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G J Rampho1, S A Sofianos1, S Oryu2 and T Watanabe2

1 Department of Physics, University of South Africa, Pretoria 0003, South Africa
2 Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan

E-mail: rampho@science.unisa.ac.za

Abstract. The angular-momentum-projected and parity-projected Antisymmetrized Molec-
ular Dynamics (AMD) is used to analyze the charge and magnetic form factors of 3H and 3He
systems. Non-relativistic nuclear charge and current operators with some relativistic corrections
are employed. The Hamiltonian for the nuclear systems is constructed using a realistic nucleon-
nucleon potential. The results obtained are in fairly good agreement with the experimental
data and therefore the AMD method is a very promising method for use in calculations for
electromagnetic form factors of a general A-body nuclear system.

1. Introduction

Charge and magnetic form factors are often used to test model wave functions for the quantum A-
body nuclear systems. In such tests one faces the question of a simultaneous accurate description
of the form factors and the static properties of the systems. This, of course, presupposes
that the model used is able to generate accurately enough, the bound and scattering wave
functions needed. In few-nucleon systems this can be achieved using microscopic methods, as
for example, those using the Faddeev-type formalisms or methods based on Hyperspherical
Harmonics expansion, to extract wave functions for realistic Hamiltonians [1]. These methods
are considered, to all practical purposes, to be exact.

This work focuses on the use of a microscopic semi-quantum mechanical method, namely,
the AMD method, to study the electromagnetic form factors for the 3H and 3He systems. The
AMD approach [2] was developed from the Time-Dependent Cluster Model [3] used in studies
of fermionic systems. This approach combines Fermi-Dirac statistics with quantum mechanical
assumptions to treat the motion of particles in an A-body system [4] and was previously used to
study the dynamics of heavy-ion collisions [5]. It was also used to explain clustering in nuclei as
well as angular distributions of scattered protons in proton-nucleus scattering [6]. Furthermore,
improved AMD wave functions were constructed that give good predictions in few-body systems
[7, 8]. In this work the parity projected and angular momentum projected AMD version [9] is
employed to extract the wave functions needed in the calculations.

In Sect. 2 the general formalism of the AMD approach is summarized and the construction
of the wave function, the equations of motion of the variable parameters, and the variational
technique used are briefly outlined. Results and illustrations of the application of AMD to
three-nucleon systems are presented in Sect. 3 while Sect. 4 is devoted to the charge and
magnetic form factors, respectively, which are to extract information about ground-state charge
and magnetization distributions in the nuclei. Conclusions are drawn in Sect. 5.
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2. The AMD formalism

The AMD wave function describing a nuclear system of A nucleons is constructed as a Slater
determinant

ΨAMD(�S) =
1

√
A!

det[ φj(α,�si), χj(�σi), ξj(�τi) ] (1)

where φ, χ and ξ are, respectively, the spatial, spin and isospin components of the single-particle
wave functions. The spatial components are given in Ref. [5] as Gaussians. The �si are complex

variational parameters, �S ≡ {�s1, �s2, �s3, . . . , �sA} while α is a real constant width parameters
The width parameter is a free parameter and taken as common for all the Gaussian functions.
The spin-isospin components are fixed in nucleon spin-up or spin-down. A wave function with
definite parity(π) and total angular momentum (J) with the angular momentum projection (M)
is constructed from the AMD wave function as

ΨJπ
MK(�S) =

1

2
P J

MK(Ω) [ 1 ± P π ] ΨAMD(�S) (2)

where P π is the parity projection operator and P J
MK(Ω) the angular momentum projection

operator defined by [10]

P J
MK(Ω) =

2J + 1

8π2

∫
dΩ DJ∗

MK(Ω) R̂(Ω). (3)

Here DJ
MK(Ω) represents the Wigner D-function, R̂(Ω) the rotation operator and Ω ≡ {α, β, γ}

the Euler rotation angles.
The time-dependent variational principle [5]

