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Abstract

We study disorder-free many-body localization in the flat-band Creutz ladder, which was recently
realized in cold-atoms in an optical lattice. In a non-interacting case, the flat-band structure of the
system leads to a Wannier wavefunction localized on four adjacent lattice sites. In the flat-band regime
both with and without interactions, the level spacing analysis exhibits Poisson-like distribution
indicating the existence of disorder-free localization. Calculations of the inverse participation ratio
support this observation. Interestingly, this type of localization is robust to weak disorders, whereas
for strong disorders, the system exhibits a crossover into the conventional disorder-induced many-
body localizated phase. Physical picture of this crossover is investigated in detail. We also observe non-
ergodic dynamics in the flat-band regime without disorder. The memory of an initial density wave
pattern is preserved for long times.

1. Introduction

Localization in non-interacting electron systems has been extensively studied since Anderson discussed the
disorder effect on the single-particle electron wavefunction in solids [ 1]. Presently, what is called Anderson
localization (AL), is recognized as a universal phenomenon in various physical systems [2]. In AL quantum
system, a single-particle electron wavefunction is exponentially localized with a finite localization length, and an
insulating phase forms. Owing to the recent development in the computational power and numerical
techniques, study on the effect of the interactions between particles on AL is currently one of the main research
topics in condensed matter physics. It is now recognized that AL persists in some cases even if the particles
interact. This is called many-body localization (MBL). Mostly by numerical simulations, it has been clarified that
the MBL phase exhibits some characteristic properties such as Poisson distribution in the level spacing analysis
(LSA) of the energy eigenvalues similar to that of the conventional AL and the logarithmic growth of
entanglement entropy. In its glassy dynamics, MBL is closely related with the breaking of eigenstate
thermalization hypothesis and ergodicity breaking dynamics [3—8]. This means that a closed ergodicity-breaking
system does not thermalize for along time, and if we prepare a non-entangled initial state in such a system, the
information of the initial state is conserved for a long time without being lost. Recent experiments on cold-atom
gases in optical lattices have reported evidences for the existence of MBL phenomena [9-12].

Until recently, most of the theoretical studies have focused on MBL induced by the disorders encoded in the
on-site potentials, hopping amplitudes and interactions, as well as quasi-periodic potentials [13]. On the other
hand very recently, disorder-free AL/MBL-like phenomena have been revealed in a Wannier—Stark ladder
[14-16], dipolar atom gases in an optical lattice [17], some lattice-gauge theoretical models [18-21], quantum
Hall systems [22], a diamond chain system [23-25], and a disorder-free spin chain [26-29].

Motivated by the above findings, we shall report another type of disorder-free MBL system in this paper. Itis
aflat-band system with interactions. Certain flat-band structure suppresses particle hoppings effectively and
generates alocalized Wannier state [30, 31] that is similar to the localized states in the conventional AL system.

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Such alocalized Wannier state was theoretically investigated for certain non-interacting flat-band systems with
and without weak disorders [32, 33]. We are motivated by the existence of such localized wavefunctions and
study a flat-band type localization in the Creutz ladder [34]. The Creutz ladder is a simple model and also
experimentally feasible in cold atom gases. So far, there are several theoretical proposals for implementation of
the model [35-38], and cold atom experiments realized some related systems [39—41], whose the physical
properties have been extensively studied [42—44].

This paper is organized as follows. In section 2, we introduce the target Creutz ladder model. We focus on the
flat-band case, and analytically study properties of the flat-band states. We explicitly reveal the origin of
localization and discuss the possibility of MBL with repulsions. Effects of on-site disorders are also discussed,
and the global phase structure is given.

In section 3, we present results of the numerical study. We first perform the LSA and also the level spacing
ratio (LSR) analysis for the system with weak disorders under the flat-band condition and find that the
probability distribution exhibits Poissonian behavior for both the non-interacting and interacting cases,
indicating a localization tendency. Interestingly enough as the strength of the disorder is increased, we find that
both the LSA and LSR exhibit behavior of Gaussian unitary ensemble (GUE) corresponding to extended
(delocalized) states. These results are compared with those of the non-flat case in order to clarify the difference
between the flat-band and non-flat-band cases. The above phenomenon is discussed via the analytical study in
section 2. Then, we investigate the inverse participation ratio (IPR) to find that its results corroborate the
localization tendency of the flat-band Creutz model. In particular, energy-resolved IPR exhibits very interesting
behavior, which explicitly clarifies typical properties of the flat-band states as increasing the strength of disorder.
We finally investigate distribution of the localization length for typical disorder strengths. Energy-resolved
distribution reveals origin of the crossover observed by the LSA and IPR.

In the final subsection of section 3, we study the dynamics in the flat-band Creutz ladder, i.e. we investigate
the time-evolution of states in which fermions are periodically put on sites. The result shows ergodicity-breaking
dynamics, i.e. the memory of the particle distribution in initial states is preserved for long times. Besides the
above important result of the non-ergodicity of the Creutz ladder, we find another interesting phenomenon for
the cases of 1/6 and 1/4-particle filling.

section 4 is devoted for conclusion. We present the summary and also give future perspective.

