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ABSTRACT

Systems of non-zero isospin chemical potential (fii), where the chemical potential 
for up and down quarks is equal in magnitude but of opposite sign, do not suffer 
from the sign problem, and normal LQCD techniques can be successfully adapted 
to study such systems. From chiral perturbation theory (yPT), in addition to the 
deconfined phase transition at high temperature at zero chemical potential, another 
phase transition from ordinary hadronic states to a Bose Einstein Condensate (BEC) 
state has been conjectured [1] at non-zero isospin chemical potential. Such a BEC 
phase is of phenomenological relevance in the interior of neutron stars.

In LQCD, one way to investigate non-zero isospin chemical potential system is from 
a grand canonical approach by directly working with fermion actions of targeted 
isospin chemical potentials. Another approach to isospin chemical potential is by 
explicitly constructing systems of fixed isospin density, and inferring the isospin 
chemical potential from its ground state energy. In Ref. [2], the first studies of non­
zero isospin chemical potential system from this approach were presented, finding 
that the dependence of the isospin chemical potential on the isospin density agrees 
with predictions from Ref. [1] at low density. In this thesis, we studied systems with 
the quantum numbers of up to 72 pions with newly constructed algorithms, and 
clearly identified the conjectured phase transition from a pion gas to a BEC state 
at /// =  1.3 m n at T  «  20 MeV for the first time.

Having numerically constructed a novel state of matter, a natural question to ask is 
how it can be investigated. The suppression of J/ip and T resonances [3] at non-zero 
temperature in heavy ion collision is an important diagnostic of the formation of a 
quark-gluon plasma. Such suppression effects have been experimentally observed at 
Super Proton Synchrotron(SPS), RHIC and LHC [3]. Heavy quarks are naturally 
also expected to be useful probes of phase transitions at non-zero baryon chemical 
potential and non-zero isospin chemical potential. In this thesis, we investigated 
both bottomonium and charmonium in media of non-zero isospin chemical potential.

The investigation of QCD at non-zero isospin density presented in this thesis pro­
vide a numerical window into a novel state of strongly interacting matter. This 
matter is difficult to create in experiment but may play an important role in dense 
astrophysical environments.
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MULTI-MESON SYSTEMS FROM LATTICE QUANTUM  

CHROMODYNAMICS



CHAPTER 1

Introduction

Quantum Chromodynamics (QCD) has played important roles in understand­

ing strong interactions between elementary particles, quarks and gluons, which also 

enables us to understand interactions between hadrons made up of these elementary 

particles from first principles. At large interacting energies, the strong coupling 

is relatively small, a s(mz ) =  0 . 1 1  [1 2 ], and perturbation theory can be effectively 

applied, however the strong coupling constant becomes larger with decreasing in­

teracting energies, and eventually perturbation theory starts to fail. At small en­

ergies (<  lGeV), the chiral perturbation theory (yPT) has been developed, and it 

can be effectively used to study such low energy systems by predetermining a few 

low-energy constants (LECs). However at intermediate energy scales, no analytical 

method can be applied, and performing non-pertubative calculations from first prin­

ciples by applying Lattice Quantum Chromodynamics (LQCD) technique is vital in 

understanding properties of, and interactions between, hadrons at low and interme­

diate energy scales. QCD is a quantum field theory which is naturally formulated in 

the form of a path integral in the space of configurations of quark and gluon fields. 

Such a path integral a functional integral, where the degrees of freedom need to be

2



integrated on every space and time point. In order to define the path integral in 

a computationally tractable way, space and time are discretized and Monte Carlo 

methods are applied to numerically estimated such path integrals in LQCD. More 

details can be found in the next section.

1.1 Path integral

1.1.1 Path integral in Minkowski space

In classical mechanics, only the path having the extreme action is allowed, for 

example the classical Lagrangian method, which identifies the path minimizing the 

action as the only physically allowed path. But in Quantum mechanics, all paths 

are allowed. In order to get correct results, contributions from all paths must be 

considered, for example the partition function shown in the following equation in 

Minkowski space includes contributions from all possible paths (ip(x)),

which denotes that the integration is performed over all paths in every space and 

time location, Xi. The action

eiSM\i>] (1 .1)

where the integration measure, D[ip(x)\, is given by

D[4>(x)\ =  d'ip(xi)d'ip(x2) ■ ■ ■ dij(xn), (1.2)

d4x £ M (i>) (1 .3 )
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where Cm {VO is the corresponding Lagrangian in Minkowski space. In QCD equa­

tions need to have quarks and gluon fields in them. The QCD Lagrangian, £ , is 

given by

£ ( V ^ ) ; A  =  -  m ) ^ { x )  -  \ F ^ u F r ,  (1.4)

where Dfl =  dft +  iA fl is covariant derivative, which ensures the gauge invariance, 

and fj, — 0 ,1 ,2 ,3  is the Lorentz index. The 'ip* denotes the fermion field, and -tpf 

is defined as ipf(x) =  ip^(x)7 0 , where /  denotes quark species, /  =  u, d, c, s, t, b. 

The gluon gauge tensor, F “„, is defined as

C  =  d„Al -  duA l  +  g f ^ A ^ A l ,  (1.5)

where A(x) is the SU(3) algebra-valued gauge field, and f abc are the completely 

anti-symmetric structure constant, where a =  1,2, •• • , 8  is the color index. In 

Equation (1.4), summation over indexes, /  and a, is implied. As SU(3) gauge fields 

do not commute with each other, the last term in Equation (1.5) allows gluons to 

interact with each other, and thus 3-, and 4- gluon interactions must be included. 

Such gauge field self-interactions are absent in the electromagnetic interaction.

Physical information about systems interacting with strong interactions can 

be extracted from correlation functions. An example is the following two point 

correlation function

< n W x ,W « ) | n > -  Um ( 1 .6 )
T-nx>(l-ie) A q c D

where Q denotes the vacuum state, 0 ( x  1 ) and 0 ( x 2) are operators of physical states 

at xi and :r2, and the integration over temporal extent is from — T  to T. The



partition function Z q c d  above is given by

5

V d =  Mm /  O W . l M t f 11' 1. (1.7)

From Equation (1.6), the spectrum of states with the corresponding quantum num­

bers can be extracted and will be discussed below.

1.1.2 Path integral in the Euclidean space

Computing Equation (1.6,1.7) directly leads to great difficulties. Since it is a 

functional integral, the integration measure is the product of fields at every space­

time location. Such integral involves infinite number of degrees of freedom, and 

brute force computation of this integral is prohibitive. Additionally, the function in 

the exponential, iS’fV'], is complex, so the exponential of the action is an oscillating 

function. Two states having actions separated by many magnitudes can have equally 

important contributions to the integration. In order to get correct results, detailed 

cancellations between all contributions are required.

In order to overcome the second difficulty, Wick rotation, can be applied to 

transform an integration defined in the Minkowski space into an integration in Eu­

clidean space. 1 After rotation, spatial coordinates are untouched, while the temporal 

coordinate changes according to r —> —it. Similarly, gamma matrices, field strength 

tensors, and integration measures are also transformed accordingly. Since the La­

grangian is hermitian, the corresponding action is real. A great benefit that the 

Wick rotation indeed brings is that the oscillating function elSM in Minkowski space 

is transformed into an exponentially decreasing function e r SE in Euclidean space.

1In Minkowski space x° =  r, while in Euclidean space x4 =  t.
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The action in Euclidean space, Se is given by

Se — J  d * x i , l {x )W D »  +  m )^ (x )  +  \ f ; uF ^ .  (1.8)

Because of the exponential decay property of e~Se, contributions with small ac­

tions dominate the integration. Instead of summing over a large number of states 

as required in Minkowski space to get a good estimation of the path integral, only 

a small number of configurations with small actions are required in evaluating the 

integral after the rotation. Importance sampling techniques can be applied to gen­

erate configurations of small actions with the required distribution. Additionally, 

the original difference between spatial direction and temporal direction, originated 

from the different signs in g ^ ,  vanished after the transformation. As discussed 

above, transforming from Minkowski space to Euclidean space brings us multiple 

advantages in term of applying numerical simulations.

In Euclideari space, the QCD partition function is defined as

Z =  J  Dty{x) ,^(x) \D[Av(x) \erSB& ^ \  (1.9)

where the integration measure D[ip(x), tp(xi)] and D[Au(x)] are

D[ip(x),ip(x)] =  d’ip(xi)dip(x1)dip(x2)dip(x2 ) • • • dip(xn)dip(xn)
4

D[A^(x)] =  Y [ dAn(x i)dAn(x2) • • -dA^Xn)  (1-10)
n= 1

The ipixi) (ip(xi)) are quark (anti-quark) fields, and xt for i =  1,2 • • • , n is a 4-vector, 

denoting a single space-time point. Although the oscillating properties of the com­

plex integrand disappears, computing Z  involves computing integration over ip(x) 

in every space-time location, which is an infinite dimensional integral. To define



the path integral in a computationally tractable way, we discretize the whole space 

and time and impose boundary conditions, and projecting the continuous space­

time into a finite dimension lattice, whose dimension is usually around 1 0 8  sites. 

Suitable boundary conditions are chosen, for example periodic boundary conditions 

for three space directions and anti-periodic boundary condition for the fermion field 

and periodic boundary condition for the gauge field in the temporal direction. Such 

boundary conditions correspond to considering the field theory at non-zero tempera­

ture. A common procedure of LQCD simulation is by first generating configurations 

with required distributions of actions, which are determined by the fermion action 

and the gauge action, by applying importance sampling techniques. Partition func­

tions, for example Equation (1.9), and correlation functions of desired quantum 

numbers (the Euclidean space version of Equation (1.6) ) are then calculated on 

each configuration. Physical information about systems under study can then be 

extracted from these correlation functions. More details of the methodologies of 

applying LQCD calculations will be discussed in the next section.

1.1.3 Path Integrals on the Lattice

The partition function defined in Equation (1.9) is an infinite dimensional inte­

gral in the continuum, which can be estimated by projecting the continuous space 

and time onto lattices with finite space and time, which is also a nice way to renor­

malize the theory. After discretization, the infinite dimension integration measure, 

D[ip(x), 0(x)], becomes finite, and it is defined in Equation (1.10). The dimension of 

D[ip(x), ip(x)\ is M  — 2Nx x N y x N z x Nt on a lattice, where Nx (Ny, N z , N t) denotes 

lattice size in the direction x (y , z, t), and tp and 0  are considered as independent 

variables. The fermion action defined in Equation (1.8) can be discretized similarly, 

which is illustrated in the following example. In a trivial gauge field AM =  0, the
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fermion action for one quark flavor is

Se — J  d4x'ip(x)('ytldIJt +  m)-ip(x). (1-H)

After discretization, the integral is replaced by summation over sites, and the deriva­

tive is replaced by a finite difference2. After discretization, the lattice version of

Dirac action defined Equation (1.11) is

s , = «‘ 5 > r » )  (  , ( i . i 2 )
ner Vft=i /

where a is the lattice spacing, and the summation is over all lattice sites, n, in the 

4-dimension lattice I\

In order to preserve the gauge invariance of the Dirac action in the continuum, 

the discretized Dirac action on the lattice needs additional improvements. In order 

to see the reason, we can consider the following gauge transformation

ip(n) —> fl(n)^(n) tp(n) =  xp(n)fl(n)^. (1-13)

The mass term in the discretized Dirac action Se is invariant, but terms connecting 

different sites are not gauge invariant, as it transforms as

Tp(n)i{)(n +  / } ) —>■ ,ip(n)Q(nyQ(n +  -I- fi). (1-14)

The gauge transformation, O(n), defined in different sites are independent, and the 

combination Q (n)tfl(n+/2 ) is not unity for all gauge transformations, thus the lattice 

version of the QCD action defined in Equation (1.12) is not yet gauge invariant. In

2Different discretization approach can be used, for example forward/back ward difference. Here 
the central difference is chosen.



order to make the lattice Dirac action invariant, gauge links, f/^(n), connecting 

sites n and n +  jx, and transforming accordingly under the gauge transformation are 

needed to be introduced into the lattice Dirac action. After including such gauge 

links, the fermion action in Equation (1.12) becomes 3

w y > ( n )  +  . {L15)
ner V = i  a  /

where the gauge link, (/^(n), transforms as

U^{n) —> f 2(n)[//i(n)D^(n +  jx) (1-16)

and

f / _ »  =  C /t(n -A ). (1-17)

Under such a transformation, it can easily be confirmed that the action defined in 

Equation (1.15) is gauge invariant under transformations defined in Equation (1.13) 

and(1.16).

As illustrated in Fig. 1.1, quark fields V’(n) and tp(n) live on sites, and guage 

links, r/M(n) live on the links connecting neighboring sites, n and n +  jx. The naive 

action defined in Equation (1.15) has 16 doublers4  in the massless limit, as can be 

shown by Fourier transformations of the Dirac action with unit gauge links. In order 

to eliminate or reduce doubles more advanced actions have been constructed, for

example the Wilson action. For the Wilson action, one additional term,

E , t  \ ( U u,(n)ai>8n^.n rn 2Sai,Sn m  T f/_^(n)a(,(5n_^ m\  . . . .
n n )  I ----------- 2 ^ 2 ------------------------------- ) (L18)

3In the rest of the thesis, unless otherwise specified we are exclusively working in the Euclidean 
space and the index E  is dropped from now on.

4Doublers are lattice artifacts, which render distinct contributions from different momenta in 
the continuum being identical after discretization.
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FIG. 1.1: Setup of the LQCD. ip(n) denotes anti-quark (quark), which are both
Grassmann numbers, and C/M(n) denotes gauge links, which are SU(3) matrices.

which is the discretization of —(a/2)'4>dtidlxi!> and vanishes in the continuum limit, 

are added into the naive action defined in Equation (1.15). With this additional 

term, the Wilson fermion action for a single flavor quark is defined as

S =  a4 ip(n)D(n\m)ip(m), (1-19)
ner

where

4 1
D{ri\fTl)afitab =  (jft H ^   ̂ (1 (^-20)

/i=±l

where =  —7 .̂ For each additional flavor, additional Wilson fermions with 

different masses, m, need to be included. The discretization error of the above action 

is 0(a) ,  and Symanzik improvement can be applied to reduce the discretization error 

to 0 { a 2). For example in the clover Wilson action [13, 14], the following clover term

CgyjCL E E  (1.21)
ner /j<v
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is added into the Wilson action, Equation (1.20). In Equation (1.21), =

[ 7 ii, 7 i/]/2 «, the parameter csw needs to be determined perturbatively or non-perturbatively 

by canceling 0 ( a ) terms in order to get 0 ( a 2) improvement, and F ^ n )  =  —

Qvn{n))- The Qnv(n) is the sum of plaquettes U^u(n),

Qtiv =  U^v(n) +  Uv -^(n) +  4- U-V̂ (n),  (1-22)

where t/M.„ =  U^{n)Uv{n +  /t)Uu(n +  i>t)f/I/(n)t .

From correlation functions of desired quantum numbers, the energy spectrum 

can be extracted from its exponential decay property as a function of time. In order 

to get better resolution in the temporal direction, the lattice spacing in the tempo­

ral direction, at, can be made finer than its counterpart in the spatial direction, as, 

and such a lattice is called an anisotropic lattice with the anisotropic parameter,

£ =  a.,/at. By multiplying the spatial terms in isotropic lattice actions, for example 

Wilson fermion, by l /£  and the terms in the temporal direction by £, we can get 

anisotropic lattice actions. By using these advanced actions, the Euclidean version 

of Equation (1.6) can first be integrated over fermion fields, which are Grassmann 

numbers, analytically, which give a determinant of the Dirac operator. After this 

step, the integration over gauge fields are numerically calculated from Monte Carlo 

importance sampling methods. Throughout this thesis, all computations are per­

formed with the anisotropic clover improved Wilson fermion action. More details 

can be found in Ref. [15].

Staggered fermions, which define new degrees of freedom based on the spin 

and color degrees of freedom, have also been applied to alleviate doubling problems.

Both Wilson, Clover and Staggered fermions explicitly break chiral symmetry, while



some lattice actions satisfying the Ginsparg-Wilson equation

12

£ > 7 5  +  7 s£> =  aD~f5D,  (1-23)

preserving the chiral symmetry on the lattice have been constructed. Example of 

such actions are Domain-Wall fermion, and overlap fermions. The Domain-Wall 

fermion action preserves the chiral symmetry in the limit of the infinite fifth dimen­

sion, and the overlap fermion conserve chiral symmetry exactly, however simulating 

overlap fermions is much more expensive and only very recently large volume sim­

ulations with overlap fermions become possible. See Ref. [16] for details.

1.1.4 Non-zero (isospin) chemical potential on the lattice

Systems of non-zero chemical potential, non-zero isospin chemical potential and 

non-zero temperature can be experimentally produced from high energy collision at 

the Relativistic Heavy Ion Collider (RHIC) or the Large Hadron Collider (LHC). In 

order to better understand results from experiments, theoretical understanding of 

similar systems is essential.

In the last few years, many studies have been performed on systems with zero 

chemical potential and non-zero temperature. As the determinant of the Dirac op­

erator of such systems is positive, importance sampling techniques used in LQCD 

can be easily adapted to investigate such systems. Indeed, the introduction of 

non-zero temperature is equivalent to the imposition of boundary conditions in the 

temporal direction discussed above with T  ~  At low temperatures the system  

is confined, where quarks are bounded inside hadrons, and at a critical tempera­

ture ~  O(170)MeV the system goes through a crossover from a confined phase to 

a deconfined phase, where quarks propagate freely in the hot medium with little 

energy cost. Such a crossover can be identified by studying the corresponding order
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parameters, for example the Polyakov loop, or the quark condensate. Results from 

different studies using different lattice actions and different volumes all suggest that 

there is a pseudo critical temperature, where the crossover from a confined phase to 

a deconfined phase happens. Although different groups find slightly different pseudo 

critical temperatures, the existence of the crossover is clear. The discrepancies of 

the quoted critical temperature by different groups results from the different choices 

of the observable used as the order parameter.

Although systems of non-zero temperatures at zero chemical potential have 

been investigated extensively, studying non-zero chemical potential systems is ex­

ponentially difficult because of the sign problem. Non-zero chemical potential is 

introduced into the lattice fermion action by giving different weight to the forward 

and backward temporal gauge links as following:

Ui{n) —> exp(a/i)f/4(n)

C/_4 (n) —> exp(—afi)U-i(n),  (1-24)

where p  is the chemical potential for quark flavor under consideration. Because of 

this transformation, the 7 5  hermiticity property of the Dirac operator, 7 5 D(p  =  

0 ) 7 5  =  D H - p  =  0 ), no longer holds for non-zero chemical potential, which makes 

the Dirac determinant complex. Thus systems of non-zero chemical potential suffer 

from the sign problem, which makes the application of importance sampling tech­

niques used in Monte Carlo simulation very difficult. Various methods have been 

developed to study non-zero chemical potential systems, for example reweighing, 

extrapolation from pure imaginary chemical potentials, small chemical potential ex­

pansion and so on. Details about these techniques can be found in Ref. [17]. All of 

these methods involve certain assumptions.

Because of this difficulty, research efforts have been devoted to related, but
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simpler, systems. As there is no sign problem in a world with two colors because 

of properties of SU(2 ) algebra, direct simulations of systems of non-zero chemical 

potential in two-color QCD have been performed [18], and in this case the transition 

from the hadronic system to a Bose Einstein Condensate state has been identified 

at non-zero chemical potential.

