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Quantum thermodynamics in adiabatic open systems and its
trapped-ion experimental realization

Chang-Kang Hu'?3, Alan C. Santos %, Jin-Ming Cui'>®, Yun-Feng Huang ®'*%, Diogo O. Soares-Pinto®, Marcelo S. Sarandy (",

Chuan-Feng Li@®"* and Guang-Can Guo'?

Quantum thermodynamics aims at investigating both the emergence and the limits of the laws of thermodynamics from a
quantum mechanical microscopic approach. In this scenario, thermodynamic processes with no heat exchange, namely, adiabatic
transformations, can be implemented through quantum evolutions in closed systems, even though the notion of a closed system is
always an idealization and approximation. Here, we begin by theoretically discussing thermodynamic adiabatic processes in open
quantum systems, which evolve non-unitarily under decoherence due to its interaction with its surrounding environment. From a
general approach for adiabatic non-unitary evolution, we establish heat and work in terms of the underlying Liouville superoperator
governing the quantum dynamics. As a consequence, we derive the conditions that an adiabatic open-system quantum dynamics
implies in the absence of heat exchange, providing a connection between quantum and thermal adiabaticity. Moreover, we
determine families of decohering systems exhibiting the same maximal heat exchange, which imply in classes of thermodynamic
adiabaticity in open systems. We then approach the problem experimentally using a hyperfine energy-level quantum bit of an
Ytterbium ''Yb " trapped ion, which provides a work substance for thermodynamic processes, allowing for the analysis of heat and

internal energy throughout a controllable engineered dynamics.
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INTRODUCTION

The notion of adiabaticity is a fundamental concept in a number
of different areas in physics, including quantum information
processing’~* and quantum thermodynamics®~’. In the context of
closed quantum systems, adiabaticity is understood as the
phenomenon in which the Hilbert space of the system can be
(quasi-)perfectly decomposed into decoupled Schrodinger-eigen-
spaces, composed by the eigenvectors of the Hamiltonian with
distinct non-crossing instantaneous energies® '°. Then, by initially
preparing a quantum system in an energy eigenstate, the system
undergoes a decoupled evolution to the corresponding energy
eigenstate at later times. However, the concept of a closed system
is always an idealization and approximation. Indeed, real quantum
systems are always coupled to a surrounding environment. In
open quantum systems described by time-local master equations,
the definition of adiabaticity can be naturally extended to the
decomposition of the Hilbert-Schmidt space into Lindblad-Jordan
eigenspaces associated with distinct eigenvalues of the generator
of the dynamics''™"".

In thermodynamics, adiabaticity is associated to a process with
no heat exchange between the system and its reservoir. In
general, it is not possible to associate an observable for the
thermodynamic definition of heat and of work'®. Then, the
starting point widely used to define such physical quantities in
guantum systems is from the definition of internal energy given as
U(®) = (H(®)>"°. From this definition, we obtain the work (dW) and
exchanged heat (dQ) between the reservoir and system as

dW = Tr{p(t)H(t)}dt and dQ = Tr{p(t)H(t)}dt, (1

respectively. As originally introduced in Ref. ', these quantities are

defined in the weak coupling limit between system and reservoir
(see also Refs. 2°?' for recent attempts to examine strongly
coupled quantum systems and Refs. 2>%* for separation of internal
energy variation in terms of entropy changes). Notice also that dW
and dQ are exact differential forms when at least one of them
vanishes, thus the non-vanishing quantity can be identified with
the internal energy variation AU(t) during the entire process. For
example, for a unitary transformation associated with a closed
quantum system, we necessarily have dQseq = 0, so that any
variation AU(t) is due some work performed on/by the system>2*,
Eq. (1) can be directly employed to analyze quantum thermo-
dynamical cycles, as an efficient way of assuring that no heat is
exchanged in intermediate steps®®?’ or to minimize quantum
friction in a non-equilibrium setup?®3°,

Here, we theoretically and experimentally discuss thermodyna-
mical adiabatic processes in real (open) quantum systems
evolving under decoherence. To this end, we address the problem
from a general approach for adiabatic dynamics in decohering
systems. In contrast with closed systems, heat may be exchanged
in the case of non-unitary evolution. In particular, we will establish
a sufficient condition to ensure that an adiabatic open-system
dynamics (associated with Lindblad-Jordan decoupled eigen-
spaces) leads to an adiabatic thermodynamical process (asso-
ciated with no heat exchange). Moreover, for thermodynamically
non-adiabatic processes, we evaluate the von Neumann entropy,
discussing its relation with heat for arbitrary evolution time. Our
results are then experimentally implemented by using a hyperfine
energy-level quantum bit (qubit) of an Ytterbium '”'Yb™ trapped
ion, where reservoir engineering is performed to achieve a
controllable adiabatic dynamics. Due to requirements of the usual
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definitions of heat and work, the investigation of thermodynamic
quantities in adiabatic dynamics is achieved with time-dependent
decoherence effects. To this end, we introduce an efficient control
to a Gaussian noise with time-dependent amplitude, which is then
used to simulate a dephasing channel with a time-dependent
decoherece rate y(t).

RESULTS

Work and heat in the adiabatic dynamics of open systems

We start by introducing heat and work in a general formalism for
adiabaticity in open quantum systems, namely, the superoperator
formalism'". In this work, we will consider a discrete quantum
systems S defined over a d-dimensional Hilbert space. The system
S interacts with its surrounding environment A. The dynamics is
assumed to be described by a time-local master equation
p(t) = Lep(t)], where p(t) is the density operator associated with
S and L,[e] is a time-dependent Liouville operator. The Liouville
operator takes the form L:[p(t)] = H¢[p(t)] + Rilp(t)], where
Hi[o] = (1/ih)[H(t), o] is the unitary part of the dynamics and
R¢[e] describes the decohering effects of A over S.

