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The positive Grassmannian Gr≥0
k,n is a cell complex consisting of all points in the real

Grassmannian whose Plücker coordinates are non-negative. In this paper we consider

the image of the positive Grassmannian and its positroid cells under two different

maps: the moment map μ onto the hypersimplex [31] and the amplituhedron map Z̃

onto the amplituhedron [6]. For either map, we define a positroid dissection to be a

collection of images of positroid cells that are disjoint and cover a dense subset of the

image. Positroid dissections of the hypersimplex are of interest because they include

many matroid subdivisions; meanwhile, positroid dissections of the amplituhedron can

be used to calculate the amplituhedron’s ‘volume’, which in turn computes scattering

amplitudes in N = 4 super Yang-Mills. We define a map we call T-duality from cells

of Gr≥0
k+1,n to cells of Gr≥0

k,n and conjecture that it induces a bijection from positroid

dissections of the hypersimplex �k+1,n to positroid dissections of the amplituhedron

An,k,2; we prove this conjecture for the (infinite) class of BCFW dissections. We note that

T-duality is particularly striking because the hypersimplex is an (n − 1)-dimensional

polytope while the amplituhedron An,k,2 is a 2k-dimensional non-polytopal subset of
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16779

the Grassmannian Grk,k+2. Moreover, we prove that the positive tropical Grassmannian

is the secondary fan for the regular positroid subdivisions of the hypersimplex, and

prove that a matroid polytope is a positroid polytope if and only if all 2D faces are

positroid polytopes. Finally, toward the goal of generalizing T-duality for higher m, we

define the momentum amplituhedron for any even m.

1 Introduction

In 1987, the foundational work of Gelfand–Goresky–MacPherson–Serganova [31] initi-

ated the study of the Grassmannian and torus orbits in the Grassmannian via the

moment map and matroid polytopes, which arise as moment map images of (closures of)

torus orbits. Classifying points of the Grassmannian based on the moment map images

of the corresponding torus orbits leads naturally to the matroid stratification of the

Grassmannian. The moment map image of the entire Grassmannian Grk+1,n is the (n−1)-

dimensional hypersimplex �k+1,n ⊆ Rn, the convex hull of the indicator vectors eI ∈ Rn

where I ∈ ( [n]
k+1

)
. Over the last decades there has been a great deal of work on matroid

subdivisions of the hypersimplex [39, 45, 61]; these are closely connected to the tropical

Grassmannian [36, 61, 63] and the Dressian [36], which parametrizes regular matroidal

subdivisions of the hypersimplex.

The matroid stratification of the real Grassmannian is notoriously complicated:

Mnev’s universality theorem says that the topology of the matroid strata can be as bad

as that of any algebraic variety. However, there is a subset of the Grassmannian called

the totally non-negative Grassmannian or (informally) the positive Grassmannian [49,

54], where these difficulties disappear: the restriction of the matroid stratification to

the positive Grassmannian gives a cell complex [54, 56, 57], whose cells Sπ are called

positroid cells and labelled by (among other things) decorated permutations. Since the

work of Postnikov [54], there has been an extensive study of positroids [9, 10, 51]—the

matroids associated to the positroid cells. The moment map images of positroid cells are

precisely the positroid polytopes [68], and as we will discuss in this paper, the positive

tropical Grassmannian [65] (which equals the positive Dressian [66]) parametrizes the

regular positroid subdivisions of the hypersimplex.

Besides the moment map, there is another interesting map on the positive

Grassmannian, which was recently introduced by Arkani–Hamed and Trnka [6] in the

context of scattering amplitudes in N = 4 SYM. In particular, any n × (k + m) matrix Z

with maximal minors positive induces a map Z̃ from Gr≥0
k,n to the Grassmannian Grk,k+m,

whose image has full dimension mk and is called the amplituhedron An,k,m [6]. The case
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16780 T. Łukowski et al.

m = 4 is most relevant to physics: in this case, the BCFW recurrence (named for Britto,

Cachazo, Feng, and Witten [13]) gives rise to collections of 4k-dimensional cells in Gr≥0
k,n

whose images tile or triangulate the amplituhedron.

Given that the hypersimplex and the amplituhedron are images of the positive

Grassmannian, which has a decomposition into positroid cells, one can ask the following

questions. When does a collection of positroid cells give – via the moment map – a

positroid dissection of the hypersimplex? By dissection, we mean that the images of

these cells are disjoint and cover a dense subset of the hypersimplex (but we do not put

any constraints on how their boundaries match up). When does a collection of positroid

cells give – via the Z̃-map – a dissection of the amplituhedron? We can also ask about

positroid tilings, which are dissections coming from cells on which the moment map

(respectively, the Z̃-map) is injective.

The combinatorics of positroid tilings for both the hypersimplex and the ampli-

tuhedron is very interesting: Speyer’s f -vector theorem [61, 62] gives an upper bound

on the number of matroid polytopes of each dimension in a matroidal subdivision

coming from the tropical Grassmannian. In particular, it says that the number of top-

dimensional matroid polytopes in such a subdivision of �k+1,n is at most
(n−2

k

)
. This

number is in particular achieved by finest positroid subdivisions [66]. Meanwhile, the

third author together with Karp and Zhang [44] conjectured that the number of cells in

a tiling of the amplituhedron An,k,m(Z) for even m is precisely M(k, n − k − m, m
2 ), where

M(a, b, c) :=
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2

is the number of plane partitions contained in an a × b × c box. Note that when m = 2,

this conjecture says that the number of cells in a tiling of An,k,2(Z) equals
(n−2

k

)
.

What we show in this paper is that the appearance of the number
(n−2

k

)
in

the context of both the hypersimplex �k+1,n and the amplituhedron An,k,2(Z) is not

a coincidence! Indeed, we can obtain tilings of the amplituhedron from tilings of the

hypersimplex, by applying a T-duality map. This T-duality map sends loopless positroid

cells Sπ of Gr≥0
k+1,n to coloopless positroid cells Sπ̂ of Gr≥0

k,n via a simple operation on

the decorated permutations, see Section 5. T-duality sends tiles for the hypersimplex

(cells where the moment map is injective) to tiles for the amplituhedron (cells where Z̃ is

injective), see Proposition 6.6, and moreover it sends dissections of the hypersimplex to

dissections of the amplituhedron, see Theorem 6.5 and Conjecture 6.9. This explains the

two appearances of the number
(n−2

k

)
on the two sides of the story.
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The fact that dissections of �k+1,n and An,k,2(Z) are in bijection is a rather

surprising statement. Should there be a map from �k+1,n to An,k,2(Z) or vice-versa? We

have dim �k+1,n = n − 1 and dimAn,k,2(Z) = 2k, with no relation between n − 1 and

2k (apart from k ≤ n) so it is not obvious that a nice map between them should exist.

Nevertheless we do show that T-duality descends from a certain map that can be defined

directly on positroid cells of Gr≥0
k+1,n.

The T-duality map provides a handy tool for studying the amplituhedron

An,k,2(Z): we can try to understand properties of the amplituhedron (and its dissections)

by studying the hypersimplex and applying T-duality. For example, we show in Section 7

that the rather mysterious parity duality, which relates dissections of An,k,2(Z) with

dissections of An,n−k−2,2, can be obtained by composing the hypersimplex duality

�k+1,n � �n−k−1,n (which comes from the Grassmannian duality Grk+1,n � Grn−k−1,n)

with T-duality on both sides. As another example, we can try to obtain “nice” dissections

of the amplituhedron from correspondingly nice dissections of the hypersimplex. In

general, dissections of �k+1,n and An,k,2(Z) may have unpleasant properties, with images

of cells intersecting badly at their boundaries, see Section 8. However, the regular

subdivisions of �k+1,n are very nice polyhedral subdivisions. By Proposition 9.12,

the regular positroid dissections of �k+1,n come precisely from the positive Dressian

Dr+
k+1,n (which equals the positive tropical Grassmannian Trop+ Grk+1,n). And moreover

the images of these subdivisions under the T-duality map are very nice subdivisions

of the amplituhedron An,k,2(Z), see Section 10. We speculate that Trop+ Grk+1,n plays

the role of secondary fan for the regular positroid subdivisions of An,k,2(Z), see

Conjecture 10.7.

One step in proving Proposition 9.12 is the following new characterization of

positroid polytopes (see Theorem 3.9): a matroid polytope is a positroid polytope if and

only if all of its two-dimensional faces are positroid polytopes.

Let us now explain how the various geometric objects in our story are related

to scattering amplitudes in supersymmetric fields theories. The main emphasis so

far has been on the so-called “planar limit” of N = 4 super Yang-Mills. In 2009,

the works of Arkani-Hamed–Cachazo–Cheung–Kaplan [3] and Bullimore–Mason–Skinner

[18] introduced beautiful Grassmannian formulations for scattering amplitudes in this

theory. Remarkably, this led to the discovery that the positive Grassmannian encodes

most of the physical properties of amplitudes [1]. Building on these developments and

on Hodges’ idea that scattering amplitudes might be ‘volumes’ of some geometric object

[37], Arkani-Hamed and Trnka arrived at the definition of the amplituhedron An,k,m(Z)

[6] in 2013.
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The m = 4 amplituhedron An,k,4 is the object most relevant to physics: it encodes

the geometry of (tree-level) scattering amplitudes in planar N = 4 SYM. However, the

amplituhedron is a well-defined and interesting mathematical object for any m. For

example, the m = 1 amplituhedron An,k,1 can be identified with the complex of bounded

faces of a cyclic hyperplane arrangement [43]. The m = 2 amplituhedron An,k,2(Z), which

is a main subject of this paper, also has a beautiful combinatorial structure, and has

been recently studied e.g. in [7, 16, 44, 46, 47]. From the point of view of physics, An,k,2(Z)

is often considered as a toy-model for the m = 4 case. However it has applications to

physics as well: An,2,2 governs the geometry of scattering amplitudes in N = 4 SYM at

the subleading order in perturbation theory for the so-called ‘MHV’ sector of the theory,

and remarkably, the m = 2 amplituhedron An,k,2(Z) is also relevant for the ‘next to MHV’

sector, enhancing its connection with the geometries of loop amplitudes [41].

Meanwhile, in recent years physicists have been increasingly interested in under-

standing how cluster algebras encode the analytic properties of scattering amplitudes,

both at tree- and loop- level [31]. This led them to explore the connection between

cluster algebras and the positive tropical Grassmannian which was observed in [65].

In particular, the positive tropical Grassmannian has been increasingly playing a role in

different areas of scattering amplitudes: from bootstrapping loop amplitudes in N = 4

SYM [4, 22, 38] to computing scattering amplitudes in certain scalar theories [20].

Finally, physicists have already observed a duality between the formulations

of scattering amplitudes N = 4 SYM in momentum space1 and in momentum twistor

space. This is possible because of the so-called ‘Amplitude/Wilson loop duality’ [8],

which was shown to arise from a more fundamental duality in String Theory called

‘T-duality’ [17]. The geometric counterpart of this fact is a duality between collections

of 4k-dimensional ‘BCFW’ cells of Gr≥0
k,n which tile the amplituhedron An,k,4 [26], and

corresponding collections of (2n − 4)-dimensional cells of Gr≥0
k+2,n which (conjecturally)

tile the momentum amplituhedron Mn,k,4; the latter object was introduced very recently

by the first two authors together with Damgaard and Ferro [23]. In this paper we see

that this duality, which we have evocatively called T-duality, extends beyond m = 4.

In particular, for m = 2, the hypersimplex �k+1,n and the m = 2 amplituhedron

An,k,2(Z) are somehow dual to each other, a phenomenon that we explore and employ

to study properties of both objects. We believe that this duality holds for any (even) m:

1 More precisely, it is ‘spinor helicity’ space, or, equivalently (related by half-Fourier transform), in twistor
space. See [1, Section 8].
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in Section 11 we introduce a generalization Mn,k,m of the momentum amplituhedron

Mn,k,4, and a corresponding notion of T-duality.

2 The positive Grassmannian, the hypersimplex, and the amplituhedron

In this section we introduce the three main geometric objects in this paper: the positive

Grassmannian, the hypersimplex, and the amplituhedron. The latter two objects are

images of the positive Grassmannian under the moment map and the Z̃-map.

Definition 2.1. The (real) Grassmannian Grk,n (for 0 ≤ k ≤ n) is the space of all k-

dimensional subspaces of Rn. An element of Grk,n can be viewed as a k × n matrix of

rank k modulo invertible row operations, whose rows give a basis for the k-dimensional

subspace.

Let [n] denote {1, . . . , n}, and
([n]

k

)
denote the set of all k-element subsets of [n].

Given V ∈ Grk,n represented by a k × n matrix A, for I ∈ ([n]
k

)
we let pI(V) be the k × k

minor of A using the columns I. The pI(V) do not depend on our choice of matrix A (up to

simultaneous rescaling by a nonzero constant), and are called the Plücker coordinates

of V.

2.1 The positive Grassmannian and its cells

Definition 2.2 ([54, Section 3]). We say that V ∈ Grk,n is totally nonnegative if pI(V) ≥ 0

for all I ∈ ([n]
k

)
. The set of all totally nonnegative V ∈ Grk,n is the totally nonnegative

Grassmannian Gr≥0
k,n; abusing notation, we will often refer to Gr≥0

k,n as the positive

Grassmannian. For M ⊆ ([n]
k

)
, let SM be the set of V ∈ Gr≥0

k,n with the prescribed collection

of Plücker coordinates strictly positive (i.e. pI(V) > 0 for all I ∈ M), and the remaining

Plücker coordinates equal to zero (i.e. pJ(V) = 0 for all J ∈ ([n]
k

) \ M). If SM �= ∅, we call M

a positroid and SM its positroid cell.

Each positroid cell SM is indeed a topological cell [54, Theorem 6.5], and moreover,

the positroid cells of Gr≥0
k,n glue together to form a CW complex [56].

As shown in [54], the cells of Gr≥0
k,n are in bijection with various combinatorial

objects, including decorated permutations π on [n] with k anti-excedances and equiva-

lence classes of reduced plabic graphs G of type (k, n). In Section 12 we review these

objects and give bijections between them. This gives a canonical way to label each

positroid by a decorated permutation and an equivalence class of plabic graphs; we will

correspondingly refer to positroid cells as Sπ , SG, etc.
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2.2 The moment map and the hypersimplex

The moment map from the Grassmannian Grk,n to Rn is defined as follows.

Definition 2.3. Let A be a k×n matrix representing a point of Grk,n. The moment map2

μ : Grk,n → Rn is defined by

μ(A) =
∑

I∈([n]
k )

|pI(A)|2eI∑
I∈([n]

k )
|pI(A)|2 ,

where eI := ∑
i∈I ei ∈ Rn, and {e1, . . . , en} is the standard basis of Rn.

It is well-known that the image of the Grassmannian Grk,n under the moment

map is the (k, n)-hypersimplex �k,n, which is the convex hull of the points eI where I

runs over
([n]

k

)
. If one restricts the moment map to Gr≥0

k,n then the image is again the

hypersimplex �k,n [68, Proposition 7.10].

We will consider the restriction of the moment map to positroid cells of Gr≥0
k,n.

Definition 2.4. Given a positroid cell Sπ of Gr≥0
k,n, we let �◦

π = μ(Sπ ), and �π = μ(Sπ ).

There are a number of natural questions to ask. What do the �π look like, and how

can one characterize them? On which positroid cells is the moment map injective? The

images �π of (closures of) positroid cells are called positroid polytopes; we will explore

their nice properties in Section 3.

