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Quantum thermodynamics in adiabatic open systems and its
trapped-ion experimental realization
Chang-Kang Hu1,2,3, Alan C. Santos 4✉, Jin-Ming Cui1,3✉, Yun-Feng Huang 1,3✉, Diogo O. Soares-Pinto5, Marcelo S. Sarandy 4,
Chuan-Feng Li 1,3 and Guang-Can Guo1,3

Quantum thermodynamics aims at investigating both the emergence and the limits of the laws of thermodynamics from a
quantum mechanical microscopic approach. In this scenario, thermodynamic processes with no heat exchange, namely, adiabatic
transformations, can be implemented through quantum evolutions in closed systems, even though the notion of a closed system is
always an idealization and approximation. Here, we begin by theoretically discussing thermodynamic adiabatic processes in open
quantum systems, which evolve non-unitarily under decoherence due to its interaction with its surrounding environment. From a
general approach for adiabatic non-unitary evolution, we establish heat and work in terms of the underlying Liouville superoperator
governing the quantum dynamics. As a consequence, we derive the conditions that an adiabatic open-system quantum dynamics
implies in the absence of heat exchange, providing a connection between quantum and thermal adiabaticity. Moreover, we
determine families of decohering systems exhibiting the same maximal heat exchange, which imply in classes of thermodynamic
adiabaticity in open systems. We then approach the problem experimentally using a hyperfine energy-level quantum bit of an
Ytterbium 171Yb+ trapped ion, which provides a work substance for thermodynamic processes, allowing for the analysis of heat and
internal energy throughout a controllable engineered dynamics.
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INTRODUCTION
The notion of adiabaticity is a fundamental concept in a number
of different areas in physics, including quantum information
processing1–4 and quantum thermodynamics5–7. In the context of
closed quantum systems, adiabaticity is understood as the
phenomenon in which the Hilbert space of the system can be
(quasi-)perfectly decomposed into decoupled Schrodinger-eigen-
spaces, composed by the eigenvectors of the Hamiltonian with
distinct non-crossing instantaneous energies8–10. Then, by initially
preparing a quantum system in an energy eigenstate, the system
undergoes a decoupled evolution to the corresponding energy
eigenstate at later times. However, the concept of a closed system
is always an idealization and approximation. Indeed, real quantum
systems are always coupled to a surrounding environment. In
open quantum systems described by time-local master equations,
the definition of adiabaticity can be naturally extended to the
decomposition of the Hilbert-Schmidt space into Lindblad-Jordan
eigenspaces associated with distinct eigenvalues of the generator
of the dynamics11–17.
In thermodynamics, adiabaticity is associated to a process with

no heat exchange between the system and its reservoir. In
general, it is not possible to associate an observable for the
thermodynamic definition of heat and of work18. Then, the
starting point widely used to define such physical quantities in
quantum systems is from the definition of internal energy given as
U(t) = 〈H(t)〉5,19. From this definition, we obtain the work (dW) and
exchanged heat (dQ) between the reservoir and system as

dW ¼ TrfρðtÞ _HðtÞgdt and dQ ¼ Trf _ρðtÞHðtÞgdt; (1)

respectively. As originally introduced in Ref. 19, these quantities are

defined in the weak coupling limit between system and reservoir
(see also Refs. 20,21 for recent attempts to examine strongly
coupled quantum systems and Refs. 22,23 for separation of internal
energy variation in terms of entropy changes). Notice also that dW
and dQ are exact differential forms when at least one of them
vanishes, thus the non-vanishing quantity can be identified with
the internal energy variation ΔU(t) during the entire process. For
example, for a unitary transformation associated with a closed
quantum system, we necessarily have dQclosed = 0, so that any
variation ΔU(t) is due some work performed on/by the system5,24.
Eq. (1) can be directly employed to analyze quantum thermo-
dynamical cycles, as an efficient way of assuring that no heat is
exchanged in intermediate steps25–27 or to minimize quantum
friction in a non-equilibrium setup28–30.
Here, we theoretically and experimentally discuss thermodyna-

mical adiabatic processes in real (open) quantum systems
evolving under decoherence. To this end, we address the problem
from a general approach for adiabatic dynamics in decohering
systems. In contrast with closed systems, heat may be exchanged
in the case of non-unitary evolution. In particular, we will establish
a sufficient condition to ensure that an adiabatic open-system
dynamics (associated with Lindblad-Jordan decoupled eigen-
spaces) leads to an adiabatic thermodynamical process (asso-
ciated with no heat exchange). Moreover, for thermodynamically
non-adiabatic processes, we evaluate the von Neumann entropy,
discussing its relation with heat for arbitrary evolution time. Our
results are then experimentally implemented by using a hyperfine
energy-level quantum bit (qubit) of an Ytterbium 171Yb+ trapped
ion, where reservoir engineering is performed to achieve a
controllable adiabatic dynamics. Due to requirements of the usual
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definitions of heat and work, the investigation of thermodynamic
quantities in adiabatic dynamics is achieved with time-dependent
decoherence effects. To this end, we introduce an efficient control
to a Gaussian noise with time-dependent amplitude, which is then
used to simulate a dephasing channel with a time-dependent
decoherece rate γ(t).

RESULTS
Work and heat in the adiabatic dynamics of open systems
We start by introducing heat and work in a general formalism for
adiabaticity in open quantum systems, namely, the superoperator
formalism11. In this work, we will consider a discrete quantum
systems S defined over a d-dimensional Hilbert space. The system
S interacts with its surrounding environment A. The dynamics is
assumed to be described by a time-local master equation
_ρðtÞ ¼ Lt½ρðtÞ�, where ρ(t) is the density operator associated with
S and Lt½�� is a time-dependent Liouville operator. The Liouville
operator takes the form Lt½ρðtÞ� ¼ Ht½ρðtÞ� þ Rt½ρðtÞ�, where
Ht½�� ¼ ð1=i_Þ½HðtÞ; �� is the unitary part of the dynamics and
Rt½�� describes the decohering effects of A over S.
In the superoperator formalism, the open-system dynamics can

be provided from a Schrödinger-like equation _ρðtÞj ii ¼
LðtÞ ρðtÞj ii, where LðtÞ is termed the Lindblad superoperator
and the density operator ρðtÞj ii is represented by a D2-
dimensional vector (hence the double ket notation), whose
components ϱk(t) can be suitably expanded in terms of tensor
products of the Pauli basis { 1, σ1, σ2, σ3}

11. For instance, for the
case of a single qubit (D = 2), we have ρðtÞ ¼ 1

2

P3
k¼0 ϱkðtÞσk and

ϱkðtÞ ¼ TrfρðtÞσkg, with σk denoting an element of the Pauli basis.
Moreover, LðtÞ ¼ HðtÞ þRðtÞ, where HðtÞ and RðtÞ are (D2 ×
D2)-dimensional super-matrices, whose elements are HkiðtÞ ¼
ð1=DÞTrfσy

kHt½σi �g and RkiðtÞ ¼ ð1=DÞTrfσy
kR½σi�g, respectively.

