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The positive Grassmannian Gr,f,?l is a cell complex consisting of all points in the real
Grassmannian whose Pliicker coordinates are non-negative. In this paper we consider
the image of the positive Grassmannian and its positroid cells under two different
maps: the moment map u onto the hypersimplex [31] and the amplituhedron map Z
onto the amplituhedron [6]. For either map, we define a positroid dissection to be a
collection of images of positroid cells that are disjoint and cover a dense subset of the
image. Positroid dissections of the hypersimplex are of interest because they include
many matroid subdivisions; meanwhile, positroid dissections of the amplituhedron can
be used to calculate the amplituhedron’s ‘volume’, which in turn computes scattering
amplitudes in ' = 4 super Yang-Mills. We define a map we call T-duality from cells
of Grz°

k+1,n
dissections of the hypersimplex A, , to positroid dissections of the amplituhedron

to cells of Gr,f?t and conjecture that it induces a bijection from positroid

Ay, k.2; we prove this conjecture for the (infinite) class of BCFW dissections. We note that
T-duality is particularly striking because the hypersimplex is an (n — 1)-dimensional

polytope while the amplituhedron A, ; , is a 2k-dimensional non-polytopal subset of
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the Grassmannian Gry ., ,. Moreover, we prove that the positive tropical Grassmannian
is the secondary fan for the regular positroid subdivisions of the hypersimplex, and
prove that a matroid polytope is a positroid polytope if and only if all 2D faces are
positroid polytopes. Finally, toward the goal of generalizing T-duality for higher m, we

define the momentum amplituhedron for any even m.

1 Introduction

In 1987, the foundational work of Gelfand-Goresky—-MacPherson-Serganova [31] initi-
ated the study of the Grassmannian and torus orbits in the Grassmannian via the
moment map and matroid polytopes, which arise as moment map images of (closures of)
torus orbits. Classifying points of the Grassmannian based on the moment map images
of the corresponding torus orbits leads naturally to the matroid stratification of the
Grassmannian. The moment map image of the entire Grassmannian Gry, ,, is the (n—1)-

dimensional hypersimplex Ay, ,, € R", the convex hull of the indicator vectors e; € R"

[n]
k+1

subdivisions of the hypersimplex [39, 45, 61]; these are closely connected to the tropical

where I € (). Over the last decades there has been a great deal of work on matroid
Grassmannian [36, 61, 63] and the Dressian [36], which parametrizes regular matroidal
subdivisions of the hypersimplex.

The matroid stratification of the real Grassmannian is notoriously complicated:
Mnev's universality theorem says that the topology of the matroid strata can be as bad
as that of any algebraic variety. However, there is a subset of the Grassmannian called
the totally non-negative Grassmannian or (informally) the positive Grassmannian [49,
54], where these difficulties disappear: the restriction of the matroid stratification to
the positive Grassmannian gives a cell complex [54, 56, 57], whose cells S_ are called
positroid cells and labelled by (among other things) decorated permutations. Since the
work of Postnikov [54], there has been an extensive study of positroids [9, 10, 51]—the
matroids associated to the positroid cells. The moment map images of positroid cells are
precisely the positroid polytopes [68], and as we will discuss in this paper, the positive
tropical Grassmannian [65] (which equals the positive Dressian [66]) parametrizes the
regular positroid subdivisions of the hypersimplex.

Besides the moment map, there is another interesting map on the positive
Grassmannian, which was recently introduced by Arkani-Hamed and Trnka [6] in the
context of scattering amplitudes in N’ = 4 SYM. In particular, any n x (k + m) matrix Z
with maximal minors positive induces a map Z from Gr,f,% to the Grassmannian Gry ., .,

whose image has full dimension mk and is called the amplituhedron A [6]. The case

n,k,m
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m = 4 is most relevant to physics: in this case, the BCFW recurrence (named for Britto,
Cachazo, Feng, and Witten [13]) gives rise to collections of 4k-dimensional cells in Gri?z
whose images tile or triangulate the amplituhedron.

Given that the hypersimplex and the amplituhedron are images of the positive
Grassmannian, which has a decomposition into positroid cells, one can ask the following
questions. When does a collection of positroid cells give — via the moment map - a
positroid dissection of the hypersimplex? By dissection, we mean that the images of
these cells are disjoint and cover a dense subset of the hypersimplex (but we do not put
any constraints on how their boundaries match up). When does a collection of positroid
cells give — via the Z-map — a dissection of the amplituhedron? We can also ask about
positroid tilings, which are dissections coming from cells on which the moment map
(respectively, the Z-map) is injective.

The combinatorics of positroid tilings for both the hypersimplex and the ampli-
tuhedron is very interesting: Speyer’s f-vector theorem [61, 62] gives an upper bound
on the number of matroid polytopes of each dimension in a matroidal subdivision
coming from the tropical Grassmannian. In particular, it says that the number of top-
dimensional matroid polytopes in such a subdivision of Ay, is at most (”;2) This
number is in particular achieved by finest positroid subdivisions [66]. Meanwhile, the
third author together with Karp and Zhang [44] conjectured that the number of cells in

a tiling of the amplituhedron A, ; ,,(Z) for even m is precisely M(k,n —k —m, %3t), where

i+j+k-—
M@, b.c) _HHH i+j+k—2

i=1j=1k=1

is the number of plane partitions contained in an a x b x ¢ box. Note that when m = 2,
this conjecture says that the number of cells in a tiling of A, ; ,(Z) equals (n 2)

What we show in this paper is that the appearance of the number (";?) in
the context of both the hypersimplex Ay, , and the amplituhedron A, ; ,(2) is not
a coincidence! Indeed, we can obtain tilings of the amplituhedron from tilings of the
hypersimplex, by applying a T-duality map. This T-duality map sends loopless positroid
cells S, of Gr,i)lln to coloopless positroid cells S; of Gr,igl via a simple operation on
the decorated permutations, see Section 5. T-duality sends tiles for the hypersimplex
(cells where the moment map is injective) to tiles for the amplituhedron (cells where Z is
injective), see Proposition 6.6, and moreover it sends dissections of the hypersimplex to
dissections of the amplituhedron, see Theorem 6.5 and Conjecture 6.9. This explains the

two appearances of the number (";2) on the two sides of the story.
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The fact that dissections of Ay,,, and A, ;,(Z) are in bijection is a rather
surprising statement. Should there be a map from A, ,, to A, ; ,(Z) or vice-versa? We
have dim Ay, ;, = n — 1 and dim A, ; ,(Z) = 2k, with no relation between n — 1 and
2k (apart from k < n) so it is not obvious that a nice map between them should exist.
Nevertheless we do show that T-duality descends from a certain map that can be defined
directly on positroid cells of Gr,i?l,n.

The T-duality map provides a handy tool for studying the amplituhedron
Ay, k,2(Z2): we can try to understand properties of the amplituhedron (and its dissections)
by studying the hypersimplex and applying T-duality. For example, we show in Section 7
that the rather mysterious parity duality, which relates dissections of A, ; ,(Z) with
dissections of A, , ,_,,, can be obtained by composing the hypersimplex duality
Agiin = Ap_k_1,n (Which comes from the Grassmannian duality Gry,,, ~ Gry_g_;,)
with T-duality on both sides. As another example, we can try to obtain “nice” dissections
of the amplituhedron from correspondingly nice dissections of the hypersimplex. In
general, dissections of A, , and A,, ; ,(Z) may have unpleasant properties, with images
of cells intersecting badly at their boundaries, see Section 8. However, the regular
subdivisions of Ay, , are very nice polyhedral subdivisions. By Proposition 9.12,
the regular positroid dissections of A, , come precisely from the positive Dressian
Dr,:rl,n (which equals the positive tropical Grassmannian Trop™ GTyy1 ). And moreover
the images of these subdivisions under the T-duality map are very nice subdivisions
of the amplituhedron A, ,,(Z), see Section 10. We speculate that Trop* Gry,, , plays
the role of secondary fan for the regular positroid subdivisions of A, ;,(Z), see
Conjecture 10.7.

One step in proving Proposition 9.12 is the following new characterization of
positroid polytopes (see Theorem 3.9): a matroid polytope is a positroid polytope if and
only if all of its two-dimensional faces are positroid polytopes.

Let us now explain how the various geometric objects in our story are related
to scattering amplitudes in supersymmetric fields theories. The main emphasis so
far has been on the so-called “planar limit” of A/ = 4 super Yang-Mills. In 2009,
the works of Arkani-Hamed-Cachazo-Cheung—Kaplan [3] and Bullimore-Mason-Skinner
[18] introduced beautiful Grassmannian formulations for scattering amplitudes in this
theory. Remarkably, this led to the discovery that the positive Grassmannian encodes
most of the physical properties of amplitudes [1]. Building on these developments and
on Hodges' idea that scattering amplitudes might be ‘volumes’ of some geometric object
[37], Arkani-Hamed and Trnka arrived at the definition of the amplituhedron A, ; ,,,(Z)
[6] in 2013.
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The m = 4 amplituhedron A, ; , is the object most relevant to physics: it encodes
the geometry of (tree-level) scattering amplitudes in planar A’ = 4 SYM. However, the
amplituhedron is a well-defined and interesting mathematical object for any m. For
example, the m = 1 amplituhedron A, ; ; can be identified with the complex of bounded
faces of a cyclic hyperplane arrangement [43]. The m = 2 amplituhedron A, ; ,(Z), which
is a main subject of this paper, also has a beautiful combinatorial structure, and has
been recently studied e.g. in [7, 16, 44, 46, 47]. From the point of view of physics, An,k,Z 2)
is often considered as a toy-model for the m = 4 case. However it has applications to
physics as well: A, ,, governs the geometry of scattering amplitudes in V' = 4 SYM at
the subleading order in perturbation theory for the so-called ‘MHV’ sector of the theory,
and remarkably, the m = 2 amplituhedron A, ; ,(Z) is also relevant for the next to MHV’
sector, enhancing its connection with the geometries of loop amplitudes [41].

Meanwhile, in recent years physicists have been increasingly interested in under-
standing how cluster algebras encode the analytic properties of scattering amplitudes,
both at tree- and loop- level [31]. This led them to explore the connection between
cluster algebras and the positive tropical Grassmannian which was observed in [65].
In particular, the positive tropical Grassmannian has been increasingly playing a role in
different areas of scattering amplitudes: from bootstrapping loop amplitudes in N' =4
SYM [4, 22, 38] to computing scattering amplitudes in certain scalar theories [20].

Finally, physicists have already observed a duality between the formulations
of scattering amplitudes N' = 4 SYM in momentum space! and in momentum twistor
space. This is possible because of the so-called ‘Amplitude/Wilson loop duality’ [8],
which was shown to arise from a more fundamental duality in String Theory called
‘T-duality’ [17]. The geometric counterpart of this fact is a duality between collections

of 4k-dimensional ‘BCFW’ cells of Gr,f% which tile the amplituhedron A, ; , [26], and

>0
k+2,n

tile the momentum amplituhedron M,, ; ,; the latter object was introduced very recently

corresponding collections of (2n — 4)-dimensional cells of Gr which (conjecturally)
by the first two authors together with Damgaard and Ferro [23]. In this paper we see
that this duality, which we have evocatively called T-duality, extends beyond m = 4.
In particular, for m = 2, the hypersimplex Aj,,, and the m = 2 amplituhedron
Ay k,2(Z) are somehow dual to each other, a phenomenon that we explore and employ

to study properties of both objects. We believe that this duality holds for any (even) m:

1 More precisely, it is ‘spinor helicity’ space, or, equivalently (related by half-Fourier transform), in twistor
space. See [1, Section 8].
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in Section 11 we introduce a generalization M of the momentum amplituhedron

nkm
M,, .4, and a corresponding notion of T-duality.

2 The positive Grassmannian, the hypersimplex, and the amplituhedron

In this section we introduce the three main geometric objects in this paper: the positive
Grassmannian, the hypersimplex, and the amplituhedron. The latter two objects are

images of the positive Grassmannian under the moment map and the Z-map.

Definition 2.1. The (real) Grassmannian Gry, (for 0 < k < n) is the space of all k-
dimensional subspaces of R". An element of Gry, can be viewed as a k x n matrix of
rank k modulo invertible row operations, whose rows give a basis for the k-dimensional

subspace.

Let [n] denote {1,...,n}, and ([Z]) denote the set of all k-element subsets of [n].
Given V € Gry, represented by a k x n matrix 4, for I € () we let p;(V) be the k x k
minor of A using the columns I. The p;(V) do not depend on our choice of matrix A (up to
simultaneous rescaling by a nonzero constant), and are called the Pliicker coordinates
of V.

2.1 The positive Grassmannian and its cells

Definition 2.2 ([54, Section 3]). We say that V € Gry , is totally nonnegative if p;(V) > 0
forall I ([Z]). The set of all totally nonnegative V € Gry, is the totally nonnegative
Grassmannian Grigl; abusing notation, we will often refer to Grf’?l as the positive
Grassmannian.For M C ([Z]), let Syy bethesetof V e Gr,ffl with the prescribed collection
of Pliicker coordinates strictly positive (i.e. p;(V) > 0 for all I € M), and the remaining
Pliicker coordinates equal to zero (i.e. p;(V) = 0forall J € ([Z]) \ M).If Sy, # 9, we call M

a positroid and S, its positroid cell.

Each positroid cell Sy, is indeed a topological cell [54, Theorem 6.5], and moreover,
the positroid cells of Gr,?% glue together to form a CW complex [56].

As shown in [54], the cells of Gr,??1 are in bijection with various combinatorial
objects, including decorated permutations = on [n] with k anti-excedances and equiva-
lence classes of reduced plabic graphs G of type (k,n). In Section 12 we review these
objects and give bijections between them. This gives a canonical way to label each
positroid by a decorated permutation and an equivalence class of plabic graphs; we will

correspondingly refer to positroid cells as S, S, etc.
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2.2 The moment map and the hypersimplex

The moment map from the Grassmannian Gry ,, to R" is defined as follows.

Definition 2.3. Let A be a k x n matrix representing a point of Gry ,,. The moment map?

w: Gry, — R" is defined by

2 ey IPr(A) e

A) = ’
SRS SRRV

where e; := >, ;e; € R", and {e,...,e,} is the standard basis of R".

It is well-known that the image of the Grassmannian Gry ,, under the moment
map is the (k, n)-hypersimplex Ay, , which is the convex hull of the points e; where I
runs over (['Iél). If one restricts the moment map to Gr,??t then the image is again the
hypersimplex Ay ,, [68, Proposition 7.10].