In the superoperator formalism, the open-system dynamics can
be provided from a Schrodinger-like equation [o(t))) =
L(t)|p(t))), where IL(t) is termed the Lindblad superoperator
and the density operator |p(t))) is represented by a D*
dimensional vector (hence the double ket notation), whose
components g(t) can be suitably expanded in terms of tensor
products of the Pauli basis { 1, 05, 05, 05}'". For instance, for the
case of a single qubit (D = 2), we have p(t) = %Zizo ox(t)ox and
ok (t) = Tr{p(t)ok}, with o, denoting an element of the Pauli basis.
Moreover, I.(t) = H(t) + R(t), where H(t) and R(t) are (D* x
D?-dimensional super-matrices, whose elements are Hy(t) =
(1/D)Tr{o,t?-[r[o,-]} and Ry(t) = (1/D)Tr{o,tR[o,—]}, respectively.
The thermodynamic quantities defined in Eq. (1) are then
rewritten as (see Methods section)

1

dWep = 5 (((DlP(0))dt.

dQup = 5 (RO (Olp(0))t, @)

with  the components hy(t) of ((h(t)] defined by
hi(t) = Tr{H(t)ok}. In this notation, the inner product of vectors
|uy) and |v)) associated with operators u and v, respectively, is
defined as {(u|v)) = (1/D)Tr(u'v).

Because L(t) is non-Hermitian, it cannot always be diagona-
lized. Then, the definition of adiabaticity in this scenario is subtler
than in the case of closed systems. For open systems, the adiabatic
dynamics can be defined in terms of the Jordan decomposition of
L(t)". More specifically, adiabaticity is associated with a
completely positive trace-preserving dynamics that can be
decomposed into decoupled Lindblad-Jordan eigenspaces asso-
ciated with distinct non-crossing instantaneous eigenvalues A(t) of
IL(t). We notice here that some care is required in order to find a
basis for describing the density operator. The standard technique
is to start from the instantaneous right and left eigenstates of
IL(t), completing these eigensets in order to compose right
(D% (1))} and left {((€¥)(t)[} vector bases, where |D (1))
and ((ka")(t)| are the k-th right and left vectors, respectively,
associated with the eigenspace with eigenvalue A{t) in the Jordan
decomposition of L(t). These Jordan left and right bases can
always be built such that they satisfy a bi-orthonormal relationship
((Sfa)(t)m;ﬁ)(t))) = 6;6%. Assuming an open-system adiabatic
dynamics, we can analytically derive work, heat, and entropy
variation. Indeed, by taking the initial density operator as
lp(0))) = Z,‘kicfk’)mfk")(o))}, we obtain that work and heat are
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with dWP? (dQ%%) being identified to the amount of work (heat)
performed on/by the system.

The validity of Egs. (3) and (4) is shown in the Methods section.
As long as we are in the weak coupling regime and the system is
driven by a time-local master equation, Egs. (3) and (4) provide
expressions for work and heat for the adiabatic decohering
dynamics. Notice also that the adiabatic dynamics will require a
slowly varying Liouville superoperator IL(t)"". Starting from Eq. (2),
we are allowed to evaluate the density operator |p(t)})) through an
arbitrary strategy. For instance, we could apply a piecewise
deterministic process approach via Feynman-Vernon path integral
for the corresponding propagator®’. Alternatively, we could
implement a numerical simulation via a Monte Carlo wave
function method (see, e.g., Ref. 32 and references therein). In all
these cases, from Egs. (3) and (4), we can obtain a sufficient
condition for avoiding heat exchange in a quantum mechanical
adiabatic evolution. More specifically, if the initial state p(0) of the
system can be written as a superposition of the eigenstate set

{|D§k’)(0)>)} with eigenvalue A(t) = 0, for every t € [0, 1], the
adiabatic dynamics implies in no heat exchange. Therefore, we
can establish that an adiabatic dynamics in quantum mechanics is
not in general associated with an adiabatic process in quantum
thermodynamics, with a sufficient condition for thermal adiaba-
ticity being the evolution within an eigenstate set with vanishing
eigenvalue of [(t). This condition is satisfied by a quantum
system that adiabatically evolves under a steady state trajectory,
since such dynamics can be described by an eigenstate (or a
superposition of eigenstates) of IL(t) with eigenvalue zero'*, As an
example, Ref. ** has considered the adiabatic evolution of 2D
topological insulators, where the system evolves through its
steady state trajectory. For this system, the evolved state |o(t))),
associated with the steady state of the system pg(t), satisfies
LL(t)]p(t))) = 0, V t. This means that |p(t))) is an instantaneous
eigenstate of [L(t) with eigenvalue A(t) = 0.

Thermal adiabaticity for a qubit adiabatic dynamics

As a further illustration, let us consider a two-level system
initialized in a thermal equilibrium state p.,(0) for the Hamiltonian
H(0) at inverse temperature 8 = 1/kgT, where kg and T are the
Boltzmann’s constant and the absolute temperature, respectively.
Let the system be governed by a Lindblad equation, where the
environment acts as a dephasing channel in the energy eigenstate
basis {|En(t))} of H(t). Thus, we describe the coupling between the
system and its reservoir through RIP[e] = y(1)[F%(t)el (1) — o],
where TP (t) = |Eo(t))(Eo(t)] — |E1(£))(E1(t)]. In this case, the set
of eigenvectors of 1(t) can be obtained from set of operators
Pom(t) = |En(t))(Em(t)|, where the components DY (t) of
|Dam(t))) are given by DU (t) = Tr{P,n(t)o;}. Moreover, the
eigenvalue equation for 1IL(t) can be written as
L()|Dpm(t))) = Aam(t)|Dam())), where Aqp(t) = En(t) — En(t) —
2(1 — 8pmY(®). In the superoperator formalism, the initial state
pw(0) is written as |py,(0))) = Z271(0)3,e 6 (©|D,,(0))), where
Z(t) = Tr{e MV} is the partition function of the system. There-
fore, since |py,(0))) is given by a superposition of eigenvectors of
LL(t) with eigenvalue A,,(t) = 0, we obtain from Eq. (4) that dQ*d =
0. Therefore, thermal adiabaticity is achieved for an arbitrary open-
system adiabatic dynamics subject to dephasing in the energy
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Fig. 1 Experimental scheme to investigate the thermodynamlcs of adlabatlaty in open quantum systems. a Schematic diagram of the six-
needle Paul trap and relevant levels of the '”'Yb™ ion. b Experimental microwave instrument for generating the field to drive the two level
system. The AWG is programmed to implement the target Hamiltonian and control the amplitude of the Gaussian noise which is used as a

dephasing channel.

eigenbasis. Hence, any internal energy variation for this situation
should be identified as work.