The thermodynamic quantities defined in Eq. (1) are then
rewritten as (see Methods section)

dWop ¼ 1
D
hh _hðtÞjρðtÞiidt; dQop ¼ 1

D
hhhðtÞjLðtÞjρðtÞiidt; (2)

with the components hk(t) of hðtÞh jh defined by
hkðtÞ ¼ TrfHðtÞσkg. In this notation, the inner product of vectors
uj ii and vj ii associated with operators u and v, respectively, is
defined as 〈〈u∣v〉〉 = (1/D)Tr(u†v).
Because LðtÞ is non-Hermitian, it cannot always be diagona-

lized. Then, the definition of adiabaticity in this scenario is subtler
than in the case of closed systems. For open systems, the adiabatic
dynamics can be defined in terms of the Jordan decomposition of
LðtÞ11. More specifically, adiabaticity is associated with a
completely positive trace-preserving dynamics that can be
decomposed into decoupled Lindblad-Jordan eigenspaces asso-
ciated with distinct non-crossing instantaneous eigenvalues λi(t) of
LðtÞ. We notice here that some care is required in order to find a
basis for describing the density operator. The standard technique
is to start from the instantaneous right and left eigenstates of
LðtÞ, completing these eigensets in order to compose right

fjDðkiÞ
i ðtÞiig and left fhhEðkiÞ

i ðtÞjg vector bases, where jDðkiÞ
i ðtÞii

and hhEðkiÞ
i ðtÞj are the ki-th right and left vectors, respectively,

associated with the eigenspace with eigenvalue λi(t) in the Jordan
decomposition of LðtÞ. These Jordan left and right bases can
always be built such that they satisfy a bi-orthonormal relationship

hhEðαÞ
i ðtÞjDðβÞ

j ðtÞii ¼ δijδ
αβ. Assuming an open-system adiabatic

dynamics, we can analytically derive work, heat, and entropy
variation. Indeed, by taking the initial density operator as

jρð0Þii ¼Pi;ki
cðkiÞi jDðkiÞ

i ð0Þii, we obtain that work and heat are

provided by

dWad ¼ 1
D

X
i;ki

cðkiÞi e
R t

0
~λi;ki ðt0Þdt0 hh _hðtÞjDðkiÞ

i ðtÞiidt; (3)

dQad ¼ 1
D

X
i;ki

cðkiÞi e
R t

0
~λi;ki ðt0Þdt0 hhhðtÞjLðtÞjDðkiÞ

i ðtÞiidt; (4)

with dWad (dQad) being identified to the amount of work (heat)
performed on/by the system.
The validity of Eqs. (3) and (4) is shown in the Methods section.

As long as we are in the weak coupling regime and the system is
driven by a time-local master equation, Eqs. (3) and (4) provide
expressions for work and heat for the adiabatic decohering
dynamics. Notice also that the adiabatic dynamics will require a
slowly varying Liouville superoperator LðtÞ11. Starting from Eq. (2),
we are allowed to evaluate the density operator ρðtÞj ii through an
arbitrary strategy. For instance, we could apply a piecewise
deterministic process approach via Feynman-Vernon path integral
for the corresponding propagator31. Alternatively, we could
implement a numerical simulation via a Monte Carlo wave
function method (see, e.g., Ref. 32 and references therein). In all
these cases, from Eqs. (3) and (4), we can obtain a sufficient
condition for avoiding heat exchange in a quantum mechanical
adiabatic evolution. More specifically, if the initial state ρ(0) of the
system can be written as a superposition of the eigenstate set

fjDðkiÞ
i ð0Þiig with eigenvalue λi(t) = 0, for every t ∈ [0, τ], the

adiabatic dynamics implies in no heat exchange. Therefore, we
can establish that an adiabatic dynamics in quantum mechanics is
not in general associated with an adiabatic process in quantum
thermodynamics, with a sufficient condition for thermal adiaba-
ticity being the evolution within an eigenstate set with vanishing
eigenvalue of LðtÞ. This condition is satisfied by a quantum
system that adiabatically evolves under a steady state trajectory,
since such dynamics can be described by an eigenstate (or a
superposition of eigenstates) of LðtÞ with eigenvalue zero14. As an
example, Ref. 33 has considered the adiabatic evolution of 2D
topological insulators, where the system evolves through its
steady state trajectory. For this system, the evolved state ρssðtÞj ii,
associated with the steady state of the system ρss(t), satisfies
LðtÞ ρssðtÞj ii ¼ 0, ∀ t. This means that ρssðtÞj ii is an instantaneous
eigenstate of LðtÞ with eigenvalue λ(t) = 0.

Thermal adiabaticity for a qubit adiabatic dynamics
As a further illustration, let us consider a two-level system
initialized in a thermal equilibrium state ρth(0) for the Hamiltonian
H(0) at inverse temperature β = 1/kBT, where kB and T are the
Boltzmann’s constant and the absolute temperature, respectively.
Let the system be governed by a Lindblad equation, where the
environment acts as a dephasing channel in the energy eigenstate
basis f EnðtÞj ig of H(t). Thus, we describe the coupling between the
system and its reservoir through Rdp

t ½�� ¼ γðtÞ½ΓdpðtÞ�ΓdpðtÞ � ��,
where ΓdpðtÞ ¼ E0ðtÞj i E0ðtÞh j � E1ðtÞj i E1ðtÞh j. In this case, the set
of eigenvectors of LðtÞ can be obtained from set of operators
PnmðtÞ ¼ EnðtÞj i EmðtÞh j, where the components DðiÞ

nmðtÞ of
DnmðtÞj ii are given by DðiÞ

nmðtÞ ¼ TrfPnmðtÞσig. Moreover, the
eigenvalue equation for LðtÞ can be written as
LðtÞ DnmðtÞj ii ¼ λnmðtÞ DnmðtÞj ii, where λnm(t) = En(t) − Em(t) −
2(1 − δnm)γ(t). In the superoperator formalism, the initial state
ρth(0) is written as ρthð0Þj ii ¼ Z�1ð0ÞPne

�βEnð0Þ Dnnð0Þj ii, where
ZðtÞ ¼ Trfe�βHðtÞg is the partition function of the system. There-
fore, since ρthð0Þj ii is given by a superposition of eigenvectors of
LðtÞ with eigenvalue λnn(t) = 0, we obtain from Eq. (4) that dQad =
0. Therefore, thermal adiabaticity is achieved for an arbitrary open-
system adiabatic dynamics subject to dephasing in the energy
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eigenbasis. Hence, any internal energy variation for this situation
should be identified as work.

