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Abstract
We systematically investigate the nonreciprocal Kitaev chain, where the nonreciprocity arises from
the hopping amplitude and pairing strength. By studying the Hamiltonians under three different
bases, we reveal that the nonreciprocal hopping amplitude cannot induce a topological phase
transition, but can result in the complex energy spectrum and non-Hermitian skin effect.
Moreover, the Majorana zero energy edge modes, which are robust against the nonreciprocal
hopping amplitude, exist stably in the topologically nontrivial phase. On the other hand, the
nonreciprocal pairing strength can trigger a topological phase transition, which is associated with
the pseudo-Hermitian symmetry breaking. More interestingly, we observe that the exceptional
points independent of the topological phase can be determined by the dispersion relation, and
there is no non-Hermitian skin effect in the system. Furthermore, we calculate the topological
invariant to demonstrate the validity of the bulk-edge correspondence in the pseudo-Hermitian
symmetry-unbroken region. Our investigation provides a path to explore the fundamental physics
pertaining to the interplay between nonreciprocity and topology in the non-Hermitian topological
superconductors.

1. Introduction

The simplest model of topological superconductors, introduced first by Kitaev [1], is the mean
Bogoliubov–de Gennes (BdG) Hamiltonian of spinless fermions in one dimension (1D). In general, spinless
fermions are regarded as a toy model for the more complicated spinful case or fermions spin-polarized fully.
Topological superconductors, as a nascent state of matter, have significantly captured the interest of
researchers in recent years, notably the Kitaev model. The open chain of this model exhibits two physical
regimes, topologically trivial and nontrivial phases, which are determined by the absence and presence of
Majorana zero energy modes localized at the edges of chain [2–4]. In addition to the original Kitaev model,
alternative versions such as bosonic and ladder models have been proposed [5–8], revealing a range of
intriguing physical phenomena. On the other hand, the robustness of the Majorana zero energy modes
against disorders and perturbations theoretically makes them crucial in the topological quantum
fault-tolerant calculations [9–11]. Moreover, the experimental observation of Majorana zero energy modes
in some materials [12–18] has further highlighted the potential for practical applications in topological
superconductors.

Non-Hermitian open systems [19, 20], which interact with their environment, are typically considered to
be a subsystem of an infinite Hermitian system. Their complex eigenvalues lead to a number of fascinating
physical phenomena. Unlike their Hermitian counterparts, these open quantum systems are described by
non-Hermitian Hamiltonians, which allow for the exploration of unconventional physics in various fields,
including optics, acoustics, and cold atoms. The introduction of gain and loss to non-Hermitian
systems [21–26] have been extensively investigated, revealing a wealth of intriguing and unexpected results,
such as purely real energy spectrum. Non-Hermitian system with the nonreciprocity was first proposed to
study the localization transition [27], and since then, various novel topological properties of such systems
have been investigated, such as new topological invariants [28–31], edge states [32–35], exceptional
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point [36–41], anomalous topological transition [42–48], and non-Hermitian skin effect [49–55]. One of the
most significant properties of non-Hermitian systems is the breaking of bulk-edge correspondence, where
the bulk topological invariants of the energy spectrum cannot predict the occurrence of edge states in the
band gap. This observation has led to the development of non-Bloch band theory, which aims to describe the
non-Bloch bulk-edge correspondence relation [56–60].

