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ABSTRACT

Systems of non-zero isospin chemical potential (), where the chemical potential
for up and down quarks is equal in magnitude but of opposite sign, do not suffer
from the sign problem, and normal LQCD techniques can be successfully adapted
to study such systems. From chiral perturbation theory (xPT), in addition to the
deconfined phase transition at high temperature at zero chemical potential, another
phase transition from ordinary hadronic states to a Bose Einstein Condensate (BEC)
state has been conjectured (1] at non-zero isospin chemical potential. Such a BEC
phase is of phenomenological relevance in the interior of neutron stars.

In LQCD, one way to investigate non-zero isospin chemical potential system is from
a grand canonical approach by directly working with fermion actions of targeted
isospin chemical potentials. Another approach to isospin chemical potential is by
explicitly constructing systems of fixed isospin density, and inferring the isospin
chemical potential from its ground state energy. In Ref. [2], the first studies of non-
zero isospin chemical potential system from this approach were presented, finding
that the dependence of the isospin chemical potential on the isospin density agrees
with predictions from Ref. [1] at low density. In this thesis, we studied systems with
the quantum numbers of up to 72 pions with newly constructed algorithms, and
clearly identified the conjectured phase transition from a pion gas to a BEC state
at puy = 1.3 m, at 7 = 20 MeV for the first time.

Having numerically constructed a novel state of matter, a natural question to ask is
how it can be investigated. The suppression of J/v and T resonances [3] at non-zero
temperature in heavy ion collision is an important diagnostic of the formation of a
quark-gluon plasma. Such suppression effects have been experimentally observed at
Super Proton Synchrotron(SPS), RHIC and LHC {3]. Heavy quarks are naturally
also expected to be useful probes of phase transitions at non-zero baryon chemical
potential and non-zero isospin chemical potential. In this thesis, we investigated
both bottomonium and charmonium in media of non-zero isospin chemical potential.

The investigation of QCD at non-zero isospin density presented in this thesis pro-
vide a numerical window into a novel state of strongly interacting matter. This
matter is difficult to create in experiment but may play an important role in dense
astrophysical environments.



TABLE OF CONTENTS

Acknowledgments . . . . . . .. ... iv

Dedication . . . . . . . . .. L v

Listof Tables . . . . . . . . .. . vi

List of Figures . . . . . . . . . . .. viii
CHAPTER

1 Imtroduction . . . . . . . . . ... 2

1.1 Pathintegral. . . . . . . . ... ... ... ... 3

1.1.1 Path integral in Minkowski space . . .. .. ... .. ... 3

1.1.2 Path integral in the Euclidean space . . . . . . . ... ... 5

1.1.3 Path Integrals on the Lattice . . . . . . . .. .. ... ... 7

1.1.4 Non-zero (isospin) chemical potential on the lattice . . . . 12

2 Multi-meson systems ! . . . .. ... L L. 16

2.1 n-meson systems from 1source . . . ... ... .. ........ 18

2.2 n-meson systems from M sources . . . .. ... ... ....... 20

2.3 Recursion relations in momentum space . . . . . . . . . ... ... 23

2.4 Simulationdetails . . . . . . .. ... oo Lo 26

2.4.1 Multi-pion dispersion relation . . . . ... ... ... ... 27

2.4.2 Correlation functions of n-n* systems from 1 source . . . . 28

2.4.3 Multi-pion systems from 2 sources . . . . . . .. ... ... 34

3 Improved methods to study many-meson systems 2 . . . .. ... ... 36

3.1 Vandermonde Matrix method (VMm) . . . . . . .. .. ... ... 37

3.2 FFT method (FFTm). . . . .. ... ... ... ... ... .... 38

'This section is in collaboration with William Detmold, and results have been published in
Paper. [4].

2This section is in collaboration with William Detmold and Kostas Orignos, and results have
been published in Paper. {5].



3.3 Combination method (Cm) . . . . . .. ... ... ... ...... 39

3.4 Improved Combination method (ICm). . . . . . . ... ... ... 43
3.5 Generalization to 2 species from N sources . . . . . .. ... ... 46
3.6 Eigenvalue method® . . ... ... ... ... ........... 47
3.7 Performance of different methods . . . . .. ... ... ..., .. 49
4 QCD at Finite Isospin Density . . . . . ... .. ... ... ....... 53
4.1 Latticedetails . . . . . . . ... .o oL 53
4.2 Ground stateenergies . . . . . . . ... ... ... ... 57
4.3 Energies from 203 x 256 ensemble . . . . . ... ... ... .... 58
4.4 Energies from 163 x 128 and 24% x 128 ensembles . . . . . . . . . 62
4.5 Interaction parameters . . . . . . . .. .. ... ... ..., 64
4.6 Two-body interactions from Liischer’s method . . . . . . . .. .. 66
4.7 Interaction parameters from small /L expansion . . .. ... .. 67
4.8 - QCD phase diagram at non-zero gy . . . . . . . . ... ... ... 72
4.9 Summary . .. . . ... e e e e 77
5 Energy shift of heavy quarkonia * . . . . .. ... .. ... ....... 79
5.1 Introduction . . . . . . .. ... ... L Lo 79
5.2 Lattice methodologies . . . . . . . . . . . .. ... ... ... 80
5.3 Bottomonium in media of non-zero isospin chemical potential . . . 81
5.3.1 Multi-pion and bottomonium lattice correlators . . . . . . 81
5.3.2 Correlator ratios for energy shifts . . . . . . ... ... .. 85
5.3.3 Quarkonium-pion scattering . . . . . .. . ... ... ... 86
5.3.4 Isospin density dependence of quarkonium . . . . .. . .. 90
53.5 S-wavestates . . . . . . . . .. ..o 90

3This method is suggested by Anyi Li [6]
4This section is in collaboration with William Detmold and Stefan Meinel, and results for
bottomonium studies can be found in Ref. {7].

it



536 P-wavestates . . . . . . . . ... 99

5.3.7 Heavy-quark mass dependence . . . . . . . ... ... ... 100

5.4 Charmonium in medium of non-zero isospin chemical potential . . 101

541 mn.and J/Y ... Lo 105

5.4.2 Charmonium scattering length . . . . . . ... ... .. .. 108

5.4.3 Charmonium energy shift . . . . . . ... .. ... .. ... 108

5.5 Discussion . . . . .. ..o Lo 115

6 Conclusion and Qutlook . . . . ... ... ... ... .......... 117
APPENDIX A

Antiperiodic + Periodic propagator method (A £+ P method) . . . . . . .. 123

Bibliography . . . . . . . . L 126

Vita . . . . e e e 131

i



ACKNOWLEDGMENTS

I would like to thank my advisor, William Detmold, for his help in my physics career
in last four years, for his patience in going through this thesis, and his important
advice.

iv



I present this thesis in honor of my parents.



2.1

3.1

4.1

4.2

4.3

4.4

5.1

()]
[\S]

5.3

LIST OF TABLES

The third row shows the total number of uncontracted correlation
functions required to be computed before getting the correlation func-
tion of the maximal allowed pions. . . . . . . . . .. ... ... ...,

Scaling of different methods in terms of number of multiplications for
an N source calculation. . . . . ... ... .o 000000

Details of the four gauge ensembles with the same lattice space a =
0.1227 + 0.0008 fm used in this chapter. N denotes the number
of configurations used in the current calculation. In the last two
columns, Ny, is the number of source times used on each configuration
and Npom is the number of momentum sources used for each source
time. . . ... e e e e

The effective scattering length (@) from Lischer’s method. The first
uncertainty is statistical uncertainty and the second uncertainty is
systematic. . . . . . . . .. L.l e

The effective scattering length (@) and m, f47s extracted from fits
to different ranges of n. For a fixed nmax, the x2/d.o.f. is larger in
smaller volumes, indicating that Eq. (4.7) fails to describe systems of
high densities. . . . . . . . . . ... . o

The effective scattering length (@) from small a/L expansion. The
symbol “[2]” indicates that only AE, is used in the fitting, and “[3,6]”
means that all AE; to AFEgareused. . . . . . ... ... ... ....

Details of the ensembles and measurements used in this work. ug, is
defined as the fourth root of the spatial plaquette. . . . . . .. .. ..

Smearing functions I'(r) used in the quarkonium interpolating fields
for the given representation of the cubic group, R and values of parity,
P, and charge-conjugation, C. The functions ¢,5(r) and ¢,p(r. j) are
eigenfunctions from a lattice potential model. . . . . . . ... .. ..

Spin-averaged quarkonium kinetic masses on the 163 x 128 ensemble.

vi

68



5.4

9.5

5.6

3.7

5.8

5.9

5.10

The n,—m phase shifts extracted using the Liischer method as de-
scribed inthe main text. . . . . . . ... ... ... L.

The Y-n phase shifts extracted using the Liischer method as de-
scribed in the main text. . . . . . . ... ... ... ... ...

Fits to the T correlator ratios on the various ensembles for a;m =
2.75. For each combination, we report: the mean and the statistical
and systematic uncertainties. . . . . . . . .. ... ... ...

Fits to the n, correlator ratios on the various ensembles for a,m =
2.75. For each combination, we report: the mean and the statistical
and systematic uncertainties. . . . . . ... . ... .. ... .....

Extracted ground state energies of 7. and J/1 on the 16% x 128 en-
semble, where the first uncertainty is the statistical uncertainty, and
the second uncertainty is the systematic uncertainty. . . .. . .. ..

The n.—n and J/¢—n phase shifts extracted using the Liischer method
onthe 163 x 128 ensemble. . . . . . . . . . . . ... ... ...

Fits to the charmonium states’ correlator ratios on the 163 x 128
ensembles. For each combination, we report: the mean and the sta-
tistical and systematic uncertainties. . . . . . . .. .. ... ... .

vil



1.1

2.1

2.2

2.3

24

LIST OF FIGURES

Setup of the LQCD. ¥(n) (w(n)) denotes anti-quark (quark), which
are both Grassmann numbers, and U,(n) denotes gauge links, which
are SU(3) matrices. . . . . . . . .. ... ...

The uncontracted single pion correlation functions from two sources,
A;; for 2,5 = 1,2, are constructed in the spatial space by starting
from source location i, following the line of propagator, integrating
over all spatial locations in the sink z, and then returning back to
thesource j. . . . . . . . . . ...

The figure shows how to construct pion correlation function in mo-
mentum space. A, ; is constructed by following the line from source
i to p, returning to source j, multiplying the S(S') with respect to
each line and summingover p. . . . . . . ... ... ... L.

The extracted energies of a single pion with different momenta are
plotted as the function of the momenta. In this plot, (E(p)a,;)? are
plotted against (pa;)2. Together the fit to the dispersion relation is
plotted, along with its 95% confidence interval. . . . . . . . .. .. ..

In this figure, the correlation function of systems containing 12-7,
denoted as C)5(t), is decomposed into different contributions to get a
better understanding of the difficult in extracting ground state ener-
gies resulting from the necessity to including all thermal contributions
in the fit. “fay wmMp” is by summing all contributions, and “fan nomp”
denotes contributions only from the ground state and thermal states,
which overlaps exactly with the “fa1wMmp” at latter time slices, and
lays over the ground state contribution “fy” at earlier time slices.
“fexcit” denotes the contribution from the first excited state, which
dominates the “f. wmp~ at early time slices. “f,” represents the con-
tribution from the 1st thermal states, where 1 pion propagates in an
opposite direction with others, and similar “f,” denotes contributions
from the kth thermals states, where k pions propagate in the opposite
temporal direction to other 12—k pions. . . . . . . . . ... .. ...

”

viii



2.5

2.6

3.1

3.2

3.3

In this plot, Z factors, Z; for i = 0,1,--- ,6, extracted fitting corre-
lation functions for n pions for n up to 12 are compared. Z; denotes
contribution from the ground state, and Z; denotes the contribution
from thermal states with ¢ pions propagating in the opposite direction
with other pions. . . . . . . .. . . ... .. ... ... ..

The ground state energies, E,, ,,, extracted from Cj, n,(t) for differ-
ent n, and ny are compared. The x-axis are chosen to be 2n, + n,
in order to separate E,, ,, with the same n; + n,. The nth row
corresponds to the ground state energy of an n-pion system. . . . . .

Can(t), Ci2x(t) and Casr(t) calculated from N = 2 sources by ICm
with 64-decimal digital precision, denoted as ICm64, and Cm with
64(100)-decimal digital precision, denoted as Cm64(Cm1l00), on a
single configuration are compared. Correlation functions from Cm100
agree with those from ICm64, however for the same precision, the ICm
gives more accurate result than Cm. For C3,(t), Cm64 fails because
of numerical inaccuracy as discussed in the text. . . . . . . .. . ...

Correlation functions on a single configuration at ¢ = 20 from 2
sources computed with the Improved Combination method using the
arprec library [8] at various precisions: ‘arprec X’ denotes that the
calculation is done with X-decimal digit precision. The C,,(20) for
n = 1,2,...24 all agree for the different precision calculations just
as they should, except for the calculation from 16-digit precision.
However C,,,(20) for n = 25,26, ...,32 are all machine zero at each
precision. The disagreement of 16-digit precision indicates higher pre-
cision is needed. A similar comparison is shown for the single source
correlation functions in the insert. . . . . . . . .. . ... .. ..

The left panels compare 1-source calculations from the VMm, FFTm
and Cm, and the right panels compare C,,, calculated from 2 sources
by the three methods. The real propagator is taken from one time
slice, t = 20. The Recursion Relation method (RRm) [9] is also
compared with other methods in the lower left plot as a check on the
validity of the Cm. For the 2-source calculation in the toy model (top
right) with VMm, two different sets of A,s have been used, denoted
as VMml and VMm2. For VMm applied to the real propagator
calculations, only one choice of \’s is shown. “Cm 16 (32)” denotes
that calculation is done using Cm with 16(32) decimal digit precision.

ix

48



3.4

4.1

4.2

4.3

4.4

Comparison of the number of multiplications required for each method
(RH axis), and the corresponding expected computation time of Cp,(t)
for n = 1,2,...12N on a single time slice, corresponding to one ap-
plication of the specified contraction method in seconds using a single
2.4 GHz Xeon core (LH axis). The computational cost of the ICm is
taken from the actual running time, and it is used to normalize the
time scale so that the projected running time of other methods can
be read out from the LHaxis. . .. .. ... ... .. ........

The black data is the effective mass calculated from the original data
from ensemble B2, and blue line through the data points is recon-
structed from the ground state energies extracted from the ensemble
B4 as discussed in the main text. The red straight line is the fitted
value of E,; extracted from the correlators of ensemble B4. . . . . . .

The effective mass of Cyo,(t) from the 2-source calculation on the
ensemble B4 is shown on the left along with the extracted ground
state energy represented as a black band. Similarly, the effective
mass of Cyor(t) (Crax(t)) from the 4 (6) source calculation on the
same ensemble and the corresponding extracted ground state energy
is shown in the middle (on the right). . ... ... ... ... .. ..

The correlation functions, Caor(t), Cyor(t) and Cror(t), calculated
from 6-sources with quad-double precision and double precision are
compared in the left, center, and right plots respectively. The same
calculations done with double precision shows even more severely
breakdown, indicating that high precision is needed in order to study
many pion systems. Although Cy, from 6-sources with quad-double
precision breaks down at earlier time slices, the rescaled Csp, from
2-source computations, which is shown also in the left plot, is free
from precision issues and is used in extracting the Foo,. . . . . . ..

%or(t) is shown on the left, where the blue points are data, the
red line is constructed from the fit, and two vertical dashed lines
indicate the fitting window. Similar plots of preconditioned Cj, ()
and CY,,(t) are alsoshown. . . . . . .. ... ... ...



4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Effective mass plots with A &= P method on ensemble Bl are shown
here. The effective mass of Cy,(t) from the 2-source calculation is
shown on the left along with the ground state energy represented as a
black band. Similarly effective mass plots of Cy, from 4-sources and
Cr2:(t) from 6-sources calculations and the extracted ground state
energies are shown in the middle and right respectively. . .. .. .. 62

Effective mass plots with A + P method on ensemble B3 are shown. 63

The ground state energies of a system of n-nt(FE,,) extracted from
ensembles Bl (red), B3 (blue) and B4 (green) are shown. The black
line represents the total energy of n non-interacting pions. . . .. .. 63

The ma and m f,‘ﬁg extracted from different fitting windows [nmin; max)
with ngi, = 3 fixed and varying npmax. - - -« - - - . o o Lo 68

The energy differences, AFE,,, are plot as a function of the number of
pions, n, where the blue points are the original data, the red bands
are the fits, and the black bands are the regions where the fits are
performed. From the left to right, AE, from 163, 203, 243 are shown. 69

The scattering phase shifts from 163, 203, and 243 ensembles in this
study, are shown as the black dot data points from right to left re-
spectively. The blue triangle data points are the 24 and 323 ensemble
results from Ref. [10] from right to left respectively. The inner shaded
region is the fit to all data, and the outer shaded region is the fit only
to the data in this chapter, and the star is the infinite volume result. 70

The extracted three-body interaction parameter, 775 (L), is plotted as
a function of the spatial extent of the lattice, L, (black points). The
red line shows the expected dependence of 7y on L from Eq. (4.13)
with C = 4.3, which clearly does not provide a good description of
thedata. . . . . . . . . .. ... e 71

Energy densities (€) calculated on 3 different volumes are shown as
a function of isospin density. The blue dot points are from the 163
ensemble, the black star ones are from the 202 ensemble and the pink
triangle one are from the 24® ensemble. The inset show the slight
difference in energy density on three ensembles. . . . . . . . . .. .. 72

X1



4.13

4.14

4.15

5.1

5.2

5.3

5.4

5.5

5.6

The isospin chemical potential, u;, is plotted as a function of the
isospin density, py, from three lattice ensembles, B1 (red, p; = [0,9]),
B3 (blue, p; = [0,2.8]) and B4 (green, p; = [0,4.7]). The solid black
line is from expectations of xPT [1] . . . . ... ... .. ... ... 73

Expected QCD phase diagram following Ref. [1]. At high temper-
ature no bounded state of the quantum number of pion exist, thus
< dvysu >= 0. At extremely high isospin chemical potential, al-
though such state still has the same quantum number as pions, but
quarks are not bounded inside hadrons, and they are starting to form
Cooper pairs. Our calculations at a fixed temperature, 7 ~ 20 MeV
probe the phase structure along the red dashed line from u; = m, to
p1 = 4.5 m,. The position of phase transition A is unknown. . . . . . 74

The €¢/esp is plotted as a function of py/m,. . . . . . . .. ... ... 75

m and Y correlators (upper) and effective energies (lower) on the
20% x 256 ensemble, for azm =2.75. . . . .. . ... ... ... 82

hy correlator (upper) and effective energy (lower) on the 16% x 128
ensemble, for a;m =2.75. . . . .. . ..o 83

Extracted inverse phase shifts for n,—7 and T—r scattering. Fitting

the phase shift to pcot d(p)/m, = —mia + ﬂzﬁ%, as shown by the
shaded band, we can extract the scattering length shown by the point
at p?/m2=0. ... ... 88

The correlators for the T in a medium corresponding to isospin charge
n for n = 6, 12, and 18 are shown. Data are presented for a,;m = 2.75
on the 20° x 256 (upper) and 16° x 128 (lower) ensembles. Correlators
for the 7 in medium behave similarly. . . . . ... ... ... .. .. 91

The correlator ratios for the T in a medium corresponding to isospin
charges n = 6, 12, 18. The shaded bands show the statistical un-
certainties of fits of the form given in Eq. (5.6). Data are shown for
agm = 2.75 on the 20% x 256 (upper) and 163 x 128 (lower) ensembles. 92

The correlator ratios for the 7, in a medium corresponding to isospin
charges n = 6, 12, 18. The shaded bands show the statistical un-
certainties of fits of the form given in Eq. (5.6). Data are shown for
asm = 2.75 on the 20% x 256 (upper) and 162 x 128 (lower) ensembles. 92

xii



5.7 The ratio R(5,ms;t) computed with and without the correct correla-
tion between the 7, and many-pion system on the 203 x 256 ensemble,
as discussed in the main text. The shift (difference from unity) is only
apparent when correlations are included. . . . . . . .. ... ... ..

5.8 The dependence of the energy shift on the isospin charge density is
shown for the three lattice volumes for the 7, (upper panel) and T
(lower panel). The shaded vertical band in each plot shows the region
where there is a peak in the ratio of the pionic energy density to the
Stefan-Boltzmann expectation (see Fig. 22 of Ref. [11]). . .. ... .

5.9 The slope d(AF)/dps of the m, energy shift (upper panel) and T
energy shift (lower panel), approximated using correlated finite dif-
ferences. The data sets and shaded bands are as described in Fig. 5.8.

5.10 Isospin density dependence of the shift of the S-wave hyperfine split-
ting between the T and 7, states in medium. . . ... ... .. ...

