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Abstract
We study disorder-freemany-body localization in theflat-bandCreutz ladder, whichwas recently
realized in cold-atoms in an optical lattice. In a non-interacting case, the flat-band structure of the
system leads to aWannier wavefunction localized on four adjacent lattice sites. In the flat-band regime
bothwith andwithout interactions, the level spacing analysis exhibits Poisson-like distribution
indicating the existence of disorder-free localization. Calculations of the inverse participation ratio
support this observation. Interestingly, this type of localization is robust toweak disorders, whereas
for strong disorders, the system exhibits a crossover into the conventional disorder-inducedmany-
body localizated phase. Physical picture of this crossover is investigated in detail.We also observe non-
ergodic dynamics in the flat-band regimewithout disorder. Thememory of an initial density wave
pattern is preserved for long times.

1. Introduction

Localization in non-interacting electron systems has been extensively studied since Anderson discussed the
disorder effect on the single-particle electronwavefunction in solids [1]. Presently, what is called Anderson
localization (AL), is recognized as a universal phenomenon in various physical systems [2]. In AL quantum
system, a single-particle electronwavefunction is exponentially localizedwith afinite localization length, and an
insulating phase forms.Owing to the recent development in the computational power and numerical
techniques, study on the effect of the interactions between particles onAL is currently one of themain research
topics in condensedmatter physics. It is now recognized that AL persists in some cases even if the particles
interact. This is calledmany-body localization (MBL).Mostly by numerical simulations, it has been clarified that
theMBLphase exhibits some characteristic properties such as Poisson distribution in the level spacing analysis
(LSA) of the energy eigenvalues similar to that of the conventional AL and the logarithmic growth of
entanglement entropy. In its glassy dynamics,MBL is closely relatedwith the breaking of eigenstate
thermalization hypothesis and ergodicity breaking dynamics [3–8]. Thismeans that a closed ergodicity-breaking
systemdoes not thermalize for a long time, and if we prepare a non-entangled initial state in such a system, the
information of the initial state is conserved for a long timewithout being lost. Recent experiments on cold-atom
gases in optical lattices have reported evidences for the existence ofMBL phenomena [9–12].

Until recently,most of the theoretical studies have focused onMBL induced by the disorders encoded in the
on-site potentials, hopping amplitudes and interactions, as well as quasi-periodic potentials [13]. On the other
hand very recently, disorder-free AL/MBL-like phenomena have been revealed in aWannier–Stark ladder
[14–16], dipolar atomgases in an optical lattice [17], some lattice-gauge theoreticalmodels [18–21], quantum
Hall systems [22], a diamond chain system [23–25], and a disorder-free spin chain [26–29].

Motivated by the abovefindings, we shall report another type of disorder-freeMBL system in this paper. It is
aflat-band systemwith interactions. Certain flat-band structure suppresses particle hoppings effectively and
generates a localizedWannier state [30, 31] that is similar to the localized states in the conventional AL system.
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Such a localizedWannier statewas theoretically investigated for certain non-interacting flat-band systemswith
andwithoutweak disorders [32, 33].We aremotivated by the existence of such localizedwavefunctions and
study aflat-band type localization in theCreutz ladder [34]. TheCreutz ladder is a simplemodel and also
experimentally feasible in cold atom gases. So far, there are several theoretical proposals for implementation of
themodel [35–38], and cold atom experiments realized some related systems [39–41], whose the physical
properties have been extensively studied [42–44].

This paper is organized as follows. In section 2, we introduce the target Creutz laddermodel.We focus on the
flat-band case, and analytically study properties of the flat-band states.We explicitly reveal the origin of
localization and discuss the possibility ofMBLwith repulsions. Effects of on-site disorders are also discussed,
and the global phase structure is given.

In section 3, we present results of the numerical study.Wefirst perform the LSA and also the level spacing
ratio (LSR) analysis for the systemwithweak disorders under the flat-band condition and find that the
probability distribution exhibits Poissonian behavior for both the non-interacting and interacting cases,
indicating a localization tendency. Interestingly enough as the strength of the disorder is increased, wefind that
both the LSA and LSR exhibit behavior of Gaussian unitary ensemble (GUE) corresponding to extended
(delocalized) states. These results are comparedwith those of the non-flat case in order to clarify the difference
between the flat-band and non-flat-band cases. The above phenomenon is discussed via the analytical study in
section 2. Then, we investigate the inverse participation ratio (IPR) tofind that its results corroborate the
localization tendency of the flat-bandCreutzmodel. In particular, energy-resolved IPR exhibits very interesting
behavior, which explicitly clarifies typical properties of the flat-band states as increasing the strength of disorder.
Wefinally investigate distribution of the localization length for typical disorder strengths. Energy-resolved
distribution reveals origin of the crossover observed by the LSA and IPR.

In thefinal subsection of section 3, we study the dynamics in the flat-bandCreutz ladder, i.e. we investigate
the time-evolution of states inwhich fermions are periodically put on sites. The result shows ergodicity-breaking
dynamics, i.e. thememory of the particle distribution in initial states is preserved for long times. Besides the
above important result of the non-ergodicity of theCreutz ladder, we find another interesting phenomenon for
the cases of 1/6 and 1/4-particle filling.

section 4 is devoted for conclusion.We present the summary and also give future perspective.

2. Creutz laddermodel andflat-band localization

In this work, we study an interactingCreutz laddermodel with theHamiltonian [34]
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where (†)aj and (†)bj are the fermion annihilation (creation) operators on the upper and lower chains, respectively,
and subscript j denotes a unit cell. ( )na b j, is the number operator of the particle on the upper (lower) chain. t1 and
t0 are the intra-chain and inter-chain hopping amplitudes, respectively.V is the intra-chain and inter-chain
repulsions, as depicted infigure 1(a), which is one of the simplest interactions suitable for the present study aswe
explain shortly. There are two possible ways to implement this type of interactions in real experiments: (I)
Method to use electric ormagnetic dipole–dipole interactions between atoms [45, 46], (II)Touse natural overlap
ofWannier functions between neighboring sites connected by horizontal and diagonal links induces to this type
of interaction. The case (I)may induce vertical interactions, butwe ignore them in this work.We verified that the
vertical interactions do not change the subsequent numerical results substantially. Obviously, the repulsiveV-
interaction prefers the density-wave configurations in the ladder direction. ( )ma b j, is a randomdisorder chemical
potential, which has a uniformdistribution, such as [ ]( )m m mÎ - 2, 2a b j, , and breaks the chiral symmetry4.
This choice of the disorder plays a significant role in the localization phenomenon in the presentmodel as we
explain shortly.