Due to dual focus on topological superconductors and non-Hermiticity, there has been significant
interest in the non-Hermitian Kitaev models [61–66]. The non-Hermiticity of these models can be fully
added to the on-site chemical potential in various ways. Zeng et al [64] demonstrated that topologically
nontrivial phase region becomes narrower when imaginary potentials are added to all lattice sites. However,
the Majorana bound states always exist stably when imaginary potentials are only added to the two ends of
the chain. In the case of the non-Hermitian Kitaev model with PT -symmetry, a topologically trivial region
and two different nontrivial regions are observed [65]. It is also clarified that PT -symmetry breaking is
independent of the topological phase [66]. The nonreciprocal Kitaev chain with nonreciprocal hopping
amplitude and pairing strength is an interesting system to study its non-Hermitian and nonreciprocal nature.
It is expected that the nonreciprocal hopping amplitude and pairing strength will break the symmetries and
lead to a topological phase transition. However, the topological properties are not yet fully understood. One
possible proposal to studying the topological properties of a Kitaev chain with imbalanced pairing terms [67]
is to use the extended Zak phase, which has been defined in terms of the biorthonormal inner product under
the influence of the conditional imbalance. Another proposal is to investigate the defective Majorana zero
modes and number-anomalous bulk-boundary correspondence in the the dimerized non-Hermitian Kitaev
chain [68]. Overall, the nonreciprocal Kitaev chain with nonreciprocal hopping amplitude and pairing
strength is promising system for studying the interplay between nonreciprocity and topology. Further
research is necessary to fully comprehend the topological properties of the system and its potential
applications in topological quantum computing.

In this paper, we focus on unraveling the effects of nonreciprocal hopping amplitude and pairing
strength on the Kitaev chain. We find that the energy spectrum of the system become complex upon the
introduction of nonreciprocal hopping amplitude, which is also readily obtained from the dispersion
relation. Remarkably, we highlight the presence of a non-Hermitian skin effect and absence of any
topological phase transition as the nonreciprocal hopping amplitude increases. Moreover, the Majorana zero
energy edge modes, which are robust to the nonreciprocal hopping amplitude, exist stably in the
topologically nontrivial region. On the other hand, within the nonreciprocal Kitaev chain featuring
exclusively nonreciprocal pairing strength, we observe that the system undergoes a topological phase
transition, accompanied by the breakdown of the pseudo-Hermitian symmetry. Notably, the breakdown of
the pseudo-Hermitian symmetry is independent of the topological phase, where corresponding exceptional
points can be deduced from the dispersion relation. Furthermore, it is essential to highlight that the
non-Hermitian skin effect is invalid due to the inherent equilibrium within the overall system under the
Majorana basis. In this framework, the next-nearest-neighbor hopping amplitudes between two distinct
types of Majorana fermions are opposite, resulting in the absence of any generated magnetic flux. In the
meanwhile, we observe that the Majorana zero energy edge modes also exist in an open chain, and the
corresponding topological invariant is calculated in the pseudo-Hermitian symmetry-unbroken region,
demonstrating the bulk-edge correspondence relationship in such a nonreciprocal Kitaev chain.

The paper is organized as follows: in section 2, we derive the Hamiltonian of the nonreciprocal Kitaev
chain with nonreciprocal hopping amplitude and pairing strength, obtain the dispersion relation of the
energy spectrum, analyze the symmetries of the system, and illustrate the schematic diagram in the Majorana
basis. In section 3, we first briefly review the concepts of the inverse participation ratio (IPR) and fractal
dimension, and then display the effects of the nonreciprocal nearest-neighbor hopping amplitude and
pairing strength on the nonreciprocal Kitaev chain, respectively. In section 4, we calculate the topological
invariant in the pseudo-Hermitian symmetry-unbroken region, i.e. the winding number. Finally, a
conclusion is given in section 5.

2. System and Hamiltonian

We explore a 1D p-wave superconducting Kitaev chain with nonreciprocal hopping amplitude and pairing
strength, as illustrated in figure 1(a). The fermionic Hamiltonian is given by (h̄= 1)

H=
N−1∑
j=1

(
t1a

†
j+1aj + t2a

†
j aj+1 +∆1a

†
j+1a

†
j +∆2ajaj+1

)
+

N∑
j=1

µa†j aj, (1)
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Figure 1. Schematic diagram of the 1D p-wave superconductor Kitaev chain with nonreciprocal hopping amplitude and pairing
strength. (a) In real space. The pink circles denote spinless fermion with the chemical potential µ. The blue dashed (green solid)
arrows indicate the rightward (leftward) nearest-neighbor interactions including hopping amplitude t1 (t2) and p-wave
superconducting pairing strength∆1 (∆2), respectively. (b) In the Majorana basis. The orange and red circles represent two
different kinds of the Majorana fermions b and c, respectively.

