold. Low-
energy constants are estimated in a usual way as 1/ AY, where the power n is given by the
dimension of the LEC. Additional care is required to estimate the running momenta inside
the loops.

To illustrate the main features of the MCS we provide exemplary estimations of typical
tree-level and loop diagrams.

Let’s first estimate the size of the rescattering diagram involving only leading-order vertices
(Fig. . To make an MCS estimation, we use both: Feynman-rules and the kinematics. In

10This ratio enters, for example, the estimation of leading rescattering diagram Eq. (11.29).
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Figure 1.3: Rescattering diagram constructed from subleading 7N — 7N vertex (and lead-
ing TNN vertex) can be separated into two parts. One part involves 1/my-corrections to
the leading 7N — 7N vertex and contributes at LO MCS (Eq. . The second part in-
volves subleading 7N — wN vertex proportional to LECs ¢;. This part contributes at N2LO

(Eq. [1.31)). The kinematics is the same as in Fig.

this diagram, pion emission from second nucleon gives the factor S-ka/ fr, where ko = pa —ph.
The pion propagator gives 1/k3, and the Weinberg-Tomozawa (WT) vertex gives v - q/f2.
Combining all factors together and using rules (1.28) we get

Sckplog 1mn 1
I k2 RS

Given that it is not possible to construct a diagram with estimation lower than xmcs/f2, the
diagram (Fig. contributes at leading order.

Let’s consider the rescattering diagram with subleading 7N — 7N vertex shown in the
Fig. [1.3] Subleading #N — wIN vertex consists of two parts. The first part includes terms
proportional to the LECs ¢;.  This part comes from the NLO covariant Lagrangian. The
second part includes the 1/my-corrections to the LO vertex. These corrections appear from
heavy baryon expansion of LO covariant Lagrangian. We will consider these two contributions
as two separate diagrams. For this purpose we introduce the notation shown in the r.h.s. in
Fig. Naively, one can expect the contributions to the amplitude of both parts of the vertex
to be of the same order, because both parts are from the NLO Lagrangian. However, due to
the kinematics of pion production reaction, these parts contribute differently. To demonstrate
this, we consider both diagrams individually.

Consider first a rescattering diagram with 1/mpy-correction to leading WT vertex (first
graph in the right-hand side in Fig. . Pion emission from nucleon 2 and pion propagator
yield exactly the same contributions S-kg/ fr and 1/k2 as discussed for LO diagram (Fig. ,
and the 1/my-correction to the leading WT vertex gives (ko + q) - (p1 + p})/(f>my) ~
p?/(f2my). Combining all factors and using counting rules we get

xmcs — LO. (1.29)

S-ky 1l (katq)-(m+py) 1P|
fr k3 f2my f2my

1
~ FEXMCS = LO. (1.30)

We see the striking result: the diagram involving (subleading) 1/m y-correction to the WT
vertex yields an additional LO contribution. This was first noted in Ref. [LBHT06], where
it was explicitly shown that the LO diagram in Fig. m gives additional ~ 30% contribution
to the pion production amplitude, which is essential to reproduce the correct total cross
section in pp — dn. This example illustrates that MCS allows one to correctly estimate
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1/mpy-corrections, which can be “enhanced” in the pion production kinematics. In other
words, due to the presence of several scales, leading and sub-leading vertices of the chiral
Lagrangian can contribute to the pion production amplitude at the same order. This may
rise a question of how important (1/my)2-vertex-corrections could be? It turns out that the
kinematic enhancement can promote recoil correction only slightly, due to the suppression
provided by powers of nucleon mass in the denominator.

Let’s consider the rescattering diagram involving subleading 7N — 7N vertices propor-
tional to ¢; (the right one in Fig. . Estimations of 7NN vertex and pion propagator
are exactly the same as in previous two cases. The estimation of the remaining TN — 7N
vertex is done using the corresponding Feynman rules. Depending on the particular LEC ¢;

(i =1,...,4) one obtains the following estimation:
c1m?2 m2 /Ay Xi/ICS
Skl 1 - kov - 11 2/ 1
Ir k3 f7 | eska - q f2 1P mz /Ay e XMCS
cyS koS- q 0 0

where, in addition to the counting rules , we used the estimation for LECs ¢; ~ 1/A, ~
1/my. In this example we see that the diagram with subleading 7N — wIN vertices propor-
tional to ¢; is quite suppressed compared to LO.

So far we have considered the rescattering diagrams with leading and subleading 7N — mN
vertices. We found that the rescattering diagram with the leading vertices is of LO, while the
rescattering diagram with subleading vertices has two parts contributing at different orders.
The part proportional to 1/mpy-corrections is also LO, but the one proportional to LECs ¢;
is N2LO.

To summarize, in the pion production kinematics, diagrams involving subleading 1/my
vertices can be enhanced compared to similar diagrams involving vertices proportional to
LECs. Finally, we note that the issue with the enhanced 1/m y-corrections is specific to the
HBChPT formalism and doesn’t appear in the covariant formulation of baryon ChPT where
all recoil effects are contained in the LO vertex itself.

Lets consider an estimation of loop-diagrams in MCS. The crucial point in such estimations
is assigning a proper scale to the running loop momenta. The scale of loop momenta may
drastically change the order of the diagram. The method to assign a scale to the loop momenta
is the following. If the loop integral contains the momenta of order of |p’|, which cannot be
eliminated by a shift of variables, then the integration momenta of this loop is of order of |p’|.
If all quantities of order || can be removed from the loop integral by a variable shift, then
the loop momenta is of order of m,.

The example of the diagram with relatively large running momenta is shown in Fig. a).
In this diagram the loop integral contains one nucleon propagator and two pion propagators.
The structure of the loop-integral is given by

L [ dli (S - 1)(Sa - 1)(Sy - 1)
2 / (2m)* (12 — m2 4 i0) (12 — m2 + i0)(—v - | +i0)’ (1.32)

where [ = 1 + p; — Py — q ~ 1+ p1. There is no possibility to remove momenta |p’| from the
loop-integral. Thus, the scale of running momenta is [p’|. Complete estimation of the diagram
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Figure 1.4: Exemplary one-loop diagrams with different running loop momenta. Both dia-
grams are constructed from exactly the same vertices, however due to different structure of
the loop-integrals, the diagram (a) starts to contribute at NLO MCS, while the diagrams (b)
starts at N3LO.

[L.4)(a) gives:
I A
B B~ Fxﬁacs — NLO, (1.33)

where we used k ~ |p'| and 47 fr ~ my.

Example of the diagram with small running momenta is shown in Fig. (b) In this
diagram, the loop consists of single nucleon propagator and single pion propagators. The
structure of the loop-integral is given by

S-lﬁlS-kll/ d4l (S - 1)
fr k2 fr f2) (274 (12— m2 +i0)(—v - L +1i0)’

where k1 = p; — p). This loop-integral doesn’t involve large momenta |p'|, thus the running
momenta [ is of order of m,. MCS estimation of this diagram gives:

(1.34)

1 1 P 1

4 3

where we used | ~ m.
These two examples (Fig. show that diagrams constructed from exactly the same set
of vertices and containing identical number of loops, can contribute at different MCS order.
Theory with explicit delta requires additional counting rules, related to the scale intro-
duced by the delta-nucleon mass difference. Inclusion of delta-nucleon mass difference in the
MCS is discussed in the Chapter

1.5 General pion production amplitude at threshold

The most general form of the threshold amplitude (where the pion is in an s-wave relative to
a NN S-wave final state) for the pion-production reaction Ni(p) + No(—p) = N+ N + 7 in
the center-of-mass frame can be written as [FBET12] :

Mth(NN—> NNW) = .A(&l X 52) P T+ (;5* + B (51 +§2) -p (—i)TX -¢*, (1.36)

where 7 = 71 + 7,7« = i T1 X T2 and 012 and 712 are the spin and isospin operators of
nucleons 1 and 2. This expression incorporates the selection rules for the NN states. The final
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pion’s isospin state is denoted by ¢, e.g. ¢ = (0,0, 1) for 7%-production and ¢ = (1,4,0)/v/2
for m*-production. For example, the amplitude A corresponds to the production of an s-wave
pion accompanied with the final state spin-singlet S-wave NN interaction (pp — ppr®), while
B corresponds to the spin triplet NN final state (pp — dr™).

It is convenient to write down the threshold reaction amplitudes in the form where the
relevant spin-angular structure of the initial and final nucleon pairs are shown explicitly E

Mpp%ppwo 4i“4(§ : ﬁ)I/T,
Moppsint = —2V2iB(Sxp) €. (1.37)

Here, £'is the deuteron polarization vector, p is the unit vector of the initial relative momenta
of two nucleons, and S = x3 o,5x1/ V2, and 7't = XI/UyX; /v/2 denote the normalized spin
structures of the initial spin-triplet and final spin-singlet states, respectively.

One of the main goals of this thesis is to derive the contributions to A and B that originate
from all diagrams up to N2LO MCS.

1.6 Method to calculate the full pion production amplitude

Calculation of the full amplitude of pion production reactions is not trivial for several reasons.
In addition to the relatively large transferred momentum and related convergence issues (dis-
cussed in Section , an additional complication arises due to nucleon-nucleon interactions
in the initial and final states.

The reaction NN — N N7 involves nucleon-nucleon states both in the initial and in the
final states. Nucleon-nucleon interactions are non-perturbative due to the presence of bound
or virtual states in the NN system. To reproduce a virtual or a bound state (and the behavior
of the NN phase shifts), one has to iterate NN interactions an infinite number of times. In
the language of Feynman diagrams, this means that one has to calculate an infinite number
of diagrams which are of the same importance. This specifics doesn’t allow one to treat NN
interactions perturbatively.

1.6.1 Hybrid approach for pion production

One scheme to deal with non-perturbative few-nucleon interactions in ChPT was proposed by
Weinberg [Wei90, [Weid1l Wei92]. In Ref. [Wei92] he formulated a method, called the hybrid
approach, to calculate few-nucleon reactions with external probes in ChPT. In the same article
he applied this method to study the elastic pion-deuteron scattering (tNN — 7N N). In this
thesis we use the hybrid approach to study pion production (NN — NN).

In the hybrid approach, the full amplitude is divided into three pieces: initial state interac-
tion (ISI), irreducible pion production operator (IPPO), and the final state interaction (FSI).
This division is illustrated in the Fig. Each piece is calculated using appropriate methods.
The production operator is calculated perturbatively in chiral EFT framework. Initial- and
final-state interactions are calculated using non-perturbative methods. Ideally, ISI and FSI
should be calculated based on the chiral NN potential. But at the energies of pion produc-
tion threshold, no chiral NN wave functions are available at the moment. For this reason,

"'The connection of the amplitudes A and B to the observables is given in, e.g., Ref. [BEHT09)
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Figure 1.5: The hybrid approach to calculate full pion production amplitude. Full amplitude
is obtained by convoluting irreducible pion production operator (IPPO) with initial-state NN-
interactions (ISI) and final-state NN-interactions (FSI). IPPO is calculated perturbatively in
chiral EFT. ISI and FSI are taken from phenomenological models.

IST and FSI are taken from calculations based on phenomenological potentials. The usage
of phenomenological NN interactions explains the name “hybrid” used for this approac@
Finally, to get the full amplitude all pieces are convoluted together. In the following sections
we consider individual parts of the full amplitude.

1.6.2 Irreducible pion production operator

The pion production operator is the main part of the pion production amplitude. It is calcu-
lated perturbatively in the chiral EFT formalism. The full amplitude is obtained by convo-
luting the production operator with the ISI and FSI. Since all NN interactions are taken into
account by the convolution procedure, the production operator should itself not contain any
parts of NN interactions. The production operator is called irreducible if it does not contain
any NN cuts, and reducible when it contains one or more such cuts. To make consistent hybrid
calculation, only irreducible production operators should be considered. This is important to
avoid double counting — a situation when the same contribution is included twice: first in
the production operator and second in the NN interactions. To get a correct full amplitude,
only irreducible production operators should be convoluted with the ISI and FSI.

In most cases, reducibility of a production operator can be easily identified from the
topology of the corresponding Feynman diagram. If one can cut two nucleon lines to separate
the diagram into two pieces, the diagram is called reducible, if this is not possible, the diagram
is called irreducible. Examples of reducible and irreducible diagrams are shown in Fig.
where the diagram on the left is reducible, because it contains the two-nucleon cut (even two
of them). The diagram on the right is irreducible, since there are no NN cuts. From these two
diagrams only the irreducible (right) one, should be calculated as a part of the production
operator and convoluted with the ISI and FSI.

In some cases, an additional care is required to identify reducibility. Namely, some dia-

'2At the time of the study [Wei92] there were no chiral NN wave functions available even at very small
energies, typical for wd-scattering. This explains the motivation behind the hybrid approach.
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Figure 1.6: Examples of reducible and irreducible pion production operators. Double line
denotes the two-nucleon cut.
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Figure 1.7: The box diagram contains both reducible and irreducible contributions. In
the box diagram, the leading 7N — wN vertex can be decomposed into two parts (see
Appendix . The part denoted by diamond is proportional to the outgoing pion mass and
gives reducible contribution. The second part denoted by triangle is proportional to nucleon
momenta and exactly cancels adjacent nucleon propagator (denoted by red square). Double
(red) line denotes two-nucleon cut.

grams with the two-nucleon cut, may involve irreducible contributions due to four-momentum-
dependent Verticeﬂ [LBHT06]. An example of a partially irreducible diagram is the box
diagram (Fig. left). This diagram contains the momentum-dependent 7N — 7wN vertex,
which (as explained in Appendix can be separated into three parts. The first part (denoted
as diamond in Fig. proportional to the outgoing pion momentum generates a reducible
contribution (central diagram in Fig. . The second part (denoted as triangle in Fig.
proportional to internal nucleon momenta exactly cancels the nucleon propagator denoted by
red square in Fig. [I.7] Thus, the corresponding part of this diagram doesn’t contain any NN
cuts and generates an irreducible contribution, which should be included in the total IPPO.
The third part (not shown) is proportional to external nucleon momenta. If the external
nucleon is on-shell, this part is exactly zero. If the nucleon is off-shell, the contribution of this
part corresponds to a multi-loop high-order correction [LBHT06]. The irreducible contribu-
tion of the box diagram plays a crucial role to obtain a correct one-loop NLO-correction to the
full pion production amplitude [LBHT06]. To identify all irreducible contributions relevant
to a particular process, the reducible diagrams with four-momentum dependent vertices have
to be examined carefully for the appearance of irreducible contributions.

One more reducibility issue is related to the so called “direct” pion production operators

3Note that in heavy baryon formulation four-momentum-dependent vertices show up as time-dependent
ones.
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Figure 1.8: Direct pion production operators and the way to include them in the hybrid
approach. Left and center: two-nucleon cuts in the “direct” pion production operators. Right:
the way to include direct pion production process into the hybrid calculation. Double line
denotes two-nucleon cut.

(left and central diagrams in Fig. [1.8). These diagrams do have two-nucleon cuts. However,
if one removes the one-pion-exchange (or NN contact interaction) from these diagrams, the
remaining part is a disconnected (and off-shell) operator. Due to this behavior, it is not
immediately clear whether these diagrams are reducible or not. Several ideas on how to get
an irreducible contribution from the “direct” diagrams were discussed in [BM11l Boll1] within
different approximations. In the present work we consider “direct” diagrams as reducible.
The “direct” contribution to the full amplitude in our approach should be calculated as a
convolution of the “building block”, corresponding to the “direct” pion production from one
nucleon, with the IST or FSI (right diagram in Fig. [1.8]). The “building block” itself is not an
independent irreducible pion production operator. It must always be convoluted with the ISI
or FSI to get a contribution to the full amplitude.

Since pion production requires important contribution from diagrams with delta resonance
degree of freedom, it is useful to generalize the formalism described to include explicitly NA
intermediate states, see section for further discussions.

1.6.3 Nucleon-nucleon wave functions

Ideally, both the production operator and NN wave functions should be calculated in the
same ChPT framework. However, to produce a pion, the initial momenta of the nucleons
should be quite large. At the moment, no ChPT calculations of the NN interactions near pion
production threshold are available. This motivates to resort to the hybrid approach and use
modern phenomenological NN potentials, instead of ones based on the chiral potentials.

Phenomenological NN models can accurately describe NN observables in the pion pro-
duction threshold region. However, a fully consistent theoretical uncertainty estimate will
be possible only when chirally motivated NN wave functions will become available. Since
there are many different phenomenological potentials available, one can estimate the model
dependence by calculating the full amplitude using convolutions with NN interactions from
different models. The spread in the results should not exceed the estimations based on the
chiral order to which to which the pion production operator is evaluated.



Chapter 2

Pion production operator in chiral
perturbation theory

The isospin symmetry requires that different pion production reaction channels at threshold
can be expressed in terms of two s-wave isospin amplitudes. In total, there are three possible
s-wave pion production channels: pp — dnt, pp — ppn, and pn — dn®. All of them have
interesting features.

The channels pp — dnt and pp — ppr? are known for the so-called cross section puzzle.
Namely, while one can naively expect the total cross sections (TCS) in both channels to be
of the same order, the data shows a drastic differenceE] At near threshold energy of T, =
293.5 MeV [AST03|, the total cross section of charged pion production is oy (pp — dr™) =~
43 pub. In contrast, the cross section of neutral pion production is only ot (pp — ppm?) ~ 3 ub,
which is an order of magnitude smaller than in the charged channel. To understand this
difference one has to consider the mechanisms behind both processes. The overview of the
various production mechanisms contributing to these processes is given in Table

In the pp — dn™ channel, the dominant contribution to the total cross section (TCS) is
provided by the LO rescattering diagram (Fig. [l.2). It was shown [LBH*06] that the LO
rescattering diagram together with its LO recoil correction reproduces TCS in this channel
within the calculation uncertainty. It was also demonstrated that at NLO all loop contribu-
tions cancel out exactly [LBHT06], thus providing no additional contribution. The estimated
uncertainty of the NLO MCS calculation [LBHT06] is about 2x3;cg ~ 30% in the total cross
section. The N?LO calculation will allow one to reduce the uncertainty down to 2)@105 ~ 13%
in the TCS.

In the pp — ppn® channel, the mechanisms are quite different. The LO rescattering
diagram as well as its recoil corrections are forbidden, because the leading pion nucleon
vertex (Weinberg-Tomozawa vertex) is of isovector origin, and thus, it cannot contribute
to the neutral pion production in pp — ppr® channel since there are no charge exchanges.
The remaining LO mechanism — direct pion production (Fig. — gives a very small
contribution after the convolution with the ISI and FSI. (This suppression happens due to
the momentum mismatch between the initial and final state nucleons [Han04].) Furthermore,

!Note that the cross sections of some two-body reactions is normally significantly bigger than those of
three-body channels due to the phase space. However, even after correcting for the phase-space factors the
difference between cross sections of pp — dnt and pp — ppr® is still large.
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Table 2.1: Diagrams contributing to the pion production operator up to N?LO MCS and a
qualitative estimation of their contributions to different pion production channels. First row
shows the MCS order, second row shows the diagrams which start to contribute at that order,
and the last two rows indicate the role of the diagrams to different pion production channels.
The notation and expressions for the vertices are given in the Appendix

MCS order LO NLO N?LO
7 7 7 7 7
s s s ¢ s s
— — ®
| | | N/ | N/
| | | / N\ | / N\
e + + — 4@+
7 ' / -
myL s e ’ .7
dlagrams | /7‘\ ;— - - N/ /7‘\
| /o RN AN /o
+ & > #{:H 4‘—<:)7
7
& . Acr, Ber
! + o +
R N

expected to be small,

contr. to big (full cazrfcrgllation) pro.vides only a small
pp — dn™ [ILBH™06] [LBHE*06] correction to large LO terms
[calculated in this work]
negligible Zero expected to be small, but
contr. tOO [CEMvK96] (full cancellation) important in this channel
PP = ppT [PMM™96] [HK02] [calculated in this work]

loop contributions at NLO cancel out exactly [FIK02]. Thus, in the pp — ppm® channel, the
net effect of the LO and NLO diagrams appears to be very small. As a consequence, the
cross section is mostly governed by the N?2LO mechanisms. This specifics of the reaction
pp — ppr” allows one to investigate the role of subleading mechanisms of pion production
once a systematic N2LO calculation is performed.

Understanding of isospin symmetric pion production, as outlined above, is not only in-
teresting by its own, but also appears as a necessary prerequisite for investigation of charge
symmetry breaking in pn — dr°. In the isospin symmetric world the differential cross section
of this reaction would be symmetric under interchange of initial proton and neutron. However,
in real world, the differential cross section is not symmetric due to charge symmetry breaking
(CSB) — a specific isospin breaking effect. We investigate CSB in pn — dn® in Chapter 4.

Another motivation for high-accuracy calculation of the pion production operator is pro-
vided by studies of few-nucleon processes. Some few-nucleon processes include pion production
as a building block. For example, in the isospin forbidden dd — an® reaction one can study
charge symmetry breaking using measurements of the total cross section. Any non-zero TCS
in this reaction is a manifestation of CSB [SBAT03, (GHN"04, INFGT06, [FMMO09]. The reac-
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tion NN — NN is a building block for dd — an®. For this reason, the calculation of the CS
and CSB pion production operators to a high accuracy would be an important step to study
CSB in dd — anr®.

Thus, a high-accuracy calculation of pion production operator at threshold is important to
understand the mechanisms behind neutral pion production, study charge symmetry breaking
in QCD and develop new methods to study large-momentum-transfer processes using chiral
EFT.