We will consider the restriction of the moment map to positroid cells of Gr,f?l.
Definition 2.4. Given a positroid cell S, of Gr,fgl, welet 't = u(S,), and I', = u(S,).

There are a number of natural questions to ask. What do the I' . look like, and how
can one characterize them? On which positroid cells is the moment map injective? The
images I, of (closures of) positroid cells are called positroid polytopes; we will explore
their nice properties in Section 3.

One of our main motivations is to understand positroid dissections of the

hypersimplex.

Definition 2.5. LetC = {I", } be a collection of positroid polytopes, with {S_} a collection

of positroid cells of Gr,f?l. We say that C is a positroid dissection of Ay ,, if we have that:

e dimI', =n—1foreachT' €C
* pairs of two distinct positroid polytopes I'; and I'?, in the collection are
disjoint

e U,I', = A, ie. the union of the images of the cells is dense in A ,,.

2 We remark that there is another version of the moment map called the algebraic moment map, which we
will briefly discuss later, see Definition 3.18.
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We say that a positroid dissection C = {I", } of A} ,, is a positroid tiling (or simply

a tiling) of Ay ,, if  is injective on each S,,.

Question 2.6. Let C = {I',} be a collection of positroid polytopes, with {S_} positroid

cells of Gr,f?l. When is C a positroid dissection of Ay ,? When is it a positroid tiling?

2.3 The Z-map and the amplituhedron

Building on [1], Arkani-Hamed and Trnka [6] recently introduced a beautiful new
mathematical object called the (tree) amplituhedron, which is the image of the positive

Grassmannian under a map Z induced by a totally positive matrix Z.

Definition 2.7. For a < b, define MatZ% as the set of real a x b matrices whose a x a
minors are all positive. Let Z MatZ%+m. The amplituhedron map Z : Gr,?% — Gl kim
is defined by Z(C) := CZ, where C is a k x n matrix representing an element of Grf?1
and CZ is a k x (k + m) matrix representing an element of Gry ;. ,,. The amplituhedron

Apjom(@) S Gry gy is the image Z(Gre ).

In special cases the amplituhedron recovers familiar objects. If Z is a square
matrix, i.e. k + m = n, then A, ;,,(Z) is isomorphic to the positive Grassmannian. If
k =1, then it follows from [64] that A,, ; ,,(Z) is a cyclic polytope in projective space P™.
If m = 1, then A, ; ;(Z) can be identified with the complex of bounded faces of a cyclic
hyperplane arrangement [43].

We will consider the restriction of the Z-map to positroid cells of Grf%.

Definition 2.8. Given a positroid cell S, of Gr,f?l, we let Z2 = Z(S,), and Z, = Z(S,)). We

refer to Z] and Z, as open Grasstopes and Grasstopes respectively.

As in the case of the hypersimplex, one of our main motivations is to understand

positroid dissections of the amplituhedron A, ; .. (2).

Definition 2.9. Let C = {Z,} be a collection of Grasstopes, with {S,} a collection
of positroid cells of Grf%. We say that C is a positroid dissection of A, ; . (Z) if we
have that:

e dimZ =mkforeachZ_ €C
* pairs of distinct open Grasstopes Z; and Z_, in the collection are disjoint
o UnZn = An,k'm(Z)
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16786 T. kukowski et al.

We say that a positroid dissection C = {Z,} of A, ; ,,(2) is a positroid tiling (or
simply a tiling) of A, ; ,,(Z) if Z is injective on each S, .

Remark 2.10. Let S be an index set for cells of Gr,f?l. It is expected that if Z and Z’ both
lie in Mat,;?mln, then {Z } s is a positroid tiling (respectively, dissection) of A,, . ., (2) if
and only if {Z] }, . is a positroid tiling (respectively, dissection) of A, ; ,,,(Z).

The results we prove in this paper will be independent of Z.

Question 2.11. Let C = {Z_} be a collection of Grasstopes, with {S_} positroid cells of
Gr,f,?t. When is C a positroid dissection of A, ; ,(Z)? When is it a positroid tiling?

In this paper we will primarily focus on the case m = 2 (with the exception of
Section 11, where we give some generalizations of our results and conjectures to general
even m). (Positroid) tilings of the amplituhedron have also been studied in [6], [27], [2],
[44], [33], [28]. Very recently the paper [16] constructed (with proof) many tilings of the
m = 2 amplituhedron. The m = 2 amplituhedron has also been studied in [7] (which gave
an alternative description of it in terms of sign patterns; see also [44]), in [47] (which
described the boundary stratification of the amplituhedron A, ; ,(2)), and in [46] (which
discussed its relation to cluster algebras). Note that our notion of dissection above is the
same as the notion of subdivision from [33, Definition 7.1]. (However, we prefer the word
“dissection,” as the word “subdivision”is often used to indicate that there are constraints

on how the boundaries match up.)

3 Positroid polytopes and the moment map

In this section we study positroid polytopes, which are images of positroid cells of Gr,??l
under the moment map u : Gr,f/?l — R”™. We recall some of the known properties of
matroid and positroid polytopes, we give a new characterization of positroid polytopes
(see Theorem 3.9), and we describe when the moment map is an injection on a positroid
cell, or equivalently, when the moment map restricts to a homeomorphism from the
closure of a positroid cell to the corresponding positroid polytope (see Proposition 3.15

and Proposition 3.16).

3.1 Matroid polytopes

The torus T = (C*)" acts on Gry , by scaling the columns of a matrix representative
A. We let TA denote the orbit of A under the action of T, and TA its closure. It follows
from classical work of Atiyah [11] and Guillemin-Sternberg [34] that the image u(TA) is a
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convex polytope, whose vertices are the images of the torus-fixed points, i.e. the vertices
are the points e; such that p;(4) # 0.

This motivates the notion of matroid polytope. Note that any full rank k x n
matrix A gives rise to a matroid M(A) = ([nl, B), where B = {I € ([Z]) | p;(A) #0}.

Definition 3.1. Given a matroid M = ([n], B), the (basis) matroid polytope I'y; of M is

the convex hull of the indicator vectors of the bases of M:
'y, = convex{eg | B € B} C R".

The following elegant characterization of matroid polytopes is due to Gelfand,

Goresky, MacPherson, and Serganova.

Theorem 3.2 ([31]). Let B be a collection of subsets of [n] and let I'; := convex{e; | B €
B} C R™. Then B is the collection of bases of a matroid if and only if every edge of I'g is

a parallel translate of e; — e; for some i,j € [n].

The dimension of a matroid polytope is determined by the number of connected
components of the matroid. Recall that a matroid which cannot be written as the direct

sum of two nonempty matroids is called connected.

Proposition 3.3 ([53]). Let M be a matroid on E. For two elements a,b € E, we seta ~ b
whenever there are bases B;,B, of M such that B, = (B; — {a}) U {b}. The relation ~
is an equivalence relation, and the equivalence classes are precisely the connected

components of M.

Proposition 3.4 ([15]). For any matroid, the dimension of its matroid polytope is

dimT;; = n — ¢, where c is the number of connected components of M.
We note that there is an inequality description of any matroid polytope.
Proposition 3.5 ([69]). Let M = ([n], B) be any matroid of rank k, and let ry; : 2l Zq

be its rank function. Then the matroid polytope I'j; can be described as

[y =1xeR"| inzk, in < ry(A)forall A C [n]

i€ln] €A
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3.2 Positroid polytopes

In this paper we are interested in positroids; these are the matroids M(A) associated to
k x n matrices A with maximal minors all nonnegative.

In Definition 3.1, we defined the matroid polytope I'j; to be the convex hull of
the indicator vectors of the bases of the matroid M. We can of course apply the same
definition to any positroid M, obtaining the positroid polytope I'y;. On the other hand, in
Definition 2.4, for each positroid cell S, we defined I', = 1(S,) to be the closure of the

image of the cell under the moment map. Fortunately these two objects coincide.

Proposition 3.6. [68, Proposition 7.10] Let M be the positroid associated to the positroid
cell .. Then Ty, =T, = u(S,) = u(S,).

The first statement in Theorem 3.7 below was proved in [9, Corollary 5.4] (and
generalized to the setting of Coxeter matroids in [68, Theorem 7.13].) The second

statement follows from the proof of [68, Theorem 7.13].

Theorem 3.7. Every face of a positroid polytope is a positroid polytope. Moreover, every

face I',, of a positroid polytope I', has the property that S, C S_.
There is a simple inequality characterization of positroid polytopes.

Proposition 3.8. [9, Proposition 5.7] A matroid M of rank k on [n] is a positroid if and
only if its matroid polytope I'y; can be described by the equality x; +--- + x,, = k and

inequalities of the form

> x, <ry, withi,jenl.
Lelig]

Here [i,j] is the cyclic interval given by [i,j1 = {i,i + 1,...,j} if i < j and [i,j] =
i,i+1,...,n,1,...,jtifi > j.

We now give a new characterization of positroid polytopes. In what follows, we
use Sab as shorthand for S U {a, b}, etc.

Theorem 3.9. Let M be a matroid of rank k on the ground set [n], and consider the
matroid polytope I'y,. It is a positroid polytope (i.e. M is a positroid) if and only if all of

its two-dimensional faces are positroid polytopes.
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Moreover, if M fails to be a positroid polytope, then I'j; has a two-dimensional
face F with vertices eg,;, €544/ €sper €scqr for some 1 < a < b < ¢ <d < n and S of size
k — 2 disjoint from {a, b, c, d}.

Remark 3.10. A different characterization of positroids in terms of faces of their
matroid polytopes was given in [58, Proposition 6.4], see also [58, Lemma 6.2 and Lemma

6.3]. There are also some related ideas in the proof of [25, Lemma 30].

By Theorem 3.7, every two-dimensional face of I'y; is a positroid polytope. To

prove the other half of Theorem 3.9, we use the following lemma.

Lemma 3.11. Let M be a matroid of rank k on [n] which has two connected components,
i.e. M = M; & M, such that the ground sets of M; and M, are S and T = [n] \ S. Suppose
that {S, T} fails to be a noncrossing partition of [n], in other words, there exists a < b <
¢ < d (in cyclic order) such that a,c € S and b,d € T. Then I'y; has a two-dimensional
face which is not a positroid polytope; in particular, that face is a square with vertices
€5ubr €Sadr €sher Esedr for some 1 < a < b < ¢ < d < n and S of size k — 2 disjoint from
{a,b,c,d}.

Proof. By Proposition 3.3, we have bases Aa and Ac of M, and also bases Bb and Bd
of M,. We can find a linear functional on I'y;, given by a vector in RS whose dot product
is maximized on the convex hull of e,,, and e, (choose the vector w such that w;, = 1 for
heA wy, = % for h = a or h = ¢, and w;, = 0 otherwise); therefore there is an edge in T,
between e,, and e,.. Similarly, there is an edge in I'y;, between ey, and ep;. Therefore
Iy = Iy, x Iy, has a two-dimensional face whose vertices are €4p,5, €4pad: €aber €ABcd-
This is not a positroid polytope because {ab, ad, bc,cd} are not the bases of a rank 2

positroid. |

Proposition 3.12. Let M be a connected matroid. If all of the two-dimensional faces of

I';; are positroid polytopes, then I'y; is a positroid polytope (i.e. M is a positroid).

Proof. Suppose for the sake of contradiction that I'y; is not a positroid polytope.

Since I'y; is not a positroid polytope, then by Proposition 3.5 and Proposition 3.8,
ithas a facet F of the form };_¢ x; = r3,(S), where Sis not a cyclic interval. In other words,
Sand T = [n] \ S fail to form a noncrossing partition. Each facet of I'y,; is the matroid

polytope of a matroid with two connected components, so by the greedy algorithm for
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matroids (see e.g. [9, Proposition 2.12]), F must be the matroid polytope of M|S®M/S. But

now by Lemma 3.11, F has a two-dimensional face which is not a positroid polytope. B
We now complete the proof of Theorem 3.9.

Proof. We start by writing M as a direct sum of connected matroids M =M, & --- & M;.
Let Sy,...,S; be the ground sets of M;,...,M;. By [9, Lemma 7.3], either one of the M;'s
fails to be a positroid, or {S;,...,S;} fails to be a non-crossing partition of [n]. If one of
the M;'s fails to be a positroid, then by Proposition 3.12, Ty, has a two-dimensional face
which fails to be a positroid. But then so does I'y; = I'yy; x - -+ x I'yy. On the other hand,
if {S;,...,S;} fails to be a non-crossing partition of [n], then by Lemma 3.11, I'j; has a

two-dimensional face which fails to be a positroid. This completes the proof. |

Our next goal is to use Proposition 3.4 to determine when the moment map
restricted to a positroid cell is a homeomorphism. To do so, we need to understand how to
compute the number of connected components of a positroid. The following result comes
from [9, Theorem 10.7] and its proof. We say that a permutation = of [n] is stabilized-
interval-free (SIF) if it does not stabilize any proper interval of [n]; that is, 7 (I) # I for all

intervals I C [n].

Proposition 3.13. Let S_ be a positroid cell of Gr,?% and let M, be the corresponding
positroid. Then M_ is connected if and only if # is a SIF permutation of [n]. More
generally, the number of connected components of M, equals the number of connected

components of any reduced plabic graph associated to .

Example 3.14. Consider the permutation = = (5, 3,4,2,6,7,1) (which in cycle notation
is (234)(1567). Then there are two minimal-by-inclusion cyclic intervals such that
7(I) = I, namely [2,4] and [5, 1], and hence the matroid M, has two connected compo-
nents. (Note that [1, 7] is also a cyclic interval with 7 ([1,7]) = [1, 7] but it is not minimal-

by-inclusion.)

Proposition 3.15. Consider a positroid cell S, C Grfg and let M, be the corresponding

positroid. Then the following statements are equivalent:

1. the moment map restricts to an injection on S,

2. the moment map is a homeomorphism from S to I,

3. dimS, =dimTI, = n — ¢, where c is the number of connected components of
the matroid M, .
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Proof. Suppose that (1) holds, i.e. that the moment map is an injection when restricted
toacell S.. Then dimI', = dimS_. By [68, Proposition 7.12], the positroid variety X is a
toric variety if and only if dim ', = dim S,, so this implies that X is a toric variety, and
S, is its nonnegative part. It is well-known that the moment map is a homeomorphism
when restricted to the nonnegative part of a toric variety [29, Section 4.2], so it follows
that 1 is a homeomorphism on S, . Therefore (1) implies (2). But obviously (2) implies (1).