where a†j (aj) is the creation (annihilation) operator of the spinless fermion at the jth lattice site, t1,2 (∆1,2)
describes the nearest-neighbor nonreciprocal hopping amplitude (p-wave superconducting pairing
strength), µ is the on-site chemical potential, and N is the size of the system. We define aN+1 = 0 (aN+1 = a1)
for an open (a closed) chain. For simplicity, we set t1 = t+ η, t2 = t− η,∆1 =∆+ γ, and∆2 =∆− γ,
respectively. t (∆) describes the constant nearest-neighbor hopping amplitude (pairing strength) and is set as
the unit of energy. η and γ denote the nonreciprocity of the nearest-neighbor hopping amplitude and p-wave
superconducting pairing strength. Obviously, the non-Hermiticity of the system arises from both the
hopping amplitude and pairing strength rather than the on-site chemical potential. Without loss of
generality, the parameters involved are real numbers. The Hamiltonian in equation (1) can be physically
implemented via the optomechanical system [69, 70].

Due to the particle–hole symmetry (PHS), the Hamiltonian (1) can be diagonalized by the BdG
transformation

ψ†
n =

N∑
j=1

[
un,ja

†
j + vn,jaj

]
, (2)

where ψ†
n denotes the BdG operator, n (n= 1,2, · · · ,N) is the index of energy level, and two complex

coefficients un,j and vn,j are the components of wave functions. The BdG Hamiltonian in the Nambu space
can be written as

H=
1

2

L∑
n=1

ψ†
nHBdGψn, (3)

where the matrix form of the core Hamiltonian HBdG is given by

HBdG =



A B 0 · · · · · · · · · C1

B1 A B 0 · · · · · · 0
0 B1 A B 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 B1 A B 0
0 · · · · · · 0 B1 A B
C · · · · · · · · · 0 B1 A


, (4)

with

A=

(
µ 0
0 −µ

)
,B=

(
t2 −∆1

∆2 −t1

)
,B1 =

(
t1 ∆1

−∆2 −t2

)
, (5)

and for the system under periodic boundary condition (PBC),

C= B, C1 = B1, (6)
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while for the system under open boundary condition (OBC),

C= C1 =

(
0 0
0 0

)
. (7)

Obviously, HBdG is a 2N× 2Nmatrix. Besides, we introduce the wave function in the nth energy band index

|ϕn⟩= (un,1,vn,1,un,2,vn,2, . . . ,un,N,vn,N)
T
, (8)

to derive the bulk BdG equations

∆1

(
vj−1 − vj+1

)
+ t1uj−1 + t2uj+1 +µuj = Enuj,

−∆2

(
uj−1 − uj+1

)
− t1vj+1 − t2vj−1 −µvj = Envj. (9)

Therefore, the energy spectrum and state distribution at the jth lattice site of the system can be directly
obtained through the above equations.

Furthermore, we derive the Hamiltonian in the momentum space to obtain the dispersion relation of the
energy spectrum and boundary conditions of the topological phase transition. By performing the Fourier
transformations

aj =
1√
N
ake

ikj, aj =
1√
N
a−ke

−ikj,

a†j =
1√
N
a†ke

−ikj, a†j =
1√
N
a†−ke

ikj, (10)

we can acquire the BdG Hamiltonian H= 1
2Ψ

†
kH(k)Ψk, whereΨk = (ak,a

†
−k)

T is the basis in the Nambu
space and the core HamiltonianH(k) is presented as

H (k) =

(
Ω+ −2i∆1 sink

2i∆2 sink Ω−

)
, (11)

with Ω± =±Ω− i(t1 − t2) sink and Ω= µ+(t1 + t2)cosk. According to the secular equation of the system,
the dispersion relation can be expressed as

E(k) =±
√
(µ+ 2tcosk)2 + 4(∆2 − γ2) sin2 k− 2iη sink. (12)