One of our main motivations is to understand positroid dissections of the

hypersimplex.

Definition 2.5. Let C = {�π } be a collection of positroid polytopes, with {Sπ } a collection

of positroid cells of Gr≥0
k,n. We say that C is a positroid dissection of �k,n if we have that:

• dim �π = n − 1 for each �π ∈ C
• pairs of two distinct positroid polytopes �◦

π and �◦
π ′ in the collection are

disjoint

• ∪π�π = �k,n, i.e. the union of the images of the cells is dense in �k,n.

2 We remark that there is another version of the moment map called the algebraic moment map, which we
will briefly discuss later, see Definition 3.18.
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We say that a positroid dissection C = {�π } of �k,n is a positroid tiling (or simply

a tiling) of �k,n if μ is injective on each Sπ .

Question 2.6. Let C = {�π } be a collection of positroid polytopes, with {Sπ } positroid

cells of Gr≥0
k,n. When is C a positroid dissection of �k,n? When is it a positroid tiling?

2.3 The Z̃-map and the amplituhedron

Building on [1], Arkani-Hamed and Trnka [6] recently introduced a beautiful new

mathematical object called the (tree) amplituhedron, which is the image of the positive

Grassmannian under a map Z̃ induced by a totally positive matrix Z.

Definition 2.7. For a ≤ b, define Mat>0
a,b as the set of real a × b matrices whose a × a

minors are all positive. Let Z ∈ Mat>0
n,k+m. The amplituhedron map Z̃ : Gr≥0

k,n → Grk,k+m

is defined by Z̃(C) := CZ, where C is a k × n matrix representing an element of Gr≥0
k,n

and CZ is a k × (k + m) matrix representing an element of Grk,k+m. The amplituhedron

An,k,m(Z) ⊆ Grk,k+m is the image Z̃(Gr≥0
k,n).

In special cases the amplituhedron recovers familiar objects. If Z is a square

matrix, i.e. k + m = n, then An,k,m(Z) is isomorphic to the positive Grassmannian. If

k = 1, then it follows from [64] that An,1,m(Z) is a cyclic polytope in projective space Pm.

If m = 1, then An,k,1(Z) can be identified with the complex of bounded faces of a cyclic

hyperplane arrangement [43].

We will consider the restriction of the Z̃-map to positroid cells of Gr≥0
k,n.

Definition 2.8. Given a positroid cell Sπ of Gr≥0
k,n, we let Z◦

π = Z̃(Sπ ), and Zπ = Z̃(Sπ ). We

refer to Z◦
π and Zπ as open Grasstopes and Grasstopes respectively.

As in the case of the hypersimplex, one of our main motivations is to understand

positroid dissections of the amplituhedron An,k,m(Z).

Definition 2.9. Let C = {Zπ } be a collection of Grasstopes, with {Sπ } a collection

of positroid cells of Gr≥0
k,n. We say that C is a positroid dissection of An,k,m(Z) if we

have that:

• dim Zπ = mk for each Zπ ∈ C
• pairs of distinct open Grasstopes Z◦

π and Z◦
π ′ in the collection are disjoint

• ∪πZπ = An,k,m(Z).
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We say that a positroid dissection C = {Zπ } of An,k,m(Z) is a positroid tiling (or

simply a tiling) of An,k,m(Z) if Z̃ is injective on each Sπ .

Remark 2.10. Let S be an index set for cells of Gr≥0
k,n. It is expected that if Z and Z′ both

lie in Mat>0
k+m,n, then {Zπ }π∈S is a positroid tiling (respectively, dissection) of An,k,m(Z) if

and only if {Z′
π }π∈S is a positroid tiling (respectively, dissection) of An,k,m(Z′).

The results we prove in this paper will be independent of Z.

Question 2.11. Let C = {Zπ } be a collection of Grasstopes, with {Sπ } positroid cells of

Gr≥0
k,n. When is C a positroid dissection of An,k,m(Z)? When is it a positroid tiling?

In this paper we will primarily focus on the case m = 2 (with the exception of

Section 11, where we give some generalizations of our results and conjectures to general

even m). (Positroid) tilings of the amplituhedron have also been studied in [6], [27], [2],

[44], [33], [28]. Very recently the paper [16] constructed (with proof) many tilings of the

m = 2 amplituhedron. The m = 2 amplituhedron has also been studied in [7] (which gave

an alternative description of it in terms of sign patterns; see also [44]), in [47] (which

described the boundary stratification of the amplituhedron An,k,2(Z)), and in [46] (which

discussed its relation to cluster algebras). Note that our notion of dissection above is the

same as the notion of subdivision from [33, Definition 7.1]. (However, we prefer the word

“dissection,”as the word “subdivision” is often used to indicate that there are constraints

on how the boundaries match up.)

3 Positroid polytopes and the moment map

In this section we study positroid polytopes, which are images of positroid cells of Gr≥0
k,n

under the moment map μ : Gr≥0
k,n → Rn. We recall some of the known properties of

matroid and positroid polytopes, we give a new characterization of positroid polytopes

(see Theorem 3.9), and we describe when the moment map is an injection on a positroid

cell, or equivalently, when the moment map restricts to a homeomorphism from the

closure of a positroid cell to the corresponding positroid polytope (see Proposition 3.15

and Proposition 3.16).

3.1 Matroid polytopes

The torus T = (C∗)n acts on Grk,n by scaling the columns of a matrix representative

A. We let TA denote the orbit of A under the action of T, and TA its closure. It follows

from classical work of Atiyah [11] and Guillemin-Sternberg [34] that the image μ(TA) is a
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convex polytope, whose vertices are the images of the torus-fixed points, i.e. the vertices

are the points eI such that pI(A) �= 0.

This motivates the notion of matroid polytope. Note that any full rank k × n

matrix A gives rise to a matroid M(A) = ([n],B), where B = {I ∈ ([n]
k

) | pI(A) �= 0}.

Definition 3.1. Given a matroid M = ([n],B), the (basis) matroid polytope �M of M is

the convex hull of the indicator vectors of the bases of M:

�M := convex{eB | B ∈ B} ⊂ Rn.

The following elegant characterization of matroid polytopes is due to Gelfand,

Goresky, MacPherson, and Serganova.

Theorem 3.2 ([31]). Let B be a collection of subsets of [n] and let �B := convex{eB | B ∈
B} ⊂ Rn. Then B is the collection of bases of a matroid if and only if every edge of �B is

a parallel translate of ei − ej for some i, j ∈ [n].

The dimension of a matroid polytope is determined by the number of connected

components of the matroid. Recall that a matroid which cannot be written as the direct

sum of two nonempty matroids is called connected.

Proposition 3.3 ([53]). Let M be a matroid on E. For two elements a, b ∈ E, we set a ∼ b

whenever there are bases B1, B2 of M such that B2 = (B1 − {a}) ∪ {b}. The relation ∼
is an equivalence relation, and the equivalence classes are precisely the connected

components of M.

Proposition 3.4 ([15]). For any matroid, the dimension of its matroid polytope is

dim �M = n − c, where c is the number of connected components of M.

We note that there is an inequality description of any matroid polytope.

Proposition 3.5 ([69]). Let M = ([n],B) be any matroid of rank k, and let rM : 2[n] → Z≥0

be its rank function. Then the matroid polytope �M can be described as

�M =
⎧⎨
⎩x ∈ Rn |

∑
i∈[n]

xi = k,
∑
i∈A

xi ≤ rM(A) for all A ⊂ [n]

⎫⎬
⎭ .
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3.2 Positroid polytopes

In this paper we are interested in positroids; these are the matroids M(A) associated to

k × n matrices A with maximal minors all nonnegative.

In Definition 3.1, we defined the matroid polytope �M to be the convex hull of

the indicator vectors of the bases of the matroid M. We can of course apply the same

definition to any positroid M, obtaining the positroid polytope �M . On the other hand, in

Definition 2.4, for each positroid cell Sπ , we defined �π = μ(Sπ ) to be the closure of the

image of the cell under the moment map. Fortunately these two objects coincide.

Proposition 3.6. [68, Proposition 7.10] Let M be the positroid associated to the positroid

cell Sπ . Then �M = �π = μ(Sπ ) = μ(Sπ ).

The first statement in Theorem 3.7 below was proved in [9, Corollary 5.4] (and

generalized to the setting of Coxeter matroids in [68, Theorem 7.13].) The second

statement follows from the proof of [68, Theorem 7.13].

Theorem 3.7. Every face of a positroid polytope is a positroid polytope. Moreover, every

face �π ′ of a positroid polytope �π has the property that Sπ ′ ⊂ Sπ .

There is a simple inequality characterization of positroid polytopes.

Proposition 3.8. [9, Proposition 5.7] A matroid M of rank k on [n] is a positroid if and

only if its matroid polytope �M can be described by the equality x1 + · · · + xn = k and

inequalities of the form

∑
�∈[i,j]

x� ≤ rij, with i, j ∈ [n].

Here [i, j] is the cyclic interval given by [i, j] = {i, i + 1, . . . , j} if i < j and [i, j] =
{i, i + 1, . . . , n, 1, . . . , j} if i > j.

We now give a new characterization of positroid polytopes. In what follows, we

use Sab as shorthand for S ∪ {a, b}, etc.

Theorem 3.9. Let M be a matroid of rank k on the ground set [n], and consider the

matroid polytope �M . It is a positroid polytope (i.e. M is a positroid) if and only if all of

its two-dimensional faces are positroid polytopes.
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Moreover, if M fails to be a positroid polytope, then �M has a two-dimensional

face F with vertices eSab, eSad, eSbc, eScd, for some 1 ≤ a < b < c < d ≤ n and S of size

k − 2 disjoint from {a, b, c, d}.

Remark 3.10. A different characterization of positroids in terms of faces of their

matroid polytopes was given in [58, Proposition 6.4], see also [58, Lemma 6.2 and Lemma

6.3]. There are also some related ideas in the proof of [25, Lemma 30].

By Theorem 3.7, every two-dimensional face of �M is a positroid polytope. To

prove the other half of Theorem 3.9, we use the following lemma.

Lemma 3.11. Let M be a matroid of rank k on [n] which has two connected components,

i.e. M = M1 ⊕ M2 such that the ground sets of M1 and M2 are S and T = [n] \ S. Suppose

that {S, T} fails to be a noncrossing partition of [n], in other words, there exists a < b <

c < d (in cyclic order) such that a, c ∈ S and b, d ∈ T. Then �M has a two-dimensional

face which is not a positroid polytope; in particular, that face is a square with vertices

eSab, eSad, eSbc, eScd, for some 1 ≤ a < b < c < d ≤ n and S of size k − 2 disjoint from

{a, b, c, d}.

Proof. By Proposition 3.3, we have bases Aa and Ac of M1 and also bases Bb and Bd

of M2. We can find a linear functional on �M1
given by a vector in RS whose dot product

is maximized on the convex hull of eAa and eAc (choose the vector w such that wh = 1 for

h ∈ A, wh = 1
2 for h = a or h = c, and wh = 0 otherwise); therefore there is an edge in �M1

between eAa and eAc. Similarly, there is an edge in �M2
between eBb and eBd. Therefore

�M = �M1
× �M2

has a two-dimensional face whose vertices are eABab, eABad, eABbc, eABcd.

This is not a positroid polytope because {ab, ad, bc, cd} are not the bases of a rank 2

positroid. �

Proposition 3.12. Let M be a connected matroid. If all of the two-dimensional faces of

�M are positroid polytopes, then �M is a positroid polytope (i.e. M is a positroid).

Proof. Suppose for the sake of contradiction that �M is not a positroid polytope.

Since �M is not a positroid polytope, then by Proposition 3.5 and Proposition 3.8,

it has a facet F of the form
∑

i∈S xi = rM(S), where S is not a cyclic interval. In other words,

S and T = [n] \ S fail to form a noncrossing partition. Each facet of �M is the matroid

polytope of a matroid with two connected components, so by the greedy algorithm for
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matroids (see e.g. [9, Proposition 2.12]), F must be the matroid polytope of M|S⊕M/S. But

now by Lemma 3.11, F has a two-dimensional face which is not a positroid polytope. �

We now complete the proof of Theorem 3.9.

Proof. We start by writing M as a direct sum of connected matroids M = M1 ⊕ · · · ⊕ Ml.

Let S1, . . . , Sl be the ground sets of M1, . . . , Ml. By [9, Lemma 7.3], either one of the Mi’s

fails to be a positroid, or {S1, . . . , Sl} fails to be a non-crossing partition of [n]. If one of

the Mi’s fails to be a positroid, then by Proposition 3.12, �Mi
has a two-dimensional face

which fails to be a positroid. But then so does �M = �M1
× · · · × �Ml

. On the other hand,

if {S1, . . . , Sl} fails to be a non-crossing partition of [n], then by Lemma 3.11, �M has a

two-dimensional face which fails to be a positroid. This completes the proof. �

Our next goal is to use Proposition 3.4 to determine when the moment map

restricted to a positroid cell is a homeomorphism. To do so, we need to understand how to

compute the number of connected components of a positroid. The following result comes

from [9, Theorem 10.7] and its proof. We say that a permutation π of [n] is stabilized-

interval-free (SIF) if it does not stabilize any proper interval of [n]; that is, π(I) �= I for all

intervals I � [n].

Proposition 3.13. Let Sπ be a positroid cell of Gr≥0
k,n and let Mπ be the corresponding

positroid. Then Mπ is connected if and only if π is a SIF permutation of [n]. More

generally, the number of connected components of Mπ equals the number of connected

components of any reduced plabic graph associated to π .

Example 3.14. Consider the permutation π = (5, 3, 4, 2, 6, 7, 1) (which in cycle notation

is (234)(1567). Then there are two minimal-by-inclusion cyclic intervals such that

π(I) = I, namely [2, 4] and [5, 1], and hence the matroid Mπ has two connected compo-

nents. (Note that [1, 7] is also a cyclic interval with π([1, 7]) = [1, 7] but it is not minimal-

by-inclusion.)

Proposition 3.15. Consider a positroid cell Sπ ⊂ Gr≥0
k,n and let Mπ be the corresponding

positroid. Then the following statements are equivalent:

1. the moment map restricts to an injection on Sπ

2. the moment map is a homeomorphism from Sπ to �π

3. dim Sπ = dim �π = n − c, where c is the number of connected components of

the matroid Mπ .
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Proof. Suppose that (1) holds, i.e. that the moment map is an injection when restricted

to a cell Sπ . Then dim �π = dim Sπ . By [68, Proposition 7.12], the positroid variety Xπ is a

toric variety if and only if dim �π = dim Sπ , so this implies that Xπ is a toric variety, and

Sπ is its nonnegative part. It is well-known that the moment map is a homeomorphism

when restricted to the nonnegative part of a toric variety [29, Section 4.2], so it follows

that μ is a homeomorphism on Sπ . Therefore (1) implies (2). But obviously (2) implies (1).

Now suppose that (2) holds. Since �π is the moment map image of Sπ , it follows

that dim �π = dim Sπ , and by Proposition 3.4, we have that dim �π = n − c, where c is

the number of connected components of the matroid Mπ . Therefore (2) implies (3).