In this chapter we derive the pion production operator at threshold up-to-and-including
N2LO MCS. We identify the mechanisms responsible for neutral pion production and show
importance of the intermediate-range effects, which were not considered in phenomenologi-
cal studies so far. We also develop an efficient method to calculate loop corrections to the
amplitude, which can be further used in other chiral EFT studies.

To derive the production operator we use a heavy-baryon formulation of chiral perturba-
tion theory (HBChPT). To estimate Feynman diagrams we employ the momentum counting
scheme (MCS). This counting scheme takes into account the relatively large momenta in-
herent to pion production reactions. Unlike the standard Weinberg’s power counting, the
MCS correctly estimates pion production diagrams with heavy-baryon recoil corrections and
diagrams with loops.

To calculate loop corrections to the production operator we develop an efficient method,
based on the identification of common structures in Feynman diagrams. This method (which is
discussed in Section allows one to detect numerous cancellations between diagrams before
carrying out the loop integration. In addition, we derive relations between propagators and
momentum-dependent vertices in ChPT. These relations (which are given in the Appendix |C)
allow one to easily identify relevant irreducible contributions and help to spot cancellations
between various diagrams. These methods and relations depend neither on the heavy baryon
formulation, nor on the counting scheme and can be used in the wide range of chiral EFT
studies.

This chapter is organized as follows. In Section [2.I] we present all possible tree-level
contributions up-to-and-including N2LO MCS. In Section we consider loop diagrams to
the same order. We discuss renormalization or loop diagrams in Section [2.2.5 and give a
summary in Section [2.3]

2.1 Tree-level operators

Tree-level contributions to pion production operators can be of several types (Fig. : rescat-
tering operators, direct pion production operators, and five-point contact operators. In the
rescattering operators (Fig. ), a pion is emitted from one nucleon and rescattered from
another nucleon. In the direct pion production (Fig. [2.1b), a pion is emitted from a single
nucleon. Five-point contact operators (Fig. ) refer to NN — NN contact terms. Below
we consider all these types of tree-level operators in detail.

2.1.1 Rescattering operators

The general topology of the rescattering operator is shown in Fig. 2.Ih. The rescattering
operator consists of a mINN vertex, a pion propagator, and a 7wt NN vertex. All combinations
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Figure 2.1: General topologies of the tree-level diagrams. Rescattering operator (a), direct
pion production (b), and five-point contact operator (c). Solid lines denote nucleons, dashed
lines — pions, circles refer to any LO, NLO, or N?LO vertices from chiral Lagrangian.

of vertices that give contributions relevant for our N?LO MCS calculation are shown in the
box in Fig.

At leading order (LO) there are two diagrams: diagram Fig. is constructed completely
from leading vertices, and diagram Fig. includes 1/my-correction to the mm NN vertex.
These diagrams are of the same order due to the kinematics of pion production (see Section
for discussion). The total LO contribution from these two diagrams is given by

v -
iMEQ = ML ) +iMEC () = %’W(SQ k)0 +(12),  (2.1)
where the superscript a (a=1,2,3) refers to the isospin quantum number of the outgoing pion
field. An isovector combination of Pauli matrices 7¢ is defined as 7¢ = (11 x 72)%, the
transferred momentum is denoted by ko = ps — ph, and four-vectors v* and S* are defined in
Section The symbol (1 «+» 2) refers to the fact that there are additional diagrams of the
same kind with nucleons one and two being interchanged. Other symmetrization factors are
introduced by partial wave projection during convolution with NN wave functions.

The rescattering operator at N?LO contains corrections suppressed by 1/my due to the
vertices from Eg\), and also corrections o 1/ m?\, from 553\), We call these amplitude operators
MN2LO  and MNZLO respectively. The explicit expressions read:

rescatl rescat2’
2 N2LO . A (S2 - ko)g 2 9%
iMoseat1 = BiZ—mZ+i0 deymy —v-qu-ko (22 + 2c3 — I
ga (v-q)rd  Sy-(p2+ph)
Ty -k 1+ 2), 2.2
BE—mitri0  dmy RITIOD (2:2)
' : ka - (p1+ph) 9
pNLo 94 v q ) aig g (P2 \PLT P A
M rescat2 f;’ k% — mgr +40 ) (SQ k2) m?\, myca 16
—»2 —»/2 2 2
+ 1+ g% + 8myc k
10 (Sy - kg) |BLTOL  DTIATOMNG (g ke Sy (py + )] + 2
16m3y, 3miyy 2
T Sy - ph)p3 — (S 2 162 2.3
_8m?v [( 2+ Pa)py — ( 2'2?2)192] + (14 2), (2.3)

where [S1,, S1,] = S1,51, — S1,S1,- The first two terms in the curly bracket in Eq.(2.3)

®3)

are due to the corrections to the 7w NN vertex from L while the last one stands for the
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Figure 2.2: Various rescattering diagrams and corresponding MCS estimations. Diagrams in
the same column (row) have the same vertex on the upper (lower) nucleon line. Diagrams
relevant for N2LO calculation are outlined. Diagrams with MCS order higher than N*LO are

not shown. Solid, circled and double-circled dots denote vertices from £$\)]HB, ﬁg\),HB, and

ES\),HB HBChPT Lagrangians, respectively. ¢; and d; refer to parts of the vertices proportional
to the corresponding LECs while m;,l and m]_\,2 denote parts of the vertices proportional to the
inverse nucleon mass (recoil corrections). Recoil corrections to the LECs ¢; are also denoted

as m]_v2. The notation and expressions for the vertices are given in the Appendix
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a) zero b) LO c) N’LO d) N*LO

Figure 2.3: Various direct pion production diagrams and the corresponding MCS estimations.
Diagrams relevant for N?LO calculation are outlined. Diagrams with MCS order higher than
N%LO are not shown. Diagram (a) does not contribute to the s-wave pion production at
threshold, because it is proportional to the three-momentum of the outgoing pion. Solid,
circled, and double-circled dots denote vertices from LS\)[HB, EET?\),HB, and EET?\),HB HBChPT
Lagrangians, respectively. d; refers to the part of the vertices proportional to corresponding
LECs, while mjvl and mj\,z denote parts of the vertices proportional to inverse nucleon mass

(recoil corrections). The notation and expressions for the vertices are given in the Appendix

correction to the 7NN vertex at the same order. Both amplitudes Mgsé‘% and Mrl\é;i%

contribute to the isoscalar (A) and isovector (B) amplitudes defined in Section

2.1.2 Direct pion production

The general topology of the direct pion production is shown in Fig. 2.Ip. Direct pion produc-
tion is not a usual pion production operator but rather a building block for the full amplitude.
Direct pion production emerges from disconnected diagrams (sometimes called one-body or
single-nucleon diagrams). The corresponding amplitude is always off-shell. It only “makes
sense” when convoluted with initial- or final-state NN interaction. To get the counting es-
timate, the direct pion production operator should be convoluted with one-pion-exchange
between initial or final nucleons. Notice that to obtain full amplitude, one has to convolute
this operator with the full NN interaction between initial or final nucleons.

Contributions from direct pion production which are relevant for our N?LO calculation are
shown in the box in Fig. ﬂ The leading 7NN vertex (Fig.[2.3p) does not contribute to the
pion production at threshold, because this vertex is proportional to the outgoing pion three-
momentum, which vanishes at threshold. The subleading 7NN vertex (1/my-correction to
the leading one) gives the LO MCS contribution to the amplitude (Fig. 2.3p). The sub-
sub-leading mINN vertex, proportional to 1 /m%\,7 gives additional N2LO MCS contribution
(Fig. ) Finally, the contribution of the sub-sub-leading 7NN vertices, proportional to
LECs d;, are of higher order, than N?LO (Fig. [2.3d). The total contribution from direct pion
production up-to-and-including N?LO is given by

iMair = gfinv - q 0(pa — 72 (2.4)

™

><_

1
St (p1+pY) + T2 (v-p1(S1-p1) +v-pi(S1-p))) | + (1 2).

2mN 4 N
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Act,Ber

Figure 2.4:  Five-point (NN — NNm) contact interaction, which starts to contribute at
N2LO. It has two contributions: Acr contributes to the neutral pion production, and Bor to
the charged pion production.

As already stressed above, to get the contributions to the full amplitude, the building block
(2.4) should be convoluted with initial and final state NN interactions.

2.1.3 Five-point contact operator

The general topology of the five-point contact operators is shown in Fig. [2.I¢. Each five-point
contact operator consists of a single NN — NN vertex proportional to the corresponding
low-energy constant. At N2LO MCS there are, in total, two five-point contact operators
relevant for s-wave pion production. They have different spin-isospin structures and can be
chosen in such a way that one of them contributes only to the amplitude A and another
only to B (see Eq. (1.5)). The contributions to the amplitude of these two contact terms are
denoted by Act and Ber.

Low-energy constants of the five-point contact interactions have two parts: the divergent
part is required for renormalization of N?LO loop diagrams while the finite (renormalized)
part parametrizes the short-range physics. The divergent part can be fixed from the full N2LO
operator calculation according to the renormalization procedure. This is done in Section [2.2.5
The finite (renormalized) part should be fitted to the data after carrying out the convolution
with the wave functions.

Both finite and divergent parts change if an additional degrees of freedom are added to
the effective Lagrangian. This case will be considered in Chapter [3] where the delta-resonance
is included as an explicit degree of freedom.

The separation of LEC into finite and divergent parts is renormalization-scheme-dependent.
While a particular choice does not affect observables, it is important to maintain consistent
definitions in all calculation. We discuss renormalization in Section 2.2.5

2.2 One-loop operators

To calculate high-accuracy pion production operator at threshold one has to consider loop
diagrams. Loop diagrams start to contribute to s-wave pion production at NLO MCS. In this
sectionﬂ we calculate the loop corrections to pion production operator at threshold up-to-and-
including N?LO MCS.

2The content of this chapter is published in [FBET12].
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2.2.1 One-loop diagrams and power counting

The counting of loop diagrams in MCS requires some discussion. The order of a loop diagram
in MCS is highly dependent on the structure of a particular diagram. This is in contrast to
the standard Weinberg’s counting, where all loop diagrams constructed from leading vertices
are of the same order.

— — — —«

T
|
|
I\

Figure 2.5: Examples of diagrams which are of the higher order than N2LO. Loop integrals in
all these diagrams include several nucleon propagators and only one pion propagator. In this
case, large momenta p are not involved in the loop or can be removed by shifting of integration
variables. This leads to a suppression compared to diagrams with two pion propagators in
the loop, where the scale p cannot be removed from the integral.

As discussed in Section the order of loop diagram in MCS depends strongly on the
scale of the running loop momentum [. The size of the scale [ depends on the structure of the
loop integral. Loop integrals with only one pion propagator do not involve large momenta p,
since it can always be removed by the shift of variables. Hence, the corresponding diagrams
are highly suppressed. Examples of suppressed diagrams are shown in Fig. [2.5] In contrast,
the loop integrals with two pion propagators always involve large momenta p which cannot be
removed, and the corresponding diagrams give important contributions. Diagrams with two
pion propagators in the loop are typically two-pion-exchange (TPE) diagrams. Thus, only
TPE loop diagrams give important contributions to s-wave pion production at threshold.
This fact dramatically reduces the number of loop diagrams which should be calculated at
N2LO MCS. All loop diagrams relevant for N2LO calculation are listed in Fig.

Even TPE diagrams alone require extensive calculation, because there are about 14 dia-
grams and, in addition, the recoil corrections in each vertex of each diagram should be taken
into account. While brute-force calculation of all of the N2LO TPE diagrams is possible, it
can be tedious and error-prone. To simplify the calculation and to make cancellation patterns
more apparent, we first divide all TPE diagrams into several groups, where each group has
a common structure. Then, we factor out this structure and consider only the remaining
different subgraphs.

The most efficient way to group the diagrams is to consider the structure of the second
nucleon line. There are three possible structures for the second nucleon line. The first one
corresponds to two wIN N-vertices and one nucleon propagator. All diagrams of this structure
are proportional to gi and shown in the second line in Fig. The second structure involves
the leading WT vertex. Diagrams with this structure are proportional to g4 and shown in
the first line in Fig. Finally, the third possible structure emerges from the c¢;-vertices.
Diagrams with this structure are proportional to c;g4 and are shown in the third line in
Fig. It turns out that after factorizing out the common structure from any of these
groups, the remaining subgraphs correspond to the 7N — ww N process. To obtain the total
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Figure 2.6: Loop diagrams (without delta) that contribute to NN — NNz up to N?LO
in MCS. Big dots correspond to the sum of leading vertex and the corresponding 1/my-
correction. Other notation and expression for vertices can be found in Appendix @

contribution of the group we first sum up all 7N — ww N subgraphs, and then plug the sum
back into the common structure. Since the set of TN — 7w N subgraphs is the same for
all three groups, we only need to calculate the sum once. It also turns out that numerous
cancellations happen among these 7N — ww N subgraphs, thus the sum has a very simple
form. Consequently, total result from TPE diagrams is also very short and simple. We discuss
individual groups in the next sections.

2.2.2 Calculation of diagrams proportional to g3

The diagrams of the gj’—group in Fig. have a common structure illustrated in Fig.

a q

> 4

4 ]
b/ ‘e

D2 —@—>—8— P
p2—1

Figure 2.7: The general structure of gﬁ—diagrams.

The loop diagram in Fig. is integrated over the momentum [ = (lo, l_j We also use the
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short-hand notation 3
l=1+Fk —q,

with k1 = p; — p}. Pion isospin indices a, b, and ¢ are defined as shown in Fig. The
circle containing the vertex operator A%¢ produces an outgoing pion with isospin index a
off nucleon 1. This operator is different for each diagram and its explicit form is derived in
Appendix where also the detailed structure of each gfﬁl-diagram is given.

The invariant amplitude for each relevant diagram proportional to gi can be written as

. d4l 7\ .-¢..b pabc
ZMQ.% = /(271—)4 BQ(Z,Z) ToTy Agg s (25)

where Ba(l, Z) is the common operator structure associated with nucleon 2 in Fig. The op-

erator Ba(l, l~) involves two pion propagators, two mN N-vertices and the nucleon propagator.
The explicit form of By(l,1) can be read off from the diagram in Fig.
~ i i i
By(l,l) = = = : = (2.6)
12 =mZ 40 2 —m2 +i0 pog —lo — (52 — 1)2/(2mn) + i0

. /_ ‘N . _ .
9 <_52,l+52 (p2+p}— v l)gA@‘l_sQ (292 — U)o z>'
2mN fﬂ' 2mN

Note that Bs(l, lN) contains no isospin indices as all isospin operators are included in Eq. 1)

Since the structure of By(l,1) is the same for all considered g3-diagrams, we concentrate our
discussion on the structure of the operator Aggc in Eq. 1) see Appendix for details.
A

Note that the amplitude, Eq. is not yet properly symmetrized with respect to the
nucleon labels. Below we will first discuss the emergence of the partial cancellation amongst
the various pion loop diagrams on the basis of the decomposition illustrated in Fig. In
Sec. the non-vanishing remainder will be given in a symmetrized form.

Pion s-wave contributions gi

In Appendixwe derive the expressions for each of the six gi‘—diagrams which contribute to
near-threshold s-wave pion production from two nucleons. The results of these calculations are
summarized in Table where, for the sake of convenience, we have introduced the following
short-hand notation for the isospin structures:

= (11 + ™) = (1 — )% = = i(1 X T2)% (2.7)

The left column in Table shows the spin structures that emerge from these diagrams,
the next six columns show the contributions from the individual diagrams to the given spin
structure, whereas the last two columns summarize the net effect of all diagrams and the MCS
order, respectively. When we add together the resulting expressions for the six diagrams we
confirm the finding of Ref. [LBHT06| that the sum of the NLO contributions from all diagrams
vanishes, see the first two rows of operators in Table 2.2l Moreover, since the sum of the
operators in the first two rows of Table is exactly zero, the corresponding spin-momentum
structures Sy - and S - will not contribute also at N2LO and all higher orders. In addition,
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all nucleon recoil corrections o 1/(2my) to the individual diagrams at N?LO also cancel in
the sum. The reason for that cancellation is completely analogous to the cancellation that
happens at NLO. In fact, only those parts of the gi—diagrams that cannot be reduced to the
topology of the diagram II in Fig. give a non-zero contribution to the transition amplitude.
Thus, only very few N?LO contributions to the pion production amplitude survive, as seen
in Table The non-vanishing terms appear from the two cross-box diagrams and diagram
Iv.

Since the sum of the Aggc—operators from the different diagrams starts to contribute at

N2L0, we keep only the leading part of the operator By(l,1). Adding up the contributions
from all six gi diagrams we arrive at the following result:

Lo ,gj;/dH Sy -1 Sy -1 1
9a

erg (2m)4 12 —m2 40 i2_m721-+i0 —v 1440
2v - q - 20 q
-2 — (511 -2 — = T (S -1
x{( T++7’><)_v_l+i0( 10 0) + (=27 TX)—v-l—i—iO( )
(I+0)-q
-8 (51 - k1) ——FF—— 28
(5 1)k%—m72r—|—i0 ’ (2.8)

where for the nucleon propagator in Eq. (2.6) we dropped pyp and all recoil terms of order
O(my) compared to the lower-order lg = v+l ~ |I| ~ p term. Rearranging the isospin structure
we arrive at three independent integrals to be evaluated for s-wave pion production:

3 d4 L, (1+1)
iMNLO = —igA{4 v - q)TSE Sy S / ol A
93 Af3 (v- )75 5251 (2m)1 (12 = m2 4 i0) (12 — m2 + i0)(—v - | + i0)2
—2(v - q)1< Sy S5 (S - k )/ 4 Luly
D22 2200 B [ om) T (12 Zm2 4 i0)(1% — m2 + i0)(—v - 1 + i0)2
SHSY(Sy -k d*l L,(1+1
+8¢™ 7 k% 2 21 1)/ 1 —£ I+ )’\. . }(2.9)
1 —m2+i0 ) (2m)* (12 — m2 440) (12 — m2 +i0)(—v - | + i0)

Employing dimensional regularization and an integration method outlined in Appendix[G]
Eq. (2.9) can be brought into the more transparent form:

3 v -
ngN;LO = M{T+igwaﬁkmslyvasw [~ Len(kD)]

f2
(S - Fr) [—;ilm(k%) + g(;)?] } (2.10)

where we have only kept the lowest order parts of the integrals which give contributions to
the amplitude at N?LO. The pion loop diagrams generate ultraviolet divergent terms, which
are contained in the following integral:

Lin(kD) = —2'/ @'l ! ! (2.11)
T (2m)4 12 — m2 +40 (I + k)2 — m2 + 0 '

The divergences are to be absorbed by the five-point NN — NNz LECs as we will discuss
in Sec. [2.2.5]
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Table 2.2: Interference pattern of NLO and N2LO s-wave contributions from the individual gi
diagrams. The Table shows the contributions to the vertex 757y A“bc defined in Eq.(2.5) and
A

Fig.[2.7] These contributions are given separately for the different spin-momentum structures
of the vertex A“ ¢, shown in the leftmost column. The notation for the isospin structures is

defined in Eq. 1}

Type 11 Type IIla  Type IlIb  Type IV Box a Box b Sum Order
Syl —47 — 41+ 27 0 —27 — 7 67 +67 27 — T 0 0 NLO, N2LO
Sy Ay +47 421 21 — 7 0 —674 — 67— 0 2 — 7y 0 NLO, N2LO
Sy-1 Qm\ -2 421 27 — 7 0 0 0 —27 47 0 N2LO
Si - 152k 27 — 27 0 —27y — 7 0 27 + 7 0 0 N2LO
Sy - (p1+p]) 52 ZM 47, + 47 — 27 0 27 + 7 —6m — 67 27 + 7% 0 0 N2LO
S1 - (p1+p1) 52 2m1v —Ar — 41 — 27 =27 + Tx 0 67 + 67— 0 —27 + T 0 N2LO
Sy 122 0 0 —27, — 7 0 0 0 —27, — 7 N2LO
Sl 0 27y + 7 0 0 0 0 27y + 7 N?LO
S1 - b gt 0 0 0 87 0 0 — 87 N’LO

a 4

S
LA [

sz—o— Db

Figure 2.8: The general structure of g4-diagrams.

2.2.3 Calculation of diagrams proportional to g4

We evaluate the g4-diagrams following a similar strategy we used when evaluating the gj—
diagrams. The invariant amplitude for each diagram proportional to g4 can be written as

, d*l = b .
iM,, = /(%)4 Dy(1,1) e¥rg Agle, (2.12)

where Ds(l, lN) is a common operator structure which is associated with nucleon 2 in Fig.
This structure involves the WT vertex at the second nucleon and the two pion propagators:

. i i v-(1+1)
Dy(l,1) = -
2(L) 2—=m2 4140 2 —m2 +i0  4f2

(2.13)

Note that we have only written the leading WT-vertex contribution in Da(l, Z), Eq. ,
since the sum of the Azzc—operators starts to contribute at N2LO only, as can be seen from
Table This is in a full analogy to the sum of the A;C—operators, which also only starts to
contribute at N2LO, where, as discussed just before Eq. , the recoil (1/my) corrections in
Bs(l, Z), Eq. , only contribute at higher order. In other words, the corrections to Da(l, l~),
that is the recoil correction to the leading WT interaction term contributes at a higher order
than what is considered in this work.



