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Resumo

Nos últimos anos, a interpretação do cenário cosmológico sofreu inúmeras modificações,

devido às contribuições das pesquisas em SNe Ia e em núcleos galáticos. Estes estudos evidenciam

a presença de componentes exóticos no universo, a matéria e energia escuras.

Os modelos de quintessência descrevem esta energia escura como um campo escalar

acoplado à gravidade, considerando todo o universo permeado por ele. Na vizinhança de um

buraco negro, este campo deverá ser absorvido, modificando a sua distribuição de massa. Esta

acreção de massa exótica vem sendo interligada ao caso de buracos negros primordiais, sugerindo

um posśıvel mecanismo para a formação de buracos negros supermassivos.

Utilizando uma abordagem quasi-estacionária, consideramos a evolução da massa de

um buraco negro de Schwarzschild na presença de um campo cosmológico escalar não mini-

mamente acoplado. A equação da evolução da massa é resolvida analiticamente para um acopla-

mento genérico, revelando um comportamento qualitativamente diferente do caso de acoplamento

mı́nimo. Em particular, para buraco negros com massas menores que um certo valor cŕıtico, o

acréscimo do campo escalar pode levar à diminuição da massa, mesmo se nenhuma energia de

phantom for envolvida. A validade f́ısica da abordagem quasi-estacionária adotada e algumas

implicações do nosso resultado para evolução dos buracos negros primordiais e astrof́ısicos são

discutidas. Mais precisamente, nós discutimos que os dados observacionais de buracos negros

poderiam ser usados para colocar restrições no conteúdo de energia não minimamente acoplado.
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Abstract

In the last years, the interpretation of the cosmological scenario suffered uncountable

modifications because of contribution of research in SNe Ia and galactic core. These studies

demonstrate the presence of exotics components in the universe, the dark matter and the dark

energy.

Quintessencial models describe this dark energy as a scalar field coupled to gravity, con-

sidering the entire universe permeated by it. In the vicinity of a black hole, this field should

be absorbed, modifying its distributions of mass. This accretion of this exotic mass has been

interconnected at the case of primordial black holes, suggesting a possible mechanism for the

formation of supermassive black holes.

By using a quasi-stationary approach, we consider the mass evolution of Schwarzschild

black holes in the presence of a nonminimally coupled cosmological scalar field. The mass evolu-

tion equation is analytically solved for generic coupling, revealing a qualitatively distinct behavior

from the minimal coupling case. In particular, for black hole masses smaller than a certain critical

value, the accretion of the scalar field can lead to mass decreasing even if no phantom energy is

involved. The physical validity of the adopted quasi-stationary approach and some implications

of our result for the evolution of primordial and astrophysical black holes are discussed. More

precisely, we argue that black hole observational data could be used to place constraints on the

nonminimally coupled energy content of the universe.
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Introdução

A acreção de matéria por objetos compactos massivos é um dos processos mais estudados

na relatividade geral [1]. Salpeter e Zeldovich foram os primeiros, em 1964, a propor que galáxias

e quasares poderiam obter parte de sua energia a partir de processos de acreção [2]. Desde então,

estes processos de acreção têm sido considerados como posśıveis mecanismos de formação dos

buracos negros supermassivos (SMBH) presentes no centro da maioria das galáxias ativas [3].

Há grandes evidências da existência de buracos negros supermassivos (massa de até M ≥
106M�) no centro da maioria das galáxias, incluindo a Via Láctea. Os melhores resultados para a

nossa galáxia mostram M ≈ 3×106M� [2], sendo que uma massa solar equivale a 1.9891×1033g.

A origem destes buracos negros, ainda é incerta, no entanto, muitas teorias são formuladas. Não

se acredita atualmente que eles tenham se formado por evolução estelar, o mais provável é que

tenham crescido e aumentado sua massa lentamente. Uma possibilidade analisada é a de que

buracos negros primordiais podem ter dado origem aos SMBH [4–12].

Buracos negros primordiais (PBH) foram criados no final do peŕıodo inflacionário e muitas

teorias tentam explicar sua formação. Diversos processos f́ısicos podem ter levado à formação

de PBH. Eles podem ter se formado a partir das pertubações, durante a transição de fase da

equação de estado, ou também através de defeitos topológicos.

A comparação entre a densidade cosmológica algum tempo após o Big Bang e a densidade

associada a um buraco negro mostra que um buraco negro primordial poderia ter massa da ordem

do seu horizonte de eventos no momento de sua formação [13],
(
M ∼ c3t

G
∼ 1015

10−23

(
t
s

)
g
)

. A massa

inicial apresenta ampla faixa de valores, aqueles formados no tempo de Planck (5, 4 × 10−44s)

poderiam ter massa da ordem da massa de Planck (2, 2×10−5g), e aqueles formados um segundo

após o Big Bang poderiam ter massa de até 105M�, e se pudessem ser criados hoje, não poderiam

ter massa inferior a 1M�. É bastante improvável que após este instante PBH tenham se formado,

visto que isto teria afetado a nucleosśıntese primordial [14, 15].

Buracos negros com M ≤ 1015g não devem ser observados atualmente, pois podem ter

evaporado completamente por radiação de Hawking [16–18] e contribuir para o fluxo de raios

cósmicos. Já aqueles com M ≥ 1015g poderiam produzir efeitos observáveis hoje [19], como efeito

de microlentes gravitacionais e poderiam também contribuir significativamente para quantidade

de matéria escura [20]. Se estes PBH se formaram com uma quantidade suficiente de massa

para não evaporar completamente e ao mesmo tempo absorveram matéria e energia em grande

quantidade, poderemos relacionar estes objetos ao buracos negros supermassivos observados hoje.

À parte esta questão, a partir da década de 90, fortes evidências observacionais acumularam-

se mostrando que o universo é dominado por uma energia escura e passa por uma fase de expansão

acelerada [21–25], levando à introdução de novos graus de liberdade no cenário cosmológico.

Um modo de descrever a energia escura seria usando um campo escalar. Estes modelos
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em cosmologia são chamados de Modelos de Quintessência [26–29]. Deste modo, consideramos

que o Universo é completamente preenchido por um campo quintessencial. Nas proximidades de

um buraco negro, este campo escalar será absorvido e isto pode favorecer seu aumento de massa.

Nosso objetivo é mostrar que o acréscimo de massa no decorrer da vida de um buraco

negro primordial é algo relevante e não pode ser negligenciado. Com isto, vamos analisar se

os buracos negros supermassivos de hoje podem ter sido os primordiais que absorveram muita

quintessência. Tentaremos assim, responder perguntas em três assuntos diferentes. Usaremos

campo escalar não minimamente acoplado (como explicação para a energia escura) na região

do horizonte de eventos de um buraco negro primordial, justificando seu crescimento, levando à

formação de um buracos negro supermassivo.

No primeiro caṕıtulo, será apresentada uma revisão sobre a questão da expansão acelerada,

discutindo os cosmológicos mais estudados na atualidade, apontando seus avanços e seus pontos

ainda obscuros. No caṕıtulo seguinte discutiremos os modelos de quintessência com acoplamento

mı́nimo e não mı́nimo ao tensor de Ricci. No caṕıtulo 3, estudaremos a acreção e evaporação de

matéria feita por buracos negros na região do seu horizonte de eventos, verificando os casos de

acreção de um fluido perfeito e de um campo escalar.

O estudo de acreção de matéria por buracos negros, seja apenas um fluido perfeito ou ener-

gia escura na forma de campo escalar já foi realizado, no entanto modelos de quintessência com

acoplamento mı́nimo apresentam muitas restrições enquanto modelo, indicando a necessidade

deste estudo com modelos mais completos. Assim, no caṕıtulo 4, analisaremos detalhadamente a

taxa de variação da massa da um buraco negro, considerando modelos de quintessência não mi-

nimamente acoplado, com diversos tipos de acoplamentos e em tempos diferentes. Trabalhamos

em todas as situações com acreção de matéria e energia por buracos negros de Schwarzschild,

soluções das equações de campo de Einstein no vácuo, com simetria esférica, sem carga e sem

rotação.

Adotamos as unidades naturais, 8πG = c = ~ = 1, com assinatura da métrica (−+ ++).
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1 Expansão acelerada do universo

Na procura pelas explicações da dinâmica do universo, a força gravitacional tomou papel

cosmológico desde a época de Newton. Quando Einstein procurou elucidações para o universo,

procurou soluções para um universo homogêneo, isotrópico e estacionário, mas esta solução

mostrou-se não ser a mais apropriada. Devido à natureza atrativa da força gravitacional, as

galáxias poderiam cair umas sobre as outras, colapsando-se. Einstein imaginou que deveria

existir uma força repulsiva que compensasse a atração gravitacional. Para garantir a solução

que esperava, ou seja, um universo estacionário, introduziu um termo de pressão negativa sem

justificação f́ısica, em suas equações de campo, denominado constante cosmológica. À própria

visão de Einstein, este termo, por ser um artif́ıcio matemático, retirava a simplicidade das suas

equações.

Com as descobertas de Hubble sobre o movimento de recessão das galáxias, ou seja, um

universo em expansão, a repulsão imaginada por Einstein tornou-se desnecessária e o termo da

constante cosmológica foi retirado de suas equações. Apesar disto, neste mesmo peŕıodo, W. de

Sitter, encontrou uma solução para a teoria modificada de Einstein (com a constante cosmológica)

que previa um deslocamento para o vermelho proporcional à distância e coerente com o Prinćıpio

Cosmológico.

Em 1998, as pesquisas em SNe Ia encontraram ind́ıcios de uma aceleração da expansão

do universo. Esta expansão não está prevista no Modelo Cosmológico Padrão e, à partir desta

descoberta, começaram a surgir propostas de satisfazer os modelos existentes ou mesmo a criação

de outros [22].

1.1 Evidências experimentais para expansão acelerada

A principal evidência de que o universo está atualmente acelerando está relacionada à

observação das distâncias da luminosidade dos altos desvios para vermelho das Supernovas Ia.

As pesquisas em SNe Ia, tentando estabelecer uma extensão do diagrama de Hubble, mostraram

que o parâmetro de desaceleração é negativo (q0 < 0), ou seja, que o universo passa por uma fase

de aceleração [22].

Em 2003, resultados das observações do WMAP (Wilkinson Microwave Anisotropy Probe),

juntamente com as pesquisas de SNe Ia, estabeleceram que Ω0 = 1, 02± 0, 02, para um universo

espacialmente plano [30]. O parâmetro de densidade total conta com contribuições de matéria

bariônica, ΩB = 0.044, e radiação (neutrinos, fótons, etc), ΩR = 4, 76.10−5 [30]; e estas con-

tribuições não são suficientes para aproximar o parâmetro de densidade deste valor, ou seja,

existe um déficit de matéria e energia.

