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Multipartite entanglement analysis from random correlations
Lukas Knips 1,2,3✉, Jan Dziewior1,2,3, Waldemar Kłobus4, Wiesław Laskowski 4,5✉, Tomasz Paterek4,6,7, Peter J. Shadbolt8,
Harald Weinfurter1,2,3 and Jasmin D. A. Meinecke1,2,3

Quantum entanglement is usually revealed via a well aligned, carefully chosen set of measurements. Yet, under a number of
experimental conditions, for example in communication within multiparty quantum networks, noise along the channels or
fluctuating orientations of reference frames may ruin the quality of the distributed states. Here, we show that even for strong
fluctuations one can still gain detailed information about the state and its entanglement using random measurements. Correlations
between all or subsets of the measurement outcomes and especially their distributions provide information about the
entanglement structure of a state. We analytically derive an entanglement criterion for two-qubit states and provide strong
numerical evidence for witnessing genuine multipartite entanglement of three and four qubits. Our methods take the purity of the
states into account and are based on only the second moments of measured correlations. Extended features of this theory are
demonstrated experimentally with four photonic qubits. As long as the rate of entanglement generation is sufficiently high
compared to the speed of the fluctuations, this method overcomes any type and strength of localized unitary noise.
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INTRODUCTION
One of the most striking features of quantum entanglement is the
existence of correlated measurement outcomes between spatially
separated particles, which exceed expectations based on classical
physics. These correlations are typically observed with carefully
aligned local measurements. They get distorted if a common
reference frame is lacking and especially in the presence of noise
along the channels distributing the entangled particles. In
practice, for many channels the instabilities are often irremovable:
optical fibers rotate polarization, changing phases affect the path
degree of freedom, atmospheric turbulence acts on the modes of
orbital angular momentum, magnetic field fluctuations influence
trapped ions, etc. Common sense tells that this renders the
distributed quantum state useless and unrecognizable.
Here we provide a method for entanglement detection and

analysis that is insensitive to local rotations and thus overcomes
these difficulties. It requires neither reference frames nor
alignment nor calibration of measuring devices. Still, it can both
witness as well as classify multipartite entanglement in the
presence of local unitary noise. The key to overcome the lack of
control and knowledge regarding each single measurement is to
harness uniform sampling of the entirety of all measurements.
Especially without any prior knowledge about the state, the
conceptually simple method of random sampling proves highly
beneficial for entanglement detection and state analysis.
Previous work on entanglement detection relaxing the require-

ment of fully aligned reference frames first considered the
absence of a shared reference frame, but still required the ability
to choose or at least to repeat local measurement settings from a
given set in order to detect, for example, the violation of a Bell
inequality1–6, or for tomographic reconstruction7. Under the same
constraints, also adaptive methods for entanglement detection

have been developed8,9. In the absence of any reference frames
Bell violations can be measured with some probability10,11 and
entanglement can be detected by evaluating the second moment
of the distribution of correlations obtained by measuring random
observables on each subsystem12–17. Furthermore, it has been
shown recently that higher-order moments of this distribution
allow discrimination of very specific types of multipartite
entanglement18. While these methods analyze full correlations, a
recent experiment used second moments of subsets to deduce
entanglement in systems of more than ten particles19. In contrast,
here we are interested in the detection of genuine multipartite
entanglement, i.e., revealing that all particles share quantum
entanglement.
We qualitatively investigate not only a specific moment of

the distributions of full correlations, but all probability
distributions of full as well as of marginal correlations, taking
into account their interdependencies. We show how they
provide a detailed picture of the type of state and its
entanglement structure for certain examples of pure states.
This illuminates the way to derive a general witnesses of
genuine multipartite entanglement for arbitrary pure and
mixed states. These witnesses retain simplicity, as they are
based only on second order moments of the distributions, and
yet they outperform other criteria based on second
moments12–17. We experimentally measure full and marginal
distributions of correlations for various multiqubit states using
reference frame free random measurements and show the
applicability of all our extended analysis methods. These
methods are robust as they do not depend on the local unitary
noise as long as the rate of generated entangled states is high
enough to estimate the correlations for a momentarily
constant noise.
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RESULTS
Scenario
Consider a source producing copies of an unknown n-qubit state
ϱ, which is transmitted through unstable quantum channels to n
local observers (Fig. 1). During the j-th transmission the state ϱ is
transformed by n random local unitary operators UðjÞ

i with i= 1, 2,
…, n according to

ϱ ! ϱðjÞ ¼ UðjÞ
1 � ¼ � UðjÞ

n ϱ UðjÞy
1 � ¼ � UðjÞy

n : (1)