39

Table 2.3: Interference pattern of s-wave contributions from the individual g4 diagrams. The
Table shows the contributions to the vertex €de7'2dAg£c defined in Fig. and Eq.(2.12). The
contributions are given separately for different spin-momentum structures of the vertex Ai’c,
shown in the leftmost column. The notation for the isospin structures is defined in Eq.([2.7).

Football Type Ia Type Ib MiniFB Sum Order
Sy -1 — 27 —Tp 4+ T+ Tx T — T + T 0 0 NLO, N2LO
Syl —27x —Ty + T+ T T — - + Tx 0 0 NLO, N2LO
Sy -l anl;j 2T — 2. T+ T+ T —Tp + T — T 0 0 N2LO
Sy - NZ:;;/ZN —27 + 27 Ty —To — Tx T — T+ Tx 0 0 N2LO
St (p1+p1) szlzv 27 T =T — Tk —Tp T — Tx 0 0 N2LO
S1 - (p1+p1) 2;}nlN 27 T — T — Tx -7y + T — Tx 0 0 N2LO
Sy 1254 0 0 27, — 27_ + 27, 0 27 —27 +2n N2LO
St 0 27y — 27 — 27 0 0 27y — 27 — 27 N’LO
S1 - ky iy 0 0 0 87 87 N2LO

LE2—mZ+i0

Pion s-wave contributions « g4

The operator expressions for each individual diagram of the ga-type contributing to s-wave
pion production can be found in Appendix In a complete analogy with the gi—diagrams,
we summarize in Table the contributions of the individual diagrams and their net effect
for different spin structures. In distinction to the gi—graphs, the diagrams of this topology
do not appear, contrary to naive MCS expectations, at NLO, see Appendix for a more
detailed discussion. Similarly to the g3-type contributions, only a few of the N?LO terms
survive after cancellation in the sum. Again, only those parts of the diagrams Ia, Ib and
“mini-football” that cannot be reduced to the topology of the “football” diagram in Fig.
give a non-zero contribution to the transition amplitude. The results are shown in Table
and the sum of these g4 contributions gives the following transition amplitude:

ooNtLo - ga [ dY . % - q N
ZMQA = 187](,7? /(271')4 DQ(Z,Z) (27’+ — 21 — 2Tx)m51 -l

2v-q q-(1+1)
— S 487 S ke
T B

}. (2.14)

+(27 — 27— + 27%)

Upon performing simplifications, the total result for the ga-contribution to the transition
amplitude in Eq. (2.14]) can be brought into the form

NLO . 9A d*l v-(1+1)S-(141)
ZM;X LO _ _Z8f7‘?{(7—+ — T_)(’U . Q) /(271’)4 (l2 _ mgr + 7:0)([2 _ m72r + iO)(—U A+ iO)
d*l v-(1+1)
—Tx (v . Q)(Sl . k‘l) /(271.)4 (l2 _ m72r + 7:0)([2 _ mgr + iO)(—’U 4+ 7;0)
1 d*l v-(I4+0)g-(1+1)
+2TX(Sl.k1)k% ", /(%)4 E w2 L)@ —m72r+z'0)}' (2.15)

The first term in Eq. (2.15) does not contribute at N2LO, since at this order the term v-(I+1) ~
2v -1 in the numerator cancels with the nucleon propagator —v - [ + 0. The resulting integral
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vanishes due to the symmetry of the integrand. Specifically, the integral is to be invariant
under the shift of variables (I — —I,1 — —I). Indeed, the denominator of this integrand
is invariant under this transformation whereas the numerator changes its sign. Therefore,
the first term in Eq. is equal to zero. Finally, keeping only the lowest-order terms as
appropriate at N2LO and using the expressions for the loop integrals outlined in Appendix
we arrive at the final result:

A rN2LO _ YA 1 9 1 1
lMgA - JT;,TX (U ’ q)(Sl ’ kl) glmr(kl) - E (471')2 ’

(2.16)
where the UV-divergent integral I, (k?) is defined in Eq. (2.11).

Pion s-wave contributions x g4c¢;

We now turn to the contribution emerging from the diagrams of Fig. with the ¢y and
cs-vertices in the off-shell pion kinematics at nucleon 2. We obtain the following expression
for the amplitude:

iMYTO —i%(7++f_)(s-k1) (2.17)

d*l c3(l-1) 4 (e — g4 /8mp) (v - 1) (v - 1) 1.1 0 _
X/(27r)4 (12 — m2 + i0)(12 — m2 + i0) {2+ " 3}_0’

2 2

where the numbers in the curly bracket correspond to the individual contributions of the
ga-diagrams, as they appear in Fig. 2.0 in order. Again, while the individual diagrams do
contribute at N2LO, their sum turns out to yield a vanishing result. We, therefore, conclude
that there are no loop amplitudes « ¢; to the order we are working.

2.2.4 Summary of the two-pion exchange diagrams

Until now we have evaluated the expressions for the production operator assuming that the
pion is produced off nucleon 1. We now add the contribution emerging from interchanging
the nucleon labels. We use k1 = —ko 4+ ¢ and employ the approximate relation k% ~ k:% with
higher-order terms being ignored. Throughout, we also ignore operators leading to p-wave
pion production. We then obtain from Egs. and the following complete (i.e.

symmetrized with respect to the nucleon labels) expressions:

. 2 ga (v-q 1 1 1
ZM;Z LO — ng )TX (Sl + SZ) . kl |:617Tﬂ-(]€%) - T8 (47T)2:| 5 (218)
3
. 2 gz (v-q - o
ZMgNz Lo — ‘4;7?){7;26 K BvakmSMSQﬁ [—2I7r7r(k%)}
19 5 1
+7(S1 + S2) - k1 [—Mfm(k%) + 9 (47T)2] } (2.19)



41

Employing dimensional regularization and setting d = 4 — ¢, the integral I (k1) entering the
above expressions can be written in the form

1
Iy k2 =
(k1) (27) (4 &) [12 —m2 +40][(I + k1) — m2 +i0]

IS

where the function Fj(x) is defined via

—
Fi(x) = vizz-® arctan (ﬁ> (2.21)
Vv 4 —x—10
and the UV divergency appears as a simple pole in the function L:
L= ! —1+1( — 1 —log(4m)) (2.22)
T Um2 | e T2V S '

Note that both MN LO and MN LO are proportional to the outgoing pion energy v - q ~ m,
i.e. both operator amphtudes Vamsh at threshold in the chiral limit.

2.2.5 Renormalization procedure

Our N2LO calculation involves divergent loop diagrams, which require proper renormalization
to get the physical result. Renormalization procedure introduces additional vertices, called
counter terms, which absorb infinite parts of divergent loop diagrams. In this section we show
that the only relevant renormalization correction in our N2LO calculation is the five-point
contact interaction, discussed in the previous section. All other renormalization corrections
contribute at higher orders.

To understand why renormalization effects are suppressed let’s first consider divergent
loop diagrams which should be renormalized by renormalization corrections to Zy, Z:, ga,
fr, my, and mp. Several examples of such diagrams are shown in Fig. All these diagrams
are highly suppressed in MCS, because the only small scale in the corresponding loop integrals
is my. (Large momentum p either does not enter the loop integrals or can be removed by
a shift of variables). MCS estimation procedure for these kind of diagrams is explained in
Sec. Renormalization corrections which absorb the corresponding ultraviolet divergencies
are also of higher order. It can also be understood by carefully counting the involved scales.
Since renormalization corrections, by construction, do not depend on the kinematics, the only
small scale which can appear in these corrections is m7T The small scale m is accompanied in
these corrections by the loop-factor (47 fr) =2 ~ m}, N , thus producing a significant suppression
in terms of the MCS expansion parameter \/mz/my.

Thus, in the N2LO MCS calculation, one can ignore all effects related to renormalization
of masses, fields (Z-factors), coupling constants and most of the LECs. The only quantities,
which should be renormalized are the five-point NN — NN7 LECs. All other LECs, masses,
and couplings can be taken as renormalized (physical) values, because the corresponding
renormalization corrections are of the order higher than N2LO.
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Figure 2.9: Exemplary loop diagrams, which contribute to higher order than N2LO. The
corresponding renormalization corrections also appear at orders higher than N?LO.

At N2LO, we only have to consider the TPE loop diagrams. The UV divergences
appearing in the corresponding integrals are to be absorbed into five-point NN — NNm
LECs Act and Ber introduced in Sec. The contributions of the loops to the amplitudes
A and B, see Eq. , can be separated into singular and finite parts

m ~ ~
A = W(Asingular"i'flﬁnite)a
™ s
m ~ ~
B = —— 55 (Bsingular + Banite), (2.23)
(i )2 3 oot + B
where
it = 19
Asingular = g%(477)2L7 Bsingular = _% <4g,24 - 1) (477)211 . (224)

Here, we have used that at threshold 1_51 = pand v-q = m,. Notice that the above decomposi-
tion into singular and finite pieces is, clearly, scheme-dependent. Analogously, the amplitudes
given by the 4Nw Lagrangian contact terms which are given in e.g., Ref. [CFMvK96| are
written as:

msx “r 2 mx
= 4 L), Ber=-+—+—7o==
Act (47rf7r)2f3;( or(p) + (4m)°Bal), Ber (Anf )2 /3
The singular parts of the amplitudes in Eq. (2.25)) cancel the singularities of the amplitudes
in Eq. (2.23), emerging from the loops. The resulting finite expressions for the scattering
amplitudes are given in terms of the renormalized LECs of Ref. [CEMvK96] as:

(B&r(p) + (4m)%BsL) . (2.25)

T - 7 Ar - _ d/ 2 —9 mx
0T Tppger T e el
m ~

B¢ ——— Bl = —(d] +2e1)——.

er = Gnppptor = g T
The magnitudes of the amplitudes A and Bf. can be estimated using the values of the LECs
determined in Refs. [CEMvK96, dRMvKO00, vKMR96] where the short-ranged production
mechanisms were assumed to originate from z-diagrams with o and w exchanges (see explicit
expressions for these exchanges in Refs. [CEMvK96, KSMKO09]). Given the estimates in
Ref. [WKMR96], we find d} + 2e; — 2e ~ —7.5/f2my and d} + 2¢; ~ —3.5/f2my, and
using my = 47 fr we obtain Ay =~ 2m/(m3 f2) and Blp ~ 1my/(mA f2) which results in
AGr ~ 2 and By ~ 1.

(2.26)
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We take these numbers to estimate the size of typical N?LO contributions. Therefore,
these estimates allow us to infer the importance of the pion—nucleon loop contributions to the
NN — NN reactions at threshold. In particular, we can compare this estimate with the

finite parts of the loops given by Egs. (2.18) and (2.19)) (where v -p ~ m, < |p]).

3 2 -2
rt ga ma —D
nite = ——=1[1-1 -2 | — )|, 2.2
A 2[ Og(u) 1(%%)] (2:27)
; 94 19 my —p” 5o 1
: _dAn_C —1)(1-1 o (- .
e 6“(49“‘ )( Og<u2> 1(m% T3
Choosing uw = 4nfr with fr = 924 MeV and g4 = 1.32, we find Afnite = —2.9 and

Bﬁnlte = 1.4. We, therefore, conclude that contributions of the finite parts of the loops are
comparable in size with .ACT and BCT This confirms our power counting and shows that pion
loops contributions, not considered in previous analyses, are indeed significant. One should,
however, keep in mind that this result was obtained for the particular regularization scheme
as explained above. In general, the finite parts of the loops ./Zlﬁnite and Bﬁnite can be further
decomposed into the short- and long-range parts. The former one is just a (renormalization-
scheme dependent) constant to which all terms in Eq. but F; contribute. On the
other hand, long-range parts of the loops are scheme-independent. By expanding the func-
tion Fy(—p 2 /m?2), Eq. , which is the only long-range piece in , in the kinematical
regime relevant for pion production, i.e. (52/m2) > 1, up to the terms at N>LO one obtains

2 2
Az = ~Zhoe () +0(25).
Slon 19 m2 72r
Bie = 12(4gA—1)10g<p )+(’)<p ) (2.28)
Numerical evaluation of these terms gives AE;%C 2.2 and B;Orﬁfc = —1.5. The scheme-

independent long range part of N2LO pion loops appears to be as large as the resulting short-
range amplitudes, .A o and BCT, which are given by the meson-exchange mechanism, proposed
in Refs. [LRI3, HMG94l, Hor93, [Nis96] to resolve the discrepancy between phenomenological
calculations and experimental data. Hence, the importance of the N2LO pion loop effects, not
included in the previous studies, raises serious doubts on the physics interpretation behind
the phenomenologically successful models of Refs. [LR9I3, [HMG94, [Hor93) Nis96].

2.3 Chapter summary

In this chapter we have calculated the pion production operator at threshold up-to-and-
including N?LO MCS.

We have shown that the intermediate-range two-pion-exchange effects give important con-
tribution to the production operator. This can question mechanisms used in phenomenological
calculations, where data description was obtained without these contributions.

The obtained production operator has a simple form and gives rise to different applications.
It can be used to calculate total cross sections in s-wave pion production channels. It also
represents the important ingredient for the study of charge symmetry breaking in pn — dr®,



44

and extraction of the strong contribution to the proton-neutron mass difference from the cross
section asymmetry data in pn — dr®. This operator is also an important building block to
study CSB in dd — ax®.

To calculate loop corrections to the production operator we developed an efficient method,
based on identification of common structures in Feynman diagrams. This method allowed us
to detect numerous cancellations between diagrams before carrying out the loop integration.
In addition, we derived relations between propagators and momentum-dependent vertices in
ChPT. These relations allowed us to identify the relevant irreducible contributions and helped
to spot cancellations between various diagrams. These methods and relations depend neither
on heavy baryon formulation, nor on the counting scheme, and can be used in the wide range
of chiral EFT studies.



Chapter 3

Pion production operator in chiral
EFT with explicit delta

In the standard ChPT, only pions and nucleons are considered as explicit degrees of freedom.
Contributions of all higher resonances are viewed as short-range and included in the the-
ory implicitly through the low-energy constants. However, in some particular pion-nucleon
processes, the low-energy constants cannot fully capture all relevant physics. In such pro-
cesses the dynamics related to the low-lying resonances such as A(1232), N*(1440), N*(1535)
and so on, may become relevant. Out of low-lying resonances, the A(1232) — the lowest
excitation of the nucleon — is of particular importance: the delta-nucleon mass difference
6 =ma—mpy ~ 294 MeV is just 2 times larger than the pion mass. As a consequence, it may
become inefficient to absorb effects of the delta resonance into low-energy constants alone.

Already in the study of low-energy pion-nucleon scattering [FMO01bl, Ber08, [KEMOQT7,
BKMO97] it was found that the delta resonance plays an important role. The explicit in-
clusion of the delta in pion-nucleon scattering led to a better control over the dynamics and
resulted in more natural values of the low-energy constants [KGE12, [KEMO07]. The latter fact
is especially important since it leads to a better convergence of the theory. Thus, the explicit
inclusion of the delta resonance in chiral EFT is beneficial for some pion-nucleon processes.

In pion production reactions, the effects of delta-resonance are even more important than
in wN-scattering. The reason is that the typical momenta in pion production reactions are
about p ~ \/m;my ~ 360 MeV, which numerically is even larger than the delta-nucleon mass
difference 4. This gives a strong motivation to include delta as an explicit degree of freedom
and, in this way, keep all long-range contributions from the delta resonance explicitly.

The impact of the delta resonance on pion production was already studied in chiral EFT
with MCS. The latest review of chiral EFT studies can be found in Ref. [BHMI4], see also
[Han04] for a detailed review of various phenomenological studies and early chiral EFT cal-
culations.

In the first chiral EFT study within the delta-full theory [dRMvKO0|, the only diagram
with an explicit delta considered was a tree-level NLO diagram. It was found to give a small
contributionE] NLO MCS loop-diagrams with delta were also calculated in the chiral EFT

! In the study [dRMvKOQ], the convolution with NN — NA wave functions was made using the static
approximation for the delta propagator. It was noted in the Ref. [BHH'07| that in order to get realistic results,
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Table 3.1: Additional diagrams contributing to the pion production operator up to N?LO
MCS appearing in the theory with explicit delta and a qualitative estimation of their con-
tributions to different pion production channels. The first row shows the MCS order, the
second row shows the diagrams which start to contribute at that order, and the last two rows
indicate the qualitative contributions of the diagrams to different pion production channels.
The notation and expressions for the vertices are given in Appendix @

MCS order LO NLO N?LO
7/ 7 7/ 7/
| | | /N /N
diagrams none o, T - X - X -
/N / \ / \ / \
—_—r e
A + o 2 \: 7 +
7/ \ 7
very small expected to be small
contr. to 0 (cancellations and destructive relative to large LO from
pp — dnt interference) mN-sector
[HK02, BHH™07] [calculated in this work]
very small expected to be small
contr. to (loops cancel out [HK02], but important due to
0 0 )
pp — ppm tree-level very small suppression of LO and NLO
[CEFMvEK96]) [calculated in this work]

approach. It was found that the sum of all loop contributions at NLO cancels out [HK02].
This sum, however, contains a remainder, which can be estimated as N2LO MCS. In the
latest hybrid EFT study [BHH™07|, it was found that individual NLO tree-level diagrams
and the N2LO remainder (from NLO loops) give moderate (10-15% of LO) contributions to
the amplitude, but interfere destructively with each other, see column “NLO” in the Table[3.1]
Due to these accidentaﬂ suppressions at NLO, the contributions of N?LO start to play the
important role. On the other hand, none of genuine irreducible loops at N2LO, as shown in
Table was investigated so far. This gives a motivation to calculate N?LO corrections in
the theory with explicit delta.

The delta-resonance-induced contributions listed in the Table [3.1] should be added to the

static approximation is not sufficient and recoil corrections to the delta propagator should be considered.
2These kind of suppressions are not related to counting, because individual diagrams are in line with the
estimations based on naive dimensional analysis, but the sum is highly suppressed.
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Figure 3.1: Some examples of mw/N-scattering diagrams governed by the delta-resonance in
different formulations of chiral EFT. In the standard ChPT, the effects of delta are considered
to be of short range and encoded in LECs ¢. In the chiral EFT with explicit delta, the effects
of delta are included via new diagrams with delta propagators. The values of LECs in the
two formulations are different.

pure pion-nucleon contributions from previous chapter (see Table there).

In this chapterﬂ we perform the full chiral EFT calculation of pion production operators
due to explicit delta up-to-and-including N2LO in MCS.

To study the long-range contributions of the delta resonance, the standard ChPT is ex-
tended to a more general chiral EFT with delta as an explicit degree of freedom [CFMvK96,
Hem96l [HHKO98]. One introduces the delta fields in the theory and writes the most general
Lagrangian for interactions of pions, nucleons, and deltas. The outline of this procedure is
given in the section [1.3] Practically, the inclusion of explicit delta isobars introduces new
terms in the effective Lagrangian. In addition to the terms from standard ChPT, in chiral
EFT with explicit delta isobars there are new vertices, which describe pion-nucleon-delta,
pion-delta, nucleon-delta, and delta-delta interactions. New vertices also lead to additional
Feynman diagrams, which have to be taken into account. Besides the appearance of new dia-
grams, the inclusion of explicit delta isobars has several specific aspects, which are discussed
below.

The explicit inclusion of delta isobars changes the values of low-energy constants, because
in the extended chiral EFT the delta resonance is treated explicitly as a dynamic degree of
freedom, see Fig. One can expect the values of LECs to be more natural in chiral EFT
with explicit delta, because significant contributions, which were pushed to LECs in standard
ChPT, are now treated dynamically.

In addition, the inclusion of explicit delta isobars affects power counting, because it in-
troduces a new small scale § = ma — mpy. For simplicity, in the processes where the only
small scale is m, such as e.g. wN-scattering, the new scale ¢ is associated with this single
small scaleﬂ In pion production, even without explicit delta, there are already two distinct
small scales: m, and \/m;my. To simplify the estimation procedure, instead of introducing
a third small scale, it is reasonable to associate d with one of the existing scales. In the MCS,
the delta-nucleon mass difference § is associated with /m my [Han04], because numerically
0 is closer to \/m;my than to m.

Most of the diagrams with delta excitation can be constructed from the similar pion-
nucleon diagrams by substituting nucleon propagators by delta propagators. However, di-
agrams with delta propagators can be of lower order than similar diagrams with nucleon

3The results of this study have been published in [FBE*13].
4This allows one to use the standard Weinberg counting with the expansion parameter yw =~ mx/A >~ §/A.
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Figure 3.2: Loop diagrams with similar topology but different baryon propagators and,
thus, different MCS estimations. The diagram with the delta propagator is of a lower order
compared to the one with nucleon propagator, because the loop integral with the delta isobar
involves the relatively large scale §, while the other loop integral involves only small scale m.

propagators according to the MCS (see Figure [3.2). To illustrate the difference in counting
of pion-nucleon and pion-delta loops, let’s recall the estimation procedure for pion-nucleon
loops. As discussed in Section see also Fig. the running momentum in pion-nucleon
loop can be either of order m, or /m;my depending on the kinematics and topology of a
diagram. In particular, in the loop-integrals with one pion propagator and one (or more)
nucleon propagators, the scale \/m;my does not enter the integral or it can be removed by a
shift of variables. Since the only remaining scale in such an integral is m,, the corresponding
diagram is suppressed. In the loop integrals with delta propagator the situation is different.
The value 9§, which enters the delta propagator, is estimated in the MCS as /m;my, thus
the delta propagator always introduces the relatively large scale \/mzmy to the loop integral,
and this scale cannot be removed. Therefore, diagrams with delta propagators in loops can
be more important than similar loop diagrams with only nucleon propagators. This is the
reason why at N?LO, there are more diagrams with delta propagators than those with nucleon
propagators.