In order to study a system more closely related to the three-color world, sys­

tems of non-zero isospin chemical potential can also be directly studied by applying 

current LQCD simulation techniques. In this setup, the chemical potentials of two 

light quarks are given by fiu =  fij and fid =  —fir- Because the chemical potential 

given to two light quarks having opposite sign, the determinant of the Dirac opera­

tor is again positive definite, and it does not suffer from a sign problem. In Ref. [19], 

systems with non-zero isospin chemical potential have been investigated from yPT, 

and it has been conjectured that there is a deconfinement phase transition at high 

temperature and zero isospin chemical potential, and also a phase transition from 

hadronic states to a Bose-Einstein Condensate state at low temperature at isospin 

chemical potential of order of the pion mass. From a grand canonical approach, 

gauge configurations of targeted isospin chemical potential can be generated from 

Monte Carlo method, and studies on systems with non-zero isospin chemical po­

tential with this method has bee performed in Ref. [19]. This study suggested a 

transition from hadronic gas to pion condensate phase (BEC) at an isospin chem­

ical potential slightly greater than the mass of one pion, although the calculations 

have significant uncertainties. Non-zero isospin chemical potential systems can also 

be studied from a canonical approach by studying systems of fixed isospin charge 

(multi-meson systems). In Ref [20], such canonical approach has been adopted to 

study multi-pion and multi-kaon systems, and the relationship between the isospin 

chemical potential and the isospin density can be computed from ground state en­

ergies of multi-particle systems. As a major part of my project, I implemented
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recursion relation based methods proposed in Ref [9] and studied multi-pion system 

of up to 24 pions, and I also developed new algorithms to further extend the study 

of multi-pion system to up to 72 pions. In order to better understand systems at 

non-zero isospin densities and numerically verify the conjectured BEC transition at 

non-zero isospin chemical potential, we have also studied the propagation of heavy 

quarkoniums in the media of different isospin densities.



CHAPTER 2 

Multi-meson systems

Important goals of nuclear physics are to study interactions between hadrons, 

identify two- and multi-body interaction parameters, and investigate the phase shift 

of interacting particles. As strong interactions are intrinsically non-perturbative 

at low energies, Lattice Quantum Chromodynamics is the only method to study 

multi-hadron system from first principles.

Single hadron states can be constructed on the lattice by identifying corre­

sponding operators having the required quantum numbers. Correlation functions of 

two operators located at t' =  0  and t' =  t can also be computed on the lattice by 

contracting matching quark-antiquark propagators, and asymptotically correlation 

functions assume the following expression

lim ( 0 2(t) CM0 )) =  y > |C > 2 |n> {Q\Oi\n) e~l (2 .1 )
T —>oo 'n

where only operators with non-zero matrix elements survive, En denotes the ground 

state energy of a particle with the same quantum number as state n, and T  is the

1This section is in collaboration with William Detmold, and results have been published in 
Paper. [4].

16
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maximal temporal extent. From the asymptotic behavior the above correlation func­

tion, both the ground state energy of the hadron and the energies of a few excited 

states can be extracted by fitting correlation functions to multiple exponentials, or 

by using Prony’s method to separate contributions from different states. Similarly, 

systems with multi-hadrons can also be constructed from lattice operators; for ex­

ample various three-baryon systems have been investigated in Ref. [21]. However the 

number of required Wick contractions between quark and anti-quarks in computing 

the multi-hadron correlation functions grows factorically ( 0 ( N u\Nd,\Ns\ •••)),  where 

Nu(Nd, Ns) is the number of valance up (down, strange) quark in the multi-hadron 

system. Naively, computing all contractions is prohibitive even for N  =  12 7r+ 

systems, which requires 12112! =  2.3 x 1017 contractions.

Since the multi-meson system is computationally less expensive than the multi- 

baryon system, and it is also a first step toward studying more complex and more 

interesting multi-baryon systems, we construct algorithms to significantly reduce 

the numerical cost of computing all contractions, and we also conduct numerical 

simulations to study multi-meson systems. As discussed in Chapter 1 , the sign 

problem in the non-zero baryon chemical potential systems resulting from the non- 

positive defined fermion determinant makes directly simulating systems with non­

zero baryon chemical potential exponentially difficult. However there is no sign 

problem for systems with non-zero isospin chemical potential (/x/), where the up 

and down quark have the same chemical potential but with opposite signs. One way 

to simulating non-zero isospin chemical potential systems is by sampling using the 

fermion determinant with non-zero isospin chemical potential, which is referred to as 

the grand canonical method. Another approach is the canonical method by explicitly 

constructing multi-pion systems of finite isospin chemical potential, and inferring the 

isospin chemical potential from energies of n-pion2  systems by approximating with

2Throughout, we use the name “n-pion system” for a system with isospin charge l z  =  n.
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the finite derivative /i/(n) =  f f  =  En — En- i ,  where En is the ground state energy of 

a n-pion system3. From the study of systems of non-zero isospin chemical potential 

or density at a fixed temperature, the QCD phase diagram can be investigated at 

varying isospin chemical potentials.

In the next section, we will discuss one way to construct systems with the quan­

tum numbers of n mesons4, and review the recursion relation methods constructed 

to perform contractions in such multi-meson systems. However even with the recur­

sion relations, studying systems with more than 24 mesons requires new methods, 

which will be discussed in Chapter 3.

2.1 n -meson systems from 1 source

In this section, only n-rr+ systems are discussed, however systems containing 

other mesons can similarly be investigated by substituting the 7r+ interpolator with 

the correct interpolator for the meson to study.

States with the quantum number of one 7r+ can be constructed from an operator 

7r+ =  d ^ u  5, but it can also be constructed from other operators, for example d'y4j 5u. 

On each lattice site, there are N sNr =  12 degrees of freedom for each flavor of quark, 

where Ns (Nc) is the number of spin (color) components, thus a maximum of 12 7r+s 

can originate from the same lattice site because of the Pauli principle.

Correlation functions of a n-7r+ systems residing in the same source location y

3This is only an effective chemical potential since the ground state energy is used rather than 
the total energy

4 For the convenience, in the following we will call such systems as n -meson system.
5In this operator, both u and d quarks are located in the same location, which is called a 

point source interpolator, the operators connecting quark fields from different locations can also 
constructed to better mimicking the physical wave function, which could lead to better overlap 
with the physical state that one is interested in.
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can be computed as following,

C(„»+)(0 =  ^  ^ J ^ 7 T + ( x , 0 ^  ^ 7 T ( y , 0 ) ^  ^  . (2.2)

This correlation function can be calculated from the corresponding uncontracted 

correlation function, £?n7r+(t),

= ( - l ) nn!<Q„,r+(*)>, (2.3)

where ( ) stands for taking the trace both in the spin and color index. Initial

conditions for Qnn+ are Qq7[+ = l ,Q in+ =  A, where

/1 = J > ( y ,x ) S +(y,x), (2.4)
X

where the time dependence of A(t) is omitted, and the 75 hemiticity of the quark 

propagator 5(x, y) =  75S'+(y, x)y5 has been applied. The Qn7r+’s for n-7r+ systems 

can be computed from the following recursion relation,

Qn = (Qn-i)A -  (n -  l)Qn- XA. (2.5)

For the 2-pion correlation function,

Q2 =  (Qi)A -  Qu4, (Q2 ) = (A)2 -  (A2), (2.6)

which agrees with Ref. [2]. The correlation function for the 3-pion system can be
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calculated as following

Qs = (Q2 ) A -  2(Q2 A) =  (A)2A -  (A2)A -  2(A)A2 +  2A3 

(Qz) =  (A)3 - 3 ( A 2) ( A ) - 2 ( A 3) (2.7)

which also agrees with Ref. [2]. Other correlation functions can be computed by 

repeated application of the recursion relation.

2.2 n-meson systems from M  sources

In order to study system with more than 12 7r+ , s ,  additional source locations 

or types are required. We will consider that 7r+ ’s  are distributed among M  sources, 

where M  is an integer, which allows maximal number of 12i\/ 7r+ ’s .  One possible 

correlation function of a system with n* 7r+ , s  from the ith source is

where n =  discovered in Ref. [9], recursion relation for uncontracted

correlation functions, which are 1 2 M x  12M matrix defined in Equa­

tion (2 .1 0 ), can be applied to study multi-meson systems more effectively than com­

puting all contraction naively. From the Q(ni,n2, t h e  corresponding multi- 

pion correlation functions can be identified as

(2 .8)
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where ( ) denotes taking trace over both spin and color degrees of freedom. The 

ascending recursion relations for the Q(ni,n2,...,nA/)6 are

Q(ni+l,n2,.. .T»M) ( Q(ni.n2,...,nnf)) Pi 71 Q(nx,n2,—,nM)P\

+  ( Q(ni + l.ri2 ,...nfc — Pk n  Q(nl + l.n2 ,...n* — l,...,nM)Pk

+  ( Q(ni + l.n2 ,...,nM-  1)) Pm  n  Q{ni + l,n2....,nM-l)P M  (-2.10)

and the initial conditions are Q(ijo,...,o) =  Pi, Q(o,i....,o) =  P 2 , • • •» where Pk is

Pk (2 -11)

The A ij  s are uncontracted single pion correlators defined as

A id  =  J ] 5 ( x i ,x ) 5 + (x;>-,x), (2 .12)

where the 7 5  hemiticity of the quark propagator 5 (x , x^) =  7 5 S,+ (xj. x ) 7 5 has been 

applied. The constructions of A{ j  in the 2-source case, that is i =  1, 2 and j  =  1, 2, 

is schematically represented in Fig.(2.1), where the summation over source location, 

x, is performed. Because of this summation, N,.NSL3 pions are allowed at the sink 

by the Pauli Principle.

Similarly, descending recursion relations for the <3(„i,n2.....nm) can be constructed

6The dependence of Q, P  and A  on the coordinates are suppressed in following discussions for 
clarity.
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2

FIG. 2.1: The uncontracted single pion correlation functions from two sources, A, j 
for i ,j  = 1,2, are constructed in the spatial space by starting from source location i, 
following the line of propagator, integrating over all spatial locations in the sink x, and 
then returning back to the source j.

as following,

M 1

Q* =  5 Z  n T T Z - ^ Qn + U ^ 1 ( A  ■ A - 1))  • IN -  Q n+lkA - 1 (Pk ■ A - 1) (2.13)
fc=i

where n =  (ni, n2, • • • , nm), 1 *, =  (0 , 0 , • • • , 1 , 0 , • • ■ ) with only the kth nonvanishing 

unit element, and Q 1 2 ,...,1 2 , and A  are constructed as

Q12,...,12 (N -  1)\det(yl) • IN

A =

1M12

k M

M l M2

(2.14)

(2.15)

where A,0 !s are single pion uncontracted correlation functions defined in Equa­

tion (2.12). Because of the way the recursion relations are constructed, correlation
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functions of all possible combinations of rq’s for ni <  m  are required to be com­

puted in order to compute correlation functions of ra-pion systems. The number of 

all possible combinations, possible partitions of the integers m, grows exponentially 

with the number of sources as tabulated in the Table.2.1. Because of the exponential 

growing number (13n — 1) of uncontracted correlation functions that need to be com­

puted, along with the size of Q , which is 12M x 12M,  growing quadratically with 

the number of source locations, the n +  1  source computation is significantly more 

expensive than the n source computation. With the recursion relation methods, 

systems containing up to 24 7r+ ’s can be computed within a manageable amount of 

time and results are presented in Section 2.4.3, however studying systems with more 

than 24 ir+ from the recursion relation becomes extreamely time consuming. In or­

der to study systems containing even more mesons, new methods are constructed in 

Chapter. 3.

TABLE 2.1: The third row shows the total number of uncontracted correlation functions 
required to be computed before getting the correlation function of the maximal allowed 
pions. ______________________________________________________________

n (#  of sources) 1 2 3 4 5
Max #  of pions 1 2 24 36 48 60

total #  of combinations 1 2 168 2196 28560 371292

Similar to the above recursion relations for systems with only one species, re­

cursion relations have also be constructed in Ref. [9] for systems of multi-species.

2.3 Recursion relations in momentum space

Lattice operators constructed from a point source location can not effectively 

describe physical pions, which have non-zero extents more than a single point. In 

order to have better overlaps to the physical pion state, lattice operators constructed 

by combing quark fields from different lattice sites can be utilized. By employing



24

smeared quark fields in source and/or sink, such quark operators can better repre­

sent physical pion with finite width, and thus smeared operators give better overlap 

to pion ground state. On the other hand, we can also employ quark propagators, 

Su/d(p, t; p', 0), from so called gauge fixed wall sources projecting to definite momen­

tum states. Since we consider only gauge invariant correlators, gauge fixing does 

not alter the result of the functional integration but allows coherent sources to be 

defined on each configuration. We refer to quark propagator constructed from such 

sources as colorwave propagators, and they are calculated as

Su/d(p, t; p', 0) =  e~tpxSu/d(x, f; p',0), (2.16)
X

where

Su/iiCx, t; p', 0) =  ^ 2  e,p'ySu/d{x., i; y, 0) (2.17)
y

is a solution of the Dirac equation:

T .  D(y, t; X, t)Su/d(x, t; p', 0) =  e,p/y<5f>0 . (2.18)
X , t

Working in momentum space has the advantage that we can use point source op­

erators in momentum space, while at the same time the system has a good overlap to 

physical pion systems. The disadvantage is that quark propagators for each momen­

tum have to be computed individually, which would required solving Equation. (2.18) 

for different momentum choices, p'. Naively computing quark propagator with n 

different RHSs would required solving n independent sets of linear equations with

the same left hand side, of which the computational cost grows linearly with the

number n. However by using the fact these n independent linear equations have the



same Dirac matrix, such linear systems with different RHSs can be effectively solved 

by calculating eigenvectors of the Dirac matrix during first few runs, and using the

Details of applying this method to compute quark propagators with multiple RHSs 

are discussed in Ref. [22].

By utilizing colorwave propagators, correlators for mesons systems, for example 

7r+, can similarly be constructed. A correlation function of a system having n i- 7r+s 

in the first source and n2 -7r+s in another source with total momentum njpy, + n 2 P / 2 

is:

where n =  ni +  n2. Momentum conservation requires that nip] +  n2pf — « iP 2 — 

7i 2 p 2 =  Pfj must be satisfied to get non-vanishing C'„lW+ „27r+(t). Each choice

of p® , i , j  — 1 , 2  satisfying this relation is a dependent correlator with the same 

quantum numbers. By replacing propagators in position space by propagators in 

momentum space, a similar recursion relation to that presented above still holds as 

shown in Ref [4]. The only difference is the construction of uncontracted correlation 

functions Aij  in Equation (2.12). In momentum space, the A ij  are defined as

which are constructed pictorially in Fig. 2.2, where the summation over momentum 

p is implied, and dependence on p 1, p 2 is suppressed.

computed eigenvector to speed up the calculation of subsequent linear equations.

(2.19)

(2 .20)
p
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S(p,’,t;p.O)

2

FIG. 2.2: The figure shows how to construct pion correlation function in momentum 
space. Aij is constructed by following the line from source i to p, returning to source j, 
multiplying the S(S )̂ with respect to each line and summing over p.

2.4 Simulation details

Using the recursion methods, we have studied systems with up to 24 pions. 

Multi-pion correlation functions have been calculated on ensembles of anisotropic 

gauge field configurations with clover-improved fermion actions generated by the 

Hadron Spectrum Collaboration and the Nuclear Physics with Lattice QCD col­

laboration. The gauge action is a tree-level tadpole-improved Symanzik-improved 

action [23], and the fermion action is a n / =  2 +  1 anisotropic clover action with two 

levels of stout smearing [24] with weight p =  0.14 only in spatial directions. In order 

to preserve the ultra-locality of the action in the temporal direction, no smearing is 

performed in that direction. Furthermore, the tree-level tadpole-improved Symanzik 

gauge action without a 1  x 2  rectangle in the time direction is used.

Calculations have been performed on ensembles of gauge configurations, L3  x 

T  =  {163,203, 243} x 128, with the spatial lattice spacing of as =  0.1227 ±  0.0008 

fm, and the anisotropy parameter of £ =  as/ a t =  3.5 determined from the energy- 

momentum dispersion relationship. On these ensembles, the quark masses are such 

that pion has a mass of mw =  390 MeV, and the kaon has a mass of rn^ =  540 

MeV. Ideally, one would like to work at physical quark masses, however simulating
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at physical masses suffers from slow convergence and singular configurations be­

cause of existence of small eigenvalues of the Dirac matrix. Larger computational 

resources are required to directly exploring systems at physical masses, see Ref. [25]. 

The quantities mwL and m^T governing the impact of the finite volume and finite 

temporal extent are rri^L ~  3.86.4.82,5.79 and rnnT  ~  8.82 respectively.

In our work, colorwave propagators, Su/d(p, t; p', 0 ), are used in the recursion 

relations, and they are generated from Coulomb gauge fixed configurations. On 

the 163 x 128 ensembles, propagators with 33 different momenta satisfying |p| < 

5 have been generated with the methods constructed in Ref. [22], while on the 

203  x 128 and the 243 x 128 ensemble propagators with 19 momenta satisfying 

|p| < 3 are generated. Pion systems with the same total four momentum can be 

constructed from different combination of quark momenta7, but some combinations 

can have larger contributions than others 8. In order to get better signals, correlation 

functions computed from different choices of momenta are averaged on each gauge 

configuration.

2.4.1 Multi-pion dispersion relation

According to the Equation(2.19), only those correlation functions satisfying the 

momentum conservation have non-vanishing results. The momentum of individual 

pion is given by p] — pf. Multi-pion systems with zero total momentum can be 

constructed from pions moving with non-zero momentum, however such construction 

of zero total momentum system has much smaller contribution to the ground states 

than by enforcing individual pion having zero momentum. The small size of the

7Quark momentum is not a well defined quantum number, and it can be recognized as an 
independent operator choice which facilitates the computation.

8 Correlation functions calculated by using different quark momentum combinations on the same 
configuration are strongly correlated, because propagators with different momenta are generated 
from the same gauge field.
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contributions from moving pions have also been numerically verified.

Because of the way multi-pion systems are constructed in Equation (2.19), pi­

ons located in the same source have the same momentum. Moving systems are 

constructed from pions with the same momentum from a single source. On discrete 

lattices, only the multiplets of the momentum 8p — ^  are allowed. In units of 5p, 

moving systems with total momentums of p t =  n ■ p, where p  is the momentum of 

an individual pion, and p =  (0 ,0 ,1 ), (0 ,1 ,1 ), and (0 ,0 ,2 ) have been computed. As 

the noise to signal ratio (N /S) of the correlation function of a moving system hav­

ing a center of mass momentum of p t is proportional to e(£'"(pt)_E"(p=(°’0>0)))t [26], 

where En(p =  (0 ,0 ,0 )))/ is lowest energy of the state that n-pion operator con­

tributes, the uncertainty of correlation functions becomes larger as p t becomes 

larger. This makes the extrapolation of the ground state energy less accurate for 

larger pt . Because of the N /S problem, only energies of one pion systems for 

p =  (0 , 0 , 0 ), (0 , 0 , 1 ), (0 , 1 , 1 ), and (0 , 0 , 2 ) respectively have been extracted, and 

the corresponding plot of (E(p t)at)2 as a function of (pa t ) 2 is shown in Fig. 2.3. 

By fitting to the dispersion relation, (£'(p)a t ) 2 =  (E(0)at)2 -I- cr^pat)2, we get 

c =  1.007(12), which is consistent with c. — 1.0. By choosing different combina­

tions of quark momenta, pions with definite momentum can be effective constructed 

from the colorwave propagators.

2.4.2 Correlation functions of n-7r+ systems from 1 source

By contracting the colorwave propagators according to the recursion relation de­

fined in momentum space, n-n+ correlation functions defined in the Equation (2.19) 

can be effectively computed. Because of the Pauli principle, only N„Nr =  12 7r+’s 

can be put in the same momentum while still getting non-vanishing correlation func­

tions. In order to study systems containing more than 12 7r+,s, additional source
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FIG. 2.3: The extracted energies of a single pion with different momenta are plotted as 
the function of the momenta. In this plot, (i?(p)at)2 are plotted against (p<it)2. Together 
the fit to the dispersion relation is plotted, along with its 959c confidence interval.

locations are required.