Paralelo a isto, estudos das velocidades de rotação das estrelas ao redor do núcleo galático
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em função da distância radial ao centro galático resultam em relações incompat́ıveis com o

conteúdo de matéria observável. E os melhores resultados para a densidade de matéria do

universo apresentaram Ωm = 0.28+0.09
−0.08. Supõe-se então, que existe uma matéria não viśıvel à

qual se denomina matéria escura e que deve estar simetricamente distribúıda em toda a extensão

da galáxia, com ΩM ≈ 0.23 [23].

Com isto, vemos que ainda existe um componente desconhecido, responsável pelos restantes

Ω? = 0.73 [23]. Uma forma de resolver este problema é introduzir uma componente energética

que seja responsável por esta posśıvel aceleração.

O modelo cosmológico mais utilizado atualmente é o modelo ΛCDM, por ser uma extensão

do antigo modelo cosmológico padrão, diferenciado pelas evidências de matéria e energia escura.

No entanto, como veremos adiante, existem muitos pontos obscuros neste modelo e outros têm

sido criados de modo a satisfazer estes pontos. Vamos apresentar brevemente alguns destes

modelos, analisando os pontos positivos e negativos de cada um.

1.2 Modelo ΛCDM

Uma forma de explicar esta energia faltante, chamada energia escura, é relacioná-la à

constante cosmológica, colocada adequadamente de volta nas equações de Einstein. A energia

escura seria uma energia que não emite luz, exerce pressão negativa e é aproximadamente ho-

mogênea, de modo a garantir a aceleração. Com isto, temos um novo modelo cosmológico, o

modelo ΛCDM (Λ Cold Dark Matter), que descreve o universo com matéria escura fria, ou seja,

não relativ́ıstica, e constante cosmológica Λ.

Como evidência da existência da constante cosmológica temos também a comparação entre

a idade do universo t0 e a idade das estrelas mais antigas no universo te. Obviamente espera-se

que t0 > te. No entanto, isto não é satisfeito para um universo plano formado de matéria. Esta

relação somente é satisfeita adicionando a constante cosmológica [22].

1.2.1 A Constante Cosmológica

A explicação f́ısica associada à constante cosmológica, seja ela matéria ou energia, deve

ser uma distribuição uniforme, independente das inomogeneidades da distribuição da matéria

ordinária. Se isto acontecesse, ela poderia afetar a interação gravitacional, impossibilitando a

existência de sistemas gravitacionais tal como se conhece.

As Equações de Einstein, reintroduzindo a constante cosmológica, em unidades de Planck

[31–33], são

Rµν − 1

2
gµνR + Λgµν = 8πGTµν . (1.1)

onde Rµν e R são o tensor e escalar de Ricci, respectivamente, Tµν é o tensor de energia e

momento e gµν é o tensor métrico.



1. EXPANSÃO ACELERADA DO UNIVERSO 5

O escalar de Ricci é obtido da contração do tensor de Ricci, R = gµνRµν , e o tensor de

Ricci é uma contração do tensor de Riemann,

Rρ
µλν = ∂νΓ

ρ
µλ − ∂λΓρµν + ΓσµλΓ

ρ
νσ − ΓσµνΓ

ρ
λσ, (1.2)

ou seja,

Rµν ≡ Rρ
µρν = ∂νΓ

ρ
µρ − ∂ρΓρµν + ΓσµρΓ

ρ
νσ − ΓσµνΓ

ρ
ρσ, (1.3)

onde

Γσλµ =
1

2
gνσ {∂λgµν + ∂µgλν − ∂νgµλ} (1.4)

é chamado de conexão afim e assume o papel do campo gravitacional; e o tensor métrico (entidade

geométrica) gνσ faz o papel de um potencial gravitacional (entidade f́ısica), o que dá a idéia de

geometrização da gravitação.

Para que a forma das equações seja preservada, pode-se aglutinar o termo da constante

cosmológica no termo de fonte,

Rµν − 1

2
gµνR = 8πGT̃µν , (1.5)

definindo um novo termo de fonte

T̃µν = Tµν − Λgµν
8πG

. (1.6)

No qual o tensor de energia e momento toma a forma

T̃µν = p̃gµν + (p̃+ ρ̃)uµuν , (1.7)

onde p é a pressão, ρ é a densidade e uµ é o componente radial da 4-velocidade. O novo termo

de pressão fica

p̃ = p− Λ

8πG
= p− pΛ (1.8)

e o termo de densidade fica

ρ̃ = ρ+
Λ

8πG
= ρ+ ρΛ. (1.9)

A equação de fluido com constante cosmológica fica

.
ρΛ + 3H (ρΛ + pΛ) = 0, (1.10)

sendo ρΛ constante, de modo que

pΛ + ρΛ = 0, (1.11)

Substituindo a equação de estado

p = ωρ, (1.12)

mostrando que ω = −1.
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A solução geral, homogênea e isotrópica das equações de campo originais de Einstein

foi obtida por Friedmann. As equações de Friedmann descrevem a dinâmica do universo e são

obtidas calculando as componentes espaciais e temporais das equações de Einstein, com

Rij =

( ..
a

a
+

2ȧ2

a

)
δij, R00 =

3
..
a

a
,R = 6

( ..
a

a
+
ȧ2

a

)
. (1.13)

As equações de movimento são

H2 =
8πG

3
ρ̃, (1.14)

e

ȧ2 =
8πG

3
ρ̃a2 (1.15)

sendo H o parâmetro de Hubble, dado por

H (t) =
ȧ (t)

a (t)
, (1.16)

onde a(t) é o fator cósmico de escala fornecido pela relação

r (t) = a (t) r (t0) , (1.17)

em que t0 é o tempo de referência, podendo ser o tempo presente, e r (t0) = r0 é a distância no

tempo presente.

Substituindo a equação 1.14 em 1.15, obtemos

..
a = −4πG

3
(ρ̃+ 3p̃) a, (1.18)

onde a densidade cŕıtica é dada por

ρc =
3

8πG

(
H2 − Λ

3

)
. (1.19)

Deste modo, a densidade cŕıtica é menor que a densidade cŕıtica para um universo sem constante

cosmológica.

1.2.2 Estruturas Causais

A equação de Friedmann em termos das densidades, tal que ρ = ρM + ρΛ é dada por

H2 =
8πG

3

(
ρM0

(r0

r

)3

+ ρΛ0

(r0

r

)3(1+ω)
)
, (1.20)

onde ρM ∝ a−3 e ρΛ ∝ a−3(1+ω). Multiplicando por (a2/a2
0), obtemos

ȧ(t) = a0H0

[
ρM0

(r0

r

)3

+ ρΛ0

(r0

r

)(1+3ω)
] 1

2

(1.21)
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que pode ser rescrita em função dos parâmetros de densidade [34],

ȧ(t) = a0H0

[
1 + ΩM

(
1

a
− 1

)
+ ΩΛ

(
a2 − 1

)] 1
2

, (1.22)

Lembrando que Ω = ΩM + ΩΛ = 1.

Para o universo plano, homogêneo e isotrópico, ds = 0,∫ r0

0

dr =

∫ t0

0

cdt

a (t)
, (1.23)

As estruturas causais de um espaço-tempo determinam como os eventos se desenvolvem em

relação a causa e efeito. Um conceito importante em Relatividade é a causalidade, ou seja, a

noção de que um acontecimento não pode anteceder sua causa. Estes conceitos nos permite

descrever regiões causalmente conectadas ou não. As estruturas causais são [34]:

1. Cone de Luz passado

Cada evento no universo define um cone de luz. A parte interior do cone descrevem

linhas de universo do tipo tempo, ou seja, uma região do espaço tempo na qual velocidade

da luz é maior que qualquer outro objeto, e os eventos dentro desta região são causalmente

relacionados.

A parte exterior ao cone temos uma região com linhas de universo tipo espaço, na

qual a velocidade da luz é menor que de outros objetos, o que viola um dos prinćıpios da

relatividade geral, assim, dois eventos nesta região são separados por um intervalo tipo

espaço e não têm relação causal.

A linha delimitadora entre as duas regiões é uma linha de universo tipo luz, onde objetos

se movem na velocidade da luz, como por exemplo fótons.

Para visualizar o cone de luz, escrevemos a equação 1.23 com os limites apropriados,

χCL(tem) = c

∫ t0

tem

dt′

a(t′)
, (1.24)

onde χ é a coordenada comóvel associada a uma galáxia observada hoje, t0 é o tempo atual

e tem é o tempo no qual um sinal luminoso foi emitido.

2. Horizonte de Part́ıculas

As linhas de universo são o caminho constrúıdo por eventos. O horizonte de part́ıculas

está relacionado com a observação de linhas de universo. Ele marca o tamanho do nosso

universo observável, a distância até o mais distante objeto que poderemos ver em qualquer

tempo. Assim, em cada momento, o horizonte de part́ıculas é descrito por uma esfera em

torno de um observador, cujo raio é igual a a distância do objeto mais longe que se pode
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observar, ou seja, o horizonte de part́ıculas se encontra a uma distância igual ao raio do

universo observável.

O horizonte de part́ıculas pode ser constrúıdo resolvendo

χHP (t) = c

∫ t

0

dt′

a(t′)
, (1.25)

3. Horizonte de Eventos

O horizonte de eventos está relacionado com a observação dos eventos e estabelece

uma divisão entre os eventos que são observáveis num momento em algum instante e os

que nunca serão observados, por nunca se encontrarem no interior de algum cone de luz

passado do observador.

A distância do horizonte de eventos é definida pela distância que os fótons percorreram

desde o ińıcio do universo durante o tempo de vida do universo e pode ser obtido por

χHE(t) = c

∫ tfinal

t

dt′

a(t′)
, (1.26)

4. Esfera de Hubble

A esfera de Hubble é a distância além da qual a velocidade de recessão das galáxias

excede a velocidade da luz. Isto não viola a Relatividade porque o movimento não é em

qualquer referencial inercial, considerando a expansão do universo. Assim, ela não define

um horizonte, pois podemos observar galáxias além deste limite. A equação 1.27 permite

a visualização da esfera de Hubble.