Additionally, each of the n observers is free to choose an
arbitrary measurement setting σ

ðjÞ
i to measure her qubit. If for

each transmitted copy of ϱ the transformations UðjÞ
i change

significantly, all information about the state is lost. However, in a
very common scenario encountered by experimenters the unitary
noise has a timescale which is sufficiently slow to obtain at least a
few copies of ϱ which have been affected by essentially the same
noise, i.e., by the same set of local transformations UðjÞ

i . In this case
the transformations are still much too fast to apply standard
techniques of state analysis20, yet, it becomes possible to use the
few equally transformed states to reliably record correlations

EðjÞ1¼ n ¼ tr σ
ðjÞ
1 � σ

ðjÞ
2 � ¼ � σ

ðjÞ
n ϱðjÞ

� �
¼ tr ~σ

ðjÞ
1 � ~σ

ðjÞ
2 � ¼ � ~σðjÞ

n ϱ
� �

;
(2)

where each observer is keeping her local observable σ
ðjÞ
i constant

in the timescale of constant noise, which results in the effective
random observable ~σ

ðjÞ
i � UðjÞy

i σi U
ðjÞ
i . Note that here and below

the index j refers to a set of transmitted states which have all been
affected by the same noise transformations and measured using
the same settings.
We refer to EðjÞ1¼ n as “full correlation” or n-partite correlation

because it involves measurement outcomes of all n observers.
Besides full correlations, also “marginal correlations” can be
measured, which are computed from the outcomes of a subset
of observers. For example, the marginal correlation of all observers
but the first one is

EðjÞ2¼ n ¼ tr 1� ~σ
ðjÞ
2 � ¼ � ~σðjÞn ϱ

� �
: (3)

The essential ingredient in our approach is that each observer
samples local measurement directions ~σðjÞi randomly according to
a Haar uniform distribution. This removes any dependence of the
obtained information on the actual structure or time dependence
of the various UðjÞ

i and thus overcomes any bias in the
random noise.
In our experiment we prepare four different four-qubit states

using entangled photon pairs, where we encode two qubits in the
polarization degree of freedom and two qubits in the path degree
of freedom. To comprehensively demonstrate the informational
content of distributions of random correlations, we consider

four quantum states belonging to different entanglement
classes, in particular a tri-separable, a bi-separable and
two genuinely multipartite entangled states, namely a
Greenberger–Horne–Zeilinger (GHZ) state and a cluster state,

ψtrisep

�� i / 00j i þ 11j ið Þ � 0j i � 0j i; (4a)

ψbisep

�� i / 00j i þ 11j ið Þ � sinφ 00j i þ cosφ 11j ið Þ; (4b)

GHZj i / 0000j i þ 1111j ið Þ; (4c)

C4j i / 0000j i þ 0011j i � 1100j i þ 1111j ið Þ: (4d)

We utilize the full experimental control over the choice of
measurement settings to emulate the local unitary transforma-
tions due to noisy channels and the Haar random choices of
measurement settings.
Our experimental setup is based on spontaneous parametric

down conversion, generating a pair of polarization entangled
photons. Those photons are sent to two Sagnac interferometers
with polarizing beam splitters, adding a path degree of freedom,
which is then coupled inside the interferometer with the
polarization of the incoming photon. This way, the two photons
effectively provide four qubits. Local transformations of the
polarization inside the interferometer, which translate to path
transformations behind the second polarizing beam splitter,
together with polarization transformations outside the interfe-
rometer allow to locally modify and analyze both path and
polarization degrees of freedom of both photons. Further details
of the setup can be found in the ref. 21. It should be noted that
while we clearly can deduce how characteristics of the state are
reflected in the form of the measured distributions the other
direction of deduction is in general much more difficult.