Heat exchange for a qubit adiabatic dynamics
In contrast, we can use a similar qubit system to find a process in
which heat can be exchanged, i.e., dQad ≠ 0. To this end, let us
consider dephasing in the computational basis, with the coupling
between the system and its reservoir through Rz

t ½�� ¼
γðtÞ σz�σz � �½ �. In order to guarantee that any internal energy
variation is associated to heat exchange, we consider a constant
Hamiltonian during the entire non-unitary evolution (so that dWad

= 0). Since Rz
t ½�� must not be written in the eigenbasis of the

Hamiltonian, we assume a Hamiltonian Hx = ħωσx, where the
system is initialized in the typical initial state of a thermal machine,
namely, the thermal state of the Hamiltonian Hx at some arbitrary
temperature β. By letting the system undergo a non-unitary
adiabatic dynamics under dephasing, the evolved state is (see
Methods section)

ρadðtÞ ¼ 1
2

1� e�2
R t

0
γðξÞdξ tanhðβ_ωÞσx

� �
: (5)

From Eq. (4) we then compute the amount of exchanged heat
during an infinitesimal time interval dt as

dQadðtÞ ¼ 2_ tanhðβ_ωÞωγðtÞe�2
R t

0
γðξÞdξdt. The negative argument

in the exponential shows that the higher the mean-value of γ(t)
the faster the heat exchange ends (see Methods section). Thus, if
we define the amount of exchanged heat during the entire
evolution as ΔQðτdecÞ ¼

R τdec
0 ½dQadðtÞ=dt�dt, where τdec is the total

evolution time of the nonunitary dynamics, we get

ΔQðτdecÞ ¼ _ω tanhðβ_ωÞ 1� e�2γτdec
� �

; (6)

where γ ¼ ð1=τdecÞ
R τdec
0 γðξÞdξ is the average dephasing rate

during τdec. Notice that ΔQ(τdec) > 0 for any value of γ. Therefore,
the dephasing channel considered here works as an artificial
thermal reservoir at inverse temperature ~β ¼ βdeph < β, with
βdeph ¼ ð1=_ωÞarctanh½e�2γτdec tanhðβ_ωÞ� (see Methods section).
We can further compute the maximum exchanged heat from Eq.
(6) as a quantity independent of the environment parameters and
given by ΔQmax ¼ _ω tanhðβ_ωÞ. It would be worth to highlight

that, for quantum thermal machines weakly coupled to thermal
reservoirs at different temperatures19, the maximum heat ΔQmax is
obtained with high-temperature hot reservoirs25,34,35.
Despite we have provided a specific open-system adiabatic

evolution, we can determine infinite classes of system-
environment interactions exhibiting the same amount of heat
exchange dQ. In particular, there are infinite engineered environ-
ments that are able to extract a maximum heat amount ΔQmax. A
detailed proof of this result can be found in Methods section.

Experimental realization
We now discuss an experimental realization to test the thermo-
dynamics of adiabatic processes in an open-system evolution. This
is implemented using the hyperfine energy levels of an Ytterbium
ion 171Yb+ confined by a six-needles Paul trap, with a qubit
encoded into the 2S1/2 ground state, 0j i � j2S1=2; F ¼ 0;mF ¼ 0i
and 1j i � j2S1=2; F ¼ 1;mF ¼ 0i, as shown in Fig. 1a36. The qubit
initialization is obtained from the standard Rabi Oscillation
sequence36, where we first implement the Doppler cooling for 1
ms, after we apply a standard optical pumping process for 0.01 ms
to initialize the qubit into the 0j i state, and then we use
microwave to implement the desired dynamics. The target
Hamiltonian Hx can be realized using a resonant microwave with
Rabi frequency adjusted to ω. To this end, the channel 1 (CH1)
waveform of a programmable two-channel arbitrary waveform
generator (AWG) is used, which has been programmed to the
angular frequency 2π × 200 MHz. As depicted in Fig. 1(b), to
implement the dephasing channel we use the Gaussian noise
frequency modulation (FM) microwave technique, which has been
developed in a recent previous work and shows high controll-
ability37. Since we need to implement a time-dependent
decohering quantum channel, we use the channel 2 (CH2)
waveform as amplitude modulation (AM) source to achieve high
control of the Gaussian noise amplitude, consequently, to
optimally control of the dephasing rate γ(t). The dephasing rates
are calibrated by fitting the Rabi oscillation curve with exponential
decay. Since the heat flux depend on the non-unitary process
induced by the system-reservoir coupling, then by using a
different kind of noise (other than the Gaussian form) we may
obtain a different heat exchange behavior. See Methods section
for a detailed description of the experimental setup, including the

Fig. 1 Experimental scheme to investigate the thermodynamics of adiabaticity in open quantum systems. a Schematic diagram of the six-
needle Paul trap and relevant levels of the 171Yb+ ion. b Experimental microwave instrument for generating the field to drive the two level
system. The AWG is programmed to implement the target Hamiltonian and control the amplitude of the Gaussian noise which is used as a
dephasing channel.
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implementation of the quantum channel and the quantum
process tomography (see Methods section).
As a further development, we analyze in Fig. 2 the experimental

results for the heat exchange ΔQ(τdec) as a function of τdec, where
we have chosen γ(t) = γ0(1 + t/τdec), where τdec is experimentally
controlled through the time interval associated to the action of
our decohering quantum channel. The solid curves in Fig. 2 are
computed from Eq. (6), while the experimental points are
computed through the variation of internal energy as ΔQ(τdec) =
Ufin − Uini, where UfinðiniÞ ¼ TrfρfinðiniÞHðτÞg. The computation of
Ufin(ini) is directly obtained from quantum state tomography of ρfin
(ini) for each value of τdec. Although the maximum exchanged heat
is independent of γ0, the initial dephasing rate γ0 affects the
power for which the system exchanges heat with the reservoir for
a given evolution time τdec (See Methods section). Thus, since we
have an adiabatic path in open system (see Methods section), the
curves in Fig. 2 represent the heat exchanged during the adiabatic
dynamics. It is worth highlighting here that we can have different
noise sources in the trapped ion system in addition to dephasing.
However, the coherence timescale of the Ytterbium hyperfine
qubit is around 200 ms37. Therefore, it is much larger than the
timescale of the experimental implementation. Indeed, the
dephasing rates implemented in our realization are simulated by
the experimental setup.
As previously mentioned, since the Hamiltonian is time-

independent, any internal energy variation is identified as heat.
In order to provide a more detailed view of this heat exchange, we
analyze the von Neumann entropy SðρÞ ¼ �tr ðρlog ρÞ during the
evolution. To this end, by adopting the superoperator formalism
as before, the entropy variation for an infinitesimal time interval dt
reads dS ¼ �ð1=DÞ ρlog ðtÞ

� ���
LðtÞ ρðtÞj ii, where ρlog ðtÞ

� ���
is a

supervector with components given by ϱlogn ðtÞ ¼ Tr σnlog ρðtÞf g
(see Methods section). Thus, for an adiabatic evolution in an open
system we find that (see Methods section)

dS ¼ � 1
D

X
i;ki

cðkiÞi e
R t

0
~λi;ki ðt0Þdt0Γi;ki ðtÞ; (7)

where Γi;ki ðtÞ ¼ hhρadlog ðtÞjDðki�1Þ
i ðtÞii þ λiðtÞhhρadlog ðtÞjDðkiÞ

i ðtÞii,
with hhρadlog ðtÞj defined here as a supervector with components

ϱadlog ðtÞ ¼ Trfσnlog ρadlog ðtÞg. For the adiabatic dynamics considered
in Fig. 2 the infinitesimal von Neumann entropy variation dS in
interval dt is given by

dSðtÞ ¼ 2gðtÞγðtÞarctanh½gðtÞ�dt; (8)

where we define gðtÞ ¼ e�2
R t

0
γðξÞdξ tanhðβ_ωÞ. Notice that the

relation between heat and entropy can be obtained by rewriting
the exchanged heat dQ in the interval dt as dQad(t) = 2_ωγ(t)g(t)dt.
In conclusion, the energy variation can indeed be identified as
heat exchanged along the adiabatic dynamics. Indeed, by
computing the thermodynamic relation between dS(t) and dQad(t)

we get dS(t) = βdephdQ
ad(t), where βdeph is the inverse

temperature of the simulated thermal bath.