Heat exchange for a qubit adiabatic dynamics
In contrast, we can use a similar qubit system to find a process in
which heat can be exchanged, i.e, d@* = 0. To this end, let us
consider dephasing in the computational basis, with the coupling
between the system and its reservoir through Rf[e] =
y(t)[0,00;, — e]. In order to guarantee that any internal energy
variation is associated to heat exchange, we consider a constant
Hamiltonian during the entire non-unitary evolution (so that dW®
= 0). Since Rf[¢] must not be written in the eigenbasis of the
Hamiltonian, we assume a Hamiltonian H, = hwo,, where the
system is initialized in the typical initial state of a thermal machine,
namely, the thermal state of the Hamiltonian H, at some arbitrary
temperature (. By letting the system undergo a non-unitary
adiabatic dynamics under dephasing, the evolved state is (see
Methods section)
p™M(t) = 5|1- 72[ 89 tanh (Bhw)oy (5)
From Eq. (4) we then compute the amount of exchanged heat
during an infinitesimal time interval dt as

dQ*(t) = 2h tanh(Bhw)wy(t f 9% gt The negative argument
in the exponential shows that the higher the mean-value of y(t)
the faster the heat exchange ends (see Methods section). Thus, if
we define the amount of exchanged heat during the entire
evolution as AQ(Tdec) = o™ [dQ%(t) /dt]dt, where Tqe. is the total
evolution time of the nonunltary dynamics, we get

AQ(Tgec) = hw tanh(Bhw) (1 - e—27Tdec)’ ©)

where V= (1/Tdec) J, Tdec y(§)d€ is the average dephasing rate
during Tgec. Notice that AQ(t4ec) > 0 for any value of y. Therefore,
the dephasing channel considered here works as an artificial
thermal reservoir at inverse temperature B = Bgeph <B, Wwith
Baeph = (1/hw)arctanh[e~?" tanh(Bhw)] (see Methods section).
We can further compute the maximum exchanged heat from Eq.
(6) as a quantity independent of the environment parameters and
given by AQm. = hw tanh(Bhw). It would be worth to highlight

Published in partnership with The University of New South Wales

that, for quantum thermal machines weakly coupled to thermal
reservoirs at different temperatures'®, the maximum heat AQmay is
obtained with high-temperature hot reservoirs®>343>,

Despite we have provided a specific open-system adiabatic
evolution, we can determine infinite classes of system-
environment interactions exhibiting the same amount of heat
exchange dQ. In particular, there are infinite engineered environ-
ments that are able to extract a maximum heat amount AQnayx. A
detailed proof of this result can be found in Methods section.

Experimental realization

We now discuss an experimental realization to test the thermo-
dynamics of adiabatic processes in an open-system evolution. This
is implemented using the hyperfine energy levels of an Ytterbium
ion Yb™ conﬁned by a six-needles Paul trap, with a qubit
encoded lnto the 25,,, ground state, |0) = | S12; F=0,mp =0)
and |1) = | 51/2, F =1, mg = 0), as shown in Fig. 1a°°. The qubit
initialization is obtained from the standard Rabi Oscillation
sequence®, where we first implement the Doppler cooling for 1
ms, after we apply a standard optical pumping process for 0.01 ms
to initialize the qubit into the |0) state, and then we use
microwave to implement the desired dynamics. The target
Hamiltonian H, can be realized using a resonant microwave with
Rabi frequency adjusted to w. To this end, the channel 1 (CH1)
waveform of a programmable two-channel arbitrary waveform
generator (AWG) is used, which has been programmed to the
angular frequency 2m x 200 MHz. As depicted in Fig. 1(b), to
implement the dephasing channel we use the Gaussian noise
frequency modulation (FM) microwave technique, which has been
developed in a recent previous work and shows high controll-
ability>’. Since we need to implement a time-dependent
decohering quantum channel, we use the channel 2 (CH2)
waveform as amplitude modulation (AM) source to achieve high
control of the Gaussian noise amplitude, consequently, to
optimally control of the dephasing rate y(t). The dephasing rates
are calibrated by fitting the Rabi oscillation curve with exponential
decay. Since the heat flux depend on the non-unitary process
induced by the system-reservoir coupling, then by using a
different kind of noise (other than the Gaussian form) we may
obtain a different heat exchange behavior. See Methods section
for a detailed description of the experimental setup, including the

npj Quantum Information (2020) 73
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Fig. 2 Heat AQ(t4cc) as a function of the total evolution time Tye.
for several values of the parameter y,. We use hw = 82.662 peV

and 87" = 17.238 peV, with the ph3y5|cal constants /i ~6.578 x 10~ '°
eV -sand kg ~ 8619 x 10> eV/K*®

implementation of the quantum channel and the quantum
process tomography (see Methods section).

As a further development, we analyze in Fig. 2 the experimental
results for the heat exchange AQ(t4ec) as a function of T4e., Where
we have chosen y(t) = yo(1 + t/Tqec), Where T4 is experimentally
controlled through the time interval associated to the action of
our decohering quantum channel. The solid curves in Fig. 2 are
computed from Eqg. (6), while the experimental points are
computed through the variation of internal energy as AQ(tyec) =
Uin — Uinis where Usinginiy = TrH{Pfin(niyH(T) }. The computation of
Uﬁn(,n,) is directly obtained from quantum state tomography of ps,
@ni) for each value of T4ec. Although the maximum exchanged heat
is independent of y,, the initial dephasing rate y, affects the
power for which the system exchanges heat with the reservoir for
a given evolution time T4 (See Methods section). Thus, since we
have an adiabatic path in open system (see Methods section), the
curves in Fig. 2 represent the heat exchanged during the adiabatic
dynamics. It is worth highlighting here that we can have different
noise sources in the trapped ion system in addition to dephasing.
However, the coherence timescale of the Ytterbium hyperfine
qubit is around 200 ms®’. Therefore, it is much larger than the
timescale of the experimental implementation. Indeed, the
dephasing rates implemented in our realization are simulated by
the experimental setup.

