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Abstract A particular extension of Einstein’s General Rel-
ativity up to and including quartic terms in the curvature ten-
sor is minimal in the sense that it has a unique maximally
symmetric vacuum and only a massless spin-2 excitation
in its spectrum around the vacuum. We study the inflation
phase of the universe in this minimal quartic extension of Ein-
stein’s gravity in the presence of trace anomaly terms coming
from the Standard Model fields and the fields of the Minimal
Supersymmetric Standard Model. We show that the theory
allows a quasi-de Sitter phase with sufficient e-foldings.
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1 Introduction

The extreme homogeneity and the isotropy in the Cosmic
Microwave Background (CMB) data [1] can be understood
if the universe had gone through a brief period of acceler-
ated expansion phase, or if the universe were a lot older. The
latter option is unlikely. Within General Relativity such an
expansion requires the existence of additional scalar fields,
such as the “inflaton” that first inflates the universe, gets
affected by the inflation, and creates friction to exit the infla-
tion phase gracefully. Another possible path to inflation is to
modify the underlying gravity theory. Here we follow this
second route and study the inflationary phase of a modified
gravity theory built on the powers of the curvature tensors
up to and including the quartic terms. The theory that we
shall study here was initially obtained as a subset of Born–
Infeld-type gravity theory that was judiciously constructed
to have all the good features of Einstein’s theory, such as
the existence of a unique maximally symmetric vacuum and
the non-existence of degrees of freedom besides a massless
spin-2 graviton, but is much better behaved in the ultravio-
let region of gravity. With properly chosen free parameters,
Born–Infeld gravity was shown to reduce to a quartic the-
ory in the form of F(R,G) gravity theories where G stands
for Gauss–Bonnet scalar. This particular quartic theory has
a unique de Sitter vacuum, but it does not have an inflation-
ary phase, that is it does not have a quasi-de Sitter solution
with enough e-foldings. To remedy this, we shall resort to
the conformal anomaly that produces additional degrees of
freedom besides the massless spin-2 graviton. This scenario
was originally proposed by Starobinsky in 1980 [2]. We shall
adopt it to our theory, in which, inflation is driven by a quan-
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tum anomaly arising from the matter fields’ renormalization
procedure. Renormalization results in an anomalous energy-
momentum tensor that could generate an unstable vacuum
with a higher energy density so that the Universe makes a
transition from this into the true vacuum state by inflating
from a microscopic size to a macroscopic size.

The paper is organized as follows. In the next section,
we first describe the full Born–Infeld gravity theory and its
cosmological solutions; we show how the theory reduces to
a quartic extension (that is the action is a specific polyno-
mial of the curvature tensor up to the fourth power of the
Riemann curvature tensor and its contractions) of Einstein’s
theory. In Sect. 3, we introduce and summarize the idea of
trace anomaly before embedding it into our theory. Then, we
derive the field equations and de Sitter solutions in the pres-
ence of trace anomaly. The analysis continues with the linear
perturbation around the de Sitter solutions to find the stabil-
ity conditions. To study the inflationary dynamics, we first
examine the phase portrait of the dynamical system to see
its general behavior, and then solve the system numerically
for particular inflationary solutions. Lastly, by proposing an
approximate solution, we study the matter perturbations dur-
ing inflation.

2 The minimal extension of Einstein’s gravity

The Born–Infeld (BI) type gravity theories are a class of
theoretical frameworks in gravitational physics that extend
Einstein’s General Theory of Relativity (GR). They emerge
from the need to address the inherent singularities present in
GR, such as those associated with black holes and the Big
Bang, by introducing higher-derivative and higher-curvature
corrections to the gravitational action. These corrections
are inspired by the Born–Infeld electrodynamics (to be his-
torically accurate these theories were first considered by
Schrodinger and later by Eddington in gravity), originally
formulated to regularize the self-energy of point charges. BI
gravity theories have been studied in the context of string
theory and modified gravity theories, offering new perspec-
tives on the fundamental nature of gravity and its behavior
in extreme conditions. The general form of the action of the
BI-type gravity theories can be given by

I = 1

2κ0γ

∫
d4x

√
− det

(
gμν + γ Aμν

)
, (1)

where γ is the Born–Infeld parameter and Aμν is a second
rank tensor constructed from the curvatures. Of course, a
proper Aμν must be found that is consistent with all the
known tests of gravity and, that, also does not lead to inconsis-
tencies, such as ghosts in the theory. For example, the naive,
obvious choice Aμν = Rμν leads to massive spin-2 ghosts
in the spectrum. How ghosts can be avoided in these types

of theories is a rather complicated problem, especially about
a de-Sitter or anti-de-Sitter background. But fortunately, this
problem has been fully solved which we discuss below.

Recently, a type of BI gravity model has been proposed
[3–7] with a unique maximally symmetric solution and only
a single massless spin-2 excitation about this vacuum, as a
minimal extension of Einstein’s gravity. With a bare cosmo-
logical constant �0, the action of the model is

I = 1

2κ0γ

∫
d4x

(√
− det

(
gμν + 4γ Aμν

) − (4γ�0 + 1)
√−g

)
,

(2)

where the second-rank tensor Aμν has 3 undetermined con-
stants, a, b, c and is given as

Aμν = Rμν + cSμν + 4γ

(
aCμρνσ R

ρσ + c + 1

4
RμρR

ρ
ν

+
(
c(c + 2)

2
− 2 − b

)
SμρS

ρ
ν

)
+ γ gμν

×
(

9

8
CρσλγC

ρσλγ − c

4
Rρσ R

ρσ + bSρσ S
ρσ

)
. (3)

Here, Rμν is the Ricci tensor while Sμν is the traceless Ricci
tensor, and Cμρνσ is the Weyl tensor. The features, formu-
lation of this theory, and its extension to generic n dimen-
sions were laid out in detail in [4], which relies on the foun-
dation given in [5]. Note that this theory is in some sense
the minimal BI gravity extension of Einstein’s theory as one
can add more powers of curvature inside the determinant
to obtain non-minimal extensions. Note also that as far as
these theories are concerned, the 2 + 1 dimensional BI grav-
ity is unique, describing a massive graviton (instead of a
massless one) with a remarkably simple Lagrangian of the

form L =
√

− det
(
gμν + γGμν

)
[8] where Gμν is the Ein-

stein tensor. The success of this particular theory led us to
search for similar theories in four and higher dimensions.
Let us recapitulate some important aspects of the theory (2)
that arise from the properties of the determinant and are not
shared by most higher derivative gravity theories:

• The theory has only a single massless spin-2 particle in
the spectrum about its flat or (anti)-de Sitter vacuum.

• The effective (dimensionless) cosmological constant
(λ) of the maximally symmetric solution, i.e. Rμν

σρ =
λ

3γ
(δ

μ
σ δν

ρ − δ
μ
ρ δν

σ ), obeys the quartic equation

4λ4 + 4λ3 − λ + λ0 = 0, (4)

which has only one viable solution, i.e. the maximally
symmetric vacuum is unique.
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• The effective Newton’s constant is related to the bare one
and λ via

κ = κ0

(1 − 4λ) (1 + 2λ)2 . (5)

• When expanded in small curvature (|γ R| � 1), the the-
ory reproduces General Relativity as demanded by low
energy observations at the first order; and at the quadratic
order, it reproduces GR modified with the Gauss–Bonnet
term, which at the classical level is just GR due to the
topological nature of the Gauss–Bonnet term in four
dimensions. The specific cubic and quartic order theo-
ries we shall work with here were studied recently in [7]
in the context of black hole physics.