DISCUSSION
From a general approach for adiabaticity in open quantum systems
driven by time-local master equations, we provided a relationship
between adiabaticity in quantum mechanics and in quantum
thermodynamics in the weak coupling regime between system and
reservoir. In particular, we derived a sufficient condition for which the
adiabatic dynamics in open quantum systems leads to adiabatic
processes in thermodynamics. By using a particular example of a single
qubit undergoing an open-system adiabatic evolution path, we have
illustrated the existence of both adiabatic and diabatic regimes in
quantum thermodynamics, computing the associated heat fluxes in
the processes. As a further result, we also proved the existence of an
infinite family of decohering systems exhibiting the same maximum
heat exchange. From the experimental side, we have realized adiabatic
open-system evolutions using an Ytterbium trapped ion, with its
hyperfine energy level encoding a qubit (work substance). In turn, we
have experimentally shown that heat exchange can be directly
provided along the adiabatic path in terms of the decoherence rates as
a function of the total evolution time. In particular, the relationship
between heat and entropy is naturally derived in terms of a simulated
thermal bath. Our implementation exhibits high controllability, opening
perspectives for analyzing thermal machines (or refrigerators) in open
quantum systems under adiabatic evolutions. Moreover, a further point
to be explored is the speed up of the adiabatic path through the
transitionless quantum driving (TQD) method for open systems39.
Indeed, TQD can be incorporated in the formalism for adiabatic
thermodynamics we introduced in this work. The starting point is the
generalization of Eqs. (3) and (4) through the introduction of the
superadiabatic Lindbladian superoperator LTQDðtÞ governing the open
system evolution39. Notice that LTQDðtÞ will include counter-diabatic
contributions generally obtained by reservoir engineering. Suppression
of heat may be possibly obtained by constraining the evolution inside
the Jordan block of LTQDðtÞ with vanishing eigenvalue. Naturally, the
requirements of weak coupling and time-local master equations are still
to be kept. The associated effects of the engineered reservoirs on the
thermal efficiencies and TQD dynamics are left for future research.

METHODS
Thermodynamics in the superoperator formalism
Let us consider the heat exchange as

dQop ¼ Trf _ρðtÞHðtÞgdt ¼ TrfL½ρðtÞ�HðtÞgdt: (9)

where we have used the equation _ρðtÞ ¼ L½ρðtÞ�. To derive the
corresponding expression in the superoperator formalism we first define
the basis of operators given by {σi}, i = 0,⋯, D2 − 1, where Trfσyi σjg ¼ Dδij .
In this basis, we can write ρ(t) and H(t) generically as

HðtÞ ¼ 1
D

XD2�1

n¼0

hnðtÞσyn and ρðtÞ ¼ 1
D

XD2�1

n¼0

ϱnðtÞσn; (10)

where we have hnðtÞ ¼ TrfHðtÞσng and ϱnðtÞ ¼ TrfρðtÞσyng. Then, we get

dQop ¼ 1
D2

PD2�1

n;m¼0
TrfL½ϱnðtÞσn�hmðtÞσymg

 !
dt

¼ 1
D2

PD2�1

n;m¼0
ϱnðtÞhmðtÞTrfL½σn�σymg

 !
dt:

(11)

Now, we use the definition of the matrix elements of the superoperator
LðtÞ, associated with L½��, which reads Lmn ¼ ð1=DÞTrfσymL½σn�g, so that
we write

dQop ¼ 1
D

XD2�1

n;m¼0

hmðtÞLmnϱnðtÞ
 !

dt: (12)

Fig. 2 Heat ΔQ(τdec) as a function of the total evolution time τdec
for several values of the parameter γ0. We use ħω = 82.662 peV
and β−1 = 17.238 peV, with the physical constants ħ ≈ 6.578 × 10−16

eV ⋅ s and kB ≈ 8.619 × 10−5 eV/K38.
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In conclusion, by defining the vector elements

hðtÞh jh ¼ h0ðtÞh1ðtÞ � � � hD2�1ðtÞ½ �t; (13)

ρðtÞj ii ¼ ϱ0ðtÞ ϱ1ðtÞ � � � ϱD2�1ðtÞ½ �; (14)

we can rewrite Eq. (12), yielding

dQop ¼ 1
D
hhhðtÞjLðtÞjρðtÞiidt: (15)

Equivalently,

dWop ¼ TrfρðtÞ _HðtÞgdt; (16)

where we have used Eq. (10) to write _HðtÞ ¼ ð1=DÞPD2�1
n¼0

_hnðtÞσyn and,
consequently,

dWop ¼ 1
D

XD2�1

n¼0

_hnðtÞTrfρðtÞσyngdt; (17)

so that we use the definition of the coefficients ϱn(t) to get

dWop ¼ 1
D

XD2�1

n¼0

_hnðtÞϱnðtÞdt: (18)

By using Eqs. (13) and (14) into Eq. (18), we conclude that

dWop ¼ 1
D
hh _hðtÞjρðtÞiidt: (19)

In thermodynamics, heat exchange is accompanied of an entropy
variation. Then, in order to provide a complete thermodynamic study from
this formalism, we now compute the instantaneous variation of the von
Neumann entropy SðtÞ ¼ �TrfρðtÞlog ½ρðtÞ�g, which reads

_SðtÞ ¼ � d
dt

TrfρðtÞlog ρðtÞg½ � ¼ �Trf _ρðtÞlog ρðtÞg � Trf_ρðtÞg: (20)

By using that TrfρðtÞg ¼ 1, we get Trf _ρðtÞg ¼ 0. Therefore

_SðtÞ ¼ �Trf _ρðtÞlog ρðtÞg ¼ �TrfLt½ρðtÞ�log ρðtÞg; (21)

where we also used that _ρðtÞ ¼ Lt½ρðtÞ�. Now, let us to write

log ρðtÞ ¼ 1
D

XD2�1

n¼0

ϱlogn ðtÞσyn; (22)

so that we can define the vectors ρlog ðtÞ
� ���

associated to log ρðtÞ with
components ϱlogn ðtÞ obtained as ϱlogn ðtÞ ¼ Trfσnlog ρðtÞg. Thus, we get

_SðtÞ ¼ � 1

D2

XD2�1

m¼0

XD2�1

n¼0

ϱmðtÞϱlogn ðtÞTrfLt½σm�σyng; (23)

In the superoperator formalism, we then have

_SðtÞ ¼ � 1
D

ρlog ðtÞ
� ���

LðtÞ ρðtÞj ii: (24)

Alternatively, it is possible to get a similar result for the entropy variation in
an interval Δt = t − t0 as

ΔSðt; t0Þ ¼ SðtÞ � Sðt0Þ ¼ Tr ρðt0Þlog ρðt0Þ � ρðtÞlog ρðtÞf g;
where we can use Eq. (10) to write

ΔSðt; t0Þ ¼ 1
D

PD2�1

n¼0
ϱnðt0ÞTr σnlog ρðt0Þf g

� 1
D

PD2�1
n¼0 ϱnðtÞTr σnlog ρðtÞf g;