Now suppose that (2) holds. Since I', is the moment map image of S, it follows
that dimT", = dimS_, and by Proposition 3.4, we have that dimI", = n — ¢, where c is
the number of connected components of the matroid M. Therefore (2) implies (3).

Now suppose (3) holds. Then by [68, Proposition 7.12], X, must be a toric
variety, and so the moment map restricts to a homeomorphism from S_ to I',. So (3)

implies (2). |

Proposition 3.16. Consider a positroid cell S, C Gr,f,?l and let M,, be the corresponding
positroid. Then the moment map is a homeomorphism from S, to I', C R" if and only
if any reduced plabic graph associated to x is a forest. The (n — 1)-dimensional cells S,
on which the moment map is a homeomorphism to their image are precisely those cells

whose reduced plabic graphs are trees.

Proof. This follows from Proposition 3.15 and Proposition 3.13, together with the fact
that we can read off the dimension of a positroid cell from any reduced plabic graph G

for it as the number of regions of G minus 1. ]

Remark 3.17. The connected (n—1)-dimensional positroid cells S,, of Grf?l are precisely

those (n — 1)-dimensional cells where 7 is a single cycle of length n.

As an alternative to the moment map from Definition 2.3, we can also consider

the algebraic moment map as in [60], defined as follows.?

Definition 3.18. Let A be a k x n matrix representing a point of Gry ,,. The algebraic

moment map i : Gry , — R" is defined by

_ z]e([',z]) |p;(A)le;

L(A) = .
S SRR ERON]

3 The reference [60] defines this map for toric varieties, but it makes sense for Grip-

20z JoquiadaQ 9| uo Jesn IgINT Ad L0€9¥0.L/82L91/61/€20Z/BI01E/UIWI/WOD ANO"DIWLBPEDE//:SARY WO POPEOJUMOQ



16792 T. kukowski et al.

Lemma 3.19. Proposition 3.15 and Proposition 3.16 hold verbatim after replacing
moment map by algebraic moment map. In particular, if S_ is a positroid cell whose

reduced plabic graph is a tree, then j is an injection on S, and T',, = ji(S,).

Proof. We note that both the moment map and the algebraic moment map are homeo-
morphisms when restricted to the nonnegative part of a toric variety [60, Theorem 8.5],
[29, Section 4.2]. Therefore the proofs of Proposition 3.15 and Proposition 3.16 hold when

we use the algebraic moment map. |
Proposition 3.20. We have /I(Grf?l) = Apn

Proof. It follows immediately from the definition that fi(A) will always be a convex
combination of the points e; for I € (%) so A(Gren) S Ay

In the other direction, choose any positroid tiling {S, } of Ay ,,, e.g. as in Proposi-
tion 10.4. Then by Lemma 3.19 and the definition of positroid tiling, we have ji(S,) =T,
and (JTI', = Ay . It follows that ;l(Gr;?L) = Ag - |

4 Dissecting the hypersimplex and the amplituhedron

In this section we provide two recursive recipes for dissecting the hypersimplex A, .,
and dissecting the amplituhedron A, ;,(Z); the recipe for dissecting the m = 2
amplituhedron was proposed in [44, Section 4.1] and proved in [16]. These recursive
recipes are completely parallel: as we will see in Section 5, the cells of corresponding
dissections are in bijection with each other via the T-duality map on positroid cells.
Since these two recursions are analogous to the BCFW recurrence (which gives tilings of

the m = 4 amplituhedron), we refer to them as BCFW-style recurrences.

4.1 BCFW dissections of the hypersimplex

Definition 4.1. Let G (resp. G') be a reduced plabic graph with n — 1 boundary vertices,
associated to a positroid cell of Grfﬂlynfl (resp. Gr,?%fl), which do not have a loop at
vertex n — 1. We define i, (resp. i;; ) to be the map which takes G (resp. G') and replaces
the (n — 1)st boundary vertex with a trivalent internal white (resp. black) vertex attached

to boundary vertices n — 1 and n, as in the middle (resp. rightmost) graph of Figure 1.

Abusing notation slightly, we also use i ., and i;,. to denote the corresponding

pr
maps on decorated permutations, positroid cells and their images under the moment and

amplituhedron maps.
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= +

O
n n

1 1

Fig.1. A BCFW-style recursion for dissecting the hypersimplex. There is a parallel recursion
obtained from this one by cyclically shifting all boundary vertices of the plabic graphs by i
(modulo n).

Remark4.2. Using Section 12, it is straightforward to verify that both ipre(G) and i;,.(G)
are reduced plabic graphs for cells of Gr]i?lln. Moreover, we can in fact define i, (G) (resp.
i;,c(G)) on any reduced plabic graph for Gr,i?l’n_l (resp. Grf’?l_l) which does not have a
black (resp. white) lollipop at vertex n — 1, and will again have that i,..(G) and i;,;(G')

represent cells of Gr,i?1 n

Using Definition 12.7, it is easy to determine the effect of i_ . and i;, . on decorated

pre inc

permutations. We leave the proof of the following lemma as an exercise.

Lemma4.3. Ifr =(a;,a,,...,a,_;)isadecorated permutation such that (n—1) — a

n—1
is not a black fixed point, then ipre(n) =(ay,ay,...,8y_5,1,ap_1).

If = = (a;,ay,...,a,_;) is a decorated permutation such that (n — 1) — a,_;
is not a white fixed point, then i, .(7) = (a;,a,, ... A1 Ay Ay, T — 1) where
j=n"ln-1).

Remark 4.4. Lemma 4.3 can be equivalently expressed in terms of I-diagrams (see [54]
or [44, Section 2]). If D is the I-diagram associated to & as in the first paragraph of Lemma
4.3, then ipre(D) is obtained from D by adding a new column to the left of D, where the
new column consists of a single + at the bottom. If D is the I-diagram associated to = as
in the second paragraph of Lemma 4.3, then i;,.(D) is obtained from D by adding a new

row at the bottom of D, where the row consists of a single box containing a +.

Theorem 4.5 (BCFW recursion for the hypersimplex). Let Cy,, ,,_, (respectively Cy , ;)

be a collection of positroid polytopes which dissects the hypersimplex A, ,, ; (resp.
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Ag 1) Then

Ck+ 1n = ipre (CkJrl,nf 1 )u iinc (Ck,nf 1 )

dissects Ag g .

We use the term BCFW dissection (respectively, BCFW tiling) to refer to any
dissection or tiling that has the form C; ,, from Theorem 4.5.

Diagrammatically, Theorem 4.5 is depicted in Fig. 1.

Remark 4.6. Because of the cyclic symmetry of the positive Grassmannian and
the hypersimplex (see e.g. Theorem 7.4) there are n — 1 other versions of Theorem
4.5 (and Figure 1) in which all plabic graph labels get shifted by i modulo n (for

l<i<n-1).

Proof. The hypersimplex A, n is cut out by the inequalities 0 < x; < 1, as well as the
equality > ; x; = k+ 1. We will show that Figure 1 represents the partition of Ay, ,, into
two pieces, with the middle graph representing the piece cut out by x,,_; + x,, < 1, and
the rightmost graph representing the piece cut out by x,,_; +x,, > 1.

Toward this end, it follows from Proposition 12.6 that if G is a reduced plabic
graph representing a cell of Grl%—?l,n—l' such that the positroid M, has bases 5, then the
bases of Mipre(G) are precisely Bu{(B\ {n —1}) U{n} | B € B,n — 1 € B}. In particular, each
basis of M; ;) may contain at most one element of {n —1,n}.

Meanwhile, it follows from Proposition 12.6 that if G is a reduced plabic graph
representing a cell of Grl?,?L—l’ such that the positroid M has bases B, then the bases of
M;, () are precisely {BU{n} |Be Bju{BU{n — 1} | Be€ B,n —1 ¢ B}. In particular, each
basis of M;_ ) must contain at least one element of {n — 1, n}.

It is now a straightforward exercise (using e.g. [9, Proposition 5.6]) to determine
thatif C,, ,_, is a collection of cells in Gr,i?lln_l whose images dissect Ay, , , then the
images of i, (Cy 1 ,—1) dissect the subset of Ay, , cut out by the inequality x,,_;+x,, < 1.

Similarly for i;,.(Cy ,_;) and the subset of Ay, ,, cut out by x,, ; +x, > 1. |

nc

Example 4.7. Let n = 5 and k = 2. We will use Theorem 4.5 to obtain a dissection of
Agy1n = Az 5. We start with a dissection of A;, coming from the plabic graph shown
below (corresponding to the decorated permutation (4, 1,2, 3)), and a dissection of Ay

(corresponding to the permutations (2,4, 1, 3) and (3, 1,4, 2)). Applying the theorem leads
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DI EH €«

(2,3.6,1,4,5) (2,4,1,6,3.5) .5,2.3.6,1) (5,4,1,3,6,2 (6,1,4,5,2.3) (5,1,4,6,3,2)

Fig. 2. An example of a dissection of A3 that cannot be obtained from the BCFW-style recursion
in Theorem 4.5.

to the three plabic graphs in the bottom line, which correspond to the permutations
(4I 1’ 2’ 5’ 3)’ (2l 5’ 1’ 3I4)’ (3I 1’ 5’ 2’4)'

=) =@

(4,1,2,3) (2,4,1,3 (3,1,4,2)

N
N

4
(4,1,2,5,3)

Remark 4.8. Itisworth pointing out that our BCFW-style recursion does not provide all
possible dissections of the hypersimplex. This comes from the fact that in each step of the
recursion we divide the hypersimplex into two pieces, while there are some dissections
coming from 3-splits (a k-split is a coarsest subdivision with k maximal faces and a
common face of codimension k — 1). The simplest example of a dissection which cannot

be obtained from the recursion can be found already for A; 5 and is depicted in Figure 2.

4.2 BCFW dissections of the m = 2 amplituhedron

We now introduce some maps on plabic graphs, and recall a result of Bao and He [16].

Definition 4.9. Let G be a reduced plabic graph with n—1 boundary vertices, associated

to a positroid cell of Grk n_1+ We define ¢, to be the map which takes G and adds a black

pre
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Fig.3. A BCFW-style recursion for dissecting the amplituhedron. There is a parallel recursion
obtained from this one by cyclically shifting all boundary vertices of the plabic graphs by i

(modulo n).

lollipop at a new boundary vertex n, as shown in the middle graph of Figure 3. Similarly,

we define ¢,

to be the map on a plabic graph G’ for Gr,f?l 1 Which modifies G/, changing

the graph locally around vertices 1,n,n — 1, as shown at the right of Figure 3.

Remark 4.10. The resulting graph ,..(G) is a reduced plabic graph for a cell of Gr,fl?l.
It is not hard to show that, if G’ does not have white fixed points at vertices 1 orn — 1,
then ¢;,.(G') is a reduced plabic graph for a cell of Gr,f%.

Abusing notation slightly, we also use ¢, and (. to denote the corresponding

pr
maps on positroid cells and positroid polytopes, decorated permutations, etc. Using

Definition 12.7, one can also determine the effect of ¢, and ¢,

tations (and JI-diagrams). We leave the proof of the following lemma as an exercise.

on decorated permu-

Lemma4.11. Letw =(a;,a,,...,a,_;) beadecorated permutation on n—1 letters. Then
tpre(®) = (a@y,ay,...,8,_3,ay,_1,1), where n is a black fixed point.
Let # = (a;,ay,...,a,_;) be a decorated permutation; assume that neither

positions 1 nor n — 1 are white fixed points. Let h = 7~ !(n — 1). Then Linc(m) is the

permutation such that1+>n—1,h+ n,n— a;,andj+— a; forallj#1,h,n.

The construction below is closely related to the recursion from [44, Definition

4.4], which is a sort of m = 2 version of the BCFW recurrence.

Theorem 4.12 (BCFW recursions for the m = 2 amplituhedron). [16, Theorem A] Let

Cp_1 k2 (respectively C,,_; . ,) be a collection of Grasstopes which dissects the m = 2
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amplituhedron A, _, ; ,(Z') (resp. A, _; x_; »(Z")). Then

Cn,k,2 = ‘pre(cn—l,k,z) U Linc(Cn—l,k—l,Z)
dissects A, ;. »(2).

We use the term BCFW dissection (respectively, BCFW tiling) to refer to any
dissection or tiling that has the form C, ,, from Theorem 4.12.

Diagrammatically, Theorem 4.12 reads as follows:

Remark 4.13. Because of the cyclic symmetry of the positive Grassmannian and the
amplituhedron (see e.g. Theorem 7.5) there are n — 1 other versions of Theorem 4.5 (and

Figure 1) in which all plabic graph labels get shifted by i modulo n (for 1 <i <n — 1).

Note that [16] worked in the setting of positroid tilings — i.e. they were only
considering collections of cells that map injectively from the positive Grassmannian to

the amplituhedron — but Theorem 4.12 holds in the more general setting of dissections.

Example 4.14. Let n = 5 and k = 2. We will use Theorem 4.12 to obtain a dissection
of A, x,(2) = Ag,,. We start with a dissection of A, ,, coming from the plabic graph
shown below (corresponding to the decorated permutation (3,4, 1, 2)), and a dissection of
Ay, 12 (corresponding to the permutations (3,2,4,1) and (2, 3,1,4)). Applying the theorem
leads to the three plabic graphs in the bottom line, which correspond to the permutations
3,4,1,2,5),4,2,5,1,3),(4,3,1,5, 2).

(3,4,1,2) (3,2,4,1) (2,3,1,4)

-/45221

)

1 5 1 5
(3,4,1,2,5) (4,2,5,1,3) (4,3,1,5,2)
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5 The T-duality map

In this section we define the T-duality map (previously defined in [44, Definition 4.5]),
from certain positroid cells of Gr,i?l,n to positroid cells of Gr,?%, and we prove many
remarkable properties of it. We will subsequently explain, in Theorem 6.5, how the T-
duality map gives a correspondence between tilings (and more generally dissections) of
the hypersimplex Ay, ,, and the amplituhedron A, ; ,(2).

To get a preview of the phenomenon we will illustrate, compare the decorated
permutations labelling the plabic graphs in Example 4.7 and Example 4.14; can you spot

the correspondence? (This correspondence will be explained in Theorem 6.5.)