χHE(t) =
c

ȧ (t)
(1.27)

Podemos agora analisar a distância comóvel D = r0χ, através do tempo e do tempo

conforme dτ = dt
r(t)

, como pode ser visto nas Figuras (1.1), (1.2) [34]. Fazendo

dt

r (t)
=

da

ȧ (t) a (t)
, (1.28)

assim,

D = c

∫
da

H0a

[
1 + ΩM

(
1

a
− 1

)
+ ΩΛ

(
a2 − 1

)]− 1
2

(1.29)

e

t =

∫
da

H0

[
1 + ΩM

(
1

a
− 1

)
.+ ΩΛ

(
a2 − 1

)]− 1
2

(1.30)

A distância própria é dada por D = r (t)χ e pode ser analisada na Figura (1.3).
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Figura 1.1: Distância comóvel através do tempo, com c = 3, 0.105km/s, H0 = 70km.s−1.Mpc−1,

ΩΛ = 0, 7 e ΩM = 0, 3. A linha verde representa o horizonte de eventos; a linha azul, a esfera de

Hubble; a linha laranja, o cone de luz passado; e a linha roxa, o horizonte de part́ıculas.
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Figura 1.2: Distância comóvel através do tempo conforme, com c = 3, 0.105km/s, H0 =

70km.s−1.Mpc−1, ΩΛ = 0, 7 e ΩM = 0, 3. A linha verde representa o horizonte de eventos;

a linha azul, a esfera de Hubble; a linha laranja, o cone de luz passado; e a linha roxa, o hori-

zonte de part́ıculas.
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Figura 1.3: Distância própria através do tempo,com c = 3, 0.105km/s, H0 = 70km.s−1.Mpc−1,

ΩΛ = 0, 7 e ΩM = 0, 3. A linha verde representa o horizonte de eventos; a linha azul, a esfera de

Hubble; a linha laranja, o cone de luz passado; e a linha roxa, o horizonte de part́ıculas.

Vejamos a Figura (1.1), o horizonte de part́ıculas é maior que o horizonte de eventos.

Embora não possamos ver do objetos além do horizonte de eventos, podemos ver galáxias além

dele pela luz que elas emitiram tempos atrás. Estas galáxias estavam dentro do horizonte de

eventos, mas num universo em expansão, hoje elas estão fora, mas estavam dentro do horizonte

de eventos quando emitiram luz e por isto podem ser vista. Elas serão vistas para sempre. Se o

universo não estivesse em expansão elas nunca sairiam do horizonte de eventos.

Entendemos nos gráficos também porque a esfera da Hubble não é um horizonte. Ela

se encontra dentro do horizonte de part́ıculas e por isto objetos localizados dentro da esfera

são obrigatoriamente observados, mas regiões fora da esfera também podem ser observados.

Localizando dois objetos, um dentro e outro fora da esfera de Hubble, que emitem ao mesmo

tempo um sinal luminoso. Como a distância comóvel pode ser escrita como D = c/H, e o

parâmetro de Hubble, H = 1/t, o objeto fora da esfera está a uma distância maior, então deve

estar, necessariamente com uma velocidade de recessão maior do que a velocidade da luz.

Todos os sinais observados hoje foram emitidos quando o objeto emissor estava dentro do

cone de luz e hoje está obrigatoriamente dentro do horizonte de part́ıculas, caso esteja também

dentro do horizonte de eventos seus sinais emitidos hoje serão vistos eventualmente, no entanto,

se estiverem fora, os sinais emitidos hoje nunca serão visto, ou seja, os sinais observados desta

fonte serão os sinais emitidos até o momento em que saiu do horizonte de eventos e passaremos

a observá-los no momento em que este objeto adentrar o horizonte de part́ıculas. Em qualquer

instante o cone de luz passado está dentro do horizonte de eventos, para t tendendo ao infinito

os dois coincidem.

Pelo formato da curva do cone de luz, vemos que na origem do tempo, todos os pontos

no universo estavam causalmente conectados, o que explica a isotropia da radiação cósmica

de fundo, provenientes de regiões não conectadas atualmente devido ao peŕıodo de expansão

acelerada. Comparando o formato do cone de luz na Figura 1.3 com o formato na Figura 1.1,

vemos que todos os pontos comóveis do universo estavam em um ponto f́ısico somente, o que
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explica sua conexão causal.

A Figura 1.2, vemos que no futuro, o horizonte de eventos, cone de luz e esfera de Hubble

coincidirão na origem, isto mostra que devido à expansão acelerada, somente eventos ocorridos

a distâncias comóveis cada vez menores os atingirão, ou seja, nosso universo observável está

diminuindo. Caso a expansão acelerada cesse, poderemos ver eventos emitidos no futuro de

objetos cujos eventos não observamos hoje, exatamente como ocorreu no peŕıodo inflacionário.

Num universo estacionário, não faz sentido a distinção entre as estruturas causais. Se

o universo fosse estacionário desde o prinćıpio, todos os eventos ocorridos em qualquer tempo,

sempre seriam visto, no entanto, se ele se tornasse estacionário hoje, os horizontes coincidiriam

com o cone de luz futuro, pois estariam limitados somente pela velocidade da luz.

1.2.3 Problemas com a constante cosmológica

Existem dois principais problemas com a representação de energia escura pela constante

cosmológica. Um deles consiste no próprio valor da constante. A teoria quântica de campos

prevê ρΛ ≈ 1095kg/m3, para o peŕıodo inflacionário, no entanto, o valor obtido atualmente é

ρΛ ≈ 10−26kg/m3, diferindo em mais de 120 ordens de grandeza.

Outro dificuldade no modelo é entender por que a constante estaria dominando a energia

do universo justamente agora, ou seja, porque a densidade de energia da constante cosmológica

tem hoje a mesma ordem de grandeza que a densidade de energia da matéria. Este problema

é chamado problema da coincidência. Isto requer um enorme ajuste fino para fazer a constante

cosmológica dominar a energia do universo justamente agora, visto que, ela não varia no tempo

[35].

1.3 Quintessência

Podemos substituir a constante cosmológica por um componente dinâmico, com equação

de estado diferente de bárions, neutrinos, fótons e matéria escura. Este quinto componente é

denominado quintessência, cuja equação de estado é a razão entre pressão e sua densidade de

energia [26].

A maioria dos modelos de quintessência mostra que −1 ≤ ω ≤ 0, mostrando a expansão

acelerada do universo. Diferentemente da constante cosmológica, a pressão e densidade de energia

evoluem no tempo. Componentes espacialmente homogêneos independentes do tempo são de-

pendentes de gauge, assim, se a quintessência é dependente do tempo, ela é necessariamente, por

covariância geral, um componente inomogêneo, com flutuações.

Este novo componente é descrito por um campo fundamental, que pode ser escalar, vetorial

ou tensorial, e que interage com a matéria apenas gravitacionalmente.

Os modelos de quintessência constrúıdos com potenciais adequados, mostram coerência

com os dados do CMB (Cosmic Microwave Background), ou seja, apresentam mesmo valor da
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equação de estado hoje e valor diferente da obtida em qualquer tempo passado. Estes modelos

mostram um comportamento atrator, ou seja, as soluções são independentes de condições iniciais,

mas dependentes do que acontece no universo, por exemplo, na era dominante pela radiação, o

campo de quintessência se manifestava como qualquer outra radiação, mostrando que nem sempre

a energia escura foi dominante. Assim, o universo passou de uma fase dominada pela radiação,

para um dominada pela matéria e atualmente passa por uma fase dominada pela quintessência.

Estas soluções atratoras foram denominadas por Steinhardt de soluções trackers [27] e resolvem

o problema da coincidência.

Modelos de quintessência minimamente acoplados a gravidade tem ação dada por

S =

∫
d4x
√−g {R− ∂µφ∂µφ− 2V (φ)} . (1.31)

Para potenciais que diminuem lentamente de um grande valor do campo para um valor

próximo de zero, temos um comportamento de inflação.

Com isto, os campos de quintessência são uma posśıvel resposta ao problema da energia

escura, explicando a curvatura nula e a expansão acelerada do universo.

Discutiremos detalhadamente estes modelos no próximo caṕıtulo.

1.4 Phantom

A constante cosmológica corresponde a um fluido com equação de estado constante, ω =

−1, entretanto, dados observacionais levam a crer num valor de ω oscilante no tempo. Modelos

de quintessência, em geral, apresentam ω ≥ −1, o que restringe as possibilidades mediante as

observações.

Modelos tipo phantom respondem o outro lado da equação de estado, eles apresentam

ω < −1, abrindo uma vantagem em relação a estes modelos de quintessência [36].

Phantom são modelos de quintessência com termo de energia cinética não canônico. A

energia de phantom tem densidade de energia crescente com o tempo, positiva, ρp > 0, mas

pressão negativa, ρp + pp < 0, o que nos fornece ω < −1. A ação de um campo tipo phantom

minimamente acoplado a gravidade é dada por

S =

∫
d4x
√−g {R + ∂µφ∂

µφ− 2V (φ)} . (1.32)

onde o sinal do termo de energia cinética é oposto dos modelos de quintessência para um

campo comum e este termo negativo viola as condições de energia.

Ao contrário dos modelos de quintessência, os phantom evoluem através do máximo do

potencial para um valor do campo próximo de zero, levando a um aumento da densidade de

energia. Em geral, os potenciais exponenciais são usados nestes modelos, pois fornecem uma

equação de estado ω < −1.
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Embora phantom sejam descritos como campo cosmológico clássico, de modo a resolver

o problema de violação das condições de energia, estes campos sofrem instabilidades quânticas

ultra violeta. Como o potencial é ilimitado por baixo, o vácuo se torna instável [37,38].

1.5 Gás de Chaplygin

Uma outra forma de explicar a expansão acelerada e a energia escura utilizando um fluido

é através do Gás de Chaplygin [39,40].

O modelo de Gás de Chaplygin foi derivado do modelo generalizado de D-branas, e propõe

uma unificação entre matéria e energia escura, e é caracterizado por uma equação de estado dada

por

p = −a
ρ

(1.33)

onde A é uma constante positiva. Esta equação de estado leva a um componente que se com-

porta como part́ıcula no estágios passados do universo e como constante cosmológica no presente,

levando a expansão acelerada. Existe também uma situação intermediária, na qual, este compo-

nente se manifesta como uma mistura de constante cosmológica e matéria.

Podemos descrever este fluido também como um campo escalar homogêneo dependente

do tempo e um potencial adequado, de modo a construir as equações de movimento.