5.11 The correlators ratios corresponding to the spin-averaged P-wave en-
ergy in a medium corresponding to isospin charges n = 3, 6, and 12.
Data are shown for a,m = 2.75 on the 20 x 256 (upper) and 163 x 128
(lower) ensembles. . . . . . . ... .. ... .o

5.12 Upper panel: the shift in the spin-averaged 1P energy as a function
of the isospin charge density. Lower panel: the shift of the spin-
averaged 1P — 1S splitting. The vertical band shows the isospin
density at which the pionic energy density is peaked relative to the
Stefan-Boltzmann expectation. The results are for a;m = 2.75. . . .

5.13 The difference of the n, (upper) and T (lower) energy shift for a
given heavy quark mass from the shift for a;,m = 2.75 is shown as
a function of the isospin charge density. Results are shown for the
163x 128 ensemble. . . . . . . . .. ... ..

5.14 In upper (lower) figure, the Cn.)(t) (Cy/y(t)) computed on the 163 x
128 ensembles areshown. . . . . . . . . . .. ... 0oL,

5.15 In upper (lower) figure, the effective mass plot of 7, (J/%) computed
from the corresponding correlation functions on the 16® x 128 ensem-
bles are shown. Also the extracted ground state energies and the
corresponding fitting ranges are shown as bluebands. . . . . . . . ..

xiii

98

. 102



5.16

5.17

5.18

5.19

Al

A2

A3

In this figure, correlated contraction and uncorrelated contraction by
shifting 50 configurations are compared. When correlations among
C,.(t) and Chr(t) are taken away, we indeed recover the result for
uncorrelated correlation functions such that the ratio is consistent
with 1.0, . . . 0 oo

The ratios R(m,7,;t) for different n’s computed on the 163 x 128
ensemble are shown in this figure, where the shaded region is where a
single exponential fit is performed. In this figure, only the statistical
uncertainties are shown. . . . . .. ... .. L.

The ratios R(n, J/1;t) for different n’s computed on the 16® x 128
ensemble are shown in this figure, where the shaded region is where a
single exponential fit is performed. In this figure, only the statistical
uncertainties are shown. . . . . . . ... ... ...

The dependence of the energy shift on the isospin charge density
is shown for the 7. (upper panel) and J/¢¥ (lower panel) from the
162 x 128 ensemble. The shaded vertical band in each plot shows the
region where there is a peak in the ratio of the pionic energy density
to the Stefan-Boltzmann expectation (see Fig. 4.8). . . . . .. .. ..

Effective mass plots for 24n* and 487" correlators. The blue data
are from ensemble B4 and the red data are from the A & P method
on ensemble B2. Effective mass plots are consistent between these
two calculations for all n 7% systems. . . . . . .. ... .. ... ..

The ratio of the correlation function of n #*’s calculated by using the
A= P method on B2 ensemble, C228(t), compared with that from B4
ensemble, C25(¢), for n = 1,3,5,7,11,isshown. . . . . . . . ... ..

The ground state energies, E,., extracted from ensemble B2 (E128
with A4 P method are compared with those from ensemble B4 ( E25¢
in the left plot, where the ratio of E?%/E}28 is plotted. The isospin
chemical potentials, uj, at different densities for the two ensembles
are compared in theright plot. . . . . . . .. . ... ... ... ...

xiv

110

124



MULTI-MESON SYSTEMS FROM LATTICE QUANTUM
CHROMODYNAMICS



CHAPTER 1

Introduction

Quantum Chromodynamics (QCD) has played important roles in understand-
ing strong interactions between elementary particles, quarks and gluons, which also
enables us to understand interactions between hadrons made up of these elementary
particles from first principles. At large interacting energies, the strong coupling
is relatively small, a,(mz) = 0.11 [12], and perturbation theory can be effectively
applied, however the strong coupling constant becomes larger with decreasing in-
teracting energies, and eventually perturbation theory starts to fail. At small en-
ergies (< 1GeV), the chiral perturbation theory (xPT) has been developed, and it
can be effectively used to study such low energy systems by predetermining a few
low-energy constants (LECs). However at intermediate energy scales, no analytical
method can be applied, and performing non-pertubative calculations from first prin-
ciples by applying Lattice Quantum Chromodynamics (LQCD) technique is vital in
understanding properties of, and interactions between, hadrons at low and interme-
diate energy scales. QCD is a quantum field theory which is naturally formulated in
the form of a path integral in the space of configurations of quark and gluon fields.

Such a path integral a functional integral, where the degrees of freedom need to be
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integrated on every space and time point. In order to define the path integral in
a computationally tractable way, space and time are discretized and Monte Carlo
methods are applied to numerically estimated such path integrals in LQCD. More

details can be found in the next section.

1.1 Path integral

1.1.1 Path integral in Minkowski space

In classical mechanics, only the path having the extreme action is allowed, for
example the classical Lagrangian method, which identifies the path minimizing the
action as the only physically allowed path. But in Quantum mechanics, all paths
are allowed. In order to get correct results, contributions from all paths must be
considered, for example the partition function shown in the following equation in

Minkowski space includes contributions from all possible paths (¥(xz)),
7= [ Do, (11)
where the integration measure, D[y (z)], is given by
D (x)] = dip(z1)di(zs) - - - dip(2s), (1.2)

which denotes that the integration is performed over all paths in every space and

time location, z;. The action

smw:/fwmw, (13)
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where La(v) is the corresponding Lagrangian in Minkowski space. In QCD equa-
tions need to have quarks and gluon fields in them. The QCD Lagrangian, L, is
given by

L. $). A= P () (9" Dy — m)y? (z) — 3 F i (1.4)

4 e

where D, = 0, + tA, is covariant derivative, which ensures the gauge invariance,
and u = 0,1,2,3 is the Lorentz index. The ¢/ denotes the fermion field, and P!
is defined as 9/ (x) = ¢¥/T(z)vo, where f denotes quark species, f = u, d, c, s, t, b.

The gluon gauge tensor, F?,, is defined as

[y
F2, = 0,A% — 8,A% + gf*™ AL A;, (1.5)

where A(x) is the SU(3) algebra-valued gauge field, and f?¢° are the completely
anti-symmetric structure constant, where a = 1,2,---,8 is the color index. In
Equation (1.4), summation over indexes, f and a, is implied. As SU(3) gauge fields
do not commute with each other, the last term in Equation (1.5) allows gluons to
interact with each other, and thus 3-, and 4- gluon interactions must be included.
Such gauge field self-interactions are absent in the electromagnetic interaction.
Physical information about systems interacting with strong interactions can
be extracted from correlation functions. An example is the following two point

correlation function

<) >=  lim L PWEIDAJOE)Ow)e Y

1.6
T—+00(1—i€) ZQCD ’ ( )

where ) denotes the vacuum state, O(x;) and O(z3) are operators of physical states

at x; and r,, and the integration over temporal extent is from —7 to 7. The



partition function Zgcp above is given by
Zgep = _ lim /D[z/)(z)]D[Au]eisM["’]. (1.7)
T—oo(1—t€)

From Equation (1.6), the spectrum of states with the corresponding quantum num-

bers can be extracted and will be discussed below.

1.1.2 Path integral in the Euclidean space

Computing Equation (1.6,1.7) directly leads to great difficulties. Since it is a
functional integral, the integration measure is the product of fields at every space-
time location. Such integral involves infinite number of degrees of freedom, and
brute force computation of this integral is prohibitive. Additionally, the function in
the exponential, ¢S[y], is complex, so the exponential of the action is an oscillating
function. Two states having actions separated by many magnitudes can have equally
important contributions to the integration. In order to get correct results, detailed
cancellations between all contributions are required.

In order to overcome the second difficulty, Wick rotation, can be applied to
transform an integration defined in the Minkowski space into an integration in Eu-
clidean space.! After rotation, spatial coordinates are untouched, while the temporal
coordinate changes according to 7 — —it. Similarly, gamma matrices, field strength
tensors, and integration measures are also transformed accordingly. Since the La-
grangian is hermitian, the corresponding action is real. A great benefit that the
Wick rotation indeed brings is that the oscillating function e**» in Minkowski space

is transformed into an exponentially decreasing function e~°¢ in Euclidean space.

0

'In Minkowski space x® = 7, while in Euclidean space 2% = .



The action in Euclidean space, Sg is given by

S = / d*zp! (x)(v* D, + m)y! (z) + Lo puw. (1.8)

4}1.!/6

Because of the exponential decay property of e~SE, contributions with small ac-
tions dominate the integration. Instead of sumiming over a large number of states
as required in Minkowski space to get a good estimation of the path integral, only
a small number of configurations with small actions are required in evaluating the
integral after the rotation. Importance sampling techniques can be applied to gen-
erate configurations of small actions with the required distribution. Additionally,
the original difference between spatial direction and temporal direction, originated
from the different signs in g,,, vanished after the transformation. As discussed
above, transforming from Minkowski space to Euclidean space brings us multiple
advantages in term of applying numerical simulations.

In Euclidean space, the QCD partition function is defined as
4= / D[(z), P(2)] D[ Au(x)]e =09, (1.9)

where the integration measure D[y (i), ¢(x;)] and D[A,(x)] are

Dly(x), ¥ (2)] dip (1) dip (1) dip(22)dip(22) - - dip(n) dip(zn)

D[A,(z)] = dAu(x1)dAu(xs) - - - dAu(2n) (1.10)
p=1

The ¥(z;) (¥(z;)) are quark (anti-quark) fields, and x; fori = 1,2--- ,n is a 4-vector,
denoting a single space-time point. Although the oscillating properties of the com-
plex integrand disappears, computing Z involves computing integration over ¥ (x)

in every space-time location, which is an infinite dimensional integral. To define
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the path integral in a computationally tractable way, we discretize the whole space
and time and impose boundary conditions, and projecting the continuous space-
time into a finite dimension lattice, whose dimension is usually around 108 sites.
Suitable boundary conditions are chosen, for example periodic boundary conditions
for three space directions and anti-periodic boundary condition for the fermion field
and periodic boundary condition for the gauge field in the temporal direction. Such
boundary conditions correspond to considering the field theory at non-zero tempera-
ture. A common procedure of LQCD simulation is by first generating configurations
with required distributions of actions, which are determined by the fermion action
and the gauge action, by applying importance sampling techniques. Partition func-
tions, for example Equation (1.9), and correlation functions of desired quantum
numbers (the Euclidean space version of Equation (1.6) ) are then calculated on
each configuration. Physical information about systems under study can then be
extracted from these correlation functions. More details of the methodologies of

applying LQCD calculations will be discussed in the next section.

1.1.3 Path Integrals on the Lattice

The partition function defined in Equation (1.9) is an infinite dimensional inte-
gral in the continuum, which can be estimated by projecting the continuous space
and time onto lattices with finite space and time, which is also a nice way to renor-
malize the theory. After discretization, the infinite dimension integration measure,
D[4¢(x), ¥ (z)], becomes finite, and it is defined in Equation (1.10). The dimension of
D[y (x), ¥ (z)) is M = 2N, x N, x N, x N, on a lattice, where N, (N,, N,, N;) denotes
lattice size in the direction x (y, 2, t), and ¥ and ¢ are considered as independent
variables. The fermion action defined in Equation (1.8) can be discretized similarly,

which is illustrated in the following example. In a trivial gauge field A, = 0, the



fermion action for one quark flavor is

Se = [ dtab(a) (10 + mpv(o). (1.11)

After discretization, the integral is replaced by summation over sites, and the deriva-

2

tive is replaced by a finite difference. After discretization, the lattice version of

Dirac action defined Equation (1.11) is

4 N N
Sp=atS o) ( ot B e B) mw(m) . )

2a
nel’ p=

where a is the lattice spacing, and the summation is over all lattice sites, n, in the
4-dimension lattice T

In order to preserve the gauge invariance of the Dirac action in the continuum,
the discretized Dirac action on the lattice needs additional improvements. In order

to see the reason, we can consider the following gauge transformation

¥(n) = Qn)yp(n) $(n) = P(n)Qn)". (1.13)

The mass term in the discretized Dirac action Sg is invariant, but terms connecting

different sites are not gauge invariant, as it transforms as

P(n)p(n + g) = P(n)QUn)'AUn + A)p(n + ). (1.14)

The gauge transformation, (n), defined in different sites arc independent, and the
combination Q(n)'Q(n+4) is not unity for all gauge transformations, thus the lattice

version of the QCD action defined in Equation (1.12) is not yet gauge invariant. In |

2Different discretization approach can be used, for example forward/backward difference. Here
the central difference is chosen.
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order to make the lattice Dirac action invariant, gauge links, U;(n), connecting
sites n and n + [i, and transforming accordingly under the gauge transformation are
needed to be introduced into the lattice Dirac action. After including such gauge

links, the fermion action in Equation (1.12) becomes ?

4 - ~
S —at S i) (Z  Ualn)tn + )~ Uoy(m)pln = ) mw(n)) )

2a
nel p=1

where the gauge link, U,(n), transforms as
Uu(n) = Qn)U, () (n + i) (1.16)

and

U_u(n) = Ul(n — p). (1.17)

Under such a transformation, it can easily be confirmed that the action defined in
Equation (1.15) is gauge invariant under transformations defined in Equation (1.13)
and(1.16).

As illustrated in Fig. 1.1, quark fields 1¥(n) and (n) live on sites, and guage
links, U,(n) live on the links connecting neighboring sites, n and n + fi. The naive
action defined in Equation (1.15) has 16 doublers* in the massless limit, as can be
shown by Fourier transformations of the Dirac action with unit gauge links. In order
to eliminate or reduce doubles more advanced actions have been constructed, for

example the Wilson action. For the Wilson action, one additional term,

4
a3 i) (U,,(n),,,,cs,,w,m - 26,,;<(Sl,;,m + U—u(n)abén—ﬂ,m) Yim).  (1.18)
p=1

3In the rest of the thesis, unless otherwise specified we are exclusively working in the Euclidean
space and the index £ is dropped from now on.

4Doublers are lattice artifacts, which render distinct contributions from different momenta in
the continuum being identical after discretization.
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FIG. 1.1: Setup of the LQCD. ¥(n) (¥(n)) denotes anti-quark (quark), which are both
Grassmann numbers, and U, (n) denotes gauge links, which are SU(3) matrices.

which is the discretization of —(a/2)98,8,¢ and vanishes in the continuum limit,
are added into the naive action defined in Equation (1.15). With this additional

term, the Wilson fermion action for a single flavor quark is defined as

S =a* " ¢(n)D(n|m)y(m), (1.19)
nel
where
| 4 1 &
D(nlm)aﬁ,ab = (m + E)(saﬂ‘sab‘sn,m - % ";1(1 - 7ﬂ)aBUp(n)ab5n+ﬁ.m7 (1'20)
where v_, = —7,. For each additional flavor, additional Wilson fermions with

different masses, m, need to be included. The discretization error of the above action
is O(a), and Symanzik improvement can be applied to reduce the discretization error

to O(a?). For example in the clover Wilson action [13, 14], the following clover term

cwa® 3 3 ()50 Futb(n). (121)

nel u<v
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is added into the Wilson action, Equation (1.20). In Equation (1.21), 0, =
(Y4, ]/ 24, the parameter c,,, needs to be determined perturbatively or non-perturbatively
by canceling O(a) terms in order to get O(a?) improvement, and F,, (n) = 55 (Qu.(n)—

Quu(n)). The Quu(n) is the sum of plaquettes U, ,(n),
Quw =Uu(n)+ U, _y(n) +U_, _,(n) + U_, u(n), (1.22)

where Uy, = U,(n)U,(n + @)U, (n + 21U, (n)!.

From correlation functions of desired quantum numbers, the energy spectrum
can be extracted from its exponential decay property as a function of time. In order
to get better resolution in the temporal direction, the lattice spacing in the tempo-
ral direction, a;, can be made finer than its counterpart in the spatial direction, a,,
and such a lattice is called an anisotropic lattice with the anisotropic parameter,
¢ = a,/a;. By multiplying the spatial terms in isotropic lattice actions, for example
Wilson fermion, by 1/€ and the terms in the temporal direction by £, we can get
anisotropic lattice actions. By using these advanced actions, the Euclidean version
of Equation (1.6) can first be integrated over fermion fields, which are Grassmann
numbers, analytically, which give a determinant of the Dirac operator. After this
step, the integration over gauge fields are numerically calculated from Monte Carlo
importance sampling methods. Throughout this thesis, all computations are per-
formed with the anisotropic clover improved Wilson fermion action. More details
can be found in Ref. [15].

Staggered fermions, which define new degrees of freedom based on the spin
and color degrees of freedom, have also been applied to alleviate doubling problems.

Both Wilson, Clover and Staggered fermions explicitly break chiral symmetry, while
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some lattice actions satisfying the Ginsparg-Wilson equation
D~s + v5D = aD~sD, (1.23)

preserving the chiral symmetry on the lattice have been constructed. Example of
such actions are Domain-Wall fermion, and overlap fermions. The Domain-Wall
fermion action preserves the chiral symmetry in the limit of the infinite fifth dimen-
sion, and the overlap fermion conserve chiral symmetry exactly, however simulating
overlap fermions is much more expensive and only very recently large volume sim-

ulations with overlap fermions become possible. See Ref. [16] for details.

1.1.4 Non-zero (isospin) chemical potential on the lattice

Systems of non-zero chemical potential, non-zero isospin chemical potential and
non-zero temperature can be experimentally produced from high energy collision at
the Relativistic Heavy Ion Collider (RHIC) or the Large Hadron Collider (LHC). In
order to better understand results from experiments, theoretical understanding of
similar systems is essential.

In the last few years, many studies have been performed on systems with zero
chemical potential and non-zero temperature. As the determinant of the Dirac op-
erator of such systems is positive, importance sampling techniques used in LQCD
can be easily adapted to investigate such systems. Indeed, the introduction of
non-zero temperature is equivalent to the imposition of boundary conditions in the
temporal direction discussed above with 7 ~ % At low temperatures the system
is confined, where quarks are bounded inside hadrons, and at a critical tempera-
ture ~ O(170)MeV the system goeé through a crossover from a confined phase to
a deconfined phase, where quarks propagate freely in the hot medium with little

energy cost. Such a crossover can be identified by studying the corresponding order
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parameters, for example the Polyakov loop, or the quark condensate. Results from
different studies using different lattice actions and different volumes all suggest that
there is a pseudo critical temperature, where the crossover from a confined phase to
a deconfined phase happens. Although different groups find slightly different pseudo
critical temperatures, the existence of the crossover is clear. The discrepancies of
the quoted critical temperature by different groups results from the different choices
of the observable used as the order parameter.

Although systems of non-zero temperatures at zero chemical potential have
been investigated extensively, studying non-zero chemical potential systems is ex-
ponentially difficult because of the sign problem. Non-zero chemical potential is
introduced into the lattice fermion action by giving different weight to the forward

and backward temporal gauge links as following:

Uy(n) — exp(ap)Us(n)

U_4(n) = exp(—ap)U_a(n), (1.24)

where p is the chemical potential for quark flavor under consideration. Because of
this transformation, the s hermiticity property of the Dirac operator, ysD(u =
0)ys = DI(—u = 0), no longer holds for non-zero chemical potential, which makes
the Dirac determinant complex. Thus systems of non-zero chemical potential suffer
from the sign problem, which makes the application of importance sampling tech-
niques used in Monte Carlo simulation very difficult. Various methods have been
developed to study non-zero chemical potential systems, for example reweighing,
extrapolation from pure imaginary chemical potentials, small chemical potential ex-
pansion and so on. Details about these techniques can be found in Ref. [17]. All of
these methods involve certain assumptions.

Because of this difficulty, research efforts have been devoted to related, but
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simpler, systems. As there is no sign problem in a world with two colors because
of properties of SU(2) algebra, direct simulations of systems of non-zero chemical
potential in two-color QCD have been performed [18], and in this case the transition
from the hadronic system to a Bose Einstein Condensate state has been identified
at non-zero chemical potential. '

In order to study a system more closely related to the three-color world, sys-
tems of non-zero isospin chemical potential can also be directly studied by applying
current LQCD simulation techniques. In this setup, the chemical potentials of two
light quarks are given by u, = pr and pg = —pr. Because the chemical potential
given to two light quarks having opposite sign, the determinant of the Dirac opera-
tor is again positive definite, and it does not suffer from a sign problem. In Ref. [19],
systems with non-zero isospin chemical potential have been investigated from xPT,
and it has been conjectured that there is a deconfinement phase transition at high
temperature and zero isospin chemical potential, and also a phase transition from
hadronic states to a Bose-Einstein Condensate state at low temperature at isospin
chemical potential of order of the pion mass. From a grand canonical approach,
gauge configurations of targeted isospin chemical potential can be generated from
Monte Carlo method, and studies on systems with non-zero isospin chemical po-
tential with this method has bee performed in Ref. [19]. This study suggested a
transition from hadronic gas to pion condensate phase (BEC) at an isospin chem-
ical potential slightly greater than the mass of one pion, although the calculations
have significant uncertainties. Non-zero isospin chemical potential systems can also
be studied from a canonical approach by studying systems of fixed isospin charge
(multi-meson systems). In Ref [20], such canonical approach has been adopted to
study multi-pion and multi-kaon systems, and the relationship between the isospin
chemical potential and the isospin density can be computed from ground state en-

ergies of multi-particle systems. As a major part of my project, I implemented
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recursion relation based methods proposed in Ref [9] and studied multi-pion system
of up to 24 pions, and I also developed new algorithms to further extend the study
of multi-pion system to up to 72 pions. In order to better understand systems at
non-zero isospin densities and numerically verify the conjectured BEC transition at
non-zero isospin chemical potential, we have also studied the propagation of heavy

quarkoniums in the media of different isospin densities.