Because in the theory with explicit delta isobar there are more N2LO loop diagrams, there
are also more LECs that should be renormalized at this order. Unlike to the pion-nucleon
case, in the theory with explicit delta isobars, in addition to the five-point NN N N contact
terms, also one has to renormalize the pion-nucleon coupling constant g4 and include the
nucleon Z-factor Zy at N?LO MCS. This issue is discussed in Section m

Since some diagrams with delta isobars are more important than similar ones with nucleon
propagators, it can naively appear that contributions of heavier resonances are more important
than the ones of lighter particle. This interpretation, however, is not correct. According
to one of the the main principles of EFT, the heavier resonance is, the smaller its impact
on low-energy processes. In the limit of infinitely heavy resonance, there are no observable
contribution from it at all. The last statement is known as decoupling theorem [ACT5]. Before
carrying out the loop integration and renormalization, it is obvious that contributions of all
diagrams with delta propagators vanish in the limit of the very heavy delta (6 — 00), because
the parameter § always enters the denominator of the integrand. To keep this property after
renormalization, one has to use a proper renormalization scheme. In Section|3.3.1] we describe
the regularization scheme required to make all delta contributions vanish in the limit § — oo.
For the physical mass of the delta, our explicit calculation shows that the contributions of
diagrams with delta excitations are of the same order in magnitude as nucleon ones, which
agrees well with the power counting. More precisely, delta contributions turn out to be



49

s s s s
s 20-qs s 20-qrs
— — &
I I I I I I
I I I I I I
—— —— ~ —— ~ ——
IPPO IPPO ISI IPPO ISI IPPO

Figure 3.3: One of the ways to formulate the hybrid approach in the theory with explicit
delta. The full amplitude receives contributions from the irreducible pion production operators
(IPPO) involving internal delta propagators as well as from the convolution of IPPO with the
NN — NN wave functions. ISI stands for initial state interaction of nucleons. Convolution
with final state interaction also contributes to the full amplitude, but is not shown. The
notation for the vertices is presented in Appendix @

numerically a bit smaller than the nucleon ones due to spin-isospin factors which are not
accounted for in the counting scheme.

This chapter has the following structure. In Section [3.I]we discuss the hybrid approach and
the definition of the irreducible operator in the theory with explicit delta. In Sections [3.2] and
3.3 we provide results for tree-level and loop diagrams. We discuss issues of renormalization
and decoupling of delta in Section In section [3.4] we compare long-range contributions
from delta loops to the similar contributions from pion-nucleon loops. The summary of our
findings is presented in the Section [3.5

3.1 Reducible diagrams with intermediate delta excitations

To take into account nonperturbative NN interactions in the pion production process, we
use the hybrid approach (Section . To obtain the full amplitude in the hybrid approach,
the pion production operator should be convoluted with NN wave functions. In the theory
with explicit delta, the hybrid approach should be generalized to take into account additional
NN — NA transitions. There are two common ways to reach this goal, which will be
discussed in the next paragraphs.

One way to include delta in the hybrid approach is to consider pion production operators
with external nucleons only. In this formulation, delta appears only via an internal propa-
gator inside the production operators. To get the full amplitude, the production operator
is convoluted with NN — NN wave functions in the same way as in the delta-less theory.
Exemplary production operators and corresponding contributions to the full amplitude are
shown in Fig. In this formulation, all off-shell delta effects are treated consistently within
chiral EFT, however there are more diagrams to calculate, and some unknown NN — NA
LECs contribute to the production operator.

Another way to include delta in the hybrid approach is to consider pion production build-
ing blocks, which contain external delta legs, and convolute them with NN — NA wave
functions. Unlike normal pion production operators, building blocks have external deltas and
kinematically can never be on-shell. Some examples of building blocks and their contributions
to the full amplitude are shown in Fig. 3.4 In this approach, there are less diagrams and
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Figure 3.4: Another way to formulate the hybrid approach in the theory with explicit delta.
The contribution to the full amplitude is obtained by the convolution of the pion production
building block (involving external delta) with the NN — NA initial state interaction (ISI)
wave functions. Similar diagrams with final state interaction are not shown, but should be
also included. The notation for the vertices is presented in Appendix @
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Figure 3.5: Reducible A contributions at NLO (first two diagrams) and at N?LO (last two).

the NN — NA LECs do not contribute to the building blocks, but are taken into account
in NN — NA wave functions. The NN — NA wave functions are obtained through the
solution of the coupled-channel problem involving NN and NA interactions. The short range
part of the NA interaction (as well as that of NN) is constrained by the fit to NN partial
wave amplitudes [ABSWQT7]. However it is difficult to treat off-shell delta effects consistently
when phenomenological NN — NA wave functions are used.

In this thesis we use the second way and calculate the corresponding building blocks.

Note that the diagrams with AA intermediate states start to contribute to s-wave pion
production at N®LO. Some examples of such diagrams are shown in the Fig. |3.6, Thus, at
N2LO, it is not necessary to consider either building blocks with two external deltas or the
corresponding convolution with NN — AA wave functions.

// // / -
- - - - / -7 -
- - / ~

I I

! | | | |
! ! ! ! | | | |
! I ! I | | | |
! | ! | | | | |
! | ! | I I I I
! | ! | | | | |
—_ ° — = ° pe ° Pe ®

Figure 3.6: Examples of N3LO contributions involving AA intermediate states.
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Figure 3.7: Single baryon and rescattering diagrams with A contributions which appear as
building blocks in the construction of the pion-production amplitude.

P1 A Py A4 * A d *
1 0 1 1 1
A1 = LR + LR + oo + &------
N AN 0 |
P2 4 > P .
p2—1
AIV AlVa AIVD AlVe AIVd

Figure 3.8: An example of the loop diagrams with the explicit A. The notation for the
vertices is presented in Appendix

3.2 Tree-level diagrams with delta-resonance

In this thesis we consider diagrams with intermediate N A state as reducible and calculate only
corresponding irreducible tree-level building blocks. In this section we provide expressions for
the tree-level building blocks for the pion production amplitude. The corresponding diagrams
are shown in Fig. We obtain the following expressions:

. grNA - -
iMarna = ———2Tfv-q(S1-p1)d(P2 — Py),
meTl’
. grNA o o
iMairar = _WZTNf Ti - (S} - p})o(ps — 7).
™
. grNA - _bac __crmb 1
M = . T So - ka),
1iMyescatAa 2f7§ V-qie Tylg k‘% — m%— T ZO( 2 2)
. grNA . _bac,_crtb 1 T
M = v-qie T Sy - ka), 3.1
rescatAb 2f7?|3 q 1+2 k‘% _ m72r T+ ZO( 2 2) ( )

where 6(pa — p3) is a three-dimensional delta-function. These building blocks contain external
deltas and cannot be on-shell. To get corresponding contributions to the full amplitude, these
blocks must me convoluted with initial or final NN — NA interactions.

The contributions of these operators to charged pion production (pp — dnt) amplitude
are evaluated in Ref. [BHHT07]. It is shown there that contributions to the full amplitude
from these building blocks interfere destructively, resulting in a very small total contribution.

3.3 Loop diagrams with delta propagators

Loop diagrams involving delta isobars which contribute to s-wave pion production up to N2LO
are shown in Fig. In the next paragraphs, we consider the contributions from various
groups of these diagrams.
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Figure 3.9: Loop diagrams with the delta degree of freedom contributing to s-wave pion
production up to N2LO. The notation for the vertices is presented in Appendix

In the first row of Fig.[3.9] we have two-pion exchange diagrams with topologies completely
analogous to the pion-nucleon gi‘—graphs from Chapter [2[ (see the second row in Fig. .
The two-pion exchange diagrams in the first row of Fig. individually start to contribute
at NLO. However, these NLO diagrams cancel completely in the sum for the same reason
as do the NLO pion-nucleon ones. Again, one can factor out the common structure of these
diagrams, and the sum of remaining 7N — 77N subgraphs cancel out. Moreover, N2LO
contributions of the diagrams in the first row in Fig. [3.9] also show the cancellation pattern
among the diagrams which is completely analogous to the pion-nucleon case. In the first
row of Fig. we demonstrate graphically this systematic cancellation pattern at NLO
and N2LO. It should be mentioned that the diagrams in the first row of Fig. also receive
corrections from higher-order vertices o< 1/mpy from Eg\)[ Those corrections, however, again
cancel completely at N?LO in a full analogy with the cancellations among the corresponding
pion-nucleon loop contributions. The net sum of the N2LO diagrams in the first row of Fig.|[3.9
receives contributions only from diagrams Allla and AIllb, where the Weinberg-Tomozawa
wN vertices are on-shell, and a remnant of diagram AIV, the pion-gauge independent AIVd
shown in Fig[3.8l In other words, the contributions of the diagrams AIVa-c in Figl3.§8| cancel
against other diagrams, as indicated in Fig. and only AIVd with a residual part of the

four-pion vertex survives.
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Figure 3.10: Illustration of the cancellation pattern among the A-loop contributions for
different topologies shown on the Lh.s. of each row. The (red) squares on the nucleon or
A propagators indicate that for each diagram, this nucleon or A propagator cancels against
parts of the adjacent 7N or mA rescattering vertex. The red squares on the pion propagators
indicate that for each diagram, the pion propagator cancels against parts of the four-pion
vertex expression. These propagator cancellations generate the rightmost effective diagrams
in each row, where the effective vertices (blobs) receive contributions from all graphs on the
L.h.s. The zero on the very r.h.s. in each row means that the sum of all diagrams on the
L.h.s. does not contribute to the s-wave pion production at least up to N2LO.

In addition, there are several new loop diagrams containing delta propagators, where one
effectively has a pion being exchanged between the two nucleons, see diagrams AV-AXI
in Fig. B.9] Surprisingly, parts of diagrams AV-AIX in rows two and three also undergo
significant cancellations. Again, as illustrated in rows two and three in Fig. after the
cancellations of the vertex structures with the propagators, some parts of the diagrams AV—
AIX and AIV acquire the effective topology of the diagrams AVIa and AVIb. The net
result of such contributions again vanishes at NLO and N2LO for s-wave pion production as
indicated on the r.h.s. in rows two and three of Fig. After the cancellations, only those
parts of diagrams AV—-AIX remain, which are proportional to the on-shell part, 2m., of the
7A — 7 and 7N — wN vertices. Although the dimensional analysis estimate indicates that
these residual contributions are naively of N?LO in the MCS, most of the N?LO amplitude
expression vanishes due to the angular integration in the loop. For example, for diagrams
AVII the numerator of the integrand o« 2m, S- (p1 —p})(S-1) is odd with the loop momentum
[ yielding the vanishing contribution at N?LO. As a consequence of these cancellations, almost
all loop diagrams in rows two and three in Fig. do not contribute to the s-wave N2LO
pion-production amplitude. From the loop diagrams in rows two and three only diagram AV
yields a non-vanishing N2LO contribution. This contribution corresponds to the part of the
A — 7w/ rescattering vertex proportional to 2v - q.

Finally, the three one-pion-exchange delta loop diagrams in the last row of Fig. 3.9 which
have to be taken into account at N?LO, contribute only to renormalization of g4 at N?LO,
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Figure 3.11: Various renormalization diagrams relevant at N?LO. The first three diagrams
contribute to renormalization of the 7N coupling constant g4, whereas the last four diagrams
lead to the nucleon wave function renormalization in the theory with explicit A degrees of
freedom.

see the next subsection.

3.3.1 Regularization of UV divergences and renormalization

The loop diagrams with explicit delta are UV-divergent at N2LO. There are two types of
contributions: one is related to the divergences in the one-pion-exchange (OPE) diagrams
and another one to the divergences in the two-pion-exchange (TPE) diagrams.

Divergences in OPE loop diagrams with explicit delta isobars are of a lower order than
in similar pion-nucleon diagrams (see Fig. and related discussion in the beginning of
this chapter). That is why in the N?LO calculation with explicit deltas, it is necessary to
renormalize not only five-point contact term (as in the pion-nucleon theory), but also the pion-
nucleon coupling constant and nucleon fields. The corresponding renormalization corrections
at order 62/A2 ~ x3jcg were evaluated in Ref. [FMS98, FMMS00] for wN-scattering with
explicit A using dimensional regularization. We confirmed the results of Ref. [BEHMO9S|
FMS98|, EMMSO00]:

— d 2 g mgr
Zy = 1+2(d- 2)97rNA]T7%J7rA +0 A (3.2)
_— 106+d—4d>+d®) o, 6 16(d—2) o 0 m2
ga = gA 9(d—1)2 glgnNAEJwA+mgAgﬂNAEJwA+O F ,

where g4 is the bare axial coupling, g:yA = ha/2 and ¢; is the TAA coupling constant. The
basic integral Jra is defined in Appendix and is estimated in MCS as §/(47)2. Since
renormalization corrections in Eq. are suppressed as X12\/ICS compared to physical values
of g4 and Zy, they are only important in the LO diagrams. In higher-order diagrams, one
can set g4 = ga and Zy = 1. LO diagrams are discussed in the previous Chapter and include
rescattering and direct pion production (See Table . After substituting the bare LEC g4
and the bare nucleon fields in LO tree-level diagrams in terms of the physical quantities we
obtain additional N?2LO contributions which, by construction, cancel all divergences in the
OPE loop diagrams with delta at N2LO. It is noteworthy that diagrams AX and AXI in
Fig. [3.9] consist solely of divergent parts and cancel out completely after the renormalization
of gA.

After the cancellations discussed in the previous section and the renormalization of g4, the
only nonzero contributions at N2LO emerge from the residual parts of diagrams AIII, AIV
and AV. These contributions contain both finite and divergent parts. Most of the remaining
divergent parts are eliminated by renormalization of nucleon field. Namely, these divergences
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cancel with the corrections to the nucleon Z-factor included in the LO tree-level rescattering
diagram Eq. (2.1)). The remainder includes a finite part and a divergency which is eliminated
by renormalization of the five-point contact term.

The individual non-vanishing contributions of the delta loop diagrams in Fig. [3.9] ex-

pressed in terms of four well-known scalar integrals, Jra, Inr, Jrra, and Jrzna, defined in
Appendix [D] read

. . 1 1J.:A 1
iMAtII(asb) = 2(511)—72) {Imr —55 T N 4k%J7Tﬂ-NA}

1 1
+ §5J7T7FA + 4k%J7T7TNA} )

1
2
1 52 62J7TA 5?2
2 A L — 4T (244 ) 6 Tnn b
( *k%) k%cs*(* )‘”}

iMary = i(SIQ)

d—1 12

. . 62 J7rA

iMay = i(SI)(d—2 {5% 5 },
52 J,

iMEN = i(SIg)(d—2){—3k2J§A}, (3.3)
1

where the two spin-isospin operators in Eq.(3.3) are:

g2 2 1
(Sn) = (—i)mhag, { (Tf - 375> A[Sop, S SVEMV g + (1 4 2)} :

3 3
2 .
(Sh) = (—i)—g’}ﬁAgA % {(T1 X 1)*81-kiv-q +(1<2)}. (3.4)

The four different loop integrals in Eq. can be characterized in the following manner.
The integral J -a, Eq. , contains two pion propagators and a delta propagator whereas
the integral J -na, Eq. , has an additional nucleon propagator. Furthermore, we note
that both of these integrals are UV finite. Meanwhile, the integrals J,a and I, contain UV
divergences and, similar to the pion-nucleon loops, some of these divergencies can be absorbed
by the five-point NN — NN contact term.

All divergences in TPE loop diagrams with delta are removed by the renormalization
of the five-point NN — NNz contact term. However, in a theory containing a “heavy”
resonance A, it is not sufficient to require just the cancellation of the UV divergent terms
with the corresponding LECs. The integrals J;a and I, in Eq. , which are multiplied
by the factor 62/k?, pose an additional problem.  Such polynomial behavior would give
divergences if the A-resonance was infinitely heavy, i.e., in the limit § — oo. Therefore,
to find the most natural finite values of the renormalized LECs, the explicit “decoupling”
renormalization scheme was introduced [ACT5]. In such a scheme, the finite parts of LECs
are chosen such that the renormalized contribution from diagrams with A loops vanish in
the limit 6 — oco. It is demonstrated in Appendix [E] that the following combinations of loop
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integrals (up to N?LO in MCS) do vanish when § — oo:

k2 JenNA, (3.5)
1 Jea 2
I7r7r PO T ) .
( —|-2 5 +40J A+(4)) (3.6)
52 1 oA 2 1 1Jea 12
L () . 5 Tern 4 ) = — (L + 222 4 -2 ). 3.7
k%( T T AJr(sz)?) 12( 275 +3(47r)2) (3.7)

We find that the combination of the two integrals JA and I, in Eqs. 1){’ j — 2—15JWA
cancels the UV divergences of the individual integrals as proven at the end of the Appendix
Hence, Egs. (3.5))-(3.7) are all UV finite and vanish when § — oo.

Rewriting the sum of the amplitudes Mari(atb), Marv, May and MKN from Eq. 1 in
terms of the integral combinations 7, we obtain the following transition amplitude
from the A loop diagrams:

2
2 gag .
zMgI 11500135 = 7;5]\%1) ~qTY (zso‘“l’ﬁvakmSMS’gg)

{9 <Imr+2 5 +5=]7r7rA+(4 ) )+18k JarNA — [B(d—l)) 5 ]—I—ACT}

2
+ Mv-qm(& +S5) - Ky

X

12
5 1Jra 2 1 2 1o 1 2
. {9 <I”+ 275 Ot >+ 1gFtTeva = o7 <I +25+3(4w)2>
8 62 1JzA 2 (d—2) (19 J:a 5 A
iy <I”+25+5J”A+ (4w)2> - {B(d—l) (12 5 +(47r)2)} +Berp. (38)

Additional terms, that do not vanish at the large-d limit and shown in the square brackets
in Eq. ., are short-ranged and are cancelled in the amplitude expression by the parts of
the five-point contact terms ACT and BCT In other words, the decouphng condition fixes the
magnitude of the five-point contact interactions due to the explicit A, ACT and BCT, up to
higher order terms. In fact, by defining the five point contact terms as

. 2 Jp m2

A&y = 3(d—1)5A+O<52)’ (3.9)
A (d=2) (19J:a 5 m2

Br = 3771 <12 5 a2 >+0(52)’ (3.10)

we obtain the fully renormalized, finite A loops amplitude contribution to s-wave pion pro-
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Figure 3.12: The ratio of the long-range contributions of the delta loop diagrams to the similar
contributions of the pion-nucleon loop diagrams for different pion production channels. The
red dashed curve correspond to the ratio of contributions to the amplitude A relevant for
pp — ppr® channel, while the black solid curve correspond to the ratio of contributions to the
amplitude B relevant for pp — dnt channel. The arrow indicates the typical distance relevant

for pion production process r ~ 1/p = 1/ /mzmn.
duction at N?LO, which satisfies the decoupling condition:

2
’LMN2LO — MU . qu‘_ (Z'E:Ol/“/ﬂ’l}aklusll/526>

A-loops f5
x {3 (Im+ ;J’;A + 6Jpnn + ( ;) ) 118k2J7r7rNA}
+ ‘CM!S}?ENAU'QTx(SleSQ)'kl
x {g (IMJr ;J’(;A + 6 pmn + ( 42) ) 118k1J7r7rNA

This expression should be added to the finite s-wave production operators presented in Chap-

ter 21

3.4 Comparison of the pion-nucleon and delta loop contribu-
tions
In Chapter [2| (Section [2.2.5), we argued that the long-range scheme-independent part of the

pion-nucleon loops at N?LO is sizable and could resolve the problem with the description
of pion production data in the neutral channel, pp — ppm°. We now add the long-ranged
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delta contribution and study its importance. First, we note that the spin-isospin structure of
the delta loops in Eq. is exactly the same as for the pion-nucleon case in Eq. .
Meanwhile, the dimensionless integrals are different, and the coefficients in front of the spin-
isospin operators also differ. We want to compare the resulting amplitudes from the nu-
cleon and delta loop diagrams at NN relative distances relevant for pion production, i.e. at
r~1/p~1//mzmn. In order to separate the long-range scheme-independent contributions
of the delta loop expressions from the short-range ones in a transparent manner, we make a
Fourier transformation of our expressions. The Fourier transformation of a short-range (con-
stant) contribution gives a d-function, 6(r), which does not influence the long-range physics of
interest, and we, therefore, ignore this contribution in this section. The Fourier transformation
of the long-range part of the loop integrals is evaluated numerically as follows:

3 ; 2 2
I(r) = / (;iﬂ];ék'r](k) e RN (3.12)

Here, the regulator e~ /A% i5 used in order to minimize the influence of the large momenta
in the loop integrals, denoted by I(k) for short. We have verified that for A > 2 GeV this
regulator does not affect the results in the long-range region of r ~ 1/p. Specifically, we
Fourier transform the integral combinations in the curly brackets in Eq. (multiplied by
gag2 ) corresponding to 74 (neutral) and 7« (charged) channels. We compare the resulting
Fourier transformed amplitudes with the Fourier transformed amplitudes of the corresponding
pion-nucleon contributions in Eqs. and ([2.19), —2¢3Lrr and (—19/24¢% + 1/694)Lrr,
respectively. The ratio of the r-space A loop contributions to those of the nucleon is shown
in Fig. One can see that in the neutral channel, the long-range part of the delta
contribution constitutes less than 20% compared to the pion-nucleon loop amplitude. This
can be understood by the specific combination of the coefficients for the spin-isospin operator
in the case of the delta-resonance amplitude, which results in a suppression by almost one order
of magnitude. Therefore, the conclusion of Chapter [2| regarding the importance of the pion-
nucleon loops in explaining the neutral pion production, appears to be only slightly modified
by the delta loop contributions. Regarding the charged channel, the delta loop contribution
to the s-wave pion-production amplitude is almost of the same magnitude (roughly 60%) but
of opposite sign compared to the pion-nucleon one. The net loop amplitude from the nucleon
and delta loop diagrams is therefore not as important as in the neutral channel.