Analyzing entanglement structures
In the following we study distributions of random correlations for
these four states, see Fig. 2. It is helpful to recall that for some
particular states the distributions are known analytically. A pure
product state of n qubits results in a distribution proportional to
�ðlnjEjÞn�116,17, which becomes uniform for n= 1, and a
maximally entangled state of two qubits gives rise to a flat
distribution22,23. In addition to this established knowledge, we use
new criteria to show that the experimental data not only provide
information about the amount of entanglement in the full state,
but also give insight into how the entanglement is shared among
the parties, allowing to reconstruct the whole multipartite
entanglement structure. An important finding arises from the fact
that for arbitrary product states of the subsystems A and B any full
correlation value EAB is the product of the corresponding marginal
values:

ψABj i ¼ ψAj i � ψBj i ) EAB ¼ EAEB: (5)

This relation between single expectation values implies that the
correlation distribution of parties AB is a so-called product
distribution of measurement results obtained on A and B.
Whenever this is not the case we can infer that the state is
entangled across the partition AB. Here, we first apply this criterion
to pure product states, and later generalize it for arbitrary mixed
states.
Consider first the triseparable state in Fig. 2a. The bipartite

distribution E34, i.e., the distribution of the multiplication of
outcomes for qubits 3 and 4, shows a logarithmic decay, which
indicates a pure product state over these two parties. The bipartite
distribution E12 is uniform as it is characteristic for maximally
entangled two-qubit states. The single qubit marginals confirm
this observation: E3 and E4 are almost uniform (pure states),
whereas E1 and E2 correspond to the maximally mixed state.
Ideally, the correlation function for the maximally mixed state is

Fig. 1 Quantum communication over noisy channels. A source
produces an entangled state of, say, four qubits. Each of them
propagates through a noisy channel resulting in an unknown
unitary transformation. When choosing local observables σi uni-
formly at random, the statistics of correlations reveal detailed
information on multipartite entanglement, independently of the
noise in the channels or of the lack of shared reference frames.
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equal to zero and results in a delta peak around 0. Finite statistics
causes a broadening of this theoretical distribution and leads to
the observed Gaussian shape. Several of the distributions are
product distributions. For example, we can verify that the full
distribution E1234 is the product distribution of multiplied results
obtained on qubits 12 and on qubits 34, and that E34 is the
product distribution of the results on qubit 3 and on qubit 4. This
is compatible with the state being separable across these
partitions. On the other hand, clearly the distribution E12 is not a
product one for the outcomes on qubit 1 and on qubit 2, which
indicates the presence of entanglement.
The distributions for the biseparable state Eq. (4b) are shown in

Fig. 2b. As expected, the bipartite marginal E12 is the same as for
the triseparable state. The same also holds for the respective
single qubit marginals of E1 and E2. In the bipartite distribution of
E34, however, one can nicely observe the signature of a pure state
intermediate between a maximally entangled and a product state,
as tuned by the parameter φ. For φ ≈ 0.2, the bipartite distribution
of E34 is almost uniform until approximately 0.5 and decays
logarithmically for larger values. Equally, the respective single
qubit marginals also show an intermediate behavior between a
uniform distribution (pure state) until approximately 0.8 and
vanishing (white noise) for values above. Both the distributions E12
and E34 do not correspond to the product distributions from the
constituent subsystems, which implies entanglement across these
partitions of the pure state.
The maximally entangled GHZ state (Fig. 2c) and the cluster

state (Fig. 2d) are not distinguishable on the level of the four

respective single qubit marginals. Also certain bipartite marginals
are the same, e.g., when tracing out qubits 3 and 4. However,
while for the permutationally invariant GHZ state all marginal
distributions for the same number of qubits must be the same, a
significantly different distribution (corresponding to the maximally
mixed state) can be obtained for the cluster state, when tracing
out for example qubits 1 and 4, i.e., for E23. Finally, the cluster and
GHZ state can be distinguished also via their distributions of the
full correlations. From the plotted distributions for these two
states only the distribution E23 of the cluster state is (trivially) the
product distribution for the results on qubits 2 and 3 (the same
holds also for E13, E14, and E24). All other distributions are not the
respective product distributions and thus reveal entanglement.
While our data reflect the theoretical predictions based on Eqs.

(4a–d) well, there are systematic differences which can be traced
back chiefly to a broadening of the distributions due to finite
statistics24. We used approximately 475 counts per estimated
expectation value for the GHZ state, giving rise to the broadening
of a normal distribution with standard deviation on the order of
1=

ffiffiffiffiffiffiffiffi
475

p � 0:046. Accounting for these systematics is vital for the
application of our quantitative analysis below and is explained in
“Methods” section.