5.1 T-duality as a map on permutations

Definition 5.1. We define the T-duality map from loopless decorated permutations on
[n] to coloopless decorated permutations on [n] as follows. Given a loopless decorated
permutation 7 = (a;,a,, ..., a,) (written in list notation) on [n], we define the decorated
permutation 7 by 7 (i) = n(i—1),so that 7 = (a,,a,ay,...,a,_;), where any fixed points
in 7 are declared to be loops. Equivalently, 7 is obtained from = by composing = with

the permutation 7y = (n,1,2,...,n — 1) in the symmetric group, 7 = my o 7.

Recall that an anti-excedance of a decorated permutation is a position i such that

7(i) < i,or 7(i) = i and i is a coloop. Our first result shows that T-duality is a bijection

>0

>0
et ln and coloopless cells of Gy

between loopless cells of Gr

Lemma 5.2. The T-duality map = + 7 is a bijection between the loopless permutations
on [n] with k + 1 anti-excedances, and the coloopless permutations on [n] with k anti-
excedances. Equivalently, the T-duality map is a bijection between loopless positroid

cells of Gr,i?l’n and coloopless positroid cells of Gr,?l?l.

Proof. The second statement follows from the first by Section 12, so it suffices to prove
the first statement. Let * = (a,, ..., a,) be a loopless permutation on [n] with k + 1 anti-
excedances; then # = (a,,a,,...,a,_;). Consider any i such that 1 <i <n — 1. Suppose i
is a position of a anti-excedance, i.e. either a; < i or a; = i. Then the letter a; appears in
the (i + 1)st position in 7, and since ag; < i + 1, we again have an anti-excedance. On the
other hand, if i is not a position of an anti-excedance, i.e. a; > i (recall that 7 is loopless),
then in the (i 4+ 1)st position of 7 we have a; > i + 1. By Definition 5.1 if we have a fixed
point in position i + 1 (i.e. @; = i + 1) this is a loop, and so position i + 1 of # will not be

a anti-excedance. Therefore if I C [n — 1] is the positions of the anti-excedances located
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in the first n — 1 positions of =, then I 4+ 1 is the positions of the anti-excedances located
in positions {2,3,...,n} in 7.

Now consider position n of 7. Because 7 is loopless, n will be the position of
a anti-excedance in 7. And because 7 is defined to be coloopless, 1 will never be the
position of a anti-excedance in 7. Therefore the number of anti-excedances of # will be
precisely one less than the number of anti-excedances of x.

It is easy to reverse this map so it is a bijection. |

Remark 5.3. Since by Lemma 5.2 the map = +— 7 is a bijection, we can also talk about
the inverse map from coloopless permutations on [n] with k anti-excedances to loopless

permutations on [n] with k + 1 anti-excedances. We denote this inverse map by 7 > 7.

Remark 5.4. Our map = +— 7 is in fact a special case of the map p, introduced by

Benedetti-Chavez-Tamayo in [14, Definition 23] (in the case where A = ).

5.2 T-duality as a map on cells

While we have defined the T-duality map as a map = — 7 on the permutations labelling
positroid cells, it can be shown that it is induced from a map on the corresponding cells.
We will follow here the derivation in [1] and define a Q-map which maps elements of the
01 n to the positroid cell S; of Grg5. Note that in much of this
section we allow m to be any positive even integer.

positroid cell S of Gr

Definition 5.5. Let A € Gr%'n. We say that A is generic if p;(A) # 0forall I ([%n])
Form=2,1= R, Ay,...,A,) € R"is genericin R* if A; #0foralli=1,...,n.

Lemma 5.6. Given C = (c;,Cy, ..., Cy) representing an element of Gry, m , where c; are

columns of C, then C contains a generic Z-plane if and only if rank ({c;};.;) = % for all
[n]
e (5).
Proof. If a generic %-plane A € M(Z,n) is contained in C, then there is a matrix h €
M2k + %) such that A = h - C. Then p;(}) = ZJ ([,H%]) pJ(h)CI, with I € ([ZZ]) If
€l m

2
k+ 2

rank ({¢;};c;) = 7 then there exist J; € ( n ) such that C]# 0, therefore it is enough
to choose h such that p; (h) # 0 in order to guarantee » = h - C is generic. Vice-versa
if we assume rank ({c;};c;) < 2 then C}, = 0 for all J € ([k%%]) and this would imply

p;(L) = 0. [ |
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If we specialize to the m = 2 case, we have the following:
>0

k+1,n
vector space V € S, contains a generic vector.

Lemma 5.7. LetS_ be a positroid cell in Gr .Then S, is loopless if and only if every

Lemma 5.8. Let S, be a positroid cell. If every vector space V € S, contains a generic

%—plane then 7 (i) > i+ % (as an affine permutation, see Definition 12.3) for all i.

Proof. Let C = (c;,Cy,...,C,) be a matrix representing V, listed as a sequence of
column vectors. Let us assume that there exists a such that 7(a) < a + 3 — 1. Then
Cq € SPaN{Cqyy,---/ Coprn 1} and, in particular, rla;a + 7t — 11 < 2. The proof follows

immediately from Lemma 5.6. |

Definition 5.9. For a positroid cell S, C Grfom and A € Grm ,, a generic vector of an
+%n 2

element V € S, we define
SW.=(WeS, :rcC W)

Let C,(,}‘) be matrix representatives for elements in Sf,k). It is always possible to

find an invertible row transformation which bring C,(T)‘) into the form

M M2 M,n
oo | M Py 5 5.1)
7, .
c c c
Z+1,1 7+1,2 Z+1,n
Cmik1 Cmyk2 -+ Cmygn

Let us define a linear transformation Q») : R” > R” represented by the n x n matrix Q*

with elements*

m
2
*) ]
Qg = (=D"p myiPpm pomygymy pM), abelnl (5.2)
i—0

Here we used the notation where §,;, = 1 when a = b and §,;, = 0 otherwise.

4 Notice that our definition differs from the one found in [1] for m = 4. They are however related to each
other by a cyclic shift and rescaling each column of Q®).
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It is easy to show that AQ®) = 0 and that Q) has rank n — 2. Let us define
¢ =c.a®, then

0 0 0
A 0 0 0
c» =1 . . . (5.3)
c c ... C
Z+1,1 2+1,2 Z+1,n
T+k,1 T+k, 2 R+k,n
It is easy to check that span{c,, Cap1r-+-1Cp} C Span{caf%,caf%ﬂ, ..., Cp} and moreover

that for consecutive maximal minors we have: Po-m a..a+k-1(C) is proportional to

#G) = 7 — %). (5.4)

The proof of this fact closely follows the one found in [1, page 75].

For m = 2 we get the explicit form of Q™ is:
Q% =68, 1}y —8aprp_1, abelnl (5.5)
Moreover, we have the following relation between consecutive minors

DPgaq1,.., a+k71(&) = (_1)k)ta haik—2Pa-1,a,..atk-1(C) (5.6)
Remark 5.10. In order for the T-duality map to be a well-defined (on affine permuta-
tions), we require that bothi < 7n(i) <n+iandi < 7(i) < n+1i are satisfied. Given that
7)) =n( — %), this implies extra conditions on allowed permutations, i.e. 7 (i) > i+ %
and7(Q) <i+n— % We observe that the operation in (5.4) is then well-defined for the
cells S», by Lemma 5.8. Finally, for m = 2 these conditions correspond to lack of loops

(resp. coloops) for 7 (reps. 7).

Proposition 5.11 (How T-duality affects dimensions of cells). Let S be a loopless cell
of Gre?, ,- Then S is a coloopless cell of Grgy, and dim(S;) — 2k = dim(S,) — (n — 1). In

particular, if dimS, =n — 1, then dim S; = 2k.
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Proof. Let us translate Definition 5.1 into the language of affine permutations. Then
T-duality maps a (k + 1,n)-bounded affine permutation n, into a (k, n)-bounded affine
permutation 7, = n, ot, with ¢t : Z — Z the map i + i — 1. By [54, Proposition
17.10] and Section 12, the codimension of the positroid cell S, equals the length ¢(v,) of
the associated affine permutation v,. Clearly the map ¢ preserves the set of inversions,
and hence the length, of affine bounded permutations, i.e. £(n;) = €(7,). Therefore the

. . >0 >0 .
codimensions of Sm C Grk+1,n and Sfra - Grk,n are equal:

(k+D(n—k—1) —dim(S,,) = k(n — k) — dim(S;,), (5.7)

from which the claim of the proposition follows immediately. ]

Remark 5.12. Alternatively, one may prove the above result by mimicking an argument

of a similar statement given in [1, pages 75-76].

6 T-duality relates tiles, tilings, and dissections

In this section we will compare the positroid tiles and tilings (and more generally,
dissections) of the hypersimplex A, ,, with those of the amplituhedron A, ; ,(2). Again,
we will see that T-duality connects them! Our main result of this section is Theorem 6.5,
which says that T-duality provides a bijection between the BCFW tilings/dissections
of the hypersimplex Ay, ,, and the BCFW tilings/dissections of the amplituhedron
An,k,z (2).

The 2k-dimensional cells of Gr,??l which have full-dimensional image in A,, ; ,(2)
were studied in [46] and called generalized triangles. In this paper we will refer to the

above objects as positroid tiles defined as follows.

Definition 6.1 (Positroid tiles of A, ; ,). Let S, be a 2k-dimensional cell of Gr,f?l such
thatdimZ_ = dim S, , and therestriction of the amplituhedron map Zto S, is an injection.

Then we call Z, a positroid tile of A, ; ,(2).

A conjectural description of positroid tiles was given in [46]:

Definition 6.2. We say that a collection of convex polygons (which have p,,...,p,
vertices) inscribed in a given n-gon is a collection of k non-intersecting triangles

in an n-gon if each pair of such polygons intersects in at most a vertex and if the
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total number of triangles needed to triangulate all polygons in the collection is k, i.e.

01— +...+ @, —2) =k

It was conjectured and experimentally checked in [46] that positroid tiles in
Ay k2(Z2) are in bijection with collections of ‘k non-intersecting triangles in a n-gon'.
Moreover, one can read off the cell S of Gr,i?l corresponding to a positroid tile of A, ; ,(Z)
using the combinatorics of the collection of k non-intersecting triangles in an n-gon,
see [46, Section 2.4]. The basic idea is to associate a row vector to each of the non-
intersecting triangles, with generic entries at the positions of the triangle vertices (and
zeros everywhere else). This way one constructs a k x n matrix whose matroid is the
matroid for S_.

Borrowing the terminology of Definition 6.1, we make the following definition.

Definition 6.3 (Positroid tiles of Ay, ,,). Let S, be an (n—1)-dimensional cell of Gr]i?l n
such that the moment map u is an injection on S . Then we say the image I', := u(S,) in

A1 n 18 @ positroid tile in Ay, g .

We have already studied the positroid tiles in A, , in Proposition 3.16: they
come from (n — 1)-dimensional positroid cells whose matroid is connected, or equiva-
lently, they come from the positroid cells whose reduced plabic graphs are trees. And
since these are positroid cells in Grf_?lln, each such plabic graph, when drawn as a
trivalent graph, is a tree with n leaves with precisely k internal black vertices. By simply

taking the planar dual of these tree, we get the following:

Proposition 6.4. There is a bijective map between positroid tiles in Ay, ,, and collec-

tions of k non-intersecting triangles in an n-gon.

Proof. Consider a collection of non-intersecting polygons inside an n-gon P =
(P,...,P,) and its complement P = (P,,...P;). Let us choose a triangulation of all
polygons into triangles P — 7 = (Ty,..., Ty) and P — T = (T, ..., T,,_;_»)- Associate a
black vertex to the middle of each triangle T and a white vertex with to middle of each
triangle T. Finally, connect each pair of vertices corresponding to triangles sharing an
edge and draw an edge through each boundary of the n-gon. This way we get a tree graph
with exactly k black and n — k — 2 white vertices. Hence it is a plabic graph for the cell

S, C GI%—EI,n corresponding to a plabic tile of Ay, ,,. n

In the following theorem we show that T-duality relates BCFW tilings and

dissections of the hypersimplex and amplituhedron.
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Fig.4. The map in Proposition 6.4 for » = {4,7,1,6,5,3,2} € Gr?;: (a) positroid tile label,
(b) A triangulation of collections P and P, (c) Assigning vertices, (d) Plabic graph of # =
{7,1,6,5,3,2,4) € Gry 5

Theorem 6.5 (BCFW tilings of Ay, , and A, ,(Z2) are T-dual). The T-duality map
provides a bijection between the BCFW tilings of the hypersimplex A, ,, and the BCFW
tilings of the amplituhedron A, , ,(Z). That is, the collection {I',} of positroid polytopes
constructed in Theorem 4.12 is a positroid tiling of Ay, , if and only if the T-dual
collection {Z;} of Grasstopes is a positroid tiling of A, ; ,(Z). The same statement holds

if we replace the word “tiling” with “dissection”.

Proof. We prove this by induction on k + n, using Theorem 4.5 and Theorem 4.12. It

suffices to show:

o if{T,},cc dissects Ap,; ,_; and {Z.} _s dissects A,,_; j ,(Z') then forany r €
C, ipre(n) = Lpre(fr).
o if ([}, cc dissects Ay, ; and {Z}} _; dissects A,,_; x_;,(Z") then forany r €

C, i () = Ly (R).

Let 7 = (a;,...,a,_;) be a decorated permutation. We first verify the first
statement. Then iy (7) = (a;,ay, ... ,an_z,n,an_l),soi@) =(ay_1,81,Q9,...,Ay_o, 1),
where n is a black fixed point. Meanwhile, 7 = (a,_;,a1,85,...,8y_3), SO t5r(T) =
(a,_1,a,,a9,...,a,_5,n), Wwhere n is a black fixed point.

We now verify the second statement. Let j = 7~ !(n — 1). Then we have that
Linc(m) = (al,az,...,aj_l,n,aj+1,...,an_l,n — 1), and i;(?) = (n— 1,a1,a2,...,a]-_1,
n,aj+1,...,an_1). Meanwhile 7 = (a,_y,a1,a5,...,a,_5). Then it is straightforward to
verify that ¢, () is exactly the permutation i;c—(?) =Mm-1ay,ay....8;_1, Ny,

a,_1), as desired. |
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We now see that T-duality relates positroid tiles of the hypersimplex and the

amplituhedron.