2. Creutz ladder model and flat-band localization

In this work, we study an interacting Creutz ladder model with the Hamiltonian [34]

H= Z[—itl(a]llaj — b]THbj) — to(a]THb,— + b}+1aj) + h.c.
j
+ V(ngjngjr1 + npjnpjrr + fajip i + fpjhajr1)

+ Mg i, + Mb,j”h,j]a (1)

where ajm and b]m are the fermion annihilation (creation) operators on the upper and lower chains, respectively,
and subscript j denotes a unit cell. 1,;),; is the number operator of the particle on the upper (lower) chain. ¢, and
to are the intra-chain and inter-chain hopping amplitudes, respectively. V'is the intra-chain and inter-chain
repulsions, as depicted in figure 1(a), which is one of the simplest interactions suitable for the present study as we
explain shortly. There are two possible ways to implement this type of interactions in real experiments: (I)
Method to use electric or magnetic dipole—dipole interactions between atoms [45, 46], (IT) To use natural overlap
of Wannier functions between neighboring sites connected by horizontal and diagonal links induces to this type
of interaction. The case (I) may induce vertical interactions, but we ignore them in this work. We verified that the
vertical interactions do not change the subsequent numerical results substantially. Obviously, the repulsive V-
interaction prefers the density-wave configurations in the ladder direction. 1, , ;isa random disorder chemical
potential, which has a uniform distribution, such as 4, ; € [—/2, pu /2], and breaks the chiral symmetry”.
This choice of the disorder plays a significant role in the localization phenomenon in the present model as we
explain shortly.

The energy spectrum of the non-interacting case of H in equation (1), with V.= y = 0Oisgivenas
E(k) =+ \/(Ztl sink)?> + (2t, cosk)? , where kis the wave number and the bandwidth is |2(f; — #;)|. Asshown
in figures 1(b) and (c), the band is flat for t, = t, with E(k) = F2t,, whereas it is dispersive for t, = #”. The non-
interacting case of H in equation (1) with x = 0 belongs to the BDI class in the topological classification theory

* The disorders act independently in each site and they effect destroying the localized Wannier state in equation (2). If one employs chiral
symmetric disorders instead, the system is fairly robust against the disorders.

>Sucha hopping amplitude ratio can be easily realized in real experiments [41]. By controlling a modulation amplitude of a driving optical
lattice, t, = t; condition can be achieved.
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Figure 1. (a) Creutz ladder: the red shaded area represents a unit cell and the blue one is a Wannier state under the flat-band condition.
(b) Flat-band structure. (c) Non-flat-band band structure.

[47-50]. Hence, the model has chiral, time-reversal and particle-hole symmetries. In particular, the chiral
symmetry makes the energy spectrum symmetric around zero energy. In addition, at the flat-band point,

to = 1), alocalized Wannier state exists in the system, whose wavefunction for the lower spectrum is given by
[30,31,37]

1. -
L, ) = _E[m}+1 + bl + af +ib]1|0), )

where |0) is the empty state. The state |V, ); spans over two adjacent unit cells, i.e. it is a four-site localized state,
and there are two [¥,,);’s per site.

It is quite useful to study analytically the flat-band case of the present system for the forthcoming numerical
investigation. In that case, the hopping part of the Hamiltonian reduces to the following one, Hy,,,

Hya = y_[—ito(a], a; — bf, b)) — to(al, bj + b, a)) + h.c]. 3
j

Then, we introduce the following operators
wyj = aj + ib;, wp = aj — ibj, 4)

where we can prove { wj;j, wgi} = 0. This transformation is a kind of detangling for a lattice system [32]. Under
this transformation, the Creutz ladder is detangled into a simple lattice system where each lattice site is
completely decoupled each other. In terms of w4jand wpj, Hy,, is expressed as

Hipa =Y [—il‘oWZ,jHWBj + itowgwaj+1l, %)
J
and straightforward manipulations show

Hyawjl0) = 2itowy; |0),  Hyawizl0) = —2itgw} ;. ,[0). (6)

Equations in equation (6) reveal very important properties of the Creutz ladder mode with the flat-band
coupling, i.e. in terms of {w,, wg}-‘particles’, wp)-particle hops only left (right)-hand site and changes to
Wpa)-particle. Therefore, the {w,, wg}-particles strictly localize on two adjacent rungs of the ladder. Itis
obvious that the Wannier state in equation (2) is nothing but a static state composed of a pair of nearest-neighbor
{wya, wg} suchas

1.
L) = — > (W) ;1 + Wi 0).
Similarly, the upper-spectrum eigenstates can be constructed easily as (iw}_ i1~ WBT].) |0). Therefore, the flat-

band Hamiltonian, Hy,,, can be expressed in terms of the following operators, Wjﬁ, that create energy
eigenstates
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Hpa = > [=200 W TW] + 20, W TW 1],

£
W]- =

| =

(i) ) & wi ). (7)
One may wonder how the original fermion a; (bj) behaves. Obviously, they do not create an eigenstate of the
Hamiltonian. However, a;and b; are a simple superposition of w,jand wg, i.e. a; = %(w);j + ng). Then, the

. . 1 * . . .
time evolution of the state a}lO) =3 (W);]- + wg;)|0) can be easily obtained. In fact as wap)-particle hops only left

(right)-hand site and changes to wp4)-particle, the resultant state of the time evolution is a superposition of the
two states a]T|0) and (w}, i1 wg,j_ D 10). By straightforward calculations, we have,

— it 2t .2t
=i fwj;j|0> = cos(;ot)ngw) - 51n(70t)ng_1|0>,

. Hy
—i ﬂa!t

. 2t . 2t
e fwyl0) = cos(;ot)nglm + sm(;ot)w};ﬁllO), (8)

and therefore, the dynamics of the state |¢/;,;) = aj|0> is given by

7'Hﬂat

[Wa()) = e |¢hini)

(20 ) s (20 \1, 4 :
= cos(?t)ajm) + sm(?t)E(WA,jJrl — wg;_10). ©)

The above state in equation (9) is obviously localized.
The analytical study in the above gives the following important observations on the Creutzladder model in
equation (1):

(i) in the clean and non-interacting flat-band case, the Creutz ladder system is strictly non-ergodic and all
eigenstates are localized;

(ii) the localization ‘length’ is four lattice sites. The Wannier state in equation (2) resides on four sites. In the
state expressed by equation (9), a particle resides on a single site and six sites with equal probability. Such a
localized particle can be regarded as a concrete example of a flat-band compactons. More general discussion
and construction for the flat-band compactons have been given in [51, 52];

(iii) under a disorder such as p1,; = 11, j, the w-particle picture is robust, i.e. no on-site mixing of the w, and
wp-particles takes place, and therefore the above localization properties are intact. On the other hand, a
disorder such as i, P = M which we employ in the present work, tends to break the w-particle picture as it
induces an on-site mixing;

(iv) similarly, the interaction term in equation (1) is expressed by the w-particle in the diagonal form

VY (whiwag + whwe) (W iy Wajn + Wiy Waji 1)
j

and therefore, the w-particle picture is robust even in the presence of the interaction.