On lattices with finite temporal extent, T,  correlation functions of n-ir systems 

contain thermal states, where some part of the system propagates backward across 

the temporal boundary to get to the sink. These contributions are particular im­

portant for multi-hadron states as they easily factorize into multiple color singlet 

objects that can propagate over large distance. By including the contributions from 

all thermals states, the n -7 r  correlation functions on a finite lattice with temporal



30

extent of T  behaves as

CnAt) =  -^-tr[e-(r- t)A 6 2 e~tk 6 , ]

=  6 2 e~tH d \ \m )
Zo m

=  y™' {rn\e~^T~^E 0 2\n — m){n — m\ e~tE Oi\m)
Zq myn—m

— (m| C?2 |n ~  m )(n — m\ 0 \ \m )e~ i'T~t Êrn e r tEn
® m,n—mZy

-1 1-2 J /  \
-  ^ 2  ( ) A^nZ ^ le~Emte ~ En~m('T~t  ̂ +  e - Ern(T-t)e r En- mt +
2 m=0 V™7
LfJ

p — (En.—m .+Em )T/2 Z-iyn ̂

. ^e - E m ( t - T / 2 ) e En- m ( t - T / 2 )  +  e E m ( t - T / 2 ) e - E n - m ( t - T / 2 ) j /2  +  . . .

L?J , v
=  X )  ( ” )^ m ^ m ^ (E"-m+jEm)T/2cosh((£;n_m -  £?m)(t -  T/2))  +  . . .  (2.21)

m = 0  ^ 7

In the above equation,tr stands for trace, which is evaluated in the Hilbert space by 

summing over all quantum states, in. The matrix element (n — m\e~^T~^H 0\\ in)  

denotes contributions from m  pions propagating in an opposite direction of the rest 

n — m  pions, and in the limit T  —> oo contributions form this term vanishes. In the 

step 5, we simplified the notations to AJJ, =  1 when m  =  n / 2, otherwise A1̂  — 2, and 

the Z are the overlap factors for contribution with m  7r’s  propagating backward 

around the temporal boundary, and the ellipsis denotes contributions from excited 

states, which are suppressed by the energy gap. The Em is the ground state energy 

of a m -7 r+ system. The ground state contribution comes from the m =  0 term, and 

thermal states, which vanishes in the T —> oo limit are from the m ^ O  terms in the 

sum.

An example of the contributions of the excited states, ground states, and ther­

mal states can be visualized in Fig. 2.4, where the red points with error bars are the
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FIG. 2.4: In this figure, the correlation function of systems containing 12-7T, denoted 
as Ci2 {t), is decomposed into different contributions to get a better understanding of 
the difficult in extracting ground state energies resulting from the necessity to including 
all thermal contributions in the fit. “/ au w M p ”  is by summing all contributions, and 
“ / a l l  n o M p ” denotes contributions only from the ground state and thermal states, which 
overlaps exactly with the “/ aii WM P ” at latter time slices, and lays over the ground state 
contribution “/ 0” at earlier time slices. “ / CXc i t "  denotes the contribution from the first 
excited state, which dominates the “ / a n  w m p ” at early time slices, “ / l ”  represents the 
contribution from the 1st thermal states, where 1 pion propagates in an opposite direction 
with others, and similar “/*” denotes contributions from the fcth thermals states, where 
k pions propagate in the opposite temporal direction to other 12 — k pions.
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n

FIG. 2.5: In this plot, Z factors, ZL for i = 0,1, • ■ ■ ,6, extracted fitting correlation func­
tions for n pions for n  up to 12 are compared. Z q denotes contribution from the ground 
state, and Zi denotes the contribution from thermal states with i pions propagating in 
the opposite direction with other pions.

data of the correlation function of a rest system having 12-7t+ , Ci2(f), calculated 

from a single source on the 163 x 128 ensemble. In order to get better overlap to 

the ground state, interpolating fields are constructed such that all pions in the rest 

system have zero momentum in the absence of interactions. In Fig. 2.4, “ / a n wM p ” 

is by summing the 1st excited state, ground state, and all thermal state contribu­

tions. The “ / a i l  noM p” denotes contributions only from the ground state and thermal 

states, which overlaps exactly with the “/ an WMp” at latter time slices, and lays over 

the ground state contribution “/o” at earlier time slices. “/ exdt” denotes the con­

tribution from the first excited state, which dominates the “/ an wm p ” a t  early time 

slices, “/ i ” represents the contribution from the 1st thermal states, where 1 pion 

propagates in an opposite direction with others, and similar denotes contribu­

tions from the kth thermals states, where k pions propagate in the opposite temporal 

direction to other 12 — k pions.
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As we can see, even for systems with 12 pions, there is no region where the 

ground state dominates, thus in order to extract the ground state energy we need 

to fit the corresponding correlation functions for n =  1.2, • • • pions to the Equa­

tion (2.21) by including all thermal states. As the energies of the states with m < n 

pion can be extracted from correlation functions of systems having less pions, there 

are only one energy and multiple Z  factors needed to be determined from the fit.

However, the Z  factors for the ground state and thermal states are the same 

within uncertainty as shown in the Fig. 2.5 and we can build this simplifing assump­

tion into the fits, which further reduce the number of parameters to be determined 

during each fit to two. The uncertainties of extracted ground state energies include 

the following three contributions. First, there is intrinsic statistical uncertainty com­

ing from the Monte Carlo estimations, which can be effectively estimated from the 

bootstrap/jackknife method. Secondly, one kind of systematic uncertainty comes 

from the fit region we choose, where other contributions, for example excited states, 

are not included in our fit. Such uncertainty cam be estimated by choosing different 

fitting windows, and examining the deviation of the extracted ground state energy 

for different fitting ranges. Another systematic uncertainty comes from the fact 

that the energies used as a prior for the thermal states extracted with uncertainties 

themselves, and the contribution of this kind of systematic uncertainty is difficult 

to estimate. For few-pion systems, thermal state energies are relatively small and 

so are their uncertainties, thus their contributions to the systematic uncertainty of 

the ground state energy is relatively smaller than the statistical uncertainty.

However, for system with more pions, such systematic contributions are magni­

fied, and it also becomes even more difficult to estimate such a contribution. Because 

of the difficultly in extracting the ground state energies, and also in estimating sys­

tematic uncertainties, extracting the ground state energies for system containing 

more than 12-7T on the T  =  128 lattice is very difficult, and we become less confi­
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dent on the extracted ground energies for systems of more pions. Extracted ground 

state energies will be shown in the following section.

2.4.3 Multi-pion systems from 2 sources

Because of the Pauli principle, only NSNC =  12 pions can be constructed from a 

single source set up. In order to study systems having more than N  pions, a minimal 

of ceiling(/V/12) source locations are required. From 2-source setups, a maximal of 

24-pion system can be studied. Complications of 2-source studies comes from both 

the fact that the uncontracted correlation matrices are 24 x 24 complex matrices 

rather than 12 x 12 for the one source calculation, and that the number of possible 

ways to distribute pions between two source locations is 10 times larger than the 

one source case. These two factors make the study of 2-source systems 0(100) more 

expensive than the 1-source study. Similar argument makes the study of 3-source 

system 0(100) more expensive than the 2-source study.

Correlation functions for systems having rq(n2) 7r’s from the 1st and 2nd source, 

CniJl2(t), can be calculated in the momentum space by using Equation ( 2.19). 

By implementing the recursion relation, correlation functions of all possible ways 

of distributing pions between two sources can be calculated. By fitting CnitTl2(t) 

according to the Equation. (2.21), ground state energies, Enun2, are extracted from 

Cni,n2(̂ ) f°r individual combinations of n\ and n2. Extracted Eni<n2 s are compared 

in Fig. 2.6, which confirms that the ground state energy of a multi-pion system is 

independent of the distribution of pions between all sources.

Comparing to the 1-source system, fitting 2-source system requires more free 

parameters to be fitted, thus in addition to the large computational cost of the 

correlation function, extracting ground state energies from correlators also become 

more difficult. This is why we only extracted Enun2 for systems with up to 10 pions.
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FIG. 2.6: The ground state energies, Eni:n2, extracted from Cni,„2(t) for different ti\ 
and ri2 are compared. The x-axis are chosen to be 2ni +  in order to separate jTl2 
with the same rt \ +  n2 ■ The nth row corresponds to the ground state energy of an n-pion 
system.

Even though we are able to compute Cni ri2(t) for rq +  n2 up to 24, ground state 

energies are hard to extract reliably for large number of pions. In order to get better 

signal for ground state, longer temporal extent are needed to suppress contributions 

from thermal states propagating around the temporal boundary. Studying systems 

containing more than 24 pions would require a third source, as discussed before, the 

3-source computation is 0(100) times more expensive than the 2-source calculation, 

which make the computation of correlation functions of systems of more than 24 

pions extremely time consuming. In order to study systems with more pions, new 

methodologies are developed in the following section.



CHAPTER 3

Improved methods to study many-meson 

systems

As discussed in the previous chapter, a recursion relation for the Cnir.iTlJ,(t) can 

be derived and it has been applied in the last section to study systems containing 

up to 24 pions. Since the spectrum is independent of the choice of interpolating 

operators used to probe it, the C'„lv..>nN(t)’s have the same energy spectrum for 

all possible combinations of n ’̂s as long as ri is fixed, so separately computing 

correlation functions of all combinations of n^s is redundant. This has been verified 

numerically for the case of 2 sources in Section. 2.4.3. As we are primarily interested 

in the energy spectrum of multi-pion systems, we can thus identify a combined 

correlator Crm(t) as the term having prefactor A" from the expansion of det[l +  AA],

1This section is in collaboration with William Detmold and Kostas Orignos, and results have 
been published in Paper. [5].

36
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with

1,2

A  — Pi +  P2 +  . . .  +  PN — k, 1

N,  1 N,N

where /V s are defined in Equation (2.11).

Cnn{t) computed in such a manner is a complicated combination of the various 

Cn1,n2,...,niV (0  with fixed n, in which we do not identify which pions originate from 

which source as this is not physically useful information. For multiple source con­

tractions, even terms representing more than 12 7r+’s located in a single source are 

included, however such terms vanish identically and so do not produce additional 

noise in numerical calculations. As many fewer correlation functions are needed for 

a given n, computing Cnn(t) is a computationally simpler task than recursively com­

puting all Cni n̂ 2 In the following sections, we will construct four algorithms 

to further speed up the calculation of Cm,(t) and compare each algorithm in terms 

of precision requirement and numerical cost. By applying these new algorithms, we 

will investigate systems containing up to 72 pions in Chapter 4.

3.1 Vandermonde Matrix method (VMm)

As described above, the correlation function of an n-ir+ system (Cn„) can be 

identified as the coefficient of A" from the power series expansion of det[l +  XA]

det[l +  AA] — 1 +  XCln +  X2C2n -I- . . .  -I- A12ĵ Ci2Nm (3.2)
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where A is a 12TV x 12TV matrix2 constructed from uncontracted correlators following 

Eq. (3.1). A simple way to get Cnir is by computing Eq. (3.2) for 127V different 

choices of A (Ai , . . . ,  A i2jv ) . The resulting system of equations can be written in the 

following matrix form

f  detll+A^j-l \

det[l+A2-̂ ]—1 
•*2

det[l+Ai2/v̂ 4] —1
\  ^12 N /

/ 1 A2 \ 12iV—1 \  /  n  \A\ 1̂-k

\  1 An A2

112Af—1

\\2N-\ \ nAn /  \  '-'WN-ir

C,2tt
(3.3)

/

The matrix on the RHS of Eq. (3.3) is a 127V x 127V Vandermonde matrix, for 

which there exist analytical forms for the determinant and inverse (see for example 

Ref. [27]). The inverse matrix then allows us to determine the Cn7r’s from the 

numerical calculation of the determinant vector. However, when the number of 

sources becomes large, elements of this matrix can become very small or very large
1 2 12N—1because of the factors of A/ ’" ’ , which makes the computation of the inverse

very demanding in precision and eventually resulting in significant numerical errors 

unless very high precision is used.

3.2 FFT method (FFTm)

By choosing A =  exp(<27rf 0 ■ r) in Eq. (3.2), the expansion becomes

det[l +  XA] =  1 +  e2iwf° TClir +  e4iwfoTC2n +  ■ • • +  e24i*NfoTC 12Nn, (3.4)

which contains contributions from signals of frequencies kfo , k =  1, 2, . . .  127V, which 

can be thought of as a Fourier series. Because of this feature, the magnitude of

2In pervious chapter M  denotes the number of source, while in this chapter N  is used to denote 
the number of source.
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each frequency component can easily be extracted using a Fast Fourier Transform 

(FFT). The magnitude corresponding to frequency k f0 is equivalent to Ckv times a 

normalization constant, which depends on / 0 and r. In order to get better signals, 

data from multiple r ’s are beneficial, which results in the need to calculate many 

determinants, and makes this method expensive. On the other hand, specific choices 

of /o and r can minimize the number of required determinants. We set r„ =  n dt, 

for n =  1 , 2 , . . . ,  T where dt is the minimal time step and T  is the closest prime 

number larger than 12N,  and /o =  and then compute det[l +  AnA] with An =  

exp(i27r/o-rn). After applying the FFT to this series, the amplitude of the frequency 

k /o is TCkn• With such choices of /o, rn and T, the number of determinants needed 

to compute is the same as the Improved Combination method (ICm) discussed 

below.

3.3 Combination method (Cm)

The FFTm discussed above is constructed from a certain choice of A’s so that 

the expansion of the determinant can be recognized as contributions from different 

frequencies. Similarly, by studying the properties of Eq. (3.2), another choice of A’s 

can be utilized to eventually separate det[l+AA] into groups of functions individually 

depending only on 3 correlation functions. This method requires us to determine 

the inverse of a 3 x 3 matrix, rather than of a 12N  x 12jV Vandermande matrix, 

to solve for the individual correlators and is thus more numerically stable. This 

method is applied by the following steps:

Step 1: Choose / i  =  1 and compute

D ? \ f iA) =  det[l +  /iAA] — 1

=  /jACW +  (/lA  )2C,27r +  ••■+■ ( / l  A)12̂ C i2/Vtt (3-5)
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Notice that D[l\ f i X )  depends on all correlators Ci„, C27r, • • ■, Ci2JV7t-

Step 2: Choose / 2 =  exp(?'7r), and construct the following contractions of the 

functions D[l\ f nX) to generate the following two new quantities:

D ? \  A) =  +  A),

D™(  A) =  £>l1)(/iA) +  / 2Jf>|1)( /2A). (3.6)

By inserting the values of / i  =  1, / 2 =  — 1, it is clear that the D f \ X )  only depend 

on C(3 - i )„, <7(5- , )^, . . and so the correlation functions have been separated into two 

groups. Specifically, we have

D\  ̂ =  X2C2tt +  X4C4„ +  • • •

D™ =  A1̂  +  A3CW +  • • • (3.7)

Step 3: Choose / 3 — ex p (i|) , and construct the following combinations of the 

functions D ^ \ f nX) and D ^ \ f nA):

D {3)( A) =  D ^ (A ) +  / 1D f )( /3A), (3.8)

£><3)(A) =  D '2)(A) +  / 2L»f)( /3A), 

D<3)(A) =  D ^ (X )  +  f 1f 3D ^ \ f 3X), 

Z )f(A ) =  D '2)(A) +  / 2/ 34 2)( /3A),

and we see that the d \3\ A) for i =  1,2 depends on C(o+2 /)7r: C(4 +2t)7r, ■ ■ and d {3̂ (A) 

for * =  3 ,4 depends on C(9_2,)w. C(i3_2l)ff, —  In each step, one function depending 

on a block of Ck* s is separated into two functions each depending only on half of 

the CW’s from the previous function. We iterate this procedure until blocks of only
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3 Cfcjr’s are reached.

To summarize this method, in “step n”, /„ =  exp ^ ^ r?) is chosen, and after this 

step -D,-n-1*(A), i =  1, . . .  , 2”“2, will be separated into 2"_1 functions, _£>jn (̂A), each 

depending on 12N/2n~1 C\.„’s. At a given stage, Dm~l\ A) is a function depending 

on a block of 6 \ ff’s. Two functions, ^ m - i  and each depending on a half

of the original block of C k̂ s  are constructed from Dm ^(A) +  q2 m-l ■ Dm l\ f n  ' A) 

and Dm~X\ A) +  q2m. • Dm~1\ f n ■ A), where the qk s, k =  1 , 2 , . . . ,  2n_1, are prefactors 

used to construct new functions depending only on half of the Cjbr’s, which Dm _1)(A) 

depends on. The prefactor qk in step n is constructed in the following way.

Group 1: Ql =  f lt

Group 2: q2 =  / 2 -<7 i,

Group 3: qk =  / 3 • gfc_2, k -  3,4,

Group n: qk =  /„  • gfc_ 2n-2,  fc =  2n~2 4- 1 , 2n_2 +  2, . . . ,2n_1, (3.9)

where “Group m” contains 2m“2 functions for m  =  2 , 3 . . . . ,  n. This process is re­

peated until functions, D ^ ( A), each depending only on 3 Ct7r’s are reached. Eventu­

ally det[l -I- AA] is separated into functions, D ^ ( X ) ,  depending on following blocks
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( B k ):

Group 1: B \  — [C4Mr> Cgtfir, C \2N ty]

Group 2: B'2 — [C 2N n , C a N n ,  C iO V tt]  =  C s ub(Bi)-2./V

Group 3:
B 3  =  [C3Nn,C7Nn,CiiN„\ =  CsubiB^-N

(3.10)
B 4  =  [C V tt, C s n k ,  Cgyvw] =  C s ub(B2)- .V

Group n: Sub(Bj

where Sub(J3fc) are the sub indexes of the C ’s in Bk, for example Sub(£?i) =  

{4AT.8AT.12iV} and C Suh{Bl) - 2N =  {C2n-k, C 6Nir, C XqN7!}. The dependence of Bk 

on the corresponding C ’s can be determined from the above recursion relation.

Inverting this matrix does not suffer from the numerical instabilities seen in the 

VMm, however as 12AT becomes large, even computing the inverse of these 3 x 3  

matrices requires high precision, since A12jV can be out of double precision limit for 

very large AT. Fig. 3.1 shows a comparison of the correlation functions computed 

from 2 sources by applying the Combination method and Improved Combination 

method to be discussed below. For the AT =  2, C Xn(t), C9n(t) and C177r(£) are

In order to get the individual Ci7r’s, D ^ l X j )  must be calculated for three dif­

ferent Xj S. Different choices of A /s have no effect on the extracted Ct7r’s (we have 

confirmed this numerically). From the D ^(A j-)’s, the C b/s are extracted by solving 

the following equation, taking the block [Cwm C$n -k, Ci2 JVir] for example,

( D f \ \ x) \  (  AfN A?" A}2" \  (  C4Nv N

D ? \  A2) =  A ^  \%N  • C'8Nn

K £>[ft)(A3) )  y  Af* \12N y  \  c 12N, }

(3.11)
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computed simultaneously by inverting a 3 x 3 matrix, similarly for (C2ir{t), CW , 

C W (0)i and (CWp), C n n(t), C\^(t )) .  Because of the large magnitude difference 

between Cyn (C ^, CW) and C n n (CW , Ci$n), which becomes smaller for C47r (Cs„,

• • •) and C2 oir ( C ^ , ■ • •), at 64 digit precision, Cin(t), CW^) and C^{t)  show signs 

of numerical break down at earlier time slices, which goes away at higher precision 

(100 digit), indicating that even calculating the inverse of the 3 x 3  matrix needs 

high precision to get the correct results.