The energy spectrumof the non-interacting case ofH in equation (1), withV=μ=0 is given as
( ) ( ) ( )=  +E k t k t k2 sin 2 cos1

2
0

2 , where k is thewave number and the bandwidth is ∣ ( )∣-t t2 1 0 . As shown
infigures 1(b) and (c), the band isflat for t0=t1 withE(k)=m2t0, whereas it is dispersive for ¹t t0 1

5. The non-
interacting case ofH in equation (1)withμ=0 belongs to the BDI class in the topological classification theory

4
The disorders act independently in each site and they effect destroying the localizedWannier state in equation (2). If one employs chiral

symmetric disorders instead, the system is fairly robust against the disorders.
5
Such a hopping amplitude ratio can be easily realized in real experiments [41]. By controlling amodulation amplitude of a driving optical

lattice, t0=t1 condition can be achieved.
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[47–50]. Hence, themodel has chiral, time-reversal and particle–hole symmetries. In particular, the chiral
symmetrymakes the energy spectrum symmetric around zero energy. In addition, at the flat-band point,
t0=t1, a localizedWannier state exists in the system,whosewavefunction for the lower spectrum is given by
[30, 31, 37]

∣ ⟩ [ ]∣ ⟩ ( )† † † †Y = - + + ++ +ia b a ib
1

2
0 , 2w j j j j j1 1

where ∣ ñ0 is the empty state. The state ∣Y ñw j spans over two adjacent unit cells, i.e. it is a four-site localized state,
and there are two ∣Y ñw jʼs per site.

It is quite useful to study analytically the flat-band case of the present system for the forthcoming numerical
investigation. In that case, the hopping part of theHamiltonian reduces to the following one,Hflat,

[ ( ) ( ) ] ( )† † † †å= - - - + ++ + + +H t a a b b t a b b ai h.c. . 3
j

j j j j j j j jflat 0 1 1 0 1 1

Then, we introduce the following operators

( )= + = -w a b w a bi , i , 4Aj j j Bj j j

wherewe can prove { }† =w w, 0Aj Bj . This transformation is a kind of detangling for a lattice system [32]. Under
this transformation, theCreutz ladder is detangled into a simple lattice systemwhere each lattice site is
completely decoupled each other. In terms ofwAj andwBj,Hflat is expressed as

[ ] ( )† †å= - ++ +H t w w t w wi i , 5
j

A j Bj Bj A jflat 0 , 1 0 , 1

and straightforwardmanipulations show

∣ ∣ ∣ ∣ ( )† † † †ñ = ñ ñ = - ñ- +H w t w H w t w0 2i 0 , 0 2i 0 . 6Aj B j Bj A jflat 0 , 1 flat 0 , 1

Equations in equation (6) reveal very important properties of the Creutz laddermodewith the flat-band
coupling, i.e. in terms of {wA,wB}-‘particles’,wA(B)-particle hops only left (right)-hand site and changes to
wB(A)-particle. Therefore, the {wA,wB}-particles strictly localize on two adjacent rungs of the ladder. It is
obvious that theWannier state in equation (2) is nothing but a static state composed of a pair of nearest-neighbor
{wA,wB} such as

∣ ( )∣† †Y ñ = - + ñ+w w
1

2
i 0 .w j A j Bj, 1

Similarly, the upper-spectrum eigenstates can be constructed easily as ( )∣† †- ñ+w wi 0 .A j Bj, 1 Therefore, theflat-

bandHamiltonian,Hflat, can be expressed in terms of the following operators, †W j , that create energy
eigenstates

Figure 1. (a)Creutz ladder: the red shaded area represents a unit cell and the blue one is aWannier state under theflat-band condition.
(b) Flat-band structure. (c)Non-flat-band band structure.
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Onemaywonder how the original fermion aj (bj) behaves. Obviously, they do not create an eigenstate of the
Hamiltonian.However, aj and bj are a simple superposition ofwAj andwBj, i.e. ( )† † †= +a w wj Aj Bj

1

2
. Then, the

time evolution of the state ∣ ( )∣† † †ñ = + ña w w0
1

2
0j Aj Bj can be easily obtained. In fact aswA(B)-particle hops only left

(right)-hand site and changes towB(A)-particle, the resultant state of the time evolution is a superposition of the
two states ∣† ña 0j and ( )∣† †- ñ+ -w w 0A j B j, 1 , 1 . By straightforward calculations, we have,
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and therefore, the dynamics of the state ∣ ∣†y ñ = ña 0jini is given by
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The above state in equation (9) is obviously localized.
The analytical study in the above gives the following important observations on theCreutz laddermodel in

equation (1):

(i) in the clean and non-interacting flat-band case, the Creutz ladder system is strictly non-ergodic and all
eigenstates are localized;

(ii) the localization ‘length’ is four lattice sites. The Wannier state in equation (2) resides on four sites. In the
state expressed by equation (9), a particle resides on a single site and six sites with equal probability. Such a
localized particle can be regarded as a concrete example of aflat-band compactons.More general discussion
and construction for the flat-band compactons have been given in [51, 52];

(iii) under a disorder such as μa,j=μb, j, the w-particle picture is robust, i.e. no on-site mixing of the wA and
wB-particles takes place, and therefore the above localization properties are intact. On the other hand, a
disorder such as m m¹a j b j, , , whichwe employ in the present work, tends to break thew-particle picture as it
induces an on-sitemixing;

(iv) similarly, the interaction term in equation (1) is expressed by thew-particle in the diagonal form

( )( )† † † †å + ++ + + +V w w w w w w w w ,
j

Aj Aj Bj Bj A j A j B j B j, 1 , 1 , 1 , 1

and therefore, thew-particle picture is robust even in the presence of the interaction.