As previously mentioned, since the Hamiltonian is time-
independent, any internal energy variation is identified as heat.
In order to provide a more detailed view of this heat exchange, we
analyze the von Neumann entropy S(p) = —tr (plog p) during the
evolution. To this end, by adopting the superoperator formalism
as before, the entropy variation for an infinitesimal time interval dt
reads dS = —(1/D){{pioq (t)|LL(t)|0(1))), where ({Prog (1)] is a
supervector with components glven by g,, t) = Tr{onlogp(t)}
(see Methods section). Thus, for an adiabatic evolution in an open
system we find that (see Methods section)

1 k) [P (£)at
,BZC’( ) o Joi () ‘T (0), )
ik

ki— ki
M1k (6) = (o (01D () + A1) oy (DI (1)),
with ((pfg’g( )| defined here as a supervector with components
gf’;‘g (t) = Tr{oslog pIog (t)}. For the adiabatic dynamics considered

in Fig. 2 the infinitesimal von Neumann entropy variation dS in
interval dt is given by

ds(t) = 2g(t)y(t)arctanhg(t)]dt, (8)

where we define g(t) =e 21 tanh (Bhw). Notice that the
relation between heat and entropy can be obtained by rewrltlng
the exchanged heat dQ in the interval dt as dQ*(t) = 2hwy(t)g(t)dt

In conclusion, the energy variation can indeed be identified as
heat exchanged along the adiabatic dynamics. Indeed, by
computing the thermodynamic relation between dS(t) and dQ°9(1)

as =

where
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we get dS(t) Bdepthad(t), where Bgepn is the inverse
temperature of the simulated thermal bath.

DISCUSSION

From a general approach for adiabaticity in open quantum systems
driven by time-local master equations, we provided a relationship
between adiabaticity in quantum mechanics and in quantum
thermodynamics in the weak coupling regime between system and
reservoir. In particular, we derived a sufficient condition for which the
adiabatic dynamics in open quantum systems leads to adiabatic
processes in thermodynamics. By using a particular example of a single
qubit undergoing an open-system adiabatic evolution path, we have
illustrated the existence of both adiabatic and diabatic regimes in
quantum thermodynamics, computing the associated heat fluxes in
the processes. As a further result, we also proved the existence of an
infinite family of decohering systems exhibiting the same maximum
heat exchange. From the experimental side, we have realized adiabatic
open-system evolutions using an Ytterbium trapped ion, with its
hyperfine energy level encoding a qubit (work substance). In turn, we
have experimentally shown that heat exchange can be directly
provided along the adiabatic path in terms of the decoherence rates as
a function of the total evolution time. In particular, the relationship
between heat and entropy is naturally derived in terms of a simulated
thermal bath. Our implementation exhibits high controllability, opening
perspectives for analyzing thermal machines (or refrigerators) in open
quantum systems under adiabatic evolutions. Moreover, a further point
to be explored is the speed up of the adiabatic path through the
transitionless quantum driving (TQD) method for open systems™.
Indeed, TQD can be incorporated in the formalism for adiabatic
thermodynamics we introduced in this work. The starting point is the
generalization of Egs. (3) and (4) through the introduction of the
superadiabatic Lindbladian superoperator [L1qp(t) governing the open
system evolution®. Notice that Lrap(t) will include counter-diabatic
contributions generally obtained by reservoir engineering. Suppression
of heat may be possibly obtained by constraining the evolution inside
the Jordan block of Ttqp(t) with vanishing eigenvalue. Naturally, the
requirements of weak coupling and time-local master equations are still
to be kept. The associated effects of the engineered reservoirs on the
thermal efficiencies and TQD dynamics are left for future research.

METHODS

Thermodynamics in the superoperator formalism

Let us consider the heat exchange as

dQop = Tr{p(t)H(t)}dt = Tr{L[p(t)]H(t)}dt. 9)

where we have used the equation p(t) = L[p(t)]. To derive the
corresponding expression in the superoperator formalism we ﬁrst define
the basis of operators given by {g}, i = 0, ---, D? — 1, where Tr{c] 0;} = D§;.
In this basis, we can write p(t) and H(t) generlcally as

D2—1

DZQ” On,

=Tr{H(t)on} and ¢,(t)

07—1

=5 oo,

where we have hy(t)

and p(t (10)

=Tr{p(t)a},}. Then, we get

dQop & <anOTr{£[g on]hm(r)oin}> dt
()

- (ZQHW(WMMMgﬂ

Now, we use the definition of the matrix elements of the superoperator
IL(t), associated with L[e], which reads L, = (1/D)Tr{o},L[0s]}, so that

we write
Lmnon(t )dt‘

do,,p_<2h 12)
Published in partnership with The University of New South Wales
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In conclusion, by defining the vector elements

((h(®)] = [ho(t)hn (t) - - hpe_ (B)]', (13)
lo(6))) = leo(t) 1(t) -+ ep2_1 (D), (14)
we can rewrite Eq. (12), yielding
1

dQop = 55 ()LL) o(t)))dt. (15)
Equivalently,
dWop = Tr{p(t)H(t)}dt, (16)
where we have used Eq. (10) to write H(t) = (1/D) Zf;] hn(t)o} and,
consequently,

DZ—1

t)Tr{p(t)a] }dt, (17

AW, = Zh

so that we use the definition of the coefficients ¢,(t) to get

Dz 1
Wop =5 Zh )on( (18)
By using Egs. (13) and (14) into Eq. (18), we conclude that
1 .
dWop = 5 {(h(D)lo(t)))dt. (19)

In thermodynamics, heat exchange is accompanied of an entropy
variation. Then, in order to provide a complete thermodynamic study from
this formalism, we now compute the instantaneous variation of the von
Neumann entropy S(t) = —Tr{p(t)log [o(t)]}, which reads

$(0) = - S T{p(0log o)) = ~Tr(p(Dlogp(V)} ~ Tria().  (20)