Now suppose (3) holds. Then by [68, Proposition 7.12], Xπ must be a toric

variety, and so the moment map restricts to a homeomorphism from Sπ to �π . So (3)

implies (2). �

Proposition 3.16. Consider a positroid cell Sπ ⊂ Gr≥0
k,n and let Mπ be the corresponding

positroid. Then the moment map is a homeomorphism from Sπ to �π ⊂ Rn if and only

if any reduced plabic graph associated to π is a forest. The (n − 1)-dimensional cells Sπ

on which the moment map is a homeomorphism to their image are precisely those cells

whose reduced plabic graphs are trees.

Proof. This follows from Proposition 3.15 and Proposition 3.13, together with the fact

that we can read off the dimension of a positroid cell from any reduced plabic graph G

for it as the number of regions of G minus 1. �

Remark 3.17. The connected (n−1)-dimensional positroid cells Sπ of Gr≥0
k,n are precisely

those (n − 1)-dimensional cells where π is a single cycle of length n.

As an alternative to the moment map from Definition 2.3, we can also consider

the algebraic moment map as in [60], defined as follows.3

Definition 3.18. Let A be a k × n matrix representing a point of Grk,n. The algebraic

moment map μ̃ : Grk,n → Rn is defined by

μ̃(A) =
∑

I∈([n]
k )

|pI(A)|eI∑
I∈([n]

k )
|pI(A)| .

3 The reference [60] defines this map for toric varieties, but it makes sense for Grk,n.
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Lemma 3.19. Proposition 3.15 and Proposition 3.16 hold verbatim after replacing

moment map by algebraic moment map. In particular, if Sπ is a positroid cell whose

reduced plabic graph is a tree, then μ̃ is an injection on Sπ and �π = μ̃(Sπ ).

Proof. We note that both the moment map and the algebraic moment map are homeo-

morphisms when restricted to the nonnegative part of a toric variety [60, Theorem 8.5],

[29, Section 4.2]. Therefore the proofs of Proposition 3.15 and Proposition 3.16 hold when

we use the algebraic moment map. �

Proposition 3.20. We have μ̃(Gr≥0
k,n) = �k,n.

Proof. It follows immediately from the definition that μ̃(A) will always be a convex

combination of the points eI for I ∈ ([n]
k

)
so μ̃(Gr≥0

k,n) ⊆ �k,n.

In the other direction, choose any positroid tiling {Sπ } of �k,n, e.g. as in Proposi-

tion 10.4. Then by Lemma 3.19 and the definition of positroid tiling, we have μ̃(Sπ ) = �π

and
⋃

�π = �k,n. It follows that μ̃(Gr≥0
k,n) = �k,n. �

4 Dissecting the hypersimplex and the amplituhedron

In this section we provide two recursive recipes for dissecting the hypersimplex �k+1,n,

and dissecting the amplituhedron An,k,2(Z); the recipe for dissecting the m = 2

amplituhedron was proposed in [44, Section 4.1] and proved in [16]. These recursive

recipes are completely parallel: as we will see in Section 5, the cells of corresponding

dissections are in bijection with each other via the T-duality map on positroid cells.

Since these two recursions are analogous to the BCFW recurrence (which gives tilings of

the m = 4 amplituhedron), we refer to them as BCFW-style recurrences.

4.1 BCFW dissections of the hypersimplex

Definition 4.1. Let G (resp. G′) be a reduced plabic graph with n − 1 boundary vertices,

associated to a positroid cell of Gr≥0
k+1,n−1 (resp. Gr≥0

k,n−1), which do not have a loop at

vertex n − 1. We define ipre (resp. iinc) to be the map which takes G (resp. G′) and replaces

the (n−1)st boundary vertex with a trivalent internal white (resp. black) vertex attached

to boundary vertices n − 1 and n, as in the middle (resp. rightmost) graph of Figure 1.

Abusing notation slightly, we also use ipre and iinc to denote the corresponding

maps on decorated permutations, positroid cells and their images under the moment and

amplituhedron maps.
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16793

Fig. 1. A BCFW-style recursion for dissecting the hypersimplex. There is a parallel recursion

obtained from this one by cyclically shifting all boundary vertices of the plabic graphs by i

(modulo n).

Remark 4.2. Using Section 12, it is straightforward to verify that both ipre(G) and iinc(G
′)

are reduced plabic graphs for cells of Gr≥0
k+1,n. Moreover, we can in fact define ipre(G) (resp.

iinc(G
′)) on any reduced plabic graph for Gr≥0

k+1,n−1 (resp. Gr≥0
k,n−1) which does not have a

black (resp. white) lollipop at vertex n − 1, and will again have that ipre(G) and iinc(G
′)

represent cells of Gr≥0
k+1,n.

Using Definition 12.7, it is easy to determine the effect of ipre and iinc on decorated

permutations. We leave the proof of the following lemma as an exercise.

Lemma 4.3. If π = (a1, a2, . . . , an−1) is a decorated permutation such that (n−1) �→ an−1

is not a black fixed point, then ipre(π) = (a1, a2, . . . , an−2, n, an−1).

If π = (a1, a2, . . . , an−1) is a decorated permutation such that (n − 1) �→ an−1

is not a white fixed point, then iinc(π) = (a1, a2, . . . , aj−1, n, aj+1, . . . , an−1, n − 1) where

j = π−1(n − 1).

Remark 4.4. Lemma 4.3 can be equivalently expressed in terms of L-diagrams (see [54]

or [44, Section 2]). If D is the L-diagram associated to π as in the first paragraph of Lemma

4.3, then ipre(D) is obtained from D by adding a new column to the left of D, where the

new column consists of a single + at the bottom. If D is the L-diagram associated to π as

in the second paragraph of Lemma 4.3, then iinc(D) is obtained from D by adding a new

row at the bottom of D, where the row consists of a single box containing a +.

Theorem 4.5 (BCFW recursion for the hypersimplex). Let Ck+1,n−1 (respectively Ck,n−1)

be a collection of positroid polytopes which dissects the hypersimplex �k+1,n−1 (resp.
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�k,n−1). Then

Ck+1,n = ipre(Ck+1,n−1) ∪ iinc(Ck,n−1)

dissects �k+1,n.

We use the term BCFW dissection (respectively, BCFW tiling) to refer to any

dissection or tiling that has the form Ck,n from Theorem 4.5.

Diagrammatically, Theorem 4.5 is depicted in Fig. 1.

Remark 4.6. Because of the cyclic symmetry of the positive Grassmannian and

the hypersimplex (see e.g. Theorem 7.4) there are n − 1 other versions of Theorem

4.5 (and Figure 1) in which all plabic graph labels get shifted by i modulo n (for

1 ≤ i ≤ n − 1).

Proof. The hypersimplex �k+1,n is cut out by the inequalities 0 ≤ xi ≤ 1, as well as the

equality
∑

i xi = k + 1. We will show that Figure 1 represents the partition of �k+1,n into

two pieces, with the middle graph representing the piece cut out by xn−1 + xn ≤ 1, and

the rightmost graph representing the piece cut out by xn−1 + xn ≥ 1.

Toward this end, it follows from Proposition 12.6 that if G is a reduced plabic

graph representing a cell of Gr≥0
k+1,n−1, such that the positroid MG has bases B, then the

bases of Mipre(G) are precisely B � {(B \ {n − 1}) ∪ {n} | B ∈ B, n − 1 ∈ B}. In particular, each

basis of Mipre(G) may contain at most one element of {n − 1, n}.
Meanwhile, it follows from Proposition 12.6 that if G is a reduced plabic graph

representing a cell of Gr≥0
k,n−1, such that the positroid MG has bases B, then the bases of

Miinc(G) are precisely {B ∪ {n} | B ∈ B} � {B ∪ {n − 1} | B ∈ B, n − 1 /∈ B}. In particular, each

basis of Miinc(G) must contain at least one element of {n − 1, n}.
It is now a straightforward exercise (using e.g. [9, Proposition 5.6]) to determine

that if Ck+1,n−1 is a collection of cells in Gr≥0
k+1,n−1 whose images dissect �k+1,n−1 then the

images of ipre(Ck+1,n−1) dissect the subset of �k+1,n cut out by the inequality xn−1+xn ≤ 1.

Similarly for iinc(Ck,n−1) and the subset of �k+1,n cut out by xn−1 + xn ≥ 1. �

Example 4.7. Let n = 5 and k = 2. We will use Theorem 4.5 to obtain a dissection of

�k+1,n = �3,5. We start with a dissection of �3,4 coming from the plabic graph shown

below (corresponding to the decorated permutation (4, 1, 2, 3)), and a dissection of �2,4

(corresponding to the permutations (2, 4, 1, 3) and (3, 1, 4, 2)). Applying the theorem leads
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16795

Fig. 2. An example of a dissection of �3,6 that cannot be obtained from the BCFW-style recursion

in Theorem 4.5.

to the three plabic graphs in the bottom line, which correspond to the permutations

(4, 1, 2, 5, 3), (2, 5, 1, 3, 4), (3, 1, 5, 2, 4).

Remark 4.8. It is worth pointing out that our BCFW-style recursion does not provide all

possible dissections of the hypersimplex. This comes from the fact that in each step of the

recursion we divide the hypersimplex into two pieces, while there are some dissections

coming from 3-splits (a k-split is a coarsest subdivision with k maximal faces and a

common face of codimension k − 1). The simplest example of a dissection which cannot

be obtained from the recursion can be found already for �3,6 and is depicted in Figure 2.

4.2 BCFW dissections of the m = 2 amplituhedron

We now introduce some maps on plabic graphs, and recall a result of Bao and He [16].

Definition 4.9. Let G be a reduced plabic graph with n−1 boundary vertices, associated

to a positroid cell of Gr≥0
k,n−1. We define ιpre to be the map which takes G and adds a black

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/19/16778/7046307 by EM
BL user on 16 D

ecem
ber 2024
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Fig. 3. A BCFW-style recursion for dissecting the amplituhedron. There is a parallel recursion

obtained from this one by cyclically shifting all boundary vertices of the plabic graphs by i

(modulo n).

lollipop at a new boundary vertex n, as shown in the middle graph of Figure 3. Similarly,

we define ιinc to be the map on a plabic graph G′ for Gr≥0
k−1,n−1 which modifies G′, changing

the graph locally around vertices 1, n, n − 1, as shown at the right of Figure 3.

Remark 4.10. The resulting graph ιpre(G) is a reduced plabic graph for a cell of Gr≥0
k,n.

It is not hard to show that, if G′ does not have white fixed points at vertices 1 or n − 1,

then ιinc(G
′) is a reduced plabic graph for a cell of Gr≥0

k,n.

Abusing notation slightly, we also use ιpre and ιinc to denote the corresponding

maps on positroid cells and positroid polytopes, decorated permutations, etc. Using

Definition 12.7, one can also determine the effect of ιpre and ιinc on decorated permu-

tations (and L-diagrams). We leave the proof of the following lemma as an exercise.

Lemma 4.11. Let π = (a1, a2, . . . , an−1) be a decorated permutation on n−1 letters. Then

ιpre(π) = (a1, a2, . . . , an−2, an−1, n), where n is a black fixed point.

Let π = (a1, a2, . . . , an−1) be a decorated permutation; assume that neither

positions 1 nor n − 1 are white fixed points. Let h = π−1(n − 1). Then ιinc(π) is the

permutation such that 1 �→ n − 1, h �→ n, n �→ a1, and j �→ aj for all j �= 1, h, n.

The construction below is closely related to the recursion from [44, Definition

4.4], which is a sort of m = 2 version of the BCFW recurrence.

Theorem 4.12 (BCFW recursions for the m = 2 amplituhedron). [16, Theorem A] Let

Cn−1,k,2 (respectively Cn−1,k−1,2) be a collection of Grasstopes which dissects the m = 2
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amplituhedron An−1,k,2(Z′) (resp. An−1,k−1,2(Z′′)). Then

Cn,k,2 = ιpre(Cn−1,k,2) ∪ ιinc(Cn−1,k−1,2)

dissects An,k,2(Z).

We use the term BCFW dissection (respectively, BCFW tiling) to refer to any

dissection or tiling that has the form Ck,n from Theorem 4.12.

Diagrammatically, Theorem 4.12 reads as follows:

Remark 4.13. Because of the cyclic symmetry of the positive Grassmannian and the

amplituhedron (see e.g. Theorem 7.5) there are n − 1 other versions of Theorem 4.5 (and

Figure 1) in which all plabic graph labels get shifted by i modulo n (for 1 ≤ i ≤ n − 1).

Note that [16] worked in the setting of positroid tilings – i.e. they were only

considering collections of cells that map injectively from the positive Grassmannian to

the amplituhedron – but Theorem 4.12 holds in the more general setting of dissections.

Example 4.14. Let n = 5 and k = 2. We will use Theorem 4.12 to obtain a dissection

of An,k,2(Z) = A5,2,2. We start with a dissection of A4,2,2 coming from the plabic graph

shown below (corresponding to the decorated permutation (3, 4, 1, 2)), and a dissection of

A4,1,2 (corresponding to the permutations (3, 2, 4, 1) and (2, 3, 1, 4)). Applying the theorem

leads to the three plabic graphs in the bottom line, which correspond to the permutations

(3, 4, 1, 2, 5), (4, 2, 5, 1, 3), (4, 3, 1, 5, 2).
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5 The T-duality map

In this section we define the T-duality map (previously defined in [44, Definition 4.5]),

from certain positroid cells of Gr≥0
k+1,n to positroid cells of Gr≥0

k,n, and we prove many

remarkable properties of it. We will subsequently explain, in Theorem 6.5, how the T-

duality map gives a correspondence between tilings (and more generally dissections) of

the hypersimplex �k+1,n and the amplituhedron An,k,2(Z).

To get a preview of the phenomenon we will illustrate, compare the decorated

permutations labelling the plabic graphs in Example 4.7 and Example 4.14; can you spot

the correspondence? (This correspondence will be explained in Theorem 6.5.)

5.1 T-duality as a map on permutations

Definition 5.1. We define the T-duality map from loopless decorated permutations on

[n] to coloopless decorated permutations on [n] as follows. Given a loopless decorated

permutation π = (a1, a2, . . . , an) (written in list notation) on [n], we define the decorated

permutation π̂ by π̂(i) = π(i−1), so that π̂ = (an, a1, a2, . . . , an−1), where any fixed points

in π̂ are declared to be loops. Equivalently, π̂ is obtained from π by composing π with

the permutation π0 = (n, 1, 2, . . . , n − 1) in the symmetric group, π̂ = π0 ◦ π .

Recall that an anti-excedance of a decorated permutation is a position i such that

π(i) < i, or π(i) = i and i is a coloop. Our first result shows that T-duality is a bijection

between loopless cells of Gr≥0
k+1,n and coloopless cells of Gr≥0

k,n.

Lemma 5.2. The T-duality map π �→ π̂ is a bijection between the loopless permutations

on [n] with k + 1 anti-excedances, and the coloopless permutations on [n] with k anti-

excedances. Equivalently, the T-duality map is a bijection between loopless positroid

cells of Gr≥0
k+1,n and coloopless positroid cells of Gr≥0

k,n.