Before going into the practical calculations, we shall give some comments. (1) In the following section, we
consider the 1/8-filling case. In such a low commensuratefilling, particles described by equation (2) do not
overlap substantially [53]. Then, it is expected that thew-particle picture is preserved even for rather strong
V-interactions underweak disorder, and the system exhibits localization.This is nothing but a new kind ofMBL.
The conventional disorder-inducedMBLneeds sufficiently strong disorders [6]. On the other hand, our
consideringMBL is induced by the flat-band, i.e. distractive interference of hoppings. (2) In the ordinary AL
systems, localization length depends on the disorder strength. On the other hand in the aboveMBL regime, the
Wannier state in the flat-band hasfinite components in definite lattice sites.We note that this properties give
certain suggestions on the set up of an initial state for observingMBLdynamics in simulations that we shall
give in later section. (3) Increasing the disorder strengthμ, thew-particle picture is getting unstable, and the
genuineflat-band localization is expected to be destroyed.We expect that a crossover takes place from the flat-
band localized states to a new kind of states at a critical disorder strength,μc.

3.Numerical studies

In this section, we shall study theCreutzmodel by the numericalmethods. As a hallmark of localization and
(non)ergodicity, we investigate the level spacing, the IPR and the temporal evolution of inhomogeneous states.
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Obtained results all support the picture of the flat-band localization given in section 2. Furthermore, the
numerical results show interesting behavior of themodel, in particular at relatively highfillings, which come
from the interplay between the locality of the flat-band regime and the repulsion. Inwhat follows, we employ t1
as a unit of energy.

3.1. Level spacing analysis
Wefirst perform the LSA by full-diagonalization of theHamiltonianH in equation (1), under the periodic
boundary condition. In the LSA, we employ the usual unfolding analysis [54]. In the unfoldingmethod [21],
wefirst prepare a set of energy-eigenvalue spectrum {Ei } (i=1, 2,L,ND;ND is theHilbert space dimension)
in ascending order, and then calculate the average level spacing of the original spectrum {Ei } such asD =E
( ) ( )- --N E E1D N

1
1D
. By usingΔE, we define a new level spacing set {si } as si=(Ei+1−Ei)/ΔE. From the

set {si }, we obtain the statistical distribution P(s), which is to be comparedwith the level statistics of the random
matrix theory.Whenwe usemultiple realizations (samples) of the disorder, we average P(s)with respect to them
to obtain thefinal result of P(s).

On performing the LSA for the disorder-free case (μ=0), it is important to note that the systemhas the
translational symmetry. This symmetry generally leads to numerous degeneracies in the energy eigenvalues.
Because of the degeneracies, it is not simple to obtain the probability distributions of the level spacingwithout
ambiguities [14, 15]. To avoid this difficulty, we consider the cases with small butfinite disorders. In the presence
of disorders, even those that are extremelyweak, the degeneracies of the energy eigenvalues are solved. In
practical calculations, we consider the upper and lower chainswith length L=16 andnumber of particle
N=46. From the LSA, one can examine the localization properties of the system. In general, for an ensemble of
localized states, the probability distribution exhibits Poisson statistics, such as ( ) ( )µ -P s sexpP , where s
denotes the unfolded level spacing. Contrastingly, for an ensemble of delocalized (extended) states, the
probability distribution is to beGUE, with characteristics such as ( ) ( )pµ -P s s sexp 4G

2 2 [55–59, 6, 7, 60, 61].7

Figure 2(a) shows the obtained probability distribution for various disorder strengths for the non-
interacting flat-band (V= 0, t1=t0).Wefind that for aweak disorder (μ=1), the probability distribution is
extremely similar to Poisson statistics. This result indicates the existence of localized states even in aweak
disorder.With increasing disorder strength, we observe an interesting phenomenon, i.e. first, the statistics
changes fromPoisson toGUE-like, and then it returns to the Poisson statistics. Calculations forμ=6 and
μ=30 shown infigure 2(a) clearly exhibit this behavior: Poisson→GUE→Poisson. The above behavior of
the Creutz laddermodel is similar to that in otherflat-bandmodels in [60–62]. The previous studies focus on a

Figure 2. Level spacing analysis: (a) disorder dependence in non-interacting flat-band. (b) Interaction dependence in disordered flat-
band (μ=1). (c)Disorder dependence in non-interacting non-flat-band (V = 0). (d) Interaction dependence in disordered non-flat-
band (μ=1). For all cases, we employed L=16 andN=4 and averaged over 20 disorder realizations.

6
TheHilbert space dimension expanded by the Fock state is 35 960, andwe discard the top and bottom 10%of the energy eigenvalues to

obtain a clear distribution.
7
The probability distribution is notGaussian orthogonal ensemble because ourHamiltonianmatrix is not real-symmetric but only

Hermitian.
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single-particle spectrum, however theCreutzmodel here includes interaction. The novelty of the results in
figure 2 is that even for interactingmany-body cases, the level statistical changes first fromPoisson toGUE-like, and
return to the Poisson.Weunderstand ourfindings as follows. The Poisson statistics for theμ=30 ensemble
originates from the conventional AL that is induced by disorder. Contrastingly, the Poisson-like statistics for the
μ=1 ensemble arises from the flat-band properties of themodel. Crossover takes place from the flat-band
localization to the disorder-induced AL as the disorder increases8. This conclusion is in good agreementwith the
observation in section 2 andwill be corroborated by the subsequent IPR calculation.