The pattern that emerged from the loops is, therefore, exactly what is necessary to quan-
titatively describe the data on both pp — ppn® and pp — dnt very near to the threshold:
while in the former reaction there persists a huge discrepancy between data and the chiral
perturbation theory calculation to NLO, in the latter the description at NLO is already quite
good |[LBHT06]. In line with this observation we now find that due to large cancellations
among the pion-nucleon and the Delta loops, the N?LO corrections from the loops are small
in the charged pion channel. On the other hand, this cancellation is by far not that efficient
in the neutral pion channel leading to a significant loop contribution. In combination with
the observation that in the neutral pion channel the leading order diagrams are suppressed
both kinematically and dynamically [Han04], this provides a dynamical reason of why it was
so much harder to understand phenomenologically the neutral pion production compared to
the charged pion production.
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3.5 Chapter summary

In this chapter we have calculated additional tree-level and loop contributions to the N2LO
pion production amplitude appearing in the theory with explicit delta isobars. We have shown
that the delta resonance provides important long-range contributions to the pion production
operator. Such contributions were not considered in the phenomenological models so far. The
obtained result has a compact analytical form and does not contain any unknown low-energy
constants.

We found numerous cancellations between various loop diagrams. In addition to the
cancellations at NLO reported in [HK02], we discovered significant cancellations at N2LO.
We found that all cancellations are driven by the same mechanism. Namely, the sum of
all point—likeﬂ mN — mrN subgraphs gives the vanishing contribution to the s-wave pion
production reaction NN — NNm. In addition, the sums of all point-like 1A — 77N and
7N — A subgraphs do not contribute to s-wave pion production either (see Fig.|3.10).

After carrying out renormalization, our result is finite and consistent with the requirement
of the decoupling theorem [ACT5], namely, all contributions from diagrams with explicit delta
vanish if the mass of the delta is taken to infinity.

The obtained N?2LO pion production operators together with the ones from the previous
chapter can be convoluted with NNV — NN and NN — NA interactions and used to calculate
various pion production observables. In addition, the compact analytical form makes it easy
to use these results as building blocks for more complicated few-nucleon processes.

Finally, the methods which we developed to deal with cancellations between various NN —
N N loop diagrams rely neither on heavy baryon expansion nor on the special power counting
scheme and can be used to study other processes within chiral EFT.

5].e. subgraphs which contain no propagators or in which all propagators cancel with momentum dependent
vertices.






Chapter 4

Charge symmetry breaking in
NN — NN

Symmetries play an important role in the particle physics. They allow one to understand the
fundamental principles of particle interactions, explain similarities in different reactions, and
make predictions for new experiments. Symmetries can be fulfilled to a different degree. There
are several symmetries that are satisfied in every known experiment. Such exact symmetries
allow one to derive the fundamental conservation laws (e.g. four-momentum and total angu-
lar momentum conservation). There are also many approximate symmetries, which are not
satisfied exactly, but symmetry-breaking contributions are small compared to the symmetric
ones. Approximate symmetries allow one to study fine details of particle interactions.

The symmetry breaking pattern of the Standard Model is highly nontrivial. The La-
grangian of QCD possesses an approximate chiral symmetry. This symmetry is spontaneously
broken by quark condensate and explicitly broken by nonzero quark masses and electromag-
netic (EM) effects. However, if one neglects long-range electromagnetic effects and assumes
the masses and charges of up and down quarks to be the same, there remains a subgroup
of chiral symmetry which is exact. This remaining subgroup is known as isospin symmetry
(or charge independence)ﬂ The isospin symmetry is also explicitly broken. Isospin violation
(IV) has several sources. The first source is the difference of masses of up and down quarks
(my, —mg). This difference makes the neutron heavier than the proton. The second source are
short-range hard-photon exchanges between quarks of different charges. These effects make
charged pions heavier than the neutral one, and produce a shift to the nucleon mass which is
bigger for protons. The strength of short-range EM IV effects is governed by the difference
of the quark charges (g, — qq). Finally, there are long-range soft-photon-exchanges, which are
e.g. responsible for Coulomb interaction between protons and produce various IV effects in
nuclei.

Which of isospin violation mechanisms dominates a specific observable depends on the
particular process. In most processes IV is dominated by electromagnetic effects. In particu-
lar, Coulomb interaction typically dominates in systems of several protons, while hard-photon
exchanges and effects of pion mass difference dominate in many other systems. There are,

LA generalization of the isospin symmetry, when u, d, and s-quarks are assumed to have equal masses is
called flavour symmetry.
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however, some processes, where main isospin violating contributions are produced by strong
interaction (i.e. by the quark mass difference). Studying strong IV effects is of great impor-
tance, since they provide access to the information about the quark mass difference.

To study strong isospin violation it is convenient to consider a special class of IV effects,
which is known as charge symmetry breaking (CSB) [MNS90, MOS06]. Charge symmetry
(CS) is an invariance under interchange of up and down quarks. In terms of the rotation
in the isospin space, the charge symmetry corresponds to the invariance of the system under
180° rotation along the y-axis, while the isospin symmetry (charge independence) corresponds
to invariance under any rotation. Isospin symmetry implies charge symmetry, but not the
other way round. Isospin violating effects can be either charge symmetry breaking or charge-
symmetric. Short-range CSB effects are not invariant under interchange of u and d quarks and
thus should be proportional to the odd powers of m, —my or ¢, — qq, while charge-symmetric
1V effects are invariant under interchange of quarks and proportional to even powers of quark
mass/charge difference. The main interest in CSB processes is that they allow to extract
information about the quark mass difference more directly, since electromagnetic effects, which
typically dominate IV observables, are charge-symmetric and do not contribute to CSB.

Study of CSB effects involves several challenges. First, CSB effects are typically much
smaller than charge symmetric ones. From the theoretical side, this requires methods which
allow a systematic inclusion of both charge symmetric and CSB effects. From the experimental
side, a high-precision measurements and a good control over systematic uncertainties are
needed to detect CSB signals. Second, since CSB effects have both strong and electromagnetic
origins, which are of comparable importance, it is necessary to have a theory which can
systematically describe both kinds of effects. Finally, CSB effects are frequently masked by
the long-range Coulomb interaction. Thus, one has to calculate the contributions of soft-
photon-exchanges or better consider reactions which do not include the Coulomb interaction
at all.

Charge symmetry breaking can be observed in a wide range of systems. The examples
are: the mass difference between protons and neutrons, the mass difference between D° and
DT mesons [GHKMOS], decays of n-mesons (see [BGO7] for a recent two-loop calculation),
the scattering length difference in pp and nn scattering (see [MOS06] for a review article),
neutron-proton elastic scattering at intermediate energies [ABBT89, [ZABT98, VJK ™92, pw
mixing [BCE™85], mn-mixing [CS95], binding energy differences of mirror nuclei [NS69], pion-
deuteron scattering [BHHT11b|, and neutral pion production reactions such as dd — an®
[SBAT03] and pn — d=® [OKHT03].

In this chapter we concentrate on the neutral pion production reaction pn — dn°. In
this reaction, CSB manifests itself in the asymmetry of the differential cross section (DCS).
Charge symmetry transformation (the interchange of u and d quarks) swaps around proton
and neutron in the initial state while keeping the final state invariant. Thus, in a charge
symmetric world, the DCS of this reaction would stay invariant under interchange of initial
nucleons. In the real world, there is an observable asymmetry in DCS |[OKH'03|. This
asymmetry carries information about the quark mass difference.

The reaction pn — dn® has several advantages for studying strong CSB effects. First,
there are no long-range Coulomb interaction both in the initial and final states. The only
electromagnetic effects contributing are the short-range effects from hard photon exchanges.
Since the asymmetry in pn — dr° is purely CSB effect, the charge-symmetric pion mass
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difference doesn’t contribute here. Using chiral EFT one can relate various mechanisms
responsible for CSB in this reaction with other CSB processes, most notably with the neutron-
proton mass difference.

The neutron-proton mass difference is due to strong and electromagnetic interactions
IGL82], i.e. dmn = my, —my = mSF + dmSP. As a result of the chiral structure of the QCD
Lagrangian, the strength of the CSB pion production operator in pn — dr® is proportional
to a different combination of m3* and dmS? [VKNMO0, MS98] (for related work on isospin
violation in pion-nucleon scattering see [FMS99, [EMO1c, [FMOT1a, HKMO09, HKM10]). Thus,
the analysis of CSB effects in pn — dr® may allow one to determine the values of dm3¥ and
dm%" individually. This was stressed and exploited in Ref. [yKNMOOQ] for the first time. Con-
sistency of these important quantities as determined from the reaction pn — dn®, where they
control the strength of the isospin violating 7N scattering amplitude, with results obtained
in Ref.|[GL82] from the neutron-proton mass difference itself via the Cottingham sum rule
[Cot63], would provide a highly non-trivial test of our current understanding of QCD. It was
therefore quite disturbing to find that, using the values for 6m5 and dm$" from Ref. [GL82],
the leading order calculation of the forward-backward asymmetry [vKNMOQ] over-predicted
the experimental value by about a factor of 3 — a consistent description would call for an
agreement with data within the theoretical uncertainty of 15% for this kind of calculation. It
was shown in Ref. [GHNT04] that there is no NLO contribution — thus the theoretical uncer-
tainty of a leading order calculation is expected to be of the order of m, /my. The evaluation
of certain higher order corrections performed in Ref. [fyKNMO00] and in a recent study [BM10]
did not change the situation noticeably — the significant overestimation of the data persisted.

In this Chapterﬂ we show that there is one more CSB rescattering operator that contributes
at LO. We evaluate this new LO operator and recalculate the LO contribution considered in
Ref. [vKNMO00] since the numerical evaluation in that work turned out to be incorrect. The
complete LO calculation for pn — dr® reveals a very good agreement with the experimental
data. Moreover, the resulting contribution is found to be proportional to ém%' only. Thus, a
quantitative understanding of the CSB part of pn — dn® promises an alternative method of
extraction of this important quantity compared to that used in Ref. [GL82].

This chapter is organized as follows. In the next section we introduce the definition of the
forward backward asymmetry in pn — dn® and consider partial amplitudes which contribute
to this observable. In Section [4.2] we consider the chiral effective Lagrangian terms, which
are relevant for calculation of CSB amplitude. In Section we calculate LO CSB pion
production operators and full LO CSB amplitude. Finally, in Section we discuss the
extraction of strong part of the neutron-proton mass difference from the asymmetry data.

4.1 Forward-backward asymmetry and related partial ampli-
tudes

In this section we consider the definition of the forward-backward asymmetry (Ay;) of DCS
in pn — dn®. We consider partial amplitudes which are relevant for Ay and show that
near-threshold pion production asymmetry Ay, can be expressed in terms of three partial
amplitudes.

2The results of this chapter are published in ref. [FBET09)].
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Figure 4.1: The effect of charge symmetry transformation in the pn — dn° reaction in
the center-of-mass system (CMS). Interchanging of protons and neutrons is equivalent to
relabeling the angle 8 to m—0, where 6 is angle in CMS between incident neutron and outgoing
deuteron. In a charge symmetric world, the DCS would be symmetric with respect to such
transformation. Charge symmetry breaking effects lead to the asymmetry of differential cross
section (DCS).

Charge symmetry breaking in the reaction pn — dn° manifests itself as the asymmetry
of DCS in the center-of-mass system (CMS). In the CMS kinematics, the interchange of the
proton and neutron is equivalent to the interchange of the angle 8 to @ — 8, where 0 is the
angle between incident neutron and outgoing deuteron (Fig. [4.1)). If charge symmetry were
exact, there would be no difference between protons and neutrons, and, thus, the DCS would
be symmetric with respect to the interchange 6 — w — . However, in nature the charge
symmetry is broken and the interchange of p and n leads to an observable difference in the
DCS of the pn — dn® reaction:

do do
a0 # g —0). (4.1)

It is convenient to quantify the amount of CSB by considering the integrated forward-backward
asymmetry:

w/2
[ 192(0) — 4= (7 — )] sin 6df

do (7 — )] sin 0do
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This quantity was measured at TRIUMF |[OKH™03] and found to be A, = (17.2 £ 8(stat.) £+
5.5(sys.)) x 1074, The experiment was performed at the energy very close to the pion produc-
tion threshold. (The threshold corresponds to the neutron lab. energy of 275.06 MeV, while
the experiment was done at 279.5 MeV)

Forward-backward asymmetry stems from a specific angular dependence of DCS. Due to
the low energies involved in the process, it is convenient to expand the DCS in terms of
Legendre polynomials:

do > 1 2
m(@) = ;AZPZ'(COSH) = Ag+ Ay cosf+ Ay 5(3008 0—1)+---, (4.3)
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where A; are the expansion coefficients, P;(cosf) are the Legendre polynomials, and the
dots stand for higher order terms which can be ignored near threshold. Using the expansion
Eq. (4.3) we can rewrite the forward-backward asymmetry Eq. (4.2) as

Aq

According to Eq. only the first two coefficients of the expansion are required to
describe the forward-backward asymmetry near threshold.

Before considering the partial amplitudes, which contribute to the coefficients Ay and
Aq, we first determine which partial waves are allowed according to selection rules. Due to
near-threshold kinematics, only s- and p-waves for outgoing pions contribute. Selection rules
take into account conservation of parity, total angular momenta, and the Pauli principle for
nucleons. Since isospin symmetry is not exact, the total isospin is not necessary conserved.
The total isospin of the final state is always 1 because pion has isospin 1 and deuteron has zero
isospin, but the total isospin of initial two nucleons can be either 1 or 0. Both possibilities
should be considered.

For conserved total isospin (i.e. the isospin of initial nucleons is 1), there are three con-
tributing partial amplitudes:

M1 = M(3P1 — 3518),
My, = M(*So— *Sip),
Ms; = M(('Dy — 3S1p), (4.5)

where the quantum numbers of the initial and final NN pairs are given in the spectroscopic
notation (**1L;), while the partial wave of the outgoing pion is denoted by the lowercase
letters s and p. The variables M; denote the scalar quantities which correspond to partial
wave projection of the full pion production amplitudeﬂ

If the total isospin is not conserved (i.e. the isospin of initial nucleons is 0) there are four
additional partial amplitudes:

My = M('P, — 39;s),
Ms = M(3S; — 3Sip),
Mg = M(®D; — 3Sip),
M; = M(®Dy — 3S1p) (4.6)

Note that the p-wave IV amplitudes M5—M7 can be neglected in the LO calculation, because
their contribution to A, turned out to be of a higher order. In addition, in ref. [fKNMO00] it
was shown that the p-wave CSB amplitudes interfere destructively with each other, and are
thus even more suppressed.

We are now in the position to find out which of the allowed partial amplitudes contribute
to the coefficients Ap and A;. For this we have to consider the general structure of the
DCS. To get the DCS one has to compute the absolute value squared of the sum of all partial

3 Full amplitudes are calculated using the hybrid approach (see. Sec.[1.6). Namely, one calculates pion pro-
duction operator, takes the partial wave projection of it, and convolutes resulting operator with corresponding
NN interactions. Partial wave projections are made following the procedure described in [Len07].
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amplitudes, and then take a proper average of the possible initial states and sum over possible
final states. The result of this procedure is presented below. Since we are looking for Ay and
A, we have to collect the coefficients in front of zeroth and first Legendre polynomial in the
expression for DCS.
The value of the coefficient Ag in terms of the partial amplitudes has the following form:
1 x|

4
Ay = 4| My |? + 2| Ms|? + = | M;|? 4.7
0 25672 |Pin|(ma + Mdeut)? M+ 210 +9| o) (4.7)

where pi, is the three-momentum of the initial nucleon, EW is the three-momentum of the
pion, and mgeys is the deuteron mass. The contributions of isospin violating amplitudes M,—
M7 were neglected in Eq. , since they are much smaller than contributions of isospin
conserving amplitudes. The contributions of isospin conserving p-wave amplitudes M, and
M3 are also very small near threshold, since they are proportional to the momentum of the
outgoing pion, which vanishes at threshold. Thus, for near-threshold pion production, the
coeflicient Ay is dominated by the s-wave partial amplitude M7, with small corrections from
p-wave amplitudes My and Ms.

The numerical value of Ay (at the energy we are interested) can be found using the high
accuracy chiral EFT calculation and precise experimental data at threshold. It is customary
to write down the total cross section (TCS) o = 4w A near threshold in the following form:

o = an + B, (4.8)

where 1 = ]I;:;r[ /my is the outgoing pion momentum in units of the pion mass. For the
experiment [OKH™ 03|, this value was n = 0.17. Using Eq. (4.7) one can write:

1 My

a = —— M, |2, 4.9
167 |pin|(m7r + 'rndeut)2 | 1‘ ( )
1 1My |2 1| Ms)?

= . ‘2 +‘3 : (4.10)
167 |pin|(m7r + mdeut) 2| n 91 n

The production operator that gives rise to the amplitude M; was calculated in previous two
chapters. This production operator should be convoluted with the ISI and FSI, and the
relevant contact term at N2LO should be fitted to reproduce TCS data. Alternatively, one
can use the experimental value of o which can be extracted with very high accuracy from
the lifetime of the pionic deuterium atom [SAAT10,[SAAT11|. The result of the extraction is
o(nn — dn~) = 25273, -y [ub]. To convert it to the cross section of the pn — dr® reaction
we use isospin symmetry: o(pn — dn®) = o(nn — drn~)/2. Isospin breaking effects in this
relation are expected to be of natural size and thus can be neglected in our study. Since we
are interested in the cross section slightly above threshold, we also include the contribution
of p-waves to Ag. The corresponding coefficient 3 is defined by partial amplitudes M, and
Mj3. These amplitudes were calculated in Ref. [BEHT09] up-to-and-including N2LO MCS
terms. In this reference it was also shown that the contribution of the amplitude M> is quite
uncertain and much smaller than the one of M3. Thus, Ms can be neglected. The total value
for the coefficient Ay near threshold is

Ap =10.0702 . ) 4 (47.8 £ 5.7) - > [ub)]. (4.11)
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Let’s now consider the coefficient A;. The leading contribution to the coefficient A; is
given by the interference of the leading CSB s-wave amplitude My and isospin symmetric
p-wave amplitudes My and Mj:

1 x|

Ay = _
LT 25672 [in| (mr + Mdeut )2

4R6(M2MZ) + gRe(MgMZ) . (4.12)

It can be easily shown using power counting discussed in Section that the interference
of the CSB p-wave amplitudes Ms—M7 with the charge symmetric s-wave amplitude M; is
suppressed by two orders in the MCS. Furthermore, the contribution of the amplitude M
can be neglected for the same reasons as discussed for coefficient Ay.

We conclude that the forward-backward asymmetry near threshold Eq. depends only
on coefficients Ay and A;. The coefficient Ay is dominated by isospin conserving amplitudes
and is known with high accuracy from experiment and recent chiral EFT calculations. The
coeflicient Ay is dominated by the interference of known isospin-conserving amplitude M3
with isospin violating amplitude My. We calculate My in the next sections.

4.2 Isospin violating effective Lagrangian and power counting

In order to calculate isospin violating pion production amplitudes we have to take into account
IV terms in the effective Lagrangian and define a counting procedure for those terms. In this
section we discuss both topics. We consider how LECs of the IV Lagrangian are related to the
hadronic observables such as the pion mass and the neutron-proton mass differences. In ad-
dition, we consider a field redefinition procedure, which significantly simplifies the calculation
of effects related to the neutron-proton mass difference.

If one neglects quark masses and electromagnetic effects, the Lagrangian of QCD is chirally
symmetric. One uses this symmetry to construct the main part of the effective Lagrangian.
However, chiral symmetry is not exact in nature. In addition, in order to perform realis-
tic calculations one has to include effects of the nonzero quark masses and electromagnetic
effects, which explicitly break charge symmetry. To include these effects, one adds the ap-
propriate chiral symmetry breaking (xSB) terms to the initial chiral-symmetric Lagrangian.
The inclusion of ySB terms allows one to describe a broad range of effects from the values
of pion masses to tiny CSB effects, such as the neutron-proton mass difference. We consider
XSB terms (strong and electromagnetic) and their implications in order to identify the terms
responsible for charge symmetry breaking.

Let’s consider building blocks which should be used to construct IV Lagrangian. We first
discuss how the effects of quark masses are included in the chiral Lagrangian. Strong xSB
emerges from the quark mass matrix

. <mu 0 ) _ Mmutmg My — My . (4.13)

1
0 myg 2 + 2

where 1 is a unity matrix and 73 is the third Pauli matrix in the isospin space. The corre-
sponding building block for the effective Lagrangian is

X+ = 2Bo(u'su + usTu), (4.14)
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where the matrix v is defined by Eq. and By is a low-energy constant that describes the
strength of the light quark condensate (0|gq|0) = —f2Bo(1 + O(m,)). From the expression
one can see that all Lagrangian terms stemming from the quark masses are proportional
either to the sum or to the difference of quark masses. Those which are proportional to the
sum, are acting identically on particles of any isospin, and thus are isospin conserving. On
the other hand, terms proportional to the difference of the quark masses give isospin violating
contributions.