As constructed, this method is only applicable to a 2n source problem. In order 

to solve problems having an arbitrary number of sources, we extended this to an 

Improved Combination method in the next section.

3.4 Improved Combination method (ICm)

As there are 12N  terms having A in the expansion of det[l+A /l] for a 12N x 12N  

matrix, Equation (3.2), the Combination method does not allow us to determine 

functions depending on less than 3 Ck* s. A similar problem appears in the applica­

tion of the FFT. In order to use FFT, 2n data points are required. If the number of 

points in a series is not equal to 2", points with value zero must be appended to the 

original series to produce a series of length 2". Similarly, we can append additional 

CknS to the expansion of det[l 4- AA], as:

det[l 4- AA] =  1 +  ACi^ -I- \ 2C 2 n 4- . . .  4- A12̂ C i2jvjr +  ^i2N+1C(i2 N+i)n +  ••• 4* A2 C2»nff

(3.12)

where Cp*- =  0 for all p >  12N.  The power m  is chosen such that 2m~1 < 12N <

2m. With this new arrangement, exactly the same prescription discussed for the 

Combination Method can be applied, but in the last step the D ^ \ A) individually
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FIG. 3.1: C2n(t), Ci2n(t) and C23V(t) calculated from N  =  2 sources by ICm with 
64-decimal digital precision, denoted as ICm64, and Cm with 64(100)-decimal digital 
precision, denoted as Cm64(Cml00), on a single configuration are compared. Correlation 
functions from CmlOO agree with those from ICm64, however for the same precision, the 
ICm gives more accurate result than Cm. For C2K(t), Cm64 fails because of numerical 
inaccuracy as discussed in the text.
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FIG. 3.2: Correlation functions on a single configuration at t = 20 from 2 sources com­
puted with the Improved Combination method using the arprec library [8] at various 
precisions: ‘arprec X ’ denotes that the calculation is done with X-decimal digit preci­
sion. The Cnir(20) for n = 1, 2 , . . .  24 all agree for the different precision calculations just 
as they should, except for the calculation from 16-digit precision. However Cn7r(20) for 
n = 25,26,.. .  ,32 are all machine zero at each precision. The disagreement of 16-digit 
precision indicates higher precision is needed. A similar comparison is shown for the 
single source correlation functions in the insert.
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depends only on a single correlation function.

A significant advantage of this method compared with the Combinatin method 

is that no matrix inversion is required, so it is consequently less demanding in 

numerical precision, see Fig. 3.1, and in addition, problems with arbitrary numbers 

of sources can be solved with this method. Correlation functions appended to the 

series are solved for simultaneously with the other Cfc^s, providing a numerical check 

of the validity of this method. In Fig. 3.2, correlation functions calculated from

1-source and 2-sources on a single configuration are shown for different precision 

(we use the “arprec” library [8] to perform arbitrary precision calculations). As 

expected, all Cpn's for p >  12N  are indeed numerically equivalent to zero, decreasing 

exponentially as the the numerical precision is increased. Since this method is more 

numerically stable than the Combination method, and can also solve problems of 

arbitrary number of sources, it is used in our further studies.

3.5 Generalization to 2 species from N  sources

The methods discussed above can easily be generalized to two species of mesons 

by studying properties of the expansion of det[l +  Ay A +  A2  B], where A  and B  are 

uncontracted correlation functions of two distinct species, for example ir+ and p+ . 

We can write

det[l +  AyA +  A 2B] =  1 +  A°T0 +  A ̂  +  . . .  +  A *Tk +  . . . ,  (3.13)

where

TJt(Ai) =  AyC0A,kB +  ^  ̂ ^ AyC\A,kB +  • • • +  ^ £ ^A^ hC(M-k)A,kB, (314)
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where M  =  12Ar is the dimension of the matrices A and B,  and the correlation 

functions, CmA.nB, are complicated combinations of correlation functions of a system  

having m-A's and n-B ’s distributed among different sources in all possible ways.

The 7}(Ai), for j  =  0 ,1 , . . . ,  M  for one Ai can be separated out by applying the 

methods discussed above with different choices of A2 5s, and then by applying the 

method again for different choices Ai’s for all T,-(Ai)’s, the CmA,nB s can be separated 

out. This can be further generalized to correlators of arbitrary number of species as 

necessary.

3.6 Eigenvalue method 3

All methods discussed above can be easily extended to study multi-species 

systems. If we are only interested in systems containing one species, we can explore 

the following relationship between determinant and eigenvalues to further speed up 

the computation of n-meson correlation functions.

YIN YIN

det[l +  AA] =  lid +  Ad*) — E Ck\ k, (3.15)
i = l  k—0

where a, is the i th eigenvalue of the matrix A. The Ck can be obtained by equating 

coefficients of Afc one both sides. The main cost of the method is computing the 

eigenvalues of the matrix A, and it scales as (127V)3. Thus the computational cost 

of this method is 0 ( N 3).
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FIG. 3.3: The left panels compare 1-source calculations from the VMm, FFTm and Cm, 
and the right panels compare Cn7r calculated from 2 sources by the three methods. The 
real propagator is taken from one time slice, t =  20. The Recursion Relation method 
(RRm) [9] is also compared with other methods in the lower left plot as a check on the 
validity of the Cm. For the 2-source calculation in the toy model (top right) with VMm, 
two different sets of Ans have been used, denoted as VMml and VMm2. For VMm 
applied to the real propagator calculations, only one choice of A’s is shown. “Cm 16 
(32)” denotes that calculation is done using Cm with 16(32) decimal digit precision.



3.7 Performance of different methods
49

In order to test the accuracy of different methods at a fixed precision, we com­

pared correlation functions calculated from the VMm (implemented in MATLAB), 

the FFTm (implemented in MATLAB), and the Cm (implemented in C + +  using 

the “arprec” high precision library [8]). We first considered a toy model with matrix 

elements A„jm =  sin((m — l)(n  — 1) +  2) +  i cos(2(n — 1)) for 1 and 2 sources in the 

top half of Fig. 3.3. For this test, the A’s used in the VMm and Cm are randomly 

chosen between —0.25 and 0.25, however Cnn(t) is shown to be independent of these 

choices. Results from VMm on 1-source agree with those from the FFTm and Cm 

for any set of A. However for 2 sources, the FFTm and the Cm give the same results, 

but the VMm gives inconsistent results and changes with different choices of A’s, 

signaling a breakdown of the VMm and the requirement of higher precision. Similar 

tests have also been performed with the matrix elements An?m extracted from real 

quark propagators and the results axe shown in the lower half of Fig. 3.3. In this 

test, the Recursion Relation method (RRm) has also been used to compute the Cn7r’s 

in order to validate the new methods. For the N  >  1-source calculation no direct 

comparison with the RRm is made, since the CB7r computed from the new methods 

are complicated combinations of all Cnu >̂nN’s with YliLi n* =  We verified how­

ever that the energies extracted for these correlators with either method, RRm and 

Cm, are in agreement. In contrast to the toy model, for the real A n<m, the VMm 

gives more accurate results than the FFTm. However both tests show that the Cm 

gives the most accurate results for a fixed precision. Tests with real propagators on

2-source shows a break down of Cm on C\n and Ĉ *-, however this breakdown can 

easily be corrected by working at higher precision.

The main purpose of constructing these new methods is to expedite the eon- 

3This method is suggested by Anyi Li [6]
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FIG. 3.4: Comparison of the number of multiplications required for each method (RH 
axis), and the corresponding expected computation time of Cnv(t) for n  =  1,2, . . .  12AT on 
a single time slice, corresponding to one application of the specified contraction method 
in seconds using a single 2.4 GHz Xeon core (LH axis). The computational cost of the 
ICm is taken from the actual running time, and it is used to normalize the time scale so 
that the projected running time of other methods can be read out from the LH axis.
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TABLE 3.1: Scaling of different methods in terms of number of multiplications for an TV 
source calculation. __________________________________

scaling
RRm 1247V4 exp(2.8(7V -  1))
VMm (127V+  2) (12 V ) 3

Cm 3  . 2 i°g2(4JV)(1 2 7V) 3

ICm 2floor(log2(12iV))+2 2̂27V)3

tractions required in computing correlation functions for systems comprised of large 

number of mesons. The numerical scaling of the Recursion Relation method, Vander- 

monde Matrix method, Combination method and Improved Combination method 

(the FFT method costs the same amount of time as the ICm if /o , r and T  are 

chosen appropriately) are compared in Table 3.1. For each method, we determine 

how many multiplications are required. From Ref. [9], the computational cost of 

the recursion relation method is proportional to 1247V4exp(2.8(7V — 1)), where N 

is the number of sources. The VMm requires a calculation of 127V determinants, 

one inversion of 127V x 127V matrix and the multiplication of a 127V x 127V matrix 

and 127V x 1 vector. The dominant contribution to the computational cost of the 

other two methods comes from calculating a large number of determinants. For the 

Improved Combination method, a step-n calculation requires the computation of 2n 

determinants, while the Combination method requires 3 -2n for a step-n calculation. 

To solve an 7V-source problem, the Combination method requires log2(47V) steps 

for TV =  2m, where m is an integer, and the Improved Combination method requires 

floor(log2(127V)) -I- 2 steps. Taking account of all the determinant calculations that 

are needed, and the computational cost of each determinant (~  (127V)3 using LU 

decomposition), the numerical cost of each method is tabulated in Table. 3.1, and 

compared in Fig. 3.4. Although the recursion relation method significantly reduces 

the cost of contractions over the original (127V!)2 scaling, the computational cost of 

the recursion relation method is much larger than other methods, all of which scale
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similarly. Using the ICm, we turn to numerical investigations of systems of large 

number of mesons in the next chapter.



CHAPTER 4 

QCD at Finite Isospin Density

4.1 Lattice details

In this Chapter, we apply improved multi-meson methods constructed in Chap­

ter (3), and study systems containing up to 72 pions. Calculations in this chapter 

are performed on ensembles of anisotropic gauge field configurations with clover- 

improved fermions [14] that have been generated by the Hadron Spectrum Col­

laboration and the Nuclear Physics with Lattice QCD collaboration. The gauge 

action is a tree-level tadpole-improved Symanzik-improved action, and the fermion 

action [28, 29] is a rtf =  2 + 1  anisotropic clover action [30] with two levels of 

stout smearing [24] with weight p =  0.14 only in spatial directions (see [15] for 

more details). In order to preserve the ultra-locality of the action in the tempo­

ral direction, no smearing is applied in that direction. Furthermore, the tree-level 

tadpole-improved Symanzik gauge action without a 1 x 2 rectangle in the time 

direction is used.

Four ensembles of gauge fields are used in this study with volumes L3 x T  of 

{163 x 128, 203 x 128, 243 x 128 and 203 x 256 }, and with a renormalized anisotropy

53
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TABLE 4.1: Details of the four gauge ensembles with the same lattice space a =  0.1227± 
0.0008 fm used in this chapter. Ncfg denotes the number of configurations used in the 
current calculation. In the last two columns, JVsrc is the number of source times used on 
each configuration and N mom is the number of momentum sources used for each source 
time._________________________________________________________

L3 x T  (a"1) L (fm) m nL m wT iVcfg A s rc N1 ’ m om

B1 163 x 128 2.0 3.9 8.8 180 8 33
B2

00CMXoCM 2.5 4.8 8.8 51 8 19
B3 243 x 128 3.0 5.8 8.8 98 8 19
B4 203 x 256 2.5 4.8 17.6 147 16 7

£ =  as/a t =  3.5, where as (at) is the spatial (temporal) lattice spacing. The lattice 

spacing is the same for each ensemble, as =  0.1227 ±  0.0008 fm [15], which gives 

spatial extents L ~  2.0, 2.5,3.0 fin for L — 16,20, 24 respectively. The same bare 

inputs of light quark mass atvni =  —0.0840 and strange quark mass atm s =  —0.0743 

are used in generating each ensemble, giving a pion mass of m v ~  390 MeV and 

a kaon mass of mK ~  540 MeV. The quantities m nL and rnnT,  which determine 

the impact of the finite volume and temporal extent, are m %L ~  3.86,4.82,5.79 for 

L — 16,20, 24 lattices and m nT  ~  8.82,17.64 for T  =  128, 256, respectively. Details 

of the four ensembles are summarized in Table 4.1.

In our work, a momentum space representation of the contractions is used and 

quark propagators in time-momentum space, which we refer to as “colorwave prop­

agators”, Su/d(p, r; p', 0), are calculated on Coulomb gauge fixed configurations1. 

Details about how to compute colorwave propagators are discussed in Section. 2.3.

A correlation function of one pion with momentum p /  can be constructed by

1 As we compute gauge invariant quantities, our results are independent of the gauge fixing 
procedure.
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projecting both sink and source to the same momentum p / as:

c u p / , o = ;«Py e - i(p -P ,)y ' u (y ,0 )75d (y ',0 )

=  5 Z  ( e _ipiXe’py 785 u(x , *; y , 0) 7se*e”ipiXe'py 785 u(x , t- y , 0) 75e!P2X (78S5(x', t; y', 0)7s.*P2x' p-*(p-:P/)y' (75<Sj(x/,* ;y ,,0)75)^
x.x',y .y '.x'.y.y'

X )  75(e-ipiXeipy5u(x r t; y , 0)) £  e - ^ - ^ y ^ s h s S ^ x ' ,  <; y', 0)7s)
x ,y  x'.y'

(75-S't.(Pi,<;P,0) • 78(785 j ( - p 2, i ; p /  - p , 0 ) 78)^ (4.1)

where Pi — P2  =  P/- Each choice of { p i ,P 2 } and p satisfying momentum con­

servation is a separate correlation function with distinct creation and annihilation 

interpolating fields, and we have suppressed the dependence of C \T on p i, p 2 and 

p. During the calculation, we held p 1} p2 and p /  fixed and summed over all p ’s for 

which we have computed colorwave propagators (see Table. 4.1) in order to get more 

statistics. In the second step, the definition of propagator Su/d(x.', t; y , 0) and the 7s 

hermiticity of the propagator is used. The definition of the colorwave propagator, 

Eq. (2.16), is applied in the last step.

The correlation functions of a system having n  7r+’s in a single source, with 

total momentum P /  =  n p /  can be constructed similarly:

where the dependence of Cn7r on p i, p 2 and p has also been suppressed in Eq. (4.2).

Because of the Pauli exclusion principle, systems constructed from a single 

source in momentum space can only reach a maximum of 12 7r+ ’s. In order to put 

more pions into a system, additional sources are required. Correlation functions of

(4.2)
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a Ar-source system having n =  X ^ ilin»7r+ S with total momentum P / =  Er=iP/i 

are given by

x r  eip^ ^ “i{p^ p^ )y>u(y„0)75rf(yy ,(4 .3 )
i, y'j

where n* is the number of pions in the i lh source, and momentum conservation

to be non-vanishing. Here, only systems with total zero momentum, P / =  (0 ,0 ,0), 

are investigated, and P / / s  for each source are also fixed to p f. — (0, 0 ,0)2. The 

improved multi-meson methods constructed in the last chapter apply equally well in 

momentum space and are used in our work. The uncontracted correlation functions 

in momentum space are calculated according to Equation (2.20).

For the T  =  128 (256) ensembles, 8 (16) colorwave propagators are generated 

on each configuration located 16 time slices apart to minimize correlations between 

propagators. For ensembles {5 1 , 52 , 5 3 , 5 4 } , {180,51,147,98} configurations and 

{33,19,19,7} momenta are used respectively. In order to reduce contamination 

from thermal states, a temporal extent of T  =  256 is desirable for systems of large 

numbers of pions. On the B1 and B3 ensembles, the A ± P  (antiperiodic ±  periodic 

propagator) method [31, 32, 33] is applied to effectively double the temporal extent, 

see Appendix A. The validity of this method is investigated by comparing results 

from ensemble B4 (203 x 256) and with those from ensemble B2 (203 x 128) with 

the A ±  P  method and it is found to be sound at the precision we achieve for the

2Using non-zero momentum sources, for example p / ,  = (0,0, —1) and P / 2 = (0,0,1), to con­
struct a zero momentum system has also been investigated, and we find that higher momenta 
sources have smaller contribution to the correlation function of a system at rest than zero momen­
tum sources. Technically, different weights can be chosen in Eq. (4.3) for each combination of p f i
to get better overlap to the ground state.

E ,= i ™i(pl -  P2 ) =  E"=i Pfj , must be satisfied in order for the correlation functions
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FIG. 4.1: The black data is the effective mass calculated from the original data from 
ensemble B2, and blue line through the data points is reconstructed from the ground 
state energies extracted from the ensemble B4 as discussed in the main text. The red 
straight line is the fitted value of Eni, extracted from the correlators of ensemble B4.

systems under consideration as discussed below.

4.2 Ground state energies

Previous studies of the energies and isospin chemical potentials [34, 4] on ensem­

ble B2 showed that thermal states contribute significantly to correlation functions 

and, even for C\ 2 -n{t), the ground state does not dominate in any region of Euclidean 

time. The expected form of correlation functions of an n-n+ system with temporal 

extent T  is expressed in Equation (2.21).

For the T  =  128 B2 ensemble, effective mass plots are shown in Fig. 4.1 for vari­

ous n, and it is clear that correlation functions receive significant contributions from 

thermal states. Their analysis requires a fit including all thermal states, Eq. (2.21), 

in order to extract the ground state energy. Since the number of free parameters 

in the fit grows with n, the systematic uncertainty of En7[ becomes large and we 

are unable to extract any accurate information at large n. In order to minimize 

contributions from thermal states, a longer temporal extent is required.
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FIG. 4.2: The effective mass of from the 2-source calculation on the ensemble B4
is shown on the left along with the extracted ground state energy represented as a black 
band. Similarly, the effective mass of C^nit)  (C7 2Tr(t.)) from the 4 (6) source calculation 
on the same ensemble and the corresponding extracted ground state energy is shown in 
the middle (on the right).

Thermal effects are exponentially suppressed by the larger temporal extent and 

the ensemble with T  =  256 has greatly reduced contamination, and a simple single 

exponential fit at intermediate times is sufficient to extract ground state energies, 

even for E72n, as shown in Fig. 4.2. Effective mass plots of C2on, CW  and C72tt for 

this ensemble all show a plateau region, and a single exponential fit, only including 

the term in Eq. (2.21) with m  =  0, is enough to extract the ground state energy 

Enn. However, for significantly larger numbers of pions, a still larger temporal 

extents would again be necessary.

4.3 Energies from 203 x 256 ensemble

Correlation functions, defined in Eq. (4.3), for systems with the quantum num­

bers of up to 72 7r+,s have been computed on the B4 ensemble. In this chapter, only
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systems having zero center of mass momentum are investigated. For a discussion 

of results for different total momenta, see Ref [4]. Because of precision issues, we 

have computed correlation functions from 2, 4, and 6  sources, from which Ei„^,2 4 m 

£ ,257r-+487r and i?497r-+727r have been extracted respectively, where Enn is the ground 

state energy of a n-7r+ system at rest. Fig. 4.3 shows 6 2 0 *(0> C W (0  and C7Q7T(t) 

from 6 -source contractions. The breakdown at earlier time slices of C 2 0 w{t) indi­

cates that computations with higher precision are required in order to use 6  sources. 

Computations with arbitrary precisions are accessible with the “arprec” library [8 ], 

however at the same precision, they are ~  5 times more expensive than with the 

fixed quad-double precision (implemented using the “qd” library [35]). In our main 

studies, we perform all contractions in quad-double precision, and multiply the un­

contracted propagators by a prefactor before performing the contractions such that 

the particular Cn„(t)'s that we focus on do not suffer from the limit of the floating 

point dynamical range of quad-double precision (this prefactor is removed at the 

end of the calculation).