Figure 2(b) shows the LSA of the interacting cases with aweak disorder,μ=1.Wefind that even forfinite
interactionsV=1 and 6, the Poisson-like statistics persists. This result is indicative of the disorder-freeMBL
induced by theflat-band structure. This is again in good agreement with the observation in section 2

We also study the non-flat-band case (t=6t0), whichwe regard as a reference systemwith respect to the AL
infinite-size systems. Figure 2(c) shows the LSA of a non-interacting non-flat-band for variousμʼs. Theμ=1
andμ=6 results are close toGUE,whereas for a larger disorder,μ=60, the conventional disorder-induced
AL occurs. This delocalization-like behavior is robust to the interaction, as shown infigure 2(d). The obtained
result, in particular for the non-interacting case, seems to contradict the commonbelief that all the states are
localized in 1D random-potential systems. Probably, this is afinite-size effect, i.e. for aweak disorder,μ=1,
localization lengths of certain part of states are larger than the system size. By comparing the results in
figures 2(a) and (b)with those infigures 2(c) and (d), we find that the localization in the flat-band case is
obviously stronger than that in the non-flat-band case, indicating that theirmechanisms are different aswe
discussed in section 2.Wewill confirm this observation by calculating other quantities. The level spacing ratio in
separate energy sectors is numerically studied in section 3.2 to complement the above LSA. In addition, we
investigate finite-size effects for the LSA infigure 2(b). It is displayed in appendix A.

3.2. Averaged level spacing ratio (LSR)
The LSR is often used for study of localization, which is a kind of numerical analysis of the LSA [7, 64]. In this
section, we study the energy-resolved LSR to see the localization tendency of various energy sectors. To this end,
we introduce a normalized energy scale òi, which is defined by ( ) ( )= - - E E E Ei i N N1D D

, where E1 and END

are the ground state andmaximum excitation energies as before. By definition, 0�òi�1. LSRs of the energy
eigenvalues {Ei} (in ascending order) are defined as [ ( )] [ ( )]( ) ( ) ( ) ( )d d d d= + +r min , max ,k k k k k1 1 , where

( )d = -+E Ek
k k1 . To obtain average value ( )á ñr as a function of ò, we average r k over 1000 energy eigenstates in

the vicinity of ò and 20 disorder realizations. The value of ( )á ñr gives us an estimate of the (non-)localization
tendency of the states around the energy density ò. For the Poisson randommatrix ensemble (localized state),
á ñ ~r 0.386. On the other hand, for an ergodic state (extended state), á ñ ~r 0.600 (GUE). Aswe show, ( )á ñr in
the present system varies from0.4 to 0.55. This result indicates that coexistence of extended and localized states
is realized.

For theflat-band case (t0=t1) infigure 3, we displayV-dependence of ( )á ñr with the strength of the
disorderμ=1 andμ=6. Let us seeV=0,μ=1 datafirst. All ( )á ñr s are close to the value of the Poisson
distribution (∼0.386), but in the intermediate energy region (ò∼0.6), the upward deviation from the Poisson
distribution exists. This tendency increases for theweak interactionV=1, whereas in the larger interaction
casesV=3 and 6, the tendency is weakened. Therefore, even though there is a small ò-dependence in ( )á ñr , the
whole states tend to localize in theweak disorder and flat-band case. This result supports the result infigure 2 in

Figure 3.V dependence of ( )á ñr : the red dotted line represents á ñ ~r 0.386, corresponding the ideal value for the Poisson random
matrix ensemble, whereas á ñ =r 0.6 for theGUE. L=16 andN=4 (filling 1/8 case). (a) forμ=1 and (b) Forμ=6. For all data,
we averaged over 20 disorder realizationswith different disorder distributions of ( )ma b j, .

8
Similar recurrence phenomenon of the glassy dynamics by disorder strengthwas observed recently for an extended Bose–Hubbardmodel,

which is a quantum simulator of the latticeGauge–Higgsmodel [63].
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section 3.1. In passing,V-dependence in ( )á ñr infigure 3(a)may imply aV-inducedweak spectral
transition [65].

Let us turn to theμ=6 case infigure 3(b). It is obvious that ( )á ñr has larger values in all cases compared
with theμ=1 case.Maximumvalue of ( )á ñr is 0.55, which is close to theGUE value. Therefore, we expect that
extended states exist in the region ofμ=6, and they are located in the center of the energy spectrum. This
observation is in good agreement with the studies of the IPR and the dynamical behavior of theCreutz ladder
given in the subsequent sections.

3.3. IPR and crossover
Wecalculate the IPR, which is often used for the study of localization. By diagonalizing theHamiltonian in
equation (1), we obtain all the eigenvectors, ∣ ∣ℓ

ℓy ñ = å ñc Fm m m , whereℓ labels the eigenstates, ∣ ñFm is the Fock-

state base and the normalization condition is satisfied ∣ ∣ℓå =c 1m m
2 . For these eigenstates, the IPR is defined as

( ) ∣ ∣ℓ
ℓ= å cIPR m m

4. In particular for the ALwithN particles, the localization length,Rℓ [in units of the lattice
spacing] is given by (IPR)ℓ;1/(Rℓ)

N.9We average (IPR)ℓ over all the states forfixedμ andV. The averaged IPR
is denoted by á ñIPR .

Figure 4(a) shows theμ-dependence of á ñIPR in the non-interacting case (V= 0). For a sufficiently weak
disorder (μ 1), the obtained á ñIPR in both theflat-band (t0=t1) and non-flat-band (t0=6t1) is small
comparedwith that in the strong-disorder regime (μ10), where the value of á ñIPR is large owing to the
existence of the conventional disorder-induced AL. In theweak-disorder regime, there exists a clear difference in
the á ñIPR of the flat-band and non-flat-band cases10, i.e. the value of the á ñIPR of theflat-band is obviouslymuch
larger than that of the non-flat-band, as shown in the inset offigure 4(a). Thismeans that the flat-band system
tends to localizemore strongly than the non-flat-band system11 .The origin of this difference is clearly explained
in section 2. It is intriguing to see that á ñIPR 0.02 gives an estimation of the localization length,Rℓ;4.0,
which is close to the estimation of the localization length given in section 2.

It is interesting to observe that in the vicinityμ∼6, á ñIPR decreases in theflat-band system, as shown in the
inset offigure 4(a). This behavior is in good agreement with the results of the LSApresented infigure 2(a) and the
LSR infigure 3. In fact forμ=6, the LSA of the flat-band shows aGUE-like behavior. Again this behavior of
á ñIPR is an evidence of the crossover, andwe estimateμc∼6.