Before going into the practical calculations, we shall give some comments. (1) In the following section, we
consider the 1/8-filling case. In such alow commensurate filling, particles described by equation (2) do not
overlap substantially [53]. Then, it is expected that the w-particle picture is preserved even for rather strong
V-interactions under weak disorder, and the system exhibits localization. This is nothing but a new kind of MBL.
The conventional disorder-induced MBL needs sufficiently strong disorders [6]. On the other hand, our
considering MBL is induced by the flat-band, i.e. distractive interference of hoppings. (2) In the ordinary AL
systems, localization length depends on the disorder strength. On the other hand in the above MBL regime, the
Wannier state in the flat-band has finite components in definite lattice sites. We note that this properties give
certain suggestions on the set up of an initial state for observing MBL dynamics in simulations that we shall
give in later section. (3) Increasing the disorder strength y, the w-particle picture is getting unstable, and the
genuine flat-band localization is expected to be destroyed. We expect that a crossover takes place from the flat-
band localized states to a new kind of states at a critical disorder strength, ..

3. Numerical studies

In this section, we shall study the Creutz model by the numerical methods. As a hallmark of localization and
(non)ergodicity, we investigate the level spacing, the IPR and the temporal evolution of inhomogeneous states.

4
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Figure 2. Level spacing analysis: (a) disorder dependence in non-interacting flat-band. (b) Interaction dependence in disordered flat-
band (1 = 1). (c) Disorder dependence in non-interacting non-flat-band (V = 0). (d) Interaction dependence in disordered non-flat-
band (1 = 1). Forall cases, we employed L = 16 and N = 4 and averaged over 20 disorder realizations.

Obtained results all support the picture of the flat-band localization given in section 2. Furthermore, the
numerical results show interesting behavior of the model, in particular at relatively high fillings, which come
from the interplay between the locality of the flat-band regime and the repulsion. In what follows, we employ ¢,
as a unit of energy.

3.1. Level spacing analysis

We first perform the LSA by full-diagonalization of the Hamiltonian H in equation (1), under the periodic
boundary condition. In the LSA, we employ the usual unfolding analysis [54]. In the unfolding method [21],

we first prepare a set of energy-eigenvalue spectrum {E; } (i = 1,2, ---, Np; Np is the Hilbert space dimension)
in ascending order, and then calculate the average level spacing of the original spectrum {E; } suchas AE =

(Np — 1)y YEn, — E). Byusing AE, we define a new level spacing set {s; } ass; = (E;;, — E;)/AE. From the
set {s; }, we obtain the statistical distribution P(s), which is to be compared with the level statistics of the random
matrix theory. When we use multiple realizations (samples) of the disorder, we average P(s) with respect to them
to obtain the final result of P(s).

On performing the LSA for the disorder-free case (1 = 0), it is important to note that the system has the
translational symmetry. This symmetry generally leads to numerous degeneracies in the energy eigenvalues.
Because of the degeneracies, it is not simple to obtain the probability distributions of the level spacing without
ambiguities [14, 15]. To avoid this difficulty, we consider the cases with small but finite disorders. In the presence
of disorders, even those that are extremely weak, the degeneracies of the energy eigenvalues are solved. In
practical calculations, we consider the upper and lower chains with length L = 16 and number of particle
N = 4°. From the LSA, one can examine the localization properties of the system. In general, for an ensemble of
localized states, the probability distribution exhibits Poisson statistics, such as Pp(s) o exp(—s), wheres
denotes the unfolded level spacing. Contrastingly, for an ensemble of delocalized (extended) states, the
probability distribution is to be GUE, with characteristics such as Py (s) o< s exp(—4s?/7) [55-59, 6, 7,60, 61].”

Figure 2(a) shows the obtained probability distribution for various disorder strengths for the non-
interacting flat-band (V= 0, t; = #;). We find that for a weak disorder (1 = 1), the probability distribution is
extremely similar to Poisson statistics. This result indicates the existence of localized states even in a weak
disorder. With increasing disorder strength, we observe an interesting phenomenon, i.e. first, the statistics
changes from Poisson to GUE-like, and then it returns to the Poisson statistics. Calculations for ;¢ = 6 and
1 = 30 shown in figure 2(a) clearly exhibit this behavior: Poisson — GUE — Poisson. The above behavior of
the Creutz ladder model is similar to that in other flat-band models in [60-62]. The previous studies focus on a

® The Hilbert space dimension expanded by the Fock state is 35 960, and we discard the top and bottom 10% of the energy eigenvalues to
obtain a clear distribution.