As the correlation functions of systems containing many pions span a large 

numerical range, 1 0 2 5 0  ~  1 0 ~ 2 5 0  for C7on(t) for example, inverting the correlation 

matrix during a correlated fit brings in significant instabilities, thus Enn for n =  

1 ,2 , . . .  72 are extracted from uncorrelated fits in this study. The fitting window is 

chosen between time slices where a clear plateau region of the effective mass plot 

can be seen. Statistical uncertainties are constructed from fits to multiple bootstrap 

resamplings of the ensemble (we use Ns =  8 8  samples), and systematic uncertainties 

are estimated by shifting the fitting window forward and backward two time slices.

Since the ground state energy of a system containing many pions becomes large, 

even fitting correlation functions with only one exponential becomes problematic 

because of precision. Taking the 25-7t+ system for example, the ground state energy 

of this system is £ 2 =  2.76 in temporal lattice units, and the fit is performed
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FIG. 4.3: The correlation functions, C20ir(*)i C4 0xW and C-jo»(t), calculated from 6- 
sources with quad-double precision and double precision are compared in the left, center, 
and right plots respectively. The same calculations done with double precision shows 
even more severely breakdown, indicating that high precision is needed in order to study 
many pion systems. Although C20* from 6-sources with quad-double precision breaks 
down at earlier time slices, the rescaled C20V from 2-source computations, which is shown 
also in the left plot, is free from precision issues and is used in extracting the £ 2 0*•
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FIG. 4.4: C£o*(t) is shown on the left, where the blue points are data, the red line 
is constructed from the fit, and two vertical dashed lines indicate the fitting window. 
Similar plots of preconditioned C'40n(t) and are also shown.
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FIG. 4.5: Effective mass plots with A  ±  P  method on ensemble B1 are shown here. The 
effective mass of f?207r( 0  from the 2-source calculation is shown on the left along with 
the ground state energy represented as a black band. Similarly effective mass plots of 
C4ot from 4-sources and Cr2n(t) from 6-sources calculations and the extracted ground 
state energies are shown in the middle and right respectively.

between t / a t =  [15.58] ±  2. The correlation function varies over 140 orders of 

magnitude from t =  15 to t =  58. Such a large change in magnitude requires care 

with precision and in order to ameliorate this problem, instead of fitting correlation 

functions directly, we fit the following preconditioned correlation functions:

C'nw(t) =  Z'n exp{SEnt)Cnn(t), (4.4)

where Cnir(t) is the original correlation function, and Z'n, and 5En are fixed numbers, 

chosen so that C'nv{t) changes less dramatically inside the fitting window. Since the 

original correlation function behaves like a single exponential inside the plateau 

region where the ground state dominates, multiplying another exponential will not 

change this feature. Furthermore, the extracted ground state energy should have 

no dependence on Z'n and SEn, which is numerically confirmed. The preconditioned 

correlation functions and the corresponding single exponential fits for n =  20,40 

and 72 are shown in Fig. 4.4.

4.4 Energies from 163 x 128 and 243 x 128 ensembles

As the A ±  P  method has been validated on the B2 ensemble see, systems 

having up to 72 7r+’s has also been studied on ensembles B1 and B3 using this
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FIG. 4.6: Effective mass plots with A ±  P  method on ensemble B3 are shown.

20 30 40 50
n ( #  of pions)

60 70 80

FIG. 4.7: The ground state energies of a system of n-7r+(En7r) extracted from ensembles 
B1 (red), B3 (blue) and B4 (green) are shown. The black line represents the total energy 
of n non-interacting pions.



method. Effective mass plots with extracted ground state energies from ensemble

calculations are done with the ICm, and ground state energies are extracted with 

the same statistical method as those in the Section 4.3. The extracted ground state 

energies from all three volumes are shown in Fig. 4.7.

4.5 Interaction parameters

By considering the energy shifts of two particle states in a finite volume. A E =  

E 2 — 2E\ =  2 y /p 2 +  E 2 — 2E\ and E\ — m v here, Liischer derived a relationship 

between the phase shift, S(p), and the interacting momentum, p =  |p|, given by [36, 

37] (see also [38]),

which is valid for momenta below the inelastic threshold. The regulated three- 

dimensional sum, S(c), is

where the summation is over all triplets of integers j such that |j| <  A.

By performing an expansion in small 1/L, the energy shift of n identical bosons 

in a finite volume, A En =  En — n E \ , has also been studied up to 0 ( L ~7) in recent 

work [39, 40, 41, 42]. The resulting shift of energies due to both two-body and

B1 are shown in Fig. 4.5 and those from ensemble B3 are shown in Fig. 4.6. All

pcot S(p) (4.5)

(4.6)
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three-body interactions is given by [41]:

A En =
47T 

M L 3

-  [x3 +  (2n ~  7)X<J +  (5n2 -  41n +  63) £

+  ( y i j  [l4  ~  GZ2-? +  (4 +  n -  n2) J 2 +  4(27 -  15n +  n2) l  K

+(14n3 -  227n2 +  919n -  1043)£

+  nC3
192 a 
M tt3L7

+  ”C3 ^  %

(To +  7i n) +  

f  C> (L -8) ,

7t36n a 
M 3L 7 (n +  3 ) 1

(4.7)

where mCn =  m!/(n!(m — n)!), and the parameter a is the inverse phase shift at 

the binding momentum of the two body system (below we will refer to this as the 

effective scattering length). This is related to the scattering length, a, and the 

effective range, r, by

_ 27r_o
a =  a — — a r  

L6 ( 1 (*l ) t ) ' (4.8)

where a and r are parameters in the effective range expansion

pco tS  =  —-  +  *-p2 -I- 0 ( p i ). 
a I

The geometric constants entering Eq. (4.7) are:

(4.9)

J  =  -8.9136329, J  =  16.532316,

C =  6.9458079, %  = -4 1 1 6 .2 3 3 8 ,

K. =  8.4019240,

71 =  450.6392. (4.10)



The three body parameter r/3 is constructed from the volume dependent but 

renormalization group invariant three body interaction parameter, 7}%, the inverse 

phase shift, a, and the effective range, r, as

V3=m(f*)  +  ^ ^ ( 3v^ _47r)  1o8 0*L) ~  ' 4̂‘12^

body interactions. The renormalization scheme dependent quantity S  defined in the 

Minimal Subtraction scheme is given by S ms =  —185.12506.

4.6 Two-body interactions from Liischer’s method

Prom the energy difference in the 2-7r+ system, A — 2m„, the relative 

momentum of each 7r+, p, in the center of mass frame (COM) can be calculated 

from the dispersion relation. We determine the effective scattering length3, a, by 

calculating the interacting momenta {pj}, on each bootstrap ensemble and applying 

Eq. (4.5), and we average over all ensembles to get the mean value of a, and the 

statistical uncertainty. The systematic uncertainty is determined by averaging the 

systematic uncertainty of a on each bootstrap ensemble resulting from the systematic 

uncertainty of the extracted energies from the choice of different fitting intervals. 

The extracted effective scattering length for each volume is shown in Table 4.2. Our 

results are in agreement with the extractions in Ref. [10] from two-body systems

3A s  discussed above, a is the inverse phase shift at the binding momentum of the two body 
system, and the scattering length in Eq. (4.5) uses the Particle Physics sign convention, and it is 
negative for repulsive interactions.

(4.11)

where

and the renormalized scale dependent coupling r/3(//) is responsible for the three-
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studied on the same ensembles.

TABLE 4.2: The effective scattering length (a) from Liischers method. The first uncer- 
tainty is statistical uncertainty and the second uncertainty is systematic._____________
V* x T P2/ m l a(fm) mna

163 x 128 0.0668(45)(1) 0.134(7)(5) 0.263(15)(9)
203 x 256 0.0301(9)(0) 0.122(3)(1) 0.238(6)(1)
243 x 128 0.0143(9)(1) 0.106(6) (4) 0.203(12) (7)
323 x 2564 0.00678(54)(81) 0.114(9)(13) 0.223(17)(26)

TABLE 4.3: The effective scattering length (a) and m n f^rj^ extracted from fits to dif­
ferent ranges of n. For a fixed nmax, the x2/d.o.f. is larger in smaller volumes, indicating 
that Eq. (4.7) fails to describe systems of high densities.

n =  [3,5] n =  [3,6]
V3 x T m^a X2/ d o f ma r4 =L X2/d o f

163 x 128 0.260(14)(2) 0.70(10)(4) 1.0 0.261(14)(1) 0.67(9)(3) 1.5
203 x 256 0.234(6)(1) 0.80(8)(3) 0.25 0.235(6)(1) 0.79(7)(1) 0.5
243 x 128 0.209(H)(4) 1.61(20)(20) 0.26 0.209(H)(3) 1.59(18)(12) 0.25

n =  [3,7] n =  [3,8]
V3 x T m na i*4—^

m *JPh X2/ d o f rnwa fV=L
m nJPl3 X2/ dof

163 x 128 0.262(14)(1) 0.64(9)(1) 3.5 0.263(14)(1) 0.62(8)(1) 5.5
203 x 256 0.235(6)(5) 0.79(7)(1) 1.1 0.235(6)(1) 0.76(7)(1) 2.8
243 x 128 0.211(H)(2) 1.56(17)(8) 0.4 0.210(H)(2) 1.50(16)(5) 1.0

4.7 Interaction parameters from small a / L  expansion

The dimensionless qualities m^a and can be extracted by fitting A En

to the large volume expansion of Eq. (4.7). The fitting strategy is similar to that 

used in Liischer’s method by first fitting to each bootstrap ensemble and then com­

puting the distribution of fitted parameters in order to get statistical and systematic 

uncertainties. There are two ways to extract ma. One is by fitting only to A E 2 

using Eq. (4.7) with the last two lines set to zero, and the other way is by fitting 

multiple A En’s, with n >  3, and extracting m^ffth  at the same time as is shown 

in Table. 4.3 and Fig. 4.8. The final a and mf*rj% extracted from the later method
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FIG. 4.8: The ma  and mf*r }3 extracted from different fitting windows [nmjn,n max] with 
rj.min = 3 fixed and varying nmax.

are chosen from fits with \ 2 ~  1- We are forced to to use only few body systems as 

the quality of fit rapidly decreases for large numbers of pions. This suggests that 

the weakly interacting pion model of the system that Eq. (4.7) encodes is becoming 

less valid, particularly in small volumes. Results for the two-body interaction ex­

tracted in both ways agree within uncertainties with those extracted using Liischer’s 

method, and are shown in Table 4.4. The original data for the AJSn’s and the results 

from the fits are shown in Fig. 4.9.

TABLE 4.4: The effective scattering length (a) from small a/L  expansion. The symbol 
li[2]” indicates that only AJS2 is used in the fitting, and “[3,6]” means that all A E 3 to 
A  Eg are used.

V 3 x T m„a[ 2] mf a[ 3,6] k cot 8/m-x m n /i% [3,6j
163 x 128 0.259(14)(5) 0.260(14)(2) —3.85(21)(3) 0.70(10)(4)
203 x 256 0.234(6)(1) 0.235(6) (5) —4.26(11)(10) 0.79(7)(1)
243 x 128 0.205(12)(5) 0.210(H)(2) -4.78(25)(7) 1.50(16)(15)

The effective scattering length, a, extracted from the three volumes depends on 

the volume as the scattering momenta are not the same. With multiple volumes, 

Eq. (4.8) can be inverted to extract both the scattering length, a, and the effective 

range, r. During the fit, we have also used k c o t 5 / m n determined on a matching 

32s x 256 and 243 x 128 ensembles from Ref. [10] with all lattice parameters the 

same. We are using the simplest form, A; cot S/m* — —^ ^  +  Ĥ r (^ -) , and neglecting
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FIG. 4.9: The energy differences. AE n, are plot as a function of the number of pions, 
n, where the blue points are the original data, the red bands are the fits, and the black 
bands are the regions where the fits are performed. From the left to right, AEn from 
163, 203, 243 are shown.

higher order shape parameters as our interacting momenta are small. The infinite 

volume results are l /m^a  =  4.73(15)(13) and rn„r =  27.4(7.9)(4.7), which agree 

with the determinations of Ref. [10]. The first error is the statistical error, and the 

difference between the infinite volume results by fitting with the data from the two 

ensembles in Ref. [10] and without them is taken as an additional systematic error. 

Both fits are shown in Fig. 4.10.

By utilizing the extracted effective range, r, and the effective scattering length, 

a(L), from the three different volumes, from Eq. (4.11), the volume dependent pa­

rameter rj3 , responsible for the three-body interactions can be determined for each 

volume. The extracted values of 773 are shown in Fig. 4.11. The dependence of rj3 

on the volume can be rewritten from Eq. (4.12) into a simpler form

(L) =  C  +  ^ - l o g  (L),
aa

(4.13)

where C  contains contributions independent of L, and a  =  647r(3\/3—4tt) =  —1.48x 

103. We fit 7)3 to our data to determine C  and the best fit is shown in Fig. 4.11. 

However the \ 2 ° f  the fit is poor and it appears that Eq (4.13) does not effectively 

explain the volume dependence of our data. This might come from competing higher

order terms O(-h),  but it also may be a statistical effect. The large value of 7 /3 for



70

-3.0

-3.5

-5.0-

5-5 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
k 2 / m l

FIG. 4.10: The scattering phase shifts from 163, 203, and 243 ensembles in this study, are 
shown as the black dot data points from right to left respectively. The blue triangle data 
points are the 243 and 323 ensemble results from Ref. [10] from right to left respectively. 
The inner shaded region is the fit to all data, and the outer shaded region is the fit only 
to the data in this chapter, and the star is the infinite volume result.
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FIG. 4.11: The extracted three-body interaction parameter, rj^(L), is plotted as a func­
tion of the spatial extent of the lattice, L, (black points). The red line shows the expected 
dependence of rj% on L from Eq. (4.13) with C — 4.3, which clearly does not provide a 
good description of the data.
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FIG. 4.12: Energy densities (c) calculated on 3 different volumes are shown as a function 
of isospin density. The blue dot points are from the 163 ensemble, the black star ones are 
from the 203 ensemble and the pink triangle one are from the 243 ensemble. The inset 
show the slight difference in energy density on three ensembles.

L — 24 is correlated with a down shift of the scattering length a. In Ref. [10], a 

value of rna =  0.236(18) (27) was found for L =  24, which agrees with the value 

ma =  0.210(16)(5) found above, but with a larger central value, perhaps indicating 

a statistical fluctuation.

4.8 QCD phase diagram at non-zero /ij

In Fig. 4.12, we show the energy density, e =  y ,  determined from the ground 

state energies, Enn that have been computed on each of the three volumes. For a 

fixed n, the pions are forced to be closer to each other in a smaller volume, and 

the repulsive interactions between them become stronger. This drives up the energy
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FIG. 4.13: The isospin chemical potential, pj, is plotted as a function of the isospin 
density, p/, from three lattice ensembles, B1 (red, pj = [0,9]), B3 (blue, pj = [0,2.8]) 
and B4 (green, pi =  [0, 4.7]). The solid black line is from expectations of xPT [1]

of the whole system. The energy densities are weakly dependent on the volume, 

however there are slightly differences as shown in the inset of Fig. 4.12.

From the extracted ground state energies, the isospin chemical potential5 can 

also be determined by a backward finite difference, /it/(n) =  ^  ~  En — En_ i. 

We calculate ni{n) on each bootstrap ensemble, which accommodates correlations 

between -E,njr’s extracted on the same ensemble, and the systematic uncertainty of 

the ni(n ) from each ensemble is evaluated by adding systematic uncertainty from 

varying the fit ranges used to determine En and Z?n- i  in quadrature. The final 

systematic uncertainty on p/(n) is from averaging the systematic uncertainties of 

all the bootstrap ensembles, and the statistical uncertainty is the standard deviation

5This is really an "effective” isospin chemical potential as it is defined from the ground state 
energy rather them the free energy
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FIG. 4.14: Expected QCD phase diagram following Ref. [1], At high temperature no 
bounded state of the quantum number of pion exist, thus < d ^ u  >= 0. At extremely 
high isospin chemical potential, although such state still has the same quantum number 
as pions, but quarks are not bounded inside hadrons, and they are starting to form 
Cooper pairs. Our calculations at a fixed temperature, T  ~  20 MeV probe the phase 
structure along the red dashed line from pi = m„ to p/ =  4.5 m n. The position of phase 
transition A is unknown.

of the values of pi(n)  on the individual bootstrap ensembles.

In Fig. 4.13, the dependence of p i / m n — 1 on the isospin density pi is shown for 

the three volumes. The isospin chemical potential exhibits similar behaviour in all 

three volumes, where they overlap. At small pj, p i  increases at an accelerating rate, 

in agreement with the prediction from chiral perturbation theory (yPT) [1], however 

at around pi «  0.5 fm-3 the behaviour of p i  starts to change, and the accelerating 

rate gradually decreases, and at even higher isospin density the pn starts to flatten 

off. This change of behaviour of pj  indicates that the physical state of the system  

may be altering.

The expected phase structure of QCD at non-zero isospin chemical potential 

has been discussed in Ref. [1]. At zero temperature, when p i  <  there is not

enough energy to excite a pion out of the vacuum. As soon as p i  reaches m ,,
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FIG. 4.15: The t j t sB  is plotted as a function of

pions can be produced and the system is expected to enter a phase with a pion 

condensate (BEC). At asymptotically large values of fii, the attractive nature of 

one gluon exchange guarantees the existence of a BCS-like state in which quark- 

anti-quark Cooper pairs are formed. At an intermediate value of /// a BEC-BCS 

crossover is conjectured [1].

In this chapter, our calculations are performed at a small but nonzero temper­

ature, T  ~  20 MeV. With the canonical method used in the current calculation, 

the lowest isospin chemical potential that we probe is hj =  m n by definition as we 

directly add 7r+’s into the system. In the smallest volume, for n =  72 7r+,s (the 

largest value we consider), an isospin density of pi ~  9 fm-3 is achieved, and the 

phase diagram is explored from p i  — m„ up to p.j ~  4.5 m n in this chapter as shown 

by the red dashed line in Fig. 4.14.
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In order to investigate the possible phase transition suggested by the behaviour 

of the isospin chemical potential in more detail, we have also compared the extracted 

energy density with the energy density of a cold degenerate system described by a 

model of weakly interacting quarks filling their Fermi sphere up to a maximum 

momentum kp ~  Ef =  Hi [18]. This Stefan-Boltzmann energy density is given by

N f N° 4
=  (4'14)

where Nf — 3 and Nc =  3. The ratio of e/e$B is plotted in Fig. 4.8, and exhibits 

similar behaviours in all three volumes. The ratio increases from hi  =  7nn to a peak 

around Hi ~  1-3 m „  and then drops and eventually begins to plateau at around 

Hi «  3 m-x. The peak positions, Hpeak? f(,r each volume identified from Fig. 4.8 

are tieak =  {1.20(5), 1.25(5), 1.27(5)} m n for L =  {16,20,24} respectively. With 

an extrapolation linear in 1/L 3, the peak position in infinite volume is Hpeak =  

1.30(7) mv. The system for hi  < 1-3 m n. can be identified as a pion gas. When 

Hi ~  Hpeak > pions start to condense and the system resides in the BEC state. The 

plateau beginning to form beyond /i/ ~  3 m n, may indicate a crossover from the 

BEC to BCS state, however higher precision and larger hi  is required to make a 

definite statement. Discretization effects also remain to be investigated.