Now we focus on the phase boundary in the thermodynamic limit, which is determined by the equation
E(k) = 0. We have µ=±2t when k=mπ (m= 0,1, · · ·), |γ|=

√
η2 +∆2 +µ2/4 when k= (1/2+m)π,

and µ= 2(−tcosk±
√

∆2 + η2 − γ2 sink) otherwise. The energy spectrum is complex if η ̸= 0, γ = 0, and
then becomes purely real or imaginary when η = 0, γ ̸= 0. For the more general case when neither η nor γ is
zero, the energy spectrum can exhibit purely real, purely imaginary, zero, and complex values (see appendix
for details).

Before discussing reduced model in the Majorana basis, we first focus on the symmetry of the system
according to [38, 39, 46]. The Hamiltonian in equation (11) can be written in the compact form

H (k) = h0σ0 + hxσx + hyσy + hzσz, (13)

where σ0 is the identity matrix and σx,y,z denote the Pauli matrices. The coefficients satisfy h0 =−2iη sink,
hx =−2iγ sink, hy = 2∆ sink, and hz = 2tcosk+µ. The system has the time-reversal symmetry (TRS)
defined as a complex conjugation operator T H(k)T −1 =H(−k) and PHS CHT(k)C−1 =−H(−k) with
C = σx. Also, the system naturally possesses the chiral symmetry (CS) S = T C. Thus, the topological
invariant of the system is characterized by Z index.

We further introduce the Majorana basis to rewrite equation (1). In general, the Dirac fermion operator
aj can be written as the combination of two Majorana fermion operators bj and cj,

aj =
1

2

(
bj + icj

)
, a†j =

1

2

(
bj − icj

)
, (14)

which is true since the antiparticle of the Majorana fermion is itself. The Majorana fermion satisfies the
anticommutation relation {αj,βj ′}= 2δα,βδj,j ′ (α,β = b/c). Then the Hamiltonian in equation (1) is
rewritten as

HM =
1

2

[
(η+ γ)bj+1bj +(η− γ) cj+1cj + i(t−∆)bj+1cj + i(t+∆)bjcj+1 +µ

(
1+ ibjcj

)]
. (15)

4
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The schematic diagram according to equation (15) is shown in figure 1(b). The nonreciprocal Kitaev chain
can be considered as two coupled Su–Schrieffer–Heeger (SSH) chains [71, 72] with the
next-nearest-neighbor hopping amplitude. The system features two different types of Majorana fermions b
and c, represented by orange and red circles, respectively. The next-nearest-neighbor hopping amplitudes
between Majorana fermions of the same type (orange for b, red for c) are denoted by η+ γ (for b) and η− γ
(for c), which are shown as solid orange and red lines, respectively. The alternating nearest-neighbor hopping
amplitudes between different types of Majorana fermions, i.e. between b and c for different sites, are shown
as black solid and green dashed lines, corresponding to i(t−∆) and i(t+∆), respectively. Finally, the
next-nearest-neighbor hopping amplitudes, denoted by iµ, are shown as solid blue lines for the same site.

3. Results and discussions

3.1. The IPR and fractal dimension
Before discussing the topological properties of the system under different regimes, we briefly review the
concepts of the IPR and fractal dimension of the wave function [73–75]. It is well known that the IPR and
fractal dimension are usually used to quantify the localization–delocalization transition. Here we utilize these
diagnostic tools to intuitively distinguish whether the non-Hermitian skin effect exists or not. For any given
wave function of the system, the IPR of the nth eigenstate is defined as

IPRn =

∑N
j

(
u4n,j + v4n,j

)
[∑N

j

(
u2n,j + v2n,j

)]2 , (16)

which measures the reciprocal of the number of sites occupied by particles, rather than the number of sites
occupied by particles. For a localized state, the IPR approaches 1 since only finite number of sites are
occupied, whereas it goes to 0 for an extended state in thermodynamic limit. Another tool, the fractal
dimension of the wave function, is described as

Γ =− lim
N→∞

log(IPR)

logN
. (17)

Contrary to the IPR, the fractal dimension Γ approaches 1 for an extended state, while Γ goes to 0 for a
localized state in thermodynamic limit.