By using that Tr{p(t)} = 1, we get Tr{p(t)} = 0. Therefore

8(t) = ~Tr{p(t)log p(1)} = ~Tr{L[p(t)]log p(t)}, 1)
where we also used that p(t) = L¢[o(t)]. Now, let us to write

D2 1
log p(t Z g'°9 (22)

so that we can define the vectors ({pj, (t)| associated to logp(t) with
components o> (t) obtained as oi>° (t) = Tr{o,log p(t)}. Thus, we get

D*-1D*—

— DZZZQm Iog

m=0 n=

(O)Tr{Le[omol}, (23)

In the superoperator formalism, we then have

50) =~ 5 (P ©

Alternatively, it is possible to get a similar result for the entropy variation in
an interval At =t — ty as

AS(t,to) = S(t) — S(to) = Tr{p(to)log p(to)
where we can use Eq. (10) to write

IL(0)lp(1)))- (24)

—p(t)logp(t)},

D*—1
AS(t,to) =5 Z 0n(to)Tr{onlog p(to) } (25)
— 357 en(t)Tr{oalog p(1)},
so that we can identify ¢/ (t) = Tr{onlog p(t)} and we finally write
D*—1
AS(t,t0) = Y- en(to)er® (to) — Z on(t)er® ()
n=0 (26)

=5 [({ewog (Dl(1))) — <<plog (fo)lp(to)>>]-

Adiabatic quantum thermodynamics

Let us start by briefly reviewing the adiabatic dynamics in the context of
open systems. To this end, let us consider the local master equation (in the
superoperator formalism)

p = Llp(t)]; (27)

which describes a general time-local physical process in open systems. The
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dynamical generator L][e] is requested to be a linear operation, namely,
)| = ar Ll (1)] + a2L[p, (1)], (28)

for any complex numbers a;, and matrices pq,(t), with a; + a, = 1,
because we need to satisfy Tr{a:1p;(t) + a2p,(t)} = 1. Thus, by using this
property of the operator L[e], it is possible to rewrite Eq. (27) as''

(1)) = L(®)lp(t))), 29

where L(t) and |p(t))) have been already previously defined. In general,
due to the non-Hermiticity of IL(t), there are situations in which IL(t)
cannot be diagonalized, but it is always possible to write a block-diagonal
form for IL(t) via the Jordan block diagonalization approach’. Hence, it is
possible to define a set of right and left quasi-eigenstates of IL(t),
respectively, as

Llarp; (1) + a20,(t

L(OIDZ (1)) = [DF=" (1)) + Aa(0)| D5 (1)), (30A)
(€ (OIL(R) = (€MD (O] + (€5 (1) AalD). (308)
From the above equations, we can write the Jordan form of [L(t) as

Ly(t) = diag[/1(t) Lo(t) --- In(t)], 3Bn

where N is the sum of the geometric multiplicities of all the distinct
eigenvalues A4(t) and each block J,(t) is given by

M) 10 0
0 A 1 - 0

Lty=| : (32)
0 - 0 A(t) 1
0 o 0 A(D)

In the adiabatic dynamics of closed systems, the decoupled evolution of
the set of eigenvectors |Eﬁ”(t)> of the Hamiltonian associated with an
eigenvalue E,(t), where k, denotes individual eigenstates, characterizes
what we call Schroédinger-preserving eigenbasis. In an analogous way, the
set of right and left quasi-eigenstates of [L(t) associated with the Jordan
block J,(t) characterizes the Jordan-preserving left and right bases. Here,
we will restrict our analysis to a particular case where each block J4(t) is
one-dimensional, so that the set of quasi-eigenstates given in Eq. (30)
becomes a genuine eigenstate equation given by

L(t)[Da(1))) = Aa(t)|Da(t))), (33A)

((Da(O)[L(t) = ((Ea(t)Aa(D)- (338)

In this case, we can expand the matrix density |o(t))) in basis |Dq(t))) as

N
= Z ra(t)|Pa(t))), (34)

with rg(t) being parameters to be determined. By using the Eq. (29), one
gets the dynamical equation for each rg(t) as

7p(t) = A(t)rg(t) — ra(t)((Ep(t)|Dp(1)))

N . (35)
- Xgra(f)<<5/3(t)\17a(t)>>-
Now, we can define a new parameter pg(t) as
15(6) = pp(0)el "%, )
so that one finds an equation for pg(t) given by
N t _ .
Polt) = =3palt)e)o™ OO (50 Da(e)
a=B (37)
—pp(t)((Ep(1)| Dp(1))),

with the first term in right-hand-side being the responsible for coupling
distinct Jordan-Lindblad eigenspaces during the evolution. If we are able
to apply some strategy to minimize the effects of such a term in the above
equation, we can approximate the dynamics to

py(t) = —pg(t)((Ep(t)Dp(t)).- (38)

Then, the adiabatic solution rg(t) for the dynamics can be immediately
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obtained from Eq. (36), which reads

ra(t) = ra(to)e f 5 (6)dE —f (Ea®)Dp())dE 39)

where we already used pg(ty) = ra(to). In conclusion, if the system
undergoes an adiabatic dynamics along a non-unitary process, the evolved
state can be written as

ad >> Z"afo ,ou

with Aq(t) = Aq(t) — ((£a(t)|Da(t))) being the generalized adiabatic phase
accompanying the dynamics of the n-th eigenvector. The same
mathematical procedure can be applied for multi-dimensional blocks'".

In this scenario, let |p(0))) = Z,'klcfk’”l?fkf)(o))) be the initial state of the

system associated with the initial matrix density p(0). By considering a
general adiabatic evolution, the state at a later time t will be given by'’

)= S el D) ey (@)

ik;
with A (6) = M() = (&7 01D (1), (el and
{|D§k (t)))} denote the |nstantaneous Jordan-preserving left and right

bases of I(t), respectively'’. Therefore, from Eq. (2), we can write the work
dW,,, for an adiabatic dynamics as

Wop DZC e (® D% ((h(t) Dk

iki

“Da()), (40)

where

(). (42)

On the other hand, when no work is realized, we can obtain the heat dQ,,
for an adiabatic dynamics as

dQ™ = Zc

so that dQ* represents the exchanged heat if no work is performed during
such dynamics. Moreover, from Eq. (24), we can write the von Neumann
entropy variation as

8(6) = — 3 ((prS (OL(O]0™ (6)))
= 1M O (oad (1)1 (1) D) (1)),

ik

8O (o) L) D) (1)), 43)

so that we can use the Eq. (30) to write

)= 52 ek O ), (44)

iki

where Ty, (t) = (03, (01D (1)) + M(6) (03, (D[P (1)), with

<<P|og( )| standing for the adiabatic evolved state associated with

<<plog( )}~

Heat in adiabatic quantum processes

We will discuss how to determine infinite classes of systems exhibiting the
same amount of heat exchange dQ. This is provided in Theorem 1 below.