CHAPTER 2

Multi-meson systems !

Important goals of nuclear physics are to study interactions between hadrons,
identify two- and multi-body interaction parameters, and investigate the phase shift
of interacting particles. As strong interactions are intrinsically non-perturbative
at low energies, Lattice Quantum Chromodynamics is the only method to study
multi-hadron system from first principles.

Single hadron states can be constructed on the lattice by identifying corre-
sponding operators having the required quantum numbers. Correlation functions of
two operators located at ¢ = 0 and ¢ = ¢ can also be computed on the lattice by
contracting matching quark-antiquark propagators, and asymptotically correlation

functions assume the following expression
lim (O2(t) O1(0)) = > (0|Oz|n) (0|O1]n) e~* -, (2.1)
T—o0 -

where only operators with non-zero matrix elements survive, E,, denotes the ground

state energy of a particle with the same quantum number as state n, and T is the

IThis section is in collaboration with William Detmold, and results have been published in
Paper. [4].

16
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maximal temporal extent. From the asymptotic behavior the above correlation func-
tion, both the ground state energy of the hadron and the energies of a few excited
states can be extracted by fitting correlation functions to multiple exponentials. or
by using Prony’s method to separate contributions from different states. Similarly,
systems with multi-hadrons can also be constructed from lattice operators; for ex-
ample various three-baryon systems have been investigated in Ref. [21]. However the
number of required Wick contractions between quark and anti-quarks in computing
the multi-hadron correlation functions grows factorically (O(N,!Ng!N,!--.)), where
N,(Ny, N,) is the number of valance up (down, strange) quark in the multi-hadron
system. Naively, computing all contractions is prohibitive even for N = 12 o+
systems, which requires 12!12! = 2.3 x 10!7 contractions.

Since the multi-meson system is computationally less expensive than the multi-
baryon system, and it is also a first step toward studying more complex and more
interesting multi-baryon systems, we construct algorithms to significantly reduce
the numerical cost of computing all contractions, and we also conduct numerical
simulations to study multi-meson systems. As discussed in Chapter 1, the sign
problem in the non-zero baryon chemical potential systems resulting from the non-
positive defined fermion determinant makes directly simulating systems with non-
zero baryon chemical potential exponentially difficult. However there is no sign
problem for systems with non-zero isospin chemical potential (u;), where the up
and down quark have the same chemical potential but with opposite signs. One way
to simulating non-zero isospin chemical potential systems is by sampling using the
fermion determinant with non-zero isospin chemical potential, which is referred to as
the grand canonical method. Another approach is the canonical method by explicitly
constructing multi-pion systems of finite isospin chemical potential, and inferring the

isospin chemical potential from energies of n-pion? systems by approximating with

2Throughout, we use the name “n-pion system” for a system with isospin charge Iz = n.
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the finite derivative pu;(n) = %% = E,— FE,_1, where F, is the ground state energy of
a n-pion system®. From the study of systems of non-zero isospin chemical potential
or density at a fixed temperature, the QCD phase diagram can be investigated at
varying isospin chemical potentials.

In the next section, we will discuss one way to construct systems with the quan-
tum numbers of n mesons?, and review the recursion relation methods constructed
to perform contractions in such multi-meson systems. However even with the recur-
sion relations, studying systems with more than 24 mesons requires new methods,

which will be discussed in Chapter 3.

2.1 m-meson systems from 1 source

In this section, only n-7* systems are discussed, however systems containing
other mesons can similarly be investigated by substituting the =+ interpolator with
the correct interpolator for the meson to study.

States with the quantum number of one 7% can be constructed from an operator
7t = dysu %, but it can also be constructed from other operators, for example dysysu.
On each lattice site, there are N, N, = 12 degrees of freedom for each flavor of quark,
where N (/V,) is the number of spin (color) components, thus a maximum of 12 7+*s
can originate from the same lattice site because of the Pauli principle.

Correlation functions of a n-m+ systems residing in the same source location y

3This is only an effective chemical potential since the ground state energy is used rather than
the total energy

4For the convenience, in the following we will call such systems as n-meson system.

5In this operator, both u and d quarks are located in the same location, which is called a
point source interpolator, the operators connecting quark fields from different locations can also
constructed to better mimicking the physical wave function, which could lead to better overlap
with the physical state that one is interested in.
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can be computed as following,

Clnnt)(t) = < (Z (x, t)) (W'(y,())) > . (2.2)

This correlation function can be calculated from the corresponding uncontracted

correlation function, Q.+ (t),

Crn+ = (—1)"nH(Qnqr+ (1)), (2.3)

where ( ) stands for taking the trace both in the spin and color index. Initial

conditions for Q..+ are Qo+ = 1, Q1.+ = A, where

A=Y 5(y,x)S*(y, %), (24)

where the time dependence of A(t) is omitted, and the 5 hemiticity of the quark
propagator S(x,y) = 1557 (y,x)7s has been applied. The Q.+’s for n-7t systems

can be computed from the following recursion relation,

Qn = (Qn-1)A — (n—1)Qr_1 A. (2.5)

For the 2-pion correlation function,

Q= (QA- QA (Q2) = (A4)> — (4%, (2.6)

which agrees with Ref. [2]. The correlation function for the 3-pion system can be



20

calculated as following

Qs = (@) A—2(Qz A) = (A)’A — (A%)A — 2(A)A? + 243

(@Qs) = (A)° —3(A*)(A) — 24°) (2.7)

which also agrees with Ref. [2]. Other correlation functions can be computed by

repeated application of the recursion relation.

2.2 n-meson systems from M sources

In order to study system with more than 12 nt’s, additional source locations
or types are required. We will consider that 7*’s are distributed among M sources,
where M is an integer, which allows maximal number of 12A/ n*’s. One possible

correlation function of a system with n; 7+’s from the i** source is

x

(<ou0 ) (om0 ) ) s

where 71 = Ef‘i , i As discovered in Ref. [9], recursion relation for uncontracted

C(nnrf' yeery nMwL)(t) = < (Z 7r+(x7t) )

correlation functions, Q(n, n,,....npy)(t), which are 12M x 12M matrix defined in Equa-
tion (2.10). can be applied to study multi-meson systems more effectively than com-
puting all contraction naively. From the Q(n, n,,...na)(t), the corresponding multi-

pion correlation functions can be identified as

C(nﬂri" ..... nmw;‘)(t) = (_)ﬁ (H ”i!) (Q(nl,nz ..... nm)(f) ) 1 (29)

i
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where ( ) denotes taking trace over both spin and color degrees of freedom. The

ascending recursion relations for the Q, n,

.....

Q(ul+1,112 ,,,,, na) (Q(nl,nz,...,nM)> Pl - 7n Q(nl,nz,...,nM)Pl
+ < Q(n1+1.ng,...nk——l ..... nM)> Pk - n Q(n1+1.n2,...nk—1 ..... nM)PIc

+ ( Q(n1+1.n2 ..... nM-—l)) PM — T Q(m-}-l,ng ..... nM——l)PM (210)

and the initial conditions are Q10,..0) = P1,Q0,1....0) = F2, -+, where Fy is

(0000\

P = Apy | Arz |-+ | Arar |- (2.11)

\0000)

The A, ;’s are uncontracted single pion correlators defined as
Aivj = Zs(xi7x)3+(xjax)7 (212)
X

where the 75 hemiticity of the quark propagator S(x,x;) = 7557 (x;, x)7s has been
applied. The constructions of A;; in the 2-source case, that is 1 = 1,2 and 7 = 1, 2,
is schematically represented in Fig.(2.1), where the summation over source location,
z, is performed. Because of this summation, N.N,L? pions are allowed at the sink
by the Pauli Principle.

Similarly, descending recursion relations for the Q(x, n,,...n,) can be constructed

.....

6The dependence of @, P and A on the coordinates are suppressed in following discussions for
clarity.
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) u
® d

S(x,t;y,,0)

S'(x,ty,,0)

2

FIG. 2.1: The uncontracted single pion correlation functions from two sources, A, ;
for ¢,j = 1,2, are constructed in the spatial space by starting from source location i,
following the line of propagator, integrating over all spatial locations in the sink z, and
then returning back to the source j.

as following,

M
1
Qn = g__:l 17 @A (B A7) - Iv = Quaa, AT (- A7) (213)

where n = (ny,ny, -+ ,nm), 1k = (0,0,--- ,1,0,---) with only the £** nonvanishing

unit element, and Q2. 12, and A are constructed as

Q2,12 = (N —1)ldet(A)-In (2.14)
(An A | ...| Aiy \

A = Api | Ak | .- | Arm y (2.15)
\ Asr | Amz | - | Annt )

where A;;’s are single pion uncontracted correlation functions defined in Equa-

tion (2.12). Because of the way the recursion relations are constructed, correlation
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functions of all possible combinations of n;’s for Zf;l n; < m are required to be com-
puted in order to compute correlation functions of m-pion systems. The number of
all possible combinations, possible partitions of the integers m, grows exponentially
with the number of sources as tabulated in the Table.2.1. Because of the exponential
growing number (13™—1) of uncontracted correlation functions that need to be com-
puted, along with the size of @ , which is 12M x 12M, growing quadratically with
the number of source locations, the n + 1 source computation is significantly more
expensive than the n source computation. With the recursion relation methods,
systems containing up to 24 w*’s can be computed within a manageable amount of
time and results are presented in Section 2.4.3, however studying systems with more
than 24 n* from the recursion relation becomes extreamely time consuming. In or-
der to study systems containing even more mesons, new methods are constructed in
Chapter. 3. |
TABLE 2.1: The third row shows the total number of uncontracted correlation functions

required to be computed before getting the correlation function of the maximal allowed
pions.

n(# of sources) 1| 2 3 4 5
Max # of pions 12| 24 36 48 60
total # of combinations | 12 | 168 | 2196 | 28560 | 371292

Similar to the above recursion relations for systems with only one species, re-

cursion relations have also be constructed in Ref. [9] for systems of multi-species.

2.3 Recursion relations in momentum space

Lattice operators constructed from a point source location can not effectively
describe physical pions, which have non-zero extents more than a single point. In
order to have better overlaps to the physical pion state, lattice operators constructed

by combing quark fields from different lattice sites can be utilized. By employing
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smeared quark fields in source and/or sink, such quark operators can better repre-
sent physical pion with finite width, and thus smeared operators give better overlap
to pion ground state. On the other hand, we can also employ quark propagators,
Su/d(p, t;p’, 0), from so called gauge fixed wall sources projecting to definite momen-
tum states. Since we consider only gauge invariant correlators, gauge fixing does
not alter the result of the functional integration but allows coherent sources to be
defined on each configuration. We refer to quark propagator constructed from such

sources as colorwave propagators, and they are calculated as

Sua(P P, 0) = Y e PS8, /a(x, 1, p',0), (2.16)
where
Sua(x. t;p',0) = Z eip'ySu/d(x, t;y,0) (2.17)
y
is a solution of the Dirac equation:

3 D(y, 5 x,0)Su/alx, 9/, 0) = €z (2.18)

x,t

Working in momentum space has the advantage that we can use point source op-
erators in momentum space, while at the same time the system has a good overlap to
physical pion systems. The disadvantage is that quark propagators for each momen-
tum have to be computed individually, which would required solving Equation.(2.18)
for different momentum choices, p’. Naively computing quark propagator with n
different RHSs would required solving n independent sets of linear equations with
the same left hand side, of which the computational cost grows linearly with the

number n. However by using the fact these n independent linear equations have the

-
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same Dirac matrix, such linear systems with different RHSs can be effectively solved
by calculating eigenvectors of the Dirac matrix during first few runs. and using the
computed eigenvector to speed up the calculation of subsequent linear equations.
Details of applying this method to compute quark propagators with multiple RHSs
are discussed in Ref. [22].

By utilizing colorwave propagators, correlators for mesons systems, for example
7+, can similarly be constructed. A correlation function of a system having n,-7*s
in the first source and ny-7+s in another source with total momentum n,p A +nN2Pf,

is:

u'zm

Cn11r+,n21r+ (t) — < (Z e-—i(Pixi“Péx’i)a (xz t) ,st (xli’ t))

’
i=1 \x;,x/;

msl

: Z e®¥34d (y;,0) vsu (y;,0) > (2.19)

1\ vyj

Il

J

where @ = n; + ny. Momentum conservation requires that n;pj + n,p? — nips —
nyp3 = Z?:l py, must be satisfied to get non-vanishing Cp, z+ n,-+(¢). Each choice
of pj-, i,7 = 1,2 satisfying this relation is a dependent correlator with the same
quantum numbers. By replacing propagators in position space by propagators in
momentum space, a similar recursion relation té that presented above still holds as
shown in Ref [4]. The only difference is the construction of uncontracted correlation

functions A ; in Equation (2.12). In momentum space, the A;; are defined as
Ay () =)Y_S(pl,p)S* (p].P—Pps), (2.20)
P

which are constructed pictorially in Fig. 2.2, where the summation over momentum

p is implied, and dependence on p!, p? is suppressed.
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S(p,%.t:p.0,
S (p,7.t:p=p,, 0)

FIG. 2.2: The figure shows how to construct pion correlation function in momentum
space. A;; is constructed by following the line from source i to p, returning to source j,
multiplying the S(S*) with respect to each line and summing over p.

2.4 Simulation details

Using the recursion methods, we have studied systems with up to 24 pions.
Multi-pion correlation functions have been calculated on ensembles of anisotropic
gauge field configurations with clover-improved fermion actions generated by the
Hadron Spectrum Collaboration and the Nuclear Physics with Lattice QCD col-
laboration. The gauge action is a tree-level tadpole-improved Symanzik-improved
action [23], and the fermion action is a ny = 2+ 1 anisotropic clover action with two
levels of stout smearing [24] with weight p = 0.14 only in spatial directions. In order
to preserve the ultra-locality of the action in the temporal direction, no smearing is
performed in that direction. Furthermore, the tree-level tadpole-improved Symanzik
gauge action without a 1 x 2 rectangle in the time direction is used.

Calculations have been performed on ensembles of gauge configurations, L3 x
T = {163,20%,243} x 128, with the spatial lattice spacing of a, = 0.1227 + 0.0008
fm, and the anisotropy parameter of £ = a,/a, = 3.5 determined from the energy-
momentum dispersion relationship. On these ensembles, the quark masses are such
that pion has a mass of m, = 390 MeV, and the kaon has a mass of mg = 540

MeV. Ideally, one would like to work at physical quark masses, however simulating
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at physical masses suffers from slow convergence and singular configurations be-
cause of existence of small eigenvalues of the Dirac matrix. Larger computational
resources are required to directly exploring systems at physical masses, see Ref. [25].
The quantities m,L and m,T governing the impact of the finite volume and finite
temporal extent are m,L ~ 3.86,4.82,5.79 and m,T ~ 8.82 respectively.

In our work, colorwave propagators, Sy/4(pP,t;p’,0), are used in the recursion
relations, and they are generated from Coulomb gauge fixed configurations. On
the 163 x 128 ensembles, propagators with 33 different momenta satisfying |p| <
5 have been generated with the methods constructed in Ref. [22], while on the
20% x 128 and the 243 x 128 ensemble propagators with 19 momenta satisfying
|p| < 3 are generated. Pion systems with the same total four momentum can be
constructed from different combination of quark momenta’, but some combinations
can have larger contributions than others 8. In order to get better signals, correlation
functions computed from different choices of momenta are averaged on each gauge

configuration.

2.4.1 Multi-pion dispersion relation

According to the Equation(2.19), only those correlation functions satisfying the
momentum conservation have non-vanishing results. The momentum of individual
pion is given by pl — p?. Multi-pion systems with zero total momentum can be
constructed from pions moving with non-zero momentum, however such construction
of zero total momentum system has much smaller contribution to the ground states

than by enforcing individual pion having zero momentum. The small size of the

"Quark momentum is not a well defined quantum number, and it can be recognized as an
independent operator choice which facilitates the computation.

8Correlation functions calculated by using different quark momentum combinations on the same
configuration are strongly correlated, because propagators with different momenta are generated
from the same gauge field.
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contributions from moving pions have also been numerically verified.

Because of the way multi-pion systems are constructed in Equation (2.19), pi-
ons located in the same source have the same momentum. Moving systems are
constructed from pions with the same momentum from a single source. On discrete
lattices, only the multiplets of the momentum ép = 21’? are allowed. In units of dp,
moving systems with total momentums of p; = n - p, where p is the momentum of
an individual pion, and p = (0,0,1), (0,1, 1), and (0,0, 2) have been computed. As
the noise to signal ratio (N/S) of the correlation function of a moving system hav-
ing a center of mass momentum of p; is proportional to e(Z»(P:)=En(p=(0.00))t [26]
where E,(p = (0,0,0)))t is lowest energy of the state that n-pion operator con-
tributes, the uncertainty of correlation functions becomes larger as p, becomes
larger. This makes the extrapolation of the ground state energy less accurate for
larger pt. Because of the N/S problem, only energies of one pion systems for
p = (0,0,0),(0,0,1),(0,1,1), and (0,0,2) respectively have been extracted, and
the corresponding plot of (F(p;)a:)? as a function of (pa;)? is shown in Fig. 2.3.
By fitting to the dispersion relation, (E(p)a;)? = (E(0)a;)? + *(pa:)’, we get
¢ = 1.007(12), which is consistent with ¢ = 1.0. By choosing different combina-
tions of quark momenta, pions with definite momentum can be effective constructed

from the colorwave propagators.

2.4.2 Correlation functions of n-n* systems from 1 source

By contracting the colorwave propagators according to the recursion relation de-
fined in momentum space, n-n* correlation functions defined in the Equation (2.19)
can be effectively computed. Because of the Pauli principle, only NN, = 12 7t’s
can be put in the same momentum while still getting non-vanishing correlation func-

tions. In order to study systems containing more than 12 7*’s, additional source
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FIG. 2.3: The extracted energies of a single pion with different momenta are plotted as

the function of the momenta. In this plot, (E(p)a;)? are plotted against (pa;)2. Together
the fit to the dispersion relation is plotted, along with its 95% confidence interval.

locations are required.

On lattices with finite temporal extent, T', correlation funcfions of n-m systems
contain thermal states, where some part of the system propagates backward across
the temporal boundary to get to the sink. These contributions are particular im-
portant for multi-hadron states as they easily factorize into multiple color singlet
objects that can propagate over large distance. By including the contributions from

all thermals states, the n-m correlation functions on a finite lattice with temporal
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extent of T behaves as

1 b A
Crr(t) = E—tr[e“(T’t)H O, e O]

0
1 2 ol Y3 ~
—_  — —(T-t)H 0 —tH
7 2 2 e~ Onlm)
1 A A 3 ~
= —Z—O m;m<mle_(T——t)H 02171, — m) (n — ml e—tH 01'm>
1 ) A )
= 5 D (m] Oafn —m){n — m| Oyfm)e =08 o~ tFnm
0 n—m
1 151 n
— 5 Z ( )A:’ﬁZ;’:le_Emte—En—m(T“t) + e—Em(T“‘t‘)e—Eﬂ_mt + o
m
m=0
S A A 71 o —(Bnom+Em)T/2
= Z m AnZpye
m=0

(e—Em(t’T/2)eEn—m(t—T/2) + eEm(t_T/z)e—Envm(t—T/2))/2 + ...
1Z] n
= > ( )Agz,',;e-wn—mwmﬁ/? cosh((En—m — En)(t —T/2)) + ... (2.21)

m
m=0

In the above equation,tr stands for trace, which is evaluated in the Hilbert space by
summing over all quantum states, m. The matrix element (n — rnle~T=9H O,|m)
denotes contributions from m pions propagating in an opposite direction of the rest
n — m pions, and in the limit 77 — oo contributions form this term vanishes. In the
step 5, we simplified the notations to A%, = 1 when m = n/2, otherwise A}, = 2, and
the Z7 are the overlap factors for contribution with m 7’s propagating backward
around the temporal boundary, and the ellipsis denotes contributions from excited
states, which are suppressed by the energy gap. The E,, is the ground state energy
of a m-7* system. The ground state contribution comes from the m = 0 term, and
thermal states, which vanishes in the T — oo limit are from the m # 0 terms in the
sum.