2.1 Cosmological solutions and the minimal ‘quartic’
theory

To investigate the cosmological solutions of the theory, let us
consider the simple spatially flat Robertson-Walker metric,

ds2 = −dt2 + a(t)2d �x · d �x . (6)

The field equation coming from the action is highly compli-
cated as given in equation (F5) of [3]. Therefore we shall
not directly use these field equations to search for solutions,
but instead, we shall employ the symmetry reduction tech-
nique in the action before doing calculus of variations. The
conventional approach involves inserting the metric into the
action and defining the Hubble parameter as H(t) = ȧ

a to
simplify the Lagrangian into a single equation involving the
Hubble parameter and its time derivatives. However, it is cru-
cial to exercise caution in this reduction process, because the
“integrated-out” symmetry group in this case is not compact
and, therefore, it falls outside the scope of Palais’ symmetric
criticality guarantee [9,10]. Consequently, merely varying
the action concerning the scale factor or the Hubble param-
eter provides necessary but insufficient conditions. In this
context, we adhere to Weinberg’s robust and error-free com-
putation [11] for guidance. Inserting (6) into (2) and dropping
an overall irrelevant constant, we arrive at the reduced action

I =
∫

dt a3 I(H, Ḣ), (7)

where the scale factor a and the Hubble parameter H depend
on the coordinate time t . The remarkable property of our the-
ory is that just like Einstein’s gravity the second-time deriva-
tive of the Hubble parameter does not appear in the reduced
action in contrast to other higher derivative theories. Accord-
ing to our action (2), the function I(H, Ḣ) can be written as

I(H, Ḣ) = −1 − 4λ0 +
√
X3

1X2, (8)

where X1 and X2 are given as

X1 = 2ḣ2((c − 2)c + 4b − 2) − 2(c − 2)
(

6h2 + 1
)
ḣ

+
(

6h2 + 1
)2

,

X2 = 6ḣ2(c(3c + 10) − 4b − 6) +
(

6h2 + 1
)2

+ 6(c + 2)
(

6h2 + 1
)
ḣ,

(9)

where we used the dimensionless Hubble parameter h(t) ≡√
γ H(t) and the dimensionless time t̃ ≡ t/

√
γ , so that

derivatives are with respect to dimensionless time in (9).
It is clear that for the RW metric, the Weyl tensor vanishes

identically; hence the parameter a does not contribute to the
reduced action. Note also that for the particular case c = −1
and b = −5/2, one has a purely quartic theory since X1 =
X2 of which the spherically symmetric black hole solutions
were studied in [7]. Equipped with this, the necessary and
sufficient equation to solve is the one coming from

δ I

δg00 RW
= 0, (10)

which yields [11]

I − H
∂I
∂H

+
(
−Ḣ + 3H2

) ∂I
∂ Ḣ

+ H
d

dt

(
∂I
∂ Ḣ

)
= 0.

(11)

By inserting the functionI in (7) into the last equation, that
is the EoM, which is the 00-component of the corresponding
field equations, can be expressed as follows.

3H2 = 324γ 3
(
H8 + 9H4 Ḣ2 + 6H3 Ḧ Ḣ − H2 Ḣ3 − 3H Ḧ Ḣ2

+ 3

4
Ḣ4

)
+ 108γ 2

(
H6 + 9

2
H2 Ḣ2 + 3H Ḧ Ḣ − Ḣ3

)

+ �0 ≡ κ0ρMG, (12)

where we have kept the 00-component of the Einstein tensor
on the left, while we defined the rest coming from the modi-
fied gravity as ρMG and wrote it on the right-hand side, as is
often exercised in modified gravity theories. Moreover, from
the variation of the action (2) with respect to the space com-
ponent of the metric δgii where i = 1, 2, 3, or equivalently
from the conversation law ρ̇MG + 3 H (ρMG + pMG) = 0,
one can find the pressure equation.

− (
2Ḣ + 3H2) = −324γ 3

[
H8 + 8

3
H6 Ḣ + 9H4 Ḣ2

+11H2 Ḣ3 + 1

12
Ḣ4 + 2H Ḧ Ḣ

(
6H2 + Ḣ

)

+2Ḧ2 (
H2 − Ḣ

) + Ḣ
...
H

(
2H2 − Ḣ

)]

−108γ 2
[
H6 + 2H Ḣ

(
H3 + 9

4
H Ḣ + 3Ḧ

)
+ Ḧ2

+2Ḣ3 + Ḣ
...
H

] − �0 ≡ κ0 pMG, (13)
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where we again used the same convention by defining pMG.
Then, with the definition of ρMG and pMG, the field equations
can be expressed in the usual form for the metric (6),

3

κ0
H2 = ρMG, − 1

κ0

(
2Ḣ + 3H2

)
= pMG, (14)

which are called Friedmann equations. Notice that in the
de Sitter limit, where the Hubble parameter is a constant
H(t) = H0, the equation of state (EoS) parameter tends to
approach minus one,

ω0MG ≡ pMG

ρMG

∣∣∣∣
dS

= −1 (15)

irrespective of the presence of a bare cosmological constant.
The de Sitter solution can be found using the first Friedmann
equation in (14) that yields

324H8
0 γ 4 + 108H6

0 γ 3 − 3H2
0 γ + �0γ = 0, (16)

which can be rewritten in dimensionless form as

4λ4 + 4λ3 − λ + λ0 = 0, (17)

where we defined an effective cosmological constant � =
3H2

0 and corresponding dimensionless parameters λ = γ�

and λ0 = γ�0 for effective and bare one respectively. Note
that the last equation is (4). This polynomial equation has
four solutions, two of which are imaginary and one of them
is not physical in the sense that it gives λ > 1/4 which
corresponds to κ < 0 according to (5) so that we have a
unique de Sitter solution for given λ0. Here, we provide
some remarks concerning the free parameters and the higher-
order curvature terms within the Lagrangian. As mentioned
previously, setting a = 0, b = −5/2, and c = −1, the theory
assumes a purely quartic nature, resulting in a Lagrangian
with a finite number of curvature terms, specifically up to
and including R4 order terms. Alternatively, if we opt to keep
these parameters as free variables, the conventional approach
to derive field equations involves expanding det(δν

μ +4γ Aν
μ)

and its square root in the small γ limit. Consequently, the
Lagrangian incorporates an infinite number of higher-order
terms. However, in our analysis, we found that the parameters
a, b and c do not appear in the de Sitter solution; and terms
beyond the fourth order in curvature exhibit no influence
on both the de Sitter solution and the linear perturbations
around it. This observation implies that, when considering
the simplified cosmological scenarios of a de Sitter universe
and the quasi-de Sitter analysis, it is sufficient to focus on the
lower-order curvature terms, thereby we can safely set the
parameters to the desired values. In that case, the Lagrangian

in (2) can be reduced to the simpler form1.