Theorem 1. Let S be an open quantum system governed by a time-local
master equation in the form p(t) = H[p(t)] + R¢[p(t)], where He] =

(1/i)[H, o) and Refo] = 3 ya(O)Fa(t)eTh(t) — (1/2){T}(OTs(1). o}]. The
Hamiltonian H is taken as a constant operator so that no work is realized by/
on the system. Assume that the heat exchange between S and its reservoir
during the quantum evolution is given by dQ. Then, any unitarily related
adiabatic ~ dynamics driven by p'(t) = H'[o'(t)] + Ri[o'(t)], where
o' (t) = Up(t)U', H'[e] = UH[e]U' and R}[e] = UR;[e]U', for some constant
unitary U, implies in an equivalent heat exchange dQ' = dQ.[]

Proof. Let us consider that p(t) is solution of
p(t) = Hp(t)] + Re[o(1)], (45)

so, by multiplying both sides of the above equation by U (on the left-hand-

npj Quantum Information (2020) 73

side) and U (on the right-hand-side), we get
Up(t)UT = UH[p()]UT 4 UR[p(t)|U!
= FUIH.p(O)U" + Sy, (U (Dp(0)T} (U1 )
- %;vn(t)U{Fi(f)Fn(f),P(f)}] U,

thus, by using the relations [UAUT, UBU'] = UIA, BIUT
{A, BIU', we find

and {UAUT, UBU™} = U

/

p'(t) = 3 [UHUT, o' ()] + ZVn o't (1)

(47)

__ZYn( NUMGIAGN-A()

where T"(t) = UM, (H)UL. In conclusion, we get that o'(t) = Up(t)U' is a
solution of
p(t) =H[p' (t)] + Refo' ()], (48)
where
H'[o] = % [UHU', o] = UH[e]U, (49)
Rilo] = S¥a (O (00 (0T (1) = {1 (O (1), 0/ (6)}] (50)

= UR:[e]U".

Now, by taking into account that the Hamiltonian H is a constant operator,
we have that no work is realized by/on the system. Then, by computing
the amount of heat extracted from the system in the prime dynamics
during an interval t € [0, 1], we obtain

AQ =Tr{H P (1)} — Tr{H'0'(0)}, (51)
= Up(t)UT, V t € [0, T]. Hence
AQ = Tr{H'Up(T)U'} — Tr{H'Up(0)U'}

=Tr{U'H'Up(1)} — T{{U'H'Up(0)} = AQ

where we have used the cyclical property of the trace and that
AQ = Tr{Hp(1)} — Tr{Hp(0)}. M

where, by definition, we can use p'(t)

(52)

As an example of application of the above theorem, let us consider a
system-reservoir interaction governed by Rj[e] = y(t)[o 80, — o] (bit-flip
channel). We can then show that the results previously obtained for
dephasing can be reproduced if the quantum system is initially prepared in
thermal state of H = wo,. Such a result is clear if we choose U = Ry(r/2)

R,(71/2). Then, it follows that R}[e] = UR?[e]U" and H'[e] = UH[e]U, where
R, (6) are rotation matrices with angle 6 around z(x)-axes for the case of a
single qubit. Thus, the above theorem assures that the maximum
exchanged heat will be AQmax = hw tanh[Bhw].

Let us discuss now the adiabatic dynamics under dephasing and heat
exchange. Consider the Hamiltonian Hy = hwo,, where the system is
initialized in the thermal of H, at inverse temperature 8. In this case, the
initial state can be written as

0(0) = 15(1 + tanh[Bhw]oy ). (53)

If we rewrite the above state in superoperator formalism as the state
[0*(0))), we can compute the components pX(0) of |p*(0))) from
05(0) =Tr{p(0)o,}, where o, = {1, 0, 0y, o). Thus we get

10(0))) = [1)) — tanh[Bhw]|x)), (54)

where we define the basis [k)) = [6ki1 Ok Ok 6kz]'. If we drive the

system under the master equation

1

p(t) = Llp(t)] = 7 [Hx, p(t)] + y(t)[0z00; — o], (55)
the superoperator IL(t) associated with the generator L[e] reads

0 0 0 0

0 —2y(t 0 0
L(t) = V) . (56)

0 0 =2y(t) —2w

0 0 2w 0

Thus, it is possible to show that the set {|1)), |x))} satisfies the eigenvalue
equation for L(t) as

L@ =0, LX) = —2v(t)[x))- (57)
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Fig. 3 Average power P(T4e) as a function of rdec for several
values of y,. Here we use iiw = 82.662 peV and 8~ ' = 17.238 peV,
with thegphysmal constants h ~ 6.578 x 10 '® eV and kg ~ 8.619 x
10°°

It can be shown that this eigenstates are nondegenerate. Therefore, if the
dynamics is adiabaticc we can write the evolved state as
[p*(1))) = c1(t)[1)) + cx(t)]x)), where ¢,(t) = ¢,(0) = 0 and c,(t) = c,(0) =
0 because the coefficients evolve independently form each other. Thus,
from the adiabatic solution in open quantum system given in Eq. (41), we
obtain ¢;(f) = 1 and ¢,(0) = — tanh[Bhw)], so that we can use A; = 0 and
Ay = —2y(t) to obtain

o (1) = 1)) — e 2 (58)
Notice that Eq. (7) in the main text directly follows by rewriting Eq. (58) in
the standard operator formalism. Moreover, by using this formalism, it is
also possible to show that the dephasing channel can be used as a
thermalization process if we suitably choose the parameter y(t) and the
total evolution time Tge. In fact, we can define a new inverse temperature
Baepn SO that Eq. (58) behaves as thermal state, namely,

tanh [Bhw]|x)).