An example of the contributions of the excited states, ground states, and ther-

mal states can be visualized in Fig. 2.4, where the red points with error bars are the
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FIG. 2.4: In this figure. the correlation function of systems containing 12-m, denoted
as Ciz(t), is decomposed into different contributions to get a better understanding of
the difficult in extracting ground state energies resulting from the necessity to including
all thermal contributions in the fit. “fay wMp” is by summing all contributions, and
“fall nomp” denotes contributions only from the ground state and thermal states, which
overlaps exactly with the “f.a1 wMp” at latter time slices, and lays over the ground state
contribution “fy” at earlier time slices. “fexcit” denotes the contribution from the first
excited state, which dominates the “fa; wMp” at early time slices. “f,” represents the
contribution from the 1st thermal states, where 1 pion propagates in an opposite direction
with others, and similar “f;” denotes contributions from the kth thermals states, where
k pions propagate in the opposite temporal direction to other 12 — k pions.
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FIG. 2.5: In this plot, Z factors, Z; for i = 0,1, --- , 6, extracted fitting correlation func-
tions for n pions for n up to 12 are compared. Zy denotes contribution from the ground
state, and Z; denotes the contribution from thermal states with ¢ pions propagating in
the opposite direction with other pions.

data of the correlation function of a rest system having 12-7*, Cj2(t), calculated
from a single source on the 162 x 128 ensemble. In order to get better overlap to
the ground state, interpolating fields are constructed such that all pions in the rest
system have zero momentum in the absence of interactions. In Fig. 2.4, “fan wmp’
is by summing the 1% excited state, ground state, and all thermal state contribu-
tions. The “fan nomp” denotes contributions only from the ground state and thermal
states, which overlaps exactly with the “fa; wMp” at latter time slices, and lays over
the ground state contribution “f;” at earlier time slices. “fexcit” denotes the con-
tribution from the first excited state, which dominates the “f.; wMmp” at early time
slices. “f)” represents the contribution from the 1st thermal states, where 1 pion
propagates in an opposite direction with others, and similar “f,” denotes contribu-
tions from the kth thermals states, where k pions propagate in the opposite temporal

direction to other 12 — k pions.
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As we can see, even for systems with 12 pions, there is no region where the
ground state dominates, thus in order to extract the ground state energy we need
to fit the corresponding correlation functions for n = 1,2,..- pions to the Equa-
tion (2.21) by including all thermal states. As the energies of the states with m < n
pion can be extracted from correlation functions of systems having less pions, there
are only one energy and multiple Z factors needed to be determined from the fit.
However, the Z factors for the ground state and thermal states are the same
within uncertainty as shown in the Fig. 2.5 and we can build this simplifing assump-
tion into the fits, which further reduce the number of parameters to be determined
during each fit to two. The uncertainties of extracted ground state energies include
the following three contributions. First, there is intrinsic statistical uncertainty com-
ing from the Monte Carlo estimations, which can be effectively estimated from the
bootstrap/jackknife method. Secondly, one kind of systematic uncertainty comes
from the fit region we choose, where other contributions, for example excited states,
are not included in our fit. Such uncertainty cam be estimated by choosing different
fitting windows, and examining the deviation of the extracted ground state energy
for different fitting ranges. Another systematic uncertainty comes from the fact
that the energies used as a prior for the thermal states extracted with uncertainties
themselves, and the contribution of this kind of systematic uncertainty is difficult
to estimate. For few-pion systems, thermal state energies are relatively small and
so are their uncertainties, thus their contributions to the systematic uncertainty of
the ground state energy is relatively smaller than the statistical uncertainty.
However, for system with more pions, such systematic contributions are magni-
fied, and it also becomes even more difficult to estimate such a contribution. Because
of the difficultly in extracting the ground state energies, and also in estimating sys-
tematic uncertainties, extracting the ground state energies for system containing

more than 12-7 on the T' = 128 lattice is very difficult, and we become less confi-
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dent on the extracted ground energies for systems of more pions. Extracted ground

state energies will be shown in the following section.

2.4.3 Multi-pion systems from 2 sources

Because of the Pauli principle, only N,;N. = 12 pions can be constructed from a
single source set up. In order to study systems having more than /V pions, a minimal
of ceiling(N /12) source locations are required. From 2-source setups, a maximal of
24-pion system can be studied. Complications of 2-source studies comes from both
the fact that the uncontracted correlation matrices are 24 x 24 complex matrices
rather than 12 x 12 for the one source calculation, and that the number of possible
ways to distribute pions between two source locations is 10 times larger than the
one source case. These two factors make the study of 2-source systems O(100) more
expensive than the 1-source study. Similar argument makes the study of 3-source
system (J(100) more expensive than the 2-source study.

Correlation functions for systems having n(n3) 7’s from the 1st and 2nd source,
Chp,.no(t), can be calculated in the momentum space by using Equation ( 2.19).
By implementing the recursion relation, correlation functions of all possible ways
of distributing pions between two sources can be calculated. By fitting Cp, p,(2)
according to the Equation. (2.21), ground state energies, Ey, n,, are extracted from
Ch, n,(t) for individual combinations of n; and n,. Extracted E,, ,,’s are compared
in Fig. 2.6, which confirms that the ground state energy of a multi-pion system is
independent of the distribution of pions between all sources.

Comparing to the 1-source system, fitting 2-source system requires more free
parameters to be fitted, thus in addition to the large computational cost of the
correlation function, extracting ground state energies from correlators also become

more difficult. This is why we only extracted E,, ., for systems with up to 10 pions.
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FIG. 2.6: The ground state energies, E,, n,, extracted from Cp, ,,(t) for different n,
and ny are compared. The x-axis are chosen to be 2n; + n2 in order to separate E,,, .,
with the same n; +n2. The nth row corresponds to the ground state energy of an n-pion
system.

Even though we are able to compute Cy, ,,(t) for n; + ny up to 24, ground state
energies are hard to extract reliably for large number of pions. In order to get better
signal for ground state, longer temporal extent are needed to suppress contributions
from thermal states propagating around the temporal boundary. Studying systems
containing more than 24 pions would require a third source, as discussed before, the
3-source computation is O(100) times more expensive than the 2-source calculation,
which make the computation of correlation functions of systems of more than 24
pions extremely time consuming. In order to study systems with more pions, new

methodologies are developed in the following section.



CHAPTER 3

Improved methods to study many-meson

systems 1

As discussed in the previous chapter, a recursion relation for the C,, ., (¢) can
be derived and it has been applied in the last section to study systems containing
up to 24 pions. Since the spectrum is independent of the choice of interpolating
operators used to probe it, the C,, n.(t)’s have the same energy spectrum for
all possible combinations of n;’s as long as 7 is fixed, so separately computing
correlation functions of all combinations of n;’s is redundant. This has been verified .
numerically for the case of 2 sources in Section. 2.4.3. As we are primarily interested
in the energy spectrum of multi-pion systems, we can thus identify a combined

correlator Cy,(t) as the term having prefactor A" from the expansion of det[1 + AA],

1This section is in collaboration with William Detmold and Kostas Orignos, and results have
been published in Paper. [5].
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with
(Pl,l P1,2 PI,N\
A=P+P+...+Py= Pk,l Pk,g Pk,N : (31)
\ Pni| Pna2|...| PynN }

where Pi’s are defined in Equation (2.11).

Crr(t) computed in such a manner is a complicated combination of the various
Chy na,..ny (t) with fixed 7, in which we do not identify which pions originate from
which source as this is not physically useful information. For multiple source con-
tractions, even terms representing more than 12 7n*’s located in a single source are
included, however such terms vanish ideritically and so do not produce additional
noise in numerical calculations. As many fewer correlation functions are needed for
a given 71, computing Cr. (%) is a computationally simpler task than recursively com-

puting all Cp, n,.. ay(t). In the following sections, we will construct four algorithms

to further speed up the calculation of Cj,(t) and compare each algorithm in terms
of precision requirement and numerical cost. By applying these new algorithms, we

will investigate systems containing up to 72 pions in Chapter 4.

3.1 Vandermonde Matrix method (VMm)

As described above, the correlation function of an n-n* system (Cr.) can be

identified as the coefficient of A™ from the power series expansion of det[1 + AA]

det[l1 + AA] = 1 + ACix + A2Cor + . .. + AN Ciopy, (3.2)
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where A is a 12N x 12N matrix? constructed from uncontracted correlators following
Eq. (3.1). A simple way to get C,, is by computing Eq. (3.2) for 12N different
choices of A (A1, ..., A12n). The resulting system of equations can be written in the

following matrix form

(d_t[%él—_l\ (1 AAZ L Ai”’—‘\ (Cl,,\

—l—l—“e“ﬂ*f‘“l 1 X A2 ... AN Cor 33)

\dﬂ[ﬂw_f‘l:_l) kl Aw Ah o AL \Cme/

Ai2n

The matrix on the RHS of Eq. (3.3) is a 12N x 12N Vandermonde matrix, for
which there exist analytical forms for the determinant and inverse (see for example
Ref. [27]). The inverse matrix then allows us to determine the C,,’s from the
numerical calculation of the determinant vector. However, when the number of
sources becomes large, elements of this matrix can become very small or very large

1,2,...,12N-1
/\i

because of the factors of , which makes the computation of the inverse

very demanding in precision and eventually resulting in significant numerical errors

unless very high precision is used.

3.2 FFT method (FFTm)

By choosing A = exp(i27 fy - 7) in Eq. (3.2), the expansion becomes
det[l + /\A] =1+ e2i7r_f0-‘rcv1"r + e4'i7r_f(,.'r6\v2‘,r + .+ 624i7ero-TClzN7” (34)

which contains contributions from signals of frequencies k fy, k = 1,2, ... 12N, which

can be thought of as a Fourier series. Because of this feature, the magnitude of

2In pervious chapter M denotes the number of source, while in this chapter N is used to denote
the number of source.
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each frequency component can easily be extracted using a Fast Fourier Transform
(FFT). The magnitude corresponding to frequency k fy is equivalent to Cy, times a
normalization constant, which depends on fy and 7. In order to get better signals,
data from multiple 7’s are beneficial, which results in the need to calculate many
determinants, and makes this method expensive. On the other hand, specific choices
of fo and 7 can minimize the number of required determinants. We set 7, = n dt,
for n = 1,2,...,T where dt is the minimal time step and T is the closest prime
number larger than 12N, and f, = dt—l‘—T and then compute det[l + A\, A] with A, =
exp(i2n fo- ). After applying the FFT to this series, the amplitude of the frequency
k fo is TCy,. With such choices of fy, 7, and 7, the number of determinants needed
to compute is the same as the Improved Combination method (ICm) discussed

| below.

3.3 Combination method (Cm)

The FFTm discussed above is constructed from a certain choice of A’s so that
the expansion of the determinant can be recognized as contributions from different
frequencies. Similarly, by studying the properties of Eq. (3.2), another choice of A’s
can be utilized to eventually separate det[1+AA] into groups of functions individually
depending only on 3 correlation functions. This method requires us to determine
the inverse of a 3 x 3 matrix, rather than of a 12N x 12N Vandermande matrix,
to solve for the individual correlators and is thus more numerically stable. This
method is applied by the following steps:

Step 1: Choose f; = 1 and compute

DV (f1A) = det[l + f1AA] — 1

= fixCir + (LX) 2Con + - - - + (iN)*N Crong (3.5)
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Notice that Dgl)( f12) depends on all correlators Cig, Cor, .. ., Ciang.
Step 2: Choose f; = exp(im), and construct the following contractions of the

functions Dgl)( faA) to generate the following two new quantities:

DP) = DV(HiA) + ADY(fo)),

D) = DO(HA) + LDP(f20). (3.6)

By inserting the values of f; = 1, fo = —1, it is clear that the DP()\) only depend
on C(z_iyr, C(5-iyx, - - ., and so the correlation functions have been separated into two

groups. Specifically, we have

D) = N2Cyr + M Ci + -

D = NChp + A3Cap + - - - (3.7)

Step 3: Choose f3 = exp(i%), and construct the following combinations of the

functions D§2)( faA) and DS (f,N):

DI = DP(A) + HADP(fsN), (3.8)
DPMN) = DP) + £2DP(fsN),
DY) = DO + fifsDP(f30),

DPO) = DY)+ fofsDP(f30),

and we see that the Dfs) (A) for i = 1,2 depends on C(g42i)x: Cla+2iyr, - - -, and Df?’)(/\)
for i = 3,4 depends on Cig—_2i)x, C13—2i)x, - - -- In each step, one function depending
on a block of Ci,’s is separated into two functions each depending only on half of

the Ci,’s from the previous function. We iterate this procedure until blocks of only
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3 Cir’s are reached.

'To summarize this method, in “step n”, f, = exp(iz7=z) is chosen, and after this
step DY), i =1,...,2"2, will be separated into 2"~! functions, D™ ()), each
depending on 12N /2"! C,’s. At a given stage, D& ~l)()\) is a function depending
on a block of Ci,’s. Two functions, Dg’,’,z_l and Dg’,‘,z, each depending on a half
of the original block of Ck,’s are constructed from D" (A) + g2m-1 - D&Y (fa-A)
and DY) + gom - DS (f - A), where the gi’s, k = 1,2, ..., 21, are prefactors
used to construct new functions depending only on half of the Ci,’s, which p& _1)( A)

depends on. The prefactor gx in step n is constructed in the following way.

Group 1: q = Jiu
Group 2: g = fa-q,
Group 3: g = f3-qr-2.k=3,4,

Group n: G = fo Quogn2,k=2""241,2"242 201 (3.9

where “Group m” contains 2™~2 functions for m = 2,3,...,n. This process is re-
peated until functions, D,(:') (A), each depending only on 3 C;,’s are reached. Eventu-

ally det[1 + AA] is separated into functions, D,(f')()s), depending on following blocks
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(Bk):
Group 1: B, = [C4N7r,CSNm Cl2N7r]
Group 2: B; = [Cong, Conn, Cronn] = Csub(By)—2N
Group 3: By = [Cinx, Cing, Crina] = Csub(By)-N (3.10)
By = [Cnx,Csnr, Conz] = Csub(By)-N
GI‘OUp n: Bk - CSub(Bk 2"_2)__4_1_\/_2_, k - 2Tl—2 + 1, 2n_2 + 2: P ’27!—1
_ AN

where Sub(Bjy) are the sub indexes of the C’s in By, for example Sub(B;) =
{4N.8N 12N} and Cgups,)-28n = {Conn, Cenn,Crons}. The dependence of By
on the corresponding C’s can be determined from the above recursion relation.

In order to get the individual Cj;’s, D,(cﬁ)(/\j) must be calculated for three dif-
ferent \;’s. Different choices of A;’s have no effect on the extracted Ci;’s (we have
confirmed this numerically). From the D,(cﬁ)()\j)’s, the Ci's are extracted by solving

the following equation, taking the block [Cyny, Csnr, Cianx] for example,

D{” (M) MN AN AN Cane
D) | =1 ¥ XV A2V || Conn |- (3.11)
pPog )\ o )\ G

Inverting this matrix does not suffer from the numerical instabilities seen in the
VMm, however as 12N becomes large, even computing the inverse of these 3 x 3

A2N can be out of double precision limit for

matrices requires high precision, since
very large N. Fig. 3.1 shows a comparison of the correlation functions computed
from 2 sources by applying the Combination method and Improved Combination

method to be discussed below. For the N = 2, Ci,(t), Cox(t) and Ciz.(t) are
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computed simultaneously by inverting a 3 x 3 matrix, similarly for (C2.(t), Cionr,
Csx(t)), and (Csr(t), C11x(t), Ciox(t)). Because of the large magnitude difference
between Cir (Car, C3r) and Ci7x (Cigr, Cigr), Which becomes smaller for Cy, (Csa,
.-+ ) and Caor (Caiq, -+ ), at 64 digit precision, Cy,(t), Ca.(t) and Cs3,(t) show signs
of numerical break down at earlier time slices, which goes away at higher precision
(100 digit), indicating that even calculating the inverse of the 3 x 3 matrix needs
high precision to get the correct results.

As constructed, this method is only applicable to a 2" source problem. In order
to solve problems having an arbitrary number of sources, we extended this to an

Improved Combination method in the next section.

3.4 Improved Combination method (ICm)

As there are 12N terms having X in the expansion of det[1+AA] for a 12N x 12N
matrix, Equation (3.2), the Combination method does not allow us to determine
functions depending on less than 3 C,’s. A similar problem appears in the applica-
tion of the FFT. In order to use FFT, 2" data points are required. If the number of
points in a series is not equal to 2", points with value zero must be appended to the
original series to produce a series of length 2". Similarly, we can append additional

Cix's to the expansion of det[l + AA], as:

det[l + AA] = 1+ ACyy + A2Cor + ... + MM Crions + M2V Clianstyn + oo + AT Comyr

(3.12)

where C,, = 0 for all p > 12N. The power m is chosen such that 2™~! < 12N <
2™, With this new arrangement, exactly the same prescription discussed for the

Combination Method can be applied, but in the last step the D,(Cﬁ)()\) individually



44

1010

~ . iCmo4 :
« « CM64 .

« o*"*

« « CM100

0 50 100 150 200 250 0 50 100 150 200 250
t t
60
10 . « ICM64
40 « » CMb64
10 « « CM100
1020
1
10—20
10740
107%°

0 50 100 . 150 200 250

FIG. 3.1: C2.(t), Ci2x(t) and Ca3.(t) calculated from N = 2 sources by ICm with
64-decimal digital precision, denoted as ICm64, and Cm with 64(100)-decimal digital
precision, denoted as Cm64(Cm100), on a single configuration are compared. Correlation
functions from Cm100 agree with those from ICm64, however for the same precision, the
ICm gives more accurate result than Cm. For Cax(t), Cm64 fails because of numerical
inaccuracy as discussed in the text.
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FIG. 3.2: Correlation functions on a single configuration at ¢ = 20 from 2 sources com-
puted with the Improved Combination method using the arprec library [8] at various
precisions: ‘arprec X' denotes that the calculation is done with X-decimal digit preci-
sion. The C\,;(20) for n = 1,2,...24 all agree for the different precision calculations just
as they should, except for the calculation from 16-digit precision. However C,(20) for
n = 25,26,...,32 are all machine zero at each precision. The disagreement of 16-digit
precision indicates higher precision is needed. A similar comparison is shown for the
single source correlation functions in the insert.

45



46

depends only on a single correlation function.

A significant advantage of this method compared with the Combinatin method
is that no matrix inversion is required, so it is consequently less demanding in
numerical precision, see Fig. 3.1, and in addition, problems with arbitrary numbers
of sources can be solved with this method. Correlation functions appended to the
series are solved for simultaneously with the other Ci,’s, providing a numerical check
of the validity of this method. In Fig. 3.2, correlation functions calculated from
1-source and 2-sources on a single configuration are shown for different precision
(we use the “arprec” library [8] to perform arbitrary precision calculations). As
expected, all Cp,'s for p > 12N are indeed numerically equivalent to zero, decreasing
exponentially as the the numerical precision is increased. Since this method is more
numerically stable than the Combination method, and can also solve problems of

arbitrary number of sources, it is used in our further studies.

3.5 Generalization to 2 species from NN sources

The methods discussed above can easily be generalized to two species of mesons
by studying properties of the expansion of det[l + A\ A + A\, B], where A and B are
uncontracted correlation functions of two distinct species, for example 7+ and p*.

We can write
det[1 +MA+XB] =1+ MTo+ M1+ ...+ T+ ..., (3.13)

where

M
k

k+1

Ti( M) = XConxp + ( K

)AICIA,’CB + ...+ ( )/\iv’—kC(M_k)A,kB, (314)
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where M = 12N is the dimension of the matrices A and B, and the correlation
functions, C, 4 »B, are complicated combinations of correlation functions of a system
having m-A’s and n-B’s distributed among different sources in all possible ways.
The Tj(A1), for j = 0,1,..., M for one A; can be separated out by applying the
methods discussed above with different choices of A;’s, and then by applying the
method again for different choices A;’s for all T;(A;)’s, the Cp,4,8’s can be separated
out. This can be further generalized to correlators of arbitrary number of species as

necessary.

3.6 Eigenvalue method 3

All methods discussed above can be easily extended to study multi-species
systems. If we are only interested in systems containing one species, we can explore
the following relationship between determinant and eigenvalues to further speed up

the computation of n-meson correlation functions.