Proof. The second statement follows from the first by Section 12, so it suffices to prove

the first statement. Let π = (a1, . . . , an) be a loopless permutation on [n] with k + 1 anti-

excedances; then π̂ = (an, a1, . . . , an−1). Consider any i such that 1 ≤ i ≤ n − 1. Suppose i

is a position of a anti-excedance, i.e. either ai < i or ai = i. Then the letter ai appears in

the (i + 1)st position in π̂ , and since ai < i + 1, we again have an anti-excedance. On the

other hand, if i is not a position of an anti-excedance, i.e. ai > i (recall that π is loopless),

then in the (i + 1)st position of π̂ we have ai ≥ i + 1. By Definition 5.1 if we have a fixed

point in position i + 1 (i.e. ai = i + 1) this is a loop, and so position i + 1 of π̂ will not be

a anti-excedance. Therefore if I ⊂ [n − 1] is the positions of the anti-excedances located
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in the first n − 1 positions of π , then I + 1 is the positions of the anti-excedances located

in positions {2, 3, . . . , n} in π̂ .

Now consider position n of π . Because π is loopless, n will be the position of

a anti-excedance in π . And because π̂ is defined to be coloopless, 1 will never be the

position of a anti-excedance in π̂ . Therefore the number of anti-excedances of π̂ will be

precisely one less than the number of anti-excedances of π .

It is easy to reverse this map so it is a bijection. �

Remark 5.3. Since by Lemma 5.2 the map π �→ π̂ is a bijection, we can also talk about

the inverse map from coloopless permutations on [n] with k anti-excedances to loopless

permutations on [n] with k + 1 anti-excedances. We denote this inverse map by π �→ π̌ .

Remark 5.4. Our map π �→ π̂ is in fact a special case of the map ρA introduced by

Benedetti-Chavez-Tamayo in [14, Definition 23] (in the case where A = ∅).

5.2 T-duality as a map on cells

While we have defined the T-duality map as a map π �→ π̂ on the permutations labelling

positroid cells, it can be shown that it is induced from a map on the corresponding cells.

We will follow here the derivation in [1] and define a Q-map which maps elements of the

positroid cell Sπ of Gr≥0
k+1,n to the positroid cell Sπ̂ of Gr≥0

k,n. Note that in much of this

section we allow m to be any positive even integer.

Definition 5.5. Let λ ∈ Gr m
2 ,n. We say that λ is generic if pI(λ) �= 0 for all I ∈

(
[n]
m
2

)
.

For m = 2, λ = (λ1, λ2, . . . , λn) ∈ Rn is generic in Rn if λi �= 0 for all i = 1, . . . , n.

Lemma 5.6. Given C = (c1, c2, . . . , cn) representing an element of Grk+ m
2 ,n where ci are

columns of C, then C contains a generic m
2 -plane if and only if rank

({ci}i∈I

) = m
2 for all

I ∈
(

[n]
m
2

)
.

Proof. If a generic m
2 -plane λ ∈ M(m

2 , n) is contained in C, then there is a matrix h ∈
M(m

2 , k + m
2 ) such that λ = h · C. Then pI(λ) = ∑

J∈
(

[k + m
2 ]

m
2

) pJ(h)CI
J , with I ∈

(
[n]
m
2

)
. If

rank
({ci}i∈I

) = m
2 then there exist JI ∈

(
[k + m

2 ]
m
2

)
such that CI

JI
�= 0, therefore it is enough

to choose h such that pJI
(h) �= 0 in order to guarantee λ = h · C is generic. Vice-versa

if we assume rank
({ci}i∈I

)
< m

2 then CI
J = 0 for all J ∈

(
[k + m

2 ]
m
2

)
and this would imply

pI(λ) = 0. �
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If we specialize to the m = 2 case, we have the following:

Lemma 5.7. Let Sπ be a positroid cell in Gr≥0
k+1,n. Then Sπ is loopless if and only if every

vector space V ∈ Sπ contains a generic vector.

Lemma 5.8. Let Sπ be a positroid cell. If every vector space V ∈ Sπ contains a generic
m
2 -plane then π(i) ≥ i + m

2 (as an affine permutation, see Definition 12.3) for all i.

Proof. Let C = (c1, c2, . . . , cn) be a matrix representing V, listed as a sequence of

column vectors. Let us assume that there exists a such that π(a) ≤ a + m
2 − 1. Then

ca ∈ span{ca+1, . . . , ca+ m
2 −1} and, in particular, r[a; a + m

2 − 1] < m
2 . The proof follows

immediately from Lemma 5.6. �

Definition 5.9. For a positroid cell Sπ ⊂ Gr≥0
k+ m

2 ,n and λ ∈ Gr m
2 ,n a generic vector of an

element V ∈ Sπ , we define

S(λ)
π := {W ∈ Sπ : λ ⊂ W}.

Let C(λ)
π be matrix representatives for elements in S(λ)

π . It is always possible to

find an invertible row transformation which bring C(λ)
π into the form

C(λ)
π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1, 1 λ1, 2 . . . λ1, n
...

...
. . .

...

λm
2 , 1 λm

2 , 2 . . . λm
2 , n

c m
2 +1, 1 c m

2 +1, 2 . . . c m
2 +1, n

...
...

. . .
...

c m
2 +k, 1 c m

2 +k, 2 . . . c m
2 +k, n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.1)

Let us define a linear transformation Q(λ) : Rn �→ Rn represented by the n×n matrix Q(λ)

with elements4

Q(λ)

ab =
m
2∑

i=0

(−1)i δa,b− m
2 +i pb− m

2 ,...,b− m
2 +i−1, m

2 +i+1,...,b (λ) , a, b, ∈ [n]. (5.2)

Here we used the notation where δab = 1 when a = b and δab = 0 otherwise.

4 Notice that our definition differs from the one found in [1] for m = 4. They are however related to each
other by a cyclic shift and rescaling each column of Q(λ).
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It is easy to show that λQ(λ) = 0 and that Q(λ) has rank n − m
2 . Let us define

Ĉ(λ)
π = C(λ)

π · Q(λ), then

Ĉ(λ)
π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

ĉ m
2 +1, 1 ĉ m

2 +1, 2 . . . ĉ m
2 +1, n

...
...

. . .
...

ĉ m
2 +k, 1 ĉ m

2 +k, 2 . . . ĉ m
2 +k, n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.3)

It is easy to check that span{ĉa, ĉa+1, . . . , ĉb} ⊂ span{ca− m
2

, ca− m
2 +1, . . . , cb} and moreover

that for consecutive maximal minors we have: pa− m
2 ,...a,...a+k−1(C) is proportional to

pa,...,a+k−1(Ĉ). Then, the matrix Q(λ) projects elements of S(λ)
π into Sπ̂ , with

π̂(i) = π(i − m

2
). (5.4)

The proof of this fact closely follows the one found in [1, page 75].

For m = 2 we get the explicit form of Q(λ) is:

Q(λ)

ab = δa,b−1λb − δa,bλb−1 , a, b ∈ [n]. (5.5)

Moreover, we have the following relation between consecutive minors

pa,a+1,...,a+k−1(Ĉ) = (−1)kλa . . . λa+k−2 pa−1,a,...,a+k−1(C). (5.6)

Remark 5.10. In order for the T-duality map to be a well-defined (on affine permuta-

tions), we require that both i ≤ π(i) ≤ n + i and i ≤ π̂(i) ≤ n + i are satisfied. Given that

π̂(i) = π(i − m
2 ), this implies extra conditions on allowed permutations, i.e. π(i) ≥ i + m

2

and π̂(i) ≤ i + n − m
2 . We observe that the operation in (5.4) is then well-defined for the

cells Sλ
π , by Lemma 5.8. Finally, for m = 2 these conditions correspond to lack of loops

(resp. coloops) for π (reps. π̂ ).

Proposition 5.11 (How T-duality affects dimensions of cells). Let Sπ be a loopless cell

of Gr≥0
k+1,n. Then Sπ̂ is a coloopless cell of Gr≥0

k,n, and dim(Sπ̂ ) − 2k = dim(Sπ ) − (n − 1). In

particular, if dim Sπ = n − 1, then dim Sπ̂ = 2k.
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Proof. Let us translate Definition 5.1 into the language of affine permutations. Then

T-duality maps a (k + 1, n)-bounded affine permutation πa into a (k, n)-bounded affine

permutation π̂a = πa ◦ t, with t : Z → Z the map i �→ i − 1. By [54, Proposition

17.10] and Section 12, the codimension of the positroid cell Sνa
equals the length �(νa) of

the associated affine permutation νa. Clearly the map t preserves the set of inversions,

and hence the length, of affine bounded permutations, i.e. �(πa) = �(π̂a). Therefore the

codimensions of Sπa
⊆ Gr≥0

k+1,n and Sπ̂a
⊆ Gr≥0

k,n are equal:

(k + 1)(n − k − 1) − dim(Sπa
) = k(n − k) − dim(Sπ̂a

), (5.7)

from which the claim of the proposition follows immediately. �

Remark 5.12. Alternatively, one may prove the above result by mimicking an argument

of a similar statement given in [1, pages 75-76].

6 T-duality relates tiles, tilings, and dissections

In this section we will compare the positroid tiles and tilings (and more generally,

dissections) of the hypersimplex �k+1,n with those of the amplituhedron An,k,2(Z). Again,

we will see that T-duality connects them! Our main result of this section is Theorem 6.5,

which says that T-duality provides a bijection between the BCFW tilings/dissections

of the hypersimplex �k+1,n, and the BCFW tilings/dissections of the amplituhedron

An,k,2(Z).

The 2k-dimensional cells of Gr≥0
k,n which have full-dimensional image in An,k,2(Z)

were studied in [46] and called generalized triangles. In this paper we will refer to the

above objects as positroid tiles defined as follows.

Definition 6.1 (Positroid tiles of An,k,2). Let Sπ be a 2k-dimensional cell of Gr≥0
k,n such

that dim Zπ = dim Sπ , and the restriction of the amplituhedron map Z̃ to Sπ is an injection.

Then we call Zπ a positroid tile of An,k,2(Z).

A conjectural description of positroid tiles was given in [46]:

Definition 6.2. We say that a collection of convex polygons (which have p1, . . . , pr

vertices) inscribed in a given n-gon is a collection of k non-intersecting triangles

in an n-gon if each pair of such polygons intersects in at most a vertex and if the
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16803

total number of triangles needed to triangulate all polygons in the collection is k, i.e.

(p1 − 2) + . . . + (pr − 2) = k.

It was conjectured and experimentally checked in [46] that positroid tiles in

An,k,2(Z) are in bijection with collections of ‘k non-intersecting triangles in a n-gon’.

Moreover, one can read off the cell Sπ of Gr≥0
k,n corresponding to a positroid tile ofAn,k,2(Z)

using the combinatorics of the collection of k non-intersecting triangles in an n-gon,

see [46, Section 2.4]. The basic idea is to associate a row vector to each of the non-

intersecting triangles, with generic entries at the positions of the triangle vertices (and

zeros everywhere else). This way one constructs a k × n matrix whose matroid is the

matroid for Sπ .

Borrowing the terminology of Definition 6.1, we make the following definition.

Definition 6.3 (Positroid tiles of �k+1,n). Let Sπ be an (n−1)-dimensional cell of Gr≥0
k+1,n

such that the moment map μ is an injection on Sπ . Then we say the image �π := μ(Sπ ) in

�k+1,n is a positroid tile in �k+1,n.

We have already studied the positroid tiles in �k+1,n in Proposition 3.16: they

come from (n − 1)-dimensional positroid cells whose matroid is connected, or equiva-

lently, they come from the positroid cells whose reduced plabic graphs are trees. And

since these are positroid cells in Gr≥0
k+1,n, each such plabic graph, when drawn as a

trivalent graph, is a tree with n leaves with precisely k internal black vertices. By simply

taking the planar dual of these tree, we get the following:

Proposition 6.4. There is a bijective map between positroid tiles in �k+1,n and collec-

tions of k non-intersecting triangles in an n-gon.

Proof. Consider a collection of non-intersecting polygons inside an n-gon P =
(P1, . . . , Pr) and its complement P = (P1, . . . Pr̄). Let us choose a triangulation of all

polygons into triangles P → T = (T1, . . . , Tk) and P → T = (T1, . . . , Tn−k−2). Associate a

black vertex to the middle of each triangle T and a white vertex with to middle of each

triangle T. Finally, connect each pair of vertices corresponding to triangles sharing an

edge and draw an edge through each boundary of the n-gon. This way we get a tree graph

with exactly k black and n − k − 2 white vertices. Hence it is a plabic graph for the cell

Sπ ⊂ G≥0
k+1,n corresponding to a plabic tile of �k+1,n. �

In the following theorem we show that T-duality relates BCFW tilings and

dissections of the hypersimplex and amplituhedron.
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16804 T. Łukowski et al.

Fig. 4. The map in Proposition 6.4 for π = {4, 7, 1, 6, 5, 3, 2} ∈ Gr≥0
3,7: (a) positroid tile label,

(b) A triangulation of collections P and P̄, (c) Assigning vertices, (d) Plabic graph of π̌ =
{7, 1, 6, 5, 3, 2, 4} ∈ Gr≥0

4,7

Theorem 6.5 (BCFW tilings of �k+1,n and An,k,2(Z) are T-dual). The T-duality map

provides a bijection between the BCFW tilings of the hypersimplex �k+1,n and the BCFW

tilings of the amplituhedron An,k,2(Z). That is, the collection {�π } of positroid polytopes

constructed in Theorem 4.12 is a positroid tiling of �k+1,n if and only if the T-dual

collection {Zπ̂ } of Grasstopes is a positroid tiling of An,k,2(Z). The same statement holds

if we replace the word “tiling” with “dissection”.

Proof. We prove this by induction on k + n, using Theorem 4.5 and Theorem 4.12. It

suffices to show:

• if {�π }π∈C dissects �k+1,n−1 and {Z′
π̂
}
π∈Ĉ dissects An−1,k,2(Z′) then for any π ∈

C, ̂ipre(π) = ιpre(π̂).

• if {�π }π∈C dissects �k,n−1 and {Z′′
π̂
}
π∈Ĉ dissects An−1,k−1,2(Z′′) then for any π ∈

C, ̂iinc(π) = ιinc(π̂).

Let π = (a1, . . . , an−1) be a decorated permutation. We first verify the first

statement. Then ipre(π) = (a1, a2, . . . , an−2, n, an−1), so ̂ipre(π) = (an−1, a1, a2, . . . , an−2, n),

where n is a black fixed point. Meanwhile, π̂ = (an−1, a1, a2, . . . , an−2), so ιpre(π̂) =
(an−1, a1, a2, . . . , an−2, n), where n is a black fixed point.

We now verify the second statement. Let j = π−1(n − 1). Then we have that

iinc(π) = (a1, a2, . . . , aj−1, n, aj+1, . . . , an−1, n − 1), and ̂iinc(π) = (n − 1, a1, a2, . . . , aj−1,

n, aj+1, . . . , an−1). Meanwhile π̂ = (an−1, a1, a2, . . . , an−2). Then it is straightforward to

verify that ιinc(π̂) is exactly the permutation ̂iinc(π) = (n − 1, a1, a2, . . . , aj−1, n, aj+1, . . . ,

an−1), as desired. �
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We now see that T-duality relates positroid tiles of the hypersimplex and the

amplituhedron.

Proposition 6.6. Suppose the positroid polytope �π is a positroid tile of the hyper-

simplex �k+1,n. Then the T-dual Grasstope Zπ̂ is a positroid tile of the amplituhedron

An,k,2(Z) for all Z ∈ Mat>0
n,k+2.

Proof. By Proposition 3.16, the fact that μ is injective implies that a (any) reduced plabic

graph G representing Sπ must be a (planar) tree. But then by Theorem 4.5 (see Figure 1),

G has a black or white vertex which is incident to two adjacent boundary vertices i and

i + 1 (modulo n), and hence appears in some tiling of the hypersimplex (and specifically

on the right-hand side of Figure 1).