As ourmain concern is theMBL state in theflat-band, we study the interacting cases with finiteVʼs.
Calculations of the IPR for the case,V=1, are shown infigure 2(b).Wefind that the value of á ñIPR of theflat-
band increases in theweak-disorder regime comparedwith theV=0 case, and it again decreases considerably
nearμ∼6 as in theV=0 case.We investigated cases for other values ofV and found similar behavior of á ñIPR .
We therefore conclude thatMBL exists in the flat-bandCreutz laddermodel in the weak-disorder regime, reflecting
the flat-band structure.Moreover, a crossover from flat-bandMBL to disorder-inducedMBL takes place as the

Figure 4.Averaged IPR: (a)non-interacting case. (b) Interacting case. For both the cases, we averaged over 20 disorder samples. In
both cases (a) and (b), the difference becomes small for 1μ10, where the LSA of the flat-band exhibits GUE-like distribution. In
theμ10 regime, the conventional disorder-induced AL/MBLphase appears. The system size is L=12, and the particle number is
N=3.

9
More precisely for the ALwithout inter-particle interactions, ( )á ñ

=
RIPR 1

n

N
n1
, where n labels quantum states occupied byN-

particles, andRn is the localization length of n-th state. See [21].
10

The small values of á ñIPR are partly owing to the degeneracy originating from the translational symmetry of themodel. In the small-
disorder regime, the breakdown of the translational symmetry is weak. Accordingly, there exist numerous quasi-degenerate states.
11

Simple estimation of the average ofRℓ, á ñR , is obtained by using the obtained results of á ñIPR . It gives á ñR 8 for the non-flat-band and
á ñR 4 for theflat-band. This result for theflat-band is reminiscent of theWannier state in equation (2).
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disorder increases. This is one of themain conclusions of this work. In section 3.5, we shall give a physical picture
of the above crossover that is obtained by calculating energy-resolved localization lengths.

3.4.Detailed study of IPR: energy-resolved analysis
Infigure 4, we showed themean value of the IPR obtained by averaging all eigenstates.We observed that the IPR
exhibits a very interesting behavior as a function of the disorder strengthμ, i.e. it substantially decreases in the
regionμ=1.0–10. In section 3.3, we emphasized that this behavior of the IPR is consistent with the LSA and
LSR. In this subsection, we investigate the energy dependence of the IPR, (IPR)ℓ, as we studied the energy-
resolved LSR ( )á ñr in section 3.2.We also study effects of the interactions.

Figure 5 shows the disorder (μ) and interaction (V ) dependence of the IPR for states with various energies.
Results of the flat-band cases (t1=t0) are infigures 5(a)–(d). There, for allVs except forV=6, the IPR
decreases in the region 1μ 10 in all energy eigenstates. In particular, in the central region of ò, this behavior
is remarkable. This indicates that all states tend to extend in the region 1μ 10 in theflat-band system.We
think that this peculiar behavior (see the results of the non-flat-band case below) stems from the fact that in
‘weak disorder’ belowμ;1, all the states sustain properties of the flat-band localization although energy
splitting takes place as a result of the on-site disorder. In otherwords for ‘strong disorder’ (μ>10), genuine
localization due to disorder takes place as the disorder is strong enough to dominate the flat-band effects.
Therefore, a crossover takes place in the intermediate regime 1μ 10, as we explained in the previous
sections.

By close look atV=3 case infigure 5(c), we find that the data for ò=0, 0.1, 0.8, 0.9 and 1.0 (i.e. areas of the
tail of the energy spectrum) exhibit only a slight decrease in the IPR in 1μ 10. This tendency is stronger for
theV=6 case infigure 5(d). There, the data for ò=0, 0.1, 0.8, 0.9 and 1.0 shows almost no decrease in the value
of the IPR in 1μ 10. Accordingly, a ‘quasi-mobility edge’ seems to exist in forV3.

In summary, the IPR of the flat-band regime shows that for smallV, as increasing the disorderμ from the
flat-band localization, there exists a crossover regime (in 1μ 10) from theflat-band localization to the
disorder-induced genuineMBL. In this crossover regime, all states tend to extend, and for largerμ, all states are
strongly localized. On the other hand for largeV, such a crossover is blown away, and the direct transition from
theflat-band localization to the disorder-inducedMBL takes place.What states are realized in the crossover
regime is an interesting problem. Coexistence of localized and extended statesmay occur there as ( )á ñr implies.
It is also important to study if the above properties of the Creutz ladder are common to other flat-band systems.
These are futureworks.

We also studied the non-flat-band case (t1=6t0). Obtained results of the energy-resolved IPR are shown in
figures 5(e)–(h). For allVs, the IPR forμ 1 ismuch smaller than the IPR of the flat-band case infigures 5(a)–
(d). This result is consistent to the result in figure 4. The behaviors of the IPR for each ò in 1μ 10 are almost
the samewith the differentVs. Furthermore contrary to the flat-band case, states only located in the central
region of the energy spectrum tend to extend and low and especially high-energy states tend to localize there.
This behavior comes from the fact that in the non-flat case, quantum states have different features with each
other depending on their energy. Close look at the data reveals that in theweak disorder regime 10−2μ 1.0,
the band-edge states (low and high energy states) start to localize. This is a commonpicture of theweak
localization. Data seem to indicate that there exists a transition from theweak disorder to strong disorder asμ is
increased.However, location of this transitionmay depend on each state. This behavior is similar to that in the
conventionalMBL transition in a typical randomHeisenberg spin chain [64].