Embora a interessante possibilidade de unificação dos dois conteúdos exóticos no mesmo

modelo, o Gás de Chaplygin apresenta problemas em explicar recentes dados observacionais,

como o espectro de potência do CMB [35]. Este problema pode, no entanto, ser resolvido no

modelo de Gás de Chaplygin generalizado, no qual a equação de estado é fornecida por

p = − a

ρα
, (1.34)

onde α é um valor muito restrito, 0 < α < 1, o que também impõe v́ınculos ao modelo.
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2 Modelos de Quintessência

Modelos de quintessência são aqueles que descrevem a energia escura como um campo

escalar. Um campo escalar é uma função cont́ınua no espaço-tempo, φ (xµ), que descreve uma

part́ıcula de spin nulo [41,42], cuja densidade de Lagrangiana é dada por

L =

∫
d3x
√−gL (φ, φ,µ) , (2.1)

onde φ,µ = ∂µ = ∂φ
∂xµ

. A ação é dada por

S =

∫
Ldt =

∫
d4x
√−gL (φ, φ,µ) . (2.2)

Calculando a variação da ação, δS, obtemos a equação de Euler-Lagrange,

∂L
∂φ
− ∂L
∂xµ

(
∂

∂φ,µ

)
= 0. (2.3)

Para modelos de quintessência com tensor de Ricci acoplado a gravidade, a ação tem a

forma

S =

∫
d4x
√−g {F (φ)R− ∂µφ∂µφ− 2V (φ)} . (2.4)

onde V (φ) é o potencial de auto-interação e F (φ) caracteriza o tipo de acoplamento. Quando

F = 1, temos um acoplamento mı́nimo [43].

2.1 Equações de movimento

Para obter as equações de movimento aplicamos o prinćıpio de mı́nima ação, δS = 0,∫
d4x

δ√−g [F (φ)R− ∂µφ∂µφ− 2V (φ)]︸ ︷︷ ︸
δS1

+
√−g

F (φ) δR︸ ︷︷ ︸
δS2

+ δF (φ)R︸ ︷︷ ︸
δS3

− δ (∂µφ∂
µφ)︸ ︷︷ ︸

δS4

−2 δ (φ)︸︷︷︸
δS5

 .

(2.5)

Vamos obter separadamente os termos:

1. δS1 =
∫
d4xδ
√−g [F (φ)R− ∂µφ∂µφ− 2V (φ)]

Calculando primeiramente a variação em
√−g,

δ
√−g = δ

(−g−1
) 1

2 = −1

2

(−g−1
) 3

2 δ
(−g−1

)
, (2.6)

lembrando que g ≡ −detgµν e que para uma matriz M , tr (M−1δM) = δ(detM)
detM

,

δ
(−g−1

)
= −g−1tr (gµνδg

µν) = −1

2
gµνδg

µν , (2.7)
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e,

δ
√−g = −1

2

√−ggµνδgµν , (2.8)

este termo fica então

δS1 = −
∫
d4x
√−gδgµν 1

2
gµνRF (φ) +

∫
d4x

1

2

√−ggµνδgµν (∂µφ∂
µφ+ 2V (φ)) , (2.9)

mas o tensor de Einstein é dado por

Gµν = Rµν − 1

2
gµνR, (2.10)

assim,

δS1 =

∫
d4x
√−gδgµν (F (φ)Gµν − F (φ)Rµν) +

∫
d4x

1

2

√−ggµνδgµν (∂µφ∂
µφ+ 2V (φ)) .

(2.11)

2. δS2 =
∫
d4x
√−gF (φ) δR

Usando as equações (1.3) e (1.2), podemos obter as variações do escalar de Ricci e do tensor

de Riemann, tal que,

δR = gµνδRµν +Rµνδg
µν (2.12)

e

δRρ
µλν = ∂νδΓ

ρ
µλ − ∂λδΓρµν + δΓσµλΓ

ρ
νσ − δΓσµνΓρλσ + ΓσµλδΓ

ρ
νσ − ΓσµνδΓ

ρ
λσ, (2.13)

E a variação da conexão afim fica,

δΓσλµ =
1

2
δgνσ {∂λgµν + ∂µgλν − ∂νgµλ}+

1

2
gνσ {∂λδgµν + ∂µδgλν − ∂νδgµλ} , (2.14)

mas δ (gλρg
ρσ) = 0, assim,

gλρδg
ρσ + gρσδgλρ = 0, (2.15)

multiplicando ambos os lados por gνλ,

δgνσ = −gνλgρσδgλρ. (2.16)

Usando estas considerações na variação da conexão afim,

δΓσλµ = −1

2
gνλgρσδgλρ {∂λgµν + ∂µgλν − ∂νgµλ}+ 1

2
gνσ {∂λδgµν + ∂µδgλν − ∂νδgµλ} . (2.17)

A variação no tensor de Ricci fica,

δRµν = δRλ
µλν = ∂νδΓ

λ
µλ − ∂λΓλµν , (2.18)
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que é chamada de identidade de Palatini,

δRλ
µλν =

1

2
∇ν

{
gλρ∇µδgλρ +∇λδgµρ −∇ρδgµλ

}−1

2
∇λ

{
gλρ∇νδgµρ +∇µδgνρ −∇ρδgµν

}
=

1

2
gλρ {∇ν∇µδgλρ −∇ν∇ρδgµλ −∇λ∇µδgνρ +∇λ∇ρδgµν} . (2.19)

Desse modo,

δS2 =

∫
d4x
√−gF (φ)

1

2
gλρgµν {∇ν∇µδgλρ −∇ν∇ρδgµλ −∇λ∇µδgνρ +∇λ∇ρδgµν}+

+

∫
d4x
√−gF (φ)Rµνδg

µν . (2.20)

Lembrando queAB∇ω∇uC = ∇ω (AB∇uC)−(∇uC) (∇ωAB), o primeiro termo da integral

fica,∫
d4x
√−gF (φ) gλρgµν∇ν∇µδgλρ =

∫
d4x∇ν

(√−gF (φ) gλρgµν∇µδgλρ
)

+

−
∫
d4x (∇νδgλρ)

(∇ν

√−gF (φ) gλρgµν
)
. (2.21)

Integrando sobre todo espaço, do teorema de Gauss,∮
V µ
√−gdSµ =

∫
∇µV

µ
√−gdΩ, (2.22)

vemos que a integral é igual a zero. utilizando a equação (2.16),

δS2 =

∫
d4x
√−g (δgµν∇µ∇νF (φ)− gµνδgµνgµλ∇µ∇λF (φ)

)
+

∫
d4x
√−gδgµνF (φ)Rµν .

(2.23)

3. δS3 =
∫
d4x
√−gδF (φ)R

A variação em F só depende de φ, assim,

δS3 =

∫
d4x
√−g∂F

∂φ
δφR. (2.24)

4. δS4 = − ∫ d4x
√−gδ (∂µφ∂

µφ)

Escrevendo em termos de derivada covariante ∂µ = gµν∂ν ,

δS4 = −
∫
d4x
√−gδ (gµν∂µφ∂νφ) = −

∫
d4x
√−gδgµν∂µφ∂νφ−

∫
d4x
√−ggµνδ (∂µφ∂νφ) .

(2.25)
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Calculando cada variação separadamente,

δS4 = −
∫
d4x
√−gδgµν∂µφ∂νφ−

∫
d4x
√−g

{
gµν

∂ (∂µφ∂ν)

∂µφ
+ gµν

∂ (∂νφ∂µ)

∂µφ

}
δ (∂µφ) ,

(2.26)

assim,

δS4 = −
∫
d4x
√−gδgµν∂µφ∂νφ−

∫
d4x
√−ggµν2∂νφδ (∂µφ) , (2.27)

mas δ (∂µφ) = ∂µ (δφ) e este termo fica

δS4 = −
∫
d4x
√−gδgµν∇µφ∇νφ+

∫
d4x
√−g2gµν∇µ∇νφδφ. (2.28)

5. δS5 = − ∫ d4x
√−g2δV (φ)R

A variação em V também depende somente de φ, de modo que,

δS5 = −
∫
d4x
√−g2

∂V

∂φ
δφ. (2.29)

Reunindo todos os termos,

δS =

∫
d4x
√−gδgµν {FGµν + gµν

(∇λφ∇λφ+ 2V − 2gµν∇µ∇νF
)−∇µ∇νF −∇µφ∇νφ

}
+

+

∫
d4x
√−gδφ

{
∂F

∂φ
R + 2gµν∇µ∇νφ− 2

∂V

∂φ

}
= 0. (2.30)

As equações de Einstein obtidas são

FGµν = ∇µφ∇νφ− gµν
2

(∇λφ∇λφ+ 2V − 2�F
)

+∇µ∇νF. (2.31)

E a equação de Klein-Gordon,

�φ− V ′ + 1

2
F ′R = 0, (2.32)

onde V ′ e F ′ denotam derivada em relação a φ e � = gµν∇µ∇ν .

Considerando um universo isotrópico e espacialmente plano,

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
. (2.33)

os elementos não nulos da conexão afim e do tensor de Ricci são

Γ0
ij =

ȧ

a2
gij,Γ

i
0j =

ȧ

a2
δij, (2.34)



2. MODELOS DE QUINTESSÊNCIA 18

Rij =

( ..
a

a
+

2ȧ2

a

)
δij, R00 =

3
..
a

a
. (2.35)

O escalar de Ricci e o tensor de Einstein são

R = 6

( ..
a

a
+
ȧ2

a

)
, (2.36)

G00 =
3ȧ2

a2
, (2.37)

Gij = −
(

2
..
a

a
+
ȧ2

a

)
δij, (2.38)

onde 0 é o componente temporal e i, j os componentes espaciais.

Podemos agora obter os componentes espaciais e temporais das equações de Einstein.

O componente temporal das equações de Einstein obtidas fornece o v́ınculo de energia,

3H (FH − F ′φ) =

.

φ
2

2
+ V (φ) , (2.39)

e os componentes espaciais fornecem a equação de Friedmann modificada,

− 2

(
F +

3

2
F ′2
)

.

H = 3
(
F + 2F ′2

)
H2 +

1

2
(1 + F ′′)

.

φ
2 − V − F ′

(
V ′ +H

.

φ
)
. (2.40)

E a equação de Klein-Gordon pode ser reescrita como

..

φ+
G
(
φ,

.

φ,H
)

F1

.

φ+ V ′eff (φ) = 0, (2.41)

onde

G
(
φ,

.

φ,H
)

= 3F1H +
1

2
(1 + 3F ′′)F ′

.

φ, (2.42)

V ′eff (φ) =
1

F1

(FV ′ − 2F ′V ) (2.43)

e

F1 (φ) = F +
3

2
(F ′ (φ))

2
. (2.44)

onde
.