3.2. The nonreciprocal Kitaev model with only nonreciprocal hopping amplitude
We numerically solve equation (4) to obtain the topological properties of the nonreciprocal Kitaev chain
when η ̸= 0 and γ= 0, as shown in figure 2. Firstly, we present the real and imaginary parts of the energy
spectrum, as well as the fractal dimension Γ as a function of µ when η= 1 in figures 2(a) and (b). We find
that the present system supports topologically nontrivial and trivial phases, separated by two topological
phase transition points at µ=±2, as shown in figure 2(a). Notably, except for µ= 0 and two topological
phase transition points, we observe that both the edge and bulk states are localized due to the fractal
dimension Γ→ 0, which reflects the non-Hermitian skin effect unique to the non-Hermitian system.
Moreover, the imaginary part of the energy spectrum always exists throughout the entire interval of µ, as
depicted in figure 2(b). In figures 2(c) and (d), we illustrate the real and imaginary parts of the energy
spectrum, as well as the fractal dimension Γ as a function of η in the topologically nontrivial region
(µ= 0.5). It is indicated that the degenerate Majorana zero energy modes persist across the entire range of η,
as shown in figure 2(c), implying that the nonreciprocal hopping amplitude η cannot induce a topological
phase transition. Furthermore, as illustrated in figure 2(d), the imaginary part of the energy spectrum
appears immediately as long as η ̸= 0, which aligns with the previous analytic discussions on equation (12).

To further demonstrate the fate of Majorana zero energy modes and topological phase transition, we
present the minimum absolute eigenvalues of the energy spectrum under OBC and the energy band gap
under PBC in the µ–η plane, as shown in figures 2(e) and (f), respectively. We observe that the degenerate
Majorana zero energy edge modes always appear (disappear) in the topologically nontrivial (trivial) region
between the two white dashed lines, independent of the nonreciprocal hopping amplitude η, as shown in
figure 2(e). This provides further evidence that η cannot induce a topological phase transition. In figure 2(f),
one can see that there is an opening–closing–reopening process of the energy band gap marked by the two
white dashed lines at µ=±2 for all η, which indicates that the system undergoes a topological phase
transition from the topologically trivial phase to nontrivial phase, and then back to the trivial phase. In other

5
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Figure 2. (a) The real and (b) imaginary parts of the energy spectrum, as well as the fractal dimension Γ of the system as a
function of µ when η= 1 under OBC. (c) The real and (d) imaginary parts of the energy spectrum, as well as the fractal
dimension Γ of the system as a function of η in the topologically nontrivial region (µ= 0.5). (e) The minimum values of |E|
under OBC and (f) the energy band gap under PBC in the µ–η plane. The white dashed lines represent the phase boundary. The
rest parameters are set as t= 1,∆= 0.8, γ= 0, and N= 100.

Figure 3. (a) The real part of the energy spectrum as a function of k and η when γ= 0 and µ= 0.5 in the momentum space.
(b) The imaginary part of the energy spectrum in the k–η plane. (c) The schematic diagram in the Majorana basis. The
next-nearest-neighbor hopping amplitudes between the same types of Majorana fermions b or c both are η tagged as purple solid
lines. The red dotted box represents a unit cell.

words, the nonreciprocal hopping amplitude η does not alter the topological phase or phase transition points
of the system.

To gain a deeper understanding of the physical mechanisms, we also analyze the real and imaginary parts
of the energy spectrum in the momentum space, as depicted in figures 3(a) and (b). We observe that the
energy spectrum is purely real when either η= 0 or k=mπ, and complex otherwise, which is in agreement
with equation (12). Furthermore, the schematic diagram of the nonreciprocal Kitaev chain in the Majorana
basis is exhibited in figure 3(c), which can be regarded as two SSH lattice chains coupled to each other with
the next-nearest-neighbor hopping amplitude η. This coupling makes the whole system unbalanced,
resulting in the non-zero magnetic flux, which leads to the appearance of the non-Hermitian skin effect and
complex energy spectrum.