Figure 5.The energy-dependent IPR in theflat-band case withV=0 (a), 1 (b), 3 (c), 6 (d). The IPR in the non-flat band casewith
V=0 (e), 1 (f), 3 (g), 6 (h). For all data, L=12 andN=3 (filling 1/8 case).
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3.5.Distribution of localization length and emergence of ‘critical edge’
In the previous two subsections, we calculated the IPRs to studyAL andMBLby varying the strength of the
disorder. The results showed the sharp contrast between the flat and non-flat cases. In this subsection, we study
the distribution of the localization length as a function of energy by using the relation between the IPR and
localization length, ( ) ( )ℓ ℓ/ RIPR 1 N . This investigation is important to examine the finite-size effect, and to
verify that the results of IPR obtained in the previous subsections for L=12 are reliable. To this end, we study
the systemswith L=12 (N= 3, 24 sites) and L=16 (N= 4, 32 sites) focusing on some interesting disorder
strengths,μʼs. Besides thefinite-size effect, this investigation reveals very important properties of the present
system, as we see later in the present subsection.

Wefirst show the distributions of the localization length averaged over the entire energy eigenstates, which
correspond to the IPR infigure 4.We consider the flat-band cases withV=1,μ=0.8 andV=1,μ=6, and
the non-flat-band casewithV=1,μ=6. The results for the system size L=12 are displayed infigure 6(a). For
theflat-band case, the localization length forμ=6 is larger than that forμ=0.8, which agrees with the
calculations of the IPR infigure 4.More important observation is that themajority of the localization lengths in
the distribution in both cases are fairly small comparedwith the system size, i.e. {Rℓ}<9. This result seems to
indicate that the system size L=12 is large enough to calculate the localization length for the flat-band case. On
the other hand for the non-flat band case, typical localization lengthRℓ∼9, and therefore, the localization
lengthmay not be estimated correctly.

To examine the above observation for the flat and non-flat cases, we studied the L=16 system.Obtained
results are shown infigure 6(b). For theflat-band case, themaximumof the localization length { }ℓ RMax 9,
which is the samewith that in the L=12 case. For the non-flat band case, the themaximumof the localization
length is slightly larger than that in the L=12 case, but { }ℓ RMax 10.5. These results seem to indicate that the
estimations of the localization length are reliable for both theflat and non-flat cases with the above parameters.

We also studied the energy-resolved localization length for the L=16 systemwith the above parameters and
obtained very important observations. The calculations are shown infigures 7(a) and (b). For the non-flat-band
system infigure 7(a), the distribution is dominated by a sharp peak and there is amoderate peak very close to the
sharp peak. For theflat-band casewith a small chemical potentialμ=0.1, the distribution has a singlemoderate
peak centered atRℓ=3.

On the other hand for theflat-band casewithμ=6 infigure 7(b), the distribution has a different shape
depending on eigenenergy. States in the band center have a fairely large localization length, whereas at the band
edges, the states are localized. From the calculations of the non-flat band casewithμ=6 andflat-band casewith
μ=0.1 infigure 7(a), we observe that the states far from the band center are localized due to the flat-band
localization, which is one of the properties of the genuine Creutz ladder system.On the other hand for the states
in the band-center regime, AL caused by the disorder potential is themainmechanismof localization as in the
non-flat system. In otherwords, there exists a critical strength of the disorder at which theflat-band structure
shown infigure 1(b) is destroyed, and the upper and lower bandsmerge. In this sense, there exists a ‘critical
edges’ separating the flat-band localized andAL regimes. (We estimate them as ò=0.3 and ò=0.85,
respectively.) Schematic picture is shown infigure 8, which displays an intuitive understanding of the crossover
observed by the LSA and IPR. Anyway,more detailed study on this kind of crossover is a future problem.

Figure 6. (a)Distribution of localization length,Rℓ, for theflat-band cases withV=1,μ=0.8 andV=1,μ=6, and the non-flat-
band case withV=1,μ=6. System size L=12 (24 sites). (b)Distribution of localization length for theflat-band casewithV=1,
μ=6, and the non-flat-band casewithV=1,μ=6. System size L=16 (32 sites).
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3.6. Ergodicity-breaking dynamics
The above results of the LSA and IPR indicate that disorder-free single-particle localization andMBLoccur in
theflat-bandCreutz ladder. Thismotivates us to simulate the dynamics of the Creutz ladder. In the conventional
disorder-induced AL andMBL, information of an initial density wave pattern is stored for long times [3–6, 8].
This behavior is a hallmark of ergodicity breaking and indicates the breaking of the eigenstate thermalization
hypothesis [3–6, 8, 66]. Here, we focus on the disorder-free cases and investigate whether the flat-bandCreutz
ladder exhibits ergodicity breaking dynamics. To this end, we employ the time-dependent exact diagonalization
methodwith the periodic boundary condition [67, 68].

As discussed in section 2, a particle wave function in the flat-band regime tends to have a non-vanishing
amplitude only on definite adjacentfinite sites. Therefore, we expect that the localization of theflat-band system
exhibits different behavior depending on the particle fillings. This expectation obviously comes from the
observation that the Pauli exclusion principle and the repulsionwork substantially at largefillings but less
effectively at lowfillings. In fact at largefillings, the repulsions between particles come to effective, and they
suppressmovements of the particles. As a result, localization is enhanced.

To verify the above expectation, we investigate three cases of particle filling, 1/8, 1/6 and 1/4-fillings in our
numerics. To see their dynamics, we prepare a specific initial state for eachfilling such as

∣ ∣ ( )( ) ( )
†y ñ = ñ

=
- +-a 0 , 10

i

qL

q iini
1

2

2 1 11

where q is taken as follows for eachfilling, q=1/8, 1/6 and 1/4, respectively. This initial state is a totally non-
entangled Fock state, and therefore it is quite suitable for detect the localization dynamics [8]. To characterize the
localization dynamics, wemeasure the long-time average of the return probability [14, 69]
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Figure 7. (a)Energy-resolved distribution of localization length, ℓR , for theflat-band casewithV=1,μ=0.1, and the non-flat-
band case withV=1,μ=6. System size L=16 (32 sites). (b)Energy-resolved distribution of localization length for the flat-band
cases withV=1,μ=6. System size L=16 (32 sites). Distribution exhibits a similar shape to that of theflat-band casewith m = 6
(non-flat-band casewith m = 6) in the edge regimes (central regime) of the energy spectrum. 5 realizations of disorder and 104

eigenstates (in the very vicinity of ò) are used for each energy ò.