Witnessing entanglement
To quantitatively analyze the experimentally obtained distribu-
tions, we focus on their statistical moments. The k-th moment of

Fig. 2 Experimental distributions of correlations for four typical states. For each state we plot the distribution p(E) of the modulus of the
measured full correlation E1234 together with two of the six two-qubit marginal distributions and all four single-qubit marginals. For this
visualization, we measured each state along 104 different settings (in b only 6000 settings; we choose φ ≈ 0.2). The histograms (50 bins) are
derived from raw measured data corrected for detection efficiencies. Solid lines represent theoretical curves for ideal states. Deviations of the
measured data from the ideal distributions are due to finite statistics and finite fidelity of the state preparation.
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the distribution of the full correlation is defined as

mðkÞ
1¼ n �

Z
SUð2Þn

dU1 ¼ dUn tr Uyσ�n
z Uϱ

� �k
; (6)

with U ≡ U1 ⊗ … ⊗ Un and where integration over SU(2) is
equivalent to sampling measurement directions uniformly from
the single qubit Bloch spheres. We will show in the following how
to deduce the amount of purity and the presence of genuine
multipartite entanglement using only the second moments of our
measured correlation distributions. We denote the second
moment simply by m1¼n � mð2Þ

1¼n.
One of the most elementary properties of a quantum state is its

purity. For n qubits it reads (see “Methods” section):

P ϱð Þ � tr ϱ2
� � ¼ 1

2n
X

A2PðSÞ
3jAjmA; (7)

where PðSÞ is the set of all subsets of S ¼ f1; ¼ ; ng and jAj
denotes the cardinality of the set A. Clearly, the purity is
accessible in the experiment with random measurements and
forms the basis of our methods for detecting multipartite
entanglement. Note that in the case of a single qubit, the purity
parameterizes the spectrum of the density matrix and hence any
function of the quantum state which is invariant under local
unitary transformations.
Let us consider the simplest case of pure two-qubit states. The

second moments of any product state satisfy m12=m1m2. In
consequence, the observation of m12 >m1m2 indicates entangle-
ment for pure states. This reasoning cannot be easily extended to
general states, since this inequality can also be satisfied for
incoherent mixtures of product states. However, we have found a
purity dependent tightening of the inequality such that any m12

above a certain purity dependent threshold must be due to
quantum entanglement. In the “Methods” section we derive the
following entanglement witness condition:

M2 � m12 �m1m2 �
4ð1� PÞP=9 for P � 1

2 ;

ð4P � 1Þ=9 for P< 1
2 :

(
(8)

It holds for all separable states of two qubits with purity P � P ϱð Þ.
The bound is tight and achieved, e.g., by the state
p 00j i 00h j þ ð1� pÞ 11j i 11h j. This powerful criterion can be gen-
eralized to the detection of genuine multipartite entanglement.
From the definition of genuine multipartite entanglement, i.e.

entanglement which does not allow to represent a state as a
mixture of product states across any bipartition, the left-hand side
of Eq. (8) generalizes for an n-qubit state to

Mn � mS � 1
2

X
A2fPðSÞnðS ∪+Þg

mAmSnA; (9)

where the factor of 1/2 resolves the issue of the double counting
in the sum.
By numerical simulations, we find that the following condition

holds for three-qubit bi-separable (not genuinely multipartite
entangled) states

M3 ¼ m123 � m1m23 � m2m13 � m3m12 � 8
27

ð1� PÞP:
(10)

We have verified this inequality by extensive numerical search
described in “Methods” section. The bound is tight for P � 1

2 and
is achieved by, e.g., the state p ϕþj ihϕþj � j0ih0j þ ð1 �
pÞjϕ�ihϕ�j � j1i 1h j with the Bell states ϕ±j i ¼ 1ffiffi

2
p ð 00j i± 11j iÞ.