[o*(1))) = 11)) — tanh[Byepnhw]|x)). (59)
where we immediately identify
Baeph = hiwarctanh {e’z Joverde tanh(Bhw)] . (60)

In particular, by using the mean value theorem, there is a value y so that
= (1/Tgec) [ y(t)dt. Then, the above equation becomes

1 _
Baeph = %arctanh [e’ZVT"“ tanh(Bhw)] . (61)

In addition, heat can be computed from Eq. (43) as

13l O (o) L (0| D (1))
iki (62)

= Her (O [L(O)]1)) + cxe 2" O% (i) L(6) x))]dt,

where we already used ¢; = 0, for i = y, z. Now, we can use that the vector
((h(t)] has components hp(t) given by h,(t) = Tr{p(0)H(t)}, in which H(t)
is the Hamiltonian that acts on the system during the non-unitary
dynamics. In conclusion, by using this result and Eq. (57), we get

Qad

dQ (1) = 2hw tanh[Bhaly(t)e 2 Jo Y%z, (63)

Now, let us to use the mean-value theorem for real functions to write
V= (1/8t) [{y(§)dé within the interval At, so that we get

e’z.fo VO _ o278t |t shows that the higher the mean-value of y(f) the
faster the heat exchange ends. Now, by integrating the above result

AQ(Taec) = [o*<dQ(t)

e (64)
= 2hw tanh[Bhw] [3*y (t)efzjuy(f) Cdt.
To solve the above equation, we need to solve
T ot
F(t) = / V(e 2l %ar, (65)
0
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Fig. 4 Histograms of detected photons after the ion is prepared
in |0) and |1). All data is obtained under 100,000 measurement
repetitions.

where we can note that

—2[ ye)de —2[ "y(e)de
%{e Ju } S 4 [-2, 'vierae]

(66)
~ oy(t)e 2 INIGLS
Therefore, we can write the Eq. (65) as
2 ) :y(t)dr
F(t) = - 20dt|: f } _%[e . _1} 67)

= —1[e 2Tl _ 1],

where we used the mean-value theorem in the last step. Therefore, by
using this result in Eq. (64), we find

AQ(Tgec) = hw tanh[Bhw] (1 - e’m"“). (68)

In order to study the the average power for extracting/introducing the
amount |AQ(tged)|, we define the quantity P(Tgec) = |AQ(Tdec)|/Tdec, Where
Tgec IS the time interval necessary to extract/introduce the amount of heat
|Q(t4ec)|- Thus, from the above equation we obtain

f(Tdec) = |AQmaxm(Tdec~, V)v

with AQmax = hw tanh[Bhw] and N(Tgec, V) = (1 — e 2V7éec) /Tgec. This result
is illustrated in Fig. 3, where we have plotted P(Tqec) during the entire heat
exchange (within the interval 14ec) as a function of t4e.. Notice that, as in
the case of AQ(t4ec), the asymptotic behavior of the average power is
independent of yo.

For our dynamics, the entropy variation is obtained from Eq. (44) for a
one-dimensional block Jordan decomposition. Thus, by computing
((of3 (t)], where we find

_ A2
(el (0] = log (%) (1]~ 2arctanhig ()] (x

=e -2 fynene tanh(Bhw). Then, from Eq. (44) we get

. 1 s
5(1) = ch,-efo A

i=0

(69)

(70)

with g(t
71

where T;(t) = ({03 ( ). Hence, from the set of adopted values
for our parameters andgthe spectrum of the Lindbladian, we get

S(t) = 4g(t)y(t)arctanh[g(t)]. (72)

Trapped-ion experimental setup
We encode a qubit into hyperfine energy levels of a trapped Ytterbium ion
'71Yb*, denoting its associated states by [0) = [°S;/,;F = 0,m = 0) and
1) = |251/2;F: 1,m =0). By using an arbitrary waveform generator
(AWG) we can drive the qubit through either a unitary or a non-unitary
dynamics (via a frequency mixing scheme). The detection of the ion state is
obtained from use of a “readout” laser with wavelength 369.526 nm.
Applying a static magnetic field with intensity 6.40 G, we get a
frequency transition between the qubit states given by wns = 2m X
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200 12.642825 GHz. Therefore, by denoting the states |0) and |1) as ground
°.. and excited states, respectively, the inner system Hamiltonian is given by
1.75
ol hwhf
Ho=—"0 (73)
1,50 S 0Ty
T 195 ° where 0, = |1)(1]| — |0)(0|. Therefore, to unitarily drive the system through
s 1. ° . . . .
= coherent population inversions within the subspace {|0),|1)}, we use a
 1.00 ® microwave at frequency wp,, whose magnetic field
— (]
% 0.75 . Fun(t) = FO COS Wrnwt (74)
o -
0.50 ‘. interacts with the electron magnetic dipole moment I = uyS, with py a
N constant and S is the electronic spin. Then, the system Hamiltonian reads
0.25 N
.. H(t) = Ho — it - Bun(t). (75)
0.00 ®000000OsccSS2222 _ 41
00 05 10 15 20 25 30 35 40 Thus, by Qeﬁning Fhe Babi frequgncy hQr = —.y.M| .Bo\./4 , we obtgin that
Frequency (MHz) the effective Hamiltonian that drives the qubit is (in interaction picture)
Fig. 5 Spectrum of the noise source. The noise source is provided Hi(t) = h_woz + @0)(7 (76)
by the commercial microwave generator E8257D. Dots are measured 2 2
data and the solid curve is a Gaussian fit to the data. where @ = Wy — Wy and oy = |1)(0] + |0)(1]. By using the AWG we can

efficiently control the parameters w and Qg. In particular, in our experiment

(a) Re (Yexp) (b) IM Kexp)

()

Y [
z

Fig. 6 Process matrix via process tomography. The plots a and b are the real and imaginary parts of x obtained from the experimental
measured data. Plots ¢ and d are the real and imaginary parts of x given by numerical simulation.
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Fig. 7 Dephasing rate controlled by the amplitude of noise, here C is fixed as C = 96.00 KHz/V. a Rabi oscillations between states |0) and
|1) under different noise intensities. From top to bottom, the noise amplitude is set to 0.4V, 0.8V, 1.2V, 1.6 V and 2.0 V, with the corresponding
damping rates 182 Hz, 650 Hz, 1426 Hz, 2469 Hz and 3846 Hz, respectively. b Dephasing rate as a function of the noise amplitude. Points are
measured data. A linear fit is obtained. Without driving noise (noise amplitude is zero), the dephasing rate of the qubit is fitted as 3.03 Hz,

which is caused by the magnetic fluctuation in the laboratory.