To include the short-range electromagnetic interaction of quarks (i.e. exchange of vir-
tual photons) in EFT, one includes additional terms in the effective Lagrangian which are
proportional to the quark charge matrix:

_qUO_geO
Qq—-<0 %)<—<% _?), (4.15)

where e is the elementary charge. However, for our study it is more convenient to use the
nucleon charge matrix,

Qu+ qu + 4 0 3 1
= =3 1+ 5(qu — 4.16
Q ( 0 o+ qa + qd> 5 (@u+aa)l + 5 (qu — )73, (4.16)

which differs from @, by a simple transformation @ = (q, + ¢a)1 + Q4. At the order we
are working, this transformation does not affect any observables [MS98|. The decomposition
is similar to the one for the quark mass matrix . Namely, the first term in the
r.h.s. of Eq. is invariant under interchange of quarks, while the second term is not and
thus can lead to CSB effects. The corresponding building block for the effective Lagrangian
reads

Qr = %(uTQu + uQu'). (4.17)

We are now in the position to discuss the IV Lagrangian for mesonic sector. Using
the building blocks discussed above, the LO mesonic Lagrangian which accounts for short-
range electromagnetic effects as well as for the nonvanishing quark masses can be written as

[EGPdR89, MMS97]

2
2 J 2 2
Lo = Tl 4 x4) + CLQ% - Q2), (4.18)
where C' is a low-energy constant, and the angle brackets denote trace in the isospin space.
Rewriting the Lagrangian (4.18)) in terms of the pion fields, one can derive the LO contribution
to the pion mass as well as the leading correction, which is responsible for the difference of
the neutral and charged pion masses. The resulting expressions for the pion masses are:
2

mzo = Bo(my+myg),

2
mzr:t = BO(mu + md) + F(Qu - Qd)QCa (419)
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where (g, — g4)? can be rewrittenﬂ as e2. The main contribution to the pion masses is due

to the sum of quark masses, while the difference of pion masses is of electromagnetic origin
and proportional to the difference of quark charges squared. One can explicitly see that both
effects are invariant under interchange of quarks and are thus charge symmetric. It is notable
that the pion mass difference, while being isospin violating effect, is charge symmetric. Thus,
at leading order CSB effects do not contribute to the pion mass difference.

Let’s consider CSB effects in the pion-nucleon sector. Below we summarize the heavy-
baryon Lagrangian terms (up to m2/m3;) which are relevant for our study of charge symmetry
breaking effects. The relevant effective Lagrangian structures are [MS98, [Ste99]

Lyexny = Nliv-D+er{xs) +es(x+ — (x+)/2)
2 (1{QF — Q%) + f2(Q+)Q+ + f3(Q4)?)
—I—d17<S . UX+> + idlg[s - D, X_] + idlg[S - D, <X_>]]N, (4.20)

where ¢; and d; are LECs with the dimensions MeV~! and MeV~?2 respectively. The con-
stant f2 is introduced in order to make electromagnetic LECs f; of the same dimension as
corresponding strong LECs ¢;. After rewriting the Lagrangian (4.20)) in terms of the pion
and nucleon fields, one can collect the terms responsible for the nucleon masses. Including
corrections of order of m2/ m?\,, one gets the following expression for the nucleon mass term:

my = m —4By(my + mg)cr — 2Bo(my, — mg)esTs
—f2h (;(qu —qa)* + g(Qu + qcl)2>
- 3% (9(qu + q2) + 3(qu + 2) (qu — qa)73) — 9f2f3(qu + qa)*
= m —4mie; — 2Bo(my — mg)csts — €2 f2 (f1 + %(1 +73) + f3> . (4.21)

where we used explicit quark charges in the last equality. All terms in Eq. , which are
not proportional to 73, just shift the masses of both nucleons and are not directly observable.
Two terms which are proportional to 73 are responsible for the neutron-proton mass difference.
One of them is proportional to (¢, +qq)(qu — g4) and another is proportional to the light quark
mass difference (m, — my). It is notable that both terms responsible for the nucleon mass
difference are charge symmetry breaking. For simplicity, one can introduce the following
notation for the strong and electromagnetic parts of neutron-proton mass difference:

dm = 4Bg(my — myg)cs,

Sm§™ = 3(qu+ a)(qu — qa) 2 fo = €2 f2 a. (4.22)

In this notation the total neutron-proton mass difference is just the sum of two combinations:

My —my = dmy = Imi" + om§™ (4.23)

* One can use the values of the quark charges (Eq. ) to rewrite the sum and the difference of the
quark charges in terms of elementary charge i.e. 3(qu + q¢) = e and g, — ga = e. In this form one, however,
cannot distinguish CSB terms from charge symmetric ones. To track the terms which are not invariant under
interchange of quarks, we keep the notation with explicit quark charges.
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The total neutron-proton mass difference dmy is measured with high precision dmy =
1.2933322 + 0.0000004 MeV [BT12].

One can rewrite the relevant CSB pion-nucleon Lagrangian in terms of the combi-
nations (4.22)):

omy - mS _ omsS™ _
L ding csB = TNTB»N — 4f]7\2: Nt -mm3N — TJJ‘Z?N (rsm? — 7 -7m) N (4.24)

The first term in the r.h.s. of Eq. corresponds to the explicit neutron-proton mass
difference, while the remaining two terms correspond to the CSB 7N — 7w N vertex. It is
notable that strong and electromagnetic contributions to the neutron-proton mass difference
can contribute to reactions in different linear combinations. One can thus use CSB in pion-
nucleon processes to find these LECs separately.

Inclusion of isospin violating terms in the effective Lagrangian introduces new expansion
parameters: the quark mass difference and elementary charge. To make a systematic calcula-
tion possible, one has to define a counting procedure for those parameters. Since we are not
considering sums of CSB and CS effects (only interference) in our study, we only need to com-
pare CSB amplitudes among themselves. For this reason, we count CSB amplitudes separately
from CS ones. The most prominent CSB observables are strong and electromagnetic contribu-
tions to the neutron-proton mass difference Eq. . These two quantities are known from
various sources to be of the same order of magnitude [GL82, WLCM12, [BOS07, BZD™10).
For this reason we assign both of them to the leading order CSB vertex (LO CSB).

We now want to discuss field redefinitions, which make the calculation of CSB effects
much easier. The LO CSB n/N Lagrangian contains explicitly the neutron-proton mass
difference term dmyN73N/2, which produces an important contribution to CSB amplitudes.
However, it is not trivial to calculate operators containing such a term, because such operators
are typically reducible and Feynman diagram technique cannot be directly applied to calculate
them. The calculation of CSB amplitudes can be significantly simplified by performing a field
redefinition, which removes this term from the effective Lagrangian and allows one to use
the Feynman diagram techniqueﬂ In order to remove this term one introduces the following
redefinitions of the pion and nucleon fields [FvKRT04, [EKMOS|:

T 1 1
N — exp (iémN§t> N = cos (25mNt> N + iT3sin (26mNt> N,
T — COS((SmNt)T('Z‘ + sin(&mNt)eijgwj + (]_ — COS(5mNt))(Si3773. (425)
These transformations do not affect observables and most terms in the effective Lagrangian
are invariant under transformations (4.25)). Only those which contain a time derivative are
not invariant and will generate new interactions. The time derivatives contribute to the LO

Lagrangian via the building blocks u, and I',. Field redefinition transforms these building
blocks in the following way:

om

e T e TN”#[T x 73 + O(m?),
s
) )
r, — I'y+ i%vlﬂ'g - i%vu [71'273 —m-Tms) + o). (4.26)
K

5 An alternative method to handle explicit neutron-proton mass difference using unitary transformations
was discussed in Refs. [EMPO5| [EMO5].
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Figure 4.2: LO CSB pion production operators, which contribute to the amplitude My in
the reaction pn — dr®, in usual formalism (diagrams a and b) and in the field-redefined
theory (diagram c). Diagram (a) corresponds to isospin violation in N scattering vertex
explicitly whereas diagram (b) indicates an isospin-violating contribution due to the neutron-
proton mass difference in conjunction with the time-dependent Weinberg-Tomozawa operator.
Diagram (c) is the only isospin-violating contribution (at the considered order) in the theory
after field redefinition, which removes explicit neutron-proton mass difference. Expressions
for vertices can be found in the Appendix @

The second term in the r.h.s. of Eq. cancels the neutron-proton mass difference term
exactly, when substituted to the LO HB Lagrangian Eq. , while the third term generates
an additional contribution to CSB 7N — 7N vertex. The LO CSB 7N Lagrangian after the
field redefinition take the form:

omSE _
Licadig 058 = =~ N [T - wms + (7 ) x w)s] V. (4.27)
™

It is notable that the LO CSB 7N — N vertex is proportional to dm3 only, while there is
no contribution proportional to ém%™ . Since there are no more explicit neutron-proton mass
difference terms in the Lagrangian after field redefinition, one can use the Feynman diagram
technique to derive all amplitudes.

We are now in position to consider the CSB amplitude My within chiral EFT framework.

4.3 Leading CSB s-wave amplitude

In this section we derive the LO CSB amplitude My. We consider relevant CSB pion pro-
duction operators and convolute them with NN interactions in the ISI and FSI using hybrid
approach.

There are two operators contributing to My at leading order Fig. {.2hb. In order to
understand the interplay of diagram (a) and diagram (b) of Fig. it is sufficient to focus
on the mN rescattering vertex on nucleon 1 (the top one on the Fig. 4.2). From the pion
production vertex on nucleon 2 we only keep the isospin structure, for the rest is identical for
both diagrams. The relevant part of diagram (a) then reads

. 5 str 5 em
I(a) = —3 Z}g (T(l) 2 + Tél)T?EQ)) + 172}]; (’7’(1) @ T§1)7§2)> . (4.28)

We work at leading order in I'V. Since we study an IV transition operator, we may treat the
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Figure 4.3: Leading-order contributions to isospin violation due to the time-dependent
Weinberg-Tomozawa operator in the particle basis.

external nucleons as identical particlesﬂ The evaluation of the operator Eq. (4.28) for the
isospin violating transition from the isospin zero initial pn state to the isospin zero deuteron
state yields

(If = 0T ()| I; = 0) = # 4 (6msF — 6mP/2) . (4.29)

s
This piece represents the complete rescattering contribution included in Refs. [VKNMOO,
BMI0]. Let us now look more closely at diagram (b) of Fig. The relevant part of
the amplitude for this diagram can be most easily calculated in the particle basis as shown in

Fig. [A-3] One gets

. 1
Uy =0l = 0) = =5 (Io, + In,), (4.30)
where I}, and Iy, are the isospin coefficients corresponding to the diagrams (b;) and (bg) of
Fig. and the factor (—1/2) stems from the Clebsch-Gordan coefficients. Note that, since

the WT operator involves a time derivative, the corresponding Feynman rule reads

1
Vljll/bT = 725(11707—6((]0 +mz) (4.31)
412
with a,b and ¢ Cartesian pion indices and g, the four-momentum of the intermediate pion.
Due to the explicit appearance of qp in Vyyp, the final expression for diagram (b) of Fig.
depends on the neutron—proton mass difference. Indeed, the evaluation of this vertex for the

diagrams (b1) and (bg) of Fig. [4.3]yields

_ i V2 (MT” + dmy) for diagram (by),
A2 V2 (3= - dmy) for diagram (b2).

2
Thus, in the isospin violating contribution to Eq. (4.30) the terms oc m, cancel while those
x dmpy survive. The non-vanishing isospin matrix element for the diagram (b) of Fig.
amounts to

Vivr (4.32)

- 1

6 This is not the case for the diagram (b), where the mass difference of the external particles plays the
essential role.
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Figure 4.4: Diagrams which contribute to the amplitude M, at LO in the hybrid approach.
The final state is always a deuteron. Initial nucleons can be either free (left diagram) or
nonperturbatively interacting with each other (right diagram).

Adding up the contributions of diagrams (a) and (b) we find that the resulting contribution
at LO depends on the quark mass contribution to the nucleon mass difference only — the
electromagnetic piece disappears completely:

(It = 0y + Ty | I = 0) = 4%;2% 6 omsL. (4.34)
In comparison with the expression used previously (cf. Eq. ), the rescattering operator
gets enhanced by about 30%, when standard values dm3*' = 2 MeV and ém{® = —0.76
MeV [GL82] are used.

A more elegant way to calculate both LO CSB operators is to perform a field redefini-
tion Eq. described in previous section. This redefinition removes the two-point vertex
proportional to the neutron-proton mass difference. However, an additional CSB 7N — N
vertex appears after redefinition (c.f. the third term in Eq. (4.26])). This vertex can be added
to the original CSB 7N — 7w vertex, and contributes via rescattering CSB diagram. Thus,
in the theory with redefined fields there is only one operator (shown as diagram (c) in Fig. |4.2)
due to the Lagrangian density . After evaluation of the isospin matrix elements in
one again arrives at Thus, the total result in the redefined theory is the same as in
original formalism.

For the sake of completeness, we present here the tree-level invariant amplitude Mj™®
corresponding to the LO calculation

12m3g. iy (7' —§)-p
Mtree — N § str / P 4.
L A 3

where p'and p” denote initial and final relative momenta of the two nucleons, respectively, and
p = p/p. In the calculation we use fr = 92.4 MeV and g4 = 1.32 (utilizing the Goldberger-
Treiman relation). To get the full amplitude M, which enters the observables, M} given
above needs to be convoluted with proper NN wave functions in the initial and final states,
cf. Appendix A of Ref. [BEHT09| for a detailed description. Ideally, one should use wave
functions derived in the same framework, namely ChPT. However, up to now these are only
available for energies below the pion production threshold [BvKO02, Epe06, EHM09]. We
therefore adopt the hybrid approach (see Sec. i.e. we use transition operators derived
within effective field theory and convolute them with realistic NN wave functions [HHJ93].
Since we consider the pn — dr® reaction, the FSI is always a deuteron. Nucleons in the
initial state have two possibilities. They can either be free, or interact with each other. Thus,
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the full LO CSB amplitude My in the hybrid approach is defined by two diagrams shown in
Fig. (4.4

We are now in the position to discuss the results for the forward-backward asymmetry
within the complete LO calculation. Using the values for the parameters specified above and
utilizing the NN wave functions from Ref. [HHJ93], the result can be presented in the form

str
omy

AMO — (11.54+35) x 1074 .
( )X MeV

(4.36)

The LO calculation of the coefficient has a theoretical uncertainty of 15% which is doubled to
provide a more conservative estimate. This uncertainty is included in the expression above.
We now use the experimental result for Ag, [OKH" 03| to extract dm3* which yields

SmN = (1.5 £ 0.8 (exp.) £0.5 (th.)) MeV , (4.37)

where we added the experimental errors in quadrature. This is the final result of our analysis.
In the present stage, the uncertainty in the determination of dm3* is dominated by the
experimental uncertainty for Ag,.

In this context let us point out the following: Apart from the additional IV contribu-
tion discussed in detail above, there are other reasons why our result deviates from those of
Refs. [vKNMO00, BM10] already at leading order. The numerical evaluation of the diagram
(a) of Fig. revealed that the value we obtain is significantly smaller than the one found
in Ref. [vKNMO0OQ]. It turned out that the result of that work is too large by a factor of 4
due to an errmﬂ The discrepancy of our result to that of Ref. [BM10] is an accumulation of
various effects. First of all in Ref. [BM10] the isospin conserving s— and p—wave amplitudes
are calculated within ChPT up to NLO. Thus, they come with individual uncertainties of
30% and 15%, respectively — the uncertainty for the s—wave appears doubled for this ampli-
tude, since it enters squared in Ap, while the p—wave amplitudes mainly contribute linearly
to A7 — cf. Eqgs. and ) In contrast to this we take the s—wave amplitude di-
rectly from data, with a negligible uncertainty and for the p—wave amplitudes the results of
Ref. [BEHT09], which were calculated to NNLO and are additionally constrained by data.
Thus, combining these uncertainties with that for the CSB amplitude in quadrature, a total
uncertainty of 50% arises for the result of Ref. [BM10]. In addition, the p—wave amplitude
with the 1Sy initial state employed in Ref. [BM10], which amounts to an enhancement of 50%
in the isospin-conserving p-wave amplitude in this calculation, is in conflict with the data for
pp — dnt, which calls for a negligible contribution of this partial wave [BEH"09]. These ef-
fects together — the larger uncertainty of the calculation of Ref. [BM10] as well as the wrong
p—wave amplitude — explain the discrepancy between our result and that of Ref. [BM10].

In Ref. [vKNMOO|] also some higher order contributions were calculated as well, see also
[MOSO06]. While individually sizeable, the sum of the considered corrections was found to
contribute very little to the asymmetry. We re-evaluated these additional pieces and con-
firmed these findings qualitatively though our results deviate from the ones of Refs. [vIKNMO00|
MOS06] quantitatively. In addition, in Ref. [BM10] some CSB p-wave amplitudes were evalu-
ated. Through an interference with the isospin conserving s-wave, they also contribute to the

"Due to inconsistent definitions of fr in the analytical and numerical calculations the LO contribution
evaluated in [vKNMO0] is a factor 4 too large. We thank J. Niskanen for his help in solving this issue.
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forward-backward asymmetry discussed in this work, however, only at NNLO. It is reassuring
that quantitatively these contributions are in line with the power counting estimates given
above and thus support our uncertainty estimate.

4.4 Discussion and conclusion

In this chapter we calculated the CSB forward-backward asymmetry for the reaction pn — dr®
to next-to-leading order in the chiral expansion. We showed that the resulting production
operator is driven by the contribution to the neutron-proton mass difference which is coming
solely from the quark mass difference o< dm3*. Using the TRIUMF measurement of the
forward-backward asymmetry [OKHT03] we extracted the value

my = L. . ev , .
MmN = 1.5+ 0.9 MeV 4.38

where the theoretical and experimental uncertainties are added in quadrature. This result
is consistent with extractions of the same quantity using Cottingham sum rule [Cot63] in
references [GL82, WLCMI2] and with lattice simulations [BOS07, BZD™10, dDDE™12]. See
table [4.] for an overview.

Table 4.1: Results of extraction of the strong neutron-proton mass difference using different
methods.

omSF [MeV] Method Ref.
1.5£0.9 chiral EFT this work
20+0.3 Cottingham sum rule [GL82]
2.59(03)(47) Cottingham sum rule [WLCMI12]
2.26+0.574+0.42+0.10  Lattice simulation [BOSOT7]
2.51(14) Lattice simulation [BZD™10]

We emphasize that the agreement of the various independent extractions provides a highly
non-trivial and important test of our understanding of the chiral symmetry and the isospin
breaking pattern of QCD.

At present the uncertainty in Eq. is dominated by the experimental error bars —
an improvement on this side would be very important. Still, a more refined N?2LO calcula-
tion is also called for since only then one can be confident about the estimated theoretical
uncertainty.
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Thesis Summary

In this thesis we have studied pion production in nucleon-nucleon collisions near threshold
within the heavy baryon chiral EFT framework. The reaction NN — NN is of great
interest since it is the first inelastic channel of VIV interaction, it appears as a building block
for many hadronic processes, and provides a direct way to study charge symmetry breaking
in the Standard Model. The main challenge arising in the chiral EFT study of NN — NN«
is the large three-momentum which is transferred between two nucleons in order to produce
a pion. To properly incorporate large transferred momenta, the momentum counting scheme
(MCS) was used. This power counting scheme properly accounts for the additional scale
and allows one to classify various contributions to the NN — NN transition amplitudes
according to their importance. Successful application of MCS to describe s- and p-wave pion
production observables in the channels where no accidental cancellations occur provides a
strong indication for convergence of the MCS chiral counting. This approach allowed us to
calculate pion production operators with high accuracy, including both charge symmetric and
charge symmetry breaking amplitudes, and extract strong contribution to the neutron-proton
mass difference from the data on differential cross section asymmetry in pn — dr’. We
summarize the main results of our study below.

In Chapter 1 we give a brief summary of the methods used to study pion production in
this work. We start with fundamentals of chiral EFT and revise the heavy baryon formulation
which is used to include nucleons and delta-isobars. The main part of Chapter 1 is devoted
to the momentum counting scheme, which allows one to make accurate estimations of pion
production operators. We also discuss the inclusion of nonperturbative NN interactions in
the initial and final states.