L = 1

2γ κ0

(
γ (R − 2�0) + γ 2 9

2
G + γ 3 1

2

(
9GR − R3

)

+γ 4 1

8

(
R4 − 18GR2 + 81G2

))
, (18)

where G ≡ RμνσρRμνσρ − RμνRμν + R2 is the Gauss–
Bonnet invariant. Then the BI gravity reduces to the form a
F(R,G) theory with the action

I = 1

2κ0

∫
d4x

√−gF(R,G), (19)

with a specific F given as

2γF ≡
(

1 + γ R − 1

2
γ 2

(
R2 − 9G

))2

− 4γ�0 − 1. (20)

This is the minimal quartic extension of Einstein’s gravity in
the sense that it has the same particle spectrum and a unique
vacuum. With our parameter settings, the explicit form of
Lagrangian (18) shows that it is quartic in curvature. Hence-
forth, in the remainder of the analysis, we shall adopt this
simpler theory. In principle, one would like to study the pro-
cess of inflation within the BI gravity described so far, but
it turns out the theory does not have a quasi-de sitter phase.
Such an attempt was made by one of us in [12] expecting
that the theory would start from the unstable κ < 0, vacuum,
that is the repulsive gravity phase, and end up in the κ > 0
vacuum in an inflated state. But, due to a computational error
in that work, the claimed result is not correct. Although both
Einstein’s gravity and our extended version admit maximally
symmetric vacuum solutions, they fail to generate an early
inflationary phase on their own. It turns out that the contribu-
tions from the matter sector, specifically the trace anomaly
arising from the quantum corrections of matter fields in our
case, are crucial for realizing an inflationary phase. With-
out the matter part, our extended theory based solely on the
Born–Infeld gravitational action (2) does not provide a viable
quasi-de Sitter inflationary solution, much like the ordinary
Einstein’s theory without additional fields, Gμν = 0. Hence,
we must resort to the trace anomaly to realize inflation. We
describe some basics of the trace anomaly in the next section
before applying it to quartic theory.

1 Note that this is the reduced form of the action (2) with parameters a,
b, c fixed, and this action is not dictated by the trace anomaly that will
be introduced in the next section.
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3 Trace anomaly driven inflation in the minimal quartic
extension of Einstein’s gravity

3.1 Trace anomaly

In one of the earliest models of inflation [2], the expansion is
driven by the trace anomaly arising from a significant num-
ber of matter fields. The standard model of particle physics
encompasses almost a hundred such fields, and this count at
least doubles if we consider embedding the standard model
within a supersymmetric framework. Consequently, a sub-
stantial number of matter fields existed in the early universe.
At the energy scale of inflation, these fields can be consid-
ered as non-interacting and massless. Within this approach,
we conduct a path integral over the matter fields, �, within
a specified background gμν , yielding an effective action that
is functional of the background metric:

ei
(gμν) =
∫

D�ei S(�,gμν), (21)

where the classical action can be divided into vacuum and
matter parts, S(�, gμν) = Svac(gμν) + Smatter(�, gμν). For
a viable theory that is renormalizable, in addition to the
Einstein–Hilbert action, the vacuum part should include four
different four-derivative terms,

SHD =
∫

d4x
√
g

(
b1W + b2G + b3�R + b4R

2
)

, (22)

which are called higher derivative terms that arise naturally
in renormalization [13]. Then, the vacuum action is given by

Svac = Sbac. + SHD. (23)

where Sbac is the action of background gravitational model.
Furthermore, the effective action of gravity 
[gμν] admits a
loop (or h̄) expansion



[
gμν

] = Svac
[
gμν

] + 
̄(1) + 
̄(2) + 
̄(3) + . . . , (24)

so that one can write the total expression for the divergent
part of the one-loop effective action of the vacuum for the
theory involving NS real scalars, NF Dirac spinors and NV

massless vectors


̄
(1)
div = 1

ε

∫
d4x

√
g

(
β1W−β2G + β3�R+β4R

2
)

, (25)

where βs are renormalization group β-functions that depend
on the number of fields present in the theory; and given as
[14,15]

β1 = 1

120(4π)2 (NS + 6NF + 12NV) ,

β2 = 1

360(4π)2 (NS + 11NF + 62NV) ,

β3 = 1

180(4π)2 (NS + 6NF − 18NV) ,

β4 = 1

2(4π)2 NS

(
ξ − 1

6

)2

.

(26)

Here, ξ is the non-minimal coupling parameter for the term
ξ Rφ2 of a scalar field coupled to gravity, and the value
ξ = 1/6 corresponds to the special version of the scalar
theory which possesses local conformal symmetry. Thus, in
the conformal case, one can set β4 = 0, then the action SHD

satisfies the conformal Noether identity

− 2√−g
gμν

δSHD

δgμν

= 0, (27)

which means zero trace for the stress tensor of the vacuum
Tμ

μ = 0. At the quantum level, this condition is violated by
an anomaly, the trace anomaly that reads as

〈
Tμ

μ

〉 = − 2√−g
gμν

δ
̄(1)

δgμν

= α′W − βG + δ�R, (28)

where α′ = β1, β = β2, and δ = β3 for global confor-
mal symmetry. Here, the emergence of the �R-term in the
trace of the energy-momentum tensor is important since this
is the term responsible for the Starobinsky instability. We
should note that the coefficients β1 and β2 are independent
of the renormalization scheme, but β3 is not. For exam-
ple, the notion adopted here that is the result given by the
zeta-function regularization or predicted by AdS/CFT gives
−18 as the coefficient of NV in the expression of β3 while
the result given by dimensional regularization has +12. The
renormalization-dependent nature of δ suggests the possibil-
ity of adding a finite R2 counter-term to the action at the
classical level. When N = 4 super Yang–Mills theory is
considered, for example, the field content can be given by
a single parameter N which is a large number. In that case,
the effect of �R vanishes and then the inflation never ends.
However, δ can be adjusted to any desired value by adding
the finite counter-term.

Sct = N 2δ

12(4π)2

∫
M

d4x
√−gR2. (29)

This counter-term explicitly breaks conformal invariance. In
the literature, there is an ambiguity in the parameter δ and
a comprehensive examination of this matter is available in
[14,16,17]. The presence of Sct implies that we are effec-
tively dealing with a higher derivative theory of gravity,
but it is arbitrary to consider it as part of the gravitational
action or as part of the matter action. Since we are using
the Born–Infeld action as the gravitational sector, the origin
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Table 1 Particle contents of Minimum Standard Model (MSM), Minimal Supersymmetric Standard Model (MSSM) and SU (N ) Super Yang–Mills
Theory, and corresponding values of β-functions

Model NS , NF , NV β1 β2 β3

MSM (4, 24, 12) 73/(480π2) 253/(1440π2) −17/(720π2)

MSSM (104, 32, 12) 11/(48π2) 5/(24π2) 1/(36π2)

SU (N ) SYM (6N 2, 2N 2, N 2), N � 1 N 2/(64π2) N 2/(64π2) 0

of the parameter δ can be regarded as a matter contribution.
Hence, we provide particle content of three example models
in Table 1, and adopted the Minimum Standard Model in our
analysis mainly.