Two flavour QCD with finite hi at large temperature has been investigated in 

Ref. [43], where a finite temperature deconfinement phase transition was identified 

at hi <  m7T) however for hi >  m n no results were presented. In Ref. [19], the 

phase diagram of N f  =  4  +  4 QCD was investigated at different temperatures and 

values of hi using the grand canonical approach, and a phase transition from a 

pion gas to a BEC state has also been suggested at hi slightly higher than m*, 

in agreement with the results found here. Two color QCD has been studied in 

Ref. [18], where the authors identified the transition from vacuum to BEC state and
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the BEC/BCS transition. Somewhat interestingly, the ratio of the energy density 

and its Stefan-Boltzmann limit has also been studied (inset of Fig. 1 in Ref. [18]), 

showing qualitatively similar behaviour to that found in the current study.

4.9 Summary

In this chapter, we have studied lattice QCD at non-zero isospin chemical po­

tential using a canonical approach in which we have investigated systems with the 

quantum numbers of up to 72 7r+’s in three lattice volumes, L3 ~  (2.0, 2.5 and 3.0 

fm)3 at a pion mass of m , ~  390 MeV at a single lattice spacing.

In our analysis, we have determined the ground state energies of multi-pion 

systems in three different volumes and have used this to extract the isospin chemical 

potential and isospin energy density of the states that are produced. In the smallest 

volumes, systems with isospin chemical potentials of up to /zj ~  1600 MeV are 

created. By considering the energy density as a function of the isospin chemical 

potential, we provide strong evidence for the transition of the system from a weakly 

interacting pion gas to a Bose-Einstein condensed (BEC) phase at /z ~  rri  ̂ as 

expected from yPT. At higher values of the chemical potential the system is expected 

to transition to a BCS state and we have sought numerical evidence for this but 

do not have conclusive results. It is interesting to note that the behaviour of the 

energy density as a function of the isospin chemical potential is very similar to that 

recently found in two-colour QCD with a baryon chemical potential by Hands et 

al. [18],

By focusing on few pion systems, we have extracted the two and three pion 

interactions, determining the scattering length, effective range and the renormali­

sation group invariant effective three-body interaction. The scattering parameters 

were found to be in good agreement with other recent determinations and we have
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attempted to investigate the intrinsic volume dependence of the renormalisation 

group invariant three-pion interaction. We have also found that as the density in­

creases and the system transitions to a BEC, it can no longer be well described in 

terms of weak few-body interactions.



CHAPTER 5

Energy shift of heavy quarkonia

5.1 Introduction

An important probe of exotic phases of QCD matter is the way in which heavy 

quarkonium propagation is modified by the presence of that matter. The heavy 

quarks can in some sense be viewed as separable from the medium which is pre­

dominantly composed of light quark and gluonic degrees of freedom. At non-zero 

temperature, the suppression of the propagation of J/V> particles is a key signature 

for the formation of a quark-gluon plasma [44]. This suppression has been observed 

for charmonium in various experiments at SPS and R.HIC and recently in the T 

spectrum at the LHC [3]. Quarkonium propagation is naturally also expected to be 

a sensitive probe of other changes of phase such as those that occur at high density 

or large isospin density.

Since the effects of QCD matter on quarkonia are essentially non-perturbative 

in origin, a systematic evaluation requires input from lattice QCD. At some level, 

these effects can be distilled to a change in the potential between the quark-anti-

JThis section is in collaboration with William Detmold and Stefan Meinel, and results for 
bottomonium studies can be found in Ref. [7].
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quark (Q Q ) pair that binds them into quarkonium. At non-zero temperature but 

zero density, this has been studied extensively using lattice QCD (see Ref. [45] for a 

recent overview) where strong screening effects are seen near the deconfinement scale. 

Significant effects are also seen in investigations of the properties of charmonium and 

bottomonium spectral functions at non-zero temperature (see [45, 46]).

Modifications of the potential or of quarkonium properties will also occur for 

non-zero density. Ref. [47] has investigated the static potential in the presence of a 

gas of pions. As the main focus of this chapter, however, we explore the effects of 

isospin charge density on quarkonium bound state energies more directly by using 

lattice NRQCD (non-relativistic QCD) to compute quarkonium correlation functions 

in the presence of a medium of varying isospin chemical potential. At low isospin 

densities, and correspondingly low chemical potentials, we find that the ground state 

energy of the quarkonium systems decreases with increasing isospin density, showing 

qualitative agreement between the potential model calculation and the QCD calcu­

lation. However, at an effective isospin chemical potential Hi ~  /i/iPeak =  1.3 m„ 

(where the calculations presented in the previous chapter suggested a transition to a 

Bose-Einstein condensed state in line with theoretical expectations [48]), the effect 

of the medium on the quarkonium energy appears to saturate to a constant shift. 

At still larger chemical potentials, the determination of the energy shift becomes 

statistically noisy. The marked change in behaviour provides additional support to 

the notion of the change in phase of the system.

5.2 Lattice methodologies

In this study, we make use of same gauge ensembles as those in previous chap­

ters. We investigate three different ensembles, corresponding to different physical 

volumes and temporal extents as shown in Table 5.1. The different physical volumes
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allow us to access a large range of isospin densities in our study, and the different 

temporal extents provide control of thermal effects as discussed in Ref. [11]. On 

these gauge configurations we calculate correlation functions involving light quarks 

and use the colourwave propagator basis introduced earlier, fixing to Coulomb gauge 

and using plane-wave sources and sinks for a range of low momenta (Nmom in total 

on each ensemble, see Table 5.1). For each case, we calculate light-quark propa­

gators on Ncfg configurations from NSTC time-slices, equally spaced throughout the 

temporal extent by applying new methodologies constructed in the last section.

L3 x T L[fm m vL m nT UQs A c fg NSIC N1 y m om

B1 163 x 128 2.0 3.86 8.82 0.7618 334 8 33
B3 203 x 256 2.5 4.82 17.64 0.7617 170 16 7
B4 243 x 128 3.0 5.79 8.82 0.7617 170 8 19

TABLE 5.1: Details of the ensembles and measurements used in this work. uo„ is defined 
as the fourth root of the spatial plaquette.

5.3 Bottomonium in media of non-zero isospin chemical po­

tential

5.3.1 Multi-pion and bottomonium lattice correlators

In order to produce the medium that will modify the propagation of the quarko­

nium states, we use the canonical approach of constructing many-pion correlation 

functions that is described in detail in Chapter 3, using methods developed there 

and in earlier works [49, 2, 20, 9, 50]. As discussed in Chapter 4, correlators of 

a fixed isospin charge, n =  YltLi n»> and total momentum, P / ,  making use of N  

sources, are given by Equation (4.1).

NRQCD is applied to calculate bottom quark propagators, In the main calcula­

tions of this work, we use zero-momentum smeared quarkonium interpolating fields
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of the form

Obb(t) =  - y ' M y ,* )  (5 .i)
y' y

at the sink and

<5s6(0) =  ] T  Xf (°. 0 )r (x )^ (x , 0) (5.2)
X

at the source. Here, % is the heavy anti-quark field and T(r) is the smearing function, 

which is a 2 x 2 matrix in spinor space. The quantum numbers of the quarkonium 

interpolating fields considered in this work are listed in Table 5.2. More details 

about the NRQCD heavy quark propagator calculations are discussed in Ref. [7]. 

Correlation functions and effective masses of rjb and T& computed on the 203 x 

256 and 163 x 128 ensembles are shown in Fig. 5.1 and Fig. 5.2 respectively. In 

order to investigate how bottomonium energy shifts depend on the mass of the 

bottom quark, bottom quark propagators for different quark masses are computed 

and corresponding spin-averaged values of the 15 kinetic masses, Mkin =  (3M^n +  

Mk*n) / 4 computed on the 163 x 128 ensemble (at pj  =  0), are given in Table 5.3.

Name n pc F(r)
% a -,+ 4>\s{r)
T T f - 0is(r) Oj
hb T+- 0ip(r, j )
XbO A t +
Xbl T ++ €jkl 01 p { r i k) <?i
Xb2 rp++

l 2 0ip(r, j)crk +  0ip(r, k) (Tj (with j  ^  k)

TABLE 5.2: Smearing functions T(r) used in the quarkonium interpolating fields for 
the given representation of the cubic group, TZ and values of parity, P, and charge- 
conjugation, C. The functions <t>\s{*) and 4>\fJ(r -j)  are eigenfunctions from a lattice 
potential model.
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asm O’t ^ kin Mkin (GeV)
1.2 0.7698(81) 4.333(54)
1.5 0.9377(16) 5.277(36)
2.0 1.2259(12) 6.900(46)
2.75 1.6667(12) 9.380(62)

TABLE 5.3: Spin-averaged quarkonium kinetic masses on the 163 x 128 ensemble.

5.3.2 Correlator ratios for energy shifts

To investigate the effect of the medium on quarkonium propagation, we consider 

the correlators

C (n;5M ) =  (Oi l ( ( ) a . . ( t ) a | l (0 )C i;,.(0 )), (5.3)

where (. . . ) denotes path integration via the average over our ensembles of gauge con­

figurations, and the interpolators 0^n+ and produce the quantum numbers of n- 

pion and bb states as discussed in the preceding subsection. States with the combined 

quantum numbers of the given quarkonium state (bb is either rjb, T, hb, x&o, Xfci or 

X6 2 ) and the n-pion system propagate in this correlator and naturally, the spectrum 

of this system is different from the sum of the spectra of n pions and of quarkonium 

because of interactions. At Euclidean times where only the ground state of the 

system is resolved (after excited states have decayed and before thermal states are 

manifest), this correlator will decay exponentially as

C(n;bb-1) — y Zn;feexp(-,E n.a i ) , (5.4)

where En.ib is the ground-state energy of the combined system.

To access the change in the quarkonium energy as a function of isospin density
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(5.5)

Since the two terms in the denominator decay exponentially at large times as 

exp(—Efot) and exp(—EnT+t) respectively, the ratio will behave as

where A =  En.^ — En7r+ — Ebb is the quantity of central interest in our investi­

gation.

5.3.3 Quarkonium-pion scattering

The quarkonium state in the presence of a single pion allows us to study the 

scattering phase shift of this two-body system using the finite-volume formalism 

developed by Liischer [36, 37]. The 5-wave quarkonium states that we consider 

have angular momentum J =  0,1 and define the total angular momentum of the 

entire system since the pion is spin-zero. Since the pion and bb states have different 

masses, the appropriate generalisation of the Liischer relation to asymmetric systems 

[51] is required. We can define a scattering momentum p =  |p| through the relation

R(n;bb; t) — ► Zn;5be x p (-A E B;ftf) +  . . .  , (5.6)

^ / k p |2/£ 2 +  a tM i b +  y j  |a*Pl2/€ 2 +a?M 2 (5.7)

=  atA E bbv 4- at My, -I- atMv ,
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where Mj)h =  A/“n is the kinetic mass of the bb state. The scattering momentum 

then determines the eigenvalue equation

- , x 1 „ f p 2L2\
P c o t-W P ) = (5.8)

|n |< A

(5.9)

that is satisfied by the bb-Tt scattering phase shift, n(p) , at the scattering mo­

mentum.

Since we have three different lattice volumes, we can extract the phase shift 

at multiple momenta. In Figure 5.3, we show the phase shifts that we extract for 

the r)b~-Tt and T n scattering channels. These interactions necessarily vanish at zero 

momentum in the chiral limit as the quarkonium states are chiral singlet objects. We 

therefore expect only small scattering phase shifts at the quark masses considered 

in our study. At the level of statistical precision we have achieved, we are able to 

resolve the phase shifts from zero, and they are indeed found to be small. The 

measured values of the S-wave phase shifts are given in Tables 5.4 and 5.5, while for 

the P -wave states we are unable to extract statistically meaningful results. Since 

the measured scattering momenta are small, it is possible to perform a fit to the 

effective-range expansion

to extract the scattering length and effective range for these interactions. This 

extrapolation is shown in Fig. 5.3 and results in m naV b =  0.039(13) and  ̂ =  

4.7(3.7) for the ijb state, and m^ar,* =  0.047(14) and m nrr,w =  5.8(3.3) in the case 

of the T, both channels corresponding to a weak attractive interaction.

p cot S(p)/mn
1 m nr p2

(5.10)
m na
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FIG. 5.3: Extracted inverse phase shifts for 7r and T-7r scattering. Fitting the phase 
shift to pcot S(p)/m7r =  as shown by the shaded band, we can extract
the scattering length shown by the point at p2/m j = 0.



89

The pion-quarkonium scattering length depends approximately quadratically 

on the pion mass [52, 53, 54], and hence we can estimate the scattering length at 

the physical pion mass as

> Oft,,. (5.11)

where -7r is our lattice result for the scattering length at rnn =  390 MeV. This

gives

a ^ 8-) =  0.0025(8)(6) fm, a ^ ys) =  0.0030(9)(7) fm, (5.12)

where the first uncertainty is statistical and the second uncertainty is an estimate

of missing higher-order corrections to Eq. (5.11), which we estimate to be smaller 

than the leading-order term by a factor of j  (Air f n) sa 0.24. The values (5.12) are 

comparable to, and considerably more precise than estimates from phenomenological 

models [55, 56, 57, 58].

TABLE 5.4: The rj(,-7r phase shifts extracted using the Liischer method as described in 
the main text.

V A x T p2/ m l (pcotJ(p)) 1 [fm] m7r/(pcotJ(p))
163 x 128 -0.0055(6) 0.0138(18) 0.0274(36)
203 x 256 -0.0032(3) 0.0148(15) 0.0294(31)
243 x 128 -0.0022(4) 0.0192(38) 0.0381(75)

TABLE 5.5: The T-rr phase shifts extracted using the Liischer method as described in 
the main text.

V s x T p2/ m l (pcot 5 (p)) 1 [fm] m w/(p  cot 5 (p))
163 x 128 -0.0062(7) 0.0153(20) 0.0303(40)
203 x 256 -0.0037(4) 0.0172(18) 0.0341(36)
243 x 128 -0.0027(4) 0.0220(42) 0.0435(83)
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5.3.4 Isospin density dependence of quarkonium

For larger isospin charge, we interpret the system of pions in terms of a medium 

of varying isospin charge density once the ground state is reached. In the correlators 

C(n;bb;t), the quarkonium state exists in this medium, interacting with it. We 

consider first the S-wave quarkonium states as they are statistically better resolved 

than P -wave states.

5.3.5 S -wave states

The correlators C(n,bb,t ) are shown in Fig. 5.4 for bb — T at representative 

values of the isospin charge and for asm — 2.75 on the 203 x 256 and 163 x 128 

ensembles. The in-medium correlators on the 203 x 256 ensemble exhibit a long 

region of Euclidean time in which they decay as a single exponential. This region 

overlaps with the regions in which the multi-pion correlators and the individual 

quarkonium correlators are saturated by their respective ground states. This gives us 

confidence that by considering the correlator ratios of Eq. (5.5) we can legitimately 

extract the quarkonium energy shifts in medium. On the ensembles with T  =  128, 

thermal contamination is more significant and restricts the range of useful time- 

slices, particularly for large isospin charge.

The correlator ratios, R(n, bb; t), discussed above, are shown for both T and ijf, 

at a heavy quark mass asm  =  2.75 on the 203 x 256 ensemble for a range of different 

isospin charges, n =  6, 12, and 18, in Figs. 5.5 and 5.6 along with fits to time de­

pendence using Eq. (5.6). Fits are performed over a range of times where both the 

individual multi-pion correlation functions and quarkonium correlation functions 

exhibit ground-state saturation and are free from thermal (backward propagating) 

state contamination. This is ensured by choosing the central fit range [£mi„,fmax] 

such that a fit over the range [Zmjn — 5, tmax +  5] has an acceptable quality of fit.
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FIG. 5.4: The correlators for the T in a medium corresponding to isospin charge n for 
n — 6, 12, and 18 are shown. Data are presented for a3m  — 2.75 on the 203 x 256 (upper) 
and 163 x 128 (lower) ensembles. Correlators for the in medium behave similarly.

On the 203  x 256 ensemble, we choose imin =  20 and t max =  60, beyond which ther­

mal contributions are apparent. Because thermal contributions are more significant 

for the ensembles with T  — 128, we choose tmax =  40 for these cases. Statistical 

uncertainties are estimated using the bootstrap procedure. To estimate the sys­

tematic uncertainties of the fits, we calculate the standard deviation between the 

three energies extracted from fits with the ranges [fmin — 5, £max — 5], [tmin, ^max], 

and [tmin 5, tmax -\- 5] for T  — 128 ensembles, and [tmin 5? m̂ax 20], [tmin? tmax], 

and [tmin +  5, traax +  20] for the T  — 256 ensemble, on each bootstrap sample. The 

systematic uncertainty is then obtained as the average of this standard deviation 

over the bootstrap samples.

The extracted energy shifts and uncertainties are shown in Table 5.6 for T and 

Table 5.7 for 77*,. For larger values of n, the energy shifts become noisier and we 

limit our analysis to the range of isospin densities where a successful fit could be 

performed for a given ensemble.

As a check of the methods of our study, we construct ratios in which we arti­

ficially remove the correlations between the bb system and the many-pion state by
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FIG. 5.5; The correlator ratios for the T in a medium corresponding to isospin charges 
77 = 6, 12. 18. The shaded bands show the statistical uncertainties of fits of the form 
given in Eq. (5.6). Data are shown for asm  == 2.75 on the 203 x 256 (upper) and 163 x 128 
(lower) ensembles.
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n
163 x 128

A En;r  
203 x 256 243 x 128

1 —1.23(12)(09) -0.72(07) (03) -0 .53(07) (06)
2 —2.15(23)(15) —1.38(14)(07) —1.01(15)(11)
3 —2.75(34)(20) —1.99(22)(13) —1.44(23)(14)
4 —3.08(45)(23) —2.54(31)(21) —1.80(31)(16)
5 -3.23(58) (29) -3.04(40) (28) —2.08(41)(18)
6 —3.23(70)(37) —3.47(51)(36) —2.27(51)(20)
7 —3.10(81)(45) —3.81(61)(45) -2 .37(63) (24)
8 —2.86(92)(51) -4.03(73) (53) —2.38(77)(31)
9 —2.51(1.00)(56) -4.12(86) (62) —2.31(93)(41)
10 —2.10(1.2)(0.6) —4.1(1.0)(0.7) -2 .2 (1 .1)(0.5)
11 —1.7(1.3)(0.7) —3.8(1.2)(0.9) —1.9(1.3)(0.7)
12 —1.2(1.4)(0.8) —3.4(1.4)(1.1) —1.6(1.5)(0.8)
13 —0.8(1.6)(1.0) —2.8(1.7)(1.3) —1.3(1.8)(1.0)
14 —0.4(1.8)(1.2) —2.1(2.0)(1.6) —1.0(2.0)(1.2)
15 —0.0(2.0)(1.4) —1.3(2.4)(1.9) —0.6(2.3)(1.4)
16 0.3(2.1)(1.7) —0.5(2.8)(2.2) —0.2(2.6)(1.6)
17 0.6(2.3)(1.9) 0.2(3.1)(2.4) 0.2(2.9)(1.8)
18 0.8(2.4)(2.2) 0.9(3.5)(2.6) 0.5(3.2)(2.0)
19 1.1(2.5)(2.4) 1.5(3.8)(2.8) 0.8(3.5)(2.2)
20 1.3(2.5)(2.6) 2.1(4.0)(2.9) 1.0(3.8)(2.4)

TABLE 5.6: Fits to the T correlator ratios on the various ensembles for asm  =  2.75. For 
each combination, we report: the mean and the statistical and systematic uncertainties.
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n
163 x 128

^ E n-rjb
203 x 256 243 x 128

1 —1.12(11)(08) -0.62(06) (02) -0 .46(06) (06)
2 —1.95(21)(14) —1.20(12)(06) —0.89(13)(10)
3 —2.51(30)(18) —1.74(19)(12) —1.26(21)(13)
4 —2.83(40)(21) —2.25(28)(19) —1.57(29)(14)
5 —2.97(51)(26) —2.73(37)(28) —1.81(37)(16)
6 —2.99(61)(31) —3.17(47)(37) —1.97(47)(18)
7 —2.89(71)(37) -3.53(58) (46) —2.05(58)(22)
8 —2.69(81)(41) -3.80(70) (54) —2.05(71)(29)
9 -2.40(89) (44) —3.95(83)(62) -1 .97(86) (38)
10 -2.05(97) (47) —3.95(96)(72) —1.8(1.0)(0.5)
11 —1.7(1.1)(0.5) -3 .8 (1 .1)(0.8) —1.6(1.2)(0.6)
12 —1.3(1.2)(0.7) —3.5(1.2)(1.0) —1.3(1.4)(0.8)
13 —0.9(1.3)(0.8) —3.1(1.4)(1.2) —1.0(1.6)(1.0)
14 —0.6(1.4)(1.0) —2.5(1.6)(1.5) —0.6(1.9)(1.1)
15 —0.3(1.5)(1.3) —1.9(1.8)(1.8) -0 .3 (2 .1)(1.3)
16 —0.0(1.6)(1.5) —1.2(2.1)(2.1) 0.1(2.4)(1.5)
17 0.2(1.7)(1.8) —0.6(2.3)(2.4) 0.4(2.7)(1.7)
18 0.5(1.8)(2.0) 0.0(2.6)(2.7) 0.7(3.0)(1.8)
19 0.7(1.9)(2.3) 0.6(2.8)(2.9) 0.9(3.3)(2.0)
20 0.9(1.9)(2.5) 1.1(3.0)(3.0) 1.1(3.6)(2.2)

TABLE 5.7: Fits to the rji, correlator ratios on the various ensembles for a„m =  2.75. For 
each combination, we report: the mean and the statistical and systematic uncertainties.
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the rjf, and many-pion system on the 203 x 256 ensemble, as discussed in the main text.
The shift (difference from unity) is only apparent when correlations are included.

evaluating  ̂ where Cx(c ) represents the correlation function for

the quantity X  measured on configuration c, and Sc is either a constant displace­

ment or a random shift. In both cases, the removal of the correlation eliminates 

the signal for an energy shift. This is shown for the rj), with n =  5 in Fig. 5.7 for 

random shifts, and the same qualitative effect is seen for all choices of the density 

and quarkonium state that are considered.