φ denota a derivada em relação ao tempo.
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2.2 Acoplamento mı́nimo

Modelos de quintessência com tensor de Ricci minimamente acoplado a gravidade são

aqueles com F (φ) = 1. Substituindo a equação de Klein-Gordon temos

..

φ+ 3Hφ+ V ′ (φ) = 0. (2.45)

E o tensor de energia-momento, considerando que Gµν = Tµν , fica

Tµν = ∂µφ∂νφ− gµν
2

(
∂λφ∂

λφ+ 2V
)
. (2.46)

A densidade e pressão são obtidas dos componentes temporal e espacial,

ρφ = T 0
0 =

.

φ
2

2
+ V (φ) , (2.47)

e

pφ = T ii =

.

φ
2

2
− V (φ) . (2.48)

A equação de estado é dada por

ωφ =
pφ
ρφ

(2.49)

desse modo,

ωφ =

.

φ
2 − 2V (φ)
.

φ
2

+ 2V (φ)
. (2.50)

No caso de
.

φ2 � V (φ), encontramos ωφ = −1, e no caso de
.

φ2 � V (φ), obtemos que

ωφ = 1, assim, limitamos os valore que ωφ pode ter

− 1 ≤ ωφ ≤ 1 (2.51)

O grande interesse na obtenção de ω está no fato que este pode ser determinado ex-

perimentalmente. Observações de SNe Ia estabelecem ω = −1.02+0.13
−0.19 [43]. Se as observações

confirmarem ω < −1, todas as descrições de energia escura com base em constante cosmológica

(ω = −1) [30] ou campos minimamente acoplados serão descartadas.

Precisamos então modelar o acoplamento de modo a satisfazer estes v́ınculos.

2.3 Acoplamento não mı́nimo

Pode-se construir modelos a partir de campos com acoplamento não mı́nimo [44–55].

Vamos utilizar o acoplamento F (φ) = 1 − ξφ2, ξ < 0, considerando um potencial exponen-

cial [43, 56–62], V (φ) = Ae−σφ.
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A partir das equações de movimento, verificamos os pontos fixos para o modelo de acopla-

mento, onde φ = φ̄ e H = H̄, tal que, utilizando as equações de Friedmann,

φ̄± = − 2

σ

(
1∓

√
1 +

σ2

4ξ

)
(2.52)

e

H̄2
± =

V
(
φ̄±
)

3F
(
φ̄±
) (2.53)

A Figura (2.1) mostra o comportamento de φ e H para algumas condições iniciais,

-8 -6 -4 -2 0 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Φ

H

Figura 2.1: Espaço de fase (φ,H), para o caso −ξ = A = σ = 1.

Vemos então, que embora o potencial exponencial usado no modelo não possua pontos fixos,

o potencial efetivo apresenta, sendo φ̄− seu valor mı́nimo, ou seja, o ponto atrator. Este com-

portamento atrator indica a independência de condições iniciais, mostrando que este modelo de

quintessência é um bom modelo. Para soluções φ > φ̄+, as soluções se afastam, como pode ser

visto na Figura (2.2).
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-4 -2 0 2
-3

-2

-1

0

1

Φ

Veff

Figura 2.2: Potencial Efetivo em função do campo, para o caso −ξ = A = σ = 1.

Assumindo Gab = Tab, encontramos a densidade e pressão,

pφ = −2
.

H − 3H2, (2.54)

e

ρφ = 3H2. (2.55)

A equação de estado fica

ω = −1− 2
.

H

3H2
, (2.56)

que está de acordo para uma expansão acelerada quando H > 0. A Figura 2.3 mostra as curvas

de ω (t) para algumas soluções apresentadas da Figura 2.1.



2. MODELOS DE QUINTESSÊNCIA 22
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0.0

0.5

t

Ω

Figura 2.3: Parâmetro ω no tempo, para algumas soluções apresentadas no espaço de fase.

Vemos que com este modelo de quintessência de acoplamento não mı́nimo, algumas

soluções se aproximam de ω = −1 por baixo, ou seja, ω < −1, mostrando compatibilidade

com os dados experimentais.
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3 Distribuição de Massa na vizinhança

de um buraco negro

Num buraco negro, a força gravitacional é tão intensa que qualquer forma de matéria ou

radiação que estiver próxima será atráıda para seu interior. Na região do horizonte de eventos de

um buraco negro, a variação da massa conta com dois fatores, a quantidade de matéria e energia

presente na fronteira que será absorvida e a evaporação por radiação Hawking. Esta acreção de

matéria já tinha sido estudada supondo matéria ordinária, fluido perfeito e campo escalar [63,64],

entretanto, até a descoberta da expansão acelerada do universo, não havia conexão entre acreção

destes componentes e energia escura. Vamos estender os processos de acreção e evaporação de

matéria, utilizando fluido perfeito e campo escalar.

3.1 Acreção e evaporação de matéria

Modelo de Acreção de Bondi

Vamos admitir um buraco negro de massa M , sem rotação e em repouso numa nuvem

infinita de gás, ou seja, vamos supor um buraco negro de Schwarzschild. Supondo que no in-

finito o gás está em repouso, caracterizado por uma densidade uniforme ρ∞ e uma pressão p∞.

Consideramos também que o gás é adiabático, de modo que

p

p∞
=

(
ρ

ρ∞

)γ
, (3.1)

sendo γ o ı́ndice adiabático do gás com valor 1 < γ < 5/3 [1].

A equação de conservação do fluxo de energia é dada por

T µ0;ν = 0, (3.2)

ou seja,
∂ρ

∂t
+∇. (ρuµ) = 0, (3.3)

onde uµ é a velocidade. Se considerarmos que o fluxo de part́ıculas é esfericamente simétrico e

constante no tempo, em notação vetorial temos,

∇. (ρuµ) =
1

r2

d

dr2

(
r2ρu

)
= 0, (3.4)

sendo u a componente radial da velocidade.
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Integrando a equação (3.4), encontramos um valor constante,

r2ρu = K, (3.5)

com unidades Kg/s, o que pode ser interpretado como uma taxa de acreção. Vamos escrever K

convenientemente como dM/4πdt
dM

dt
= 4πr2ρu, (3.6)

mas T r0 = ρur, assim,
dM

dt
= 4πr2T r0 . (3.7)

Termo de Acreção

Vamos considerar que no horizonte de eventos, r = 2M , todo fluxo de energia será ab-

sorvido, assim a taxa de massa esfericamente simétrica acrescida pode ser dada por

Ṁ =

∮
r=2M

dΩr2T r0 = 4πr2T r0 , (3.8)

onde T r0 é o componente espaço-temporal do tensor de energia-momento, que representa o fluxo

de energia absorvido pela área total do horizonte, 4πr2.

Termo de Evaporação

Ao considerar a distribuição de massa de um buraco negro primordial, temos que levar

em consideração não somente a quantidade de matéria absorvida, mas também o decréscimo de

massa via radiação Hawking.

Em teoria quântica de campos, o vácuo não é completamente vazio. Numa dada região do

espaço, não se pode fixar todos os campos em zero, pois isto viola o prinćıpio da incerteza. Deve

existir sempre um mı́nimo de incerteza e esta manifesta-se sob a forma de pequenas flutuações

no vácuo. Assim, o vácuo possui pares virtuais de part́ıculas e antipart́ıculas que se criam e se

aniquilam, com tempo de vida determinado pelo prinćıpio da incerteza. Estes pares são ditos

virtuais pois não podem ser determinados diretamente.

O conceito de energia está relacionado com a equação de Planck, E = νh, onde ν é

a frequência e h é a constante de Planck. Na teoria quântica, frequência positiva representa

part́ıcula e frequência negativa representa antipart́ıculas.

Quando um par virtual é criado no vácuo, a energia total é zero, no entanto, uma part́ıcula

tem energia positiva e a outra tem energia negativa. Embora isto seja proibido pela f́ısica clássica,

enquanto o par virtual se aniquilar em tempo inferior a h/E, o prinćıpio da incerteza não será

violado e estas flutuações serão permitidas. Supondo que antes desse tempo, uma part́ıcula de

energia negativa cruza o horizonte de eventos, o buraco negro pode absorver a part́ıcula e a outra

de energia positiva fica livre pra escapar no espaço [65].
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A relatividade não faz distinção entre massa e energia, assim, o efeito no buraco negro é que

sua massa pode diminuir uma quantidade igual a energia carregada pela part́ıcula que escapou

para o infinito. Este processo funciona apenas neste sentido, o buraco negro pode perder energia,

mas não pode ganhar por flutuações do vácuo, pois uma part́ıcula de energia negativa não pode

existir fora do horizonte por um tempo superior a h/E [66].

Este processo de diminuição da massa por radiação Hawking é chamado de evaporação e

é dada por
.

M = − α

M2
, (3.9)

onde α é uma constante caracteŕıstica, que conta os graus de liberdade da part́ıcula na evap-

oração. O valor de α depende do modelo e é dado por,

α =
1

Γ− 1
, (3.10)

onde Γ também é uma constante dependente de modelo [67]. Integrando a equação (3.9), temos

a massa evaporada

M =
(
M3

0 − 3α (t− t0)
)1/3

, (3.11)

o que nos dá o tempo de evaporação

τ =
M3

0

3α
. (3.12)

Para buracos negros formados a temperaturas muito menores que a temperatura de Planck este

efeito pode ser ignorado. O cálculo da radiação de Hawking assume que não existe recuo, ou seja,

a massa foi admitida constante. Quando dM/dt� M isto é uma boa aproximação, entretanto,

esta consideração falha no estágio final da evaporação.

A radiação emitida pelo buraco negro é radiação de corpo negro, ou seja, tipo térmica e

transporta apenas informação sobre massa, carga e momento angular, o demais é perdido. No

entanto, a mecânica quântica não permite estes processos de perda de informação. Atualmente

acredita-se que radiação Hawking não é perfeitamente térmica, mas os detalhes microscópicos do

processo de evaporação ainda não são bem definidos.

3.2 Buracos Negros permeados por um fluido perfeito

Vamos considerar um fluido perfeito na vizinhança de um buraco negro, admitindo

uma acreção estacionária e esfericamente simétrica por um buraco negro de Schwarzschild, com

métrica

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sen2dϕ2

)
, (3.13)

sendo M a massa do buraco negro, r, a coordenada radial, θ e ϕ as coordenadas angulares.

Modelando a energia escura como um fluido perfeito com tensor de energia-momento dado

por

T µν = pgµν + (p+ ρ)uµuν , (3.14)
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onde p é a pressão, ρ é a densidade e uµ é o componente radial da 4-velocidade, sendo u1 = dr
ds

e

u0 =
(
1− 2M

r

)
dt
ds

.