Finally, the scenario can be succinctly encapsulated in
the following manner: In curved space-time, the action gov-
erning the massless matter fields, that are scalars, Dirac
spinors, and vectors, exhibits conformal invariance, yet the
presence of one-loop vacuum contributions introduces cer-
tain divergences. Within the context of renormalization, spe-
cific counter-terms are introduced to remove the singulari-
ties within the divergent part, albeit at the cost of breaking
the conformal invariance inherent to the matter action itself.
Classically, within a conformally invariant theory, the trace
of the energy-momentum tensor is expected to be zero. How-
ever, the renormalization process results in the emergence of
an anomalous trace of the energy-momentum tensor in (28),
commonly referred to as the conformal anomaly or the quan-
tum anomaly.

3.2 Trace anomaly within minimal quartic theory

The final action in the presence of quantum contributions
(QC),

I = 1

2κ0

∫
M

d4x
√−g

(F(R,G) + 2κ0LQC
)

(30)

has the field equations:

Eμν ≡ FR Rμν + 1

2
gμν (GFG − F) + (

gμν� − ∇μ∇ν

)FR

+ 4

[(
2Cμσνλ − Rμσνλ

) ∇σ ∇λ + R

6

(
gμν� − ∇μ∇ν

)]

FG = κ0
〈
Tμν

〉
(31)

where F is defined in (20), and FR and FG are partial
derivative of F(R,G) with respect to R and G. The energy-
momentum tensor

〈
Tμν

〉 = 〈
0

∣∣Tμν

∣∣ 0
〉
emerges from the vac-

uum expectation value of the quantum corrections. For a fur-
ther discussion on the trace anomaly, see [18] and the refer-
ences therein.

Then, by taking trace of the field equations, we have

RFR + 2GFG − 2F + 3�FR − 4Gμν∇μ∇νFG = κ0
〈
Tμ

μ

〉
.

(32)

In the flat RW background with the metric (6), let us build
the energy-momentum tensor as

〈T00〉 = ρ,
〈
Ti j

〉 = pa(t)2δi j , (i, j = 1, 2, 3). (33)

Then, the field equations can be written in a simple form

3
κ0
H2 = ρMG + ρ ≡ ρeff ,

− 1
κ0

(
2Ḣ + 3H2

) = pMG + p ≡ peff ,
(34)

where ρMG and pMG are previously defined in Eqs. (12)
and (13), and ρeff and peff are the effective energy density
and pressure. In other words, these are the total energy con-
stituents of the universe, comprising quantum matter com-
ponents and modification of gravity. Furthermore, consid-
ering the covariant derivative of the field equations (31),
∇μEμ0 = 0, one arrives at the conservation law.

ρ̇ + 3H (ρ + p) = 0. (35)

Now, we can obtain the full effective energy-momentum
tensor. In principle, the complete structure of the energy-
momentum tensor originating from the quantum corrections
remains unknown. What we do possess knowledge of is its
trace, denoted as

〈
Tμ

μ

〉
. Nonetheless, when provided with the

metric, it is possible to derive the energy-momentum tensor
of the quantum anomaly on-shell. From the trace

〈
Tμ

μ

〉
, we

have

− ρ + 3p ≡ −βG + δ�R, (36)

with W = 0 in flat RW metric. Using the conservation law
in (35) and eliminating the pressure, we can write

d

dt

(
ρa4

)
= −ȧa3 (−ρ + 3p)

= ≡ a3ȧ

(
24β

ȧ2ä

a3 + δ(R̈ + 3H Ṙ)

)
. (37)

The integration of this equation provides us the expression
for the energy density

ρ = ρ0

a4 + 6βH4 + δ
(

18H2 Ḣ + 6Ḧ H − 3Ḣ2
)

, (38)

where ρ0 is the integration constant. Using the conservation
law, eventually one can find the pressure

p = ρ0

3a4 − β
(

6H4 + 8H2 Ḣ
)

−δ
(

9Ḣ2 + 12H Ḧ + 2
...
H + 18H2 Ḣ

)
. (39)
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Note that the presence of ρ0 implies that the quantum state
may contain an arbitrary amount of radiation. However, we
can reasonably disregard this radiation due to our focus on
extremely high energy scales, all the way to the Planck scale.
At this scale, the energy density associated with the stan-
dard radiation is typically insignificant compared to that of
quantum corrections and gravitational modifications. Conse-
quently, we set

ρ0 = 0.

To study the cosmological evolution of the model, it suf-
fices to use one of the field equations (34). In what follows,
we use the first one, where ρMG is defined in (12) and ρ is
found in (38) with ρ0 = 0.

3.2.1 de Sitter solutions

Let us recast the EoM which is the first equation in the Fried-
mann equations (34) in full form.

3H2 = �0 + 3κ0
(
2H4β + δ

(
6H2 Ḣ + 2H Ḧ − Ḣ2))

+ γ 3 (
324H8 + 2916H4 Ḣ2 + 1944H3 Ḧ Ḣ − 324H2 Ḣ3

−972H Ḧ Ḣ2 + 243Ḣ4)
+ γ 2 (

108H6 + 486H2 Ḣ2 + 324H Ḧ Ḣ − 108Ḣ3) .

(40)

Here, the terms with κ0 are the effect of trace-anomaly while
the effect of modified gravity appears as the terms multiplied
by γ . Solution for a constant H(t) = H0 gives us de Sitter
solution which is the solution of the resultant polynomial
equation,

324H8
0 γ 3 + 108H6

0 γ 2 + 6H4
0 κ0β − 3H2

0 + �0 = 0,

2β0λ
2

3
+ 4λ4 + 4λ3 − λ + λ0 = 0,

(41)

where we defined β0 = βκ0
γ

and δ0 = δκ0
γ 2 to be used later. The

second line of (41) shows that only the Gauss–Bonnet term
in the anomalous trace contributes to the de Sitter solution,
on the other hand, we will see that the coefficient δ in front
of �R term plays a crucial role in stability analysis of de
Sitter solution. Here, the appearance of a term of λ2 order
makes a double de Sitter solution possible in the physical
range κ > 0, depending on the values of the parameters.
One of them is due to the presence of the bare cosmological
constant �0, and the other is due to the trace anomaly, and if
the latter is unstable it corresponds to inflation.