The bounds of the last two inequalities give hope for a simple
dependence on the number of qubits. A straightforward general-
ization from the previous bounds gives ð2=3Þ4ð1� PÞP. However,
there exist bi-separable four-qubit states that violate this
hypothetical bound. We found by a numerical study that the

inequality satisfied by bi-separable four qubit states has the
following dependence on the purity,

M4 � 8
81 ð1� P2Þ: (11)

This bound is also tight for P � 5
8 and achieved by, e.g., the state

p ϕþj i12hϕþj � jϕþi34hϕþj þ ð1� pÞjϕþi13hϕþj � jϕþi24 ϕþh j.
Our numerical results strongly indicate that any violation of

inequality (Eq. (10) or Eq. (11)) certifies genuine multipartite
entanglement between three or four qubits, respectively. We
emphasize that these criteria require only the second moments of
the observed distributions.
Application of the conditions of Eqs. (8, 10, and 11) to

experimental data (Fig. 3) indeed enables detection of genuine n-
partite entanglement for various subsets of particles. For the cluster
and the GHZ state, genuine 4-partite entanglement is revealed with
Eq. (11) using M4 � 0:0330 ± 0:0004> 0:0074 ± 0:0012 and
M4 � 0:0311 ± 0:0006> 0:0099 ± 0:0012, respectively. The bise-
parable and triseparable states do not violate their respective
bound. Investigating the entanglement properties for their
marginal states, one can now prove the entanglement for the
12-marginal and the 34-marginal of the biseparable state as well as
the 12-marginal of the triseparable state. It is therefore possible to
conclude that the biseparable state contains contributions of at
least ϱ12 ⊗ ϱ34, with entanglement between 1 and 2 and between 3
and 4, and the triseparable state contains ϱ12 ⊗ ϱ3 ⊗ ϱ4. Note that
the state could also contain genuine 4-partite entanglement, which
was not revealed by M4.

DISCUSSION
This work introduces a scheme to detect genuine multipartite
entanglement and reveal its detailed structure in the absence of
any reference frames and even for strongly fluctuating channels.
Key to this method is to subject a multipartite quantum system to
randomly chosen local measurements and to analyze full and
marginal correlations between local results using second
moments of respective correlation distributions. Haar random
sampling removes any bias of the noise and, provided that the
generation rate of multiqubit states is higher than the rate of
fluctuations along the channel, neither the strength nor any
characteristics of the noise matter. The power of our procedure is
demonstrated here by reconstructing the entanglement structure
of various experimentally prepared photonic four-qubit states.
From this, many more interesting questions arise, e.g., whether it
is possible to—up to suitable transformations—tomographically
reconstruct quantum states or characterize quantum processes in
our scenario of fully randomized local measurement directions.

METHODS
Finite sample size correction
In our experiment, two different types of statistical effects have to be taken
into account. On one hand, for obtaining the distributions as in Fig. 2, a
finite number Ns of measurement settings (Ns= 10,000 in our case) is used.
This leads to an uncertainty in estimating the second moments mA � mð2Þ

A .
This statistical error can be approximated by

Δmð2Þ
A

� �2
¼ 1

Ns
mð4Þ

A � Ns � 3
Ns � 1

mð2Þ
A

� �2� 	
; (12)

which describes the variance of the sample variance.
On the other hand, each correlation EðjÞA � E is obtained by performing

Nc measurements in the same setting. Due to this finite sample size, for
each expectation value in general we do not obtain the ideal result ER, but
measure a value EM at random from a conditional probability distribution
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p(EM∣ER), approximately given by the Gaussian

p EMjERð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp � EM � ERð Þ2

2σ2

 !
; (13)

centered around ER with σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2R

q
=
ffiffiffiffiffi
Nc

p
; see, e.g., ref. 24.

This statistical deviation leads to an overestimation of mA . We mitigate
this systematic inaccuracy by taking into account the well known statistical
effect from Eq. (13). Employing Bayesian methods, we are able to obtain
p ERjEMð Þ from p EMjERð Þ allowing to calculate mA with reduced bias as

mA ¼
Z 1

�1
dER pðERÞ E2R ¼

Z 1

�1
dER

Z 1

�1
dEM pðERjEMÞ pðEMÞ E2R: (14)

Bayes’ theorem provides pðERjEMÞ as
pðERjEMÞ ¼ pðEM jERÞ~pðERÞ

pðEMÞ ¼ pðEM jERÞ~pðERÞR 1

�1
dE0R pðEM jE0RÞ ~pðE0RÞ

; (15)

where ~pðERÞ represents the prior assumption about the unknown
distribution p(ER). For our evaluation we use the measured distribution p
(EM) as the prior guess about p(ER) and obtain an updated distribution
according to the statistical analysis above. This distribution is used to
evaluate the moments.