The probability distribution is not Gaussian orthogonal ensemble because our Hamiltonian matrix is not real-symmetric but only
Hermitian.
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Figure 3. V dependence of (r(¢)): the red dotted line represents (r) ~ 0.386, corresponding the ideal value for the Poisson random
matrix ensemble, whereas (r) = 0.6 for the GUE.L = 16 and N = 4 (filling 1/8 case). (a) for x = 1 and (b) For x = 6. For all data,
we averaged over 20 disorder realizations with different disorder distributions of 11, ;.

single-particle spectrum, however the Creutz model here includes interaction. The novelty of the results in
figure 2 is that even for interacting many-body cases, the level statistical changes first from Poisson to GUE-like, and
return to the Poisson. We understand our findings as follows. The Poisson statistics for the 1t = 30 ensemble
originates from the conventional AL that is induced by disorder. Contrastingly, the Poisson-like statistics for the
1 = 1 ensemble arises from the flat-band properties of the model. Crossover takes place from the flat-band
localization to the disorder-induced AL as the disorder increases”. This conclusion is in good agreement with the
observation in section 2 and will be corroborated by the subsequent IPR calculation.

Figure 2(b) shows the LSA of the interacting cases with a weak disorder, = 1. We find that even for finite
interactions V = 1 and 6, the Poisson-like statistics persists. This result is indicative of the disorder-free MBL
induced by the flat-band structure. This is again in good agreement with the observation in section 2

We also study the non-flat-band case (t = 6t;), which we regard as a reference system with respect to the AL
in finite-size systems. Figure 2(c) shows the LSA of a non-interacting non-flat-band for various y’s. The 1 = 1
and 1 = 6results are close to GUE, whereas for alarger disorder, ;1 = 60, the conventional disorder-induced
AL occurs. This delocalization-like behavior is robust to the interaction, as shown in figure 2(d). The obtained
result, in particular for the non-interacting case, seems to contradict the common belief that all the states are
localized in 1D random-potential systems. Probably, this is a finite-size effect, i.e. for a weak disorder, 1 = 1,
localization lengths of certain part of states are larger than the system size. By comparing the results in
figures 2(a) and (b) with those in figures 2(c) and (d), we find that the localization in the flat-band case is
obviously stronger than that in the non-flat-band case, indicating that their mechanisms are different as we
discussed in section 2. We will confirm this observation by calculating other quantities. The level spacing ratio in
separate energy sectors is numerically studied in section 3.2 to complement the above LSA. In addition, we
investigate finite-size effects for the LSA in figure 2(b). It is displayed in appendix A.

3.2. Averaged level spacing ratio (LSR)

The LSR is often used for study of localization, which is a kind of numerical analysis of the LSA [7, 64]. In this
section, we study the energy-resolved LSR to see the localization tendency of various energy sectors. To this end,
we introduce a normalized energy scale €;, which is defined by ¢; = (E; — Ey,)/(E; — Ey,), where E; and Ey,
are the ground state and maximum excitation energies as before. By definition, 0 < ¢; < 1. LSRs of the energy
eigenvalues { E;} (in ascending order) are defined as 7 = [min(§®), §*+1)] /[max(6®, §*+D)], where

6® = Ep,| — Ej.To obtain average value (r (¢)) as a function of ¢, we average r* over 1000 energy eigenstates in
the vicinity of € and 20 disorder realizations. The value of (r (¢)) gives us an estimate of the (non-)localization
tendency of the states around the energy density e. For the Poisson random matrix ensemble (localized state),
(r) ~ 0.386.On the other hand, for an ergodic state (extended state), (r) ~ 0.600 (GUE). As we show, (r(¢))in
the present system varies from 0.4 to 0.55. This result indicates that coexistence of extended and localized states
is realized.

For the flat-band case (fo = #,) in figure 3, we display V-dependence of (r (¢)) with the strength of the
disorder 4 = land u = 6. Letussee V = 0, u = 1 data first. All (r(¢)) s are close to the value of the Poisson
distribution (~0.386), but in the intermediate energy region (¢ ~ 0.6), the upward deviation from the Poisson
distribution exists. This tendency increases for the weak interaction V = 1, whereas in the larger interaction
cases V = 3 and 6, the tendency is weakened. Therefore, even though there is a small e-dependence in (r (¢)), the
whole states tend to localize in the weak disorder and flat-band case. This result supports the result in figure 2 in

8 Similar recurrence phenomenon of the glassy dynamics by disorder strength was observed recently for an extended Bose—Hubbard model,
which is a quantum simulator of the lattice Gauge—Higgs model [63].
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Figure 4. Averaged IPR: (a) non-interacting case. (b) Interacting case. For both the cases, we averaged over 20 disorder samples. In
both cases (a) and (b), the difference becomes small for 1 < 1 < 10, where the LSA of the flat-band exhibits GUE-like distribution. In
the 1 2 10 regime, the conventional disorder-induced AL/MBL phase appears. The system size is L = 12, and the particle number is
N =3.

section 3.1. In passing, V-dependence in (r (¢)) in figure 3(a) may imply a V-induced weak spectral
transition [65].

Letus turn to the yo = 6 case in figure 3(b). Itis obvious that (r (¢)) has larger values in all cases compared
with the y = 1 case. Maximum value of (r (¢))is 0.55, which is close to the GUE value. Therefore, we expect that
extended states exist in the region of ;1 = 6, and they are located in the center of the energy spectrum. This
observation is in good agreement with the studies of the IPR and the dynamical behavior of the Creutz ladder
given in the subsequent sections.

3.3.IPR and crossover

We calculate the IPR, which is often used for the study of localization. By diagonalizing the Hamiltonian in
equation (1), we obtain all the eigenvectors, [ty) = 3, c|E,), where £ labels the eigenstates, |E,) is the Fock-
state base and the normalization condition is satisfied > mlc,i [> = 1. For these eigenstates, the IPR is defined as
(IPR), = Zm|c5 |4, In particular for the AL with N particles, the localization length, R [in units of the lattice
spacing] is given by (IPR), ~ 1/ RN We average (IPR), over all the states for fixed ;1 and V. The averaged IPR
is denoted by (IPR).