3.2.2 Perturbations around the de Sitter solution

To find the stability condition of the de Sitter solution, we
analyze the linearized perturbations around it H(t) = H0 +

�H(t). Substituting this into (40), and linearizing it in small
�H(t)/H0 � 1 gives a solution of the perturbation in the
following form,

�H(t) = A0 e
ξH0t , (42)

where A0 �= 0 is the amplitude of perturbation; and ξ is the
solution of the quadratic equation,

6H0

(
−432H6

0 γ 3 − 108H4
0 γ 2 − 4H2

0 γβ0 − H2
0 κ0δξ

2

−3H2
0 κ0δξ + 1

)
= 0, (43)

which can be expressed in different forms,

ξ = − 3

2
±

√
κ0δ

(−1728H6
0 γ 3 − 432H4

0 γ 2 − 16H2
0 γβ0 + 9H2

0 κ0δ + 4
)

2H0κ0δ

= − 3

2
±

√
δ0

(−16β0λ + 9δ0λ − 192λ3 − 144λ2 + 12
)

2δ0
√

λ

= − 3

2

[
1 ±

√
1 + 4

3δ

(
1

κ�
− 4β

3

) ]
. (44)

The last expression looks exactly the same as the expression
with pure trace-anomaly driven inflation [19], but the dif-
ference is that � is now the effective cosmological constant
which is the solution to (41) with λ = γ� and λ0 = γ�0,
and κ is the effective gravitational constant whose relation
with the bare κ0 and � is given in (5); so that κ implicitly
involves � also. Furthermore, if inflation is described by an
unstable de Sitter solution which requires ξ > 0, the condi-
tion for viable inflation can be given as

κ� > 0 ∧ β >
3

4κ�
∧ δ < 0. (45)

Hence, the instability depends on the sign of the �R term in
the trace of energy-momentum tensor. For the particle content
of MSM, δ is negative, while MSSM gives positive values. As
discussed above, the renormalization scheme dependence of
this term makes it possible to adjust it to any value by intro-
ducing a counter R2-term in Lagrangian since having �R
term in the trace of an energy-momentum tensor and having
R2 term in the Lagrangian are equivalent. In Appendix A, we
investigate how having this affects the “potential term” of the
equivalent point-like Lagrangian of our quartic F(R,G) the-
ory (18). In most of the analysis, we simply consider the
MSM case for the value of β, and examine negative values
of δ for unstable initial de Sitter phase.

3.3 Dynamics of inflation

3.3.1 Dynamical system analysis

We first analyze our main differential equation (40) with a
phase portrait analysis. This provides us general behavior of
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the solutions in the phase space without solving the equation.
Using a change of variables,

x = H(t) and y = Ḣ(t), (46)

it can be written as a first order differential equation

dy

dx
= f (x, y ; �0, γ, β, δ) = f1(x, y)

f2(x, y)
. (47)

Here, �0 andγ are free parameters that need to be determined
while the other parameters β and δ are determined by the
number of particles in the underlying particle theory. The
functions f1(x, y) and f2(x, y) are

f1(x, y) = �0 + 324γ 3x8 + 108γ 2x6 + 6x4 (
βκ0 + 486γ 3y2)

+ x2 (−324γ 3y3 + 486γ 2y2 + 18δκ0y − 3
)

+ 243γ 3y4 − 108γ 2y3 − 3δκ0y
2

f2(x, y) = 6xy
(
δκ0 + 54γ 2y

(
6γ x2 + 1

) − 162γ 3y2)
(48)

With our definitions of x and y, the velocity field reads

(vx , vy) =
(
dx

dt
,
dy

dt

)
= (Ḣ , Ḧ) = (y, y f (x, y)).

Then, plotting this velocity field, one can find and analyze
the critical points and their characteristics of the system in
xy-plane. In Fig. 1, we provided the phase portrait for the
Minimum Standard Model (MSM) in four different regimes.

In the first scenario depicted in Fig. 1a, we examine the
case where there is no contribution from the modified grav-
ity, representing a pure trace-anomaly situation within the
framework of Einstein’s gravity. Two critical points can be
seen along the y = 0 axis, corresponding to two distinct de
Sitter solutions. For the particle content of MSM, the sec-
ond solution is identified as unstable. Consequently, the uni-
verse is presumed to have originated nearly from this point,
having a negative Ḣ , subsequently transitioning towards the
first critical point, which acts as the final attractor of the sys-
tem, determined by �0, and may correspond to the late-time
acceleration. In the absence of an intrinsic cosmological con-
stant, the ultimate attractor point resides at (x, y) = (0, 0).
Thus, during the inflationary epoch, the Hubble parameter
H experiences a slow decrease while maintaining Ḣ in near
constancy, eventually oscillating around the final attractor,
indicative of the reheating era.

In the second scenario, depicted in Fig. 1b, we switch
off the trace anomaly and investigate the dynamics of pure
modified gravity. Once again, two distinct de Sitter solu-
tions are evident along the y = 0 axis. Additionally, a solid
black line is introduced along the x-axis to indicate a non-
physical region where λ > 1/4, a characteristic feature typ-
ical of Born–Infeld-type theories, setting an upper limit on
the effective cosmological constant. Consequently, the sec-
ond solution is nonphysical, as it intersects with the solid line,

resulting in the existence of a unique de Sitter solution. In
this context, a critical surface manifests along the y = 0 axis,
changing the characteristics of critical points both below and
above this surface. The unique de Sitter solution remains
stable within the domain where Ḣ < 0, yet transitions to
instability when Ḣ > 0 is encountered. Furthermore, the
critical surface is identified as unstable within these points,
while exhibiting attractor behavior beyond this region.

In Fig. 1c, we explore our modified gravity theory gently
introducing a small value for γ in the presence of the trace
anomaly. In comparison to the first scenario, the introduction
of modified gravity results in the emergence of three criti-
cal points situated above the de Sitter solutions observed in
the original trace-anomaly case. However, one of these crit-
ical points exhibits a notably high Ḣ value, surpassing the
upper limit of this plot and consequently playing no role in
the inflationary solutions. The remaining two critical points
reside above the critical points along the y = 0 axis and are
positioned on a critical surface represented by a curve that
converges toward the x-axis as H → ∞. Notably, the criti-
cal surface with critical points on it in pure modified gravity
case is raised within the Ḣ > 0 region, while still maintain-
ing the de Sitter solution due to the trace anomaly within the
physically plausible range, κ > 0. Under an initial condi-
tion where Ḣ � 0, the dynamics of inflation remain largely
unaffected by the modified gravity.

In Fig. 1d, to understand the effect of modified gravity
on trace-anomaly-driven inflation, we play with the value
of γ . Increasing γ makes the top critical points get closer
to the de Sitter points. The solid line indicates the κ < 0
region and, as γ increases, it includes the initial de Sitter point
which means inflation cannot happen in this (unphysical)
case. This imposes an upper bound on γ so that the effects
of modified gravity should not exceed the trace anomaly for
a viable inflationary model.