Applying Theorem 6.5, we see that π̂ appears in some tiling of the amplituhedron

An,k,2(Z). It follows that Z̃ is injective on Sπ̂ . �

By Proposition 6.6 and Proposition 6.4, collections of k non-intersecting trian-

gles in an n-gon label both positroid tiles of �k+1,n and, via T-duality, positroid tiles

of An,k,2(Z). We conjecture that this labelling is compatible with the way [46] associates

collections of k non-intersecting triangles in an n-gon with positroid tiles of An,k,2(Z).

Using Proposition 6.6, Proposition 3.13 and Proposition 3.15, we obtain the fol-

lowing.

Corollary 6.7. The Z̃-map is an injection on all 2k-dimensional cells of the form Sπ̂ ⊂
Gr≥0

k,n, where π is a SIF permutation and dim Sπ = n − 1.

We know from Proposition 3.15 that the moment map is an injection on the cell Sπ

of Gr≥0
k,n precisely when dim Sπ = n − c, where c is the number of connected components

of the positroid of π . We have experimentally checked the following statement for these

cells.

Conjecture 6.8. Let Sπ be a loopless (n−c)-dimensional cell of Gr≥0
k+1,n with c connected

components (for c a positive integer). Then Sπ̂ is a coloopless (2k + 1 − c)-dimensional

cell of Gr≥0
k,n on which Z̃ is injective.

Note that the statement that Sπ̂ is coloopless of dimension (2k + 1 − c) follows

from Lemma 5.2 and Proposition 5.11. Moreover the c = 1 case of the conjecture is

Proposition 6.6.
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While Theorem 6.5 shows that T-duality relates the large class of BCFW

tilings/dissections of �k+1,n to the corresponding large class of BCFW tilings/dis-

sections of An,k,2(Z), not all tilings/dissections arise from a BCFW-style recursion.

Nevertheless, we conjecture the following.

Conjecture 6.9 (Tilings and dissections of �k+1,n and An,k,2(Z) are T-dual). A collection

of positroid polytopes {�π } is a tiling (respectively, dissection) of �k+1,n if and only if

for all Z ∈ Mat>0
n,k+2 the collection of T-dual Grasstopes {Zπ̂ } is a tiling (respectively,

dissection) of An,k,2(Z).

This conjecture is supported by Theorem 6.5, Proposition 10.4 and results of

Section 7 (which relates parity duality and T-duality), and will be explored in a sub-

sequent work5. We have also checked the conjecture using Mathematica, see Section 10.

7 T-duality, cyclic symmetry and parity duality

In this section we discuss the relation of T-duality to parity duality, which relates

dissections of the amplituhedron An,k,m(Z) with dissections of An,n−m−k,m(Z′). The

definition of parity duality was originally inspired by the physical operation of parity

conjugation in quantum field theory – more specifically, in the context of scattering

amplitudes in N = 4 Super-Yang-Mills, where amplitudes can be computed from the

geometry of An,k,4(Z) [6]. Furthermore, the conjectural formula of Karp, Williams, and

Zhang [44] for the number of cells in each tiling of the amplituhedron is invariant under

the operation of swapping the parameters k and n − m − k and hence is consistent

with parity duality: this motivated further works, see [28, Section 2.4] and [33]. In

particular, [33] gave an explicit bijection between dissections ofAn,k,m(Z) and dissections

of An,n−m−k,m(Z′), see Theorem 7.7.

In Theorem 7.3, we will explain how parity duality for m = 2 amplituhedra is

naturally induced by a composition of the usual duality for Grassmannians (Grk,n �
Grn−k,n) and the T-duality map (between loopless cells of Gr≥0

k+1,n and coloopless cells

of Gr≥0
k,n). The usual Grassmannian duality gives rise to a bijection between dissections

of the hypersimplex �k+1,n and dissections of the hypersimplex �n−k−1,n. By composing

this Grassmannian duality with the T-duality map (on both sides), we obtain the parity

duality between dissections of An,k,2(Z) and An,n−k−2,2(Z′)!

5 Since our paper appeared on arXiv, Conjecture 6.9 has been proved for tilings in [55].
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Recall that our convention on dissections is that the images of all positroid cells

are of full dimension n − 1. Therefore all positroids involved in a dissection must be

connected, and the corresponding decorated permutations will be fixed-point-free.

Theorem 7.1 (Grassmannian duality for dissections of the hypersimplex). Let {�π } be

a collection of positroid polytopes which dissects the hypersimplex �k+1,n. Then the

collection of positroid polytopes {�π−1} dissects the hypersimplex �n−k−1,n.

Proof. If G is a plabic graph representing the positroid cell Sπ , and if we swap the colors

of the black and white vertices of G, we obtain a graph G′ representing the positroid Sπ−1 .

It is not hard to see from [9] that G′ and π−1 represent the dual positroid to G and π . But

now the matroid polytopes �π and �π−1 are isomorphic via the map dual : Rn → Rn

sending (x1, . . . , xn) �→ (1 − x1, . . . , 1 − xn). This maps relates the two dissections in the

statement of the theorem. �

By composing the inverse map on decorated permutations π �→ π−1 (which

represents the Grassmannian duality of Theorem 7.1) with T-duality, we obtain the

following map.

Definition 7.2. We define Ũk,n to be the map between coloopless permutations on [n]

with k anti-excedances and coloopless permutations on [n] with n−k−2 anti-excedances

such that Ũk,nπ̂ = π̂−1. Equivalently, we have (Ũk,nπ)(i) = π−1(i − 1) − 1, where values

of the permutation are considered modulo n, and any fixed points which are created are

designated to be loops.

Theorem 7.3 (Parity duality from T-duality and Grassmannian duality). Let {Zπ } be a

collection of Grasstopes which dissects the amplituhedron An,k,2(Z). Then the collection

of Grasstopes {ZŨk,nπ } dissects the amplituhedron An,n−k−2,2(Z′).

We will prove Theorem 7.3 by using the cyclic symmetry of the positive Grass-

mannian and the amplituhedron, and showing (see Lemma 7.8) that up to a cyclic shift,

our map Ũk,n agrees with the parity duality map of [33].

The totally nonnegative Grassmannian exhibits a beautiful cyclic symmetry [54].

Let us represent an element of Gr≥0
k,n by a k × n matrix, encoded by the sequence of

n columns 〈v1, . . . , vn〉. We define the (left) cyclic shift map σ to be the map which

sends 〈v1, . . . , vn〉 to the point 〈v2, . . . , vn, (−1)k−1v1〉, which one can easily verify lies in

Gr≥0
k,n. Since the cyclic shift maps positroid cells to positroid cells, for π a decorated
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16808 T. Łukowski et al.

permutation, we define σπ to be the decorated permutation such that Sσπ = σ(Sπ ).

It is easy to see that σπ(i) = π(i + 1) − 1. (Note that under the cyclic shift, a fixed

point of π at position i + 1 gets sent to a fixed point of σπ at position i; we color fixed

points accordingly.) Meanwhile the inverse operation, the right cyclic shift σ−1 satisfies

(σ−1π)(i) = π(i − 1) + 1. We use σ t (respectively, σ−t) to denote the repeated application

of σ (resp. σ−1) t times, so that (σ tπ)(i) := π(i + t) − t and (σ−tπ)(i) := π(i − t) + t.

The next result follows easily from the definitions.

Theorem 7.4 (Cyclic symmetry for dissections of the hypersimplex). Let {�π } be a

collection of positroid polytopes which dissects the hypersimplex �k+1,n. Then the

collection of positroid polytopes {�σπ } dissects �k+1,n.

Proof. Let σ
R

: Rn → Rn be defined by (x1, . . . , xn) �→ (x2, . . . , xn, x1). Clearly σ
R

is an

isomorphism mapping the hypersimplex �k+1,n back to itself. Moreover, applying the

cyclic shift σ to a positroid has the effect of simply shifting all its bases, so the matroid

polytope of σπ satisfies �σπ = σ
R
(�π). The result now follows. �

The above cyclic symmetry for dissections of the hypersimplex also has an

analogue for the amplituhedron.

Theorem 7.5 (Cyclic symmetry for dissections of the amplituhedron). [16, Corollary 3.2]

Let {�π } be a collection of Grasstopes which dissects the amplituhedron An,k,m(Z), with

m even. Then the collection of Grasstopes {Zσπ } also dissects An,k,m(Z).

In order to make contact with [33], we introduce a map Uk,n on (coloopless)

decorated permutations as follows.

Definition 7.6. We define Uk,n to be the map from coloopless permutations on [n] with

k anti-excedances to coloopless permutations on [n] with n−k −2 anti-excedances such

that (Uk,nπ)(i) = π−1(i + k)+ (n − k − 2), where values of the permutation are considered

modulo n, and any fixed points which are created are designated to be loops.

It is not hard to see that this map is equivalent to the parity duality from [33] for

m = 2. In particular we have the following theorem:

Theorem 7.7. [33, Theorem 7.2] Let {Zπ } be a collection of Grasstopes which dissects

the amplituhedron An,k,2(Z). Then the collection of Grasstopes {ZUk,nπ } dissects the

amplituhedron An,n−k−2,2(Z′).
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16809

Lemma 7.8. For fixed n and k, the maps Ũk,n and Uk,n are related by the cyclic

shift map

Ũk,n = σ−(k+1) ◦ Uk,n. (7.1)

Proof. Since (Uk,nπ)(i) = π−1(i + k) + (n − k − 2), we have that (σ−(k+1) ◦ Uk,nπ)(i) =
π−1((i + k)− (k + 1))+ (n − k − 2)+ (k + 1) = π−1(i − 1)+ n − 1, which is exactly Ũk,n (mod

n). �

We now prove Theorem 7.3.

Proof. This result follows immediately from Theorem 7.5, Theorem 7.7, and

Lemma 7.8. �

Remark 7.9. From Theorem 7.4 and Theorem 7.5 it is clear that if we redefine the T-

duality map in Definition 5.1 by composing it with any cyclic shift σa (for a an integer),

the main properties of the map will be preserved. In particular, any statement about

dissections of the hypersimplex versus the corresponding ones of the amplituhedron

will continue to hold, along with the parity duality.

Remark 7.10. Parity duality has a nice graphical interpretation when we represent

positroid tiles of An,k,2(Z) as collection of k non-intersecting triangles in an n-gon.

The Grassmannian duality of Gr≥0
k+1,n amounts to swapping black and white vertices

in the plabic graphs, and when we compose it with the T-duality map, by Proposition

6.4, results in taking the complementary polygons inside the n-gon. We end up with a

collection of n − k − 2 non-intersecting triangles in the n-gon.

8 Good and bad dissections of the hypersimplex and the amplituhedron

Among all possible positroid dissections, there are some with particularly nice features,

which we will call “good”, as well as others with rather unpleasant properties. We show

below examples of both a good and a bad dissection.

Example 8.1. Let us study the following tiling of A6,2,2(Z):

C1 = {
Zπ(1) , Zπ(2) , Zπ(3) , Zπ(4) , Zπ(5) , Zπ(6)

}
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16810 T. Łukowski et al.

with

π(1) = (1, 2, 5, 6, 3, 4), π(2) = (1, 3, 6, 5, 2, 4), π(3) = (1, 4, 6, 2, 5, 3) ,

π(4) = (2, 6, 3, 5, 1, 4), π(5) = (2, 6, 4, 1, 5, 3), π(6) = (3, 6, 1, 4, 5, 2) .

All elements of C1 are 4-dimensional positroid tiles. The tiling C1 is a refinement of the

following dissection

C2 = {
Zπ(1) , Zπ(7) , Zπ(8) , Zπ(6)

}

with

π(7) = (1, 4, 6, 5, 2, 3) , π(8) = (2, 6, 4, 5, 1, 3) .

The dissection C2 has the property that if a pair of tiles intersect along a 3-dimensional

surface then this surface is an image of another positroid cell in Gr≥0
2,6:

Zπ(1) ∩ Zπ(7) = Z(1,2,6,5,3,4)

Zπ(7) ∩ Zπ(8) = Z(1,6,4,5,2,3)

Zπ(8) ∩ Zπ(6) = Z(2,6,1,4,5,3)

and all remaining pairs of tiles intersect along lower dimensional surfaces. We consider

the dissection C2 “good” because all its elements have compatible codimension one

boundaries. However, the dissection C1 does not have this property. Let us observe that

Zπ(2) ∪ Zπ(3) = Zπ(7)

Zπ(4) ∪ Zπ(5) = Zπ(8)

We expect that, after we subdivide Zπ(7) and Zπ(8) , the boundary Z(1,6,4,5,2,3) which they

share will also get subdivided. This however happens in two different ways and we do

not get compatible codimension one faces for the dissection C1. It is a similar picture to

the one we get when we consider polyhedral subdivisions of a double square pyramid: it

is possible to subdivide it into two pieces along its equator, and then further subdivide

each pyramid into two simplices. However, in order to get a polyhedral triangulation
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16811

of the double square pyramid, we need to do it in a compatible way, along the same

diagonal of the equatorial square.

Therefore, we prefer to work with dissections where the boundaries of the strata

interact nicely. Toward this end, we introduce the following notion of good dissection.

Definition 8.2. Let C = {�π(1) , . . . , �π(�)} be a dissection of �k+1,n. We say that C is a good

dissection of �k+1,n if the following condition is satisfied: for i �= j, if �π(i) ∩ �π(j) has

codimension one, then �π(i) ∩ �π(j) equals �π , where �π is a facet of both �π(i) and �π(j) .

Note that the above condition is equivalent to requiring that C is a polyhedral

subdivision of �k+1,n. To make the analogous notion for amplituhedron, we need to define

facets.

Definition 8.3. Let Zπ ⊂ An,k,m(Z) be a Grasstope. We say that Zπ ′ is a facet of Zπ if it

is maximal by inclusion among the Grasstopes satisfying the following properties: the

cell Sπ ′ is contained in Sπ ; Zπ ′ is contained in the boundary of Zπ ; Zπ ′ has codimension 1

in Zπ .

Definition 8.4. Let C = {Zπ(1) , . . . , Zπ(�)} be a collection of Grasstopes of An,k,2(Z). We

say that C is a good dissection of A if the following condition is satisfied: for i �= j, if

Zπ(i) ∩ Zπ(j) has codimension one, then Zπ(i) ∩ Zπ(j) equals Zπ , where Zπ is a facet of both

Zπ(i) and Zπ(j) .

In the following, we will conjecture that good dissections of the hypersimplex

are in one-to-one correspondence with good dissections of the amplituhedron. Toward

this goal, we start by providing a characterization of good intersections of positroid

polytopes.

Proposition 8.5. Let �π(1) and �π(2) be two (n − 1)-dimensional positroid polytopes

whose intersection �π(1) ∩ �π(2) is a polytope of dimension n − 2. Then �π(1) ∩ �π(2) is

a positroid polytope of the form �π(3) , where π(3) is a loopless permutation.

Proof. By Theorem 3.7, �π(1) ∩�π(2) is a positroid polytope and hence has the form �π(3) ,

for some decorated permutation π(3). (Using Proposition 3.4, the fact that dim(�π(3) ) =
n − 2 implies that the positroid associated to π(3) has precisely two connected

components.)
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16812 T. Łukowski et al.