To summarise the analysis of the correlator ratios for the S-wave quarkonium 

states, Fig. 5.8 shows the isospin density dependence of the energy shifts, A E n.^, for 

both the T and r)b channels. Figure 5.9 additionally shows the derivative d(A E )/dp j ,  

approximated by the finite difference (A E n.bb — AE^n_ 1ybb) L3, taking into account 

the strong correlations between the energies at different n. Results are presented 

for the ranges of isospin charge density where a statistically meaningful extraction

with correlation 
without correlation

i l
u s #

0
fi
jinn
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of the energy shift can be made. As can be seen in Fig. 5.8, there is a statistically 

significant negative energy shift for much of the range of isospin density that we 

have investigated. The magnitude of this shift first increases as the isospin density 

is increased, before flattening off at a value of about 3 MeV and possibly decreasing 

for large p/, albeit with increasing uncertainty. A consistent picture is found from 

the derivatives shown in Fig. 5.9. It is interesting to note that the saturation occurs 

at the point at which a marked change in the energy density of the many-pion 

system was observed in Ref. [11], and is likely caused by the changing nature of the 

screening medium at this point. The increase of the energy shift at low densities is 

in line with the expectations of the potential model in Ref. [5], but the energy shift 

is numerically larger than in the model (note that the potential model was based 

on lattice results for the screening of the static potential at m v ~  320 MeV [47], 

whereas the present NRQCD calculations were done with m n ~  390 MeV). The 

saturation effect was not predicted by the model; since the model was developed 

using the measured shifts in the potential in the low density region, so this is not 

surprising.

We have performed these calculations for all three ensembles of configurations 

but have only been able to access a limited range of densities with the current 

statistical precision. The results from all of the ensembles are consistent in the 

region in which they overlap. The 163 x 128 ensemble provides the largest density 

range.

We also consider the shifts in the splitting between the rjb and T energies in 

medium as a function of the density. We extract these shifts by calculating the 

correlated differences between the individual energies using the bootstrap method. 

A summary of the isospin charge dependence of this splitting is shown in Fig.5.10. 

It can be seen that the T  energy is shifted slightly more than the t]b energy by the 

presence of the medium.
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bands are as described in Fig. 5.8.



99

0.5

s
£Ed

*? 0.0
>■Ed

-0 .5

0.0 0.5 1.0 1.5 2.0 2.5

Pi  [fm-3]

FIG. 5.10: Isospin density dependence of the shift of the S -wave hyperfine splitting 
between the T and T)b states in medium.

5.3.6 P -wave states

We also analyze the lowest-energy P -wave quarkonium states, hb, Xbo, Xbi and 

Xb2 -. in medium. We find that we cannot resolve differences between the medium 

effects for these different states and so consider a spin average of their energies. In 

order to extract the spin-averaged in-medium energy shift

163x 128
203x256
24x128

% f j §

XbO

;X6 2 : (5.13)

we construct the following product of fractional powers of the individual ratios,

R (n , lP ; t )  =  R{n,hb;t)& R(n,Xbo',t)«

* R (n ,X bu t )w R (n ,x w , t )& ,  (5.14)
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which at large t will behave as

3 3 5

We also consider the analogous 5-wave spin-average combination

R (n , lS ; t )  =  R(n,r]b',t)4 R(n ,Y; t )* . (5.16)

Since the P -wave quarkonium correlators are themselves statistically noisier than 

the 5-wave correlators (see Figs. 5.1 and 5.2), the precision with which we can 

extract the P -wave energy shifts is reduced. In our fits to these correlators, we 

choose t min =  20 and £max =  40 and get systematic error by shifting fitting windows 

±5 time slices as before. Fig. 5.11 shows representative correlator ratios for the 

spin average P —wave state for the 203 x 256 and 163 x 128 ensembles, and Fig. 5.12 

summarises the extracted energy shifts. Here we only show results from the 163 x 128 

and 203 x 256 ensembles, because the P -wave results on the 243 x 128 ensemble were 

too noisy. The potential model expectation is that the P -wave shift will be larger 

than the 5-wave shift, and our lattice results confirm the expectation. In the lower 

panel of Fig. 5.12 we show the correlated differences between the spin-averaged 

P -wave and 5-wave energy shifts.

5.3.7 Heavy-quark mass dependence

As discussed in Section 5.3.1, we have performed calculations for four different 

values of the heavy-quark mass, a3m , ranging from the bottom-quark mass down 

to ~  1.5 times the charm-quark mass. The analysis of the in-medium correlators 

and ratios is very similar for all masses and we do not present it in detail. To 

investigate the variation of the energy shifts as a function of the heavy-quark mass we
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FIG. 5.11: The correlators ratios corresponding to the spin-averaged P-wave energy 
in a medium corresponding to isospin charges n  =  3, 6, and 12. Data are shown for 
asm. = 2.75 on the 203 x 256 (upper) and 163 x 128 (lower) ensembles.

compute A E n ih(asm) — A E n^b{asm  =  2.75) using the bootstrap method. Because of 

correlations between the measurements for different values of the heavy-quark mass, 

this provides a more statistically precise determination of the difference than would 

be evident from a naive comparison. Figure 5.13 shows these energy differences for 

the different values of asrn. It is apparent that the strength of the energy shift in 

both T)t, and T increases as the heavy-quark mass decreases, in line with expectations 

from the potential model discussed above. Since the quarkonium states for lower 

heavy-quark masses are physically larger, they probe regions of larger quark-anti- 

quark separation where the potential shift is more significant.

5.4 Charmonium in medium of non-zero isospin chemical po­

tential

As the suppression of the propagation of J/ip particles thourgh a hot dense 

medium has been observed for charmonium in various experiments at SPS, EHIC,
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and LHC[3]. it is very interesting to investigate the ralated effect of isospin density 

on charmonium non-perturbatively from first principles. Prom the above study 

of bottomonium energy shifts in the media of different isospin chemical potential, 

we found that the energy shifts become more significant as the mass of bottom  

quark decreases. This suggests that the energy shifts of charmonium states will be 

more significant than the bottomonium enery shifts. Similar to the study of the 

bottomonium energy shift, we extract the energy shift of charmoniums in medium 

of non-zero isospin chemical potential from its free energy from the following ratio,

r>( -  f \ _  (0 & (t)Q n ir+ (t)O tc (Q )O m r+(Q))

where Occ{t) is the interpolating operator for charmonium states, for example Occ(t) =  

C7 5 C for ric and Occ(t) =  c îC, where i =  1 ,2 ,3  for J/ip.

We employed the same fermion action as those used in generating light quark 

propagators to compute charm quark propagators. As in Ref. [59], the charm quark 

mass is tuned so that the ratio of masses of 7]c and Q(sss)  recovers its experimental 

values, and the bare anisotropic parameter j c for the charm quark is tuned to be 

7 C =  3.988 so that the correct energy-momentum dispersion relation is recovered at 

low momentum. The renormalized anisotropic parameter £Vc calculated from the 

following energy-momentum dispersion relation of charmonium states

E l ( p )  =  E l ( 0 )  +  eVc p 2 (5.18)

is consistent with 3.5. In order to get better signal for the R(n,cc;L) ratio, we 

computed colorwave propagators for charm quarks by using the same set up as 

those for light quark propagators. Correlation functions for charmonium states at 

rest are similarly calculated in momentum space by choosing quark propagators with
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5.4.1 T}c and J / ^

Charmonium correlation functions, Cnc(t) and Cj/^{t)  are computed on the 

ensemble B1 with color-wave propagators by employing following point source in­

terpolators for r/,. and J/'ip,

On, =  ^ 5 ^

O j/ tP =  cr/iC, (5.19)

where i =  1,2,3. By choosing different combinations of quark momenta, charmo- 

nia with different momenta can be easily constructed. In the current study only 

charmonia at rest are considered. In order to get better overlap on to the ground 

state, color-wave propagators with zero quark momentum are used in constructing 

charmonia at rest. Unlike the pion correlator, charmonium correlators have addi­

tional contributions from a disconnected piece, which we ignore in this study. These 

contributions are expected to be small as has been found in Ref. [60]. The rjc and 

J/ijj correlation functions are shown in Fig. 5.14, and the corresponding effective 

mass plots are shown in Fig. 5.15, where a clear plateau region can be seen at later 

time slices. Ground state energies, Enc and Ej/^,  are extracted by fitting a single 

exponential to correlation functions over time slices, t =  [27,53]. Statistical errors 

are computed from bootstrap method, and systematic errors are computed by shift­

ing fitting windows forward and backward 5 time slices. The extracted ground state 

energies are included in Table. 5.8.
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TABLE 5.8: Extracted ground state energies of r)c and J/ip on the 163 x 128 ensemble, 
where the first uncertainty is the statistical uncertainty, and the second uncertainty is 
the systematic uncertainty.

atEcc ECe (MeV)
Eqc 0.4822(12)(23) 2673.3(6.7)(12.8)
Ej/ip 0.5000(14)(26) 2772.0(7.8)(14.4)

5.4.2 Charmonium scattering length

By following the same procedure laid out in Section. 5.3.3, the scattering length 

of r)c {J/ip) and 7r, aVct7T (ajjv^) can be extracted by applying the Liischer formula in 

Equation (5.9) from the energy shift of an interacting system of one t/c (J/ip) and 7r 

from their free energy in a finite volume. The extracted phase shifts for charmonium 

states are tabulated in Table 5.9, which are larger than the and ar,n calculated 

in Section. 5.3.3. A larger scattering length indicates a stronger interaction between 

the charmonium and pion than the bottomonium and pion. As only the result from 

one volume is available, no extrapolation to the infinite volume is attempted.

TABLE 5.9: The T]c- n  and J/ip-n phase shifts extracted using the Liischer method on 
the 163 x 128 ensemble.

P2/™1 (p cot S(p)) 1 [fm] m n/(p  cot 5(p))
Tjc -0.0149(16) 0.0383(46) 0.0759(91)

J/ip -0.0170(18) 0.0442(53) 0.0875(104)

5.4.3 Charmonium energy shift

Similar to the study of bottomonium energy shift in the media of different 

isospin density, charmonium energy shifts are extracted from the ratio defined in 

Equation. (5.17). Such ratios rely on correlations between C ĉ(t)/Cj/^,(i) and Cn„(t) 

calculated on the same configurations. Without such correlation, the ratio R(n , cc; t)
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will be consistent with 1.0 as in this case charmonium and pion correlation functions 

are independent. As a test, we deliberately turn off such correlations by using T)r 

(J/VO and mr correlation functions from two different random configurations, or 

from two shifted configurations according to the following equation,

( 5 - 2 o >

where C c denotes the correlation function calculated on configuration c, and ( ) 

denotes averaging over all configurations after summing over different time sources 

on individual configurations, that is (C ^  C$+Sc) =  { {C ^  C ^ 5c)t)c- The Sc denote 

the number of configurations are shifted between the mr and 77,, correlation functions, 

for example if they are randomly shifted Sc is a random integer. In Fig. 5.16, the 

shifted ratio defined in Equation. (5.20) with Sc =  50 is compared with the ratio 

defined in Equation. (5.17) with matching configurations. It is clear that when 

correlations between charmonium and pion correlation functions are turned off, the 

ratio recovers the case for independent correlation functions.

By computing the ratio R(n , cc; t) correctly, that is with matching configura­

tions, the energy shifts of charmonium states can be extracted by fitting to a single 

exponential at later time slices

R(n, cc; t) =  2jcexp((E(;C -I- Enjr Ecc.mr) )̂ — Zcc6xp( AEg^ni), (5.21)

where Er-̂ nm is the ground state energy of a system having one cc and n 7r’s, and 

AEcc,„ is the shift in their energy from its vacuum value. Because of interactions 

between charmonium states and pions, the ground state energy will be different 

from the sum of the energies of a cc system and a n-7r system.

The ratio R(n,rjc-,t) for different n ’s are shown in Fig. 5.17, and similar plots
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FIG. 5.16: In this figure, correlated contraction and uncorrelated contraction by shifting 
50 configurations are compared. When correlations among Cv<.{t) and Cn7r(t) are taken 
away, we indeed recover the result for uncorrelated correlation functions such that the 
ratio is consistent with 1.0.

for R(n, J/Vs t) are shown in Fig. 5.18. Energy shifts ASgc n are extracted from the 

ratio R(n,cc;t ) by fitting to Equation. [5.21]. The fitting range is chosen to be t =  

[20,40] ±  5 to minimize contaminations both from excited states and thermal states 

for all n ’s, which are also consistent with choices made in the bottomonium study 

to make the comparison easier. The central value of the AEcc.n’s are extracted from 

time slices t =  [20.40]. The statistical uncertainties are computed from bootstrap 

methods, and the systematic uncertainties are calculated by shifting fitting windows 

forward and backward 5 time slices. The single exponential fits to the ratio are also 

shown in Fig. 5.17 and Fig. 5.18 as shaded bands The extracted energy shifts and 

statistical uncertainties and tabulated in Table. 5.10, and are shown as a function 

of isospin density in Fig. 5.19.

The quantitative behavior of the charmonium energy shift for t)c and J/tp in 

media of different isospin density is consistent with those for bottomonium states,
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71 163 x 128
A E n-,J/4>

163 x 128 
A £ n;i?c

1 —3.75(34)(22) —3.29(27)(25)
2 —6.53(63)(35) —5.83(50)(37)
3 —8.45(90)(55) —7.67(71)(37)
4 -9 .67 (1 .19)(1.13) —8.92(94)(36)
5 —10.35(1.51) (2.13) -9 .7 0 (1 .20)(74)
6 —10.59(1.83) (3.38) — 10.09(1.47) (1.39)
7 —10.48(2.12) (4.62) — 10.13(1.72) (2.06)
8 —10.11(2.36)(5.63) —9.90(1.94)(2.60)
9 —9.61(2.59)(6.34) —9.48(2.17)(2.94)
10 —9.09(2.85)(6.74) —8.96(2.45)(3.09)
11 —8.65(3.21)(6.92) —8.41(2.81)(3.10)
12 —8.34(3.74)(6.99) —7.89(3.27)(3.03)
13 —8.19(4.49)(7.03) —7.43(3.86)(2.91)
14 —8.22(5.48)(7.05) —7.04(4.56)(2.75)
15 —8.40(6.67)(7.07) —6.74(5.35)(2.56)
16 —8.68(7.95)(7.11) —6.50(6.17)(2.39)
17 —8.95(9.19)(7.22) -6.27(6.99) (2.3)
18 —9.12(10.28)(7.38) —6.01(7.73)(2.31)
19 -9 .11(11 .16)(7.57) —5.68(8.38)(2.38)
20 —8.9(11.80)(7.72) —5.26(8.94)(2.48)

TABLE 5.10: Fits to the charmonium states’ correlator ratios on the 163 x 128 ensem­
bles. For each combination, we report: the mean and the statistical and systematic 
uncertainties.
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but is numerically larger. At small isospin density, the energy shifts of heavy quarko- 

nium states, both bottomonium and charmonium, increases as the isospin density 

increases, but at around the density where the system is conjectured to transform 

from pion gas states to the BEC state as numerically confirmed in Chapter 4, the 

heavy quarkonium energy shifts start to flatten out. Such a behavior change further 

supports the existence of the transition from a pion gas to a BEC state.

5.5 Discussion

Heavy-quark bound states provide an important probe of the properties of a 

medium and have been used in this work to investigate systems of large isospin 

charge density created by many-pion correlators. Specifically, we have used lattice 

QCD to investigate how the presence of this medium modifies the energies of various 

bottomonium states computed from NEQCD and charmonium states from color- 

wave propagators. Our calculations make use of ensembles of lattices with three 

different physical volumes at a single lattice spacing and at a single light quark 

mass corresponding to ~  390 MeV for bottomonium studies and a single volume 

for charmonium studies. We have found a measurable decrease in the energy of both 

the rjb and T states and in the spin-averaged P -wave energy, and also for the r/c and 

J/ip states. This decrease grows as the isospin charge increases, before plateauing 

at an isospin density at which we observed strongly non-monotonic behaviour of 

the energy density of the medium in Chapter. 4. The saturation of the energy 

shift provides further support to the conjecture that a transition from a pion gas 

to a Bose-Einstein condensate of pions occurs at this point. In the region of low 

isospin density where the energy shift is increasing, the quarkonium energy shifts 

are found to be qualitatively in agreement with the expectations from a potential 

model augmented with the hadronic screening effect found in Ref. [9], but the effect



116

is larger.

A similar study of NRQCD quarkonium correlators in QC2 D (two-colour QCD) 

at non-zero quark chemical potential was recently presented by Hands et al. in 

Ref. [61]. In contrast to QCD with three colours, in QC2 D, the addition of a quark 

chemical potential does not result in a complex action due to the pseudo reality 

of reprentations of SU(2) and numerical calculations can be performed efficiently 

[62, 63, 64]. In Chapter. 4 it was pointed out that the phase structure of QCD at 

nonzero fi[ has an intriguing similarity to that of QC2 D at nonzero quark chemical 

potential. It is apparent that the similarities persist to the case of quarkonium 

energy shifts in medium as an at least qualitatively similar dependence on the charge 

density/chemical potential is observed in the two-colour QCD case. Recent work 

[65, 66, 67] has probed the connections between different gauge theories with non­

zero (isospin) chemical potentials and, as the extent of this similarity is surprising, 

and warrants further investigation.