Figure 8. Schematic picture of localization and band structure as a function of the strength of disorder.MechanismofMBL in the
interaction systems changes from theflat-band localization to theAnderson-like localization as the strength of disorder increases. For
sufficiently largeμ, theflat-band structure is destroyed and two bandsmerge. At the central regime in the energy spectrum,
localization similar to AL takes place and the localization length in that regime is larger than that at the edges of the energy spectrum.
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whereP(t) is a return probability at t.Here, as shown in [5, 14, 69], if the initial state is given by ∣ ∣ℓ ℓ ℓy yñ = å ñdini

where dℓ is a coefficient of an eigenstate ∣ ℓy ñ in thequenchedHamiltonian, ∣ ∣ ∣ ∣ℓ ℓ ℓd= å  P d dk k,
2 2

,k
, where

òℓ is the eigenenergyof ∣ ℓy ñ. Accordingly,P is related to the level spacing of the eigenenergy. That is, the above
expression ofP indicates that stateswith small level spacings contributemore toP. Since the Poissondistribution
(realized in localized regimes)has a small level spacing regime, the value ofP tends to be large. Therefore,
localization enhances the value ofP. In a conventional localization state, entanglement of eigenstates is fairly
suppressed, and each eigenstate ∣ ℓy ñ tends to be close to theFock state ∣ ñFm . Then, afinite (IPR)ℓ implies afinite
P althoughP is indirectly related to IPRdefined in section3.3.

If the value ofP isfinite, thememory of the initial state is preserved. This implies that an ergodicity breaking
takes place and the system exhibits localization. In our practical numerics, we set the unit of time by  t1, set the
long-time limit as t=103[ ] t1 in equation (11), and use the time slice, dt=10−3 [ t1].We putμ=0 for all
the calculations.

To beginwith, let us verify a single particle localization dynamics. The initial state is set to ∣ ∣†y ñ = ñ=a 0jini 8

with the system size L=15. Figure 9(a) shows the dynamical behavior of ∣ ∣y yá ñ- e t
ini

i
ini

H
. The numerical result

exhibits a clear localization since ∣ ∣y yá ñ- e t
ini

i
ini

H
oscillates, and also its oscillating period agrees with the

analytical result of equation (9). Under theflat-band condition t0=t1, the single particle certainly localizes. The
detailed density dynamics for rung j=8, += =n na j b j, 8 , 8 is also plotted infigure 9(b) for theflat-band case and
(c) for non-flat band case. For the flat band case, the initial single particle is localizedwith an oscillation between
j=7 and j=9 rungs, corresponding to the analytical result of equation (9). On the other hand, see figure 9(c)
for the non-flat band case ¹t t1 0 withV=0, the oscillation of ∣ ∣y yá ñ- e t

ini
i

ini
H

decays immediately.
Let us turn to themultiple-particle system.We calculatedP(t) for various filling cases and interaction

strengthsV. First, we consider the 1/8-filling case.We expect that the inter-particle distance of the initial state is
sufficiently large there, and the particles do not substantially interact with each other. However, this does not
necessarilymean that the repulsion does not influence the dynamics of each particle at all. The numerical result
for the L=12 three-particle system is displayed infigure 10(a). For variousVs in the flat-band case, P(t) takes a
finite large value for long times, i.e.P∼0.37. This indicates the strong localization of particles and the ergodicity

Figure 9.One particle localization dynamics. (a)Return probability amplitude: the purple line represents the numerical time
evolution of ∣ ( )yá Y ñtaini with the initial state ∣ ∣†y ñ = ñ=a 0jini 8 . The green line is the analytical oscillation solution of ∣ ( )yá Y ñtaini

obtained by equation (9). Density distribution dynamics for the rung, na,j+nb, j (b) for theflat-band condition, (c) for the non-flat
band condition, t0=2t1.
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breaking. The independence of the value ofV in the dynamics originates from the large inter-particle distance.
On the other hand, the results for the non-flat band casewith t0=2t1 show that the value ofP(t) suddenly
decays, and therefore the dynamics of the non-flat band system is ergodic. These numerical results are consistent
with the results of the LSA shown infigure 2(b).

Second, let us turn to the 1/6-filling case. For the initial state of equation (10) in the non-interaction case
V=0, we expect that each particle starts to oscillate around the adjacent rungs as described by the single-
particle solution of equation (9) in section 2. There, although each single particle wave function spreads a little,
the overlap and interference between particles are not substantial, and therefore we expect themultiple-particle
system forV=0 exhibits strong localization similar to the 1/8-filling case above.However, onceV is switched
on, oscillating single particles start to interact with each other, and the single-particle localization picturemay be
affected by the existence of the interactionV. Figure 10(b) is the result ofP(t) for the L=9 three-particle system.
ForV=0, as we have expected, P(t) exhibits strong localization P∼0.37. Remarkably for afiniteV,P(t)
remains a definitelyfinite value,P∼0.15. Even for afiniteVwith the 1/6filling, the system exhibits the
ergodicity-breaking dynamics, but the value ofP is a little smaller than that of theV=0 case and the 1/8 filling,
i.e. the interacting system ismoderately localized. For thismoderate-localization regime, it is difficult to judge
whether the LSA and LSR obey Poisson orGUE ensembles. The calculations of the LSA and LSR shown in
appendix B prove this expectation. Properties of themoderate localization are interesting andwarrant deep
study as a futurework.

Third, we focus on the 1/4-filling case. The inter-particle distance is small and the overlap of the single
particle oscillatingwave functions is so large that we expect the interactionV drastically changes the localization
properties of the system. Figure 10(c) is the result ofP(t) for the L=8 four-particle system. Interestingly
enough, depending on the value ofV, the dynamical behavior ofP(t) drastically changes. For the non-interacting
V=0, themoderate localization appears sinceP∼0.13. As increasingV fromV=0, for weak but finiteV
cases, the localization is highly suppressed, i.e. the system tends to be extensive since P<0.1.However for large
V6, theP increases toP>0.2. That is, the interactionV suppresses the localization tendency first, but it
starts to enhance localization asV exceeds a critical value.We expect that in the localized regime for largeV, the
particles repel each other strongly, and then particles are squeezed and localizedmoderately. The localization
length of themoderate localization for largeVmay be a little larger than that of the strong localizationwith
P∼0.37. Calculations of the averaged LSR, ( )á ñr , in appendix B suggest that the band-edge eigenstates in the
moderate-localized regime have stronger tendency of delocalization comparedwith the strong-localized states.