(25)

so that we can identify ϱlogn ðtÞ ¼ Tr σnlog ρðtÞf g and we finally write

ΔSðt; t0Þ ¼ 1
D

PD2�1

n¼0
ϱnðt0Þϱlogn ðt0Þ � 1

D

PD2�1

n¼0
ϱnðtÞϱlogn ðtÞ

¼ 1
D hhρlog ðtÞjρðtÞii � hhρlog ðt0Þjρðt0Þii
� 	

:

(26)

Adiabatic quantum thermodynamics
Let us start by briefly reviewing the adiabatic dynamics in the context of
open systems. To this end, let us consider the local master equation (in the
superoperator formalism)

_ρ ¼ L½ρðtÞ�; (27)

which describes a general time-local physical process in open systems. The

dynamical generator L½�� is requested to be a linear operation, namely,

L½α1ρ1ðtÞ þ α2ρ2ðtÞ� ¼ α1L½ρ1ðtÞ� þ α2L½ρ2ðtÞ�; (28)

for any complex numbers α1,2 and matrices ρ1,2(t), with α1 + α2 = 1,
because we need to satisfy Tr α1ρ1ðtÞ þ α2ρ2ðtÞf g ¼ 1. Thus, by using this
property of the operator L½��, it is possible to rewrite Eq. (27) as11

_ρðtÞj ii ¼ LðtÞ ρðtÞj ii; (29)

where LðtÞ and ρðtÞj ii have been already previously defined. In general,
due to the non-Hermiticity of LðtÞ, there are situations in which LðtÞ
cannot be diagonalized, but it is always possible to write a block-diagonal
form for LðtÞ via the Jordan block diagonalization approach40. Hence, it is
possible to define a set of right and left quasi-eigenstates of LðtÞ,
respectively, as

LðtÞjDnα
α ðtÞii ¼ jDðnα�1Þ

n ðtÞii þ λαðtÞjDnα
α ðtÞii; (30A)

hhEnα
α ðtÞjLðtÞ ¼ hhEðnαþ1Þ

n ðtÞj þ hhEnα
α ðtÞjλαðtÞ: (30B)

From the above equations, we can write the Jordan form of LðtÞ as
LJðtÞ ¼ diag J1ðtÞ J2ðtÞ � � � JNðtÞ½ �; (31)

where N is the sum of the geometric multiplicities of all the distinct
eigenvalues λα(t) and each block Jα(t) is given by

JαðtÞ ¼

λαðtÞ 1 0 � � � 0

0 λαðtÞ 1 � � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � 0 λαðtÞ 1

0 � � � � � � 0 λαðtÞ

2
66666664

3
77777775
: (32)

In the adiabatic dynamics of closed systems, the decoupled evolution of
the set of eigenvectors Eknn ðtÞ�� 


of the Hamiltonian associated with an
eigenvalue En(t), where kn denotes individual eigenstates, characterizes
what we call Schrödinger-preserving eigenbasis. In an analogous way, the
set of right and left quasi-eigenstates of LðtÞ associated with the Jordan
block Jα(t) characterizes the Jordan-preserving left and right bases. Here,
we will restrict our analysis to a particular case where each block Jα(t) is
one-dimensional, so that the set of quasi-eigenstates given in Eq. (30)
becomes a genuine eigenstate equation given by

LðtÞ DαðtÞj ii ¼ λαðtÞ DαðtÞj ii; (33A)

DαðtÞh jh LðtÞ ¼ EαðtÞh jh λαðtÞ: (33B)

In this case, we can expand the matrix density ρðtÞj ii in basis DαðtÞj ii as

ρðtÞj ii ¼
XN
α¼1

rαðtÞ DαðtÞj ii; (34)

with rβ(t) being parameters to be determined. By using the Eq. (29), one
gets the dynamical equation for each rβ(t) as

_rβðtÞ ¼ λβðtÞrβðtÞ � rβðtÞhhEβðtÞj _DβðtÞii

�PN
α≠β

rαðtÞhhEβðtÞj _DαðtÞii:
(35)

Now, we can define a new parameter pβ(t) as

rβðtÞ ¼ pβðtÞe
R t

t0
λβðξÞdξ

; (36)

so that one finds an equation for pβ(t) given by

_pβðtÞ ¼ �PN
α≠β

pαðtÞe
R t

t0
λαðξÞ�λβðξÞdξhhEβðtÞj _DαðtÞii

�pβðtÞhhEβðtÞj _DβðtÞii;
(37)

with the first term in right-hand-side being the responsible for coupling
distinct Jordan-Lindblad eigenspaces during the evolution. If we are able
to apply some strategy to minimize the effects of such a term in the above
equation, we can approximate the dynamics to

_pβðtÞ � �pβðtÞhhEβðtÞj _DβðtÞii: (38)

Then, the adiabatic solution rβ(t) for the dynamics can be immediately
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obtained from Eq. (36), which reads

rβðtÞ ¼ rβðt0Þe
R t

t0
λβðξÞdξe

�
R t

t0
hhEβðξÞj _DβðξÞiidξ

: (39)

where we already used pβ(t0) = rβ(t0). In conclusion, if the system
undergoes an adiabatic dynamics along a non-unitary process, the evolved
state can be written as

ρadðtÞ�� 

 ¼XN
α¼1

rαðt0Þe
R t

t0

~λαðξÞdξ DαðtÞj ii; (40)

with ~λαðtÞ ¼ λαðtÞ � hhEαðtÞj _DαðtÞii being the generalized adiabatic phase
accompanying the dynamics of the n-th eigenvector. The same
mathematical procedure can be applied for multi-dimensional blocks11.

In this scenario, let jρð0Þii ¼Pi;ki c
ðki Þ
i jDðkiÞ

i ð0Þii be the initial state of the
system associated with the initial matrix density ρ(0). By considering a
general adiabatic evolution, the state at a later time t will be given by11

jρadðtÞii ¼
X
i;ki

cðkiÞi e
R t

0
~λi;ki ðt0Þdt0 jDðki Þ

i ðtÞii (41)

with ~λi;ki ðtÞ ¼ λiðtÞ � hhEðki Þ
i ðtÞj _Dðki Þ

i ðtÞii, where fhhEðkiÞ
i ðtÞjg and

fjDðkiÞ
i ðtÞiig denote the instantaneous Jordan-preserving left and right

bases of LðtÞ, respectively11. Therefore, from Eq. (2), we can write the work
dWop for an adiabatic dynamics as

dWop ¼ 1
D

X
i;ki

cðki Þi e
R t

0
~λi;ki ðt0Þdt0 hh _hðtÞjDðkiÞ

i ðtÞiidt: (42)

On the other hand, when no work is realized, we can obtain the heat dQop

for an adiabatic dynamics as

dQad ¼ 1
D

X
i;ki

cðki Þi e
R t

0
~λi;ki ðt0 Þdt0 hhhðtÞjLðtÞjDðkiÞ

i ðtÞiidt; (43)

so that dQad represents the exchanged heat if no work is performed during
such dynamics. Moreover, from Eq. (24), we can write the von Neumann
entropy variation as

_SðtÞ ¼ � 1
D hhρadlog ðtÞjLðtÞjρadðtÞii

¼ � 1
D

P
i;ki

cðkiÞi e
R t

0
~λi;ki ðt0Þdt0 hhρadlog ðtÞjLðtÞjDðkiÞ

i ðtÞii;

so that we can use the Eq. (30) to write

_SðtÞ ¼ 1
D

X
i;ki

cðki Þi e
R t

0
~λi;ki ðt0 Þdt0Γi;ki ðtÞ; (44)

where Γi;ki ðtÞ ¼ hhρadlog ðtÞjDðki�1Þ
i ðtÞii þ λiðtÞhhρadlog ðtÞjDðkiÞ

i ðtÞii, with

hhρadlog ðtÞj standing for the adiabatic evolved state associated with

ρlog ðtÞ
� ���

.