Proposition 6.6. Suppose the positroid polytope I', is a positroid tile of the hyper-
simplex Ay, ,. Then the T-dual Grasstope Z; is a positroid tile of the amplituhedron

Apr2(Z) forall Z e Mat?z,?wrz-

Proof. By Proposition 3.16, the fact that y is injective implies that a (any) reduced plabic
graph G representing S, must be a (planar) tree. But then by Theorem 4.5 (see Figure 1),
G has a black or white vertex which is incident to two adjacent boundary vertices i and
i + 1 (modulo n), and hence appears in some tiling of the hypersimplex (and specifically
on the right-hand side of Figure 1).

Applying Theorem 6.5, we see that 7 appears in some tiling of the amplituhedron
Ap k2(Z). It follows that Z is injective on S;. |

By Proposition 6.6 and Proposition 6.4, collections of k non-intersecting trian-
gles in an n-gon label both positroid tiles of Ay, , and, via T-duality, positroid tiles
of A, . »(Z). We conjecture that this labelling is compatible with the way [46] associates
collections of k non-intersecting triangles in an n-gon with positroid tiles of A, ; ,(2).

Using Proposition 6.6, Proposition 3.13 and Proposition 3.15, we obtain the fol-

lowing.

Corollary 6.7. The Z-map is an injection on all 2k-dimensional cells of the form S, c

Gr,f?l, where 7 is a SIF permutation and dim S, =n — 1.

We know from Proposition 3.15 that the moment map is an injection on the cell S,
of Grf% precisely when dim S,, = n — ¢, where c is the number of connected components
of the positroid of 7. We have experimentally checked the following statement for these
cells.

>0
rk+1,n

components (for ¢ a positive integer). Then S; is a coloopless (2k + 1 — ¢)-dimensional

Conjecture 6.8. LetS, bealoopless (n—c)-dimensional cell of G with ¢ connected

cell of Gr,f?l on which Z is injective.

Note that the statement that S; is coloopless of dimension (2k + 1 — c¢) follows
from Lemma 5.2 and Proposition 5.11. Moreover the ¢ = 1 case of the conjecture is

Proposition 6.6.
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While Theorem 6.5 shows that T-duality relates the large class of BCFW
tilings/dissections of Aj,,, to the corresponding large class of BCFW tilings/dis-
sections of A, ;,(Z), not all tilings/dissections arise from a BCFW-style recursion.

Nevertheless, we conjecture the following.

Conjecture 6.9 (Tilings and dissections of Ay, ,, and A, ; ,(Z) are T-dual). A collection
of positroid polytopes {I',} is a tiling (respectively, dissection) of Ay, ,, if and only if
for all Z € Mat;(,)c+2 the collection of T-dual Grasstopes {Z.} is a tiling (respectively,
dissection) of A, ; ,(2).

This conjecture is supported by Theorem 6.5, Proposition 10.4 and results of
Section 7 (which relates parity duality and T-duality), and will be explored in a sub-

sequent work®. We have also checked the conjecture using Mathematica, see Section 10.

7 T-duality, cyclic symmetry and parity duality

In this section we discuss the relation of T-duality to parity duality, which relates
). The
definition of parity duality was originally inspired by the physical operation of parity

dissections of the amplituhedron A, ; ,,(Z) with dissections of A, , ., (&
conjugation in quantum field theory — more specifically, in the context of scattering
amplitudes in N' = 4 Super-Yang-Mills, where amplitudes can be computed from the
geometry of A, ; 4(Z) [6]. Furthermore, the conjectural formula of Karp, Williams, and
Zhang [44] for the number of cells in each tiling of the amplituhedron is invariant under
the operation of swapping the parameters k and n — m — k and hence is consistent
with parity duality: this motivated further works, see [28, Section 2.4] and [33]. In
particular, [33] gave an explicit bijection between dissections of A, ; ,,,(Z) and dissections
of A, v m_km(Z), see Theorem 7.7.

In Theorem 7.3, we will explain how parity duality for m = 2 amplituhedra is
naturally induced by a composition of the usual duality for Grassmannians (Gry , =
Grn—k,n

of Gr,f?l). The usual Grassmannian duality gives rise to a bijection between dissections

) and the T-duality map (between loopless cells of Gr,aol,n and coloopless cells

of the hypersimplex A, ,, and dissections of the hypersimplex A, ; ;. By composing
this Grassmannian duality with the T-duality map (on both sides), we obtain the parity

duality between dissections of A, ;. ,(2) and A,, ,, 5 ,(Z)!

5 Since our paper appeared on arXiv, Conjecture 6.9 has been proved for tilings in [55].
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Recall that our convention on dissections is that the images of all positroid cells
are of full dimension n — 1. Therefore all positroids involved in a dissection must be

connected, and the corresponding decorated permutations will be fixed-point-free.

Theorem 7.1 (Grassmannian duality for dissections of the hypersimplex). Let {I',} be
a collection of positroid polytopes which dissects the hypersimplex Ay, ,. Then the
collection of positroid polytopes {I', -1} dissects the hypersimplex A, _; ;.

Proof. If Gisa plabic graph representing the positroid cell S, and if we swap the colors
of the black and white vertices of G, we obtain a graph G’ representing the positroid S, .
It is not hard to see from [9] that G’ and = ~! represent the dual positroid to G and . But
now the matroid polytopes I', and I' -1 are isomorphic via the map dual : R® — R"
sending (x,...,x,) — (1 —xy,...,1 — x,). This maps relates the two dissections in the

statement of the theorem. [ |

By composing the inverse map on decorated permutations 7 + x~! (which
represents the Grassmannian duality of Theorem 7.1) with T-duality, we obtain the

following map.

Definition 7.2. We define 17,:; to be the map between coloopless permutations on [n]
with k anti-excedances and coloopless permutations on [n] with n—k—2 anti-excedances
such that [7,;17% =71 Equivalently, we have (f]_,;ln)(i) = 7711 — 1) — 1, where values
of the permutation are considered modulo n, and any fixed points which are created are

designated to be loops.

Theorem 7.3 (Parity duality from T-duality and Grassmannian duality). Let {Z_} be a
collection of Grasstopes which dissects the amplituhedron A,, ; ,(Z). Then the collection

of Grasstopes {Zg— .} dissects the amplituhedron A, ,_;_,,(Z).

We will prove Theorem 7.3 by using the cyclic symmetry of the positive Grass-
mannian and the amplituhedron, and showing (see Lemma 7.8) that up to a cyclic shift,
our map [’I;:n agrees with the parity duality map of [33].

The totally nonnegative Grassmannian exhibits a beautiful cyclic symmetry [54].
Let us represent an element of Gr,fﬁ’l by a k x n matrix, encoded by the sequence of
n columns (v,...,v,). We define the (left) cyclic shift map o to be the map which
sends (vy,...,V,) to the point (v,,...,v,, (—l)k‘lvl), which one can easily verify lies in

Grf?q. Since the cyclic shift maps positroid cells to positroid cells, for = a decorated
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permutation, we define om to be the decorated permutation such that S, = o(S,).
It is easy to see that ox(i) = n(i + 1) — 1. (Note that under the cyclic shift, a fixed
point of 7 at position i + 1 gets sent to a fixed point of o7 at position i; we color fixed
points accordingly.) Meanwhile the inverse operation, the right cyclic shift o ! satisfies
(c7'm)(@) = (i — 1) + 1. We use ¢! (respectively, o ~?) to denote the repeated application
of o (resp. o ~!) t times, so that (o'7)(i) :=7w(i+t) — t and (o 'n)(@) :=7(i —t) + L.

The next result follows easily from the definitions.

Theorem 7.4 (Cyclic symmetry for dissections of the hypersimplex). Let {I',} be a
collection of positroid polytopes which dissects the hypersimplex Ay, ,. Then the

collection of positroid polytopes {I',,} dissects Ay .

Proof. Let op : R®™ — R” be defined by (x;,...,x,) — (x5,...,%,,Xx;). Clearly o is an
isomorphism mapping the hypersimplex A, , back to itself. Moreover, applying the
cyclic shift o to a positroid has the effect of simply shifting all its bases, so the matroid

polytope of ox satisfies ', = oR(I",;). The result now follows. |

The above cyclic symmetry for dissections of the hypersimplex also has an

analogue for the amplituhedron.

Theorem 7.5 (Cyclic symmetry for dissections of the amplituhedron). [16, Corollary 3.2]
Let {I';;} be a collection of Grasstopes which dissects the amplituhedron A, ; .. (Z), with

m even. Then the collection of Grasstopes {Z, .} also dissects A,, ., (2).

In order to make contact with [33], we introduce a map Uy, on (coloopless)

decorated permutations as follows.

Definition 7.6. We define Uy ,, to be the map from coloopless permutations on [n] with
k anti-excedances to coloopless permutations on [n] with n — k — 2 anti-excedances such
that (U ,, 7)) = 7Y+ k) + (n — k — 2), where values of the permutation are considered

modulo n, and any fixed points which are created are designated to be loops.

It is not hard to see that this map is equivalent to the parity duality from [33] for

m = 2. In particular we have the following theorem:

Theorem 7.7. [33, Theorem 7.2] Let {Z,} be a collection of Grasstopes which dissects
the amplituhedron A, ; ,(Z). Then the collection of Grasstopes {Z; .} dissects the
amplituhedron A, ,, 5 ,(Z).
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Lemma 7.8. For fixed n and k, the maps U’;n and Uy, are related by the cyclic
shift map

Upp=0"* Vot . (7.1)

Proof. Since (Uy ,m)(i) = 7~ '(i + k) + (n — k — 2), we have that (o~ k+D o Up (@) =
7N @ +k) = (k+1)+(n—k—2)+(k+1) =771~ 1) +n -1, which is exactly Uy, (mod
n). |

We now prove Theorem 7.3.

Proof. This result follows immediately from Theorem 7.5, Theorem 7.7, and
Lemma 7.8. | |

Remark 7.9. From Theorem 7.4 and Theorem 7.5 it is clear that if we redefine the T-
duality map in Definition 5.1 by composing it with any cyclic shift ¢ (for a an integer),
the main properties of the map will be preserved. In particular, any statement about
dissections of the hypersimplex versus the corresponding ones of the amplituhedron

will continue to hold, along with the parity duality.

Remark 7.10. Parity duality has a nice graphical interpretation when we represent
positroid tiles of A, ; ,(Z) as collection of k non-intersecting triangles in an n-gon.
The Grassmannian duality of Gr,i?lln amounts to swapping black and white vertices
in the plabic graphs, and when we compose it with the T-duality map, by Proposition
6.4, results in taking the complementary polygons inside the n-gon. We end up with a

collection of n — k — 2 non-intersecting triangles in the n-gon.

8 Good and bad dissections of the hypersimplex and the amplituhedron

Among all possible positroid dissections, there are some with particularly nice features,
which we will call “good”, as well as others with rather unpleasant properties. We show

below examples of both a good and a bad dissection.

Example 8.1. Let us study the following tiling of Ag , ,(2):

C, = {Zn(n,Zn(z),Zn(s),Zn@),ZH(S),Z,T(E‘:)}
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with

7 =(1,25634, 7%=(136524, 7%=(146253),

% =(2,6,3,51,4), ®=(,641,53), 7©=@3,61,45,2).

All elements of C; are 4-dimensional positroid tiles. The tiling C; is a refinement of the

following dissection
Co ={Z,0,Zy1, Z 8, 21}
with
77 =(1,4,6,523), 1®=(264,51,53).

The dissection C, has the property that if a pair of tiles intersect along a 3-dimensional

surface then this surface is an image of another positroid cell in Grzzg:

Zr NZr) = 21,265,340
Zyon NZy® = 2164523

Zy®) NZy®) =Z(261,45,3)

and all remaining pairs of tiles intersect along lower dimensional surfaces. We consider
the dissection C, “good” because all its elements have compatible codimension one

boundaries. However, the dissection C; does not have this property. Let us observe that

Z,oUZ 3 =2,

b/

Z,ayUZ, 5 =2Z,@

We expect that, after we subdivide Z, ¢ and Z, @), the boundary Z; g 4523, Which they
share will also get subdivided. This however happens in two different ways and we do
not get compatible codimension one faces for the dissection C,. It is a similar picture to
the one we get when we consider polyhedral subdivisions of a double square pyramid: it
is possible to subdivide it into two pieces along its equator, and then further subdivide

each pyramid into two simplices. However, in order to get a polyhedral triangulation
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of the double square pyramid, we need to do it in a compatible way, along the same

diagonal of the equatorial square.

Therefore, we prefer to work with dissections where the boundaries of the strata

interact nicely. Toward this end, we introduce the following notion of good dissection.

Definition 8.2. LetC ={I,u),...,",©} be a dissection of Ay, ,. We say that C is a good
dissection of Ay, , if the following condition is satisfied: for i # j, if ;o N ', has

codimension one, then I' ¢ N T equals I, where I' . is a facet of both 'y and I' (.

Note that the above condition is equivalent to requiring that C is a polyhedral
subdivision of Ay, ,. To make the analogous notion for amplituhedron, we need to define

facets.

Definition 8.3. Let Z, C A, ;,,(2) be a Grasstope. We say that Z , is a facet of Z_ if it
is maximal by inclusion among the Grasstopes satisfying the following properties: the
cell S, is contained in S_; Z, is contained in the boundary of Z_; Z_, has codimension 1

inZz_.

Definition 8.4. Let C = {Z, w),...,Z,w} be a collection of Grasstopes of An,k,Z(Z)' We
say that C is a good dissection of A if the following condition is satisfied: for i # j, if
Z.&» NZ, has codimension one, then Z_ 4 N Z_; equals Z, where Z is a facet of both

T
Z. and Z_ G-

In the following, we will conjecture that good dissections of the hypersimplex
are in one-to-one correspondence with good dissections of the amplituhedron. Toward
this goal, we start by providing a characterization of good intersections of positroid

polytopes.

Proposition 8.5. Let I' 1) and I', ¢ be two (n — 1)-dimensional positroid polytopes
whose intersection I',q) N I',» is a polytope of dimension n — 2. Then I'’ o) N I, is

a positroid polytope of the form '), where 7® is a loopless permutation.

Proof. By Theorem 3.7,T_a) NI (2 is a positroid polytope and hence has the form I' @),
for some decorated permutation 7. (Using Proposition 3.4, the fact that dim(I", ) =
n — 2 implies that the positroid associated to n® has precisely two connected

components.)
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16812 T. kukowski et al.