12N 12N
det[1+ AA] = JJ (1 + Aai) =D Ced¥, (3.15)
=1 k=0

where a; is the i** eigenvalue of the matrix A. The C) can be obtained by equating
coefficients of A¥ one both sides. The main cost of the method is computing the
eigenvalues of the matrix A, and it scales as (12N)3. Thus the computational cost

of this method is O(N3).
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FIG. 3.3: The left panels compare 1-source calculations from the VMm, FFTm and Cm,
and the right panels compare Cy,, calculated from 2 sources by the three methods. The
real propagator is taken from one time slice, ¢ = 20. The Recursion Relation method
(RRm) [9] is also compared with other methods in the lower left plot as a check on the
validity of the Cm. For the 2-source calculation in the toy model (top right) with VMm,
two different sets of )\,,s have been used, denoted as VMm1 and VMm2. For VMm
applied to the real propagator calculations, only one choice of X’s is shown. “Cm 16
(32)” denotes that calculation is done using Cm with 16(32) decimal digit precision.
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3.7 Performance of different methods

In order to test the accuracy of different methods at a fixed precision, we com-
pared correlation functions calculated from the VMm (implemented in MATLAB),
the FFTm (implemented in MATLAB), and the Cm (implemented in C++ using
the “arprec” high precision library [8]). We first considered a toy model with matrix
elements Ay, ,» = sin((m — 1)(n — 1) + 2) + icos(2(n — 1)) for 1 and 2 sources in the
top half of Fig. 3.3. For this test, the A’s used in the VMm and Cm are randomly
chosen between —0.25 and 0.25, however C,,,(t) is shown to be independent of these
choices. Results from VMm on 1-source agree with those from the FFTm and Cm
for any set of A. However for 2 sources, the FFTm and the Cm give the same results,
but the VMm gives inconsistent results and changes with different choices of X’s,
signaling a breakdown of the VMm and the requirement of higher precision. Similar
tests have also been performed with the matrix elements A, ,, extracted from real
quark propagators and the results are shown in the lower half of Fig. 3.3. In this
test, the Recursion Relation method (RRm) has also been used to compute the Cy,’s
in order to validate the new methods. For the N > 1-source calculation no direct
comparison with the RRm is made, since the Cy, computed from the new methods
are complicated combinations of all Cy,, . ,,.’s with ZZN= . i = . We verified how-
ever that the energies extracted for these correlators with either method, RRm and
Cm, are in agreement. In contrast to the toy model, for the real A, ,,, the VMm
gives more accurate results than the FFTm. However both tests show that the Cm
gives the most accurate results for a fixed precision. Tests with real propagators on
2-source shows a break down of Cm on C;, and C,,, however this breakdown can
easily be corrected by working at higher precision.

The main purpose of constructing these new methods is to expedite the con-

3This method is suggested by Anyi Li [6]
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FIG. 3.4: Comparison of the number of multiplications required for each method (RH
axis), and the corresponding expected computation time of Cp,(t) forn =1,2,...12N on
a single time slice, corresponding to one application of the specified contraction method
in seconds using a single 2.4 GHz Xeon core (LH axis). The computational cost of the
ICm is taken from the actual running time, and it is used to normalize the time scale so
that the projected running time of other methods can be read out from the LH axis.
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TABLE 3.1: Scaling of different methods in terms of number of multiplications for an N
source calculation.

scaling

RRm | 12*N%1exp(2.8(N — 1))

VMm (12N +2)(12N)®
Cm 3. 2e2U4N)(12N)3
ICm 2ﬂoor(log2(l2N))+2(12N)3

tractions required in computing correlation functions for systems comprised of large
number of mesons. The numerical scaling of the Recursion Relation method, Vander-
monde Matrix method, Combination method and Improved Combination method
(the FFT method costs the same amount of time as the ICm if fy,, 7 and 7 are
chosen appropriately) are compared in Table 3.1. For each method, we determine
how many multiplications are required. From Ref. [9], the computational cost of
the recursion relation method is proportional to 12 N*exp(2.8(N — 1)), where N
is the number of sources. The VMm requires a calculation of 12N determinants,
one inversion of 12N x 12N matrix and the multiplication of a 12/V x 12/N matrix
and 12N x 1 vector. The dominant contribution to the computational cost of the
other two methods comes from calculating a large number of determinants. For the
Improved Combination method, a step-n calculation requires the computation of 2"
determinants, while the Combination method requires 3-2" for a step-n calculation.
To solve an N-source problem, the Combination method requires log 2(4/NV) steps
for N = 2™, where m is an integer, and the Improved Combination method requires
floor(log,(12N)) + 2 steps. Taking account of all the determinant calculations that
are needed, and the computational cost of each determinant (~ (12N)? using LU
decomposition), the numerical cost of each method is tabulated in Table. 3.1, and
compared in Fig. 3.4. Although the recursion relation method significantly reduces
the cost of contractions over the original (12N!)? scaling, the computational cost of

the recursion relation method is much larger than other methods, all of which scale
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similarly. Using the ICm, we turn to numerical investigations of systems of large

number of mesons in the next chapter.



CHAPTER 4

QCD at Finite Isospin Density

4.1 Lattice details

In this Chapter, we apply improved multi-meson methods constructed in Chap-
ter (3), and study systems containing up to 72 pions. Calculations in this chapter
are performed on ensembles of anisotropic gauge field configurations with clover-
improved fermions [14] that have been generated by the Hadron Spectrum Col-
laboration and the Nuclear Physics with Lattice QCD collaboration. The gauge
action is a tree-level tadpole-improved Symanzik-improved action, and the fermion
action [28, 29| is a ny = 2 + 1 anisotropic clover action [30] with two levels of
stout smearing [24] with weight p = 0.14 only in spatial directions (see [15]. for
more details). In order to preserve the ultra-locality of the action in the tempo-
ral direction, no smearing is applied in that direction. Furthermore, the tree-level
tadpole-improved Symanzik gauge action without a 1 x 2 rectangle in the time
direction is used.

Four ensembles of gauge fields are used in this study with volumes L3 x T of

{163 x 128, 20° x 128, 24° x 128 and 20 x 256 }, and with a renormalized anisotropy
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TABLE 4.1: Details of the four gauge ensembles with the same lattice space a = 0.1227+
0.0008 fm used in this chapter. Ny denotes the number of configurations used in the
current calculation. In the last two columns, Ng. is the number of source times used on
each configuration and Ny om is the number of momentum sources used for each source
time.

LPxT (@) | L (fm) | msL | mxT | Netg | Nsre | Nmom
B1 163 x 128 2.0 3.9 8.8 180 8 33
B2 20° x 128 2.5 4.8 8.8 51 8 19
B3 243 x 128 3.0 5.8 8.8 98 8 19
B4 20° x 256 2.5 4.8 17.6 | 147 16 7

€ = as/a; = 3.5, where a, (a;) is the spatial (temporal) lattice spacing. The lattice
spacing is the same for each ensemble, a, = 0.1227 + 0.0008 fm [15], which gives
spatial extents L ~ 2.0,2.5,3.0 fm for L = 16, 20, 24 respectively. The same bare
inputs of light quark mass a,m; = —0.0840 and strange quark mass a;,m, = —0.0743
are used in generating each ensemble, giving a pion mass of m, ~ 390 MeV and
a kaon mass of mg ~ 540 MeV. The quantities m,L and m,T, which determine
the impact of the finite volume and temporal extent, are m,L ~ 3.86,4.82,5.79 for
L = 16, 20, 24 lattices and m,T ~ 8.82,17.64 for T' = 128, 256, respectively. Details
of the four ensembles are summarized in Table 4.1.

In our work, a momentum space representation of the contractions is used and
quark propagators in time-momentum space, which we refer to as “colorwave prop-
agators”, Sy/qa(p,7; P’,0), are calculated on Coulomb gauge fixed configurations’.
Details about how to compute colorwave propagators are discussed in Section. 2.3.

A correlation function of one pion with momentum py can be constructed by

1As we compute gauge invariant quantities, our results are independent of the gauge fixing
procedure.
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projecting both sink and source to the same momentum py as:

Clw(pfv t) — <Ze—i(91x—[’2x')a(xl’ t)’75 u(x’ t) Z CJlilbye—‘i(p"PI)y' ﬁ(y,O)’)%d(y,’ 0)>

x.x’ yy’

= > <"‘_ip1xe"'p’ ¥5Su(x, t;y,0) y5eP?* e~ P-PIY’ (WsSZ(X’,t;y’,0)75)>

x.x'\y.y’
= <Z Y5(eT PP S, (x. y,O))Ze'“"'"’”'eipzx'vs(vssl(X’,t;y',0)75)>
x’y xl’yl
= <755u(p1, t:,0) - Y5 (ysS(—=p2, t; Pr — P, 0)75)> , (4.1)

where p; — p2 = py. Each choice of {p,,p2} and p satisfying momentum con-
servation is a separate correlation function with distinct creation and annihilation
interpolating fields, and we have suppressed the dependence of Cj, on p;, p2 and
p. During the calculation, we held p;, p2 and py fixed and summed over all p’s for
which we have computed colorwave propagators (see Table. 4.1) in order to get more
statistics. In the second step, the definition of propagator S, 4(x’, t; y,0) and the 75
hermiticity of the propagator is used. The definition of the colorwave propagator,
Eq. (2.16), is applied in the last step.

The correlation functions of a system having n 7+’s in a single source, with

total momentum Py = n p; can be constructed similarly:

Con(t, Pf) = <(Ze"'“"*‘*’*x’)E(x',t)w(x,t))

x,x’

: (Z e e PPV (y, 0)ysd(y', 0)) > : (4.2)

Y.y

where the dependence of C,,, on p;, p2z and p has also been suppressed in Eq. (4.2).
Because of the Pauli exclusion principle, systems constructed from a single
source in momentum space can only reach a maximum of 12 7*’s. In order to put

more pions into a system, additional sources are required. Correlation functions of
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a N-source system having 7@ = 3 1\ | n;n+’s with total momentum P; = Y7 p;,

are given by

Cnm’,...,nN‘n(t7 Pf)

I
~
=

(Ze"“"‘i"""’é"’“E(xz,t)vsu(x..,t>)
x JI| 22 emve®Pualy;, 0)d(y;. 0) > (43)

where n; is the number of pions in the i** source, and momentum conservation
SN ni(pi - ph) = Z,ﬁ'=1 Py,, must be satisfied in order for the correlation functions
to be non-vanishing. Here, only systems with total zero momentum, P, = (0, 0,0),
are investigated, and py,’s for each source are also fixed to py, = (0,0,0)%2. The
improved multi-meson methods constructed in the last chapter apply equally well in
momentum space and are used in our work. The uncontracted correlation functions
in momentum space are calculated according to Equation (2.20).

For the T' = 128 (256) ensembles, 8 (16) colorwave propagators are generated
on each configuration located 16 time slices apart to minimize correlations between
propagators. For ensembles { B1, B2, B3, B4}, {180, 51, 147,98} configurations and
{33,19,19,7} momenta are used respectively. In order to reduce contamination
from thermal states, a temporal extent of T = 256 is desirable for systems of large
numbers of pions. On the B1 and B3 ensembles, the A+ P (antiperiodic + periodic
propagator) method [31, 32, 33] is applied to effectively double the temporal extent,
see Appendix A. The validity of this method is investigated by comparing results
from ensemble B4 (20® x 256) and with those from ensemble B2 (20% x 128) with

the A + P method and it is found to be sound at the precision we achieve for the

2Using non-zero momentum sources, for example py, = (0,0, —1) and py, = (0,0.1), to con-
struct a zero momentum system has also been investigated, and we find that higher momenta
sources have smaller contribution to the correlation function of a system at rest than zero momen-
tum sources. Technically, different weights can be chosen in Eq. (4.3) for each combination of py,
to get better overlap to the ground state.
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FIG. 4.1: The black data is the effective mass calculated from the original data from
ensemble B2, and blue line through the data points is reconstructed from the ground
state energies extracted from the ensemble B4 as discussed in the main text. The red
straight line is the fitted value of E,,, extracted from the correlators of ensemble B4.

systems under consideration as discussed below.

4.2 Ground state energies

Previous studies of the energies and isospin chemical potentials [34, 4] on ensem-
ble B2 showed that thermal states contribute significantly to correlation functions
and, even for Cja,(t), the ground state does not dominate in any region of Euclidean
time. The expected form of correlation functions of an n-n+ system with temporal
extent T is expressed in Equation (2.21).

For the T' = 128 B2 ensemble, effective mass plots are shown in Fig. 4.1 for vari-
ous n, and it is clear that correlation functions receive significant contributions from
thermal states. Their analysis requires a fit including all thermal states, Eq. (2.21),
in order to extract the ground state energy. Since the number of free parameters
in the fit grows with n, the systematic uncertainty of E,, becomes large and we
are unable to extract any accurate information at large n. In order to minimize

contributions from thermal states, a longer temporal extent is required.
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FIG. 4.2: The effective mass of Cap,(t) from the 2-source calculation on the ensemble B4
is shown on the left along with the extracted ground state energy represented as a black
band. Similarly, the effective mass of Cyox(t) (C72.(t)) from the 4 (6) source calculation
on the same ensemble and the corresponding extracted ground state energy is shown in
the middle (on the right).

Thermal effects are exponentially suppressed by the larger temporal extent and
the ensemble with T' = 256 has greatly reduced contamination, and a simple single
exponential fit at intermediate times is sufficient to extract ground state energies,
even for E;y,, as shown in Fig. 4.2. Effective mass plots of Cy, Cyor and Cra, for
this ensemble all show a plateau region, and a single exponential fit, only including
the term in Eq. (2.21) with m = 0, is enough to extract the ground state energy
E,.. However, for significantly larger numbers of pions, a still larger temporal

extents would again be necessary.

4.3 Energies from 203 x 256 ensemble

Correlation functions. defined in Eq. (4.3), for systems with the quantum num-

bers of up to 72 n*’s have been computed on the B4 ensemble. In this chapter, only
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systems having zero center of mass momentum are investigated. For a discussion
of results for different total momenta, see Ref [4]. Because of precision issues, we
have computed correlation functions from 2, 4, and 6 sources, from which E;,;_24x,
Essrsa8x and E4gr 72, have been extracted respectively, where E,, is the ground
state energy of a n-nt system at rest. Fig. 4.3 shows Coo.(t), Caor(t) and Cro.(t)
from 6-source contractions. The breakdown at earlier time slices of Cag,(t) indi-
cates that computations with higher precision are required in order to use 6 sources.
Computations with arbitrary precisions are accessible with the “arprec” library [8],
however at the same precision, they are ~ 5 times more expensive than with the
fixed quad-double precision (implemented using the “qd” library [35]). In our main
studies, we perform all contractions in quad-double precision, and multiply the un-
contracted propagators by a prefactor before performing the contractions such that
the particular Cyr(t)’s that we focus on do not suffer from the limit of the floating
point dynamical range of quad-double precision (this prefactor is removed at the
end of the calculation).

As the correlation functions of systems containing many pions span a large
numerical range, 10%° ~ 1072% for Cyy,(t) for example, inverting the correlation
matrix during a correlated fit brings in significant instabilities, thus F,, for n =
1,2,...72 are extracted from uncorrelated fits in this study. The fitting window is
chosen between time slices where a clear plateau region of the effective mass plot
can be seen. Statistical uncertainties are constructed from fits to multiple bootstrap
resamplings of the ensemble (we use N, = 88 samples), and systematic uncertainties
are estimated by shifting the fitting window forward and backward two time slices.

Since the ground state energy of a system containing many pions becomes large,
even fitting correlation functions with only one exponential becomes problematic
because of precision. Taking the 25-7% system for example, the ground state energy

of this system is Fa5, = 2.76 in temporal lattice units, and the fit is performed



101 — 10150
s .o Ouad-doubig precision b ’-_. « » Quad-double precision
10 Y « « Double precision - » « Double precision
_— « « QD 2sources 10'®
107
g
&)
1
1%
1072 10710 o
0 20 40 6()t 80 100 120 0 20 40 60 80 100 120
107
« « Quad-double precision
» « Double precision
10100
5 1
£
O 100
10™
107%°

~300
0™ —36"40 sot 80100120

FIG. 4.3: The correlation functions, Cagy(t), Caox(t) and Crpr(t), calculated from 6-
sources with quad-double precision and double precision are compared in the left, center,
and right plots respectively. The same calculations done with double precision shows
even more severely breakdown, indicating that high precision is needed in order to study
many pion systems. Although Cyg, from 6-sources with quad-double precision breaks
down at earlier time slices, the rescaled Csg, from 2-source computations, which is shown
also in the left plot, is free from precision issues and is used in extracting the Exo,.
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FIG. 4.4: C},,.(t) is shown on the left, where the blue points are data, the red line
is constructed from the fit, and two vertical dashed lines indicate the fitting window.
Similar plots of preconditioned Cj,(t) and C7,, () are also shown.
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FIG. 4.5: Effective mass plots with A + P method on ensemble B1 are shown here. The
effective mass of Cog,(¢) from the 2-source calculation is shown on the left along with
the ground state energy represented as a black band. Similarly effective mass plots of
Cyor from 4-sources and Cya,(t) from 6-sources calculations and the extracted ground
state energies are shown in the middle and right respectively.

between t/a, = [15,58] £ 2. The correlation function varies over 140 orders of
magnitude from ¢t = 15 to ¢ = 58. Such a large change in magnitude requires care
with precision and in order to ameliorate this problem, instead of fitting correlation

functions directly, we fit the following preconditioned correlation functions:
Cv,ur(t) = Z;; exD(éEnt)Cmr(t)’ (4-4)

where C),.(t) is the original correlation function, and Z,,, and § E, are fixed numbers,
chosen so that C’_(t) changes less dramatically inside the fitting window. Since the
original correlation function behaves like a single exponential inside the plateau
region where the ground state dominates, multiplying another exponential will not
change this feature. Furthermore, the extracted ground state energy should have
no dependence on Z/, and  E,, which is numerically confirmed. The preconditioned
correlation functions and the corresponding single exponential fits for n = 20,40

and 72 are shown in Fig. 4.4.

4.4 Energies from 163 x 128 and 242 x 128 ensembles

As the A + P method has been validated on the B2 ensemble see, systems

having up to 72 nt’s has also been studied on ensembles Bl and B3 using this
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FIG. 4.6: Effective mass plots with A &= P method on ensemble B3 are shown.
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FIG. 4.7: The ground state energies of a system of n-nt(E,,) extracted from ensembles

B1 (red), B3 (blue) and B4 (green) are shown. The black line represents the total energy
of n non-interacting pions.
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method. Effective mass plots with extracted ground state energies from ensemble
B1 are shown in Fig. 4.5 and those from ensemble B3 are shown in Fig. 4.6. All
calculations are done with the ICm, and ground state energies are extracted with
the same statistical method as those in the Section 4.3. The extracted ground state

energies from all three volumes are shown in Fig. 4.7.

4.5 Interaction parameters

By considering the energy shifts of two particle states in a finite volume, AF =
E; — 2E, = 2,/p? + E? — 2F; and E, = m, here, Liischer derived a relationship
between the phase shift, (p), and the interacting momentum, p = |p|, given by [36,
37] (see also [38]),

2
pcoté(p) = ;IL— S((%) ) , (4.5)

which is valid for momenta below the inelastic threshold. The regulated three-
dimensional sum, S(x), is

Aooo [ HIA
S(z) =lim | > . arA ) (4.6)
Jj

where the summation is over all triplets of integers j such that [j| < A.
By performing an expansion in small 1/L, the energy shift of n identical bosons
in a finite volume, AE, = E, — nFE;, has also been studied up to O(L~7) in recent

work [39, 40, 41, 42]. The resulting shift of energies due to both two-body and
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three-body interactions is given by [41]:

ara , a 7 \2 )
aB, = 12 02{1_(E)I+(E) (22 + (20 - 5)]
— 3
a
- (ﬁ) [13 +(2n —T)ZJ + (5n° — 41n + 63) lc]
— 4
+ (%) [1'4 — 6T + (4+n—n)J? +4(27 - 15n +n>I K

+(14n3 — 227n% + 919n — 1043)L ] }

n 192 a@® 6ma’
n 1 1 _

where "C,, = m!/(n!(m — n)!), and the parameter a is the inverse phase shift at
the binding momentum of the two body system (below we will refer to this as the
effective scattering length). This is related to the scattering length, a, and the

effective range, r, by

a = @ — %531«(1 - (%) I) , (4.8)

where a and r are parameters in the effective range expansion

r

5P+ 0", (4.9)

1
pcotd = —— +
a

The geometric constants entering Eq. (4.7) are:

7 = —8.9136329, J = 16.532316, K = 8.4019240,

L = 6.9458079, To = —4116.2338, Ti = 450.6392. (4.10)
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The three body parameter 7]_‘31: is constructed from the volume dependent but
renormalization group invariant three body interaction parameter, 7%, the inverse

phase shift, @, and the effective range, r, as

=L I _ a T27ar
Ny = 7]3(1 G(KL) I> + T T , (4.11)
where
64mat 96a*
_.L_ _ o gna
T =m(w) + 2 (3V3—dm) log (L) — S —Sus - (4.12)

and the renormalized scale dependent coupling 73(¢) is responsible for the three-
body interactions. The renormalization scheme dependent quantity S defined in the

Minimal Subtraction scheme is given by Sys = —185.12506.