Now we claim that the positroid associated to π(3) is loopless. In general

there is an easy geometric way of recognizing when a matroid M is loopless

from the polytope �M : M is loopless if and only if �M is not contained in any of the

n facets of the hypersimplex of the type xi = 0 for 1 ≤ i ≤ n. Since �π(3) arises as

the codimension 1 intersection of two full-dimensional matroid polytopes contained in

�k+1,n it necessarily meets the interior of the hypersimplex and hence the matroid must

be loopless. �

Remark 8.6. Recall that the T-duality map is well-defined on positroid cells whose

matroid is connected, and more generally, loopless. Proposition 8.5 implies that if we

consider two cells Sπ(1) and Sπ(2) of Gr≥0
k+1,n whose matroid is connected and whose

moment map images (necessarily top-dimensional) intersect in a common facet, then

that facet is the moment map image of a loopless cell Sπ(3) . Therefore we can apply the

T-duality map to all three cells Sπ(1) , Sπ(2) , and Sπ(3) .

Conjecture 8.7. Let Sπ(1) and Sπ(2) be two positroid cells in Gr≥0
k,n corresponding to

coloopless permutations π(1) and π(2). Let dim Z◦
π(1) = dim Z◦

π(2) = 2k with Zπ(1) ∩ Zπ(2) =
Zπ(3) , where Sπ(3) ⊂ G≥0

k,n is such that dim Z◦
π(3) = 2k − 1. Then π(3) is a coloopless

permutation.

Remark 8.8. Conjecture 8.7 guarantees that if we consider two positroid cells with top-

dimensional images in the amplituhedron An,k,2(Z), which have a facet in common, then

the positroid cell corresponding to this facet is coloopless and therefore we can apply

the T-duality map to it.

Finally we arrive at a conjecture connecting good dissections of hypersimplex

and amplituhedron, which we confirmed experimentally.

Conjecture 8.9. The collection of positroid polytopes {�π } is a good tiling (respec-

tively, good dissection) of �k+1,n if and only if, for all Z ∈ Mat>0
n,k+2, the collec-

tion of T-dual Grasstopes {Zπ̂ } is a good tiling (respectively, good dissection) of

An,k,2(Z).

9 The positive tropical Grassmannian and positroid subdivisions

The goal of this section is to use the positive tropical Grassmannian to understand

the regular positroid subdivisions of the hypersimplex. In Section 10, we will apply the
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16813

T-duality map to these regular positroid subdivisions of the hypersimplex, to obtain

subdivisions of the amplituhedron which have very nice properties.

The tropical Grassmannian – or rather, an outer approximation of it called

the Dressian – controls the regular matroidal subdivisions of the hypersimplex [39],

[61, Proposition 2.2]. There is a positive subset of the tropical Grassmannian, called

the positive tropical Grassmannian, which was introduced by Speyer and the third

author in [65]. The positive tropical Grassmannian equals the positive Dressian, and as

we will show in Proposition 9.12, it controls the regular positroid subdivisions of the

hypersimplex.

Remark 9.1. We’ve learned since circulating the first draft of this paper that some of

our results in this section regarding positroid subdivisions of the hypersimplex and

the positive tropical Grassmannian, though not previously in the literature, were known

or anticipated by various other experts including David Speyer, Nima Arkani-Hamed,

Thomas Lam, Marcus Spradlin, Nick Early, Felipe Rincon, Jorge Olarte. There is some

related work in [25] and the upcoming [5].

9.1 The tropical Grassmannian, the Dressian, and their positive analogues

Definition 9.2. Given e = (e1, . . . , eN) ∈ ZN≥0, we let xe denote xe1
1 . . . xeN

N . Let E ⊂ ZN≥0.

For f = ∑
e∈E fexe a nonzero polynomial, we denote by Trop(f ) ⊂ RN the set of all points

(X1, . . . , XN) such that, if we form the collection of numbers
∑N

i=1 eiXi for e ranging over

E, then the minimum of this collection is not unique. We say that Trop(f ) is the tropical

hypersurface associated to f .

In our examples, we always consider polynomials f with real coefficients. We

also have a positive version of Definition 9.2.

Definition 9.3. Let E = E+ � E− ⊂ ZN≥0, and let f be a nonzero polynomial with real

coefficients which we write as f = ∑
e∈E+ fexe − ∑

e∈E− fexe, where all of the coefficients

fe are nonnegative real numbers. We denote by Trop+(f ) ⊂ RN the set of all points

(X1, . . . , XN) such that, if we form the collection of numbers
∑N

i=1 eiXi for e ranging over E,

then the minimum of this collection is not unique and furthermore is achieved for some

e ∈ E+ and some e ∈ E−. We say that Trop+(f ) is the positive part of Trop(f ).

The Grassmannian Grk,n is a projective variety which can be embedded in

projective space P([n]
k )−1, and is cut out by the Plücker ideal, that is, the ideal of relations
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16814 T. Łukowski et al.

satisfied by the Plücker coordinates of a generic k×n matrix. These relations include the

three-term Plücker relations defined below.

Definition 9.4. Let 1 < a < b < c < d ≤ n and choose a subset S ∈ ( [n]
k−2

)
which is disjoint

from {a, b, c, d}. Then pSacpSbd = pSabpScd +pSadpSbc is a three-term Plücker relations for

the Grassmannian Grk,n. Here Sac denotes S ∪ {a, c}, etc.

Definition 9.5. Given S, a, b, c, d as in Definition 9.4, we say that the tropical three-term

Plücker relation holds if

• PSac + PSbd = PSab + PScd ≤ PSad + PSbc or

• PSac + PSbd = PSad + PSbc ≤ PSab + PScd or

• PSab + PScd = PSad + PSbc ≤ PSac + PSbd.

And we say that the positive tropical three-term Plücker relation holds if either

of the first two conditions above holds.

Definition 9.6. The tropical Grassmannian Trop Grk,n ⊂ R([n]
k ) is the intersection of the

tropical hypersurfaces Trop(f ), where f ranges over all elements of the Plücker ideal. The

Dressian Drk,n ⊂ R([n]
k ) is the intersection of the tropical hypersurfaces Trop(f ), where f

ranges over all three-term Plücker relations.

Similarly, the positive tropical Grassmannian Trop+ Grk,n ⊂ R([n]
k ) is the inter-

section of the positive tropical hypersurfaces Trop+(f ), where f ranges over all elements

of the Plücker ideal. The positive Dressian Dr+
k,n ⊂ R([n]

k ) is the intersection of the positive

tropical hypersurfaces Trop+(f ), where f ranges over all three-term Plücker relations.

Note that the Dressian Drk,n (respectively, the positive Dressian Dr+
k,n) is the

subset of R([n]
k ) where the tropical (respectively, positive tropical) three-term Plücker

relations hold.

In general, the Dressian Drk,n is much larger than the tropical Grassmannian

Trop Grk,n – for example, the dimension of the Dressian Dr3,n grows quadratically is n,

while the dimension of the tropical Grassmannian Trop Gr3,n is linear in n [35]. However,

the situation for their positive parts is different.

Theorem 9.7. [66]. The positive tropical Grassmannian Trop+ Grk,n equals the positive

Dressian Dr+
k,n.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/19/16778/7046307 by EM
BL user on 16 D

ecem
ber 2024



The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16815

Definition 9.8. We say that a point {PI}I∈([n]
k )

∈ R([n]
k ) is a (finite) tropical Plücker

vector if it lies in the Dressian Drk,n, i.e. for every three-term Plücker relation, it lies

in the associated tropical hypersurface. And we say that {PI}I∈([n]
k )

is a positive tropical

Plücker vector, if it lies in the positive Dressian Dr+
k,n (equivalently, the positive tropical

Grassmannian Trop+ Grk,n), i.e. for every three-term Plücker relation, it lies in the

positive part of the associated tropical hypersurface.

Example 9.9. For Gr2,4, there is only one Plücker relation, p13p24 = p12p34 +p14p23. The

Dressian Dr2,4 ⊂ R([4]
2 ) is defined to be the set of points (P12, P13, P14, P23, P24, P34) ∈ R6

such that

• P13 + P24 = P12 + P34 ≤ P14 + P23 or

• P13 + P24 = P14 + P23 ≤ P12 + P34 or

• P12 + P34 = P14 + P23 ≤ P13 + P24.

And Dr+
2,4 = Trop+ Gr2,4 ⊂ R([4]

2 ) is defined to be the set of points

(P12, P13, P14, P23, P24, P34) ∈ R6 such that

• P13 + P24 = P12 + P34 ≤ P14 + P23 or

• P13 + P24 = P14 + P23 ≤ P12 + P34

9.2 The positive tropical Grassmannian and positroid subdivisions

Recall that �k,n denotes the (k, n)-hypersimplex, defined as the convex hull of the points

eI where I runs over
([n]

k

)
. Consider a real-valued height function {I} �→ PI on the vertices

of �k,n. We define a polyhedral subdivision DP of �k,n as follows: consider the points

(eI , PI) ∈ �k,n ×R and take their convex hull. Take the lower faces (those whose outwards

normal vector have last component negative) and project them back down to �k,n; this

gives us the subdivision DP. We will omit the subscript P when it is clear from context.

A subdivision obtained in this manner is called regular.

Remark 9.10. A lower face F of the regular subdivision defined above is determined

by some vector λ = (λ1, . . . , λn, −1) whose dot product with the vertices of the face F is

maximized. So if F is the matroid polytope of a matroid M with bases B, this is equivalent

to saying that λi1 + · · · + λik − PI = λj1 + · · · + λjk − PJ > λh1
+ · · · + λhk

− PH for any two

bases I, J ∈ B and H /∈ B.

Given a subpolytope � of �k,n, we say that � is matroidal if the vertices of �,

considered as elements of
([n]

k

)
, are the bases of a matroid M, i.e. � = �M .
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16816 T. Łukowski et al.

The following result is originally due to Kapranov [39]; it was also proved in [61,

Proposition 2.2].

Theorem 9.11. The following are equivalent.

• The collection {PI}I∈([n]
k )

is a tropical Plücker vector.

• The one-skeleta of DP and �k,n are the same.

• Every face of DP is matroidal.

Given a subpolytope � of �k,n, we say that � is positroid if the vertices of �,

considered as elements of
([n]

k

)
, are the bases of a positroid M, i.e. � = �M . We now give

a positroid version of Proposition 9.11.

Theorem 9.12. The following are equivalent.

• The collection {PI}I∈([n]
k )

is a positive tropical Plücker vector.

• Every face of DP is positroid.

Proof. Suppose that the collection {PI}I∈([n]
k )

are positive tropical Plücker coordinates.

Then in particular they are tropical Plücker coordinates, and so by Proposition 9.11,

every face of DP is matroidal.

Suppose that one of those faces �M fails to be positroid. Then by Theorem 3.9,

�M (and hence DP) has a two-dimensional face with vertices eSab, eSad, eSbc, eScd, for some

1 ≤ a < b < c < d ≤ n and S of size k − 2 disjoint from {a, b, c, d}. By Remark 9.10, this

means that there is a vector λ = (λ1, . . . , λn, −1) whose dot product is maximized at the

face F. In particular, if we compare the value of the dot product at vertices of F versus

eSac and eSbd, we get λa + λb − PSab = λc + λd − PScd = λa + λd − PSad = λb + λc − PSbc is

greater than either λa + λc − PSac or λb + λd − PSbd. But then

λa+λb−PSab+λc+λd−PScd =λa+λd−PSad+λb+λc−PSbc >λa+λc − PSac + λb + λd − PSbd,

which implies that

PSab + PScd = PSad + PSbc < PSac + PSbd,

which contradicts the fact that {PI} is a collection of positive tropical Plücker

coordinates.
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16817

Suppose that every face of DP is positroid. Then every face is in particular

matroidal, and so by Proposition 9.11, the collection {PI}I∈([n]
k )

are tropical Plücker

coordinates. Suppose that they fail to be positive tropical Plücker coordinates. Then there

is some S ∈ ( [n]
k−2

)
and a < b < c < d disjoint from S such that PSab + PScd = PSad + PSbc <

PSac + PSbd. We will obtain a contradiction by showing that DP has a two-dimensional

(non-positroid) face with vertices eSab, eSad, eSbc, eScd, for some 1 ≤ a < b < c < d ≤ n

and S of size k − 2 disjoint from {a, b, c, d}.
To show that these vertices form a face, choose some large number N which

is greater than the absolute value of any of the tropical Plücker coordinates, i.e. N >

max{|PI |}I∈([n]
k )

. We define a vector (λ1, . . . , λn) ∈ Rn by setting

λi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (PSab + PSac + PSad) for i=a

1
2 (PSab + PSbc + PSbd) for i=b

1
2 (PSac + PSbc + PScd) for i=c

1
2 (PSad + PSbd + PScd) for i=d

3
2N for i ∈ S

−3
2N for i /∈ S ∪ {a, b, c, d}.

We now compute the lower face of DP determined by vector λ := (λ1, . . . , λn, −1), using

Remark 9.10. Clearly any point (eI , PI) of �k,n × R maximizing the dot product with

λ must have eI ∈ {eSab, eSac, eSad, eSbc, eSbd, eScd}. The relation PSab + PScd = PSad +
PSbc < PSac + PSbd implies that the lower face of DP determined by λ has vertices

eSab, eSad, eSbc, eScd. �

It follows from Proposition 9.12 that the regular subdivisions of �k+1,n consist-

ing of positroid polytopes are precisely those of the form DP, where P = {PI} is a positive

tropical Plücker vector. This motivates the following definition.

Definition 9.13. We say that a positroid dissection of �k+1,n is a regular positroid

subdivision if it has the form DP, where P = {PI} ∈ R([n]
k ) is a positive tropical Plücker

vector.

Remark 9.14. Every regular subdivision of a polytope is a polytopal subdivision, and

so in particular it is a good dissection (see Definition 8.2).
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16818 T. Łukowski et al.

9.3 Fan structures on the Dressian and positive Dressian

As described in [35], there are two natural fan structures on the (positive) Dressian: the

Plücker fan, and the secondary fan.

We say that two elements of the Dressian, i.e. two tropical Plücker vectors

{PI}I∈([n]
k )

and {P′
I}I∈([n]

k )
∈ R([n]

k ), lie in the same cone of the Plucker fan if for each

S, a, b, c, d as in Definition 9.5, the same inequality holds for both {PSac, PSbd, PSab, PScd,

PSad, PSbc} and {P′
Sac, P′

Sbd, P′
Sab, P′

Scd, P′
Sad, P′

Sbc}. In particular, the maximal cones in the

Plücker fan structure are the cones where the inequalities from Definition 9.5 are all

strict.

On the other hand, using Proposition 9.11 and Proposition 9.12, we say that two

elements of the Dressian, i.e. two tropical Plücker vectors {PI}I∈([n]
k )

and {P′
I}I∈([n]

k )
∈ R([n]

k ),

lie in the same cone of the secondary fan if the matroidal subdivisions DP and DP′

coincide. In particular, the maximal cones in the secondary fan structure are the cones

corresponding to the unrefinable positroid subdivisions.

In [35] it was shown that for the Dressian Dr3,n, the Plücker fan structure

and the secondary fan structure coincide. And in [52, Theorem 14] it was shown that

the fan structures coincide for general Dressians Drk,n. We can now just refer to

the fan structure on Dr+
k,n = Trop+ Grk,n without specifying either “Plücker fan” or

“secondary fan.”

We have the following result.