At the same time, by studying quarkonium-pion correlation functions on three 

different volumes, we have extracted r/b-n and T - n  scattering phase shifts at low 

momentum. The interactions are found to be weak in both cases as expected from 

chiral dynamics. Since we only have studies on the charmonium states only in a 

single volume, we can only extract the rjc-ir and J/-0-7T phase shift at single value of 

momentum.



CHAPTER 6

Conclusion and Outlook

Quantum Chromodynamics (QCD) plays an important role in studying hadron 

interactions, understanding hadron structure, and investigating non-zero temper­

ature and non-zero chemical potential systems. However, it is extremely difficult 

to study strongly interacting systems analytically, as the strong interaction is non- 

perturbative at intermediate and low energy interacting scales; perturbation theory 

starts to fail and non-perturbative techniques are required. Lattice Quantum Chro­

modynamic (LQCD) provides a way to study such systems non-pertubatively from 

first, principles by discretizing space and time, and useing Monte Carlo importance 

sampling techniques to numerically integrate the functional integrals that define 

physical observables as originated from QCD.

In recent years, a large amount of effort has been devoted to investigating 

hadronic systems and exploring phase structures at varying temperatures and chem­

ical potentials. At zero chemical potential, the determinant of the QCD Dirac op­

erator is positive definite, and importance sampling techniques can be applied. Al­

though different research groups employ different discretizing techniques, they find 

mutual agreement that there is a crossover from a confined phase to a deconfined

117
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phase at high temperature. However the determinant of the Dirac opeartor with 

non-zero baryon chemical potential is complex, thus importance sampling techniques 

start to fail and cancellations between different field configurations are required to 

get correct results, thus the computational difficulty in solving such system grows 

exponentially. Different methods, for example reweighting, the use of imaginary 

chemical potential and small chemical potential expansion, have been constructed, 

and more details can be found in the Ref. [17].

For systems with non-zero isospin chemical potential, the sign problem that oc­

curs in the non-zero baryon chemical potential system does not exist, and importance 

sampling technique can be adopted to study non-zero isospin chemical potential sys­

tem directly. From yPT [1], a transition from normal haronic state to Bose Einstein 

Condensate state is conjectured at an isospin chemical potential p/ >  and a 

deconfining phase transition at high temperature and non-zero isospin chemical po­

tential is also suggested. In order to study hadronic systems and phase transitions 

at various temperatures and isospin chemical potentials, non-perturbative studies 

of these system can provide vital insight. One approach to study such system is 

using the grand canonical approach by generating configurations from Dirac opera­

tors of different isospin chemical potential. In Ref. [19], the authors studied systems 

of non-zero isospin chemical potential in this approach, and numerically identified 

(although with significant uncertainty) a phase transition from hadronic matter to 

the pion condensate (BEC) state at fj,j >  m^, which is consistent with predictions 

from the yPT [1], In this thesis, I studied systems of varying isospin chemical po­

tentials from canonical approach by explicitly computing correlation functions of 

multi-meson systems with the quantum numbers of n <  72ir+ mesons. As there are 

n!rt! number of contractions needed in computing the n-pion correlators Cnn(t) from 

Wick’s theorem, new techniques have been developed to perform these contractions. 

The recursion relations of uncontracted correlation functions have been developed
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in Ref. [9] to reduce the number of independent contractions. I have implemented 

these recursion relation, generalized to momentum space, and numerically inves­

tigated systems containing up to 24 pions. Correlation functions of n-n systems, 

Cnn, receive contributions from excited states, ground states, and thermal states, 

resulting from a fraction of the pions propagating across the temporal boundary. In 

order to extract ground state energies, Enn, all thermal states are required to be 

fitted to Cn7r. Although systems of up to 24 7r’s can be calculated from the recursion 

relation in a manageable amount of time, extracting ground state energies becomes 

extremely difficult for n >  12. In order to study system containing more than 24 

7r’s , new methodologies and longer temporal extents were required.

In order to study systems of more pions, I constructed four new algorithms by 

using the fact that the energy spectrum of a multi-meson system is independent 

of how mesons are distributed among different source locations. With these new 

algorithms, systems containing up to 72 pions have been studied on three anisotropic 

lattice ensembles, 163 x 128, 203 x 256 and 243 x 128, with physical volumes of 

2,2.5 and 3 fm3. Correlation functions of multi-pions systems have contaminations 

from both excited states and thermal states resulting from a fraction of the pions 

propagating backward around the temporal boundary. Thus in order to extract 

ground state energies, large temporal extension is necessary. For lattice ensembles 

with T  =  128, the A ±  P  methods discussed in the Appendix can be applied to 

effectively double the temporal extent.

From the ground state energies of n-7r systems, En„, the isospin chemical poten­

tial can be computed from a finite difference, /i/(rt) =  Enn — £ ’(n_i)7r. By studying 

the isospin chemical potential as a function of isospin density, p i , the QCD phase 

diagram is explored at a fixed low temperature T  ~  20 MeV ( set by the temporal 

extent of the lattices used herein) for a range of m n <  p i  < 9  rnn. In order to iden­

tify different physical states, we studied the ratio of the energy density and the zero
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temperature Stefan-Boltzmann expectation as a function of p /. The ratio increases 

at small /i/, reaches a peak around /i/ =  1.30 m n, starts to decrease after the peak, 

and eventually starts to flatten out at even larger fij, which suggests a change in 

the degrees of freedom of the system. Our interpretation of this behavior is that 

the system is in the state of a pion gases when p / <  1.30(7) m w, and it transforms 

to a BEC state when p / >  1.30(7) m n. At very large p /, the system becomes BCS 

state at asymptotically large p / from the perturbation QCD. Our study supports 

expectations of the QCD phase diagram from phenomenology studies.

The suppression of J/ip and T [3] at non-zero temperature in heavy ion col­

lision is an important diagnostic of the formation of the quark-gluon plasma and 

the onset of deconfinement. Such suppressing effects have been experimentally ob­

served at SPS, RHIC and LHC. Similar changes are naturally also expected to occur 

near phase transitions at non-zero chemical potential and non-zero isospin chemi­

cal potential. In this thesis, I investigated the energy shift of heavy quarkonium 

states from first principles, and studied this suppression effect from first principles 

non-perturbatively. By utilizing the constructed n-pion systems, I investigated the 

energy shifts of bottomonium at different isospin density. Bottomonium correlation 

functions are computed using Non-Relativistic QCD (NRQCD), and the algorithms 

constructed in Chapter. 3 were used to compute n-pion correlation functions. By 

multiplying n-pion correlation functions and the bottomonium correlation functions 

on each configuration, energy shifts for different bottomoninum states have been 

extracted for different isospin densities. At small isospin densities the bottomonium 

energy shifts increases as afunction of p/, however the dependence of the energy 

shift qualitatively changes its behavior and starts to flatten out around the same 

isospin density, where a transition from a pion gas to BEC state was identified 

from our multi-pion studies. Such a change of behavior strengthens the conjecture, 

that the system under goes a phase transition. According to the study of bottomo-
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nium, the energy shift of bottomonium becomes more prominent for lighter heavy 

quark masses, and an even larger and cleaner signal of energy shift is expected for 

charmonia.

By applying Liischer’s formula, scattering length can be extracted from ener­

gies of two body system in a finite volume. Since we have conducted bottomonium 

studies on three different voulmes, we can perform an extraction in terms of dif­

ferent interacting momenta to get the scattering length and effective range that 

parameterize the low energy interactions in the infinite volume limit. Infinite vol­

ume results are m,naVbtir =  0.039(13) and the m^r%j7r =  4.7(3.7) for the ?jb state, 

and m nar,n =  0.047(14) and m^r-r.* =  5.8(3.3) in the case of the T. Both channels 

corresponding to a weak attractive interaction. Extrapolation to the physical pion 

mass according a quadratic form in Equation (5.12), scattering lengths at physical 

pion as  ̂ =  0.0025(8)(6) fm, a ^ ys ') =  0.0030(9)(7) fm, which are compara­

ble to, and considerably more precise than estimates from phenomenological models 

[55, 56, 57, 58].

By applying similar computational techniques as those used in bottomonium 

energy shift study, charmonium energy shifts have also been investigated in media 

of different isospin chemical potential. In order to have better correlations with 

multi-pion correlators and have more clean signals for the charmoninum energy 

shift, charm quarks are implemented using color-wave propagators, computed with 

the same relativistic fermion action used in generating the light quark propagators. 

From the corresponding ratio of J/ip and ti- tt correlation functions, energy shifts 

of J /0  in the media of different isospin chemical potential can be extracted. The 

shape of the charmonium energy shifts is qualitatively in agreement with the bot­

tomonium energy shifts, but with quantitatively larger negative energy shifts. Both 

studies from bottomonium and charmonium states strengthen the conjectured phase 

transition from pion gas states to BEC state around hj  =  1.30(7) m n.
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Although I have only investigated multi-pion systems in this thesis, the methods 

that I have developed can also be adapted to study systems with multi p or K  

mesons, and multi-species systems. By constructing moving mesons, we can also 

study the I — 2 7r7r scattering length for a large range of interacting momenta 

from the energy shifts of two-pion systems with different center of mass momenta 

and different relative momenta as a function of the volume. Similarly, three-pion 

systems with non-zero momenta can also be studied with the same methods, which 

can provide a nice way to understand details of three-body dynamics before we turn 

to more phenomenologically relevant three-nucleon systems. By extending these 

contraction methods for multi-meson systems, we may also be able to study multi- 

baryon systems in the future.



APPENDIX A

Antiperiodic ±  Periodic propagator 

method ( A ±  P  method)

By keeping all Z” factors the same as the ground state Z," extracted from 

the B4 ensemble, we have reconstructed the correlators corresponding to the B2 

ensemble by utilizing the ground state energies extracted from the B4 ensemble1. 

In Fig. 4.1, the reconstructed effective masses are compared with those from the 

correlation functions computed from the B2 ensemble, showing agreement within 

uncertainties. The contamination from the thermal states on the T  =  128 (B2) 

ensemble can clearly be seen in the rate at which the plateau region (where the 

ground state energy dominates) shrinks as n  increases. For systems with a large 

number of pions, excited states have not died out before thermal states become 

important.

Since a temporal extent T  > 128 is essentially required to get a clean signal 

for many-pion ground state energies, we have investigated the use of the A ±  P  

method (combining propagators that satisfy anti-periodic and periodic boundary

1 While we do not expect Z = Zq for all m  because of the effects of pion interactions, deviations 
are expected to be small (This is also supported by thermal fits using Eq. (2.21) for small n.).
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FIG. A.l: Effective mass plots for 24-7t+ and 487t+ correlators. The blue data axe from 
ensemble B4 and the red data axe from the A  ±  P  method on ensemble B2. Effective 
mass plots are consistent between these two calculations for all n n + systems.

FIG. A.2: The ratio of the correlation function of n tt+ ’s  calculated by using the A ±  P  
method on B2 ensemble, C ^ s(t), compared with that from B4 ensemble, C ^ 6 (t), for 
n = 1, 3,5, 7,11, is shown.
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FIG. A.3: The ground state energies, E nw, extracted from ensemble B2 (E™8) with A ± P  
method are compared with those from ensemble B4 (E in the left plot, where the 
ratio of E ^ / E ™ 8 is plotted. The isospin chemical potentials, /zj, at different densities 
for the two ensembles are compared in the right plot.

conditions in the temporal direction to cancel certain modes [31, 32, 33]). On the 

T  — 128 B2 ensemble, we check the validity of this method in comparison to the B4 

(T =  256) ensemble. In order to see the deviation of this method compared with 

those calculated directly from the T  =  256 ensemble with anti-periodic boundary 

conditions in the temporal direction, effective mass plots from the two ensembles are 

compared in Fig. A .l, and the ratio of correlation functions from these two methods 

are shown in Fig. A .2. The A ±  P  method relies on the exact cancellation of thermal 

contributions, and is seen to work very well 1 ix+ system, see Fig. A .2. For systems 

with more than 1 7r+, the A  ±  P  method starts fail at later time slices, however it 

still gives consistent results at earlier time slices, where ground state energies can 

be extracted. Energies and isospin chemical potentials extracted from the A  ±  P  

method are compared with those from ensemble B4 in Fig. A.3, which shows that the 

disagreement of extracted ground energies below 1%, and at our current precision, 

the Adz P  method provides reliable results for the correlators we study. This gives 

us confidence to use the Adz P  method for ensembles B1 and B3, where we could 

otherwise not extract ground state energies for large number of pions.

4833



BIBLIOGRAPHY

[1] D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592 (2001).

[2] W. Detmold, M. J. Savage, A. Torok, S. R. Beane, T. C. Luu, et al., Phys.Rev. 

D 78, 014507 (2008).

[3] S. Chatrchyan et al. (CMS Collaboration), Phys.Rev.Lett. 107, 052302 (2011).

[4] Z. Shi and W. Detmold, PoS LAT 2011, 328 (2011).

[5] W. Detmold, K. Orginos, and Z. Shi, Phys.Rev. D 86, 054507 (2012).

[6] A. Li, Private conversation (2012).

[7] W. Detmold, S. Meinel, and Z. Shi, Phys. Rev. D 87, 094504  (2013).

[8] D. H. Bailey et al., ARPREC: An arbitrary precision computation package, 

Available at http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf (2002).

[9] W. Detmold and M. J. Savage, Phys. Rev. D. 82, 014511 (2010).

[10] S. Beane et al. (NPLQCD Collaboration), Phys.Rev. D 85, 034505 (2012).

[11] W. Detmold, K. Orginos, and Z. Shi, Phys.Rev. D 86, 054507 (2012).

[12] Particle Data Group (2012).

[13] K. Symanzik, Nucl. Phys. B 226, 205 (1983).

[14] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259, 572 (1985).

126

http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf


[15] H.-W. Lin et al. (Hadron Spectrum Collaboration), Phys.Rev. D 79, 034502 

(2009).

[16] T. Misumi, PoS Lattice 2012: 005 (2012).

[17] O. Philipsen, arxiv:1009, 4089 (2010).

[18] S. Hands, S. Kim, and J.-I. Skullerud, Phys.Rev. D 81, 091502 (2010).

[19] P. de Forcrand, M. A. Stephanov, and U. Wenger, PoS L A T2007, 237 (2007).

[20] W. Detmold, K. Orginos, M. J. Savage, and A. Walker-Loud, Phys.Rev. D 78, 

054514 (2008).

[21] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, A. Parreno, et al., Phys.Rev. 

D 80, 074501 (2009).

[22] A. Stathopoulos and K. Orginos, SIAMJ. Sci. Comput 32, 439 (2010).

[23] G. P. Lepage and P. B. Mackenzie, Phys. Rev. D. 48, 2250 (1993).

[24] C. Morningstar and M. Peardon, Phys. Rev. D. 69, 054501 (2004).

[25] S. Durr, arXiv:1011.2711 (2010).

[26] G. P. Lepage, From Actions to Answers: Proceeding of the TASI 1989 (1989).

[27] N. Macon and A. Spitzbart, The American Mathematical Monthly 65, 95 

(1958).

[28] M. Okamoto et al. (CP-PACS Collaboration), Phys.Rev. D 65, 094508 (2002).

[29] P. Chen, Phys. Rev. D. 64, 034509 (2001).

[30] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259, 572 (1985).



128

[31] T. Blum et al. (RBC Collaboration), Phys.Rev. D 68, 114506 (2003).

[32] Y. Aoki, T. Blum, N. Christ, C. Dawson, T. Izubuchi, et al., Phys.Rev. D 73, 

094507 (2006).

[33] C. Aubin, J. Laiho, and R. S. Van de Water, Phys.Rev. D 81, 014507 (2010), 

0905.3947.

[34] W. Detmold and B. Smigielski, Phys. Rev. D. 84, 014508 (2011).

[35] Y. Hida et al., Quad-double arithmetic: Algo- rithms, implementation, and 

application, Technical Report LBNL-46996 (2000).

[36] M. Liischer, Commun. Math. Phys. 105, 153 (1986).

[37] M. Liischer, Nucl. Phys. B. 354, 531 (1991).

[38] S. Beane, P. Bedaque, A. Parreno, and M. Savage, Phys.Lett. B 585, 106 (2004).

[39] S. R. Beane, W. Detmold, and M. J. Savage, Phys.Rev. D 76, 074507 (2007).

[40] S. Tan, Phys. Rev. A. 78, 013636 (2008).

[41] W. Detmold and M. J. Savage, Phys. Rev. D. 77, 057502 (2008).

[42] B. Smigielski and J. Wasem, Phys. Rev. D. 79, 054506 (2009).

[43] J. B. Kogut and D. K. Sinclair, Phys. Rev. D. 70, 094501 (2004).

[44] T. Matsui and H. Satz, Phys. Lett. B. 178, 416 (1986).

[45] P. Petreczky, J. Phys. G 39, 093002 (2012).

[46] G. Aarts, C. Allton, S. Kim, M. P. Lombardo, M. B. Oktay, et al., JHEP 1303, 

084 (2013).



129

[47] W. Detmold and M. Savage, Phys. Rev. Lett. 102, 032004 (2009).

[48] D. Son and M. A. Stephanov, Physical. Rev. Lett. 86, 592 (2001).

[49] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, M. J. Savage, et al., 

Phys.Rev.Lett. 100, 082004 (2008).

[50] W. Detmold and B. Smigielski, Phys. Rev. D. 84, 014508 (2011).

[51] S. R. Beane, P. F. Bedaque, T. C. Luu, K. Orginos, E. Pallante, et al., Phys.Rev. 

D 74, 114503 (2006).

[52] K. Yokokawa, S. Sasaki, T. Hatsuda, and A. Hayashigaki, Phys.Rev. D 74, 

034504 (2006).

[53] L. Liu, H.-W. Lin, and K. Orginos, PoS L A T T IC E 2008, 112 (2008).

[54] L. Liu, PoS LAT2009, 099 (2009).

[55] M. E. Peskin, Nucl.Phys. B 156, 365 (1979).

[56] G. Bhanot and M. E. Peskin, Nucl.Phys. B 156, 391 (1979).

[57] H. Fujii and D. Kharzeev, Phys.Rev D 60, 114039 (1999).

[58] X.-H. Liu, F.-K. Guo, and E. Epelbaum, Eur.Phys.J. C 73, 2284 (2013).

[59] M. Dasgupta, K. Khelifa-Kerfa, S. Marzani, and M. Spannowsky, JHEP 1210, 

126 (2012).

[60] L. Levkova and C. Detar, Phys. Rev. D. 83, 074504 (2011).

[61] S. Hands, S. Kim, and J.-I. Skullerud, Phys.Lett. B 711, 199 (2012).

[62] S. Hands, S. Kim, and J.-I. Skullerud, Eur.Phys.J. C48, 193 (2006).



[63] S. Hands, P. Sitch, and J.-I. Skullerud, Phys.Lett. B 662, 405 (2008).

[64] S. Hands, Phys. Rev. D 81, 091502 (2010).

[65] A. Cherman and B. C. Tiburzi, JHEP. 1106, 034 (2011).

[66] M. Hanada and N. Yamamoto, JHEP. 1202, 138 (2012).

[67] M. Hanada, C. Hoyos, A. Karch, and L. G. Yaffe, JHEP 1208, 081 (2012).



VITA

Zhifeng

Zhifeng Shi was born in Shihe, Chuzhou, Huaian, Jiangsu province, China on 

December 29, 1986. He went to Nanjing University in China and got his bachelor 

degree in 2008. After graduation, he continued his study on physics in the College 

of William and Mary, and got his master degree in 2010. Right now he is a PhD 

graduate student, pursuing his PhD degree in Physics and hope to get it soon.

131


	Multi-meson systems from Lattice Quantum Chromodynamics
	Recommended Citation

	00001.tif