4.6 Two-body interactions from Liischer’s method

From the energy difference in the 2-n+ system, AEy, = Eor — 2m,, the relative
momentum of each 7+, p, in the center of mass frame (COM) can be calculated
from the dispersion relation. We determine the effective scattering length3, @, by
calculating the interacting momenta {p;}, on each bootstrap ensemble and applying
Eq. (4.5), and we average over all ensembles to get the mean value of @, and the
statistical uncertainty. The systematic uncertainty is determined by averaging the
systematic uncertainty of @ on each bootstrap ensemble resulting from the systematic
uncertainty of the extracted energies from the choice of different fitting intervals.
The extracted effective scattering length for each volume is shown in Table 4.2. Our

results are in agreement with the extractions in Ref. [10] from two-body systems

3As discussed above, @ is the inverse phase shift at the binding momentum of the two body
system, and the scattering length in Eq. (4.5) uses the Particle Physics sign convention, and it is
negative for repulsive interactions.



studied on the same ensembles.

TABLE 4.2: The effective scattering length (@) from Liischer’s method. The first uncer-
tainty is statistical uncertainty and the second uncertainty is systematic.

V3ixT p°/m2 a(fm) m,a
16° x 128 0.0668(45)(1) 0.134(7)(5) 0.263(15)(9)
307 x 256 0.0301(9)(0) 0.122(3)(1) 0.238(6)(1)
225 % 128 0.0143(9)(1) 0.106(6)(4) 0.203(12)(7)
325 x 256° 0.00678(54)(31) 0.114(9)(13) 0.223(17)(26)

TABLE 4.3: The effective scattering length (@) and m, ff,ﬁ'g' extracted from fits to dif-
ferent ranges of n. For a fixed npax, the x2/d.o.f. is larger in smaller volumes, indicating
that Eq. (4.7) fails to describe systems of high densities.
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n = [3,5] n = [3,6]

V3xT MAa Mo fi7s x%/dof ma M fi7s x%/dof
165 x 128 | 0.260(14)(2) | 0.70(10)(d) | 1.0 | 0.261(14)(1) | 0.67(9)(3) | 15
20% x 256 | 0.234(6)(1) | 0.80(8)(3) | 0.25 | 0.235(6)(1) | 0.79(1)(1) | 05
24% x 128 | 0.209(11)(4) | 1.61(20)(20) | 0.26 | 0.209(11)(3) | 1.59(18)(12) | 0.25

n=[3,7] n = [3,8]

V3xT MG maf4 | x2/dof MAa maf | X2/dof
165 x 128 | 0.262(14)(1) | 0.64(9)(1) | 3.5 |0.263(14)(1) | 0.62(8)(1) | 55
505 x 256 | 0.235(6)(5) | 0.79(7)(1) | 1.1 | 0.235(6)(1) | 0.76(N(1) | 28
245 x 128 | 0.211(11)(2) | 1.56(17)(8) | 04 | 0.210(11)(2) | 1.50(16)(5) | 1.0

4.7 Interaction parameters from small @/L expansion

The dimensionless qualities m,a and m, f,‘fﬁ‘;’ can be extracted by fitting AE,

to the large volume expansion of Eq. (4.7). The fitting strategy is similar to that

used in Lischer’s method by first fitting to each bootstrap ensemble and then com-

puting the distribution of fitted parameters in order to get statistical and systematic

uncertainties. There are two ways to extract ma. One is by fitting only to AE,

using Eq. (4.7) with the last two lines set to zero, and the other way is by fitting

multiple AF,’s, with n > 3, and extracting m., f,‘fﬁ;‘ at the same time as is shown

in Table. 4.3 and Fig. 4.8. The final @ and m f,‘fﬁg extracted from the later method
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FIG. 4.8: The ma and m f:n;‘ extracted from different fitting windows [Pmin, 2max] With

Timin = 3 fixed and varying npax.
are chosen from fits with 2 ~ 1. We are forced to to use only few body systems as
the quality of fit rapidly decreases for large numbers of pions. This suggests that
the weakly interacting pion model of the system that Eq. (4.7) encodes is becoming
less valid, particularly in small volumes. Results for the two-body interaction ex-
tracted in both ways agree within uncertainties with those extracted using Liischer’s
method, and are shown in Table 4.4. The original data for the AFE,’s and the results

from the fits are shown in Fig. 4.9.

TABLE 4.4: The effective scattering length (@) from small @/L expansion. The symbol
“[2)” indicates that only AFE,; is used in the fitting. and “[3,6]” means that all AE; to
AKEg are used.

V3xT maa[2) m.a[3, 6] k cot 8 /m M 375 [3,6]
16% x 128 0.259(14)(5) 0.260(14)(2) —3.85(21)(3) 0.70(10)(4)
20° x 256 0.234(6)(1) 0.235(6)(5) —4.26(11)(10) 0.79(7)(1)
245 x 128 0.205(12)(5) 0.210(11)(2) —4.78(25)(7) 1.50(16)(15)

The effective scattering length, @, extracted from the three volumes depends on
the volume as the scattering momenta are not the same. With multiple volumes,
Eq. (4.8) can be inverted to extract both the scattering length, a, and the effective
range, . During the fit, we have also used kcot§/m, determined on a matching
32% x 256 and 243 x 128 ensembles from Ref. [10] with all lattice parameters the

same. We are using the simplest form, k cot §/m, = —;—n%,_& + ’—“—g—'—(%), and neglecting
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FIG. 4.9: The energy differences, AE,,, are plot as a function of the number of pions,
n, where the blue points are the original data, the red bands are the fits, and the black

bands are the regions where the fits are performed. From the left to right, AE, from
16%, 203, 243 are shown.

higher order shape parameters as our interacting momenta are small. The infinite
volume results are 1/mra = 4.73(15)(13) and m,r = 27.4(7.9)(4.7), which agree
with the determinations of Ref. [10]. The first error is the statistical error, and the
difference between the infinite volume results by fitting with the data from the two
ensembles in Ref. [10] and without them is taken as an additional systematic error.
Both fits are shown in Fig. 4.10.

By utilizing the extracted effective range, r, and the effective scattering length,
@(L), from the three different volumes, from Eq. (4.11), the volume dependent pa-
rameter 7%, responsible for the three-body interactions can be determined for each
volume. The extracted values of %% are shown in Fig. 4.11. The dependence of 7,
on the volume can be rewritten from Eq. (4.12) into a simpler form

aat

(L) =C+ =

log(L), (4.13)
where C contains contributions independent of L, and a = 647(3v/3—4m) = —1.48 x
103. We fit 7% to our data to determine C and the best fit is shown in Fig. 4.11.
However the x? of the fit is poor and it appears that Eq (4.13) does not effectively
explain the volume dependence of our data. This might come from competing higher

order terms O(F), but it also may be a statistical effect. The large value of 7§ for
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FIG. 4.10: The scattering phase shifts from 163, 203, and 243 ensembles in this study, are
shown as the black dot data points from right to left respectively. The blue triangle data
points are the 243 and 323 ensemble results from Ref. [10] from right to left respectively.
The inner shaded region is the fit to all data, and the outer shaded region is the fit only
to the data in this chapter, and the star is the infinite volume result.
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FIG. 4.11: The extracted three-body interaction parameter, 775 (L), is plotted as a func-
tion of the spatial extent of the lattice, L, (black points). The red line shows the expected
dependence of 75 on L from Eq. (4.13) with C = 4.3, which clearly does not provide a
good description of the data.
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FIG. 4.12: Energy densities (¢) calculated on 3 different volumes are shown as a function
of isospin density. The blue dot points are from the 163 ensemble, the black star ones are
from the 20% ensemble and the pink triangle one are from the 24° ensemble. The inset
show the slight difference in energy density on three ensembles.

L = 24 is correlated with a down shift of the scattering length @. In Ref. [10], a
value of rna = 0.236(18)(27) was found for L = 24, which agrees with the value
ma = 0.210(16)(5) found above, but with a larger central value, perhaps indicating

a statistical fluctuation.

4.8 QCD phase diagram at non-zero 175

In Fig. 4.12, we show the energy density, ¢ = %, determined from the ground
state energies, E,, that have been computed on each of the three volumes. For a
fixed n, the pions are forced to be closer to each other in a smaller volume, and

the repulsive interactions between them become stronger. This drives up the energy
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FIG. 4.13: The isospin chemical potential, yy, is plotted as a function of the isospin
density, pr, from three lattice ensembles, B1 (red, p; = [0,9]), B3 (blue, p; = {0,2.8])
and B4 (green, p; = [0,4.7]). The solid black line is from expectations of xPT [1]

of the whole system. The energy densities are weakly dependent on the volume,
however there are slightly differences as shown in the inset of Fig. 4.12.

From the extracted ground state energies, the isospin chemical potential® can
also be determined by a backward finite difference, py(n) = z—f ~ E, — E,_,.
We calculate p;(n) on each bootstrap ensemble, which accommodates correlations
between E,.’s extracted on the same ensemble, and the systematic uncertainty of
the py(n) from each ensemble is evaluated by adding systematic uncertainty from
varying the fit ranges used to determine E, and E,_; in quadrature. The final
systematic uncertainty on pu;(n) is from averaging the systematic uncertainties of

all the bootstrap ensembles, and the statistical uncertainty is the standard deviation

5This is really an “effective” isuspin chemical putential as it is defined from the ground state
energy rather than the free energy
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K

FIG. 4.14: Expected QCD phase diagram following Ref. [1]. At high temperature no
bounded state of the quantum number of pion exist, thus < dysu >= 0. At extremely
high isospin chemical potential, although such state still has the same quantum number
as pions, but quarks are not bounded inside hadrons, and they are starting to form
Cooper pairs. Our calculations at a fixed temperature, 7 ~ 20 MeV probe the phase
structure along the red dashed line from p; = m, to ur = 4.5 m,. The position of phase
transition A is unknown.

of the values of y;(n) on the individual bootstrap ensembles.

In Fig. 4.13, the dependence of y;/m, — 1 on the isospin density p; is shown for
the three volumes. The isospin chemical potential exhibits similar behaviour in all
three volumes, where they overlap. At small p;, u; increases at an accelerating rate,
in agreement with the prediction from chiral perturbation theory (xPT) (1], however
at around p; = 0.5 fm~3 the behaviour of u; starts to change, and the accelerating
rate gradually decreases, and at even higher isospin density the y; starts to flatten
off. This change of behaviour of u; indicates that the physical state of the system
may be altering.

The expected phase structure of QCD at non-zero isospin chemical potential
has been discussed in Ref. [1]. At zero temperature, when p; < my, there is not

enough energy to excite a pion out of the vacuum. As soon as p; reaches my,
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FIG. 4.15: The €¢/esp is plotted as a function of p/m;.

pions can be produced and the system is expected to enter a phase with a pion
condensate (BEC). At asymptotically large values of p,, the attractive nature of
one gluon exchange guarantees the existence of a BCS-like state in which quark-
anti-quark Cooper pairs are formed. At an intermediate value of y; a BEC-BCS
crossover is conjectured [1].

In this chapter, our calculations are performed at a small but nonzero temper-
ature, 7 ~ 20 MeV. With the canonical method used in the current calculation,
the lowest isospin chemical potential that we probe is u; = m, by definition as we
directly add 7*’s into the system. In the smallest volume, for n = 72 n*’s (the
largest value we consider), an isospin density of p; ~ 9 fm~? is achieved, and the
phase diagram is explored from p; = m, up to g = 4.5 m, in this chapter as shown

by the red dashed line in Fig. 4.14.
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In order to investigate the possible phase transition suggested by the behaviour
of the isospin chemical potential in more detail, we have also compared the extracted
energy density with the energy density of a cold degenerate system described by a
model of weakly interacting quarks filling their Fermi sphere up to a maximum

momentum kg = Ep = p; [18]. This Stefan-Boltzmann energy density is given by

Nch 4
€sp = '74—7;'2—[1/1 (414)

where Ny = 3 and N, = 3. The ratio of ¢/egp is plotted in Fig. 4.8, and exhibits
similar behaviours in all three volumes. The ratio increases from u; = m, to a peak
around yu; =~ 1.3 m,, and then drops and eventually begins to plateau at around
ur = 3 my. The peak positions, ,u,,{eak, for each volume identified from Fig. 4.8
are pl,, = {1.20(5),1.25(5),1.27(5)} m, for L = {16,20, 24} respectively. With
an extrapolation linear in 1/L%, the peak position in infinite volume is pl ., =
1.30(7) m,. The system for p; < 1.3 m,, can be identified as a pion gas. When
1y ~ p{mk, pions start to condense and the system resides in the BEC state. The
plateau beginning to form beyond p; =~ 3 m,, may indicate a crossover from the
BEC to BCS state, however higher precision and larger p; is required to make a
definite statement. Discretization effects also remain to be investigated.

Two flavour QCD with finite y; at large temperature has been investigated in
Ref. [43], where a finite temperature deconfinement phase transition was identified
at puy < my, however for u; > m, no results were presented. In Ref. [19], the
phase diagram of Ny = 4 + 4 QCD was investigated at different temperatures and
values of u; using the grand canonical approach, and a phase transition from a
pion gas to a BEC state has also been suggested at p; slightly higher than m,,
in agreement with the results found here. Two color QCD has been studied in

Ref. [18], where the authors identified the transition from vacuum to BEC state and
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the BEC/BCS transition. Somewhat interestingly, the ratio of the energy density

and its Stefan-Boltzmann limit has also been studied (inset of Fig. 1 in Ref. [18]),

showing qualitatively similar behaviour to that found in the current study.

4.9 Summary

In this chapter, we have studied lattice QCD at non-zero isospin chemical po-
tential using a canonical approach in which we have investigated systems with the
quantum numbers of up to 72 ©*’s in three lattice volumes, L? ~ (2.0, 2.5 and 3.0
fm)3 at a pion mass of m, ~ 390 MeV at a single lattice spacing.

In our analysis, we have determined the ground state energies of multi-pion
systems in three different volumes and have used this to extract the isospin chemical
potential and isospin energy density of the states that are produced. In the smallest
volumes, systems with isospin chemical potentials of up to uy ~ 1600 MeV are
created. By considering the energy density as a function of the isospin chemical
potential, we provide strong evidence for the trénsition of the system from a weakly
interacting pion gas to a Bose-Einstein condensed (BEC) phase at u ~ m, as
expected from xPT. At higher values of the chemical potential the system is expected
to transition to a BCS state and we have sought numerical evidence for this but
do not have conclusive results. It is interesting to note that the behaviour of the
energy density as a function of the isospin chemical potential is very similar to that
recently found in two-colour QCD with a baryon chemical potential by Hands et
al. [18].

By focusing on few pion systems, we have extracted the two and three pion
interactions, determining the scattering length, effective range and the renormali-
sation group invariant effective three-body interaction. The scattering parameters

were found to be in good agreement with other recent determinations and we have
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attempted to investigate the intrinsic volume dependence of the renormalisation
group invariant three-pion interaction. We have also found that as the density in-
creases and the system transitions to a BEC, it can no longer be well described in

terms of weak few-body interactions.



CHAPTER 5

Energy shift of heavy quarkonia !

5.1 Introduction

An important probe of exotic phases of QCD matter is the way in which heavy
quarkonium propagation is modified by the presence of that matter. The heavy
quarks can in some sense be viewed as separable from the medium which is pre-
dominantly composed of light quark and gluonic degrees of freedom. At non-zero
temperature, the suppression of the propagation of J/v particles is a key signature
for the formation of a quark-gluon plasma [44]. This suppression has been observed
for charmonium in various experiments at SPS and RHIC and recently in the T
spectrum at the LHC [3]. Quarkonium propagation is naturally also expected to be
a sensitive probe of other changes of phase such as those that occur at high density
or large isospin density.

Since the effects of QCD matter on quarkonia are essentially non-perturbative
in origin, a systematic evaluation requires input from lattice QCD. At some level,

these effects can be distilled to a change in the potential between the quark—anti-

I'This section is in collaboration with Williammn Detmold and Stefan Meinel, and results for
bottomonium studies can be found in Ref. {7].
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quark (QQ) pair that binds them into quarkonium. At non-zero temperature but
zero density, this has been studied extensively using lattice QCD (see Ref. [45] for a
recent overview) where strong screening effects are seen near the deconfinement scale.
Significant effects are also seen in investigations of the properties of charmonium and
bottomonium spectral functions at non-zero temperature (see [45, 46]).
Modifications of the potential or of quarkonium properties will also occur for
non-zero density. Ref. [47] has investigated the static potential in the presence of a
gas of pivns. As the main focus of this chapter, however, we explore the effects of
isospin charge density on quarkonium bound state energies more directly by using
lattice NRQCD (non-relativistic QCD) to compute quarkonium correlation functions
in the presence of a medium of varying isospin chemical potential. At low isospin
densities, and correspondingly low chemical potentials, we find that the ground state
energy of the quarkonium systems decreases with increasing isospin density, showing
qualitative agreement between the potential model calculation and the QCD calcu-
lation. However, at an effective isospin chemical potential p; ~ ptfpeak = 1.3 My
(where the calculations presented in the previous chapter suggested a transition to a
Bose-Einstein condensed state in line with theoretical expectations [48]), the effect
of the medium on the quarkonium energy appears to saturate to a constant shift.
At still larger chemical potentials, the determination of the energy shift becomes
statistically noisy. The marked change in behaviour provides additional support to

the notion of the change in phase of the system.

5.2 Lattice methodologies

In this study, we make use of same gauge ensembles as those in previous chap-
ters. We investigate three different ensembles, corresponding to different physical

volumes and temporal extents as shown in Table 5.1. The different physical volumes
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allow us to access a large range of isospin densities in our study, and the different
temporal extents provide control of thermal effects as discussed in Ref. [11]. On
these gauge configurations we calculate correlation functions involving light quarks
and use the colourwave propagator basis introduced earlier, fixing to Coulomb gauge
and using plane-wave sources and sinks for a range of low momenta (Npom in total
on each ensemble, see Table 5.1). For each case, we calculate light-quark propa-
gators on N, configurations from N, time-slices, equally spaced throughout the

temporal extent by applying new methodologies constructed in the last section.

L*xT L(fm] mqL maT Ugs Netg Nye Nmom
B1 | 16% x 128 2.0 3.86 8.82 0.7618 334 8 33
B3 | 20% x 256 2.5 4.82 17.64 0.7617 170 16 7
B4 | 24% x 128 3.0 5.79 8.82 0.7617 170 8 19

TABLE 5.1: Details of the ensembles and measurements used in this work. wug, is defined
as the fourth root of the spatial plaquette.

5.3 Bottomonium in media of non-zero isospin chemical po-

tential

5.3.1 Multi-pion and bottomonium lattice correlators

In order to produce the medium that will modify the propagation of the quarko-
nium states, we use the canonical approach of constructing many-pion correlation
functions that is described in detail in Chapter 3, using methods developed there
and in earlier works [49, 2, 20, 9, 50]. As discussed in Chapter 4, correlators of
a fixed isospin charge, n = 21111 n;, and total momentum, P, making use of N
sources, are given by Equation (4.1).

NRQCD is applied to calculate bottom quark propagators, In the main calcula-

tions of this work, we use zero-momentum smeared quarkonium interpolating fields
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of the form

On(t) =D X'y Oy - y)w(y. ) (5.1)

at the sink and

Os(0) = > x'(0,0)'(x)w(x,0) (5.2)

at the source. Here, yx is the heavy anti-quark field and ['(r) is the smearing function,
which is a 2 x 2 matrix in spinor space. The quantum numbers of the quarkonium
interpolating fields considered in this work are listed in Table 5.2. More details
about the NRQCD heavy quark propagator calculations are discussed in Ref. [7].
Correlation functions and effective masses of 7, and YT, computed on the 203 x
256 and 16% x 128 ensembles are shown in Fig. 5.1 and Fig. 5.2 respectively. In
order to investigate how bottomonium energy shifts depend on the mass of the
bottom quark, bottom quark propagators for different quark masses are computed
and corresponding spin-averaged values of the 1S kinetic masses, My, = (3ME +

M )/4 computed on the 162 x 128 ensemble (at p; = 0), are given in Table 5.3.

Name REC I'(r)

m AT $15(r)

T (e $1s(r) o;

he T $1p(T, )

Xb0 AfT > ¢1p(r, ) o

Xb1 e 2ok €kt $1p(r, k) 0y

Xb2 (B ¢1p(r, j) ok + dr1p(r, k) o;  (with j # k)

TABLE 5.2: Smearing functions I'(r) used in the quarkonium interpolating fields for
the given representation of the cubic group, R and values of parity, P, and charge-
conjugation, C. The functions ¢1s(r) and ¢,p(r,j) are eigenfunctions from a lattice
potential model.
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asm ag Mkin Mkin (Gev)
1.2 0.7608(81) 4.333(54)
1.5 0.9377(16) 5.277(36)
2.0 1.2259(12) 6.900(46)
2.75 1.6667(12) 9.380(62)

TABLE 5.3: Spin-averaged quarkonium kinetic masses on the 163 x 128 ensemble.