Precisamos encontrar p e ρ, para isto vamos encontrar as equações de movimento. A

primeira é tirada da lei de conservação de energia

∇νT
ν
µ = 0, (3.15)

para simetria esférica [68],

d

dr

(
T r0
√−g) =

d

dr

(√−g (pg0r + (p+ ρ)u0ur)
)

= 0. (3.16)

Integrando, a equação de movimento fica

(p+ ρ)u0u
r
√−g = C1 (3.17)

ou

(p+ ρ)(1− 2

x
+ u2)

1
2x2u = C1, (3.18)

sendo x = r/M [10] e u = ur/c.

Outra equação de movimento pode ser obtida de uµT
µν
;ν = 0,

uν∂νρ+ (p+ ρ)
1√−g∂λ

(√−guλ) = 0. (3.19)

que pode ser expressa como

1

u
√−g

∂r
∂r

(
u
√−g) =

1

(p+ ρ)

∂ρ

∂r
. (3.20)

Para um fluido perfeito, podemos escrever a pressão como função de densidade, p = p (ρ),

com isto, introduzimos uma função n = u
√−g. Integrando a equação (3.20),

dρ

p+ ρ
=
dn

n
(3.21)

n é idêntico à concentração de part́ıculas para um gás atômico, mas que também pode descrever

um cont́ınuo sem introduzir nenhuma part́ıcula. Para um fluido que vem do infinito e é absorvido

no horizonte de eventos,
n (ρ)

n∞
= exp

(∫ ρ

ρ∞

dρ′

p(ρ′) + ρ′

)
, (3.22)

substituindo na equação de movimento,

n (ρ)

n∞
x2u = −A, (3.23)
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onde n∞ é a concentração de energia escura no infinito e a constante adimensional A > 0.

Combinando as duas equações de movimento,

(p+ ρ)(1− 2

x
+ u2)

1
2 exp

(∫ ρ

ρ∞

dρ′

p(ρ′) + ρ′

)
= −C1

A
= C2, (3.24)

para

C2 = ρ∞ + p(ρ∞). (3.25)

A taxa de variação da massa do buraco negro fica

dM

dt
= 4πr2T r0 = 4πAM2(ρ∞ + p(ρ∞)). (3.26)

Para um fluido descrito como campo tipo phantom, ρ+ p < 0, a lagrangeana [36],

Lph = ∂µφ∂
µφ− V (φ) , (3.27)

possui termo de energia cinética negativa,

Tor = −∂0φ∂rφ, (3.28)

assim, temos uma diminuição da massa do buraco negro.

3.3 Buracos Negros permeados por um campo escalar

Na vizinhança de um buraco negro, um campo cosmológico escalar gera um campo gravita-

cional muito mais fraco que o buraco negro, neste caso, podemos utilizar nesta região a métrica

de Schwazschild, mas precisamos relacionar este campo escalar trazido do infinito com o campo

absorvido pelo buraco negro na região do seu horizonte [69].

Utilizando a métrica de Schwazschild, a equação de Klein Gordon para um campo escalar,

na região do horizonte de eventos tem a forma

�φ = −
..

φ(
1− 2M

r

) +
1

r2

(
r2

(
1− 2M

r

)
φ′
)′

=
∂V

∂φ
, (3.29)

para ondas livres, ou seja, V = 0,

φ = e−iωtR (r) . (3.30)

Substituindo em (3.29), utilizando a coordenada Kruskal, r∗ = r + 2M log
(

r
2M
− 1
)
, temos

d2R

dr∗2
+

2

r

(
1− 2M

r

)
dR

dr∗ + ω2R = 0. (3.31)

Vemos então, que para longe a solução é

φ =
e−iω(t±r)

r
, (3.32)
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e perto do horizonte, ela se torna

φ =
e−iω(t±r∗)

r∗ . (3.33)

Vamos usar a coordenada v = t+ r∗, de modo que (3.29) pode ser escrita como,

2∂r∂vφ+
2

r
∂vφ+

1

r2
∂r

(
r2

(
1− 2M

r

)
∂rφ

)
= V ′ (φ) . (3.34)

Construindo o campo, φ = f(v) + g(r), onde f = Bv + D, para um potencial, V = −µφ,

encontramos que

∂rg =
−µr2

3(r − 2M)
− Br

r − 2M
+

C

r(r − 2M)
. (3.35)

Para a solução ser regular no horizonte, C = 4M2
(
B + 2µM

3

)
, e g fica,

g = −Br − 2Mµr

3
− µr2

6
− 2BM log(r)− 4

3
M2µ log(r) + F. (3.36)

Incorporando F em D,

φ = B [v − r − 2M log(r)]− µ

3

(
r2

2
+ 2Mr + 4M2 log(r)

)
+D. (3.37)

A solução geral é a superposição da solução de ondas livres e esta solução.

Utilizando a expansão de Taylor, vamos impor a condição de contorno,

φ(t,∞) = φ∞ +
.

φ∞t, (3.38)

onde φ∞ se refere ao campo cosmológico. Fixando os valores de B e D,

φ = φ∞ + φ̇∞

[
v − r − 2M log

r

2M

]
− µ

3

(
r2

2
+ 2Mr + 4M2 log

r

2M

)
. (3.39)

Temos, assintoticamente

φ(t,∞) = φ0 + φ̇0t− µr2
∞

6
, (3.40)

onde
.

φ∞ = φ̇0 (3.41)

e

φ∞ = φ0 − µr2
∞

6
. (3.42)

Com isto, vemos que a diferença é apenas um atraso, ou seja, o campo incorporado pelo

buraco negro é o mesmo campo no infinito, no entanto, atrasado.
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3.4 Acreção de massa por campo escalar minimamente

acoplado

Para um campo escalar minimamente acoplado, utilizando a aproximação feita na equação

(3.38) e o tensor de energia momento dado pela equação (2.46), podemos calcular o componente

T r0 , que nos dá o termo de acreção de massa pelo buraco negro

dM

dt
= 16πM2φ̇2

∞. (3.43)

3.4.1 Acreção do campo

Considerando um potencial exponencial qualquer, V = V0e
−λφ, resolvendo a equação de

Klein-Gordon dada pela equação (2.45), temos [4]

φ =
2

λ
√

8π
log

t

t0
, (3.44)

Calculando a derivada e substituindo em (3.43), o termo de acreção, fica

.

M = k
M2

t2
, (3.45)

onde k = 8
λ2 . Resolvendo a equação diferencial, a massa acrescida é

1

M
=

1

M0

+ k

(
1

t
− 1

t0

)
. (3.46)

Para um buraco negro com massa menor que a massa cŕıtica, Mcrit = t/k, a massa assintótica é

dada por

M∞ =
M0

1− kM0

t0

. (3.47)
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Figura 3.1: Evolução de um buraco negro ignorando a evaporação, para alguns valores de massa

inicial.
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Figura 3.2: Evolução da massa de um buraco negro em relação a massa cŕıtica, com os mesmos

valores de massa inicial utilizado no caso sem evaporação.

A Figura (3.1) mostra a evolução de um buraco negro para alguns valores de massa
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inicial. Na Figura (3.2), vemos o comportamento limitado pela massa cŕıtica, descrito pela linha

vermelha, para as mesmas condições iniciais. Para M = Mcrit, eles crescem com t; e para valores

maiores de M , eles crescem mais rápidos que t.

3.4.2 Taxa de variação total da massa

A taxa de variação de massa de um buraco negro considerando o termo de acreção e

evaporação é

.

M = k
M2

t2
− α

M2
, (3.48)

e pode ser visualizada na Figura (3.3), com as mesmas condições iniciais.
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Figura 3.3: Evolução de um buraco negro com evaporação de matéria, para α = k = 1, com as

mesmas condições iniciais.

Fazendo
.

M = 0, podemos traçar uma linha cŕıtica,

Mcr =
√
t (3.49)

A linha cŕıtica delimita uma região em os buracos negros crescem ou decrescem sua massa.

Ela não indica, no entanto se este comportamento durará para sempre na evolução deste buraco

negro. Para uma determinada condição inicial de massa, sua curva de evolução temporal pode

cruzar em algum ponto a curva da linha cŕıtica, decrescendo sua massa, no entanto, em um

tempo futuro, ela pode voltar a cruzar a linha cŕıtica e voltar a crescer. Entretanto, se ela cruzar
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a curva da massa cŕıtica, indicando diminuição da massa, este comportamento é definitivo, ou

seja, este buraco negro não voltará a aumentar sua massa por acreção de campo.

Na Figura (3.4), vemos que abaixo de linha cŕıtica, descrita pela linha vermelha,
.

M < 0,

ou seja, o termo de evaporação se sobrepõe e todos os buracos negros evaporam completamente;

e acima da linha cŕıtica,
.

M > 0, o termo de acreção se sobrepõe e todos crescem indefinidamente.
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Figura 3.4: Evolução de um buraco negro em relação a linha cŕıtica, com as mesmas condições

iniciais.
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4 Acreção de massa por campo escalar

não minimamente acoplado

4.1 O campo na região do horizonte de eventos

O procedimento padrão do processo estacionário de acreção de Bondi para este tipo de

problema consiste em considerar soluções tais que,

limr→∞φ (r, t) = φc (t) , (4.1)

onde φc corresponde a uma solução homogênea e isotrópica do campo cosmológico. Nossa

aproximação requer que a energia contida no campo escalar deve ser pequena na região do

buraco negro.

Em termos das coordenadas de Eddington-Finkelstein, (v, r), com v = (t+ r∗), onde r∗ é

a coordenada tartaruga, dada por

r∗ = r + 2M log
( r

2M
− 1
)
. (4.2)

A solução de φ corresponde a uma configuração estacionária,

φ (v, r) = β + γ

[
v − r + 2M log

(
2M

r

)]
, (4.3)

onde β e γ são constantes.

Não esperamos que para este modelo de acoplamento exista este tipo de solução esta-

cionária. Em geral soluções estacionárias são obtidas apenas para ações invariantes pela trans-

formação

φ→ φ+ λ. (4.4)

Entretanto, podemos considerar uma solução quase-estacionária, na qual, para uma variação

lenta do campo, na vizinhança de um buraco negro,

φ (r, t) ≈ φc

[
v − r + 2M log

(
2M

r

)]
. (4.5)

A veracidade desta consideração se dá, substituindo e verificando a aproximação na equação de

Klein-Gordon dada pela equação (3.29)(
1 +

2M

r
+

(
2M

r

)2

+

(
2M

r

)3
)
φ̈c + V ′ (φc) = 0. (4.6)
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Para r →∞, ou seja, no infinito, nossa aproximação é válida quando

..