In Chapter 2 we construct the high-accuracy pion production operators at threshold in
the chiral EFT formulation with only pions and nucleons being explicit degrees of freedom.
This operator is an important building block for CSB processes. In addition, such a high ac-
curacy calculation is necessary to understand the mechanisms behind various pion production
channels. The results of our investigation are:

e We have evaluated all tree-level and loop diagrams with pions and nucleons as the only
explicit degrees of freedom up to and including N2LO. We confirm the full cancellation
of all loop diagrams at NLO [HK02, LBH™06].

e We found significant cancellations among the loop diagrams at N?LO. In particular, all
loop topologies involving 1/my corrections to the leading vertices cancel completely, as
do the loops involving low-energy constants (LECs) ¢;.

e The cancellation of pion-nucleon loops at N2LO is not complete yielding a non-vanishing
N2LO contribution.

e We have obtained the fully renormalized result. Using dimensional regularization, all
UV divergencies in the loops were absorbed into redefinition of low-energy-constants
(LECs) in the Lagrangian at N2LO. At this order, there are only two unknown LECs.

e We have shown that the intermediate-range two-pion-exchange effects give the important
contribution to the production operator, in accordance with N?LO MCS estimation.
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This questions mechanisms used in phenomenological studies [LR93, [HMG94, [Hor93|
Nis96l, [HO95, HHR ™95, [HHKS98], where the data description was obtained, but none
of these N2LO loop contributions were considered.

e To calculate loop corrections to the production operator we develop an efficient method
based on identification of common structures in Feynman diagrams. This method al-
lows one to identify numerous cancellation between diagrams before carrying out the
loop integration. In addition, we derive relations between propagators and momentum-
dependent vertices in chiral EFT. These relations allow one to easily identify relevant
irreducible contributions and help to spot cancellations between various diagrams. These
methods and relations depend neither on heavy baryon formulation, nor on the counting
scheme, and can be used in the wide range of chiral EFT studies.

In Chapter 3 we studied the effect of explicit delta-excitation on pion production at
threshold. The main motivation to include delta explicitly is the observation that the exci-
tation energy of the delta is of the same order as transferred momenta required to produce
a pion in NN — NNmr. Explicit inclusion of the delta resonance allows one to better iden-
tify the relevant pion production mechanisms and improves convergence of chiral expansion.
Below we present the results of our findings.

e We have calculated all additional tree-level and loop contributions to the N?LO pion
production amplitude appearing in the theory with explicit delta isobars.

e After carrying out the renormalization our result is finite and consistent with the re-
quirement of the decoupling theorem [ACT75]. Namely, all contributions from diagrams
with explicit delta would vanish if the mass of the delta were taken to infinity. The
obtained result does not contain any unknown low-energy constants.

e We found numerous cancellations between various loop diagrams. In addition to the
cancellations at NLO reported in [HK02], we discovered significant cancellations at
N2LO.

e While all loops cancel at NLO completely, at N2LO there is a finite remainder of the A
loop contributions which is of the same order of magnitude as its purely pion-nucleon
counter part calculated in Chapter 2. This shows that the delta resonance provides an
important intermediate-range two-pion-exchange contribution to the pion production
operator. This mechanism so far was not considered in the phenomenological models,
where the description of data was obtained using mostly short range mechanisms.

The obtained N2LO pion production operators together with the ones from Chapter 2 can
be convoluted with NN — NN and NN — NA interactions and used to calculate various
pion production observables. In addition, the compact analytical form makes it easy to use
these results as building blocks for more complicated few-nucleon processes, such as study of
charge symmetry breaking in pn — dr° and dd — an®.

In Chapter 4 we studied pion production in the pn — dr® channel near threshold.
This channel is of exceptional interest since one can directly observe manifestations of charge
symmetry breaking effect in the forward-backward asymmetry of the differential cross section.

Below we present the summary of our results:
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e We have calculated full leading-order charge symmetry breaking pion production op-
erator. We found a new LO contribution which was not considered in previous stud-
ies [vKNMOO, BMI0]. This contribution stems from the energy dependence of the
pion-nucleon vertex and explicit proton-neutron mass difference terms in the chiral La-
grangian. We have also recalculated the LO operator considered in previous studies,
since there was a numerical mistake in previous calculation.

o We showed that the full LO CSB operator is directly proportional to the strong part of

the neutron-proton mass difference dm3y.

e We calculated the full LO CSB amplitude, which takes into account nonperturbative
nucleon-nucleon interactions in the initial and final states. For this purpose we adopted
the hybrid approach, which consists of the convolution of the LO CSB operator with
the the initial and final VN wave functions.

e Using full LO CSB amplitude, we calculated the CSB forward—backward asymmetry for
the reaction pn — dn® to leading order in the chiral expansion.

e Using the TRIUMF measurement of the forward-backward asymmetry |[OKHT03| we
extracted the value

SmiF =1.5+0.9 MeV

where the theoretical and experimental uncertainties are added in quadrature. This
result is consistent with extractions of the same quantities using Cottingham sum rule
[Cot63] in references |[GL82, WLCMI2] and with lattice simulations [BOS07, BZD ™10,
dDDF™12]. We emphasize that the agreement of the various independent extractions
provides a highly non-trivial and important test of our understanding of the chiral
symmetry and the isospin breaking pattern of QCD.

We have calculated CSB pion production operator at leading order in chiral expansion,
and since there are no NLO CSB contributions, the accuracy of our result is even higher
than LO. However to verify convergence and increase accuracy one has to calculate N2LO
CSB corrections. This task is quite challenging since at that order loop diagrams start to
contribute. The methods to handle loop integrals, developed in this work, can be useful to
efficiently perform such calculation. In addition, our results can be useful in study of charge
symmetry breaking in dd — an®, where both charge symmetric and charge symmetry breaking
NN — NN operators contribute as building blocks. Finally, a combined analysis of CSB
in pn — dn® and dd — an® reactions can be used to better restrict low energy constants that
appear at higher orders.
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Outlook

In this section we outline the directions of future research related to pion production in
nucleon-nucleon collisions.

e [sospin-conserving pion production operators calculated in chapters 2 and 3 should
be used to calculate observables, most notably, cross sections. Such calculation will
allow one to fix the values of five-point NN — NNm LECs, investigate naturalness of
these LECs, and make a definitive quantitative conclusion about the role of short- and
intermediate-range mechanisms in pion production.

e Calculation of NN — NN observables requires taking into account nonperturbative
interaction of nucleons in the initial and final state. For a long time, there were no
chiral-EFT NN wave functions available to make fully consistent chiral EFT calculation
possible. (The large transferred momentum between nucleons in pion production makes
the construction of such wave function highly nontrivial.) This is why the hybrid ap-
proach is typically adopted in studies of NN — NN reactions. We have also used it
in Chapter 4. In the hybrid approach one uses realistic phenomenological wave func-
tions instead of chiral ones, thus, a fully consistent estimation of the uncertainty is not
possible. Recent developments in construction of chiral NN wave functions near pion
production threshold [Epel4] can allow one to perform a fully consistent chiral EFT
study of pion production.

e A full N2LO calculation of CSB NN — NNz amplitudes can be interesting in order
to verify the convergence of chiral series for CSB amplitudes and to fix the values of
subleading CSB LECs, which can be used to predict other CSB processes.

e One of the most promising applications of the results of this thesis can be theoretical
description of charge symmetry breaking in dd — an®. The corresponding experiment
has been done at ITUCF |[SBAT03] very close to threshold yielding nonvanishing total
cross section of this CSB reaction. See Refs. [GHNT04, NFG™06, FMMOQ9] for the first
theory study. Moreover, the measurement of this reaction in a wider range of energies
is currently ongoing at COSY [AT13].






Appendix A

Lagrangian density

In this Appendix we present the Lagrangian densities relevant for our studies. We use heavy
baryon formalism and employ sigma-gauge for pion ﬁeldsﬂ In this section we list the isospin
symmetric terms. Isospin violating terms can be found in the Section

A.1 ChPT Lagrangian

The leading order chiral Lagrangian for pion-pion interactions has form:

1 1 1 m2
2 2,2
L2 = 5 O - 0'm) — Smim? 4 22 (7 - OMm) (- D) — @w +- (A.1)
where 7 denotes tree pion fields in the isospin space, m, is a pion mass, fr is a pion decay
constant, and dots stand for terms with more than four pion fields.
The leading order pion-nucleon Lagrangian expanded in terms of pion fields reads:

4f3 2fx
where N is nucleon field, g4 is pion nucleon coupling constant, ¢ and 7 correspond to Pauli
matrices in spin and isospin spaces respectively, and dots stand for terms with more than
three pion fields.
The NLO pion nucleon Lagrangian has form:

) = Nt [17- (7 xm)+ T4+ 0<V7r+2f2 (W.ﬁﬂ)ﬂNJr...’ (A.2)

1 _ o
553\)[ = W[iNTT'(WXVTF)-VN—Fh.C.]
NJrx
W P SR SR
_8ﬂf§f3NT7r (& -V) (7 x m)N

2

+f2 NT [ <03 + ¢ — 89A > 72— C3(§7r)2 — 201m3r7r2
my

1 1
—5 <C4 + 4mN> gijkgabco'chaiﬂ'aajﬂ-b} N+ (A3)

!See [HWQT] for discussion of different gauges.
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where my denotes the nucleon mass and c;—c4 are pion-nucleon low-energy constants.

From the third-order pion-nucleon Lagrangian we only need recoil corrections, which can
be enhanced in pion production kinematics. Terms proportional to LECs d; are of higher
order than we consider in this study. The relevant third order Lagrangian terms have form

3 = (3
B = NOQN (A4)
where
3  _ 94 3
Oftd = o [0 [Du S-4l] =i g (v-D)
ga pa 2
—4m?\7v-DS~uv~D+ SmN (ZD v- D—i—hc)

({S-D,v-u}v-D+ h.c.) + 39'; (i((v-u)?) v-D + h.c.)

4mN 64m3,

52m?, (E“”aﬁv Saluy, uy]v-D + h. c>

ga 2 ga
= S-uD?+ h.c) — ($-DuD+he)

Sm%\, ( U + c) m?v u-D+ h.c

1+ g4 +8myey

16m2, (6“”aﬁva55 [y, v-u|D, + h.c.)

- 93&2 (tv-uu-D+ h.c.)

16m3y,

1+ 8mpy ey 2 .
+i W [v-u, [D*,u,]] + ST (i(v-uuy)D* +h.c)+---.  (A5)

The building blocks D and u are defined by Egs. (1.9) and ([1.3)), operators v and S satisfy the
relations (1.16)), [---] and {---} denote commutator and anticommutator, and (---) denotes
trace in the isospin space.

A.2 Additional Lagrangian terms in chiral EFT with explicit
delta

In this section we present the Lagrangian terms for theory with explicit Delta degree of
freedom. These expressions are based on the work by Hemmert et.al. [HHK98, [Hem96]. Note
that we use sigma-gauge for pion field, while Hemmert uses exponential one.

Leading pion-nucleon-delta Lagrangian for NAm and NAn7mm vertices in heavy baryon
formalism with Delta reads

LN = —gevaUast” <f (T"- 9um) + 55 (m auﬂ')(TT-ﬂ')> N

2 f3
(- Opm)(T - 7\')) SH WA, (A.6)

—gmzv( (T - ) +

fr 2f 2f3

where WA denotes delta field in heavy baryon formulation, g,nya is a pion-nucleon-delta
coupling constant, and S and T are spin and isospin projection operators (see Section [1.3]).
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The Leading Delta-Delta Lagrangian gives rise to the Delta propagator, TAA and mrrAA

vertices, and TrAA vertex

1
LoAn

—Ualgly (i(v-0)—06)¥a
857rk
fr
Ualg (m x (v 0)m) T (

+g1UASTSPS, T4, <

L1
Af?

where we use the notation 1g = SWSM, and 1; = TZ-TTi

and § denotes delta-nucleon mass difference.

—2ieTh 4 RS A,

1

(A.7)

for spin and isospin unity-matrices,






Appendix B

Feynman rules

In this Appendix we list vertex functions and propagators corresponding to isospin conserving
Lagrangian presented in Appendix[A]and isospin violating Lagrangian discussed in Chapter 4.

B.1 Pion-pion interactions

iéab
a b T 2 —m2+i0 (B-1)
q2 q3
N /
b K i
x — P[(Sab&cd [((h + q2)2 . m?r] +5a05bd [(CH +q3>2 . m72r]
a4 wd i
s N
q1 g4
+5045% [(q1 + g1)* — m?] | (B.2)

Here and in what follows, the letters a—d denote isospin indices.

B.2 Pion-nucleon interactions

Feynman rules from the leading Lagrangian:
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P —F— P2

q \ a b, Q2

Pl —— D2

q1 q2 qs
RN L

N/
Pl —N— D2

Feynman rules from the sub-leading Lagrangian:

q1 q2 q3
N L

N/

P —F— P2

my N

1S

1
cat g — ) erlS - q1, S - qo)
my

—_— igA abc . . —_— . . —_—
4me7?; € [U @S (QQ QS) +v-q2S (QS Q1)
+v-g3S - (q1 — 6&)} - 4753]‘;35. (p1 +p2)

X {Tafsbcv (g2 +q3) + 5%y - (q1 +q3)

+7¢5%0 - (1 + CB)}

= f IA5.qr° (B.4)
1 abc c
= Jp[r0S @t aw) S (0t )
+765% G . (g1 + QZ)] (B.6)
_2752]0 S-(pr+p2)v-qr® (B.7)
1 abc c — —
T Smn 2 (P1 +1p2) - (@1 + @) (B.8)
Z5ab 2
—5[—deim? + (262— IA )v-q1v-q2+263q1-q2]
Iz my

(B.9)

(B.10)



89

B.3 Pion-nucleon-delta interactions

—1

l = - (B.11)
2 .
(O | — (S - m + 20
q ,
Pl ——— D2 fﬂ'

4 =0 (B.13)

q . a b s Q2 1 ti b .. .. .
— (] aoc C 1, - 1]C
T - _@T v (qu+ g2)e" (770" — 2ie) T (B.14)
Pl = P2 7T
q1 q2 q3 g
at ‘W’/ Fe = % T15%St - (g2 + g3) + TT°5%ST - (g1 + g3)
™

+TT6ST - (g1 + o) (B.15)

B.4 Charge symmetry breaking interactions

Feynman rules for isospin violating pion-nucleon scattering before (Eq. (4.24)) and after
(Eq. (4.27))) field redefinition:

qi < a b s 42

1
o = — [(6m¥ — om§™) (Tadb3 + T0a3) + IMG™ 200573 (B.16)
41 4(:)7 D2 4fﬂ'
qi1 \ a b, Q2
(3
N = 7(5m§\t[r (Ta6b3 + Tb5a3 — Tg5ab) (B.17)
b1 4®7 b2 2f72r
for






Appendix C

Relations between leading vertices
and propagators in chiral EFT

In this Appendix we describe relations between leading mm — 7w and 7N — 7N vertices and
pion and nucleon propagators respectively. Such relations can significantly simplify calculation
of Feynman diagrams. The idea which allow such simplification is to rewrite a vertex as
a sum of several terms proportional to the inverse propagators and some remaining term.
The advantage of such transformation is that the terms, which are proportional to inverse
propagators, usually give zero contribution to the full amplitude. Depending on the state
of the particle corresponding to the inverse propagator, there can be two scenarios. If the
particle is on-shell then its inverse propagator is zero and the whole structure proportional to
it does not contribute. If the particle is off-shell then there exists also a normal propagator
attached to the vertex. This normal propagator cancels with the inverse propagator from the
vertex and a new structure emerges. Such structure typically exactly cancels with similar
structures form other Feynman diagrams.

C.1 Pion propagator and the leading 7w — 771 vertex

We start with the relation between the leading 7#m — 77 vertex and a pion propagator. The
leading 77 — 7w vertex in the kinematics of Figure has the form:

Virosnn = fQ {006 [(1 — @) = m2] + 66" [T+ )% = m2] + 8°8" [(k — q)* — m2] }.
This expression can be rewritten as:
Viroyer = f;{dabacd [2 — m2] + 595t [i 2 m,ﬂ + 5odgbe [k — m2] + (C.1)

1 gabged [—2l ) q+q2] 1 gacgbd [2[' q+q2} 1 gadgbe [_le ] q+q2}}'

The first three terms in this expression are proportional to inverse pion propagators. Contri-
butions corresponding to those terms cancel with other Feynman diagrams.

91



92

\kl q -
N »
N - -
N -
7177>77¥77>7l77

Figure C.1: Kinematics of pion-pion scattering.

C.2 Nucleon propagator and the Weinberg—Tomozawa vertex

In this section we discuss the relation between the leading-order 7N — 7N vertex (so called
Weinberg-Tomozawa vertex) and the nucleon propagator. We will first derive this relation in
the covariant formulation and then consider it in the heavy-baryon formulation.

C.2.1 Covariant formulation

Let us consider the leading-order covariant 7N — w/N vertex. In the kinematics shown in
Figure the Feynman-rule corresponding to the leading relativistic 7N — 7N vertex
reads:

;]CG,.—WN 4f2 ~ 7o €abcT (%2 + 91) (02)
We can exclude ko from this expression using the four-momentum conservation (ko = ¢— P; +
P/), and add and subtract a nucleon mass. The resulting identity reads:

Ccov

TNSaN = 4f2 79 €abeT (2g Pl +P1)

= 4f2 5 €abeT (24 — (P1 = mn) + (P} — my)). (C.3)
This identity shows that the leading 7N — @ N vertex can be rewritten as a sum of three
terms: the first one is proportional to the outgoing pion momentum (2g), and the remaining
two are proportional to the inverse propagators of the initial and final nucleons. If one or
both nucleons are on-shell, then the corresponding inverse propagators give zero contribution
due to equations of motion. If the nucleon is off-shell, the corresponding inverse propagator
cancels with the normal nucleon propagator and the resulting structure usually gives zero in
the sum with similar structures from other diagrams.

Figure C.2: Kinematics of pion-nucleon scattering in the covariant formulation. The symbols
Py and P{ denote full covariant momenta of the nucleon.
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Note that the leading 1A — wA vertex differs from the leading 7N — wN vertex only by
spin-isospin structure and the value of the baryon mass. Thus, the decomposition discussed
in this section applies to it in the exactly same way.

C.2.2 Heavy-baryon formulation

Let’s now discuss the relation between the WT vertex and the nucleon propagator in the
heavy baryon formulation. For simplicity we use the following notation:

@ b):=@-a)(v-b)—a-b and a’:= (v-a)® —ad? (C.4)

where a and b are four-vectors.

Before considering the relation between the WT vertex and the nucleon propagator, it
is instructive to comnsider nucleon propagator and the on-shell condition in heavy baryon
formulation.

In the heavy baryon formulation the four-momentum of the nucleon is decomposed as
P, = v,mpy + p,, with v? = 1. Thus, the residual nucleon momentum p doesn’t include the
nucleon mass. In such formulation, the on-shell condition P? = m?\, turns into p> +2my v-p =
0. Using notation we get the exact on-shell condition in the heavy baryon formulation

p*  (v-p)
2mN 2mN

vep— =0. (C.5)
By expressing v - p from the first term and recursively substituting it to the last term, we get
the approximate on-shell condition up-to 1/m3;:

2

) o\ A2 N2 52 1
SRS i Che )} i CA¥ O Y (R B (C.6)
2mpy 4m3y; 8myy m

The left hand side of this expression corresponds to the inversed nucleon propagator in the
heavy baryon formulation.

The Feynman rule for the leading W'T vertex in the heavy baryon formalism can be
rewritten as:

VWIJ}\]IB&SN - 4f2 6ab07— v - (kQ + Q) 4f2
where in the last equation we used the four-momentum conservation ko = ¢ — p1 + pj to
exclude ky. The resulting structure in the r.h.s. of is very similar to that in covariant
formulation . The first term is proportional to the outgoing pion momentum, while
the second and the third terms are the inverses of the heavy baryon nucleon propagators at
leading order in 1/m y-expansion.

For our study the 1/my corrections to the leading pion-nucleon vertex are important both
in tree-level and in loop diagrams. The decomposition of the pion-nucleon vertex can be easily
generalized to include the 1/my corrections. The sum of Feynman rules for the leading WT
vertex and its 1/mpy correction is

€abeT [20-g—v-p+v-p], (C.7)

HB,LO+m ! 1 I T
Vﬂ—N_HerN = 4f2 —5€abeT U - (k2 =+ Q) 4f2 5 €abeT" omy (pl +p{) ’ (k2 + Q) = (CS)

1 27 (P +p1) i ;P
— Qg — LWLV 4+ (v =
412 qzfabeT 204 2mpy ven 2mpy v h 2my ) |’
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where we again used the momentum conservation to exclude ko. The structure remains the
same. The first two terms in the square brackets in Eq. are proportional to the outgoing
pion momentum, and the rest two are inversed nucleon propagators with corresponding 1/my
corrections.

For some N2LO tree-level diagrams in our study we will need to consider 1/ m?\, corrections
to the leading pion-nucleon vertex. The identity is derived exactly the same way as previous
two. The final expression for the Feynman rule for the leading 7N — 7N vertex with recoil
corrections up-to-and-including 1/ m%\, reads:

HB,LO+m > 1 1 . - .
ViNsan = fﬁﬁabcTc {U'(/fz-i-Q)—2mN(p1+p{)‘(/€2+q)
1 1 2 /\2 /
o (5o ket a) [0 P+ (0 )+ (0 pr) (0 5]
N
1
= [T+ P00 (ke +9) + v (o1 +20) (1 +p{)‘(k2+q)]>}
1 27 (py + P! v-q(p2+ 72 7 (5 + 7)) v- +p!
= |2 - q (219 r Q(P12 i) | q- (P +7i) i (p1+p1)
VE: my 4m3, 4my;
=2 =2 =/2 /=12
P V- Pp1Pq / Py CRY4V4I
— (v p1 - ph — C.9
<U P oy * 4m3, )+ (U DL oy * 4m3, ) (C9)

Again, the last two terms are proportional to the inversed nucleon propagators with the 1/my
and 1/m3; corrections.