Purity
Per definition, the purity is P � tr ϱ2ð Þ. Any n-qubit state can be written as

ϱ ¼ 1
2n

X3
μ1 ;¼ ;μn¼0

Tμ1 ¼ μnσμ1 � ¼ � σμn ; (16)

where Tμ1 ¼ μn ¼ tr ϱσμ1 � ¼ � σμn
� �

and σ’s are the Pauli operators.
Accordingly,

P � tr ϱ2
� � ¼ 1

2n
X3

μ1 ;¼ ;μn¼0

T2μ1μ2 ¼ μn

¼ 1
2n

T20¼ 0 þ
X3
j1¼1

T2j10¼ 0 þ ¼ þ
X3
jn¼1

T20¼ 0jn

"

þ
X3
j1 ;j2¼1

T2j1 j20¼ 0 þ ¼ þ
X3

jn�1 ;jn¼1

T20¼ 0jn�1 jn

þ � � � þ

þ
X3

j1 ;¼ ;jn¼1

T2j1 ¼ jn

#

¼ 1
2n

1þ 3 m1 þm2 þ ¼ð Þ þ 32 m12 þm13 þ ¼ð Þ


þ¼ þ 3nm12¼ n	 ¼ 1
2n

X
A2PðSÞ

3jAj mA; (17)

where PðSÞ is the set of all subsets of S ¼ f1; ¼ ; ng and jAj denotes the
cardinality of the set A, as in the main text.

Two-qubit condition
Here we prove Eq. (8) of the main text. The problem is to maximize the
value of M2 ¼ m12 �m1m2 over separable states of two qubits with a
fixed purity P. Any two-qubit state admits a decomposition

ϱ ¼ 1
4

X3
μ;ν¼0

Tμνσμ � σν ; (18)

where Tμν ¼ tr ϱσμ � σν
� �

. In order to simplify numerical factors, we note
that the second moments satisfy16,17:

m12 ¼ 1
9

X3
j;k¼1

T2jk �
1
9
m12; (19)

m1 ¼ 1
3

X3
j¼1

T2j0 �
1
3
m1; (20)

m2 ¼ 1
3

X3
k¼1

T20k �
1
3
m2: (21)

The problem is therefore to maximize m12 �m1m2 (and then multiply the

Fig. 3 Analyzing the entanglement structure using Mn. a M4 of
the GHZ state (Eq. 4c) (red plus) and the cluster state (Eq. 4d) (blue
square) are violating the bound for biseparable states (Eq. 11),
clearly indicating genuine 4-partite entanglement. The negative
values for M4 of the triseparable and the biseparable states are not
shown. b Evaluation of M3 for tripartite marginals for these states
does not indicate any genuine tripartite entanglement as expected,
as no point is found above the threshold given in Eq. (10). The filled
and non-filled circles indicate the type of marginals giving rise to
different values ofM3. cM2 is shown for all bipartite marginals. The
four-qubit biseparable state (Eq. 4b) (green diamond) and the four-
qubit triseparable state (Eq. 4a) (purple cross) have two and one
marginals, respectively, which themselves are shown to be two-
qubit entangled. The shaded regions contain all types of quantum
states, irrespective of their entanglement properties. All error bars
(standard deviations) are smaller than the markers.
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result by 1
9). Using the definition of the purity results in

m12 ¼ 4P � 1�m1 �m2: (22)

Therefore, the figure of merit reads:

9M2 ¼ 4P � 1�m1 �m2 �m1m2

� 4P � 1;
(23)

owing to the non-negativity of each second moment. This bound holds for
all states and is achieved by separable states of purity P 2 ½14 ; 12	. An
example for a state on the boundary is the mixture of white noise 1

41 with
the classically correlated state 1

2 00j i 00h j þ 1
2 11j i 11h j.

In order to derive the boundary for separable states with purity
P 2 ½12 ; 1	, we recall the definition of separability, i.e.,

ϱsep ¼
X
j

pjϱ
j
A � ϱjB: (24)

Therefore, any set of positive maps, but not necessarily completely
positive, acting on a subsystem preserves separability. Let us apply a so-
called universal-not gate on subsystem A. It is perhaps the simplest to
introduce it using the Bloch sphere picture. Universal-not reflects the Bloch
vector of the state on which it acts about the origin, i.e., it is a linear map σj
→ − σj which puts a minus in front of every local Pauli operator. Clearly,
any physical state, represented by the Bloch vector within a unit ball, is
mapped to another physical state. Yet, universal-not is not completely
positive25. A generic two-qubit state is transformed by the universal-not
gate on A as follows:

ϱ ¼ 1
4 1� 1þP3

j¼1
T j0σj � 1þP3

k¼1
T0k1� σk

 
þ P3

j;k¼1
T jkσj � σk

!