φc ≈ 0 (4.7)

e

V ′ (φc) ≈ 0. (4.8)

A equação (4.7) não é muito restritiva, nada mais é que uma condição de slow-roll [70, 71].

Slow-roll significa uma rolagem lenta do campo ao longo do potencial, na direção do valor mı́nimo

de φ. É durante esta situação que ocorre o peŕıodo inflacionário. Vemos então, que na equação

(2.45),
..

φ� H
.

φ� H2φ, (4.9)

ou seja, o termo
..

φ é desprezável.

Um sistema de equações só gera soluções inflacionárias quando a densidade de energia

potencial domina sobre a densidade de energia cinética. Da equação de estado (2.50) temos a

primeira condição de slow-roll [72],

V (φ)�
.

φ
2
. (4.10)

Para garantir as soluções inflacionárias,

..
a

a
� 0, (4.11)

ou seja,

− Ḣ � H2. (4.12)

Estas condições ainda não justificam a consideração sobre a derivada do potencial.

Vamos aplicar as condições no caso de acoplamento não mı́nimo. A equação de Klein-

Gordon (2.41) fica

..

φ = −
.

φ

F1

(
3F1H +

1

2
(1 + 3F ′′)F ′

.

φ

)
− V ′eff ≈ 0, (4.13)

o termo cinético morre, e

− V ′eff ≈ 3H
.

φ. (4.14)

No caso de acoplamento mı́nimo:

− V ′ ≈ 3H
.

φ. (4.15)

As equações para acoplamento mı́nimo e não mı́nimo têm o mesmo comportamento. Se

fizermos F = 1, a equação (4.14) recai em (4.15). Então se aplicarmos a condição V ′eff � 1, ela

acontecerá da mesma forma para os dois modelos. Como
..

φ � H
.

φ � H2φ é aproximado para

zero, H
.

φ� H2φ também pode ser, permitindo que eu possa impor a condição V ′ ≈ 0.
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Nosso formalismo é baseado então na condição quasi-estacionária, requerendo
..

φc ≈ 0 e

para o caso de condição não estacionária pode ser visto em [73].

A equação (4.5) nos mostra que o campo no horizonte de eventos tem o valor do campo

cosmológico no infinito, mas que chega com certo atraso, assim,

φc (t) ≈ φ∞ + φ̇∞ (t) , (4.16)

tal que φ∞ e φ̇∞ (t) são constantes.

4.2 A evolução de massa

Considerando que para um campo escalar Tab = Gab,

T r0 =
2M

r2

[
2M (1 + F ′′)

.

φ
2

c + F ′
(

2M
..

φc −
1

2

.

φc

)]
. (4.17)

A distribuição de massa fica [74]

.

M = 16πM2

[
(1 + F ′′)

.

φ
2

∞ − F ′
(

1

4M

.

φ∞

)]
. (4.18)

Para uma função qualquer de acoplamento, podemos definir a evolução da massa como [74]

Ṁ = f (t)M2 − g (t)M − α

M2
, (4.19)

onde f (t) e g (t) são funções suaves. Primeiramente vamos considerar apenas a acreção de

matéria, ou seja, α = 0.

Resolvendo a equação diferencial de M (t),

M (t) =
M0e

−
R t
t0
g(s)ds

1−M0

∫ t
t0
e
−

R s
s0
g(s)ds

f (s) ds
, (4.20)

onde M (t0) = M0. A massa pode ser escrita como

M (t) =
M0G (t)

1−M0H (t)
, (4.21)

com

G (t) = e
−

R t
t0
g(s)ds

(4.22)

e

H (t) =

∫ t

t0

f (s)G (s) ds. (4.23)

Analisando a equação (4.21), vemos que se o denominador é diferente de zero, a massa

diminui de acordo com a equação (4.22), para valores positivos de g (t). Quando o denominador
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é igual a zero, temos o crescimento da massa. Para valores positivos de f (t), a função H (t)

crescerá monotonicamente, limitada por

H∞ = lim
t→∞

H (t) , (4.24)

levando a um valor cŕıtico da massa,

1−McrH (t→∞) = 0. (4.25)

Assim

Mcr = H−1
∞ , (4.26)

Vemos então que qualquer buraco negro com massa inicial M0, tal que M0 < Mcr, irá

evaporar completamente mesmo com a acreção de campo escalar, e sem o termo de evaporação

por radiação Hawking, e este processo será lento, pois a perda de massa tem comportamento

assintótico.

Por outro lado, aqueles buracos negros com massa inicial tal que, M0 > Mcr crescerão

muito rapidamente com a acreção do campo escalar. Na equação (4.21), o denominador desa-

parece para t = tcr, com H (tcr) = M−1
0 , mostrando que o buraco negro cresce indefinidamente

num tempo muito curto.

Voltando o termo devido a evaporação, a massa cŕıtica pode ser obtida resolvendo a

equação da massa, tal que ∫ M

M0

dM

f (t)M2 − g (t)M − α
M2

=

∫ t

t0

dt. (4.27)

Vamos analisar detalhadamente o comportamento da massa para alguns tipos de acopla-

mentos não mı́nimos. Os acoplamentos não mı́nimos escolhidos obedecem ao critério de acres-

centar o mı́nimo de parâmetros adicionais ao modelo. A partir do acoplamento mı́nimo, que

corresponde à função de acoplamento igual a uma constante, é natural escolher termos de

aproximação via expansão em polinômios com constantes pequenas, por exemplo. Essa abor-

dagem garante a redutibilidade ao caso de acoplamento mı́nimo ao mesmo tempo que adiciona

pouca complexidade ao modelo. Também deve-se considerar que em nenhum momento supõe-se

que tais acoplamentos não mı́nimos advêm de primeiros prinćıpios, pelo contrário, a abordagem

realizada é estritamente fenomenológica e portanto a utilizäı¿1
2
ı̈¿1

2
o da expansão em potências

não só é útil como correta.

Apesar das restrições impostas pelas observações em escala do sistema solar, a relatividade

geral está em excelente concordância com estes observações, consequentemente, todo modelo que

visa explicar a expansão acelerada do universo reproduz a relatividade geral na escala do sistema

solar [75], de modo que o modelo com constante cosmológica, ΛCDM, e todos os modelos de

quintessência com os diversos tipos de acoplamentos são válidos e não interferem em escala

planetária.
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4.2.1 Acoplamento linear - F (φ) = 1 + ξφ

Neste acoplamento linear, as funções f (t) e g (t) ficam

f (t) = 16π (1 + F ′′) φ̇2
c = 16πφ̇2

∞ (4.28)

e

g (t) = 4πF ′
.

φc = 4πξφ̇∞. (4.29)

Considerando primeiramente somente a acreção, ou seja, α = 0, as funções G (t) e H (t) são neste

caso

G (t) = e−4πξφ̇∞t (4.30)

e

H (t) =
4φ̇∞
ξ

(1−G (t)) . (4.31)

Para valor positivo de φ̇∞

Mcr =
ξ

4
φ̇−1
∞ . (4.32)

Podemos encontrar o tempo cŕıtico

H (tcr) =
1

M0

=
4φ̇∞
ξ

(
1− e−4πξφ̇∞t

)
, (4.33)

escrita em termos da massa cŕıtica,

1

M0

=
1

Mcr

(
1− e−4πξφ̇∞t

)
, (4.34)

de modo que,

tcr =
1

4πξφ̇∞
log

M0

M0 −Mcr

. (4.35)

A Figura (4.1) mostra o comportamento da distribuição de massa, para alguns valores de

massa inicial
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Figura 4.1: Evolução de massa sem o termo de radiação Hawking, para F (φ) = 1 + ξφ, com

φ∞ = φ̇∞ = ξ = 1.

Ao fixarmos a taxa de variação da massa igual a zero,

− 4Mπξ + 16πM2 = 0, (4.36)

encontramos uma linha cŕıtica, tal que, M = 1/4. Esta linha delimita o comportamento do

buraco negro, qualquer solução que atravesse esta linha indicará que a massa do buraco negro

irá decrescer. Neste caso, a linha cŕıtica coincide com a massa cŕıtica, como pode ser visto na

Figura (4.2)
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Figura 4.2: Evolução de massa sem o termo de radiação Hawking. A linha vermelha representa

a linha cŕıtica e a massa cŕıtica.

Se considerarmos φ̇2
∞ da ordem da densidade cŕıtica do universo atual, φ̇2

∞ ∼ ρcr ≈
10−29g/cm3,

ρcr = 10−29
(
g/cm3

)× `3
pl

mpl

, (4.37)

onde `pl = 1, 6× 10−33cm é o comprimento de Planck e mpl = 2, 2× 10−5g é a massa de Planck.

Em unidades naturais, a densidade cŕıtica fica ρ = 1, 9×10123 e φ̇∞ = 1, 3×10−61. Para calcular

a massa cŕıtica, multiplicamos pela massa de Planck, garantindo a unidade em gramas, assim,

com ξ = 1, obtemos Mcr ≈ 1056g.

O tempo cŕıtico, é dado pela equação (4.35), 1061 em unidades naturais, multiplicando

pelo tempo de Planck (tpl = 5, 4× 10−44s), temos que tcr = 1017s, ou seja, da ordem da idade do

universo.

Considerando α = 1, temos soluções nas quais a massa pode evaporar completamente.

Resolvendo a equação (4.19) igual a zero,

− 1

M2
− 4Mπ + 16M2π = 0, (4.38)

para as mesmas condições iniciais do caso sem evaporação, encontramos quatro soluções posśıveis

para a linha cŕıtica, sendo duas delas imaginárias, uma real e negativa, e a outra real e positiva.

Utilizando apenas a solução real positiva, descrevemos a linha cŕıtica, conforme a Figura (4.3).
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Figura 4.3: Distribuição total da massa para mesmas condições iniciais. A linha em vermelho

representa a linha cŕıtica.

Vemos então que para valores de massa inicial, tal que, M0 esteja abaixo da linha cŕıtica,

a massa do buraco negro, mesmo com acreção do campo, irá decrescer; e para massas tais que,

M0 esteja acima deste linha, o buraco negro cresce indefinidamente em um intervalo de tempo

muito curto. O valor adotado para ξ não interfere na análise do comportamento da massa quando

levada em conta a radiação Hawking, como mostra Figura (4.4), a diferença é desprezável.
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1.00000 1.00005 1.00010 1.00015 1.00020 1.00025 1.00030
0.04

0.05

0.06

0.07

0.08

0.09

0.10

t

M

Figura 4.4: Soluções de taxa de variação de massa, para ξ = 0, 1, 2, 3, 4, 5.