Now we claim that the positroid associated to 7® is loopless. In general
there is an easy geometric way of recognizing when a matroid M is loopless
from the polytope I'y;: M is loopless if and only if I';; is not contained in any of the
n facets of the hypersimplex of the type x; = 0 for 1 < i < n. Since I', 3 arises as
the codimension 1 intersection of two full-dimensional matroid polytopes contained in
Agy1,n it necessarily meets the interior of the hypersimplex and hence the matroid must

be loopless. |

Remark 8.6. Recall that the T-duality map is well-defined on positroid cells whose
matroid is connected, and more generally, loopless. Proposition 8.5 implies that if we
consider two cells S ) and S, of Gr,i?l’n whose matroid is connected and whose
moment map images (necessarily top-dimensional) intersect in a common facet, then
that facet is the moment map image of a loopless cell S_@). Therefore we can apply the

T-duality map to all three cells S, ), S,»,and S_@).

Conjecture 8.7. Let S_a) and S, be two positroid cells in Gr,f?l corresponding to

coloopless permutations 7" and #®. Let dimZ? ,, = dimZ? ,, = 2k with Z, o) N Z, 2 =
Z,s, where S, C Gi° is such that dimZ,; = 2k — 1. Then #® is a coloopless
permutation.

Remark 8.8. Conjecture 8.7 guarantees that if we consider two positroid cells with top-
dimensional images in the amplituhedron An,k,Z (Z), which have a facet in common, then
the positroid cell corresponding to this facet is coloopless and therefore we can apply

the T-duality map to it.

Finally we arrive at a conjecture connecting good dissections of hypersimplex

and amplituhedron, which we confirmed experimentally.

Conjecture 8.9. The collection of positroid polytopes {I',} is a good tiling (respec-

>0
n,k+2'

tion of T-dual Grasstopes {Z;} is a good tiling (respectively, good dissection) of

Ay k,2(2).

tively, good dissection) of A, , if and only if, for all Z € Mat the collec-

9 The positive tropical Grassmannian and positroid subdivisions

The goal of this section is to use the positive tropical Grassmannian to understand

the regular positroid subdivisions of the hypersimplex. In Section 10, we will apply the
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16813

T-duality map to these regular positroid subdivisions of the hypersimplex, to obtain
subdivisions of the amplituhedron which have very nice properties.

The tropical Grassmannian — or rather, an outer approximation of it called
the Dressian — controls the regular matroidal subdivisions of the hypersimplex [39],
[61, Proposition 2.2]. There is a positive subset of the tropical Grassmannian, called
the positive tropical Grassmannian, which was introduced by Speyer and the third
author in [65]. The positive tropical Grassmannian equals the positive Dressian, and as
we will show in Proposition 9.12, it controls the regular positroid subdivisions of the

hypersimplex.

Remark 9.1. We've learned since circulating the first draft of this paper that some of
our results in this section regarding positroid subdivisions of the hypersimplex and
the positive tropical Grassmannian, though not previously in the literature, were known
or anticipated by various other experts including David Speyer, Nima Arkani-Hamed,
Thomas Lam, Marcus Spradlin, Nick Early, Felipe Rincon, Jorge Olarte. There is some

related work in [25] and the upcoming [5].

9.1 The tropical Grassmannian, the Dressian, and their positive analogues

Definition 9.2. Given e = (ey,...,ey) € Zgo, we let x° denote x7'...x5'. Let E C Z’;’O.
For f = Y.z f.X® a nonzero polynomial, we denote by Trop(f) C RY the set of all points
(X;,...,Xy) such that, if we form the collection of numbers >} , e,X; for e ranging over
E, then the minimum of this collection is not unique. We say that Trop(f) is the tropical

hypersurface associated to f.

In our examples, we always consider polynomials f with real coefficients. We

also have a positive version of Definition 9.2.

Definition 9.3. LetE = EYUE™ C Zgo, and let f be a nonzero polynomial with real
coefficients which we write as f = >, g+ foX® — > .- f.X¢ where all of the coefficients
f, are nonnegative real numbers. We denote by Trop™(f) C RY the set of all points
(X;,...,Xy) such that, if we form the collection of numbers 3 | e;X; for e ranging over E,
then the minimum of this collection is not unique and furthermore is achieved for some

e € ET and some e € E~. We say that Trop™ (f) is the positive part of Trop(f).

The Grassmannian Gry, is a projective variety which can be embedded in

projective space IE”([Z])_I, and is cut out by the Pliicker ideal, that is, the ideal of relations
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16814 T. kukowski et al.

satisfied by the Pliicker coordinates of a generic k x n matrix. These relations include the

three-term Pliicker relations defined below.

Definition9.4. Letl <a <b < c¢ < d < nand chooseasubsetS e (k[flz) which is disjoint

from {a, b, ¢, d}. Then pg,.Dspq = PsapPscd + PsadPspc 18 @ three-term Pliicker relations for

the Grassmannian Gry ,,. Here Sac denotes SU {q, c}, etc.

Definition 9.5. Given S, a, b, ¢, d as in Definition 9.4, we say that the tropical three-term

Pliicker relation holds if

* Pgye + Pgpq = Pggp + Pseq < Pggq + Pgp OT
* Pgye + Pgpq = Psaq + Pspe < Pggp + Pgeq OT

* Pgup + Psoq = Psgq + Pope < Psge + Popg-

And we say that the positive tropical three-term Pliicker relation holds if either

of the first two conditions above holds.

Definition 9.6. The tropical Grassmannian Trop Gry , C R(¥) is the intersection of the
tropical hypersurfaces Trop(f), where f ranges over all elements of the Pliicker ideal. The
Dressian Dry ,, C R(%) is the intersection of the tropical hypersurfaces Trop(f), where f
ranges over all three-term Pliicker relations.

Similarly, the positive tropical Grassmannian Trop* Gry, C R is the inter-
section of the positive tropical hypersurfaces Trop™ (f), where f ranges over all elements
of the Pliicker ideal. The positive Dressian Dr‘,;n C R([Z]) is the intersection of the positive

tropical hypersurfaces Trop™ (f), where f ranges over all three-term Pliicker relations.

Note that the Dressian Dry , (respectively, the positive Dressian Dr]‘;n) is the
subset of R(¥) where the tropical (respectively, positive tropical) three-term Pliicker
relations hold.

In general, the Dressian Dry ,, is much larger than the tropical Grassmannian
Trop Gry, , — for example, the dimension of the Dressian Dr; ,, grows quadratically is n,
while the dimension of the tropical Grassmannian Trop Gr; , is linear in n [35]. However,

the situation for their positive parts is different.

Theorem 9.7. [66]. The positive tropical Grassmannian Trop™ Gry , equals the positive

: +
Dressian Drk’n.
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Definition 9.8. We say that a point {PI}IE([Z]) € R([Z]) is a (finite) tropical Pliicker
vector if it lies in the Dressian Dry . i.e. for every three-term Pliicker relation, it lies
in the associated tropical hypersurface. And we say that {PI}IG([Z]) is a positive tropical
Pliicker vector, if it lies in the positive Dressian Dr;;n (equivalently, the positive tropical
Grassmannian Trop™ Gry ), i.e. for every three-term Pliicker relation, it lies in the

positive part of the associated tropical hypersurface.

Example 9.9. For Gr, 4, there is only one Pliicker relation, py3py4 = P12P34 +P14P23- The
. N .

Dressian Dr,, C R(2) is defined to be the set of points (Py,, Py3, Py4, Py3, Pyy, Pyy) € R

such that

* Pi3+ Py =P+ Py <Py+Pyor
* Pj3+Pyy =P+ Py3 <P+ Pyor
* Py +P3y =Py +Py3 =< Pi3+ Py

@y . .
And Drz4 = Trop*Gr,, C R(2) is defined to be the set of points
(P12, P13, P14, Py3, Poy, Pyy) € RO such that

* Pi3+ Py =P+ Py <P+ Pyor
® Pi3+ Py =P+ Py3 =P+ Py

9.2 The positive tropical Grassmannian and positroid subdivisions

Recall that A ,, denotes the (k, n)-hypersimplex, defined as the convex hull of the points
e; where I runs over (7). Consider a real-valued height function {I} + P; on the vertices
of Ay ,,. We define a polyhedral subdivision Dp of Ay ,, as follows: consider the points
(e7,Pp) € Ag,, xR and take their convex hull. Take the lower faces (those whose outwards
normal vector have last component negative) and project them back down to Ay ,; this
gives us the subdivision Dp. We will omit the subscript P when it is clear from context.

A subdivision obtained in this manner is called regular.

Remark 9.10. A lower face F of the regular subdivision defined above is determined
by some vector A = (A;,...,A,, —1) whose dot product with the vertices of the face F is
maximized. So if F is the matroid polytope of a matroid M with bases 55, this is equivalent
to saying that A; +---+2X; —Pp=2x; +---+x; —P; >4y +---+24 — Py for any two
basesI,J € Band H ¢ B.

Given a subpolytope I' of A ,,, we say that I' is matroidal if the vertices of T,

considered as elements of ([Z]), are the bases of a matroid M, i.e. T = I'y,.
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16816 T. Lukowski et al.

The following result is originally due to Kapranov [39]; it was also proved in [61,

Proposition 2.2].

Theorem 9.11. The following are equivalent.

¢ The collection {Pr};c () is a tropical Pliicker vector.
k
* The one-skeleta of Dp and Ay ,, are the same.

e Every face of D, is matroidal.

Given a subpolytope I' of Ay, we say that I' is positroid if the vertices of T,
considered as elements of ([',;]), are the bases of a positroid M, i.e. ' = I'y;. We now give

a positroid version of Proposition 9.11.

Theorem 9.12. The following are equivalent.

* The collection {P/},_ () is a positive tropical Pliicker vector.
k

e Every face of Dj is positroid.

Proof. Suppose that the collection {PI}Ie([Z]) are positive tropical Plicker coordinates.
Then in particular they are tropical Pliicker coordinates, and so by Proposition 9.11,
every face of Dy is matroidal.

Suppose that one of those faces I'y; fails to be positroid. Then by Theorem 3.9,
I';; (and hence Dp) has a two-dimensional face with vertices eg,;, e5,4/ €sper €504, fOr some
1<a<b<c<d=<nandS of size k — 2 disjoint from {a, b, ¢, d}. By Remark 9.10, this
means that there is a vector A = (A4,...,4,, —1) whose dot product is maximized at the
face F. In particular, if we compare the value of the dot product at vertices of F versus
€sac A0d €gpg, We get Ay + Ap — Psgp, = Ao +Ag = Psog = g +4g = Psgg = A + 4c — Popc 18
greater than either A, + A, — Pg,, or Aj + A4 — Pg;4. But then

)‘a+)‘b _PSab+)‘c+)‘d_PScd :)‘a+)‘d_PSad+}‘b+)‘c_PSbc > )‘a+)“c - PSac + )‘b + )‘d - Pde'
which implies that
Psop + Pscq = Psaq + Pspe < Psge + Pspas

which contradicts the fact that {P;} is a collection of positive tropical Pliicker

coordinates.
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Suppose that every face of D, is positroid. Then every face is in particular
matroidal, and so by Proposition 9.11, the collection {PI}IG([Z]) are tropical Pliicker
coordinates. Suppose that they fail to be positive tropical Pliicker coordinates. Then there
is some S € () and a < b < ¢ < d disjoint from S such that Pgy, + Pgoy = Pgyq + Pepe <
Pg,. + Pgpq. We will obtain a contradiction by showing that D, has a two-dimensional
(non-positroid) face with vertices eg,;, €5,4s €spcr €scqr for some 1l <a <b<c<d <n
and S of size k — 2 disjoint from {a, b, c, d}.

To show that these vertices form a face, choose some large number N which
is greater than the absolute value of any of the tropical Pliicker coordinates, i.e. N >

max{|PI|}Ie([m). We define a vector (A,...,1,) € R" by setting
k

%(PSab + Pgge + Psqq)  fori=a
3 (Psap + Pspc + Pspg)  for i=b

%(PSac + Pgpe + Pseq)  fori=c

)Li =
3 (Psaa + Pspa + Pseg)  fori=d
%N foriesS
—%N fori¢ SU{a,b,c,d}.
We now compute the lower face of D, determined by vector A := (A,...,A,, —1), using

Remark 9.10. Clearly any point (e;, P;) of Ay, x R maximizing the dot product with
) must have e; € {eg,p, €54c:€50d: €sher Eshdr Esed)- The relation Pgyy + Pgoy = Pgyg +

Pgp. < Pgue + Pgpq implies that the lower face of D, determined by A has vertices

€sabr €sad’ €sbcr €scd- u

It follows from Proposition 9.12 that the regular subdivisions of A, ,, consist-
ing of positroid polytopes are precisely those of the form D;, where P = {P;} is a positive

tropical Pliicker vector. This motivates the following definition.

Definition 9.13. We say that a positroid dissection of A, , is a regular positroid
... o s lnly -, cps . .
subdivision if it has the form Dp, where P = {P;} € R(%) is a positive tropical Pliicker

vector.

Remark 9.14. Every regular subdivision of a polytope is a polytopal subdivision, and

so in particular it is a good dissection (see Definition 8.2).
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9.3 Fan structures on the Dressian and positive Dressian

As described in [35], there are two natural fan structures on the (positive) Dressian: the
Pliicker fan, and the secondary fan.

We say that two elements of the Dressian, i.e. two tropical Pliicker vectors
{PI}IG([Z]) and {P}}IE([Z]) € R([Zl), lie in the same cone of the Plucker fan if for each
S.a,b,c,d as in Definition 9.5, the same inequality holds for both {Pg,, P, 4, Pseps Pscd:
Pg,q:Pspc} and {Péac'P/sbd'P.;ab'P.;cd'P.gad'P.{sbc}' In particular, the maximal cones in the
Pliicker fan structure are the cones where the inequalities from Definition 9.5 are all
strict.

On the other hand, using Proposition 9.11 and Proposition 9.12, we say that two
elements of the Dressian, i.e. two tropical Pliicker vectors {Pr};c (o and {P}}Ie () c R([Zl),
lie in the same cone of the secondary fan if the matroidal subdivisions Dp and Dp
coincide. In particular, the maximal cones in the secondary fan structure are the cones
corresponding to the unrefinable positroid subdivisions.

In [35] it was shown that for the Dressian Dry,, the Plicker fan structure
and the secondary fan structure coincide. And in [52, Theorem 14] it was shown that
the fan structures coincide for general Dressians Dry,. We can now just refer to
the fan structure on Dr,jln = Trop* Gry, without specifying either “Pliicker fan” or
“secondary fan.”

We have the following result.