6
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Figure 4. (a) The real and (b) imaginary parts of the energy spectrum, as well as the fractal dimension as a function of γ in
topologically trivial region (µ= 2.5). (c) The real and (d) imaginary parts of the energy spectrum, as well as the fractal dimension
of in the topologically nontrivial region (µ= 0.5). (e) The minimum values of |E| under OBC and (f) the energy band gap under
PBC in the µ–γ plane. The white dashed box represents the phase boundary. The rest parameters are set as t= 1,∆= 0.8, η= 0,
and N= 100.

3.3. The nonreciprocal Kitaev model with only nonreciprocal pairing strength
In this section, we present the numerical results for the nonreciprocal Kitaev chain with only nonreciprocal
pairing strength, as illustrated in figure 4. In figures 4(a)–(d), we exhibit the real and imaginary parts of the
energy spectrum and the fractal dimension Γ as a function of the nonreciprocal pairing strength γ in two
different topological phases. In the topologically trivial regime (µ= 2.5), we observe two exceptional points
at γ =±

√
2.205, as depicted in figures 4(a) and (b). While in the topologically nontrivial regime (µ= 0.5),

we find two exceptional points at γ =±
√
2.81/2, as shown in figures 4(c) and (d). Interestingly, we note that

the appearance of the exceptional points is independent of the topological phase, and is solely determined by
the dispersion relation of equation (12). Moreover, we observe that the system does not exhibit the
non-Hermitian skin effect due to fractal dimension of the bulk state Γ→ 1, which can be explained by the
symmetries and Majorana picture without considering it temporarily. We plot the minimum absolute
eigenvalues of the energy spectrum under OBC in the µ–γ plane in figure 4(e) and show that the system
supports stable degenerate Majorana zero energy modes within the white dashed box when
|γ|⩽

√
∆2 +µ2/4 and |µ|⩽ 2. Furthermore, as depicted in figure 4(f), we present the energy band gap

under PBC in the µ–γ plane, which shows the topological phase transitions occurring at µ=±2 and
γ =±

√
∆2 +µ2/4 due to the fact that the energy band gap marked by white dashed box undergoes a

opening–closing–reopening process. Therefore, we conclude that the nonreciprocal pairing strength γ can
induce a topological phase transition, and despite the non-Hermitian nature of the current system, it does
not exhibit the non-Hermitian skin effect.

In addition, we calculate the real and imaginary parts of the energy spectrum in the momentum space, as
shown in figures 5(a) and (b). It is worth noting that the energy spectrum in the present system is purely real
or imaginary, owing to presence of the pseudo-Hermitian symmetries. Specifically, we find that the purely
real energy spectrum occurs either at k=mπ or when |γ|⩽

√
∆2 +µ2/4, and the purely imaginary energy

spectrum otherwise. To understand the results more intuitively, we illustrate the schematic diagram in the
Majorana basis, as depicted in figure 5(c). Here, the next-nearest-neighbor hopping amplitudes between one
type of Majorana fermions b are represented by gray solid lines with γ, while those between the other type of

7
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Figure 5. (a) The real part of the energy spectrum as a function of k and γ when η= 0 and µ= 0.5 in the momentum space.
(b) The imaginary part of the energy spectrum in the k–γ plane. (c) The schematic diagram of the nonreciprocal Kitaev model
with only the nearest-neighbor nonreciprocal pairing strength in the Majorana basis. The next-nearest-neighbor hopping
amplitudes between the same types of Majorana fermions b (c) are γ (−γ), which are marked by gray solid (dashed) lines. The
red dotted box represents a unit cell.

Majorana fermions c are denoted by gray dashed lines with−γ. We consider a unit cell consisting of four
Majorana fermions, which is highlighted by the red dotted box. This configuration leads to zero magnetic
flux in the panel, similar to a PT -symmetric system, indicating that the present system is balanced and does
not exhibit non-Hermitian skin effect.