δ

∫ t2

t1

�Ψ(�S) | ih̄ ∂
∂ t − H |Ψ(�S) �

�Ψ(�S) |Ψ(�S) �
dt = 0 (4)

with constraints
δΨ(t1) = δΨ(t2) = δΨ∗(t1) = δΨ∗(t2) = 0 . (5)

is used to determine the dynamical equations for the variational parameters. The resulting
equations can be transformed to the form [11]

d�si

dt
= −µ

∂EJ±
0 (�S, �S∗)

∂�s∗i
,

d�s∗i
dt

= −µ
∂EJ±

0 (�S, �S∗)

∂�si
(6)

where µ is an arbitrary positive real constant and

EJ±
0 (�S, �S∗) =

�ΨJ±
MK(�S)|H |ΨJ±

MK(�S) �

�ΨJ±
MK(�S)|ΨJ±

MK(�S) �
. (7)

the variational energy of the nucleus. Solving these equations minimizes EJπ
0 and determines

the variational parameters. The Hamiltonian of the system is given by

H = −
∑

i

h̄2

2mi
∇2

i +
1

2

∑

i�=j

[
VNN (�rij) + VC(�rij)

]
(8)

where mi is the mass of nucleon i, VNN the two-body nuclear potential and VC the Coulomb
potential. In this work the AV4’ NN potential with the VC1(r) Coulomb component is used [12].
The evaluation of the components of the energy expectation values is explained in Ref. [13].
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3. Charge form factor

In elastic electron-nucleus scattering, the charge distribution in the nucleus is inferred from the
induced electric transitions in the nucleus. The charge form factor is the expectation value of
the nuclear charge operator. For a nucleus in an initial state |ΨJiπi � the charge form factor is
given by

Fch(�q) =
1

Z

�ΨJiπi | ρ(�q) |ΨJiπi �

�ΨJiπi |ΨJiπi �
(9)

where Ze is the total charge on and ρ(�q) the charge operator of the nucleus with �q being the
momentum transferred to the nucleus by the electron.

In the plane wave impulse approximation (PWIA) the nuclear charge operator is formed by
the superposition of the individual nucleon charge operators and is given by [13]

ρ(�q) =
A∑

k=1

[
q

Q
GN

Ek(Q
2) −

2GN
Mk(Q2) − GN

Ek(Q
2)

4m2
N

√
1 + τ

i�σk · �q × �pk

]
exp( i �q · �rk ) (10)

where τ = Q2/4M2
N , Q2 = q2−ω2, ω =

√
q2 + m2

N−mN and GN
E (GN

M ) the nucleon Sachs electric

(magnetic) form factor. For the Sachs form factors the phenomenological parameterization
derived in Ref. [14] is adopted. The transitions are between states of definite angular momentum.
The general multipole analysis of nuclear charge form factors is given by [15]

Fch(�q) =
√

4π
≤ 2J∑

L=0

�JJL0|JJ�F ρ
L(q)Y ∗

L0(q̂) (11)

where Y ∗
LM(q̂) are the spherical harmonics, L the nuclear orbital angular momentum and

�JJL0|JJ� the Clebsch-Gordan coefficients. The summation is over even values of L only.
For three-nucleon systems Ji = 1

2 . The intrinsic charge form factor is obtained by dividing the
calculated charge form factor by the contributions of the center-of-mass [13].

Using the above definitions, the ground-state charge form factors of the 3H and 3He nuclei
are calculated within the PWIA approximation. In this approximation the nucleons inside
the target nucleus are assumed non-interacting with one another during the interaction with
the electron [17]. This means that the electron interacts with independent nucleons inside the
nucleus. The results obtained are displayed in Fig. 1 and Fig. 2. It is noted that the charge form
factors are normalized such that Fch(0) = 1. As can be seen in these figures, for low momentum
transfers, up to the first diffraction minimum, the AMD gives a good description, albeit it slightly
overestimates the experimental data. Beyond the first diffraction minimum the results are lower
than the data. The first diffraction minimum for the 3H and 3He nuclei are consistent with the
predictions of other theoretical models obtained with various nucleon-nucleon potentials [18]. It
should be noted that the overestimation of the position of the diffraction minimum indicates an
underestimation of the nuclear charge radius.