5.3.2 Correlator ratios for energy shifts

To investigate the effect of the medium on quarkonium propagation, we consider
the correlators

C(n;bbit) = (O, (t)Onr+ ()0 (0)O! L (0)), (5.3)

nrt

where (. ..) denotes path integration via the average over our ensembles of gauge con-
figurations, and the interpolators (’):m+ and O%b produce the quantum numbers of n-
pion and bb states as discussed in the preceding subsection. States with the combined
quantum numbers of the given quarkonium state (bb is either 7, YT, Ay, Xp0, Xo1 OF
Xebz2) and the n-pion system propagate in this correlator and naturally, the spectrum
of this system is different from the sum of the spectra of n pions and of quarkonium
because of interactions. At Euclidean times where only the ground state of the
system is resolved (after excited states have decayed and before thermal states are

manifest), this correlator will decay exponentially as
C(n; bb;t) — Zn;Bb exp(—E, zt) (5.4)

where E, 3, is the ground-state energy of the combined system.

To access the change in the quarkonium energy as a function of isospin density
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or chemical potential, we further construct the ratios

(O, () O (0L, (0)O}, . (0))

Rin,8bit) = 7o (£)OL (0))(Orr+ (OL_, (0))

(5.5)

Since the two terms in the denominator decay exponentially at large times as

exp(— Eyt) and exp(—Ep,+t) respectively, the ratio will behave as
R(n;bb;t) — Z, 5 exp(—AE gt) + ... , (5.6)

where AE, 3, = E, 5, — Enz+ — Ef, is the quantity of central interest in our investi-

gation.

5.3.3 Quarkonium—pion scattering

The quarkonium state in the presence of a single pion allows us to study the
scattering phase shift of this two-body system using the finite-volume formalism
developed by Liischer [36, 37]. The S-wave quarkonium states that we consider
have angular momentum J = 0,1 and define the total angular momentum of the
entire system since the pion is spin-zero. Since the pion and bb states have different
masses, the appropriate generalisation of the Liischer relation to asymmetric systems

[51] is required. We can define a scattering momentum p = |p| through the relation

JIapP/e2 + aiM2, + \/|a,p|?/€2 + aZM2 (5.7)

= a;AFEy,  + a:My, + a: My,
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where Mg, = Mg’n is the kinetic mass of the bb state. The scattering momentum

then determines the eigenvalue equation

. 1 2]2
pcot ozbn(p) = ES (12171'2 ) » (5.8)
In|<A 1
S(z) = lim ; mETE arA| (5.9)

that is satisfied by the bb—m scattering phase shift, O »(p), at the scattering mo-
mentum.

Since we have three different lattice volumes, we can extract the phase shift
at multiple momenta. In Figure 5.3, we show the phase shifts that we extract for
the n,—m and Y- scattering channels. These interactions necessarily vanish at zero
momentum in the chiral limit as the quarkonium states are chiral singlet objects. We
therefore expect only small scattering phase shifts at the quark masses considered
in our study. At the level of statistical precision we have achieved, we are able to
resolve the phase shifts from zero, and they are indeed found to be small. The
measured values of the S-wave phase shifts are given in Tables 5.4 and 5.5, while for
the P-wave states we are unable to extract statistically meaningful results. Since
the measured scattering momenta are small, it is possible to perform a fit to the

effective-range expansion

- 1 MegT p2
peotd(p)/my = T + 5 ;;g + ., (5.10)

to extract the scattering length and effective range for these interactions. This
extrapolation is shown in Fig. 5.3 and results in m,a,, = 0.039(13) and m,ry, » =
4.7(3.7) for the 7, state, and myay » = 0.047(14) and m,ry » = 5.8(3.3) in the case

of the T, both channels corresponding to a weak attractive interaction.
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The pion-quarkonium scattering length depends approximately quadratically
on the pion mass [52, 53, 54], and hence we can estimate the scattering length at
the physical pion mass as

a’%:.l;y&) ~ (mPe) fm. )2 G5y s (5.11)

where ag, . is our lattice result for the scattering length at m, = 390 MeV. This
gives

aP*) = 0.0025(8)(6) fm, af¥™*) = 0.0030(9)(7) fm, (5.12)

N7

where the first uncertainty is statistical and the second uncertainty is an estimate
of missing higher-order corrections to Eq. (5.11), which we estimate to be smaller
than the leading-order term by a factor of m, /(47 f,) =~ 0.24. The values (5.12) are
comparable to, and considerably more precise than estimates from phenomenoclogical
models [55, 56, 57, 58].

TABLE 5.4: The n,—7 phase shifts extracted using the Liischer method as described in
the main text.

VixT p*/mz  (pcotd(p)) '[fm] m./(pcotd(p))

165 x 128 —0.0055(6)  0.0138(18) 0.0274(36)
20° x 256 —0.0032(3) _ 0.0148(15) 0.0294(31)
24% x 128 —0.0022(4)  0.0192(38) 0.0381(75)

TABLE 5.5: The T-r phase shifts extracted using the Liischer method as described in
the main text.

ViXT p*/mi  (pcotd(p))~'[fm] ma./(pcoté(p))
165 x 128 —0.0062(7) 0.0153(20) 0.0303(40)
20° x 256 —0.0037(4) 0.0172(18) 0.0341(36)
943 x 128 —0.0027(4) 0.0220(42) 0.0435(83)
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5.3.4 Isospin density dependence of quarkonium

For larger isospin charge, we interpret the system of pions in terms of a medium
of varying isospin charge density once the ground state is reached. In the correlators
C(n; bb; t), the quarkonium state exists in this medium, interacting with it. We
consider first the S-wave quarkonium states as they are statistically better resolved

than P-wave states.

5.3.5 S-wave states

The correlators C(n,bb,t) are shown in Fig. 5.4 for bb = T at representative
values of the isospin charge and for a,m = 2.75 on the 203 x 256 and 16% x 128
ensembles. The in-medium correlators on the 203 x 256 ensemble exhibit a long
region of Euclidean time in which they decay as a single exponential. This region
overlaps with the regions in which the multi-pion correlators and the individual
quarkonium correlators are saturated by their respective ground states. This gives us
confidence that by considering the correlator ratios of Eq. (5.5) we can legitimately
extract the quarkonium energy shifts in medium. On the ensembles with T' = 128,
thermal contamination is more significant and restricts the range of useful time-
slices, particularly for large isospin charge.

The correlator ratios, R(n, bb; t), discussed above, are shown for both T and 7
at a heavy quark mass a,m = 2.75 on the 203 x 256 ensemble for a range of different
isospin charges, n = 6, 12, and 18, in Figs. 5.5 and 5.6 along with fits to time de-
pendence using Eq. (5.6). Fits are performed over a range of times where both the
individual multi-pion correlation functions and quarkonium correlation functions
exhibit ground-state saturation and are free from thermal (backward propagating)
state contamination. This is ensured by choosing the central fit range [{min, fmax)

such that a fit over the range [tmin — 5, ftmax + 5] has an acceptable quality of fit.
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FIG. 5.4: The correlators for the T in a medium corresponding to isospin charge n for
n = 6, 12, and 18 are shown. Data are presented for a,m = 2.75 on the 20° x 256 (upper)
and 163 x 128 (lower) ensembles. Correlators for the 7 in medium behave similarly.

On the 203 x 256 ensemble, we choose i, = 20 and tn. = 60, beyond which ther-
mal contributions are apparent. Because thermal contributions are more significant
for the ensembles with T = 128, we choose t,.x = 40 for these cases. Statistical
uncertainties are estimated using the bootstrap procedure. To estimate the sys-
tematic uncertainties of the fits, we calculate the standard deviation between the
three energies extracted from fits with the ranges [tmin — 5, tmax — 5], [tmin, tmax]s
and [tmin + 5, tmax + 5] for T = 128 ensembles, and [tmin — 5, tmax — 20], [¢min, fmax),
and [tmin + 3, tmax + 20] for the T' = 256 ensemble, on each bootstrap sample. The
systematic uncertainty is then obtained as the average of this standard deviation
over the bootstrap samples.

The extracted energy shifts and uncertainties are shown in Table 5.6 for T and
Table 5.7 for 7. For larger values of n, the energy shifts become noisier and we
limit our analysis to the range of isospin densities where a successful fit could be
performed for a given ensemble.

As a check of the methods of our study, we construct ratios in which we arti-

ficially remove the correlations between the bb system and the many-pion state by
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= 2.75 on the 203 x 256 (upper) and 163 x 128



n AEn;'r
163 x 128 20% x 256 243 x 128

1 —1.23(12)(09) —0.72(07)(03) —0.53(07)(06)
2 —2.15(23)(15) —1.38(14)(07) —1.01(15)(11)
3 —2.75(34)(20) —1.99(22)(13) —1.44(23)(14)
4 —3.08(45)(23) —2.54(31)(21) —1.80(31)(16)
5 —3.23(58)(29) —3.04(40)(28) —2.08(41)(18)
6 —3.23(70)(37) —3.47(51)(36) —2.27(51)(20)
7 —3.10(81)(45) —3.81(61)(45) —2.37(63)(24)
8 —2.86(92)(51) —4.03(73)(53) —2.38(77)(31)
9 —2.51(1.00)(56) —4.12(86)(62) —2.31(93)(41)
10 —2.10(1.2)(0.6) ~4.1(1.0)(0.7) —22(1.1)(0.5)
11 —1.7(1.3)(0.7) —3.8(1.2)(0.9) —1.9(1.3)(0.7)
12 —1.2(1.4)(0.8) —3.4(1.4)(1.1) —1.6(1.5)(0.8)
13 —0.8(1.6)(1.0) —2.8(1.7)(1.3) —1.3(1.8)(1.0)
14 —0.4(1.8)(1.2) —2.1(2.0)(1.6) —1.0(2.0)(1.2)
15 —0.0(2.0)(1.4) —1.3(2.4)(1.9) —0.6(2.3)(1.4)
16 0.3(2.1)(1.7) —0.5(2.8)(2.2) —0.2(2.6)(1.6)
17 0.6(2.3)(1.9) 0.2(31)(2.4) 0.2(2.9)(1.8)
18 0.8(2.4)(2.2) 0.9(3.5)(2.6) 0.5(3.2)(2.0)
19 1.1(2.5)(2.4) 1.5(3.8)(2.8) 0.8(3.5)(2.2)
20 1.3(2.5)(2.6) 2.1(4.0)(2.9) 1.0(3.8)(2.4)

TABLE 5.6: Fits to the T correlator ratios on the various ensembles for a,m = 2.75. For
each combination, we report: the mean and the statistical and systematic uncertainties.
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n AEn,,
163 x 128 203 x 256 24% x 128

1 ~1.12(11)(08) Z0.62(06)(02) —0.46(06)(06)
2 —1.95(21)(14) —1.20(12)(06) ~0.89(13)(10)
3 —2.51(30)(18) —1.74(19)(12) —1.26(21)(13)
1 —2.83(40)(21) —2.25(28)(19) —1.57(29)(14)
5 —2.97(51)(26) ~2.73(37)(28) ~1.81(37)(16)
6 —2.99(61)(31) —3.17(47)(37) —1.97(47)(18)
7 —2.89(71)(37) —3.53(58)(46) —2.05(58)(22)
8 ~2.69(81)(41) ~3.80(70)(54) ~2.05(71)(29)
9 —2.40(89)(44) —3.95(83)(62) —1.97(86)(38)
10 —2.05(97)(47) —3.95(96)(72) —1.8(1.0)(0.5)
i1 “1.7(1.1)(0.5) —3.8(1.1)(0.8) ~1.6(1.2)(0.6)
12 —1.3(1.2)(0.7) —3.5(1.2)(1.0) —-1.3(1.4)(0.8)
13 —0.9(1.3)(0.8) —31(1.4)(1.2) ~1.0(1.6)(1.0)
14 ~0.6(1.4)(1.0) ~2.5(1.6)(1.5) ~0.6(1.9)(1.1)
15 -0.3(1.5)(1.3) —1.9(1.8)(1.8) —0.3(2.1)(1.3)
16 —0.0(1.6)(1.5) —1.2(2.1)(2.1) 0.1(2.4)(1.5)
17 0.2(1.7)(1.8) ~0.6(2.3)(24) 0.4(2.7)(1.7)
18 0.5(1.8)(2.0) 0.0(2.6)(2.7) 0.7(3.0)(1.8)
19 0.7(1.9)(2.3) 0.6(2.8)(2.9) 0.9(3.3)(2.0)
20 0.9(1.9)(2.5) 1.1(3.0)(3.0) 1.1(3.6)(2.2)

TABLE 5.7: Fits to the n, correlator ratios on the various ensembles for a,m = 2.75. For
each combination, we report: the mean and the statistical and systematic uncertainties.
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FIG. 5.7: The ratio R(5, n; t) computed with and without the correct correlation between
the 77, and many-pion system on the 203 x 256 ensemble, as discussed in the main text.
The shift (difference from unity) is only apparent when correlations are included.

evaluating [Z%si%[c%i ”g:i’::i)éc)] , where Cx(c) represents the correlation function for

the quantity X measured on configuration ¢, and éc is either a constant displace-
ment or a random shift. In both cases, the removal of the correlation eliminates
the signal for an energy shift. This is shown for the 7, with n = 5 in Fig. 5.7 for
random shifts, and the same qualitative effect is seen for all choices of the density
and quarkonium state that are considered.

To summarise the analysis of the correlator ratios for the S-wave quarkonium
states, Fig. 5.8 shows the isospin density dependence of the energy shifts, AE, j,, for
both the T and n, channels. Figure 5.9 additionally shows the derivative d(AE)/dpy,
approximated by the finite difference (AE, 5, — AE(,_1)5)L%, taking into account
the strong correlations between the energies at different n. Results are presented

for the ranges of isospin charge density where a statistically meaningful extraction
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of the energy shift can be made. As can be seen in Fig. 5.8, there is a statistically
significant negative energy shift for much of the range of isospin density that we
have investigated. The magnitude of this shift first increases as the isospin density
is increased, before flattening off at a value of about 3 MeV and possibly decreasing
for large py, albeit with increasing uncertainty. A consistent picture is found from
the derivatives shown in Fig. 5.9. It is interesting to note that the saturation occurs
at the point at which a marked change in the energy density of the many-pion
system was observed in Ref. [11], and is likely caused by the changing nature of the
screening medium at this point. The increase of the energy shift at low densities is
in line with the expectations of the potential model in Ref. [5], but the energy shift
is numerically larger than in the model (note that the potential model was based
on lattice results for the screening of the static potential at m, ~ 320 MeV [47],
whereas the present NRQCD calculations were done with m, ~ 390 MeV). The
saturation effect was not predicted by the model; since the model was developed
using the measured shifts in the potential in the low density region, so this is not
surprising.

We have performed these calculations for all three ensembles of configurations
but have only been able to access a limited range of densities with the current
statistical precision. The results from all of the ensembles are consistent in the
region in which they overlap. The 163 x 128 ensemble provides the largest density
range.

We also consider the shifts in the splitting between the 7, and T energies in
medium as a function of the density. We extract these shifts by calculating the
correlated differences between the individual energies using the bootstrap method.
A summary of the isospin charge dependence of this splitting is shown in Fig.5.10.
It can be seen that the T energy is shifted slightly more than the 7, energy by the

presence of the medium.
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FIG. 5.8: The dependence of the energy shift on the isospin charge density is shown
for the three lattice volumes for the 7, (upper panel) and T (lower panel). The shaded
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energy density to the Stefan-Boltzmann expectation (see Fig. 22 of Ref. [11]).
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FIG. 5.10: Isospin density dependence of the shift of the S-wave hyperfine splitting
between the T and 7, states in medium.

5.3.6 P-wave states

We also analyze the lowest-energy P-wave quarkonium states, hy, Xp0, Xs1 and
Xb2, in medium. We find that we cannot resolve differences between the medium
effects for these different states and so consider a spin average of their energies. In

order to extract the spin-averaged in-medium energy shift

AE 5 = %AEn;hb + TIEAEﬂ;xw

+ 2 AEny,, + 5AEny,, (5.13)
we construct the following product of fractional powers of the individual ratios,

R(n,TF;t) = R(n,hb;t)'l% R(n,x()o;t)ili

X R(n, Xo1; t)% R(n, xp2; t)Tsi, (5.14)



100

which at large ¢ will behave as
— 3 L 3 5
R(n, 1P; t) - Zri;zh,, A?XbOZT}?Xbl Z"%?Xb2 eXp(_AEn;TFt)' (5'15)
We also consider the analogous S-wave spin-average combination
R(n,15;t) = R(n,m;t)% R(n, T;8)3. (5.16)

Since the P-wave quarkonium correlators are themselves statistically noisier than
the S-wave correlators (see Figs. 5.1 and 5.2), the precision with which we can
extract the P-wave energy shifts is reduced. In our fits to these correlators, we
choose tmin = 20 and tyax = 40 and get systematic error by shifting fitting windows
x5 time slices as before. Fig. 5.11 shows representative correlator ratios for the
spin average P—wave state for the 203 x 256 and 163 x 128 ensembles, and Fig. 5.12
summarises the extracted energy shifts. Here we only show results from the 163 x 128
and 203 x 256 ensembles, because the P-wave results on the 242 x 128 ensemble were
too noisy. The potential model expectation is that the P-wave shift will be larger
than the S-wave shift, and our lattice results confirm the expectation. In the lower
panel of Fig. 5.12 we show the corrclated differences between the spin-averaged

P-wave and S-wave energy shifts.

5.3.7 Heavy-quark mass dependence

As discussed in Section 5.3.1, we have performed calculations for four different
values of the heavy-quark mass, a,m, ranging from the bottom-quark mass down
to ~ 1.5 times the charm-quark mass. The analysis of the in-medium correlators
and ratios is very similar for all masses and we do not present it in detail. To

investigate the variation of the energy shifts as a function of the heavy-quark mass we
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compute AE, g, (a;m)—AE, 5(a;m = 2.75) using the bootstrap method. Because of
correlations between the measurements for different values of the heavy-quark mass,
this provides a more statistically precise determination of the difference than would
be evident from a naive comparison. Figure 5.13 shows these energy differences for
the different values of agm. It is apparent that the strength of the energy shift in
both 7, and T increases as the heavy-quark mass decreases, in line with expectations
from the potential model discussed above. Since the quarkonium states for lower
heavy-quark masses are physically larger, they probe regions of larger quark—anti-

quark separation where the potential shift is more significant.

5.4 Charmonium in medium of non-zero isospin chemical po-
tential

As the suppression of the propagation of .J/v¢ particles thourgh a hot dense

medium has been observed for charmonium in various experiments at SPS, RHIC,
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and LHCJ[3]. it is very interesting to investigate the ralated effect of isospin density
on charmonium non-perturbatively from first principles. From the above study
of bottomonium energy shifts in the media of different isospin chemical potential,
we found that the energy shifts become more significant as the mass of bottom
quark decreases. This suggests that the energy shifts of charmonium states will be
more significant than the bottomonium enery shifts. Similar to the study of the
bottomonium energy shift, we extract the energy shift of charmoniums in medium

of non-zero isospin chemical potential from its free energy from the following ratio,

(Oz(t) O+ (1) OL,(0)O}_,(0))
(Oe(t) O (0)) (O (O, (0))

R(n.¢c;t) = (5.17)

where Og(t) is the interpolating operator for charmonium states, for example Og.(t) =
cvs¢ for 1, and Ogz(t) = ¢vy,¢, where ¢ = 1,2, 3 for J/v.

We employed the same fermion action as those used in generating light quark
propagators to compute charm quark propagators. As in Ref. [59], the charm quark
mass is tuned so that the ratio of masses of 7. and §2(sss) recovers its experimental
values, and the bare anisotropic parameter . for the charm quark is tuned to be
~v. = 3.988 so that the correct energy-momentum dispersion relation is recovered at
low momentum. The renormalized anisotropic parameter £, calculated from the

following energy-momentum dispersion relation of charmonium states
2 2 2 2
E;(p)=E, (0)+¢&, p (5.18)

is consistent with 3.5. In order to get better signal for the R(n,¢c;t) ratio, we
computed colorwave propagators for charm quarks by using the same set up as
those for light quark propagators. Correlation functions for charmonium states at

rest are similarly calculated in momentum space by choosing quark propagators with
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suitable momenta, and more details can be found in Section 2.3.