4. Topological invariant

In this section, we focus on studying the nonreciprocal Kitaev chain with only the nonreciprocal
nearest-neighbor pairing strength, and its corresponding Hamiltonian is given by

Hγ (k) = hxσx + hyσy + hzσz. (18)

The above equation satisfies TRS, PHS, and CS. Moreover, equation (18) also has the pseudo-Hermitian
symmetry, defined as ξ = σxT , which satisfies

ξH†
γ (k)ξ

−1 =Hγ (k) , (19)

and possesses the following Hermitian counterpart

H̄γ (k) = h̄yσy + h̄zσz, (20)

where h̄y = 2
√
∆2 − γ2 sink and h̄z = hz. It is convenient for computing the energy spectrum and

topological invariant, we can convert it into an off-diagonal matrix form as

H̃γ (k) = h̃xσx + h̃yσy, (21)

by performing the unitary transformation

H̃γ (k) = UH̄γ (k)U
−1, (22)

with h̃x =−h̄z, h̃y = h̄y, and U is a unitary operator

U=
1√
2

(
1 1
−1 1

)
. (23)
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Figure 6. The GBZ marked by blue solid line and the eigenvalues of R±(β) labeled by red square and green diamond in different
parameter regimes. (a) γ= 0.2, (b) γ= 0.5, (c) γ =

√
2.81/2, (d) γ= 2. The rest parameters are set as t= 1,∆= 0.8, µ= 0.5,

and η= 0.

Now we define β = eik, the non-Bloch Hamiltonian is derived as

H̃γ (β) = R+ (β)σ+ +R− (β)σ−, (24)

where R± (β) =−µ− (t±
√
∆2 − γ2)β− (t∓

√
∆2 − γ2)β−1 and σ± = (σx ±σy)/2. Here, β plays the

role of a momentum-like variable, but unlike conventional Bloch theory, it is not restricted to the Brillouin
zone. In the non-Hermitian systems, the non-Bloch band theory and the generalized Brillouin zone (GBZ)
are used to describe the topological properties of the systems. GBZ can be constructed by |β2(E)|= |β3(E)|
for given E in the system, then the continuum bands can be calculated. The winding number
[19, 38, 40, 46, 49] can be written as

w=
1

2π i

˛
l
dβ∂βIn det

(
H̃γ (β)− Eb

)
, (25)

where l and Eb are any closed loop and reference base energy independent of the energy spectrum of the
system, respectively. The simplified expression of w can be described by

w=−1

2
[N(+)−N(−)] ,N(±) =

[
Nz (±)−Np (±)

]
GBZ

, (26)

where Nz(±) and Np(±) represent the number of zero and pole point of R±(β) inside the GBZ, respectively.
It is indeed that number of pole point of R±(β) is always 1 according to equation (21), i.e. Np(±) = 1.

Therefore, the topological invariant of the system can be directly determined by solving the number of
zero point of R±(β), as depicted in figure 6. From figures 6(a) and (b), it is evident that the number of zero
point of R+(β) is always 2, while of R−(β) is 0. Thus, the system belongs to the topologically nontrivial phase
characterized by the winding number w=−1 in the pseudo-Hermitian symmetry-unbroken region, where
purely real energy spectrum and two degenerate Majorana zero energy modes are observed. It indicates the
preservation of the bulk-edge correspondence relation. Figure 6(c) illustrates that some eigenvalues of R±(β)
are real and all lie above the GBZ at the critical point. In the pseudo-Hermitian symmetry-broken region, the
eigenvalues of R±(β) are complex and also lie above the GBZ, as shown in figure 6(d).