Furthermore, we investigate the scenario wherein the sign
of the �R-term is positive, indicative of an initial stable
point. This condition finds representation in the context of
MSSM as an illustrative example model encompassing the
particle content pertinent to this case. In Fig. 2, the phase-
portrait of the system is plotted without and with the effects
of modified gravity for the MSSM case respectively, and
from Fig. 2a, it can be seen that the second de Sitter solu-
tion due to the trace-anomaly is a stable critical point. In this
case, a graceful exit from Inflation requires its mechanism to
disrupt this state. In Ref. [20], a possible transition from sta-
ble to unstable phases of inflation is discussed, and different
quantum mechanisms that may produce large R2-term dur-
ing the inflation are proposed for a graceful exit, for exam-
ple. On the contrary, we show that the minimal extension
of Einstein’s gravity makes possible an exit from inflation
without any other mechanism. In Fig. 2b, we have plotted
the contribution of modified gravity in this case. As in MSM
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Fig. 1 The phase-portrait of the system described by the EoM (40) for the MSM case with parameter settings x = H(t) and y = Ḣ(t). The figure
is plotted in c = h̄ = κ0 = 1 units and the value of the bare cosmological constant is chosen arbitrarily as �0 = 6

case, modified gravity creates additional critical points on
the phase-portrait, visible ones of those in the plotted region
are labeled as Pi (xi , yi ) in the graph, but this time the two
of them lying on a critical surface are in Ḣ < 0 region.
Note that increasing the intensity of modified gravity makes

this critical surface closer to the y = 0 line. Therefore, if
the universe starts with H � x1 � x2 and a small value of
Ḣ from below this surface, Ḣ � y2 for example, then the
exit from inflation can occur due to the attractor behavior of
the surface between 0 and x3. This prevents Ḣ from flowing
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Fig. 2 The phase-portrait of the system described by the EoM (40) for
MSSM case. We shade off the region |y/x2| > 1 indicating the outside
of the slow-roll regime which is not preferred for initial conditions.
The curves highlighted in color in (b), are some example solutions

with (green) and without (red) graceful exit. The figure is plotted in
c = h̄ = κ0 = 1 units and the parameters are set as γ = 0.004 and
�0 = 6

through negative infinity and ends inflation with H � x3. If
the strength of modified gravity is high enough, the initial
point for Ḣ can be in the slow-roll regime, i.e.

∣∣Ḣ/H2
∣∣ � 1

while keeping κ positive. In Fig. 2b, the green curves are
some examples of possible inflationary solutions with grace-
ful exit while the red ones does not have enough initial Ḣ
value so that the graceful exit is not possible for those similar
to the Einstein’s gravity. We should note that the necessary
number of e-folding is not guaranteed for all of these solu-
tions, but a particular realistic solution with enough number
of e-folding is analyzed in the next section.

3.3.2 Numerical solutions

Here, we numerically solve EoM which is the 00−component
of the field equations given explicitly in (40) for different
numerical values of γ and δ. Recall that the value of the
parameter β is fixed by renormalization, but we have a free-
dom to set δ to any desired value by adding R2 counter term
to the action due to its renormalization scheme dependence.
Moreover, because the parameter �0 is related to the final
attractor of the system, we set it to zero �0 = 0 for the rest
of the analysis, but it can be set to a value for unified early and
late time acceleration model. Hence, our main free param-
eters are BI parameter γ and the coefficient of �R term, δ,

to fit the solution into desired shape. In Fig. 3, we give four
numerical solution of the field equation for H(t) to judge the
model parameters γ , �0, and δ, with the parameter β set to
β = 253/(1440π2) for the content of the MSM particles.

With the help of the numerical results, we have a chance to
examine the inflation scenario that we revealed in the phase
portrait analysis in more detail. Then, the typical solution of
H(t) can be described as follows. H starts with an initial
value of the unstable vacuum state determined by β and γ as
a solution of (41), and slowly roll down from this value until
it enters a linearly decreasing phase, H ∝ −t , through to
zero which is a typical behavior of R2 gravity in the slow roll
regime [21]. Then, bouncing back from zero, H approaches
the value of the final vacuum determined by �0 by oscilla-
tions with decreasing amplitude called the reheating era. If
�0 = 0, the final value of H → 0. In Fig. 4, one of the solu-
tions can be seen in the phase space that we defined in the
previous section. In addition, using the numerical solution of
H(t), we have also plotted the function a(t) in Fig. 5, from
which the behavior of the scale factor during inflation can be
seen as quasi-exponential while during the reheating phase

it can be approximated by a(t) ∝ t
2
3 .

In our numerical analysis, the aim is to examined the role
of parameters δ and γ on the dynamics of inflation and the
number of e-folding N . At the end of inflation e-folding
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Fig. 3 Numerical solutions of 00-component of field equations for
H(t) with different parameter settings in c = h̄ = κ0 = 1 units. Here,
the value of β = 253/(1440π2 is given by MSM particle content.
The other parameters that we used for numerical solutions are given as

1 γ = 0.0043, δ = −0.25, �0 = 0; 2 γ = 0.0043, δ = −0.35,

�0 = 0; 3 γ = 0.0025, δ = −0.25, �0 = 0; 4 γ = 0.0043, δ =
−0.25; �0 = 0.2. The initial conditions for the numerical solutions are
taken as H(0) = Hi − 10−5 and Ḣ(0) = 0 where Hi is the solution of
(41) which is the value of initial de Sitter phase

Fig. 4 The plot of the numerical solution 1 in H − Ḣ phase space.
The solution is consistent with the case of phase portrait (Fig. 1c) that
we discussed in the dynamical system analysis

number N is given by

N ≡ log

[
a(t f )

a(ti )

]
, (49)

where ti = 0 and a(ti ) = 1 at the initial time, and t f is the end
of inflation where the Universe enters the oscillatory phase.
By varying δ and γ in many numerical solutions, in Fig. 6, we
find the relations betweenN at the end of inflation and model
parameters. Thus, the following observations can be made.
First, the duration of the inflation is determined mainly by the
term δ, but γ also contributes little. A higher γ reduces the
initial value of the H since it enters the solution of de Sitter
equation (41) and also it suppress the duration of inflation.
However, for fixed β, there is a maximum value of γ at which
λ = 1/4. For MSM particle content, β = 253/(1440π2), the
highest value is γ � 0.00431 so that a γ with higher than
that value makes κ negative, which is undesired.

The slow-roll parameters

We can also check if slow-roll parameters during the inflation
are small enough. From the second time derivative of a(t),

Fig. 5 Evolution of the scale factor a(t) in time. In left panel (a),
we see a quasi-exponential expansion which expands space about 1059

order. On the right panel (b), the behavior of a(t) during reheating era

is presented and shows that the scale factor evolves like matter domi-
nated phase as a ∼ t2/3. Here, tr is the initial time of reheating and we
re-scaled the initial value by normalizing with a(tr) for this plot
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Fig. 6 The dependence of total e-folding number N at the end of infla-
tion on the parameters δ and γ . The data points are found by varying
model parameters and performing numerous numerical solutions. In

(a), the relation with respect to δ is calculated at fixed γ = 0.0043,
while in (b), the relation is at fixed δ = −0.25

ä

a
= H2 + Ḣ = H2(1 − ε), (50)

we can introduce the slow-roll parameter ε, which has to be
small during the inflation to vary H(t) slowly.