Figure 4(a) shows the pi-dependence of (IPR) in the non-interacting case (V = 0). For a sufficiently weak
disorder (i < 1), the obtained (IPR) in both the flat-band (#, = #,) and non-flat-band (¢, = 6t,) is small
compared with that in the strong-disorder regime (¢ = 10), where the value of (IPR) is large owing to the
existence of the conventional disorder-induced AL. In the weak-disorder regime, there exists a clear difference in
the (IPR) of the flat-band and non-flat-band cases'’, i.e. the value of the (IPR) of the flat-band is obviously much
larger than that of the non-flat-band, as shown in the inset of figure 4(a). This means that the flat-band system
tends to localize more strongly than the non-flat-band system'" . The origin of this difference is clearly explained
in section 2. It is intriguing to see that (IPR) ~ 0.02 gives an estimation of the localization length, R, ~ 4.0,
which is close to the estimation of the localization length given in section 2.

Itis interesting to observe that in the vicinity 1 ~ 6, (IPR) decreases in the flat-band system, as shown in the
inset of figure 4(a). This behavior is in good agreement with the results of the LSA presented in figure 2(a) and the
LSRin figure 3. In fact for ;1 = 6, the LSA of the flat-band shows a GUE-like behavior. Again this behavior of
(IPR) is an evidence of the crossover, and we estimate i, ~ 6.

As our main concern is the MBL state in the flat-band, we study the interacting cases with finite V’s.
Calculations of the IPR for the case, V = 1, are shown in figure 2(b). We find that the value of (IPR) of the flat-
band increases in the weak-disorder regime compared with the V' = 0 case, and it again decreases considerably
near ;1 ~ 6asinthe V = 0 case. We investigated cases for other values of Vand found similar behavior of (IPR).
We therefore conclude that MBL exists in the flat-band Creutz ladder model in the weak-disorder regime, reflecting
the flat-band structure. Moreover, a crossover from flat-band MBL to disorder-induced MBL takes place as the

? More precisely for the AL without inter-particle interactions, (IPR) ~~ HWN:] (1 / R,,), where nlabels quantum states occupied by N-
particles, and R,, is the localization length of n-th state. See [21].

10 The small values of (IPR) are partly owing to the degeneracy originating from the translational symmetry of the model. In the small-
disorder regime, the breakdown of the translational symmetry is weak. Accordingly, there exist numerous quasi-degenerate states.

1 Simple estimation of the average of R, (R), is obtained by using the obtained results of (IPR). It gives (R) ~ 8 for the non-flat-band and
(R) =~ 4 for the flat-band. This result for the flat-band is reminiscent of the Wannier state in equation (2).
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disorder increases. This is one of the main conclusions of this work. In section 3.5, we shall give a physical picture
of the above crossover that is obtained by calculating energy-resolved localization lengths.

3.4. Detailed study of IPR: energy-resolved analysis

In figure 4, we showed the mean value of the IPR obtained by averaging all eigenstates. We observed that the IPR
exhibits a very interesting behavior as a function of the disorder strength y, i.e. it substantially decreases in the
region ;1 = 1.0-10. In section 3.3, we emphasized that this behavior of the IPR is consistent with the LSA and
LSR. In this subsection, we investigate the energy dependence of the IPR, (IPR),, as we studied the energy-
resolved LSR (r(¢)) in section 3.2. We also study effects of the interactions.

Figure 5 shows the disorder (1) and interaction (V') dependence of the IPR for states with various energies.
Results of the flat-band cases (f; = 1) are in figures 5(a)—(d). There, for all Vs except for V = 6, the IPR
decreasesin theregion 1 < p < 10in all energy eigenstates. In particular, in the central region of ¢, this behavior
is remarkable. This indicates that all states tend to extend in the region 1 < p < 10 in the flat-band system. We
think that this peculiar behavior (see the results of the non-flat-band case below) stems from the fact that in
‘weak disorder’ below 1 > 1, all the states sustain properties of the flat-band localization although energy
splitting takes place as a result of the on-site disorder. In other words for ‘strong disorder’ (1 > 10), genuine
localization due to disorder takes place as the disorder is strong enough to dominate the flat-band effects.
Therefore, a crossover takes place in the intermediate regime 1 < 11 < 10, as we explained in the previous
sections.

By closelook at V = 3 case in figure 5(c), we find that the data for e = 0,0.1,0.8,0.9 and 1.0 (i.e. areas of the
tail of the energy spectrum) exhibit only a slight decrease in the IPRin 1 < p < 10. This tendency is stronger for
the V = 6 case in figure 5(d). There, the data for e = 0,0.1,0.8,0.9 and 1.0 shows almost no decrease in the value
ofthe IPRin1 < p < 10. Accordingly, a ‘quasi-mobility edge’ seems to exist in for V' 2 3.

In summary, the IPR of the flat-band regime shows that for small V; as increasing the disorder . from the
flat-band localization, there exists a crossover regime (in 1 < p < 10) from the flat-band localization to the
disorder-induced genuine MBL. In this crossover regime, all states tend to extend, and for larger 1, all states are
strongly localized. On the other hand for large V, such a crossover is blown away, and the direct transition from
the flat-band localization to the disorder-induced MBL takes place. What states are realized in the crossover
regime is an interesting problem. Coexistence of localized and extended states may occur there as (r (¢)) implies.
Itis also important to study if the above properties of the Creutz ladder are common to other flat-band systems.
These are future works.