Corollary 9.15. A collection C = {Sπ } of positroid cells of Gr≥0
k,n gives a regular positroid

tiling of �k,n (see Definition 2.5) if and only if this tiling has the form DP, for P = {PI}I∈([n]
k )

a positive tropical Plücker vector from a maximal cone of Trop+ Grk,n.

Proof. Suppose that a collection {Sπ } of positroid cells of Gr≥0
k,n is a regular positroid

tiling; in other words, the images of the cells {Sπ } under the moment map are the top-

dimensional positroid polytopes in the subdivision DP of �k,n, and the moment map is

an injection on each Sπ . Therefore by Proposition 3.15 and Proposition 3.16, dim Sπ =
n − 1, each positroid Mπ is connected, and the reduced plabic graph associated to π is a

(planar) tree.

We claim that the collection {Sπ } gives an unrefineable possible positroid sub-

division of the hypersimplex. That is, there is no nontrival way to subdivide one of

the positroid polytopes �π into two full dimensional positroid polytopes. If we can

subdivide �π as above, and there is another full-dimensional positroid polytope �π ′
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16819

strictly contained in �π , then the bases of Mπ ′ are a subset of the bases of �π , and hence

the cell Sπ ′ lies in the closure of Sπ . But then a reduced plabic graph G′ for Sπ ′ can be

obtained by deleting some edges from a reduced plabic graph G for Sπ ; this means that

G′ has fewer faces than G and hence has the corresponding cell has smaller dimension,

which is a contradiction, so the claim is true.

But now the fact that {Sπ } gives an unrefineable positroid subdivision means that

it came from a maximal cone of Trop+ Grk,n.

Conversely, consider a regular positroid subdivision DP coming from a maximal

cone of Trop+ Grk,n. Then the subdivision DP (which we identify with its top-dimensional

pieces {Sπ }) is an unrefineable positroid subdivision. In other words, none of the positroid

polytopes �π can be subdivided into two full-dimensional positroid polytopes, which in

turn means that the reduced plabic graph corresponding to π must be a tree. This implies

that the moment map is an injection on each Sπ and hence {Sπ } gives a regular positroid

tiling of �k,n. �

Corollary 9.16. The number of regular positroid tilings of the hypersimplex �k,n equals

the number of maximal cones in the positive tropical Grassmannian Trop+ Grk,n.

The fact that the Plücker fan structure and the secondary fan structure on

Trop+ Grk,n coincide also implies that the f -vector of Trop+ Grk,n reflects the number

of positroid subdivisions of �k,n (with maximal cones corresponding to unrefineable

subdivisions and rays corresponding to coarsest subdivisions).

10 Subdivisions of �k+1,n and An,k,2(Z) from Trop+ Grk+1,n

In Section 8, we discussed the fact that arbitrary dissections of the hypersimplex and

the amplituhedron can have rather unpleasant properties, with their maximal cells

intersecting badly at their boundaries. We introduced the notion of good dissections

for the hypersimplex and amplituhedron in Definition 8.2 and Definition 8.4. Our goal in

this section is to introduce a large class of good dissections for the amplituhedron which

come from Trop+ Grk+1,n.

10.1 Regular positroid subdivisions of An,k,2(Z)

Recall from Definition 9.13 that the regular positroid subdivisions of �k+1,n are precisely

the dissections DP induced from height functions P = {PI} ∈ R([n]
k ) on the hypersimplex

which are positive tropical Plücker vectors.
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16820 T. Łukowski et al.

While we do not know how to define a notion of height function for the amplituhe-

dron, we know from Section 5, Section 6, and Section 7 that T-duality maps dissections

of �k+1,n to the amplituhedron An,k,2(Z) and preserves various nice properties along

the way. We therefore apply the T-duality map from Definition 5.1 to regular positroid

subdivisions of �k+1,n, to define a class of subdivisions of the m = 2 amplituhedron

An,k,2(Z) which we optimistically refer to as regular (positroid) subdivisions.

Definition 10.1. We say that a positroid dissection of An,k,2(Z) is a regular positroid

subdivision if it has the form {Zπ̂ }, where {�π } is a regular positroid subdivision

of �k+1,n.

As every regular positroid subdivision of �k+1,n is a polyhedral subdivision (and

hence is good), Proposition 8.9 implies the following.

Conjecture 10.2. Every regular positroid subdivision of An,k,2(Z) is a good dissection.

In Section 10.5 we provide some computational evidence for Conjecture 10.2.

For example, for A6,2,2(Z) and A7,2,2(Z), every regular positroid subdivision is good,

and moreover, all good dissections are regular positroid subdivisions. (This appears to

also be the case for A8,2,2(Z); but we were only able to compute the number of tilings

in this case.) One might hope to strengthen Conjecture 10.2 and conjecture that the

regular positroid subdivisions are precisely the good dissections. However, the notion of

regularity is rather subtle (as usual in polyhedral geometry), and starting from A9,2,2(Z),

there are some good dissections which are not regular.

10.2 A large class of regular positroid tilings of �k+1,n and An,k,2(Z)

Definition 10.3. Let T be any planar trivalent tree with n leaves (which will necessarily

have n − 2 internal vertices), embedded in a disk with the leaves labelled from 1 to n in

clockwise order. Let Tn,k be the set of
(n−2

k

)
plabic graphs obtained from T by coloring

precisely k of the internal vertices black, as in Figure 5.

Proposition 10.4. The cells of Gr≥0
k+1,n corresponding to the plabic graphs in Tn,k give a

regular tiling of �k+1,n. Therefore the images of these cells under the T-duality map give

a regular tiling of An,k,2(Z).
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Fig. 5. The collection T5,2 of plabic graphs giving a regular subdivision of �3,5

Proof. We can use Theorem 4.5 (see Figure 1) to inductively prove that the cells

corresponding to Tn,k give a tiling of �k+1,n. The fact that the cells corresponding to

the plabic graphs in Tn,k give a regular tiling of �k+1,n follows from [61, Theorem 8.4].

Now using Theorem 6.5, it follows that the images of these cells under the T-duality

map give a tiling of An,k,2(Z). The fact that this tiling is regular now follows from

Definition 10.1. �

Remark 10.5. The above construction gives us Cn−2 regular tilings of An,k,2(Z), where

Cn = 1
n+1

(2n
n

)
is the Catalan number.

10.3 The fan structure for regular positroid subdivisions

We now discuss the fan structure for regular positroid subdivisions of the hypersimplex

and amplituhedron.

Definition 10.6. Given two subdivisions {�π } and {�π ′ } of �k+1,n, we say that {�π } refines

{�π ′ } and write {�π } � {�π ′ } if every �π is contained in some �π ′ .

Similarly, given two subdivisions {Zπ } and {Zπ ′ } of An,k,2(Z), we say that {Zπ }
refines {Zπ ′ } and write {Zπ } � {Zπ ′ } if every Zπ is contained in some Zπ ′ .

Recall from Section 9.3 that we have a fan structure on Trop+ Grk+1,n (the

secondary fan, which coincides with the Plücker fan) which describes the regular

positroid subdivisions of �k+1,n, ordered by refinement. We expect that this fan

structure on Trop+ Grk+1,n also describes the regular positroid subdivisions of

An,k,2(Z).
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16822 T. Łukowski et al.

Conjecture 10.7. The regular positroid subdivisions of An,k,2(Z) are parametrized by

the cones of Trop+ Grk+1,n, with the natural partial order on the cones reflecting the

refinement order on positroid subdivisions.

Conjecture 10.7 is consistent with the following conjecture.

Conjecture 10.8. Consider two regular positroid subdivisions {�π } and {�π ′ } of �k+1,n,

and two corresponding positroid subdivisions {Zπ̂ } and {Z
π̂ ′ } of An,k,2(Z). Then we have

that {�π } � {�π ′ } if and only if {Zπ̂ } � {Z
π̂ ′ }

In particular, the regular positroid tilings of An,k,2(Z) should come precisely from

the maximal cones of Trop+ Grk+1,n. More specifically, if {PI} lies in a maximal cone of

Trop+ Grk+1,n, and {Sπ } is the regular positroid tiling corresponding to DP, then {Sπ̂ }
should be a regular positroid tiling of An,k,2(Z). (Moreover, all regular positroid tilings

of An,k,2(Z) should arise in this way.)

10.4 The f -vector of Trop+ Grk+1,n

In light of Conjecture 10.7, it is useful to compute the f -vector of the positive tropical

Grassmannian. This is the vector (f0, f1, . . . , fd) whose components compute the number

of cones of fixed dimension.

As shown in [65], the positive tropical Grassmannian has an n-dimensional

lineality space coming from the torus action. However, one may mod out by this torus

action and study the resulting fan. The method used in [65] was to show that Trop+ Grk,n

(a polyhedral subcomplex of R([n]
k )) is combinatorially equivalent to an (n − k − 1)(k − 1)-

dimensional fan Fk,n, obtained by using an “X-cluster” or “web” parametrization of the

positive Grassmannian, and modding out by the torus action. As explained in [65, Section

6], Fk,n is the dual fan to the Minkowski sum of the
(n

k

)
Newton polytopes obtained by

writing down each Plücker coordinate in the X-cluster parametrization.

Using this technique, [65] computed the f -vector of Trop+ Gr2,n (which is the f -

vector of the associahedron, with maximal cones corresponding to tilings of a polygon)

Trop+ Gr3,6, and Trop+ Gr3,7. The above f -vector computations were recently extended in

[4] using the notion of “stringy canonical forms” and in [12, 21] using planar arrays and

matrices of Feynman diagrams. See also [22, 24, 38] for recent, physics-inspired devel-

opments in this direction. We list all known results about maximal cones in the positive

tropical Grassmannian Trop+ Grk+1,n and their relation to tilings of hypersimplex �k+1,n

in Table 1.
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Table 1 New results about the tilings of the amplituhedron An,k,2(Z) in relation to known results

about the number of maximal cones of the positive tropical Grassmannian Trop+ Grk+1,n.

(k, n) Tilings Good tilings Trop+ Grk+1,n Non-regular good tilings

(1, n) Cn−2 Cn−2 Cn−2 0

(2, 5) 5 5 5 0

(2, 6) 120 48 48 0

(2, 7) 3073 693 693 0

(2, 8) 6 443 460 13 612 13 612 0

(2, 9) ? 346 806 346 710 96

(3, 6) 14 14 14 0

(3, 7) 3073 693 693 0

(3, 8) ? 91 496 90 608 888

(3, 9) ? 33 182 763 30 659 424 2 523 339

Apart from the f -vector of Trop+ Gr2,n, the known f -vectors of positive tropical

Grassmannians Trop+ Grk,n (with k ≤ n
2 ) are the following:

Trop+ Gr3,6 :(1, 48, 98, 66, 16, 1)

Trop+ Gr3,7 :(1, 693, 2163, 2583, 1463, 392, 42, 1)

Trop+ Gr3,8 :(1, 13612, 57768, 100852, 93104, 48544, 14088, 2072, 120, 1)

Trop+ Gr4,8 :(1, 90608, 444930, 922314, 1047200, 706042, 285948, 66740, 7984, 360, 1)

For Trop+ Gr4,9 it is also known that the second component of the f -vector is

30659424 [21].

Remark 10.9. The coordinate ring of the Grassmannian has the structure of a cluster

algebra [59]. In particular, Gr2,n, Gr3,6, Gr3,7, Gr3,8 have cluster structures of finite types

An, D4, E6, and E8, respectively. As discussed in [65], there is an intriguing connection

between Trop+ Grk,n and the cluster structure. In particular, F2,n is the fan to the type

An associahedron, while F3,6 and F3,7 are coarsenings of the fans associated to the D4 and

E6 associahedra. Via our correspondence between Trop+ Grk+1,n and the amplituhedron

An,k,2(Z), the Grassmannian cluster structure on Grk+1,n should be reflected in good
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16824 T. Łukowski et al.

subdivisions of An,k,2(Z). In particular the type An cluster structure should control

An,1,2(Z) (this is apparent, since An,1,2(Z) is a projective polygon), while the type D4, E6,

and E8 cluster structures should be closely related to A6,2,2(Z), A7,2,2(Z), and A8,2,2(Z).

10.5 Experimental Data.

Checks for this section6 for small values of n and k have been performed using

Wolfram Mathematica. In particular, we used the packages ‘positroid’ [19] and

‘amplituhedronBoundaries’ [48]. This allowed us to find the complete poset of good

dissections of A6,2,2 and A7,2,2, whose f -vectors read:

A6,2,2 : (1, 48, 98, 66, 16, 1)

A7,2,2 : (1, 693, 2163, 2583, 1463, 392, 42, 1) .

These are exactly the f -vectors of the positive tropical Grassmannian Trop+ Gr3,6 and

Trop+ Gr3,7, respectively. For higher values of n and k, we have been able to find all (good)

tilings, and our findings7 are summarized in Table 1.

In particular, we observe that for A8,2,2(Z) the number of good tilings agrees with

the number of maximal cones in Trop+ Gr3,8. Starting from n = 9, the number of good

tilings is larger than the number of maximal cones in positive tropical Grassmannian.

It is indeed the first example where one can find good tilings which are not regular. In

particular, out of 346806 good tilings, 96 are not regular. Similarly, for k = 3 and n = 8,

888 good tilings of A8,3,2(Z) are not regular. We note that these correspond exactly to

degenerate matrices found in [21].

11 T-duality and the momentum amplituhedron for general (even) m

Throughout the paper we have explored the remarkable connection between the hyper-

simplex and the m = 2 amplituhedron. This was established via the T-duality map which

allowed to relate positroid tiles, tilings, and dissections of both objects. It is then a

natural question to wonder whether the story generalizes for any (even) m.

For m = 4, we know that the amplituhedron An,k,4(Z) encodes the geometry of

scattering amplitudes in N = 4 SYM, expressed in momentum twistor space. Physicists

have already observed a beautiful connection between this and the formulation of

6 A more detailed discussion of these checks can be found in the arXiv version of this paper (v3).
7 We also included there the results for Gr≥0

3,9 which, by using our conjectures, can be derived from [21].
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The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron 16825

scattering amplitudes of the same theory in momentum space8 . At the core of this

connection lies the Amplitude-Wilson Loop Duality [8], which was shown to arise from a

more fundamental duality in String Theory called ‘T-duality’ [17]. For both formulations

a Grassmannian representation has been found [3, 18]: scattering amplitudes (at tree

level) are computed by performing a contour integral around specific cycles inside the

positive Grassmannian (what in physics is referred to as a ‘BCFW contour’). If we are in

momentum space, then one has to integrate over cycles corresponding to collections of

(2n − 4)-dimensional positroid cells of Gr≥0
k+2,n. Whereas, if we are in momentum twistor

space, the integral is over collections of 4k-dimensional positroid cells of Gr≥0
k,n. The

two integrals compute the same scattering amplitude, and it was indeed shown that

formulas are related by a change of variables. In particular, this implied the existence

of a map between certain (2n − 4)-dimensional positroid cells of Gr≥0
k+2,n and certain 4k-

dimensional positroid cells of Gr≥0
k,n (called ‘BCFW’), which was defined in [1, Formula

(8.25)]. It is easy to see that this map is exactly our T-duality map for the case m = 4 in

(5.4), up to a cyclic shift:

σ π̂(i) = π(i − m

2
+ 1) − 1 = π(i − 1) − 1. (11.1)

Collections of 4k-dimensional ‘BCFW’ positroid cells of Gr≥0
k,n defined from

physics were conjectured to tile An,k,4(Z). The proof of this conjecture can be found

in [44]. On the other hand, the corresponding collections of (2n − 4)-dimensional

‘BCFW’ positroid cells of Gr≥0
k+2,n were conjectured to tile an object Mn,k,4(�, �̃) called

‘momentum amplituhedron’, introduced recently by two of the authors in [23]9 .