Heat in adiabatic quantum processes
We will discuss how to determine infinite classes of systems exhibiting the
same amount of heat exchange dQ. This is provided in Theorem 1 below.

Theorem 1. Let S be an open quantum system governed by a time-local
master equation in the form _ρðtÞ ¼ H½ρðtÞ� þ Rt½ρðtÞ�, where H½�� ¼
ð1=i_Þ½H; �� and Rt ½�� ¼

P
nγnðtÞ½ΓnðtÞ�ΓynðtÞ � ð1=2ÞfΓynðtÞΓnðtÞ; �g�. The

Hamiltonian H is taken as a constant operator so that no work is realized by/
on the system. Assume that the heat exchange between S and its reservoir
during the quantum evolution is given by dQ. Then, any unitarily related
adiabatic dynamics driven by _ρ0ðtÞ ¼ H0½ρ0ðtÞ� þ R0

t½ρ0ðtÞ�, where
_ρ0ðtÞ ¼ U _ρðtÞUy, H0½�� ¼ UH½��Uy and R0

t ½�� ¼ URt ½��Uy, for some constant
unitary U, implies in an equivalent heat exchange dQ0 ¼ dQ.□

Proof. Let us consider that ρ(t) is solution of

_ρðtÞ ¼ H½ρðtÞ� þ Rt½ρðtÞ�; (45)

so, by multiplying both sides of the above equation by U (on the left-hand-

side) and U† (on the right-hand-side), we get

U _ρðtÞUy ¼ UH½ρðtÞ�Uy þ URt½ρðtÞ�Uy

¼ 1
i_U½H; ρðtÞ�Uy þP

n
γnðtÞUΓnðtÞρðtÞΓynðtÞUy

� 1
2

P
n
γnðtÞUfΓynðtÞΓnðtÞ; ρðtÞg

	
Uy;

(46)

thus, by using the relations [UAU†, UBU†] = U[A, B]U† and {UAU†, UBU†} = U
{A, B}U†, we find

_ρ0ðtÞ ¼ 1
i_ ½UHUy; ρ0ðtÞ� þP

n
γnðtÞΓ0nðtÞρ0ðtÞΓ

0y
n ðtÞ

� 1
2

P
n
γnðtÞfΓ

0y
n ðtÞΓ0nðtÞ; ρ0ðtÞg;

(47)

where Γ0ðtÞ ¼ UΓnðtÞUy . In conclusion, we get that ρ0ðtÞ ¼ UρðtÞUy is a
solution of

_ρ0ðtÞ ¼ H0½ρ0ðtÞ� þ R0
t½ρ0ðtÞ�; (48)

where

H0½�� ¼ 1
i_
½UHUy; �� ¼ UH½��Uy; (49)

R0
t½�� ¼

P
nγnðtÞ½Γ0nðtÞρ0ðtÞΓ

0y
n ðtÞ � 1

2 fΓ
0y
n ðtÞΓ0nðtÞ; ρ0ðtÞg�

¼ URt½��Uy:
(50)

Now, by taking into account that the Hamiltonian H is a constant operator,
we have that no work is realized by/on the system. Then, by computing
the amount of heat extracted from the system in the prime dynamics
during an interval t ∈ [0, τ], we obtain

ΔQ0 ¼ TrfH0ρ0ðτÞg � TrfH0ρ0ð0Þg; (51)

where, by definition, we can use ρ0ðtÞ ¼ UρðtÞUy , ∀ t ∈ [0, τ]. Hence

ΔQ0 ¼ TrfH0UρðτÞUyg � TrfH0Uρð0ÞUyg
¼ TrfUyH0UρðτÞg � TrfUyH0Uρð0Þg ¼ ΔQ

(52)

where we have used the cyclical property of the trace and that
ΔQ ¼ TrfHρðτÞg � TrfHρð0Þg. ■

As an example of application of the above theorem, let us consider a
system-reservoir interaction governed by Rx

t ½�� ¼ γðtÞ σx�σx � �½ � (bit-flip
channel). We can then show that the results previously obtained for
dephasing can be reproduced if the quantum system is initially prepared in
thermal state of H0

y ¼ ωσy . Such a result is clear if we choose U = Rx(π/2)
Rz(π/2). Then, it follows thatRx

t ½�� ¼ URz
t ½��Uy andH0½�� ¼ UH½��Uy , where

Rz(x)(θ) are rotation matrices with angle θ around z(x)-axes for the case of a
single qubit. Thus, the above theorem assures that the maximum
exchanged heat will be ΔQmax ¼ _~ω tanh½β_ω�.
Let us discuss now the adiabatic dynamics under dephasing and heat

exchange. Consider the Hamiltonian Hx = _ωσx, where the system is
initialized in the thermal of Hx at inverse temperature β. In this case, the
initial state can be written as

ρð0Þ ¼ 1
2

1þ tanh½β_ω�σxð Þ: (53)

If we rewrite the above state in superoperator formalism as the state
ρxð0Þj ii, we can compute the components ρxnð0Þ of ρxð0Þj ii from
ρxnð0Þ ¼ Trfρð0Þσng, where σn = {1, σx, σy, σz}. Thus we get

ρxð0Þj ii ¼ 1j ii � tanh½β_ω� xj ii; (54)

where we define the basis kj ii ¼ ½ δk1 δkx δky δkz �t . If we drive the
system under the master equation

ρðtÞ ¼ L½ρðtÞ� ¼ 1
i_
½Hx; ρðtÞ� þ γðtÞ σz�σz � �½ �; (55)

the superoperator LðtÞ associated with the generator L½�� reads

LðtÞ ¼

0 0 0 0

0 �2γðtÞ 0 0

0 0 �2γðtÞ �2ω

0 0 2ω 0

2
6664

3
7775: (56)

Thus, it is possible to show that the set f 1j ii; xj iig satisfies the eigenvalue
equation for LðtÞ as
LðtÞ 1j ii ¼ 0; LðtÞ xj ii ¼ �2γðtÞ xj ii: (57)
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It can be shown that this eigenstates are nondegenerate. Therefore, if the
dynamics is adiabatic, we can write the evolved state as
ρxðtÞj ii ¼ c1ðtÞ 1j ii þ cxðtÞ xj ii, where cy(t) = cy(0) = 0 and cz(t) = cz(0) =
0 because the coefficients evolve independently form each other. Thus,
from the adiabatic solution in open quantum system given in Eq. (41), we
obtain c1(t) = 1 and cxð0Þ ¼ � tanh½β_ω�, so that we can use ~λ1 ¼ 0 and
~λx ¼ �2γðtÞ to obtain