Corollary 9.15. A collection C = {S,,} of positroid cells of Grf’?l gives a regular positroid
tiling of A; ,, (see Definition 2.5) if and only if this tiling has the form Dp, for P = {PI}Ie(['”)
! k

a positive tropical Pliicker vector from a maximal cone of Trop™ GTy -

Proof. Suppose that a collection {S_} of positroid cells of Gr,??z is a regular positroid
tiling; in other words, the images of the cells {S,} under the moment map are the top-
dimensional positroid polytopes in the subdivision Dy of A, and the moment map is
an injection on each S_. Therefore by Proposition 3.15 and Proposition 3.16, dim S, =
n — 1, each positroid M, is connected, and the reduced plabic graph associated to = is a
(planar) tree.

We claim that the collection {S,} gives an unrefineable possible positroid sub-
division of the hypersimplex. That is, there is no nontrival way to subdivide one of
the positroid polytopes I', into two full dimensional positroid polytopes. If we can

subdivide ', as above, and there is another full-dimensional positroid polytope I,
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strictly contained in I',, then the bases of M,,, are a subset of the bases of I, and hence
the cell S,/ lies in the closure of S,. But then a reduced plabic graph G’ for S, can be
obtained by deleting some edges from a reduced plabic graph G for S_; this means that
G’ has fewer faces than G and hence has the corresponding cell has smaller dimension,
which is a contradiction, so the claim is true.

But now the fact that {S} gives an unrefineable positroid subdivision means that
it came from a maximal cone of Trop™ Gry, ,.

Conversely, consider a regular positroid subdivision D, coming from a maximal
cone of Trop* Gry, ,. Then the subdivision Dp (which we identify with its top-dimensional
pieces {S_}) is an unrefineable positroid subdivision. In other words, none of the positroid
polytopes I',. can be subdivided into two full-dimensional positroid polytopes, which in
turn means that the reduced plabic graph corresponding to 7 must be a tree. This implies
that the moment map is an injection on each S, and hence (S, } gives a regular positroid
tiling of Ay . u

Corollary 9.16. The number of regular positroid tilings of the hypersimplex A ,, equals

the number of maximal cones in the positive tropical Grassmannian Trop™ GTy -

The fact that the Pliicker fan structure and the secondary fan structure on
Trop* Gry, ,, coincide also implies that the f-vector of Trop* Gry ,, reflects the number
of positroid subdivisions of A, (with maximal cones corresponding to unrefineable

subdivisions and rays corresponding to coarsest subdivisions).

10 Subdivisions of A, , and A, ; ,(Z) from Trop* Gry,;

In Section 8, we discussed the fact that arbitrary dissections of the hypersimplex and
the amplituhedron can have rather unpleasant properties, with their maximal cells
intersecting badly at their boundaries. We introduced the notion of good dissections
for the hypersimplex and amplituhedron in Definition 8.2 and Definition 8.4. Our goal in
this section is to introduce a large class of good dissections for the amplituhedron which

come from Trop™ Gry . ,.

10.1 Regular positroid subdivisions of A, j »(2)

Recall from Definition 9.13 that the regular positroid subdivisions of A, ,, are precisely
the dissections Dp induced from height functions P = {P;} € R(¥) on the hypersimplex

which are positive tropical Pliicker vectors.
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While we do not know how to define a notion of height function for the amplituhe-
dron, we know from Section 5, Section 6, and Section 7 that T-duality maps dissections
of A,y , to the amplituhedron A, ; ,(Z) and preserves various nice properties along
the way. We therefore apply the T-duality map from Definition 5.1 to regular positroid
subdivisions of Ay, ,, to define a class of subdivisions of the m = 2 amplituhedron

Ay k2(Z) which we optimistically refer to as regular (positroid) subdivisions.

Definition 10.1. We say that a positroid dissection of A, ; ,(Z) is a regular positroid
subdivision if it has the form {Z.}, where {I',} is a regular positroid subdivision

of Ak—i—l,n'

As every regular positroid subdivision of A, ,, is a polyhedral subdivision (and

hence is good), Proposition 8.9 implies the following.
Conjecture 10.2. Every regular positroid subdivision of A, ; ,(Z) is a good dissection.

In Section 10.5 we provide some computational evidence for Conjecture 10.2.
For example, for Ag,,(Z) and A;,,(Z), every regular positroid subdivision is good,
and moreover, all good dissections are regular positroid subdivisions. (This appears to
also be the case for Ag, ,(Z); but we were only able to compute the number of tilings
in this case.) One might hope to strengthen Conjecture 10.2 and conjecture that the
regular positroid subdivisions are precisely the good dissections. However, the notion of
regularity is rather subtle (as usual in polyhedral geometry), and starting from Ay , ,(Z),

there are some good dissections which are not regular.

10.2 A large class of regular positroid tilings of Ag; , and A, i 2(2)

Definition 10.3. Let T be any planar trivalent tree with n leaves (which will necessarily
have n — 2 internal vertices), embedded in a disk with the leaves labelled from 1 to n in
clockwise order. Let 7, ; be the set of (";?) plabic graphs obtained from T by coloring

precisely k of the internal vertices black, as in Figure 5.

Proposition 10.4. The cells of Gr,io1 n

regular tiling of Ay, ,,. Therefore the images of these cells under the T-duality map give

corresponding to the plabic graphs in 7, ; give a

a regular tiling of A, ; ,(2).
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4
5

(4,1,2,5,3)

Fig. 5. The collection 75 2 of plabic graphs giving a regular subdivision of A3 5

Proof. We can use Theorem 4.5 (see Figure 1) to inductively prove that the cells
corresponding to 7, give a tiling of Ay, ,. The fact that the cells corresponding to
the plabic graphs in 7, give a regular tiling of Ay, , follows from [61, Theorem 8.4].
Now using Theorem 6.5, it follows that the images of these cells under the T-duality
map give a tiling of A, ; ,(Z). The fact that this tiling is regular now follows from
Definition 10.1. |

Remark 10.5. The above construction gives us C,,_, regular tilings of A, ; ,(Z), where
C, = 727 (%") is the Catalan number.

10.3 The fan structure for regular positroid subdivisions

We now discuss the fan structure for regular positroid subdivisions of the hypersimplex

and amplituhedron.

Definition 10.6. Given two subdivisions {I', } and {T",/} of Ay, ,,, we say that {T', } refines
{I';/} and write {I',;} < {T",,} if every I, is contained in some I' /.
Similarly, given two subdivisions {Z,} and {Z,/} of A, ; ,(Z), we say that {Z }

refines {Z_,} and write {Z_} < {Z_,} if every Z_ is contained in some Z_,.

Recall from Section 9.3 that we have a fan structure on Trop* Gry,,, (the
secondary fan, which coincides with the Pliicker fan) which describes the regular
positroid subdivisions of A, ,, ordered by refinement. We expect that this fan
structure on Trop™ Gry,,, also describes the regular positroid subdivisions of
'An,k,Z(Z)‘
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Conjecture 10.7. The regular positroid subdivisions of A, ; ,(Z) are parametrized by
the cones of Trop™ Gry,, ,, with the natural partial order on the cones reflecting the

refinement order on positroid subdivisions.
Conjecture 10.7 is consistent with the following conjecture.

Conjecture 10.8. Consider two regular positroid subdivisions {I', } and {I",/} of Ay, ,,
and two corresponding positroid subdivisions {Z;} and {Z -} of A,, ; ,(2). Then we have
that {T',} < {I";/} if and only if {Z;} < {Z .}

In particular, the regular positroid tilings of A,, ;. ,(Z) should come precisely from
the maximal cones of Trop™ GTy,1 - More specifically, if {P;} lies in a maximal cone of
Trop™ Gry,, . and {S,} is the regular positroid tiling corresponding to Dp, then {S;}
should be a regular positroid tiling of A,, ; ,(Z). (Moreover, all regular positroid tilings

of A, 1 »(Z) should arise in this way.)

10.4 The f-vector of Trop™* Griyq p

In light of Conjecture 10.7, it is useful to compute the f-vector of the positive tropical
Grassmannian. This is the vector (f, f}, ..., f;) whose components compute the number
of cones of fixed dimension.

As shown in [65], the positive tropical Grassmannian has an n-dimensional
lineality space coming from the torus action. However, one may mod out by this torus
action and study the resulting fan. The method used in [65] was to show that Trop™ Gry ,,
(a polyhedral subcomplex of R([Z])) is combinatorially equivalent to an (n —k — 1)(k — 1)-
dimensional fan F ,,, obtained by using an “X-cluster” or “web” parametrization of the
positive Grassmannian, and modding out by the torus action. As explained in [65, Section
61, Fy , is the dual fan to the Minkowski sum of the (}) Newton polytopes obtained by
writing down each Pliicker coordinate in the X-cluster parametrization.

Using this technique, [65] computed the f-vector of Trop™ Gry,, (which is the f-
vector of the associahedron, with maximal cones corresponding to tilings of a polygon)
Trop* Gry g, and Trop™ Gr ;. The above f-vector computations were recently extended in
[4] using the notion of “stringy canonical forms” and in [12, 21] using planar arrays and
matrices of Feynman diagrams. See also [22, 24, 38] for recent, physics-inspired devel-
opments in this direction. We list all known results about maximal cones in the positive
tropical Grassmannian Trop™ Gry, , ,, and their relation to tilings of hypersimplex A, ,,
in Table 1.
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Table 1 New results about the tilings of the amplituhedron A, i »(2) in relation to known results

about the number of maximal cones of the positive tropical Grassmannian Trop™ Grit1n-

(k,n) Tilings Good tilings Tropt Griy1n Non-regular good tilings
(ILn) Cn-2 Cn—2 Cn—2 0
(2,5) 5 5 5 0
(2,6) 120 48 48 0
2,7) 3073 693 693 0
(2,8) 6 443 460 13 612 13612 0
2,9) ? 346 806 346 710 96
(3,6) 14 14 14 0
3,7) 3073 693 693 0
3,8) ? 91 496 90 608 888
3,9 ? 33182 763 30 659 424 2523 339

Apart from the f-vector of Trop™ Gry ,,, the known f-vectors of positive tropical

Grassmannians Trop* Gry ,, (with k < %) are the following:

Trop™ Gry g :(1,48,98,66,16,1)
Trop*t Gry ; :(1,693, 2163, 2583, 1463,392,42, 1)
Trop* Gry g :(1,13612,57768,100852, 93104, 48544, 14088, 2072, 120, 1)

Trop™ Gry g :(1,90608, 444930, 922314, 1047200, 706042, 285948, 66740, 7984, 360, 1)

For Trop™ Gr, 4 it is also known that the second component of the f-vector is
30659424 [21].

Remark 10.9. The coordinate ring of the Grassmannian has the structure of a cluster
algebra [59]. In particular, Gr, ,,, Gry ¢, Gr3 7, Gr3 g have cluster structures of finite types
A,, Dy, Eg, and Eg, respectively. As discussed in [65], there is an intriguing connection
between Trop* Gry ,, and the cluster structure. In particular, F, ,, is the fan to the type
A, associahedron, while F; 5 and F; ; are coarsenings of the fans associated to the D, and
Eg associahedra. Via our correspondence between Trop* Gry, , ,, and the amplituhedron

Ap k2(Z), the Grassmannian cluster structure on Gry,,, should be reflected in good
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subdivisions of A, ; ,(Z). In particular the type A, cluster structure should control
A, 12(Z) (this is apparent, since A,, | ,(Z) is a projective polygon), while the type D,, Eg,
and Eg cluster structures should be closely related to Ag , 5(2), A5 5 5(2), and Ag 5 »(2).

10.5 Experimental Data.

Checks for this section® for small values of n and k have been performed using
Wolfram Mathematica. In particular, we used the packages ‘positroid’ [19] and
‘amplituhedronBoundaries’ [48]. This allowed us to find the complete poset of good

dissections of Ag, , and A, , ,, whose f-vectors read:

Ag 22 ¢ (1,48,98,66,16,1)

A2, :(1,693,2163,2583,1463,392,42,1) .

These are exactly the f-vectors of the positive tropical Grassmannian Trop* Gr; ¢ and
Trop™ Gr 5, respectively. For higher values of n and k, we have been able to find all (good)
tilings, and our findings’ are summarized in Table 1.

In particular, we observe that for Ag , ,(Z) the number of good tilings agrees with
the number of maximal cones in Trop™ Gryg. Starting from n = 9, the number of good
tilings is larger than the number of maximal cones in positive tropical Grassmannian.
It is indeed the first example where one can find good tilings which are not regular. In
particular, out of 346806 good tilings, 96 are not regular. Similarly, for k = 3 and n = 8,
888 good tilings of Ag 3 ,(Z) are not regular. We note that these correspond exactly to

degenerate matrices found in [21].

11 T-duality and the momentum amplituhedron for general (even) m

Throughout the paper we have explored the remarkable connection between the hyper-
simplex and the m = 2 amplituhedron. This was established via the T-duality map which
allowed to relate positroid tiles, tilings, and dissections of both objects. It is then a
natural question to wonder whether the story generalizes for any (even) m.

For m = 4, we know that the amplituhedron A, ; ,(Z) encodes the geometry of
scattering amplitudes in A/ = 4 SYM, expressed in momentum twistor space. Physicists

have already observed a beautiful connection between this and the formulation of

6 A more detailed discussion of these checks can be found in the arXiv version of this paper (v3).
7 We also included there the results for Grgg which, by using our conjectures, can be derived from [21].

20z JoquiadaQ 9| uo Jesn IgINT Ad L0€9¥0.L/82L91/61/€20Z/BI01E/UIWI/WOD ANO"DIWLBPEDE//:SARY WO POPEOJUMOQ



The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16825

scattering amplitudes of the same theory in momentum space® . At the core of this
connection lies the Amplitude-Wilson Loop Duality [8], which was shown to arise from a
more fundamental duality in String Theory called ‘T-duality’ [17]. For both formulations
a Grassmannian representation has been found [3, 18]: scattering amplitudes (at tree
level) are computed by performing a contour integral around specific cycles inside the
positive Grassmannian (what in physics is referred to as a '‘BCFW contour’). If we are in

momentum space, then one has to integrate over cycles corresponding to collections of

>0
k+2,n

space, the integral is over collections of 4k-dimensional positroid cells of Gr]f?l. The

(2n — 4)-dimensional positroid cells of Gr . Whereas, if we are in momentum twistor
two integrals compute the same scattering amplitude, and it was indeed shown that
formulas are related by a change of variables. In particular, this implied the existence
of a map between certain (2n — 4)-dimensional positroid cells of Grli)z,n and certain 4k-
dimensional positroid cells of Gr;(r)z (called ‘BCFW’), which was defined in [1, Formula
(8.25)]. It is easy to see that this map is exactly our T-duality map for the case m = 4 in

(5.4), up to a cyclic shift:
A e . m .
U?T(l)=7l’(l—?+1)—1=7T(l—1)—1. (11.1)

Collections of 4k-dimensional ‘BCFW’ positroid cells of Gr,?% defined from
physics were conjectured to tile A, ; ,(Z). The proof of this conjecture can be found
in [44]. On the other hand, the corresponding collections of (2n — 4)-dimensional
‘BCFW' positroid cells of Gr,i?z’n were conjectured to tile an object M, ; 4(A, A) called
‘momentum amplituhedron’, introduced recently by two of the authors in [23]° .