Table 1.  Minimum value of experimental fidelity F i for each choice
of yo. The maximum experimental error AF i, for Fin is about
A]:min =0.13% of ]:min-

628 Hz
0.9965(4)

1257 Hz
0.9980(7)

3142 Hz
0.9952(8)

6283 Hz
0.9942(9)

Yo 314 Hz
Frnin 0.9971(3)

to implement the Hamiltonian Hy, we have used a resonant (Wmw = Why)
microwave with Rabi frequency Qg = @, while the frequency wyr has been
adjusted around 2 x 12.642 GHz, with @ modulated by using the channel
1 (CH1) of the AWG.

After the experimental qubit operation, we use the state-dependent
florescence detection method to implement the quantum state binary
measurement. We can observe on average 13 photons for the bright state
|1) and zero photon for the dark state |0) in the 500 us detection time
interval, as shown in Fig. 4. These scattered photons at 396.526 nm are
collected by an objective lens with numerical aperture NA = 0.4. After the
capture of these photons, they go through an optical bandpass filter and a
pinhole, after which they are finally detected by a photomultiplier tube
(PMT) with 20% quantum efficiency. By using this procedure, the
measurement fidelity is measured to be 99.4%.

Due to the long coherence time of the hyperfine qubit, the decoherence
effects can be neglected in our experimental timescale. However, since we
are interested in a nontrivial non-unitary evolution, we need to perform
environment engineering. This task can be achieved by using a Gaussian
noise source to mix the carrier microwave B, (t) by a frequency
modulation (FM) method. Thus, by considering the noise source encoded
in the function n(t) = Ag(t), where A is average amplitude of the noise and
g(t) is a random analog voltage signal, the driving magnetic field will be in
form
B oun(t) = Bocos|wt + Cn(t) ] (77)
where |?0\ is field intensity and C is the modulation depth supported by
the commercial microwave generator E8257D. If C is a fixed parameter (for
example, C = 96.00 KHz/V), the dephasing rate y(t) associated with
Lindblad equation

b(t) = o [Fhop(0)] + V(D [oz0(0)0; — (1), 78)
is controlled from the average amplitude of the Gaussian noise function n
(t). To see that n(t) is a Gaussian function in the frequency domain, we
show its spectrum in Fig. 5.

In order to certify that the decoherence channel is indeed a o, channel
(dephasing channel) in our experiment, we employed quantum process
tomography. A general quantum evolution can be typically described by
the operator-sum representation associated to a trace-preserving map «.

Published in partnership with The University of New South Wales

For an arbitrary input state p, the output state (o) can be written as*?

E(p) = ZanAmijw (79)
mn

where A, are basis elements (usually a fixed reference basis) that span the
state space associated with p and x,,, is the matrix element of the so-called
process matrix x, which can be measured by quantum state tomography. In
a single qubit system, we take Ay = I, Ay = 0,, A, = 0,, A3 = 0,. The
quantum process tomography is carried out for the quantum process
described by the Lindblad equation given by Eq. (78), where H(t) = wo,,
with w = 5.0 X 2m KHz and y = 2.5 KHz. We fixed the total evolution time as
0.24 ms (here, the noise amplitude is 1.62 V and the modulation depth is
96.00 KHz). The resulting estimated process matrix is shown in Fig. 6. We
can calculate the fidelity between the experimental process matrix xe,, and
the theoretical process matrix xiq

]:(Xexanid) = [TI’ v/ XexpXid\/Xexp

We measured several process with different evolution times. For example,
when the amplitude of the noise is set to 1.54V, the process fidelities are
measured as Fy, = 99.27%, Ft, = 99.50%, F, = 99.72%, F¢, = 99.86%
and F;, = 99.87%, at times t; = 0.08 ms, t; = 0.16 ms, t; = 0.24 ms, t, =
0.32 ms and ts = 0.40 ms, respectively. Thus, the dephasing channel can be
precisely controlled as desired and it can support the scheme to
implement the time-dependent dephsing in experiment.

The function n(t) depends on an amplitude parameter A, which is used
to control y(t). As shown in Fig. 7, we experimentally measured the relation
between A and y(t) for a situation where y(t) is a time-independent value
Yo- As result, we find a linear relation between /¥, and A, which reads

2
(80)

VYo =29.81A 4 1.74. (81)

For the case A = 0, we get the natural dephasing rate y,q = 1.74° Hz of the
physical system. Thus, we can see that, if we change the parameter A,
which we can do with high controllability, the quantity /Y, can be
efficiently controlled. On the other hand, if we need a time-dependent rate
y(t), we just need to consider a way to vary A as a function A(t). To this end,
we use a second channel (CH2) of the AWG to perform amplitude
modulation (AM) of the Gaussian noise. The temporal dependence of A(t) is
achieved by programming the channel (CH2) to change during the
evolution time.

In order to guarantee that the dynamics of the system is really
adiabatic'' we compute the fidelity F(Tgec) of finding the system in a path

1/2

given by Eq. (5), where F(t) = Tr{ [pl)/(é(t)pad(t)plﬁé(t)] ! }, with paq(t)
the density matrix provided Eq. (5) and peyp(t) the experimental density
matrix obtained from quantum tomography. In Table 1 we show the
minimum experimental fidelity Fmin = ming,,. F(Tdec) for several choices
of the parameter y,. This result shows that the system indeed evolves as
predicted by the adiabatic solution for every y, and 74 With excellent
experimental agreement.
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