4. Magnetic form factors

Magnetization density distribution in nuclei are determined from magnetic transitions involving

transverse nuclear currents. In the final state of the nucleus is denoted by |Ψ
Jf πf

Mf Kf
�, with

normalization N
Jfπf

MfKf
, the nuclear magnetic form factor is calculated as

Fmag(�q) =
1

µA

�Ψ
Jfπf

MfKf
| �µ(�q) |ΨJiπi

MiKi
�

√
N

Jf πf

MfKf
N

Jiπi

MiKi

(12)
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Figure 1. The AMD charge form factor of
the 3H nucleus compared with the best fit
of the experimental data [16].
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Figure 2. The AMD charge form factor of
the 3He nucleus compared with the best fit
of the experimental data [16].

where �µ(�q) is the magnetization density operator and µA the nuclear magnetic dipole moment.
The PWIA transverse nuclear magnetization density operator is given by [19]

�µ(�q) =
Q

2mp q

A∑

k=1

[
GN

Ek(Q
2)�ℓk − iGN

Mk(Q
2) �q × �σ

]
exp( i �q · �rk ) (13)

where �ℓN is the nucleon orbital angular momentum. The multipole expansion of nuclear magnetic
form factor has the form [15]

Fmag(�q) =

√
4π

�JJ10|JJ�

≤ 2J∑

L=0

�JJL0|JJ�
[
Fµ

LL−1(q)Y
0∗
LL−1(q̂) + Fµ

LL+1(q)Y
0∗
LL+1(q̂)

]
(14)

where the summation is over odd values of L,

Y0∗
LM (q̂) =

∑
m

�Mm1 −m|L0�YMm(q̂) êm . (15)

are the vector spherical harmonics and êm spherical unit vectors.
The general form of the nuclear magnetic transition multipole operator can be derived as in

Ref. [20] for a given nuclear current operator. The intrinsic magnetic form factor of the systems
is obtained by factoring out the contributions of the center-of-mass from Eq. (14). The results
obtained for the magnetic form factors for three-nucleon systems are displayed in Fig. 3 and
Fig. 4 and compared with the best fit to the experimental data [16]. Similarly to the charge
form factors, the magnetic form factors are normalized such that Fmag(0) = 1. As can be
seen, the AMD form factors reproduce the experimental data reasonably well at low momentum
transfer, for both systems. The position of the first diffraction minimum is underestimated.
However, at momentum transfer greater than the diffraction minimum the AMD results are
unsatisfactory and are not consistent with theoretical results obtained with other approaches
[21].
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Figure 3. The AMD magnetic form factor
of the 3H nucleus compared with the best
fit of the experimental data [16].
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Figure 4. The AMD magnetic form factor
of the 3He nucleus compared with the best
fit of the experimental data [16].

5. Conclusions

We employ the angular-momentum-projected and parity-projected antisymmetrized molecular
dynamics to calculate the charge and magnetic form factors for the 3H and 3He systems. The
charge monopole and the magnetic dipole transitions in the nuclei were determined from elastic
electron scattering. In overall, the results obtained, within the AMD and PWIA approximation,
reproduce the general behavior of the experimental form factors. For both, the charge and
magnetic form factors, and for momentum transfer below the first diffraction minimum the
reproduction is fairly good. However, beyond the first diffraction minimum the results for the
charge form factor are lower than the data while the results for the the magnetic form factor
are less satisfactory. The deviations of the theoretical results from experimental data can be
minimize once better wave functions can be employed. These can be constructed by using
a more complete realistic Hamiltonian, three-body forces, and relativistic corrections in the
electromagnetic operators used. It should be noted that these results are consistent with other
results obtained by competing theoretical models.

In conclusion, the results indicate that the AMD method is a very promising method in
calculating electromagnetic form factors of the general A-body nuclear system.
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