The story aligns with the philosophy of the rest of this paper. In particular, one
aims to seek for an object and a map which relates its tiles, tilings (and, more generally,
dissections) to the ones of A,  ,,(Z), for general (even) m. There is a natural candidate
for such a map: we have already seen that the T-duality map defined in (5.4) does indeed
the job in the case of m = 2 and m = 4. Moreover, some of the statements which has
been proven throughout the paper for m = 2, as Proposition 5.11 and Theorem 7.3, can

be generalized for general (even) m.

8 More precisely it is ‘spinor helicity’ space, or, equivalently (related by half-Fourier transform), in twistor
space. See [1, Section 8].
9 In the paper, the momentum amplituhedron was denoted as My, k., without the subscript ‘4’
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>0
rk+%,n

i+ %. Then S; is a cell of Grf% such that 7 (i) < i 4+ n — 3. Moreover, dim(S;) — mk =

Proposition 11.1. Let S_ be a cell of G such that, as affine permutation, (i) >

dim(S,) — F(n — ). In particular, if dim S, = 7} (n — 73), then dim S; = mk.

Proof. This is a straightforward generalization of the proof of Proposition 5.11. It
is enough to observe that, in the language of affine permutations, T-duality maps a
(k + m/2,n)-bounded affine permutation 7, into a (k, n)-bounded affine permutation

A

7, = m, o t™?, with "2 : 7Z — 7 the map i — i — m/2. Clearly, t™/2 preserve the

a
length of affine permutations. Hence the codimensions of Sy, € Grzf%ln and S, € Gr,??z

are equal. |

(Z) and A Z)

as a composition of the Grassmannian duality and T-duality (plus cyclic shifts). Imitating

It is also natural to think of parity duality between A, ; ,,, nn—k—m,m

Definition 7.2, let us define [NJklnlm(ﬁ) := 7-1. Then we have the following theorem:

Theorem 11.2 (Parity duality from T-duality and Grassmannian duality). Let {Z_} be a
collection of Grasstopes which dissects the amplituhedron A,, ;. ., (2). Then the collection

of Grasstopes {Zf, .} dissects the amplituhedron A, ,, ., ,,(Z").
Proof. The parity duality Uy, ,, in [33] was defined for any (even) m as: Uy, ,,(7) =
(r — k)™! 4+ (n — k — m). Then it easy to show that Ugnm = okt o f]knm Using

Theorem 7.5, the prove follows immediately. |

Since we found a natural candidate map, we now introduce a candidate object,
which would speculatively relate to A, ; ,,(Z) via the T-duality map. This is a general-

ization of the momentum amplituhedron M,, ; 4(A, A) and it is defined below.

Definition 11.3. For k, n such that k < n, define the twisted positive part of Gry , as:
Grim :={X € Gry, : (-1)MVIPND AL () > 0) (11.2)
where inv(4,B) := #{a € A, b € Bla > b} denotes the inversion number.

The lemma below can be found in [40, Lemma 1.11], which sketched a proof and
attributed it to Hochster and Hilbert.
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Lemma 11.4. Suppose A;(V) are the Pliicker coordinates of a point V € Gry ,,. Then the
kern('el V+ € Gr,,_ , of V is represented by the point with Pliicker coordinates A ;(V+) =
(=DM Ay (V) for T € (,7)-

Definition 11.5. For a,b such that a < b, define Mat;?7 the set of real a x b matrices
whose a x a minors are all positive and its twisted positive part as

Mat " = {A € Mat,, : (-1)'PVEPD AL (4) > 0) (11.3)

Definition 11.6 (The momentum amplituhedron). Let A € Mat>?, .., A € Mat> %" L m

nk'+% nn—k'+%

kK + m/2 < n. The momentum amplituhedron map Pia Gr,f,?n — Grk’,kur% X

; ~ — (Ch cL L : )

Gy kn—k+1 18 defined by ®; ,(C) := (CA,C~A), where C and C— are matrlcef rep

resenting an element of Gr,f,on and its orthogonal in Gr,f,o;f respectively, and CA and

C* A matrices representing an element of Gry ;. 4 and Gry,_p g 4 respectively. The

momentum amplituhedron Mn,k/,m(A:[\) C Grypym X Gry gy pym i8 the image

>0

(D]\,A(Grk/,n)'

Proposition 11.7 (Momentum conservation). Let (¥,Y) represent a point in Gry, ; pm X
GTy k412 and let ¥* and Y be matrices representing the orthogonal complements

of Y and ¥, respectively. If (S?, Y) is in the momentum amplituhedron Mn,k’,m(A' 1~\), then
(YEAT) . (vtADHT =0 (11.4)

Proof. From the identity
0=v* YT =yvtAT(cHT (11.5)

we deduce that the row-span of Y AT is included in the row-span of the orthogonal of

ct,i.e. C. Analogously, from
0=vY*YT=v*+ATC (11.6)

we deduce that the row-span of Y-AT is included in the row-span of the C'. Therefore

Y+AT and Y+ AT belong to orthogonal subspaces and satisfy

(YtAT) . (vtAT)T = 0. (11.7)
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Remark 11.8. In reference to Definition 11.6, we observe that:

. m m m
dlm (Grk,,k/+m/2 X Grnik/'nikq»m/z) = ?k/ + E (n — k/) = ?n (118)

Moreover, Proposition 11.7 implies that the momentum amplituhedron M, ;. is
included in a codimension (%)? sub-variety of Gl k+my2 X GTn_i n—k/'+m/2- Therefore,

the dimension of M, ; ., is at most (and conjectured to be exactly):

m m\2 m m
—n—(—) =—(n——). (11.9)
2 2 2 2

We observe that, for m = 2, this dimension is exactly n — 1, which is the dimension of
the hypersimplex Ay, ,,; whereas, for m = 4, the dimension is 2n — 4, which is the one

of BCFW cells in momentum space.
Remark 11.9. For m = 2, Definition 11.6 reads:
D; o Gl = Gry gy X Gry g sy SPF x PP°F (11.10)
Moreover, the conditions in Proposition 11.7 are equivalent to:
A-xA=0 (11.11)

where we used the dot product in R” of the vectors A := A(Y1)T and i := A(YH)T.
Note that the m = 2 momentum amplituhedron is not equal to the hypersimplex,

as pointed out in [50].

Remark 11.10. For m = 4, Definition 11.6 coincides with the one in [23]. This is the
positive geometry relevant for scattering amplitudes for ' = 4 SYM in spinor helicity

space.

Many properties of Mn'kA(A,T\) have still to be explored and proven. Let &,
denote the image under the amplituhedron map &, :(S,) of (the closure of) a positroid
cell S, in Gry ,. Analogously to the amplituhedron, we call ®, a positroid tile of
Mn,k,4(ArK) if it is full-dimensional and if the momentum amplituhedron map is
injective on S_. We also define positroid tilings of Mn,kA(A,K) collections {®_} of
positroid tiles whose interior is disjoint and cover M,, ; 4(A, A). Then the conjecture in
[23] can be stated as:
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Conjecture 11.11. [23] There exists an open subset P C Matzlok’,ﬂrz x Mat>9
that for all (A, A) € P a collection of positroid tiles {®,}is a positroid tiling (respectively,
dissection) of M, ;.5 4(A, A) if and only if for all Z € Mat>? nkta the collection of T-dual

Grasstopes {Z;} is a tiling (respectively, dissection) of A, ; ,(2).

k42 such

Remark 11.12. [23] provided experimental evidence that a subset 7 with the properties
above can be obtained by imposing positivity of planar Mandelstam variables. In
particular, choosing the rows of A* and A on the moment curve as (A )ig =1% Ki,a =i,

with i € [n],a € [k — 2],a € [k’ + 2] would give a point in P.
Finally, we speculate that:

Conjecture 11.13. Let m be a multiple of 4 and k¥’ = k+m/2. There exists an open subset
P C Mat;?cf m X Mat;?l Kam such that for all (A, A) € P a collection {®_} of positroid
tiles is a t111ng (respectwely, dissection) of M, 1 ., (A, A) if and only if the collection of

T-dual Grasstopes {Z;} is a tiling (respectively, dissection) of A,, ; ,,,(2).

12 Appendix. Combinatorics of cells of the positive Grassmannian.

In [54], Postnikov classified the cells of the positive Grassmannian, showing that the
positroid cells could be indexed by decorated permutations and also equivalence classes
of reduced plabic graphs. We review these objects here. This will give us a canonical
way to label each positroid by a decorated permutation or an equivalence class of plabic

graphs. We refer to reader to [54] or [44, Section 2] for more details.

Definition 12.1. A decorated permutation on [n] is a bijection = : [n] — [n] whose fixed
points are each colored either black (loop) or white (coloop). We denote a black fixed point
i by 7(i) = i, and a white fixed point i by 7 (i) = i. An anti-excedance of the decorated
permutation x is an element i € [n] such that either 771(i) > i or 7 (i) = i. We say that a

decorated permutation on [n] is of type (k, n) if it has k anti-excedances.

For example, 7 = (3,2,5, 1,6,8,7,4) has a loop in position 2, and a coloop in

position 7. It has three anti-excedances, in positions 4, 7, 8.

Definition 12.2. Given a k x n matrix C = (c;,...,c,) written as a list of its columns,
we associate a decorated permutation 7 := 7, as follows. We set 7 (i) := j to be the label

of the first column j such that ¢; € span{c;,;,¢;;,, ..., ¢j}. If ¢; is the all-zero vector, we
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call i a loop or black fixed point and if c; is not in the span of the other column vectors,

we call i a coloop or white fixed point. We let
S, ={CeGryd | ng = 7).

Postnikov showed that S_ is a cell, and that the positive Grassmannian Gri?z
is the union of cells S, where = ranges over decorated permutations of type (k,n)
[54, Section 16].

Decorated permutations can be equivalently thought of as affine permuta-
tions [42].

Definition 12.3. An affine permutation on [n] is a bijection = : Z — Z such that for
ali e Z, ni+n) =n@ +nandi < (i) <i+n.If Z?Zl(n(i) — 1) = kn we say 7« is
(k,n)-bounded.

There is a bijection between decorated permutations of type (k,n) and (k,n)-
bounded affine permutations. Given a decorated permutation =; we can define an affine
permutation x, by the following procedure: if 7;(i) > i, then define 7,() = 7 (); if
m4(1) < i, then define (i) := 7;4(i) + n; if 74(?) is a loop then define 7, (1) :=1; if 74(i) is a
coloop then define 7, (i) := i+ n. For example, under this map, the decorated permutation
g =(3,2,5, 1,6,8,7,4) in the previous example gives rise to 7, =@3,2,5,96,8,15,12).

Let a pair (i,j) be an inversion of n, if i,j € Z,i < j, and 7, (i) > 7,(j). Two
inversions (i,j) and (7',j") are equivalent if i' — i = j' — j € nZ. Then the length £(r,)
of 7, is defined to be the number of equivalence classes of inversions. We note that
¢(r,) equals the number of alignments of the associated decorated permutation 7 (see
[54, Section 5]).

Positroid cells can also be represented by plabic graphs.

Definition 12.4. A plabic graph'® is an undirected planar graph G drawn inside a disk
(considered modulo homotopy) with n boundary vertices on the boundary of the disk,
labelled 1,...,n in clockwise order, as well as some internal vertices. Each boundary
vertex is incident to a single edge, and each internal vertex is colored either black or
white. If a boundary vertex is incident to a leaf (a vertex of degree 1), we refer to that leaf

as a lollipop. We will assume that G has no internal leaves except for lollipops.

10 “plabic” stands for planar bi-colored.
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10 1

Fig. 6. A plabic graph with a perfect orientation.

Definition 12.5. A perfect orientation O of a plabic graph G is a choice of orientation
of each of its edges such that each black internal vertex u is incident to exactly one edge
directed away from u; and each white internal vertex v is incident to exactly one edge
directed toward v. A plabic graph is called perfectly orientable if it admits a perfect
orientation. Let G, denote the directed graph associated with a perfect orientation O of
G. The source set I, C [n] of a perfect orientation O is the set of i which are sources of

the directed graph G. Similarly, if j € Iy := [n] — Iy, then j is a sink of O.

Figure 6 shows a plabic graph with a perfect orientation. In that example,
1n =1{2,3,6,8).

All perfect orientations of a fixed plabic graph G have source sets of the same
size k, where kK — (n — k) = >_ color(v) - (deg(v) — 2). Here the sum is over all internal
vertices v, color(v) = 1 for a black vertex v, and color(v) = —1 for a white vertex; see [54].
In this case we say that G is of type (k, n).

Now let us connect plabic graphs to the positroids and positroid cells from
Definition 2.2.

Theorem 12.6 ([54, Section 11]). Let G be a plabic graph of type (k,n). Then we have a
positroid M on [n] defined by

M; = {I» | O is a perfect orientation of G},

where I, is the set of sources of O. Moreover, every positroid cell has the form S, for

some plabic graph G.
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One can also read off the positroid from G using flows [67] or perfect matchings.
If a plabic graph G is reduced (see [54, Section 12]) or [30, Chapter 7]), we have

o Where 7 is the decorated permutation defined as follows.

Definition 12.7. Let G be a reduced plabic graph with boundary vertices 1,...,n. For
each boundary vertex i € [n], we follow a path along the edges of G starting at i, turning
(maximally) right at every internal black vertex, and (maximally) left at every internal
white vertex. This path ends at some boundary vertex 7 (i). By [54, Section 13], the fact
that G is reduced implies that each fixed point of 7 is attached to a lollipop; we color
each fixed point by the color of its lollipop. This defines a decorated permutation, called

the decorated trip permutation n; = 7 of G.
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