ρxðtÞj ii ¼ 1j ii � e�2
R t

0
γðξÞdξ tanh½β_ω� xj ii: (58)

Notice that Eq. (7) in the main text directly follows by rewriting Eq. (58) in
the standard operator formalism. Moreover, by using this formalism, it is
also possible to show that the dephasing channel can be used as a
thermalization process if we suitably choose the parameter γ(t) and the
total evolution time τdec. In fact, we can define a new inverse temperature
βdeph so that Eq. (58) behaves as thermal state, namely,

ρxðtÞj ii ¼ 1j ii � tanh½βdeph_ω� xj ii: (59)

where we immediately identify

βdeph ¼ 1
_ω

arctanh e�2
R t

0
γðξÞdξ tanhðβ_ωÞ

� �
: (60)

In particular, by using the mean value theorem, there is a value γ so that
γ ¼ ð1=τdecÞ

R τdec
0 γðtÞdt. Then, the above equation becomes

βdeph ¼ 1
_ω

arctanh e�2γτdec tanhðβ_ωÞ
h i

: (61)

In addition, heat can be computed from Eq. (43) as

dQad ¼ 1
D

P
i;ki

cðkiÞi e
R t

0
~λi;ki ðt0Þdt0 hhhðtÞjLðtÞjDðkiÞ

i ðtÞiidt

¼ 1
2 ½c1hhhðtÞjLðtÞj1ii þ cxe

�2
R
0t
γðt0 Þdt0 hhhðtÞjLðtÞjxii�dt;

(62)

where we already used ci = 0, for i = y, z. Now, we can use that the vector
hðtÞh jh has components hn(t) given by hnðtÞ ¼ Trfρð0ÞHðtÞg, in which H(t)

is the Hamiltonian that acts on the system during the non-unitary
dynamics. In conclusion, by using this result and Eq. (57), we get

dQadðtÞ ¼ 2_ω tanh½β_ω�γðtÞe�2
R t

0
γðξÞdξdt: (63)

Now, let us to use the mean-value theorem for real functions to write
γ ¼ ð1=ΔtÞ R t0 γðξÞdξ within the interval Δt, so that we get

e�2
R t

0
γðξÞdξ ¼ e�2γΔt . It shows that the higher the mean-value of γ(t) the

faster the heat exchange ends. Now, by integrating the above result

ΔQðτdecÞ ¼
R τdec
0 dQadðtÞ

¼ 2_ω tanh½β_ω�R τdec0 γðtÞe�2
R t

0
γðξÞdξdt:

(64)

To solve the above equation, we need to solve

FðtÞ ¼
Z τ

0
γðtÞe�2

R t

0
γðξÞdξdt; (65)

where we can note that

d
dt e

�2
R
t0

t
γðξÞdξ

� �
¼ e

�2
R
t0

t
γðξÞdξ d

dt �2
R
t0
t
γðξÞdξ

h i

¼ �2γðtÞe�2
R t

t0
γðξÞdξ

:

(66)

Therefore, we can write the Eq. (65) as

FðtÞ ¼ � 1
2

R τ
0

d
dt e

�2
R t

t0
γðξÞdξ

� �
dt ¼ � 1

2 e
�2
R τ

t0
γðtÞdt � 1

� �
¼ � 1

2 e�2ðτ�t0Þγ � 1
� 	

:

(67)

where we used the mean-value theorem in the last step. Therefore, by
using this result in Eq. (64), we find

ΔQðτdecÞ ¼ _ω tanh½β_ω� 1� e�2γτdec
� �

: (68)

In order to study the the average power for extracting/introducing the
amount ∣ΔQ(τdec)∣, we define the quantity PðτdecÞ ¼ jΔQðτdecÞj=τdec, where
τdec is the time interval necessary to extract/introduce the amount of heat
∣Q(τdec)∣. Thus, from the above equation we obtain

PðτdecÞ ¼ jΔQmaxjηðτdec; γÞ; (69)

with ΔQmax ¼ _ω tanh½β_ω� and ηðτdec; γÞ ¼ ð1� e�2γτdec Þ=τdec. This result
is illustrated in Fig. 3, where we have plotted PðτdecÞ during the entire heat
exchange (within the interval τdec) as a function of τdec. Notice that, as in
the case of ΔQ(τdec), the asymptotic behavior of the average power is
independent of γ0.
For our dynamics, the entropy variation is obtained from Eq. (44) for a

one-dimensional block Jordan decomposition. Thus, by computing
hhρAdlog ðtÞj, where we find

hhρAdlog ðtÞj ¼ log
1� g2ðtÞ

4

� �
hh1j � 2arctanh½gðtÞ�hhxj; (70)

with gðtÞ ¼ e�2
R t

0
γðξÞdξ tanhðβ_ωÞ. Then, from Eq. (44) we get

_SðtÞ ¼ 1
2

X1
i¼0

cie
R t

0
~λi ðt0 Þdt0ΓiðtÞ; (71)

where ΓiðtÞ ¼ λiðtÞhhρadlog ðtÞjDiðtÞii. Hence, from the set of adopted values
for our parameters and the spectrum of the Lindbladian, we get

_SðtÞ ¼ 4gðtÞγðtÞarctanh½gðtÞ�: (72)

Trapped-ion experimental setup
We encode a qubit into hyperfine energy levels of a trapped Ytterbium ion
171Yb+, denoting its associated states by 0j i � j2S1=2; F ¼ 0;m ¼ 0i and
1j i � j2S1=2; F ¼ 1;m ¼ 0i. By using an arbitrary waveform generator
(AWG) we can drive the qubit through either a unitary or a non-unitary
dynamics (via a frequency mixing scheme). The detection of the ion state is
obtained from use of a “readout” laser with wavelength 369.526 nm.
Applying a static magnetic field with intensity 6.40 G, we get a

frequency transition between the qubit states given by ωhf = 2π ×

Fig. 3 Average power PðτdecÞ as a function of τdec for several
values of γ0. Here we use ħω = 82.662 peV and β−1 = 17.238 peV,
with the physical constants ħ ≈ 6.578 × 10−16 eV and kB ≈ 8.619 ×
10−5 eV38.

Fig. 4 Histograms of detected photons after the ion is prepared
in 0j i and 1j i. All data is obtained under 100,000 measurement
repetitions.
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12.642825 GHz. Therefore, by denoting the states 0j i and 1j i as ground
and excited states, respectively, the inner system Hamiltonian is given by

H0 ¼ _ωhf

2
σz (73)

where σz ¼ 1j i 1h j � 0j i 0h j. Therefore, to unitarily drive the system through
coherent population inversions within the subspace f 0j i; 1j ig, we use a
microwave at frequency ωmw whose magnetic field

B
!

unðtÞ ¼ B
!

0 cosωmwt (74)

interacts with the electron magnetic dipole moment μ̂ ¼ μMŜ, with μM a
constant and Ŝ is the electronic spin. Then, the system Hamiltonian reads

HðtÞ ¼ H0 � μ̂ � B!unðtÞ: (75)

Thus, by defining the Rabi frequency _ΩR � �μMj B
!