! ϱ ¼ 1
4 1� 1�P3

j¼1
T j0σj � 1þP3

k¼1
T0k1� σk

 
� P3

j;k¼1
T jkσj � σk

!
:

(25)

Since we are assuming that ϱ is separable, ϱ is also a separable physical
state, i.e., a positive semi-definite operator. Accordingly, the overlap
between two positive semi-definite operators cannot be negative and we
have

0 � tr ϱϱð Þ ¼ 1
4
ð1�m1 þm2 �m12Þ: (26)

Summing this up with the purity condition

P ¼ 1
4

1þm1 þm2 þm12ð Þ (27)

gives the following inequality satisfied by all separable states with purity P:
m2 � 2P � 1: (28)

By applying a universal-not on particle B and following the same steps,
one obtains

m1 � 2P � 1: (29)

Finally,

m12 �m1m2 ¼ 4P � 1�m1 �m2 �m1m2 � 4Pð1� PÞ; (30)

where the inequality follows from (Eqs. 28 and 29).

Strength of the new criterion
We now show that the new criterion, Eq. (30), is stronger than those in the
refs. 12–17, which in the present notation read m12 � 1. The underlying
reason is that Eq. (30) takes the purity and lower order correlations into
account.
We first show that whenever m12 > 1, then also our criterion is violated,

i.e., m12 �m1m2 � 4Pð1� PÞ> 0. We start by rewriting the left-hand side
of the latter using Eq. (27). Next we utilize the condition m12 > 1 in the
resulting expression and this simplifies it to 1

4 ðm1 �m2Þ2, which is clearly
non-negative. In this context see also26, where an entanglement criterion is
derived in terms of the difference between lengths of local Bloch vectors.
Finally, we present examples of entangled states for which m12 ¼ 1, but

nevertheless the new criterion detects entanglement. For simplicity we
represent the states in terms of the correlation tensor. We choose
Txx ¼ Tyy ¼ �T zz ¼ 1ffiffi

3
p ;, which ensures m12 ¼ 1, and also local Bloch

vectors with z-components T0z ¼ 1
6 ð�3þ ffiffiffi

3
p þ ffiffiffi

2
p

33=4Þ and
Tz0 ¼ 1

6 ð�3þ ffiffiffi
3

p � ffiffiffi
2

p
33=4Þ. Among many physically allowed values of

T0z and Tz0 for which the new criterion is violated, the ones given here
produce maximal violation.

Numerical simulations
Here we give numerical evidence for the bounds of Eqs. (10 and 11) of the
main text. We performed sampling of more than 106 biseparable states
and always found the bounds satisfied. Figure 4 illustrates the results of
numerical simulation.
For the case of three qubits we find the following improved boundary

for small values of P:

M3 �
ð8P � 1Þ=27 for P 2 ½18 ; 14	;
4P=27 for P 2 ð14 ; 12	;
8ð1� PÞP=27 for P > 1

2 ;

8><
>: (31)

while the improved boundary for four qubits reads

M4 �
ð16P � 1Þ=81 for P 2 ½ 116 ; 14	;
2ð�8P2 þ 16P þ 1Þ=243 for P 2 ð14 ;P0	;
8ð1� P2Þ=81 for P >P0;

8><
>: (32)

where P0 ¼ �4þ3
ffiffi
3

p
2 � 0:60.

DATA AVAILABILITY
All data generated during this study are available from the corresponding author on
reasonable request.

Fig. 4 Numerical evidence supports our witnesses of genuine tripartite and four-partite entanglement. We sampled more that 106

biseparable states from various (also random) families. The numerical boundary for biseparable states is plotted with a solid line, whereas the
numerical boundary that holds for all quantum states (boundary of physicality) is plotted as a dashed line. a The biseparable states of 3 qubits
are confined to the region below the boundary given by Eq. (31). b The biseparable states of 4 qubits are confined to the region below the
boundary given by 8

81 ð1� P2Þ.
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