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Abstract. Reconstruction and identification of particles in calorimeters of modern High
Energy Physics experiments is a complicated task. Solutions are usually driven by a priori
knowledge about expected properties of reconstructed objects. Such an approach is also used
to distinguish single photons in the electromagnetic calorimeter of the LHCb detector at the
LHC from overlapping photons produced from decays of high momentum 7° . We studied
an alternative solution based on first principles. This approach applies neural networks and
classifier based on gradient boosting method to primary calorimeter information, that is energies
collected in individual cells of the energy cluster. Mutial application of this methods allows
to improve separation performance based on Monte Carlo data analysis. Receiver operating
characteristic score of classifier increases from 0.81 to 0.95, that means reducing primary photons
fake rate by factor of two or more.

1. Introduction

Reconstruction and identification in calorimeters of modern High Energy Physics experiments is
a complicated task. The particular problem is to separate prompt photons produced in collisions
and photons produced by 7° which decay into two photons. The most confusing case is when two
photons from the 7° decay have so close directions, that they appear similar to a single cluster
produced by prompt photons. Direct solutions are usually driven by a priori knowledge about
expected properties of reconstructed objects. Currently used baseline solution of this problem
for data collected by the LHCb experiment [1, 2] relies on variables characterising shape of the
cluster produced in the electromagnetic calorimeter. In this paper we describe an exercise to
separate those two signals without prior knowledge of particular discriminating features of the
analysed cluster but rather train algorithm on plain energy deposits in the cluster cells around
the cluster seed. This is an attempt to test if modern Machine Learning algorithms may be
applied to low level experimental data. We call it ab initio approach.

2. Baseline Approach
LHCD Electromagnetic Calorimeter system [1] consists of Scintillating Pad Detector, Preshower
Detector (PS), and shashlik-type electromagnetic calorimeter per se (ECAL). Energies of PS
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and ECAL cells in vicinity of the high energy “seed” ECAL cell are used to discriminate merged
70 from prompt photons.

It is assumed that the main discriminating feature separating photon and merged 7° clusters
is a cluster shape. Merged 7° clusters are expected to be elongated and asymmetric due to
residual offset between two photons, while genuine photon clusters are expected to be more
symmetrical.

Considering a cluster of N cells, with (z., y.) to be coordinates of the cluster center of gravity,
e; to be energy of the ith cell, and (z;, y;) to be the cell coordinates. Then the matrix describing
second moments of the cluster shape is defined as :

N N N
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Features which are used for the baseline separation approach are defined as follows :
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A 2-layer perceptron was applied to separate photon and 7° clusters by these features built
using energies in 3x3 ECAL cells area around the cluster seed . Full description of the baseline
approach may be found in [3].

The training photon sample was done by K*gamma photons and set of 7% from B decays.
The performance of the baseline approach on the reference data described below is presented as
dashed line in Fig. 1.

3. Ab initio approach

To separate photons and merged 7° we consider energies in 5x5 ECAL and PS cells around the
cell seed. However we do not build any sophisticated features based on physics considerations,
but rather consider plain values of energy allocated in every cell of the 5x5 matrix in both
ECAL and PS as a feature. These are 50 plain features to be used by the classifier.

We start with using 2-layer Neural Network which has 2 parallel branches of 2 full-connected
layers for preprocessesing information from electromagnetic calorimeter and preshower. For
decision tree approach we use XGBoost classifier with 6000 trees. To prevent overfitting, the
tree’s depth is restricted by 3.

Photons and 7° used for training are produced in B — Kmy and B? — Knrr" processes
respectively, and cluster information is extracted from corresponding MC samples. To prove
stability of obtained numbers we also use another 70 sample: B° — JyK* with K* — Kn°.
For this study we only consider high energy clusters with transversal energy Er > 2 GeV .
We also selected potentially merged ¥ by requiring for true MC photons from 70 decay to be
separated by not more than two calorimeter cells apart on the face of the ECAL.