5. Conclusions

In conclusion, we have investigated the nonreciprocal Kitaev chain along with nearest-neighbor
nonreciprocal hopping amplitude and pairing strength from different aspects. For the nonreciprocal Kitaev
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chain with only the nonreciprocal hopping amplitude, we observe the non-Hermitian skin effect, the stable
existence of degenerate Majorana zero energy modes in topologically nontrivial region, and the absence of a
topological phase transition as the nonreciprocity of hopping amplitude increases. Moreover, we also find
that the energy spectrum immediately change from real to complex upon the introduction of nonreciprocal
hopping amplitude. However, in the presence of nonreciprocal pairing strength, we uncover that the
pseudo-Hermitian symmetry is broken during the topological phase transition, and the exceptional points
determined by the dispersion relation are independent of the topological phase. Furthermore, we
demonstrate the failure of the non-Hermitian skin effect, and calculate the topological invariant to illustrate
the bulk-edge correspondence relation in the pseudo-Hermitian symmetry-unbroken region. Our work
provides a more comprehensive exploration of the topological properties in the nonreciprocal Kitaev chain
and enhances the understanding of the interplay between nonreciprocity and topological phases.
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Appendix

We first analyze whether the energy spectrum in the momentum space is real or complex when neither η nor
γ is zero, as shown in figure 7. The closing point of the energy gap satisfies E(k) = 0 in equation (12), which
means (µ+ 2tcosk)2 + 4(∆2 + η2 − γ2) sin2 k= 0. Specially, the energy spectrum is purely real when k= 0
due to E(k) =±

√
(µ+ 2t)2, as shown in figures 7(a) and (b). For the other special cases k= 0.5π, we have

E(k) =±
√
µ2 + 4(∆2 − γ2)− 2iη. From figures 7(c) and (d), the energy spectrum is complex when

|γ|<
√
∆2 +µ2/4, and then becomes purely imaginary when |γ|>

√
∆2 +µ2/4 and |γ| ̸=√

η2 +∆2 +µ2/4. However, the energy spectrum is 0 and−4iη in the special case of |γ|=√
η2 +∆2 +µ2/4, which is multiple degenerate.
Furthermore, we also attempt to provide the phase diagram as a function of η and γ for a trivial µ and

nontrivial µ in figure 8. It is seen from figure 8(a) that the topologically nontrivial phase characterized by the
zero energy modes always exists when γ < 0.8 and regardless of the value of η, meaning that a topological
phase transition is not induced. Once γ > 0.8, the system undergoes a phase transition from a coalescing
phase to a gapless phase as η increases. For the trivial case µ= 2.5, a phase transition point at γ≈ 1.1
separates the topologically trivial phase from the gapless phase regardless of the value of η, as shown in
figure 8(b).

To provide a clearer visualization of the different phases, we display the real part of the energy spectrum
corresponding to the red dashed line in figure 8 as a function of η or γ is shown in figure 9. We can observe
that the zero-energy modes persist as η increases when γ= 0.7 for µ= 0.5, indicating the system remains in
the topologically nontrivial phase, as shown in figure 9(a). However, the real part of the energy spectrum is
coalescing when η ≲ 0.5 and then becomes gapless when η ≳ 0.5 for γ= 1.0, as shown in figure 9(b). The
phase transition point at η≈ 0.5 is marked by the red dashed line. It can be seen from figures 9(c) and (d)
that the system always supports the topologically trivial phase for γ < 1.1 and the gapless phase for γ > 1.1
regardless of the value of η. Similarly, the phase transition point at γ≈ 1.1 is marked by the red dashed line.
These results are agreement with the phase diagram in figure 8.
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Figure 7. The real and imaginary parts of the energy spectrum as a function of η and γ for different k in the momentum space.
(a) and (b) k= 0. (c) and (d) k= 0.5π. The other parameters are set as t= 1,∆= 0.8, and µ= 0.5.

Figure 8. The phase diagram as a function of η and γ for different µ. (a) µ= 0.5. (b) µ= 2.5. The other parameters are set as
t= 1, and∆= 0.8.

Figure 9. The real part of the energy spectrum as a function of η or γ. (a) µ= 0.5 and γ= 0.7. (b) µ= 0.5 and γ= 1.0.
(c) µ= 2.5 and η= 1.0. (d) µ= 2.5 and η= 3.0. The other parameters are set as t= 1,∆= 0.8, and N= 100.
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