We also studied the non-flat-band case (t; = 6t;). Obtained results of the energy-resolved IPR are shown in
figures 5(e)—(h). For all Vs, the IPR for ¢ < 1 is much smaller than the IPR of the flat-band case in figures 5(a)—
(d). This result is consistent to the result in figure 4. The behaviors of the IPR foreach ein 1 < 1 < 10 are almost
the same with the different Vs. Furthermore contrary to the flat-band case, states only located in the central
region of the energy spectrum tend to extend and low and especially high-energy states tend to localize there.
This behavior comes from the fact that in the non-flat case, quantum states have different features with each
other depending on their energy. Close look at the data reveals that in the weak disorder regime 10> < 1 < 1.0,
the band-edge states (low and high energy states) start to localize. This is a common picture of the weak
localization. Data seem to indicate that there exists a transition from the weak disorder to strong disorder as y¢ is
increased. However, location of this transition may depend on each state. This behavior is similar to that in the
conventional MBL transition in a typical random Heisenberg spin chain [64].
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3.5. Distribution of localization length and emergence of ‘critical edge’

In the previous two subsections, we calculated the IPRs to study AL and MBL by varying the strength of the
disorder. The results showed the sharp contrast between the flat and non-flat cases. In this subsection, we study
the distribution of the localization length as a function of energy by using the relation between the IPR and
localization length, (IPR), ~ 1/(R,)". This investigation is important to examine the finite-size effect, and to
verify that the results of IPR obtained in the previous subsections for L = 12 are reliable. To this end, we study
the systems with L = 12 (N = 3, 24 sites) and L = 16 (N = 4, 32 sites) focusing on some interesting disorder
strengths, 1¢’s. Besides the finite-size effect, this investigation reveals very important properties of the present
system, as we see later in the present subsection.

We first show the distributions of the localization length averaged over the entire energy eigenstates, which
correspond to the IPR in figure 4. We consider the flat-band caseswith V =1,y = 0.8and V = 1, x = 6,and
the non-flat-band case with V = 1, i = 6. The results for the system size L = 12 are displayed in figure 6(a). For
the flat-band case, the localization length for 4 = 6 islarger than that for ;o = 0.8, which agrees with the
calculations of the IPR in figure 4. More important observation is that the majority of the localization lengths in
the distribution in both cases are fairly small compared with the system size, i.e. {R,} < 9. This result seems to
indicate that the system size L = 12 is large enough to calculate the localization length for the flat-band case. On
the other hand for the non-flat band case, typical localization length R, ~ 9, and therefore, the localization
length may not be estimated correctly.

To examine the above observation for the flat and non-flat cases, we studied the L = 16 system. Obtained
results are shown in figure 6(b). For the flat-band case, the maximum of the localization length Max{R/} ~ 9,
which is the same with that in the L = 12 case. For the non-flat band case, the the maximum of the localization
length is slightly larger than that in the L = 12 case, but Max{R,} =~ 10.5. These results seem to indicate that the
estimations of the localization length are reliable for both the flat and non-flat cases with the above parameters.

We also studied the energy-resolved localization length for the L = 16 system with the above parameters and
obtained very important observations. The calculations are shown in figures 7(a) and (b). For the non-flat-band
system in figure 7(a), the distribution is dominated by a sharp peak and there is a moderate peak very close to the
sharp peak. For the flat-band case with a small chemical potential ;z = 0.1, the distribution has a single moderate
peak centered at R, = 3.

On the other hand for the flat-band case with x = 6 in figure 7(b), the distribution has a different shape
depending on eigenenergy. States in the band center have a fairely large localization length, whereas at the band
edges, the states are localized. From the calculations of the non-flat band case with . = 6 and flat-band case with
1 = 0.11in figure 7(a), we observe that the states far from the band center are localized due to the flat-band
localization, which is one of the properties of the genuine Creutz ladder system. On the other hand for the states
in the band-center regime, AL caused by the disorder potential is the main mechanism of localization as in the
non-flat system. In other words, there exists a critical strength of the disorder at which the flat-band structure
shown in figure 1(b) is destroyed, and the upper and lower bands merge. In this sense, there exists a ‘critical
edges’ separating the flat-band localized and AL regimes. (We estimate themas ¢ = 0.3 and ¢ = 0.85,
respectively.) Schematic picture is shown in figure 8, which displays an intuitive understanding of the crossover
observed by the LSA and IPR. Anyway, more detailed study on this kind of crossover is a future problem.
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interaction systems changes from the flat-band localization to the Anderson-like localization as the strength of disorder increases. For
sufficiently large i, the flat-band structure is destroyed and two bands merge. At the central regime in the energy spectrum,
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3.6. Ergodicity-breaking dynamics

The above results of the LSA and IPR indicate that disorder-free single-particle localization and MBL occur in
the flat-band Creutz ladder. This motivates us to simulate the dynamics of the Creutz ladder. In the conventional
disorder-induced AL and MBL, information of an initial density wave pattern is stored for long times [3—6, 8].
This behavior is a hallmark of ergodicity breaking and indicates the breaking of the eigenstate thermalization
hypothesis [3-6, 8, 66]. Here, we focus on the disorder-free cases and investigate whether the flat-band Creutz
ladder exhibits ergodicity breaking dynamics. To this end, we employ the time-dependent exact diagonalization
method with the periodic boundary condition [67, 68].

As discussed in section 2, a particle wave function in the flat-band regime tends to have a non-vanishing
amplitude only on definite adjacent finite sites. Therefore, we expect that the localization of the flat-band system
exhibits different behavior depending on the particle fillings. This expectation obviously comes from the
observation that the Pauli exclusion principle and the repulsion work substantially at large fillings but less
effectively at low fillings. In fact at large fillings, the repulsions between particles come to effective, and they
suppress movements of the particles. As a result, localization is enhanced.