The procedure of selecting and tuning architecture of the classifier is described in Sec. 4. To
find enough number of trained epoch for neural network we plot train-test score curve for every
step and noticed when it came out on the plateau. BDT-based classifiers demonstrate better
performance for our problem, so we use the XGBoost [4] tool to train and test classifier. Fig. 1
demonstrates performance of the new approach in comparison with the baseline one. The score
under Receiver operating characteristic curve improves from 0.89 for the baseline up to 0.97 in
new approach. Considering 98% photon efficiency, new approach reduces fake rate from about
60% to about 30%.
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Flatness is an important characteristics of the classifier, as it directly affects systematic
uncertainties for physics analyses. Fig.2 demonstrates that new approach also have very good
flatness in Ep.

3.1. Edge effects

LHCDb electromagnetic calorimeter consists of three regions with cell sizes of 4x4, 6x6 and 12x12
cm? for inner, middle and outer calorimeter regions respectively. Regions are rectangular, thus
the most of the calorimeter area contains the regular grid, and 5x5 clusters can be easily selected.
However, every region still has edges which breaks regular structure. For two-sided borders we
build complete cluster by upscaling or downscaling energy responses in the adjacent region.
Clusters adjacent to innermost and outermost calorimeter remain incomplete. Generally, we
have 3 different type of objects: full, reconstructed and incomplete. As properties of diversed
cluster’s type are expected to be different, a dedicated classifiers for border objects, reconstructed
and incomplete, are trained. The full classifier discussed in the previous section, thus consists
of 9 individually trained classifiers corresponding to three calorimeter regions, serving regular
area, inner and outer edges for each region.
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Figure 2. ROC AUC scores in different Ep intervals for baseline (bottom) and new (top)
approaches.
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Figure 3. Cross Validation for network configurations with 1, 2, 3, 4 hidden layers. Quality for

different iterations is presented as a function of (units for PS branch, units for ECAL branch,
dropout).
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4. Optimisation of the classifier architecture
To select the best classifier architecture we first have to compare Neural Network (NN) and
Decision Tree (BDT) approaches. Regular area of the inner calorimeter is used as a reference
for quantitive comparison of different classifiers

We start with optimising the possible NN architecture. As behaviours of PS and ECAL
detectors are different, and ECAL is stacked after PS concerning the direction of the incoming
particles, we build network consisting of two parallel branches of two full-connected layers
separately preprocessesing information from ECAL and PS. We found that PS information
is not as informative as ECAL. This could easily lead to overtraining. However we also found
that using PS branch with smaller number of units could improve quality of the classifier.

When we consider classifiers structure, there are many hyper-parameters which should be
optimised to get better quality. For neural networks, besides network topology hyper-parameters
include: number of layers and number of units in each layer, method of regularisation, activation
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Figure 5. BDT classifiers quality for different BDT implementations with default and tuned
set of hyper-parameters.

function, etc. Assuming that NN topology described above is fixed, we tune other hyper-
parameters to get the best quality. We use 3-fold cross-validation and train network during 500
epoch. The later is about where the plateau for quality improvement is obtained.

Fig. 3 presents cross validation results for different NN configurations with 1-4 hidden layers.
Despite of dropout, quality for 3 and 4 layers configuration degrades, that we explain by not
too complicated structure of input features.

Results for final variating classifier optimisation method to get the best quality for the given
number of steps is presented in Fig. 4.

For the BDT approach, we assayed XGBoost, CatBoost and LightGBM classifiers. For
each classifier we found best configuration through tuning boosting parameters by ModelGym
[5]. Fig. 5 presents results for both default or tuned configurations. The obtained quality for
different classifiers is found to be very similar and significantly exceeds quality obtained with
the best NN configuration, so we use default XGBoost (estimators=2000, learning rate=0.05,
max depth = 5, min child weight = 2) to build new, ab initio classifier which was used in Sec. 3.

5. Conclusions

We introduced a new, ab initio method for v/7° separation in calorimeter LHCb. It
uses calorimeter cell energies in 5x5 area around cluster seed cell. Several neural network
configurations and gradient boosting methods are tested, and XGBoost is used to evaluate
results. After test on Monte Carlo samples, the method demonstrates an ability to significantly
improve separation quality, and has no significant energy dependence.
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