541 n.and J/¢

Charmonium correlation functions, C, (¢) and C,/,(t) are computed on the
ensemble Bl with color-wave propagators by employing following point source in-

terpolators for 7. and J /4,

Onc = E’YSQ

(’)J/,p = E’)’.,‘C, (519)

where i = 1,2,3. By choosing different combinations of quark momenta, charmo-
nia with different momenta can be easily constructed. In the current study only
charmonia at rest are considered. In order to get better overlap on to the ground
state, color-wave propagators with zero quark momentum are used in constructing
charmonia at rest. Unlike the pion correlator, charmonium correlators have addi-
tional contributions from a disconnected piece, which we ignore in this study. These
contributions are expected to be small as has been found in Ref. [60]. The 7. and
J/¢ correlation functions are shown in Fig. 5.14, and the corresponding effective
mass plots are shown in Fig. 5.15, where a clear plateau region can be seen at later
time slices. Ground state energies, E, and FE,/;, are extracted by fitting a single
exponential to correlation functions over time slices, t = [27,53]. Statistical errors
are computed from bootstrap method, and systematic errors are computed by shift-
ing fitting windows forward and backward 5 time slices. The extracted ground state

energies are included in Table. 5.8.
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TABLE 5.8: Extracted ground state energies of 7. and J/+’ on the 163 x 128 ensemble,
where the first uncertainty is the statistical uncertainty, and the second uncertainty is
the systematic uncertainty.

atEcE EcE (MeV)
E, 0.4822(12)(23) 2673.3(6.7)(12.8)
Ejy 0.5000(14)(26) 2772.0(7.8)(14.4)

5.4.2 Charmonium scattering length

By following the same procedure laid out in Section. 5.3.3, the scattering length
of n. (J/v) and 7, ay_» (as/4«) can be extracted by applying the Liischer formula in
Equation (5.9) from the energy shift of an interacting system of one 7, (J/v) and =
from their free energy in a finite volume. The extracted phase shifts for charmonium
states are tabulated in Table 5.9, which are larger than the qy, , and ay , calculated
in Section. 5.3.3. A larger scattering length indicates a stronger interaction between
the charmonium and pion than the bottomonium and pion. As only the result from

one volume is available, no extrapolation to the infinite volume is attempted.

TABLE 5.9: The 7.7 and J/y¥—n phase shifts extracted using the Liischer method on
the 16 x 128 ensemble.

p’/mi  (pcoté(p))~'[fm] m./(pcotd(p))
me  —0.0149(16)  0.0383(46) 0.0759(91)
J/%  —0.0170(18)  0.0442(53) 0.0875(104)

5.4.3 Charmonium energy shift

Similar to the study of bottomonium energy shift in the media of different
isospin density, charmonium energy shifts are extracted from the ratio defined in
Equation. (5.17). Such ratios rely on correlations between Cy,_ (t)/Cj/y(t) and Cp.(t)

calculated on the same configurations. Without such correlation, the ratio R(n, ¢c; t)
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will be consistent with 1.0 as in this case charmonium and pion correlation functions
are independent. As a test, we deliberately turn off such correlations by using 7.
(J/¢) and nz correlation functions from two different random configurations, or
from two shifted configurations according to the following equation,

(Crx Co)

K = ey

(5.20)

where C° denotes the correlation function calculated on configuration ¢, and ( )
denotes averaging over all configurations after summing over different time sources
on individual configurations, that is (C5, Cet®) = ((Cg, CF%)s)e. The §c denote
the number of configurations are shifted between the nm and 7. correlation functions,
for example if they are randomly shifted dc¢ is a random integer. In Fig. 5.16, the
shifted ratio defined in Equation. (5.20) with d¢ = 50 is compared with the ratio
defined in Equation. (5.17) with matching configurations. It is clear that when
correlations between charmonium and pion correlation functions are turned off, the
ratio recovers the case for independent correlation functions.

By computing the ratio R(n,¢c;t) correctly, that is with matching configura-
tions, the energy shifts of charmonium states can be extracted by fitting to a single

exponential at later time slices
R(n,cc;t) = Zzc exp((Eze + Enx — Ezenn)t) = Zzc exp(—AEzqt), (5.21)

where E. ., is the ground state energy of a system having one ¢c and n #’s, and
AFE;, p, is the shift in their energy from its vacuum value. Because of interactions
between charmonium states and pions, the ground state energy will be different
from the sum of the energies of a @c system and a n-m system.

The ratio R(n,n.;t) for different n’s are shown in Fig. 5.17, and similar plots
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FIG. 5.16: In this figure, correlated contraction and uncorrelated contraction by shifting
50 configurations are compared. When correlations among C,_(t) and C,.,(¢) are taken
away, we indeed recover the result for uncorrelated correlation functions such that the
ratio is consistent with 1.0.

for R(n, J/v;t) are shown in Fig. 5.18. Energy shifts AF., are extracted from the
ratio R(n,@c;t) by fitting to Equation. [5.21]. The fitting range is chosen to be t =
[20,40] & 5 to minimize contaminations both from excited states and thermal states
for all n’s, which are also consistent with choices made in the bottomonium study
to make the comparison easier. The central value of the AF;. ,,’s are extracted from
time slices t = [20,40]. The statistical uncertainties are computed from bootstrap
methods, and the systematic uncertainties are calculated by shifting fitting windows
forward and backward 5 time slices. The single exponential fits to the ratio are also
shown in Fig. 5.17 and Fig. 5.18 as shaded bands The extracted energy shifts and
statistical uncertainties and tabulated in Table. 5.10, and are shown as a function
of isospin density in Fig. 5.19.

The quantitative behavior of the charmonium energy shift for 7. and J/vy in

media of different isospin density is consistent with those for bottomonium states,
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) 16° x 128 16° x 128
AEﬂ;J/¢ AE.,,
1 —3.75(34)(22) —3.29(27)(25)
2 —6.53(63)(35) —5.83(50)(37)
3 —8.45(90)(55) —7.67(71)(37)
4 —9.67(1.19)(1.13) —8.92(94)(36)
5 —10.35(1.51)(2.13) —9.70(1.20)(74)
6 —10.59(1.83)(3.38) —10.09(1.47)(1.39)
7 ~10.48(2.12)(4.62) —10.13(1.72)(2.06)
8 —10.11(2.36)(5.63) —9.90(1.94)(2.60)
9 —9.61(2.59)(6.34) —9.48(2.17)(2.94)
10 —9.09(2.85)(6.74) —8.96(2.45)(3.09)
11 —8.65(3.21)(6.92) —8.41(2.81)(3.10)
12 —8.34(3.74)(6.99) —7.89(3.27)(3.03)
13 —8.19(4.49)(7.03) —7.43(3.86)(2.91)
14 —8.22(5.48)(7.05) —7.04(4.56)(2.75)
15 —8.40(6.67)(7.07) —6.74(5.35)(2.56)
16 —8.68(7.95)(7.11) —6.50(6.17)(2.39)
17 —8.95(9.19)(7.22) —6.27(6.99)(2.3)
18 —9.12(10.28)(7.38) —6.01(7.73)(2.31)
19 —-9.11(11.16)(7.57) —5.68(8.38)(2.38)
20 —8.9(11.80)(7.72) —5.26(8.94)(2.48)
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TABLE 5.10: Fits to the charmonium states’ correlator ratios on the 16 x 128 ensem-
bles. For each combination, we report: the mean and the statistical and systematic
uncertainties.
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FIG. 5.19: The dependence of the energy shift on the isospin charge density is shown for
the 7. (upper panel) and J/v (lower panel) from the 162 x 128 ensemble. The shaded
vertical band in each plot shows the region where there is a peak in the ratio of the pionic
energy density to the Stefan-Boltzmann expectation (see Fig. 4.8).



115

but is numerically larger. At small isospin density, the energy shifts of heavy quarko-
nium states, both bottomonium and charmonium, increases as the isospin density
increases, but at around the density where the system is conjectured to transform
from pion gas states to the BEC state as numerically confirmed in Chapter 4, the
heavy quarkonium energy shifts start to flatten out. Such a behavior change further

supports the existence of the transition from a pion gas to a BEC state.

5.5 Discussion

Heavy-quark bound states provide an important probe of the properties of a
medium and have been used in this work to investigate systems of large isospin
charge density created by many-pion correlators. Specifically, we have used lattice
QCD to investigate how the presence of this medium modifies the energies of various
bottomonium states computed from NRQCD and charmonium states from color-
wave propagators. Qur calculations make use of ensembles of lattices with three
different physical volumes at a single lattice spacing and at a single light quark
mass corresponding to m, ~ 390 MeV for bottomonium studies and a single volume
for charmonium studies. We have found a measurable decrease in the energy of both
the 7, and Y states and in the spin-averaged P-wave energy, and also for the 7). and
J/v states. This decrease grows as the isospin charge increases, before plateauing
at an isospin density at which we observed strongly non-monotonic behaviour of
the energy density of the medium in Chapter. 4. The saturation of the energy
shift provides further support to the conjecture that a transition from a pion gas
to a Bose-Einstein condensate of pions occurs at this point. In the region of low
isospin density where the energy shift is increasing, the quarkonium energy shifts
are found to be qualitatively in agreement with the expectations from a potential

model augmented with the hadronic screening effect found in Ref. [9], but the effect
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is larger.

A similar study of NRQCD quarkonium correlators in QC,D (two-colour QCD)
at non-zero quark chemical potential was recently presented by Hands et al. in
Ref. [61]. In contrast to QCD with three colours, in QC;D, the addition of a quark
chemical potential does not result in a complex action due to the pseudo reality
of reprentations of SU(2) and numerical calculations can be pérformed efficiently
[62, 63, 64]. In Chapter. 4 it was pointed out that the phase structure of QCD at
nonzero pu; has an intriguing similarity to that of QC,;D at nonzero quark chemical
potential. It is apparent that the similarities persist to the case of quarkonium
energy shifts in medium as an at least qualitatively similar dependence on the charge
density/chemical potential is observed in the two-colour QCD case. Recent work
[65, 66, 67] has probed the connections between different gauge theories with non-
zero (isospin) chemical potentials and, as the extent of this similarity is surprising,
and warrants further investigation.

At the same time, by studying quarkonium—pion correlation functions on three
different volumes, we have extracted n,—m and YT—n scattering phase shifts at low
momentum. The interactions are found to be weak in both cases as expected from
chiral dynamics. Since we only have studies on the charmonium states only in a
single volume, we can only extract the n.-m and J/vy-7 phase shift at single value of

momentum.



CHAPTER 6

Conclusion and Outlook

Quantum Chromodynamics (QCD) plays an important role in studying hadron
interactions, understanding hadron structure, and investigating non-zero temper-
ature and non-zero chemical potential systems. However, it is extremely difficult
to study strongly interacting systems analytically, as the strong interaction is non-
perturbative at intermediate and low energy interacting scales; perturbation theory
starts to fail and non-perturbative techniques are required. Lattice Quantum Chro-
modynamic (LQCD) provides a way to study such systems non-pertubatively from
first principles by discretizing space and time, and useing Monte Carlo importance
sampling techniques to numerically integrate the functional integrals that define
physical observables as originated from QCD.

In recent years, a large amount of effort has been devoted to investigating
hadronic systems and exploring phase structures at varying temperatures and chem-
ical potentials. At zero chemical potential, the determinant of the QCD Dirac op-
erator is positive definite, and importance sampling techniques can be applied. Al-
though different research groups employ different discretizing techniques, they find

mutual agreement that there is a crossover from a confined phase to a deconfined
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phase at high temperature. However the determinant of the Dirac opeartor with
non-zero baryon chemical potential is complex, thus importance sampling techniques
start to fail and cancellations between different field configurations are required to
get correct results, thus the computational difficulty in solving such system grows
exponentially. Different methods, for example reweighting, the use of imaginary
chemical potential and small chemical potential expansion, have been constructed,
and more details can be found in the Ref. [17].

For systems with non-zero isospin chemical potential, the sign problem that oc-
curs in the non-zero baryon chemical potential system does not exist, and importance
sampling technique can be adopted to study non-zero isospin chemical potential sys-
tem directly. From xPT [1], a transition from normal haronic state to Bose Einstein
Condensate state is conjectured at an isospin chemical potential p; > m,, and a
deconfining phase transition at high temperature and non-zero isospin chemical po-
tential is also suggested. In order to study hadronic systems and phase transitions
at various temperatures and isospin chemical potentials, non-perturbative studies
of these system can provide vital insight. One approach to study such system is
using the grand canonical approach by generating configurations from Dirac opera-
tors of different isospin chemical potential. In Ref. [19], the authors studied systems
of non-zero isospin chemical potential in this approach, and numerically identified
(although with significant uncertainty) a phase transition from hadronic matter to
the pion condensate (BEC) state at py > m,, which is consistent with predictions
from the xPT [1]. In this thesis, I studied systems of varying isospin chemical po-
tentials from canonical approach by explicitly computing correlation functions of
multi-meson systems with the quantum numbers of n < 727+ mesons. As there are
n!n! number of contractions needed in computing the n-pion correlators C,(t) from
Wick’s theorem, new techniques have been developed to perform these contractions.

The recursion relations of uncontracted correlation functions have been developed
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in Ref. [9] to reduce the number of independent contractions. I have implemented
these recursion relation, generalized to momentum space, and numerically inves-
tigated systems containing up to 24 pions. Correlation functions of n-n systems,
Chr, receive contributions from excited states, ground states, and thermal states,
resulting from a fraction of the pions propagating across the temporal boundary. In
order to extract ground state energies, F,,, all thermal states are required to be
fitted to C,,,. Although systems of up to 24 n’s can be calculated from the recursion
relation in a manageable amount of time, extracting ground state energies becomes
extremely difficult for n > 12. In order to study system containing more than 24
7’s, new methodologies and longer temporal extents were required.

In order to study systems of more pions, I constructed four new algorithms by
using the fact that the energy spectrum of a multi-meson system is independent
of how mesons are distributed among different source locations. With these new
algorithms, systems containing up to 72 pions have been studied on three anisotropic
lattice ensembles, 162 x 128, 20° x 256 and 243 x 128, with physical volumes of
2,2.5 and 3 fm®. Correlation functions of multi-pions systems have contaminations
from both excited states and thermal states resulting from a fraction of the pions
propagating backward around the temporal boundary. Thus in order to extract
ground state energies, large temporal extension is necessary. For lattice ensembles
with T = 128, the A + P methods discussed in the Appendix can be applied to
effectively double the temporal extent.

From the ground state energies of n-n systems, E,,, the isospin chemical poten-
tial can be computed from a finite difference, p;(n) = Enx — En_1)s. By studying
the isospin chemical potential as a function of isospin density, p;, the QCD phase
diagram is explored at a fixed low temperature 7 ~ 20 MeV ( set by the temporal
extent of the lattices used herein) for a range of m, < p; < 9 m,. In order to iden-

tify different physical states, we studied the ratio of the energy density and the zero
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temperature Stefan-Boltzmann expectation as a function of x;. The ratio increases
at small pj, reaches a peak around p; = 1.30 m,, starts to decrease after the peak,
and eventually starts to flatten out at even larger py, which suggests a change in
the degrees of freedom of the system. Our interpretation of this behavior is that
the system is in the state of a pion gases when p; < 1.30(7) m,, and it transforms
to a BEC state when p; > 1.30(7) m,. At very large pj, the system becomes BCS
state at asymptotically large u; from the perturbation QCD. Our study supports
expectations of the QCD phase diagram from phenomenology studies.

The suppression of J/i¢ and T [3] at non-zero temperature in heavy ion col-
lision is an important diagnostic of the formation of the quark-gluon plasma and
the onset of deconfinement. Such suppressing effects have been experimentally ob-
served at SPS, RHIC and LHC. Similar changes are naturally also expected to occur
near phase transitions at non-zero chemical potential and non-zero isospin chemi-
cal potential. In this thesis, I investigated the energy shift of heavy quarkonium
states from first principles, and studied this suppression effect from first principles
non-perturbatively. By utilizing the constructed n-pion systems, I investigated the
energy shifts of bottomonium at different isospin density. Bottomonium correlation
functions are computed using Non-Relativistic QCD (NRQCD), and the algorithms
constructed in Chapter. 3 were used to compute n-pion correlation functions. By
multiplying n-pion correlation functions and the bottomonium correlation functions
on each rconﬁguration, energy shifts for different bottomoninum states have been
extracted for different isospin densities. At small isospin densities the bottomonium
energy shifts increases as afunction of p;, however the dependence of the energy
shift qualitatively changes its behavior and starts to flatten out around the same
isospin density, where a transition from a pion gas to BEC state was identified
from our multi-pion studies. Such a change of behavior strengthens the conjecture,

that the system under goes a phase transition. According to the study of bottomo-
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nium, the energy shift of bottomonium becomes more prominent for lighter heavy
quark masses, and an even larger and cleaner signal of energy shift is expected for
charmonia.

By applying Liischer’s formula, scéttering length can be extracted from ener-
gies of two body system in a finite volume. Since we have conducted bottomonium
studies on three different voulmes, we can perform an extraction in terms of dif-
ferent interacting momenta to get the scattering length and effective range that
parameterize the low energy interactions in the infinite volume limit. Infinite vol-
ume results are myan, » = 0.039(13) and the m,r,, » = 4.7(3.7) for the 7, state,
and myay, = 0.047(14) and m,rr » = 5.8(3.3) in the case of the T. Both channels
corresponding to a weak attractive interaction. Extrapolation to the physical pion
mass according a quadratic form in Equation (5.12), scattering lengths at physical
pion as alP¥*) = 0.0025(8)(6) fm, ag?’ :ys‘) = 0.0030(9)(7) fm, which are compara-
ble to, and considerably more precise than estimates from phenomenological models
[55, 56, 57, 58].

By applying similar computational techniques as those used in bottomonium
energy shift study, charmonium energy shifts have also been investigated in media
of different isospin chemical potential. In order to have better correlations with
multi-pion correlators and have more clean signals for the charmoninum energy
shift, charm quarks are implemented using color-wave propagators, computed with
the same relativistic fermion action used in generating the light quark propagators.
From the corresponding ratio of J/¢¥ and n-7 correlation functions, energy shifts
of J/¢ in the media of different isospin chemical potential can be extracted. The
shape of the charmonium energy shifts is qualitatively in agreement with the bot-
tomonium energy shifts, but with quantitatively larger negative energy shifts. Both
studies from bottomonium and charmonium states strengthen the conjectured phase

transition from pion gas states to BEC state around py = 1.30(7) m,,.
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Although I have only investigated multi-pion systems in this thesis, the methods
that I have developed can also be adapted to study systems with multi p or K
mesons, and multi-species systems. By constructing moving mesons, we can also
study the I = 2 nw scattering length for a large range of interacting momenta
from the energy shifts of two-pion systems with different center of mass momenta
and different relative momenta as a function of the volume. Similarly. three-pion
systems with non-zero momenta can also be studied with the same methods, which
can provide a nice way to understand details of three-body dynamics before we turn
to more phenomenologically relevant three-nucleon systems. By extending these
contraction methods for multi-meson systems, we may also be able to study multi-

baryon systems in the future.



APPENDIX A

Antiperiodic £ Periodic propagator
method (A £+ P method)

By keeping all Z]; factors the same as the ground state ZJ] extracted from
the B4 ensemble, we have reconstructed the correlators corresponding to the B2
ensemble by utilizing the ground state energies extracted from the B4 ensemble!.
In Fig. 4.1, the reconstructed effective masses are compared with those from the
correlation functions computed from the B2 ensemble, showing agreement within
uncertainties. The contamination from the thermal states on the T = 128 (B2)
ensemble can clearly be seen in the rate at which the plateau region (where the
ground state energy dominates) shrinks as n increases. For systems with a large
number of pions, excited states have not died out before thermal states become
important.

Since a temporal extent T > 128 is essentially required to get a clean signal
for many-pion ground state energies, we have investigated the use of the A &= P

method (combining propagators that satisfy anti-periodic and periodic boundary

1While we do not expect Z7 = Z7 for all m because of the effects of pion interactions, deviations
are expected to be small (This is also supported by thermal fits using Eq. (2.21) for small n.).
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FIG. A.1: Effective mass plots for 24n% and 48n% correlators. The blue data are from
ensemble B4 and the red data are from the A + P method on ensemble B2. Effective
mass plots are consistent between these two calculations for all » nt systems.
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FIG. A.2: The ratio of the correlation function of n 7n*’s calculated by using the A + P
method on B2 ensemble, C123(t), compared with that from B4 ensemble, C256(t), for
n=1,3,57,11, is shown.
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FIG. A.3: The ground state energies, Eyr, extracted from ensemble B2 (E12%) with A+ P
method are compared with those from ensemble B4 (£25€) in the left plot, where the

ratio of E23%/E128 is plotted. The isospin chemical potentials, u;, at different densities

for the two ensembles are compared in the right plot.

conditions in the temporal direction to cancel certain modes [31, 32, 33]). On the
T = 128 B2 ensemble, we check the validity of this method in comparison to the B4
(T = 256) ensemble. In order to see the deviation of this method compared with
those calculated directly from the 7" = 256 ensemble with anti-periodic boundary
conditions in the temporal direction, effective mass plots from the two ensembles are
compared in Fig. A.1, and the ratio of correlation functions from these two methods
are shown in Fig. A.2. The A+ P method relies on the exact cancellation of thermal
contributions, and is seen to work very well 1 n* system, see Fig. A.2. For systems
with more than 1 7%, the A & P method starts fail at later time slices, however it
still gives consistent results at earlier time slices, where ground state energies can
be extracted. Energies and isospin chemical potentials extracted from the A + P
method are compared with those from ensemble B4 in Fig. A .3, which shows that the
disagreement of extracted ground energies below 1%, and at our current precision,
the A £ P method provides reliable results for the correlators we study. This gives
us confidence to use the A & P method for ensembles B1 and B3, where we could

otherwise not extract ground state energies for large number of pions.

wn
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