ε = − Ḣ

H2 � 1. (51)

To have a viable inflation with a graceful exit, the slow-roll
requires that the change in ε should also be small, so that we
have another parameter η to measure it.

|η| =
∣∣∣∣− Ḧ

2H Ḣ

∣∣∣∣ ≡
∣∣∣∣ε − 1

2εH
ε̇

∣∣∣∣ � 1. (52)

These two parameters, referred to as the Hubble slow-roll
parameters, play a pivotal role in analyzing the feasibility
of inflation within the framework of standard inflationary
models. In Einstein’s gravity with a single scalar field, we
can express some of the observables such as spectral index
of scalar curvature perturbations and tensor-to-scalar ratio
in terms of these parameters. In the modified gravity case,
however, there could be more than two slow-roll parameters
depending on the structure of the gravity model. In that case,
one can introduce parameters as needed, such as [22],

ε1 = − Ḣ

H2 , ε2 = G̈
H Ġ , ε3 = ḟ R

2H fR
,

ε4 = Ė

2HE
with E = 3 ḟ 2

R

2Ġ2
(53)

and extend this set further if necessary. Then, the true rela-
tions between the slow-roll parameters and the observables
come from the cosmological perturbations in that theory
with scalar vector tensor (SVT) decomposition. Here, we
should make an important remark. Our theory, just like the
model of Starobinsky, has a massless spin-2 and a massive

spin-0 field, the latter coming from the quantum anomaly.
(For the particle content of the model, see Appendix B and
also [24].) The mass of the scalaron in the Starobinsky case
(L = R+κ0αR2), ism2

φ = 1
6κ0α

, while our quartic extension
contributes to it via effective gravitational constant so that in
the maximally symmetric background, it becomesm2

φ = 1
6κα

where κ is given by (5). In Fig. 7b, we have seen that all
of these parameters are small during the inflation so that
inflationary solutions within this theory fulfill the slow-roll
conditions. If the horizon crossing happens at N∗ = 50−60,
then the order of these parameters as power of 10 are given as
O (η, ε1, ε2, ε3, ε4) = {−1,−3,−1,−1,−3}. Hence, in the
linear approximation with suitable chosen model parameters,
any linear combination of these parameters in the expression
of spectral index with the coefficients ci , coming from per-
turbation study, such as ns = 1 − ∑n

i=1 ciεi can satisfy
observational constraints [23] if ci ’s are smaller or around
order of 10.

Approximate solution

The numerical solutions show that the typical behavior of
the function H(t) during inflation is a sigmoid curve, which
can be approximated by using a generalized logistic function
H̄(t) of the form

H̄(t) = Hm(
1 + ek(t−t0)

)n , (54)

where Hm , k, t0 are constants needs to be determined and n
is integer. For the numerical solution presented in Fig. 3 with
model parameters

[
β, δ, γ, �0

] =
[
253/(1440π2), −0.25, 0.0043, 0

]
,
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Fig. 7 The number of e-folding during the inflation with respect to cosmic time t is given in (a) for different solutions presented in Fig. 3. In (b),

the evolution of slow roll parameters εi and η during the inflation is given with respect to number of e-folding N for the solution 1

Fig. 8 The approximate form of H̄(t) fitted to the numerical

solution 1 in Fig. 3 with model parameters [Hm , k, t0] =
[4.389, 0.414, 35.18] with the value of n = 3

the fitted values of the constants in H̄(t) are [Hm, k, t0] =
[4.389, 0.414, 35.18] for the minimum possible integer n =
3, but in general, a higher n could better fit. We have presented
H̄(t) in Fig. 8a, and it can be seen that it coincides with
numerical solutions during the inflation and decomposed
from it when ε ≈ O(1), and oscillations starts. The logis-
tic function H̄(t) can be used for an approximate analytical
solution for the inflationary period; hence, in the next section
when we analyze the matter perturbations, this approximate
form is used for the expression of H(t).

3.4 Evolution of matter perturbations

The theory deserves the study of cosmological perturbations
in full detail; however, since this is rather cumbersome work,
let us make a numerical analysis following the work [25].

Consider the equation which governs the evolution of the
matter fluctuations in the linear regime

δ̈m + 2H δ̇m − 1

2
κeffρmδm = 0 (55)

where ρm is the matter density and κeff is the effective grav-
itational coupling constant which, in F(R,G) gravity case,
is

κeff = κ0

FR(R,G)
(56)

where κ0 is the Newton gravitational constant. Notice that for
maximally symmetric background, κeff = κ in (5). Here, we
are considering perfect fluid matter that is added in action
(19) as minimally coupled. We use EoM (34) with matter
density contribution as

ρm = 3H2

κ0
− ρeff (57)

where ρeff includes contributions of both modified gravity,
ρMG, and trace-anomaly, ρ in (38).

Substituting these into (55), and by using approximate
solution of H = H̄(t) as a background expansion, one can
find a numerical solution for the matter fluctuations δm(t).
With the parameters chosen in previous section, the evolution
of the matter perturbations during the inflation is given in
Fig. 9.

We observe linear growth in matter perturbations concern-
ing the scale factor during the initial phase. Perturbations
reach a maximum value, about a factor of 109 in our case, and
almost freeze by the end of inflation. This gives an overview
of the matter perturbations, but a full cosmological perturba-
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Fig. 9 Evolution of the matter perturbations during the inflation in
with respect to scale factor. The matter perturbations are linearly grows
during the initial phase, and almost frozen at the last stage. The Log-Log
plot is in base e

tion theory with standard SVT decomposition in the metric
should be studied for more accurate results.

4 Conclusions

We have studied the cosmological inflation era in a theory
that extends General Relativity in such a way that the resul-
tant theory shares some nice properties of the former, such
as the uniqueness of the maximally symmetric vacuum and
the non-existence of degrees of freedom other than a mass-
less spin-2 graviton while being a better-behaved theory in
the ultraviolet regime of gravity. In principle, the theory is
of the Born–Infeld type and includes infinitely many pow-
ers of curvature in small curvature expansion; but we studied
a particular limit of the theory which has judiciously cho-
sen curvature terms up to and including quartic order. The
resulting theory becomes a particular F(R,G) theory where
R is the scalar curvature and G is the Gauss–Bonnet invari-
ant. This theory, when augmented with the inevitable trace
anomaly as computed in the Standard Model and the Mini-
mal Supersymmetric Standard Model, allows a quasi-de Sit-
ter solution with enough number of e-foldings. To describe
the typical behavior of the inflationary dynamics, we stud-
ied phase-portrait analysis and also give numerical solutions
for H(t). In the Supersymmetric Model, the cubic and quar-
tic terms allow an exit from the otherwise stable de Sitter
phase if the initial value of the time derivative of the Hub-
ble parameter is large enough while still in the slow-roll
regime.
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5 Appendix A: Potential analysis of the equivalent
point-like Lagrangian

As discussed, the �R term in the trace of anomalous energy-
momentum tensor is equivalent to having R2 term in the
Lagrangian, and the renormalization dependence of this term
gives us freedom to add the R2 term to the Lagrangian to
adjust the value of δ. Here, we investigate how this term in
the Lagrangian affects the “potential term” of the equivalent
point-like Lagrangian of our quartic theory (18).