To verify the above expectation, we investigate three cases of particle filling, 1/8, 1/6 and 1/4-fillings in our
numerics. To see their dynamics, we prepare a specific initial state for each filling such as

2qL

|¢ini> - H a(gq)fl(i71)+1|0>) (10)
i=1

where g is taken as follows for each filling, g = 1/8,1/6 and 1/4, respectively. This initial state is a totally non-
entangled Fock state, and therefore it is quite suitable for detect the localization dynamics [8]. To characterize the
localization dynamics, we measure the long-time average of the return probability [ 14, 69]

t sHyr
P=1lim P() = lim = [ (il ¥ ) P, (11)
t—oo t JO

t—00
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Figure 9. One particle localization dynamics. (a) Return probability amplitude: the purple line represents the numerical time
evolution of (1| W,(¢)) with the initial state |¢)y;) = ]T: 5l0). The green line is the analytical oscillation solution of (1);i| ¥y (1))
obtained by equation (9). Density distribution dynamics for the rung, n,; 4 ,, ; (b) for the flat-band condition, (c) for the non-flat
band condition, ¢, = 2t,.

where P(¢) is a return probability at t. Here, as shown in [5, 14, 69], if the initial state is given by |¢ini) = Y-, dg|tbr)
where d is a coefficient of an eigenstate |1/z) in the quenched Hamiltonian, P = 3=, ldeP|di? 6, c,» where

e, 1s the eigenenergy of [1),). Accordingly, Pis related to the level spacing of the eigenenergy. That is, the above
expression of P indicates that states with small level spacings contribute more to P. Since the Poisson distribution
(realized inlocalized regimes) has a small level spacing regime, the value of P tends to be large. Therefore,
localization enhances the value of P. In a conventional localization state, entanglement of eigenstates is fairly
suppressed, and each eigenstate |1),) tends to be close to the Fock state | E,,). Then, a finite (IPR), implies a finite
Palthough Pis indirectly related to IPR defined in section 3.3.

If the value of Pis finite, the memory of the initial state is preserved. This implies that an ergodicity breaking
takes place and the system exhibits localization. In our practical numerics, we set the unit of time by /2 /#, set the
long-time limitast = 10°[7 /4]in equation (11), and use the time slice, dt = 10 (7 /4]. We put 4 = Oforall
the calculations.

To begin with, let us verify a single particle localization dynamics. The initial state is set to |¢);,;) = ]T: 4l0)

with the system size L = 15. Figure 9(a) shows the dynamical behavior of <¢ini|e‘i7’|wini>. The numerical result
exhibits a clear localization since (1/}ini|e*i%t|1/1ini> oscillates, and also its oscillating period agrees with the
analytical result of equation (9). Under the flat-band condition ¢, = #;, the single particle certainly localizes. The
detailed density dynamics for rungj = 8, 1, j—s + 1y j—g is also plotted in figure 9(b) for the flat-band case and
(c) for non-flat band case. For the flat band case, the initial single particle is localized with an oscillation between
j = 7andj = 9rungs, corresponding to the analytical result of equation (9). On the other hand, see figure 9(c)
for the non-flat band case #; = t, with V = 0, the oscillation of <winile*i%t|wini> decays immediately.

Let us turn to the multiple-particle system. We calculated P(¢) for various filling cases and interaction
strengths V. First, we consider the 1/8-filling case. We expect that the inter-particle distance of the initial state is
sufficiently large there, and the particles do not substantially interact with each other. However, this does not
necessarily mean that the repulsion does not influence the dynamics of each particle at all. The numerical result
forthe L = 12 three-particle system is displayed in figure 10(a). For various Vs in the flat-band case, P(t) takes a
finite large value for long times, i.e. P ~ 0.37. This indicates the stronglocalization of particles and the ergodicity
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Figure 10. Exact dynamics for small particle system: (a) L = 12 system with 1/8 filling. (b) L = 9 system with 1/6 filling. (c) L = 8
system with 1/4 filling.

breaking. The independence of the value of Vin the dynamics originates from the large inter-particle distance.
On the other hand, the results for the non-flat band case with t, = 2t; show that the value of P(f) suddenly
decays, and therefore the dynamics of the non-flat band system is ergodic. These numerical results are consistent
with the results of the LSA shown in figure 2(b).

Second, let us turn to the 1/6-filling case. For the initial state of equation (10) in the non-interaction case
V = 0, we expect that each particle starts to oscillate around the adjacent rungs as described by the single-
particle solution of equation (9) in section 2. There, although each single particle wave function spreads a little,
the overlap and interference between particles are not substantial, and therefore we expect the multiple-particle
system for V' = 0 exhibits strong localization similar to the 1/8-filling case above. However, once V'is switched
on, oscillating single particles start to interact with each other, and the single-particle localization picture may be
affected by the existence of the interaction V. Figure 10(b) is the result of P(¢) for the L = 9 three-particle system.
For V = 0, as we have expected, P(t) exhibits strong localization P ~ 0.37. Remarkably for a finite V, P(¢)
remains a definitely finite value, P ~ 0.15. Even for a finite V'with the 1/6 filling, the system exhibits the
ergodicity-breaking dynamics, but the value of Pis a little smaller than that of the V = 0 case and the 1/8 filling,
i.e. the interacting system is moderately localized. For this moderate-localization regime, it is difficult to judge
whether the LSA and LSR obey Poisson or GUE ensembles. The calculations of the LSA and LSR shown in
appendix B prove this expectation. Properties of the moderate localization are interesting and warrant deep
study as a future work.