0j=441, we obtain that
the effective Hamiltonian that drives the qubit is (in interaction picture)

HIðtÞ ¼ _ω

2
σz þ _ΩR

2
σx ; (76)

where ω = ωhf − ωmw and σx ¼ 1j i 0h j þ 0j i 1h j. By using the AWG we can
efficiently control the parameters ω and ΩR. In particular, in our experiment

Fig. 5 Spectrum of the noise source. The noise source is provided
by the commercial microwave generator E8257D. Dots are measured
data and the solid curve is a Gaussian fit to the data.

Fig. 6 Process matrix via process tomography. The plots a and b are the real and imaginary parts of χ obtained from the experimental
measured data. Plots c and d are the real and imaginary parts of χ given by numerical simulation.
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to implement the Hamiltonian ~Hx, we have used a resonant (ωmw = ωhf)
microwave with Rabi frequency ΩR ¼ ~ω, while the frequency ωhf has been
adjusted around 2π × 12.642 GHz, with ~ω modulated by using the channel
1 (CH1) of the AWG.
After the experimental qubit operation, we use the state-dependent

florescence detection method to implement the quantum state binary
measurement. We can observe on average 13 photons for the bright state
1j i and zero photon for the dark state 0j i in the 500 μs detection time
interval, as shown in Fig. 4. These scattered photons at 396.526 nm are
collected by an objective lens with numerical aperture NA = 0.4. After the
capture of these photons, they go through an optical bandpass filter and a
pinhole, after which they are finally detected by a photomultiplier tube
(PMT) with 20% quantum efficiency. By using this procedure, the
measurement fidelity is measured to be 99.4%.
Due to the long coherence time of the hyperfine qubit, the decoherence

effects can be neglected in our experimental timescale. However, since we
are interested in a nontrivial non-unitary evolution, we need to perform
environment engineering. This task can be achieved by using a Gaussian
noise source to mix the carrier microwave B

!
unðtÞ by a frequency

modulation (FM) method. Thus, by considering the noise source encoded
in the function η(t) = Ag(t), where A is average amplitude of the noise and
g(t) is a random analog voltage signal, the driving magnetic field will be in
form

B
!

n�unðtÞ ¼ B
!

0 cos½ωt þ CηðtÞ t� (77)

where j B!0j is field intensity and C is the modulation depth supported by
the commercial microwave generator E8257D. If C is a fixed parameter (for
example, C = 96.00 KHz/V), the dephasing rate γ(t) associated with
Lindblad equation

_ρðtÞ ¼ 1
i_
½~Hx; ρðtÞ� þ γðtÞ σzρðtÞσz � ρðtÞ½ �; (78)

is controlled from the average amplitude of the Gaussian noise function η
(t). To see that η(t) is a Gaussian function in the frequency domain, we
show its spectrum in Fig. 5.
In order to certify that the decoherence channel is indeed a σz channel

(dephasing channel) in our experiment, we employed quantum process
tomography. A general quantum evolution can be typically described by
the operator-sum representation associated to a trace-preserving map ε.

For an arbitrary input state ρ, the output state ε(ρ) can be written as42

εðρÞ ¼
X
m;n

χmnAmρA
y
n; (79)

where Am are basis elements (usually a fixed reference basis) that span the
state space associated with ρ and χmn is the matrix element of the so-called
process matrix χ, which can be measured by quantum state tomography. In
a single qubit system, we take A0 = I, A1 = σx, A2 = σy, A3 = σz. The
quantum process tomography is carried out for the quantum process
described by the Lindblad equation given by Eq. (78), where H(t) = ωσx,
with ω = 5.0 × 2π KHz and γ = 2.5 KHz. We fixed the total evolution time as
0.24 ms (here, the noise amplitude is 1.62 V and the modulation depth is
96.00 KHz). The resulting estimated process matrix is shown in Fig. 6. We
can calculate the fidelity between the experimental process matrix χexp and
the theoretical process matrix χid

Fðχexp; χ idÞ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χexp

p
χ id

ffiffiffiffiffiffiffiffi
χexp

pqh i2
(80)

We measured several process with different evolution times. For example,
when the amplitude of the noise is set to 1.54V, the process fidelities are
measured as F t1 ¼ 99:27%, F t2 ¼ 99:50%, F t3 ¼ 99:72%, F t4 ¼ 99:86%
and F t5 ¼ 99:87%, at times t1 = 0.08 ms, t2 = 0.16 ms, t3 = 0.24 ms, t4 =
0.32 ms and t5 = 0.40 ms, respectively. Thus, the dephasing channel can be
precisely controlled as desired and it can support the scheme to
implement the time-dependent dephsing in experiment.
The function η(t) depends on an amplitude parameter A, which is used

to control γ(t). As shown in Fig. 7, we experimentally measured the relation
between A and γ(t) for a situation where γ(t) is a time-independent value
γ0. As result, we find a linear relation between

ffiffiffiffiffi
γ0

p
and A, which readsffiffiffiffiffi

γ0
p ¼ 29:81Aþ 1:74: (81)

For the case A = 0, we get the natural dephasing rate γnd = 1.742 Hz of the
physical system. Thus, we can see that, if we change the parameter A,
which we can do with high controllability, the quantity

ffiffiffiffiffi
γ0

p
can be

efficiently controlled. On the other hand, if we need a time-dependent rate
γ(t), we just need to consider a way to vary A as a function A(t). To this end,
we use a second channel (CH2) of the AWG to perform amplitude
modulation (AM) of the Gaussian noise. The temporal dependence of A(t) is
achieved by programming the channel (CH2) to change during the
evolution time.
In order to guarantee that the dynamics of the system is really

adiabatic11 we compute the fidelity FðτdecÞ of finding the system in a path

given by Eq. (5), where FðtÞ ¼ Tr ρ
1=2
expðtÞρadðtÞρ1=2expðtÞ

h i1=2� �
, with ρad(t)

the density matrix provided Eq. (5) and ρexp(t) the experimental density
matrix obtained from quantum tomography. In Table 1 we show the
minimum experimental fidelity Fmin ¼ minτdec FðτdecÞ for several choices
of the parameter γ0. This result shows that the system indeed evolves as
predicted by the adiabatic solution for every γ0 and τdec with excellent
experimental agreement.

Fig. 7 Dephasing rate controlled by the amplitude of noise, here C is fixed as C = 96.00 KHz/V. a Rabi oscillations between states 0j i and
1j i under different noise intensities. From top to bottom, the noise amplitude is set to 0.4 V, 0.8 V, 1.2 V, 1.6 V and 2.0 V, with the corresponding
damping rates 182 Hz, 650 Hz, 1426 Hz, 2469 Hz and 3846 Hz, respectively. b Dephasing rate as a function of the noise amplitude. Points are
measured data. A linear fit is obtained. Without driving noise (noise amplitude is zero), the dephasing rate of the qubit is fitted as 3.03 Hz,
which is caused by the magnetic fluctuation in the laboratory.

Table 1. Minimum value of experimental fidelity Fmin for each choice
of γ0. The maximum experimental error ΔFmin for Fmin is about
ΔFmin ¼ 0:13% of Fmin.

γ0 314 Hz 628 Hz 1257 Hz 3142 Hz 6283 Hz

Fmin 0.9971(3) 0.9965(4) 0.9980(7) 0.9952(8) 0.9942(9)
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