The story aligns with the philosophy of the rest of this paper. In particular, one

aims to seek for an object and a map which relates its tiles, tilings (and, more generally,

dissections) to the ones of An,k,m(Z), for general (even) m. There is a natural candidate

for such a map: we have already seen that the T-duality map defined in (5.4) does indeed

the job in the case of m = 2 and m = 4. Moreover, some of the statements which has

been proven throughout the paper for m = 2, as Proposition 5.11 and Theorem 7.3, can

be generalized for general (even) m.

8 More precisely it is ‘spinor helicity’ space, or, equivalently (related by half-Fourier transform), in twistor
space. See [1, Section 8].

9 In the paper, the momentum amplituhedron was denoted as Mn,k, without the subscript ‘4’.
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Proposition 11.1. Let Sπ be a cell of Gr≥0
k+ m

2 ,n such that, as affine permutation, π(i) ≥
i + m

2 . Then Sπ̂ is a cell of Gr≥0
k,n such that π̂(i) ≤ i + n − m

2 . Moreover, dim(Sπ̂ ) − mk =
dim(Sπ ) − m

2 (n − m
2 ). In particular, if dim Sπ = m

2 (n − m
2 ), then dim Sπ̂ = mk.

Proof. This is a straightforward generalization of the proof of Proposition 5.11. It

is enough to observe that, in the language of affine permutations, T-duality maps a

(k + m/2, n)-bounded affine permutation πa into a (k, n)-bounded affine permutation

π̂a = πa ◦ tm/2, with tm/2 : Z → Z the map i �→ i − m/2. Clearly, tm/2 preserve the

length of affine permutations. Hence the codimensions of Sπa
⊆ Gr≥0

k+ m
2 ,n and Sπ̂a

⊆ Gr≥0
k,n

are equal. �

It is also natural to think of parity duality between An,k,m(Z) and An,n−k−m,m(Z′)
as a composition of the Grassmannian duality and T-duality (plus cyclic shifts). Imitating

Definition 7.2, let us define Ũk,n,m(π̂) := π̂−1. Then we have the following theorem:

Theorem 11.2 (Parity duality from T-duality and Grassmannian duality). Let {Zπ } be a

collection of Grasstopes which dissects the amplituhedron An,k,m(Z). Then the collection

of Grasstopes {ZŨk,n,mπ } dissects the amplituhedron An,n−k−m,m(Z′).

Proof. The parity duality Uk,n,m in [33] was defined for any (even) m as: Uk,n,m(π) :=
(π − k)−1 + (n − k − m). Then it easy to show that Uk,n,m = σ k+ m

2 ◦ Ũk,n,m. Using

Theorem 7.5, the prove follows immediately. �

Since we found a natural candidate map, we now introduce a candidate object,

which would speculatively relate to An,k,m(Z) via the T-duality map. This is a general-

ization of the momentum amplituhedron Mn,k,4(�, �̃) and it is defined below.

Definition 11.3. For k, n such that k ≤ n, define the twisted positive part of Grk,n as:

Gr+,τ
k,n := {X ∈ Grk,n : (−1)inv(I,[n]\I)�[n]\I(X) ≥ 0} (11.2)

where inv(A, B) := #{a ∈ A, b ∈ B|a > b} denotes the inversion number.

The lemma below can be found in [40, Lemma 1.11], which sketched a proof and

attributed it to Hochster and Hilbert.
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Lemma 11.4. Suppose �I(V) are the Plücker coordinates of a point V ∈ Grk,n. Then the

kernel V⊥ ∈ Grn−k,n of V is represented by the point with Plücker coordinates �J(V⊥) =
(−1)inv(J,[n]\J)�[n]\J(V) for J ∈ ( [n]

n−k

)
.

Definition 11.5. For a, b such that a ≤ b, define Mat>0
a,b the set of real a × b matrices

whose a × a minors are all positive and its twisted positive part as

Mat>0,τ
a,b := {A ∈ Mata,b : (−1)inv(I,[b]\I)�[b]\I(A) > 0} (11.3)

Definition 11.6 (The momentum amplituhedron). Let �̃ ∈ Mat>0
n,k′+ m

2
, � ∈ Mat>0,τ

n,n−k′+ m
2

,

k′ + m/2 ≤ n. The momentum amplituhedron map ��̃,� : Gr≥0
k′,n → Grk′,k′+ m

2
×

Grn−k′,n−k′+ m
2

is defined by ��̃,�(C) := (C�̃, C⊥�), where C and C⊥ are matrices rep-

resenting an element of Gr≥0
k′,n and its orthogonal in Gr≥0,τ

k′,n respectively, and C�̃ and

C⊥� matrices representing an element of Grk′,k′+ m
2

and Grn−k′,n−k′+ m
2

respectively. The

momentum amplituhedron Mn,k′,m(�, �̃) ⊆ Grk′,k′+ m
2

× Grn−k′,n−k′+ m
2

is the image

��̃,�(Gr≥0
k′,n).

Proposition 11.7 (Momentum conservation). Let (Ỹ, Y) represent a point in Grk′,k′+ m
2

×
Grn−k′,n−k′+ m

2
and let Ỹ⊥ and Y⊥ be matrices representing the orthogonal complements

of Y and Ỹ, respectively. If (Ỹ, Y) is in the momentum amplituhedron Mn,k′,m(�, �̃), then

(Y⊥�T) · (Ỹ⊥�̃T)T = 0 (11.4)

Proof. From the identity

0 = Y⊥YT = Y⊥�T(C⊥)T (11.5)

we deduce that the row-span of Y⊥�T is included in the row-span of the orthogonal of

C⊥, i.e. C. Analogously, from

0 = Ỹ⊥ỸT = Ỹ⊥�̃TC (11.6)

we deduce that the row-span of Ỹ⊥�̃T is included in the row-span of the C⊥. Therefore

Y⊥�T and Ỹ⊥�̃T belong to orthogonal subspaces and satisfy

(Y⊥�T) · (Ỹ⊥�̃T)T = 0. (11.7)

�
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Remark 11.8. In reference to Definition 11.6, we observe that:

dim
(
Grk′,k′+m/2 × Grn−k′,n−k′+m/2

)
= m

2
k′ + m

2

(
n − k′) = m

2
n. (11.8)

Moreover, Proposition 11.7 implies that the momentum amplituhedron Mn,k,m is

included in a codimension (m
2 )2 sub-variety of Grk′,k′+m/2 × Grn−k′,n−k′+m/2. Therefore,

the dimension of Mn,k′,m is at most (and conjectured to be exactly):

m

2
n −

(m

2

)2 = m

2

(
n − m

2

)
. (11.9)

We observe that, for m = 2, this dimension is exactly n − 1, which is the dimension of

the hypersimplex �k+1,n; whereas, for m = 4, the dimension is 2n − 4, which is the one

of BCFW cells in momentum space.

Remark 11.9. For m = 2, Definition 11.6 reads:

��̃,� : Gr≥0
k′,n → Grk′,k+1 × Grn−k′,n−k′+1

∼= Pk′ × Pn−k′
. (11.10)

Moreover, the conditions in Proposition 11.7 are equivalent to:

λ · λ̃ = 0 (11.11)

where we used the dot product in Rn of the vectors λ := �(Y⊥)T and λ̃ := �̃(Ỹ⊥)T .

Note that the m = 2 momentum amplituhedron is not equal to the hypersimplex,

as pointed out in [50].

Remark 11.10. For m = 4, Definition 11.6 coincides with the one in [23]. This is the

positive geometry relevant for scattering amplitudes for N = 4 SYM in spinor helicity

space.

Many properties of Mn,k,4(�, �̃) have still to be explored and proven. Let �π

denote the image under the amplituhedron map ��,�̃(S̄π ) of (the closure of) a positroid

cell Sπ in Grk′,n. Analogously to the amplituhedron, we call �π a positroid tile of

Mn,k,4(�, �̃) if it is full-dimensional and if the momentum amplituhedron map is

injective on Sπ . We also define positroid tilings of Mn,k,4(�, �̃) collections {�π } of

positroid tiles whose interior is disjoint and cover Mn,k,4(�, �̃). Then the conjecture in

[23] can be stated as:
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Conjecture 11.11. [23] There exists an open subset P ⊂ Mat>0,τ
n,k′+2 × Mat>0

n,n−k′+2 such

that for all (�, �̃) ∈ P a collection of positroid tiles {�π } is a positroid tiling (respectively,

dissection) of Mn,k+2,4(�, �̃) if and only if for all Z ∈ Mat>0
n,k+4 the collection of T-dual

Grasstopes {Zπ̂ } is a tiling (respectively, dissection) of An,k,4(Z).

Remark 11.12. [23] provided experimental evidence that a subset P with the properties

above can be obtained by imposing positivity of planar Mandelstam variables. In

particular, choosing the rows of �⊥ and �̃ on the moment curve as (�⊥)i,a = ia, �̃i,ȧ = iȧ,

with i ∈ [n], a ∈ [k′ − 2], ȧ ∈ [k′ + 2] would give a point in P.

Finally, we speculate that:

Conjecture 11.13. Let m be a multiple of 4 and k′ = k+m/2. There exists an open subset

P ⊂ Mat>0,τ
n,k′+ m

2
× Mat>0

n,n−k′+ m
2

such that for all (�, �̃) ∈ P a collection {�π } of positroid

tiles is a tiling (respectively, dissection) of Mn,k′,m(�, �̃) if and only if the collection of

T-dual Grasstopes {Zπ̂ } is a tiling (respectively, dissection) of An,k,m(Z).

12 Appendix. Combinatorics of cells of the positive Grassmannian.

In [54], Postnikov classified the cells of the positive Grassmannian, showing that the

positroid cells could be indexed by decorated permutations and also equivalence classes

of reduced plabic graphs. We review these objects here. This will give us a canonical

way to label each positroid by a decorated permutation or an equivalence class of plabic

graphs. We refer to reader to [54] or [44, Section 2] for more details.

Definition 12.1. A decorated permutation on [n] is a bijection π : [n] → [n] whose fixed

points are each colored either black (loop) or white (coloop). We denote a black fixed point

i by π(i) = i, and a white fixed point i by π(i) = i. An anti-excedance of the decorated

permutation π is an element i ∈ [n] such that either π−1(i) > i or π(i) = i. We say that a

decorated permutation on [n] is of type (k, n) if it has k anti-excedances.

For example, π = (3, 2, 5, 1, 6, 8, 7, 4) has a loop in position 2, and a coloop in

position 7. It has three anti-excedances, in positions 4, 7, 8.

Definition 12.2. Given a k × n matrix C = (c1, . . . , cn) written as a list of its columns,

we associate a decorated permutation π := πC as follows. We set π(i) := j to be the label

of the first column j such that ci ∈ span{ci+1, ci+2, . . . , cj}. If ci is the all-zero vector, we
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call i a loop or black fixed point and if ci is not in the span of the other column vectors,

we call i a coloop or white fixed point. We let

Sπ = {C ∈ Gr≥0
k,n | πC = π}.

Postnikov showed that Sπ is a cell, and that the positive Grassmannian Gr≥0
k,n

is the union of cells Sπ where π ranges over decorated permutations of type (k, n)

[54, Section 16].

Decorated permutations can be equivalently thought of as affine permuta-

tions [42].

Definition 12.3. An affine permutation on [n] is a bijection π : Z → Z such that for

all i ∈ Z, π(i + n) = π(i) + n and i ≤ π(i) ≤ i + n. If
∑n

i=1(π(i) − i) = kn we say π is

(k, n)-bounded.

There is a bijection between decorated permutations of type (k, n) and (k, n)-

bounded affine permutations. Given a decorated permutation πd we can define an affine

permutation πa by the following procedure: if πd(i) > i, then define πa(i) := πd(i); if

πd(i) < i, then define πa(i) := πd(i) + n; if πd(i) is a loop then define πa(i) := i; if πd(i) is a

coloop then define πa(i) := i+n. For example, under this map, the decorated permutation

πd = (3, 2, 5, 1, 6, 8, 7, 4) in the previous example gives rise to πa = (3, 2, 5, 9, 6, 8, 15, 12).

Let a pair (i, j) be an inversion of πa if i, j ∈ Z, i < j, and πa(i) > πa(j). Two

inversions (i, j) and (i′, j′) are equivalent if i′ − i = j′ − j ∈ nZ. Then the length �(πa)

of πa is defined to be the number of equivalence classes of inversions. We note that

�(πa) equals the number of alignments of the associated decorated permutation πd (see

[54, Section 5]).

Positroid cells can also be represented by plabic graphs.

Definition 12.4. A plabic graph10 is an undirected planar graph G drawn inside a disk

(considered modulo homotopy) with n boundary vertices on the boundary of the disk,

labelled 1, . . . , n in clockwise order, as well as some internal vertices. Each boundary

vertex is incident to a single edge, and each internal vertex is colored either black or

white. If a boundary vertex is incident to a leaf (a vertex of degree 1), we refer to that leaf

as a lollipop. We will assume that G has no internal leaves except for lollipops.

10 “Plabic” stands for planar bi-colored.
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Fig. 6. A plabic graph with a perfect orientation.

Definition 12.5. A perfect orientation O of a plabic graph G is a choice of orientation

of each of its edges such that each black internal vertex u is incident to exactly one edge

directed away from u; and each white internal vertex v is incident to exactly one edge

directed toward v. A plabic graph is called perfectly orientable if it admits a perfect

orientation. Let GO denote the directed graph associated with a perfect orientation O of

G. The source set IO ⊂ [n] of a perfect orientation O is the set of i which are sources of

the directed graph GO. Similarly, if j ∈ IO := [n] − IO, then j is a sink of O.

Figure 6 shows a plabic graph with a perfect orientation. In that example,

IO = {2, 3, 6, 8}.
All perfect orientations of a fixed plabic graph G have source sets of the same

size k, where k − (n − k) = ∑
color(v) · (deg(v) − 2). Here the sum is over all internal

vertices v, color(v) = 1 for a black vertex v, and color(v) = −1 for a white vertex; see [54].

In this case we say that G is of type (k, n).

Now let us connect plabic graphs to the positroids and positroid cells from

Definition 2.2.

Theorem 12.6 ([54, Section 11]). Let G be a plabic graph of type (k, n). Then we have a

positroid MG on [n] defined by

MG = {IO | O is a perfect orientation of G},

where IO is the set of sources of O. Moreover, every positroid cell has the form SMG
for

some plabic graph G.
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One can also read off the positroid from G using flows [67] or perfect matchings.

If a plabic graph G is reduced (see [54, Section 12]) or [30, Chapter 7]), we have

that SMG
= SπG

, where πG is the decorated permutation defined as follows.

Definition 12.7. Let G be a reduced plabic graph with boundary vertices 1, . . . , n. For

each boundary vertex i ∈ [n], we follow a path along the edges of G starting at i, turning

(maximally) right at every internal black vertex, and (maximally) left at every internal

white vertex. This path ends at some boundary vertex π(i). By [54, Section 13], the fact

that G is reduced implies that each fixed point of π is attached to a lollipop; we color

each fixed point by the color of its lollipop. This defines a decorated permutation, called

the decorated trip permutation πG = π of G.
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