Third, we focus on the 1/4-filling case. The inter-particle distance is small and the overlap of the single
particle oscillating wave functions is so large that we expect the interaction V drastically changes the localization
properties of the system. Figure 10(c) is the result of P(¢) for the L = 8 four-particle system. Interestingly
enough, depending on the value of V, the dynamical behavior of P(¢) drastically changes. For the non-interacting
V = 0, the moderate localization appears since P ~ 0.13. Asincreasing Vfrom V = 0, for weak but finite V
cases, the localization is highly suppressed, i.e. the system tends to be extensive since P < 0.1. However for large
V 2 6,the Pincreasesto P > 0.2. That is, the interaction V suppresses the localization tendency first, but it
starts to enhance localization as V exceeds a critical value. We expect that in the localized regime for large V, the
particles repel each other strongly, and then particles are squeezed and localized moderately. The localization
length of the moderate localization for large V' may be alittle larger than that of the strong localization with
P ~ 0.37. Calculations of the averaged LSR, (r (¢)), in appendix B suggest that the band-edge eigenstates in the
moderate-localized regime have stronger tendency of delocalization compared with the strong-localized states.

We conclude that for small size systems, a disorder-free MBL exists in the flat-band Creutz ladder both with
and without interactions, and it exhibits ergodicity-breaking dynamics. In figure 11, we summarize the results of
the numerical calculations and show the qualitative dynamical properties of the system as a function of the
interaction V for various particle fillings.
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Figure 11. Qualitative tendency of localization obtained by the calculation P(#).

4. Conclusion

In this work, we have clarified disorder-free single-particle localization and MBL phenomena induced by the
flat-band structure of the Creutz ladder model. We found that the flat-band localization originates from a
localized Wannier state (FB compacton), and the localization length is quite short compared to that of ordinary
AL. Thelocalization length of the flat-band Creutz ladder system is also insensitive to the strength of the disorder
although thelocalization length of AL is strongly influenced by the disorder strength. As a result, effects of
interactions in flat-band localization depends on particle filling (inter-particle distance) significantly.

In section 3, we extensively studied the flat-band localization properties by using some conventional
numerical methods. We extracted the localization properties from the statistical properties of the static
spectrum and eigenstates in the Creutz ladder Hamiltonian. In the flat-band regime, the LSA exhibits Poisson
distribution in the weak-disorder regime with or without interactions. This indicates that the flat-band model
exhibits a (many-body) localization induced by the flat-band nature not by disorder as in AL. After that, we
calculated the LSR from the spectrum and also the IPR from eigenstates of the model in order to capture the
localization tendency in the real space. We found that they support the LSA result.

We also studied the flat-band localization from the view point of the dynamical aspect. We found that flat-
band localization tends to prevent the system from thermalization. The single-particle localization picture was
analytically given in section 2. If we put on a single particle on a single site on the flat-band system, the single
particle localizes with oscillating. To estimate this dynamical localization with or without interactions, we
performed exact dynamical simulations for small size systems. To judge the thermalization and ergodicity
breaking, we employed the return probability, which quantifies how much information of initial state wave
function remains. By calculating the long-time average of the return probability, we characterized an ergodicity-
breaking dynamics similar to the conventional disorder-induced AL and MBL dynamics, and also found rich
localization properties as varying particle filling and the repulsive interaction. In summary, even in the
interacting cases, the system exhibits localization and ergodicity-breaking dynamics. Our numerics is only for
small system sizes but exact, and therefore our results can be a benchmark for future simulations with large
system sizes, e.g. by using Krylov subspace method. We also expect that the findings in the present work are
useful for future real experiments on cold atoms such as [39, 41].

We also expect similar phenomena in other flat-band models, such as the saw-tooth, diamond and Lieb
lattice models, which are to be realized in experiments [70—74], and also some studies in the Creutz ladder in the
clean limit [75, 76] pointed out the presence of conserved quantities. Such conjecture may support our results.
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Appendix A. System size dependence of LSA

We calculate the statistical distribution by using the unfolded level spacing method. Here, we show its system-
size dependence for the non-interacting flat-band case in figure 12(a). For the L = 8 case, the shape of the
probability distribution is different from that of the Poisson distribution. The value of P(s) near s ~ 0 tends to
increase for a small system size. On increasing the system size up to L = 16, the probability distribution can be
regarded as Poisson-like. From this result, we expect that for larger system sizes, the probability distribution
approaches the exact Poisson distribution. Therefore, for the non-interacting flat-band system, localization can
be clearly observed for a large system size. Such a system-size dependence is also exhibited for the interacting
case. Figure 12(b) shows the system-size dependence of the LSA for the V' = 1 case. Compared with the non-
interacting case, the increasing tendency of P(s) in the vicinity of s ~ 0 is weak in small systems. However, the
probability distribution deviates from the exact Poisson distribution. On increasing the system size up to

L = 16, the probability distribution approaches the Poisson distribution.

Appendix B. Averaged LSR of 1/6 and 1/4-fillings

In this appendix, we show the LSA and LSR for the 1/4 and 1/6-filling cases. The results of the LSA for the 1/4
and 1/6-fillings are shown in figures 13(a), (b). Similarly to figure 2(b), we add the disorder = 1in order to
avoid the degeneracies. For the 1/4-filling, the results from V' = 0to V = 10 exhibit the almost same behavior,
that s, the statistics is neither the Poisson nor GUE distribution. But for V = 15, the statistics gets closer to the
Poisson distribution. For the 1/6-filling, the result of V = 01is closer to the Poisson than the other cases of V. The
results from V = 0to V = 10 exhibit similar behavior, i.e. the statistics is neither the Poisson nor GUE
distribution. But for V = 15, the statistics gets slightly closer to the Poisson distribution.

The results of the LSR for the flat-band case with 1/4 and 1/6-fillings are shown in figures 14(a), (b).
Similarly to figure 3(a), we add the disorder ;4 = 1. For both filling cases, V = 0 results are tend to be
delocalized. For all finite- Vresults, the delocalization tendency of higher band-edge eigenstates is suppressed,
and for larger V'the localization tendency of higher band-edge eigenstates seems to increase.
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