Appendix D

Basic integrals

D.1 Definitions and analytic expressions for various integrals

In this subsection we give the explicit definitions of the common dimensionless loop integrals
used in this work. The first integral Ja = u¢Jo(—0) where u is the dimension-regularization
scale and the integral Jy(—0) is defined in Ref. [BKM95].

1 d*=¢l 1
—J.A(8) =
5J a(9) 15 (2m)4—e +140)(—

= 4L+ ((4:))2 [ 1+ log <ﬁ;>]

v-l—0410)

e ) I
2 e 'l
Len(k1) - = z/ (2m)4—< (12 — m2 + m)((z + k1)2 — m2 +i0)
— 9L 471T) [log (’Zz) —1+42F <:}i>} , (D.2)
where
) = D o (). 3
L= (4;)2 [1 + % (ve—1— 1og(47r))} : (D.4)

and the variables x, y are defined via x = k?/m2, y = 62/m2.
Further, the integrals in Egs. (D.5) and can be reduced to simple one-dimensional
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integrals which can be calculated numerically.

Me d47€l 1
5J7T7|— == 7, n n 5 D5
A / (2m)4- E(l2 m2 +i0)((I 4+ k1)2 — m2 +i0)(—v -1 — 6 4+ i0) (D:5)
dt=el 1
k2 o _ kQIu /
1JenNa 2m)4=e L(12 — m2 +i0)((I + k1)2 — m2 + i0)
. D.6
X(—v-H—zO)(—v-l—cH—iO) (D-6)

It is also convenient to define finite, scale-independent parts of Ja and I, in which the

divergency L and the log(m,/u) terms are removed. The finite contributions Jf:zme and

I,J:Tirmte will be used in the subsequent section.

1 m2
Lin = —2L— log< ) + I b1
o (2 (D.7)
. 1 4—x—1
I7j:7zrmte — 5 <1 _ 2@ arctan <\/§>> , (D-8)
(47) VT 4 —x—10
1 2 mgr finite
SJTFA = 4L + (471-)2 log <M2> 5J s (DQ)
L finite 4 1 JI—y—i0[ = VY
= e A e = 0| |

From the expressions above it is easy to obtain the important relation, which is used in
the analysis of the integral combinations, relevant for our study

1 init Jinit
Len + s dnn = [fimite 4 25JM7” ‘. (D.11)



Appendix E

Combinations of basic integrals in
the limit 0 — oo

In this subsection we discuss the behavior of the integral combinations, see Egs. 7,
relevant for loop-diagrams considered in this work. While the integrals I, and J;a have
analytic expressions for any J, the integral J..a can be done analytically only in the limit
6 — oo. Using the dispersive analysis, one finds the asymptotic expression for dJ-A when
6 — 00

2 _ Mg 2 finite 12
(4m) 20 pen = 2log [ : 5} R ((36m 6k2) log [ : 5]
—k? 4 6m2 + (3k% — 12m2)(4n)? L{;ﬂ”@) +0 ( 53> (E.1)

Note that to get the MCS terms relevant at N2LO, one ignores m2 compared to k? in the last
two lines of the expression above.

Using the expression above, Eq. l’ and the expansion of Jf:iAmm for large

(4? Jia" = ~4log [25] 2+7:;22<21 [25] )+O<54> (E2)

one obtains

1Jea 2 1
I _oma =0(=). E.
<m+5JMA+2 ; +(47r)2> 0(52) (E.3)

Thus, this combination vanishes in the limit é — oo.
Analogously, one finds

52 1J:A 2 1 1 JWA 1 2
I7TT{' T YD) Ta I o
K2 ( T OJmmat g5t (47r)2> 12 < R 3(47r)2)

g;; (61 [25} 1 I,{;""t€> +0 (;) (E.4)
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This combination vanishes in the limit 6 — oo up to higher order terms. To make it vanishing
also at higher order one would need to extend the calculation and keep the so far neglected
higher order terms.

Finally, the integral J,nya obviously vanishes at large

1
J7r7rNA = S(JWTK'A - J7T7TN)) (E5)

where Jrxn = Jrra(6 = 0).



Appendix F

Evaluation of the individual
pion-nucleon diagrams

F.1 Evaluation of the individual ¢°-diagrams

In this appendix we derive the NLO and N?LO expressions for individual two-pion exchange
diagrams shown in Fig. under restriction that the outgoing pion is produced in s-wave.
The kinematics is defined in Fig.

F.1.1 Diagram II
Diagram II shown in Fig. is straightforward to evaluate. The operator Aggc of Eq. |i
A

in this case arises from a three-pion one-nucleon vertex whose explicit form can be found in

Egs. (A.2), (A.3). The diagram II yields the contribution

d4l - ~ .
iMy = /( Bo(1,1) 7578 gf‘{[rfabcsl (=l 1)+ 706%S) - (g4 1) + 75698, - (¢ — 1)

2m)4 2T 2f3
1 o ~ ~
———ie"™v-qS1- (1 —1)—v-1S1-(I—q)+v 1S (¢ +1)]
2mN

Sy - (pr+ p[ri%v - (=1 4+1) + 726%v - (g + 1) + 7£6%% - (¢ —1)] }
2mN

where Bs(l, l~) is defined in Eq. 1} Contracting isospin indices and ignoring all p-wave terms
(ox St - q) and higher-order s-wave terms o« v - g/my ~ m;/my we find

. A d*l ~ ~
iMy = m /(27r)4 Bz(l,l){—(Sl DA + 4 = 21 4+ (S1 - D) [Am + 47 + 27
Sl - 8-l
+ [_Qva 1+ 2va : l] (27 —27)

St - !
+ 1 (p1+p1)[

v-l(dry + 41— 2n5) — v - (47 + 41 + QTx)]},
2mpy

where the integrand in the first line starts to contribute at NLO while that in the last two
lines gives N?LO contribution.
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F.1.2 Diagram IIla

The crossed box diagram, Type ITIa, shown in Fig. has a more complicated structure. In
this diagram the operator A“ ¢ consists of a TN — 7N scattering vertex, a nucleon propagator
and a mIN N-vertex. Agaln We only need to include the contributions from the leading and
subleading chiral Lagrangian in the vertices. We also include the nucleon recoil correction in
the nucleon propagator. This diagram gives the following expression

(2m)* 2mpy

X ! s C DI (F.1)
plO _ ZO (pl l) +ZO fﬂ' 2mN

. d4l 1 5y + =/ _f . f—l—
M, = / 1 Ba(l, 1) 578 4f2gbad a <v-(l+q)— (pr+p1—1) - ( Cf))

We have ignored here the subleading c¢;-contributions to the 7N — 7N rescattering vertex
since they are suppressed in the momentum counting scheme due to the negligible kinetic
energy of the outgoing pion with ¢ ~ (m., 6) We will rewrite the 7N — 7N vertex expression
in the integrand above in a way similar to the rearrangement in Eq.

o+ 5 — 1) (I

—

(2 97 (5 + 7 — T
—<P10—lo—(mN)>+2%— 7Lt py )7 (F.2)

2m 2mpy

where we used that v - pj = p{, ~ p12/2mN The first term on the second line of Eq. is
identical to the nucleon propagator in Eq. (F.1)) and will give a factor of —1 when inserted into
Eq. . This factor of —1 together with the lowest-order contribution of the w/NN —Vertex,
S, -1, give the NLO contribution of diagram IITa. The last term in the second line of Eq.
contribute to an outgoing p-wave pion and is ignored in this paper. The 2¢gg term in Eq. .
will contribute to the N2LO amplitude. We next use the relation [ = [ 4+ p; — pi — ¢ in the
mINN-vertex and in the nucleon propagator. We ignore pj, ~ qo ~ my contributions and
the recoil correction in the propagator which are of a higher order. Carrying out the isospin
algebra we get:

4 - - . ~
T 0 L Ul (CRURE ety

my
Sl tpl) g (200 (s101) b

The first term in the curly bracket starts to contribute at NLO. The remaining three terms
contribute to N2LO.
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F.1.3 Diagram IIIb

Diagram IIIb (Fig. has a structure similar to diagram IITa. We proceed along the same
lines as for the two previous diagrams and obtain the following contribution:

4 .
My = /dl By(1,1) m572(—1 )gA b<51_l_51 (2p] = l)v l>

(27T) Ir 2mpy

' 1 - 34— 1) (=1
y i : Ecad7_1d<v.<_l_‘_q>_(p1+p12 ) - ( +‘D>.
p{O _ lO _ (plf) 440 f mn

Using the on-shell condition for the incoming nucleon with p1g = p£/2my, we rewrite the
mN — wN vertex in a way similar to what was done for diagram IIla

-

- o+ 7] — 1) - (— +
v (g - BEAZD D

5 — 1)’ 27 (7 + 7| — 1)
= plo—1 _ 290 — 1 . F.3
(Plo 0 o + 2qo o (F.3)

Using the relation 2gg = 2v-q and keeping only terms appropriate at the order we are working
we obtain:

i M

4 _ 7
& e man{sn+ 2o

_W(v 1)+ <—1}2vl—|6—110) (S - l)}[—27+ — 5l

The first term in the curly bracket starts to contribute at NLO. The remaining three terms
contribute to N2LO.
F.1.4 Diagram IV

Diagram IV (Fig.|2.6) has an operator A“é’c containing a four-pion vertex, a pion propagator

and one mIN N-vertex. We keep the leadlng and next-to-leading order in the 7N N-vertex and
obtain

d*l S1-(p1+p)v-k i
iMpy = Bs(l,1 d G .k — L
LIV /(27r) (L) 75 (fﬂ>71< L Imn >k%—mg+z’0

5 {09 [(1 = ) = m2] + 076" (4 q) — m2] +0"0" [(ky — ) = m2] } .

f2

The four—pion vertex is rewritten as a sum of six terms

7 5% (1= q) —m2] 4 58 ([ q)? — 2]+ 59 [k — q)? 2]} =
=7 {5‘“’5“! (17 —m2] + 626" [P — m,ﬂ +0%08% [kf — m2] +

_Hsabdcd [_2[ -q+ q2] + 6ac6bd [2[ q+ q21| + 6ad5bc [_le Sq+ q2] } (F4)
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The contributions from the first two terms on the r.h.s. of Eq. are of a higher order.
The reason is that each term cancels a corresponding pion propagator in the operator Bs(l, l)
When one pion propagator in Ba(, l) is eliminated, the large momentum, like k:1 or pp, of
this reaction is no longer part of the loop integral which, consequently, only contributes at
a higher order than what is considered in this Thesis. Keep in mind that v - k1, v - p; and
v - pg are all of the order m,, whereas, |l€1| ~ p = /mzmpy. The third term cancels the pion
propagator k2 — m2 + i0 and will contribute at NLO and higher order in our counting. The
last three terms in Eq. start contributing from N2LO.

Using k1 = [—1+q, dropping terms contributing to outgoing p-wave pions and carrying
out the spin and isospin algebra we find:

iMy = 4923/(;;34B2(l,l~){[(51-l)—(S1-l~)+W(—v-l+v-l~>]6(7+—|—7_)

(51 k) [(””q] (-8}

k? —m2 +i0

The first two terms in the first square bracket are NLO contributions. The remaining two
terms are N2LO terms.

F.1.5 Box diagram a

In the expression for the Box a diagram (Fig. we again rewrite the pion-nucleon rescat-
tering vertex as a sum of two terms similar to what we did for the Type-III diagrams. One
of the new terms will cancel nucleon propagator yielding an irreducible NLO contribution. In
contrast to the derivation of the amplitude for the Type-III graphs, we here do not consider
the contribution from the term with the (remaining) nucleon propagator since it is reducible
and thus included in the initial NNV state interaction. Using again that the sum of the two
lowest orders contribute to the vertices, we obtain from the box a diagram:

4 5 ~ N . 2 _:
iMBox a = /dl Bs(1,1) 7267'§< 1 >€cad7_1d (v-(—l+q)—(p1+p1+l) ( l—i—q_))

(2m)4 412 2my
] S1-(2 Dv-1
x L (& (51.1_ 1 2p £ Do > (F.5)
lo +p1o — (pIH) “ 2my
myn

To rewrite the expression in the pion-nucleon rescattering vertex we again use that that p{ is
on-shell, i.e. pj, = p12/2my. The 7N — 7N vertex is rewritten as

-

- L+ + 1) (1 +Q

(=] - —
v (=l+q) ST
) + 1) 24 (pr + P + 1)
- 50-1-2910—(101 ) +2g9 — 2 (B + 5] )~
2my 2my

The first term on the r.h.s. of the above expression is identical to the nucleon propagator
and will give a factor of —1 when inserted into Eq. (F.5). The last term is a p-wave pion
contribution and is ignored. Also the 2¢gp-term does not need to be taken into account as it
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corresponds to a reducible contribution. Using 2p; +1 = [ + (p1+p{) +q, ignoring the p-wave
pion terms, and evaluating the spin and isospin structures, we find:

med _ 94 (A gl o Sl Su e
MBOX&_4f7?|3 /(271’)4 BQ(lvl){ (Sl l)+2mN(U l)+ 2mN (U l) [27_+T><].

F.1.6 Box diagram b

The Box b diagram given in Fig. is very similar to the Box a diagram and the evaluation
procedure is similar. We consider again only the irreducible contribution. The diagram gives:

, o [at . - S -(2pl 1wl
iMpoxp = / oL 1 Ba(l,1) 75 < fﬂ)ﬁ (sl.z— ST )

i L b A - (g
X pH) 4f2€bd71d<v-(l—|—q)—( 12m]i< ) . (F.6)
p10+l 5

Again, rewriting the pion-nucleon rescattering vertex using that p; is on shell, p1g = p£/2my
leads to :

—

2mN
- */+l?)2 2(j’~(ﬁ1+ﬁ’+j)
=|pi+1 _ i+l 2q0 — L ) F.7
(p10+ 0 2my T2t 2my (F.7)

The first factor on the r.h.s. of the Eq. -, when coupled with the nucleon propagator in
Eq. - yields a factor of 1 while the 2¢o-term in Eq. - produces a reducible contribution
included in the final NN state interaction. Using the relation 2p; + [ =1+ (1 +p]) —q
ignoring terms leading to outgoing p-wave pions and carrying out the spin and isospin algebra
leads to:

d*l -~ = Sl - S+, -
{ et G e R ALY

bor - 5.

Like the final expression for the Box a diagram, the first term starts at NLO and the next
two terms are the N>LO contributions to the amplitude.

F.2 Evaluation of the individual g4-diagrams

In this appendix we derive the expression for two-pion exchange diagram linear in ga for
s-wave pions produced. The final expressions for the diagrams contain N?LO contributions.
The kinematics is defined in Fig.
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F.2.1 The “Football” diagram

The two pion propagators are tied together in pion-nucleon scattering vertices at both nu-
cleons. Since this loop diagram involve just pion propagators, we have an extra symmetry
factor 1/2 associated with the boson loop. The “football” diagram shown in Fig. gives
the following expression:

1 [ d ~ gaA
My = - Do(1,1) evry | =
o 2ﬂ%%2“)eﬁ<w9

X { [706%¢S1 - (=1 +1) + 726981 - (q+ 1) + 7£6%Sy - (¢ — 1)]

1 o ~ ~
———— e g8y - (=l —=1)—v-1S1-(I—q)+v-1S1- (¢ +1)]
2mN

St (4D (<4 D) 4 7t0% 0 (g ) 0% (g - D,
N

After performing some spin and isospin algebra, dropping terms corresponding to the outgoing
p-wave pion and/or higher-order corrections we obtain

4 o ~
iMp = 2897%17% /(irl)4 DQ(lal){ [(Sl )+ (51 l)} (—27%) (F.8)
+ [5;1;(1) 1) — f;]\f(v . l)] (27 —27-) + Slg:;;p{) [v A+v- [} (2Tx)}-

The obtained result requires some clarification. Looking naively at the first line in Eq. (F.8)),
one may conjecture that this diagram starts to contribute already at NLO. Indeed, assuming
lo ~ || ~ p, the dimensional analysis gives

p 1 pt 1 p?

2 T Bk
where the three terms on the lLh.s. stand for the wwmw N N-vertex, the estimate of D(l,lN)
as follows from Eq. (2.13) and the integral measure, in order. Above we also used that

(47 fr)? ~ mA. On the other hand, a more careful analysis shows that the first line of the
integral in Eq. (F.8)), which appears at NLO, is

. ga d*l 2l ~
My =7 / = Si-O)+(S1-D)],
CA652 (2 R o)z - 2 + o) CRACR

where we have used that [y ~ |l_i ~ p > my to drop all subleading contributions including the
1/my terms in the curly bracket of the integrand. This last integral, however, vanishes when
integrating over [y because the numerator of the integrand is an odd function of [y whereas the
denominator is an even one. The next-higher order contributions in Eq. do not vanish.
They scale as m,/p and p/my compared to NLO and thus emerge at N2LO. Following the
same lines, one can show that also the other diagrams of ga-topology start to contribute at
N2LO.
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F.2.2 Diagram Ila

The double-scattering diagram Ia shown in Fig. gives the following expression

. d4l ~ 1 g + =/ _f . f+
Z]\4-121 - /(271’)4 DQ(Z, l)€be7—2y <4f2) €bad7’1d <1} . (l -+ q) — (pl P ) ( i))

2mpy

' - c2pr = Dol
X - ! <gA)7'1C <S1.Z—Sl (51 Jv )
p1o — lo — (m i) +10 J N

In the TN — 7N rescattering vertex (off nucleon 1) we included the leading WT vertex
contribution together with its recoil correction. However, we dropped the subleading c;-terms
in this vertex since they are of higher order. The 7N — 7N vertex expression is rewritten
the same way as for diagram IIla, shown in Eq. .

Using that p{, = p]2/2my, collecting the spin structures and performing the isospin
algebra we get:

. . 9A d*l < B - 11 R Syl
Mo = i /(2@4 Dg(u){ (S1-0) = (80 = 51 (v 1) + 5w
S1 - (p1+p1) i -q 7
+T |:'Ul+vl:|+m(51l) (7'+—7'7—'T><).

This amplitude starts to contribute at N?LO, see discussion in Appendix for more
details.

F.2.3 Diagram Ib

The double-scattering diagram Ib in Fig. [2.6] gives an initial expression:

4 S (2p! — o -
My, = /dl Dy (1, ey (—1) 2 b<51 - S 2pi = l)

' 1 - 5t — 1) (=1
% 2 l 7€cad7_1 <v(—l—|—q)—(p1+p12 ) ( —|—@)
p{O _ lO _ (plf ) + i0 f my

Again, the TN — wN vertex is rewritten as sum of two terms as for diagram IIIb, see Eq. .
We follow the simplifications discussed for diagram IIIb, and use that pyg = p£/(2my). Using
again [ — —[ etc. to simplify the integrals containing the function Do(1, Z), collecting spin
structures and performing the isospin algebra we get:

d4 -~ = Sl Sl
My, = ’LgA/ 4D2(l,l){(81-l)+(51-l)—21 (U~l>+21 (v-1)

8f7§ (27T) my my

_w [v-l-l—v-i]—{—
2mpy

4v-q

g (S1 - l)}[7'+ — T + 7x].

This amplitude also starts to contribute at N2LO, see comment in Appendix for more
details.
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F.2.4 The “Mini-Football” diagram

The contribution of the “mini-football” diagram in Fig. can be written as

. 1 [dY = gaA S1-(p1+p))v-k i
Myr = = Do(l,1) e™rd (22 ) 72 ( Sy - ky — L
i 2/(27r)4 2(l,1) €™ <f,r>71 <Sl ! ImN ) k2 —m2 +i0

><fi7% {007 [(1 = @) = m2] + 66" | (I + @) = m2| + 616" [(hn — q)? = m2] }.

The four-pion vertex can be rewritten as a sum of six terms

7

7 {00 [(1 = q)® = m2] + 66" | (I + @) = m2| + 616" [(hn — q)? = m2] } =

7
E
_|_5abé‘cd [_21 'q_‘_qQ] +5a05bd [2[ q_‘_qQ} +5ad5bc [_le .q+q2]}.

{aabacd 12— m2] 4 5006 [I2 — m2] 4 67950 [k — m2]

Following the arguments outlined in the derivation of the contribution from diagram IV, see
the discussion below Eq. (F.4), most terms either contribute to outgoing p-wave pions or
higher orders in the chiral expansion. The final result reads:

, oga [dY . q-(1+1)
IMoF = ZST”;:’ /(2ﬂ)4 Do(1,1) (S1 - k1) {IMM]}@TX).

This amplitude starts to contribute at N2LO.




Appendix G

Expressions for loop-integrals

In this Appendix we provide expressions for loop integrals required to calculate the transition
amplitude at N?LO. Using dimensional regularization and integration procedure described in
Appendix E of Ref. [PMR93], we obtained the following results:

1/ (;i l)4 (12 —m32 +Ui6)(§fji)ii%'g;)l()—v T (G

1/(;?)4 (2 —m2 + Z.O)({S _(;:%li oI 0 > ~2J(k7), (G.2)

1/(57:4 (12 —z;n%(:é))(ql? (—ljn;)Jr oy =2 _é'](k%) - ;(4i)2 ’ (G.3)
T o R eSS, (@
% / (524 2 —m2 + io)((?zz _zzg 2+ 2,) o iR Zj(k%) 1 471T>Q, (G.5)

1/(;1;34 2 —m2 (fz(;)i()[gsf .T,Z%QJ; %;Z d4i0) ]f _%J( ) 118(471r)2 , (G.6)

where integral J(k7) is given by Eq. (2.11), and only the leading loop contributions for the
s-wave pion in MCS are kept.
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