For a generic F(R,G) Lagrangian, it is showed in [26]
that a point-like Lagrangian can be obtained for the metric
(6), so inserting it into the generic F(R,G) action (19) and
assuming suitable Lagrange multipliers for R and G, we can
express the equivalent form as

L = 6aȧ2FR + 6a2ȧḞR − 8ȧ3ḞG + a3

[F(R,G) − RFR − GFG
]

(58)

which is a canonical function depending on t and defined
in the configuration space Q ≡ {a, R,G}, and the Lagrange
multipliers are

R = 6
(

2H2 + Ḣ
)

, G = 24H2
(
H2 + Ḣ

)
. (59)

Then, this Lagrangian can be decomposed as

L = K
(
qi , q̇ j

) − V (qi ) (60)

where K and V are the kinetic energy and potential
energy respectively. Here we have qi ≡ {a, R,G} and
q̇ j ≡ {ȧ, Ṙ, Ġ}. In the case of Lagrangian, considering the
Lagrangian density, i.e. L = a3L , they are

K (a, ȧ, R, Ṙ,G, Ġ) = 6

(
ȧ

a

)2

FR + 6

(
ȧ

a

)
ḞR − 8

(
ȧ

a

)3

ḞG,

(61)

V (R,G) = − [F(R,G) − RFR − GFG
]
. (62)
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Fig. 10 Plot of V (R,G) of the point-like Lagrangian which is equivalent to (63). When the R2-term is dominant (right panel), there is a minimum
potential located at (R, G) = (0, 0) where the dynamical system flows through there

Fig. 11 Plots of sections of the potential V (R,G). In the left panel, we reported the section of the potential when the R2 term is absent. A symmetry
breaking is evident. In the right panel, when R2 term dominant, the minimum of the potential is shifted to R = 0

Eventually, for our Lagrangian with R2 term added,

F = R − 2�0 + 9γ

2
G + γ 2

2

(
9GR − R3

)

+γ 3

8

(
81G2 − 18GR2 + R4

)
+ κ0αR

2 (63)

we found the potential term as

V (R,G) = γ 3
(

81G2

8
− 9GR2

2
+ 3R4

8

)

+γ 2
(

9GR
2

− R3
)

+ αR2 (64)

We plot the potential with and without the R2 term in Fig. 10,
and in Fig. 11, we plot a section of the potential for high value
of G (recall that R ∼ H2 and G ∼ R2). It seems that without
R2 term, the minimum of the potential is not located at R = 0

and there are two local minimum, one of which is lower on
the positive R side. However, adding R2-term changes the
potential so that the minimum of the potential is shifted to
{R,G} → 0. This means that, if the Universe started with
some value of H , due to β term in the trace anomaly for
example, then it rolls down to the minimum of the potential
which is located at (R, G) = (0, 0) by inflating the Universe.

6 Appendix B: Degrees of freedom in the quartic theory

To figure out the excitations and their masses around a maxi-
mally symmetric solution of the minimal quartic theory plus
the αR2 term coming from the anomaly in the action, we will
follow the discussion given in [24] for generic f (Riemann)

123



 1280 Page 16 of 17 Eur. Phys. J. C          (2024) 84:1280 

theories. Let us start with the full field equations in a vacuum:

FR Rμν + 1

2
gμν(GFG − F) + (gμν� − ∇μ∇ν)FR

+ 4

[
(2Cμσνλ − Rμσνλ)∇σ ∇λ + R

6
(gμν� − ∇μ∇ν)

]
FG = 0,

(65)

where, for our quartic theory,

F = R − 2�0 + 9γ

2
G + γ 2

2

(
9GR − R3

)

+γ 3

8

(
81G2 − 18GR2 + R4

)
+ κ0αR

2 (66)

and the relevant partial derivatives F(R,G) read

FG := ∂F
∂G = 9

4
γ

(−γ 2R2 + 9γ 2G + 2γ R + 2
)
,

FR := ∂F
∂R

= 1

2
(γ R − 1)

(
γ R(γ R − 2) − 9γ 2G − 2

)
+ 2κ0αR.

(67)

Note that the last term comes from the αR2 correction in the
action. To understand how many independent linear wave
equations are encoded in (65), let us first find its constant
curvature vacua and linear the field equations around any of
them. For constant curvature solutions, one has

R̄μσνρ = �

3
(ḡμν ḡσρ − ḡμρ ḡσν), R̄μν = �ḡμν, R̄ = 4�,

(68)

� being the effective cosmological constant to be determined
now. For the maximally symmetric solution (65) reduces to

R̄ F̄R + 2Ḡ F̄G − 2F̄ = 0, (69)

In four dimensions, the αR2 term does not contribute to the
maximally symmetric solution, so one has

4λ4 + 4λ3 − λ + λ0 = 0, (70)

where λ = γ� as was used in the bulk of the paper. We do
not need the explicit solutions of this equation, the fact that
at least one viable solution is sufficient for us. There exists,
in fact, only one viable solution, we do not want to repeat
this discussion here, see [7]. Let us now linearize the field
equations about this solution. Let

gμν = ḡμν + hμν, (71)

then one can write the linearization of the Gauss–Bonnet
scalar GL in terms of linearized scalar curvature RL as

GL = 4

3
�RL , (72)

where � is the viable solution of (70). In terms of the pertur-
bation hμν , one has

RL = −(�̄ + �)h + ∇̄μ∇̄νhμν, (73)

where h ≡ ḡμνhμν and barred quantities refer to the back-
ground metric. One has

(FR)L = (−6γ λ(1 + 2λ) + 2κ0α) RL ,

(FG)L = 9

2
γ 2(1 + 2λ)RL ,

(F)L =
(
(1 + 2λ)3 + 8κ0α�

)
RL . (74)

Linearization of (65) around the background solution yields

(FR)L�ḡμν + F̄R(Rμν)L + 1

2
hμν(ḠF̄G − F̄)

+ 1

2
ḡμν

(
(G)L F̄ + Ḡ(FG)L − (F)L

)

+ (ḡμν�̄ − ∇̄μ∇̄ν)
(
(FR)L + 4�

3
(FG)L

)
= 0, (75)

where Ḡ = 8�2

3 . Defining the linearized version of the cos-
mological Einstein tensor Gμν = Rμν − 1

2gμνR + �gμν as
(Gμν)L , one can rewrite (75 ) as
(

8ακ0� + κ0

κ

)
GL

μν + 2ακ0(ḡμν�̄ − ∇̄μ∇̄ν + �gμν)RL = 0,

where we defined

1

κ
= 1

κ0
(1 + 2λ)2(1 − 4λ) (76)

Without the RL part in (76), we already know that the theory
is cosmological Einstein’s gravity and only excitation defined
by GL

μν = 0 is the massless spin-2 equation. But with α �= 0,
the equation (76) describes a coupled system of massless
spin-2 and massive spin-0 particles. We refer the reader to
[24] for decoupling these modes. Here let us calculate the
mass of the spin-0 excitation. For this, taking the trace of
(76) yields the massive Klein-Gordon equation in de Sitter
spacetime:(

�̄ − 1

6κα

)
RL = 0. (77)

Then one has the mass of the scar field as m2
s = 1

6κα
. Note

that if one adds a βRμνRμν term to the action, the spectrum
includes a massive spin-2 particle which is necessarily ghost-
like due to its conflict with the massless spin-2 particle [13,
24].
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