We conclude that for small size systems, a disorder-freeMBL exists in the flat-bandCreutz ladder bothwith
andwithout interactions, and it exhibits ergodicity-breaking dynamics. Infigure 11, we summarize the results of
the numerical calculations and show the qualitative dynamical properties of the system as a function of the
interactionV for various particle fillings.

Figure 10.Exact dynamics for small particle system: (a) L=12 systemwith 1/8filling. (b) L=9 systemwith 1/6filling. (c) L=8
systemwith 1/4filling.
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4. Conclusion

In this work, we have clarified disorder-free single-particle localization andMBLphenomena induced by the
flat-band structure of theCreutz laddermodel.We found that the flat-band localization originates from a
localizedWannier state (FB compacton), and the localization length is quite short compared to that of ordinary
AL. The localization length of theflat-bandCreutz ladder system is also insensitive to the strength of the disorder
although the localization length of AL is strongly influenced by the disorder strength. As a result, effects of
interactions inflat-band localization depends on particle filling (inter-particle distance) significantly.

In section 3, we extensively studied the flat-band localization properties by using some conventional
numericalmethods.We extracted the localization properties from the statistical properties of the static
spectrum and eigenstates in theCreutz ladderHamiltonian. In the flat-band regime, the LSA exhibits Poisson
distribution in theweak-disorder regimewith orwithout interactions. This indicates that the flat-bandmodel
exhibits a (many-body) localization induced by the flat-band nature not by disorder as in AL. After that, we
calculated the LSR from the spectrum and also the IPR from eigenstates of themodel in order to capture the
localization tendency in the real space.We found that they support the LSA result.

We also studied theflat-band localization from the view point of the dynamical aspect.We found thatflat-
band localization tends to prevent the system from thermalization. The single-particle localization picturewas
analytically given in section 2. If we put on a single particle on a single site on the flat-band system, the single
particle localizes with oscillating. To estimate this dynamical localizationwith orwithout interactions, we
performed exact dynamical simulations for small size systems. To judge the thermalization and ergodicity
breaking, we employed the return probability, which quantifies howmuch information of initial statewave
function remains. By calculating the long-time average of the return probability, we characterized an ergodicity-
breaking dynamics similar to the conventional disorder-induced AL andMBLdynamics, and also found rich
localization properties as varying particle filling and the repulsive interaction. In summary, even in the
interacting cases, the system exhibits localization and ergodicity-breaking dynamics. Our numerics is only for
small system sizes but exact, and therefore our results can be a benchmark for future simulationswith large
system sizes, e.g. by usingKrylov subspacemethod.We also expect that the findings in the present work are
useful for future real experiments on cold atoms such as [39, 41].

We also expect similar phenomena in other flat-bandmodels, such as the saw-tooth, diamond and Lieb
latticemodels, which are to be realized in experiments [70–74], and also some studies in theCreutz ladder in the
clean limit [75, 76]pointed out the presence of conserved quantities. Such conjecturemay support our results.
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Figure 11.Qualitative tendency of localization obtained by the calculation P(t).
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AppendixA. System size dependence of LSA

Wecalculate the statistical distribution by using the unfolded level spacingmethod.Here, we show its system-
size dependence for the non-interacting flat-band case infigure 12(a). For the L=8 case, the shape of the
probability distribution is different from that of the Poisson distribution. The value ofP(s)near s∼0 tends to
increase for a small system size. On increasing the system size up to L=16, the probability distribution can be
regarded as Poisson-like. From this result, we expect that for larger system sizes, the probability distribution
approaches the exact Poisson distribution. Therefore, for the non-interacting flat-band system, localization can
be clearly observed for a large system size. Such a system-size dependence is also exhibited for the interacting
case. Figure 12(b) shows the system-size dependence of the LSA for theV=1 case. Comparedwith the non-
interacting case, the increasing tendency ofP(s) in the vicinity of s∼0 is weak in small systems.However, the
probability distribution deviates from the exact Poisson distribution.On increasing the system size up to
L=16, the probability distribution approaches the Poisson distribution.

Appendix B. Averaged LSRof 1/6 and 1/4-fillings

In this appendix, we show the LSA and LSR for the 1/4 and 1/6-filling cases. The results of the LSA for the 1/4
and 1/6-fillings are shown infigures 13(a), (b). Similarly tofigure 2(b), we add the disorderμ=1 in order to
avoid the degeneracies. For the 1/4-filling, the results fromV=0 toV=10 exhibit the almost same behavior,
that is, the statistics is neither the Poisson norGUEdistribution. But forV=15, the statistics gets closer to the
Poisson distribution. For the 1/6-filling, the result ofV=0 is closer to the Poisson than the other cases ofV. The
results fromV=0 toV=10 exhibit similar behavior, i.e. the statistics is neither the Poisson norGUE
distribution. But forV=15, the statistics gets slightly closer to the Poisson distribution.

The results of the LSR for theflat-band casewith 1/4 and 1/6-fillings are shown infigures 14(a), (b).
Similarly tofigure 3(a), we add the disorderμ=1. For bothfilling cases,V=0 results are tend to be
delocalized. For allfinite-V results, the delocalization tendency of higher band-edge eigenstates is suppressed,
and for largerV the localization tendency of higher band-edge eigenstates seems to increase.

Figure 12. System-size dependence of the level spacing analysis: (a)non-interacting flat-band case withμ=1. (b) Interacting flat-
band case withμ=1. In both the cases, the level spacing distribution, P(s), approaches the Poisson distribution as the system size is
increased.
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