Vamos analisar agora o caso de φ estacionário, escrevendo o campo no infinito como uma

função. Escolhemos dois casos estacionários, um caso simples, φ∞ = C1 + C2t, e outro visando

uma posśıvel comparação com tempos passados na história térmica do universo. Na era da

matéria ou da radiação, a densidade de energia é descrita como αt−2, vamos então analisar um

caso estacionário proporcional a t−β, φ∞ = C1 + C2

tβ
.

Caso 1 - φ∞ = C1 + C2t

Para alguns valores de massa inicial, na Figura (4.5) observamos que sem o termo de

evaporação, para qualquer valor de M0 a massa do buraco negro crescerá indefinidamente.
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Figura 4.5: Distribuição de massa sem o termo de radiação Hawking, para F (φ) = 1 + ξφ, com

φ∞ = C1 + C2t, para C1 = C2 = ξ = 1.

A linha cŕıtica, é dada por M = 1/4, e a massa cŕıtica,

Mcr =
ξ

4
φ̇−1
∞ = 1/4, (4.39)

que neste caso, coincide com a linha cŕıtica. Estas soluções são exatamente as mesmas para o

caso de φ∞ independente do tempo, como pode ser visto na Figura (4.6).
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Figura 4.6: Distribuição de massa sem o termo de radiação Hawking. A linha vermelha representa

a linha cŕıtica e a linha verde, a massa cŕıtica.

A Figura (4.7) mostra soluções para diferentes valores de ξ. Notamos que a linha laranja,

ξ = 0, que descreve o caso de acoplamento mı́nimo, destoa das demais curvas, no entanto, as

curvas com acoplamento não mı́nimo, representadas pelos demais valores de ξ, diferem apenas

na velocidade com que a massa decresce para um mesmo valor de massa inicial.
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Figura 4.7: Soluções de acreção de massa para ξ = 0, 1, 2, 3, 4, 5, mostrado pelas curvas variando

de cor laranja até azul escuro, respectivamente.

Para α = 1, o comportamento da massa pode ser visto na Figura (4.8).
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Figura 4.8: Distribuição de massa com termo de radiação Hawking, para mesmas condições

iniciais. A linha em vermelho representa a linha cŕıtica.

Vemos então o mesmo comportamento pro caso de φ∞ independente do tempo. O valor
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adotado para ξ não interfere na análise do comportamento da massa quando levada em conta a

radiação Hawking, como mostra Figura (4.9), a diferença é desprezável.
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Figura 4.9: Soluções de taxa de variação de massa, para ξ = 0, 1, 2, 3, 4, 5, mostrado pelas curvas

variando de cor laranja até azul escuro, respectivamente.

Caso 2 - φ∞ = C1 + C2

tβ

Para α = 0, constrúımos do mesmo modo que no caso anterior a equação da taxa de

variação da massa. O cálculo da derivada igual a zero também apresenta uma linha cŕıtica

coincidente com a massa cŕıtica, com

Mcr =
ξ

4
φ̇−1
∞ = t2/4, (4.40)

que pode ser visto na Figura (4.10)
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Figura 4.10: Distribuição de massa sem o termo de radiação Hawking, para F (φ) = 1 + ξφ, com

φ∞ = C1 + C2

tβ
, para C1 = C2 = ξ = β = 1.

Neste caso, a variação no valor de ξ mostra um crescimento mais rápido com o aumento no

valor adotado, conforme a Figura (4.11).
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Figura 4.11: Soluções de taxa de variação de massa, para ξ = 0, 1, 2, 3, 4, 5, mostrado pelas curvas

variando de cor laranja até azul escuro, respectivamente.
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Para α = 1, o comportamento da massa é observado na Figura (4.12), cuja linha cŕıtica

foi obtida fixando M ′ = 0, ou seja,

− 1

M2
+

16M2π

t4
+

4Mπξ

t2
= 0. (4.41)

1.00 1.01 1.02 1.03 1.04 1.05
0

1

2

3

4

5

t

M

Figura 4.12: Distribuição total da massa, para F (φ) = 1 + ξφ, para φ∞ = C1 + C2

tβ
, com

C1 = C2 = ξ = β = 1.

Variando o valor de ξ, obtemos soluções muito próximas do caso anterior.
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Figura 4.13: Soluções de taxa de variação de massa, para ξ = 0, 1, 2, 3, 4, 5, mostrado pelas curvas

variando de cor laranja até azul escuro, respectivamente.

4.2.2 Acoplamento não linear - F (φ) = 1 + ξφ2

Tomando apenas o termo de acreção na análise da distribuição da massa, as funções f (t)

e g (t) ficam,

f (t) = 16π (1 + F ′′) φ̇2
c = 16π (1 + 2ξ) φ̇2

∞ (4.42)

e

g (t) = 4πξF ′φ̇c = 8πξ
(
φ∞φ̇∞ + φ̇2

∞t
)
. (4.43)

Com isto, obtemos que

G (t) = e−4πξ(2φ∞φ̇∞t+φ̇2∞t2) (4.44)

e

H (t) = 16π (1 + 2ξ) φ̇2
∞

∫ t

0

e−4πξ(2φ∞φ̇∞s+φ̇2∞s2)ds (4.45)

A massa cŕıtica é dada por Mcr = H−1
∞ , tal que,

H∞ = limt→∞H (t) = 16π (1 + 2ξ) φ̇2
∞

∫ t

0

e−4πξ(2φ∞φ̇∞s+φ̇2∞s2)ds, (4.46)

mas

2φ∞φ̇∞s+ φ̇2
∞s

2 =
(
φ̇∞s+ φ∞

)2

− φ2
∞, (4.47)

a integral fica ∫ t

0

e4πξφ2∞e−4πξ(φ̇∞s+φ∞)
2

ds, (4.48)
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denominando τ = φ̇∞s+ φ∞, dτ = φ̇∞ds, para valor positivo de φ̇∞,

e4πξφ2∞

∫ +∞

φ∞

1

φ̇∞
e−4πξτ2

dτ =
e4πξφ2∞∣∣∣φ̇∞∣∣∣

(∫ +∞

0

e−4πξτ2

dτ −
∫ φ∞

0

e−4πξτ2

dτ

)
, (4.49)

fazendo ω = 2
√
πξτ ,

e4πξφ2∞

2
√
πξ
∣∣∣φ̇∞∣∣∣

(∫ +∞

0

e−ω
2

dω −
∫ 2
√
πξφ∞

0

e−ω
2

dω

)
, (4.50)

mas ∫ +∞

0

e−ω
2

dω =

√
π

2
(4.51)

e ∫ 2
√
πξφ∞

0

e−ω
2

dω =

√
π

2
erf

(
2
√
πξφ∞

)
, (4.52)

podemos escrever entã0

H∞ = 16π
∣∣∣φ̇∞∣∣∣ 1 + 2ξ√

2ξ
e4πξφ2∞

[√
π

2
− erf

(√
2πξφ∞

)]
, (4.53)

onde erf (x) é a Função Erro [76]. Em geral, consideramos o campo muito pequeno, de modo

que podemos fazer a aproximação

Mcr ≈
√

2ξ

8π (1 + 2ξ)

∣∣∣φ̇∞∣∣∣−1

. (4.54)

A equação (4.54) tem o mesmo comportamento que a massa cŕıtica no caso do acoplamento feito

anteriormente.

A Figura (4.14) mostra o comportamento da distribuição de massa, para alguns valores

de massa inicial
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Figura 4.14: Distribuição de massa sem o termo de radiação Hawking, para F (φ) = 1 + ξφ2,

com φ∞ = φ̇∞ = ξ = 1.

A taxa de variação da massa igual a zero fornece a linha cŕıtica, M = 1/3 descrita pela

linha vermelha e a massa cŕıtica Mcr = 1
12π
√

2
, descrita pela linha verde.

Para α = 1, linha cŕıtica foi obtida fixando

− 1

M2
+ 48M2π + 4Mπ = 0 (4.55)

como mostra a Figura (4.15)
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Figura 4.15: Distribuição total da massa, para F (φ) = 1 + ξφ2, com φ∞ = φ̇∞ = ξ = β = 1.

Solução estacionária

A Figura (4.16) mostra a evolução da massa para os dois casos de valor de campo.
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(a) φ∞ = C1 + C2t
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(b) φ∞ = C1 + C2
tβ

Figura 4.16: Evolução da massa para acoplamento não mı́nimo, com φ∞ dependente do tempo,

com C1 = C2 = ξ = β = 1.

Na Figura (4.16a), vemos que mesmo sem o termo devido à radiação Hawking, algumas

condições iniciais de massa podem apresentar o decréscimo da massa até total evaporação. Neste
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caso de acoplamento, linha cŕıtica, M = 2+t
6

, mostrada pela linha vermelha não coincide com a

curva para a massa cŕıtica, Mcr = 1
12
√

2π
, representada pela linha verde.

A Figura (4.16b) mostra que sem o termo devido à radiação Hawking, da mesma forma

que no caso de acoplamento linear, seja qual for a massa inicial de um buraco negro, ele crescerá

indefinidamente e mais rapidamente que no caso linear. A linha cŕıtica neste caso, mostra que

M = 1
6

(1− t− t2), mostrada pela linha vermelha e a linha verde mostra a curva para a massa

cŕıtica, Mcr = t2

12
√

2π
.

A mudança no valor de ξ, mostra que para maiores valores, a massa decresce ou cresce,

dependendo da massa inicial adotada, mais rapidamente, como pode ser visto na Figura(4.17).

Quando fixamos ξ = 0 a solução recai no caso de modelo de quintessência com acoplamento

mı́nimo e esta curva, representada pela linha laranja, mostra uma diferença significativa em

relação às demais, assim como já visto no primeiro caso estacionário.
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(a) φ∞ = C1 + C2t
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(b) φ∞ = C1 + C2
tβ

Figura 4.17: Soluções da massa variando ξ, com ξ = 0, 1, 2, 3, 4, 5.

Com α = 1, novamente encontramos quatro soluções posśıveis para a massa cŕıtica, com

apenas uma real e positiva. A massa cŕıtica é obtida a partir desta solução e a distribuição da

massa para condições inicias diversas é mostrada na Figura (4.18).
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(a) φ∞ = C1 + C2t
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(b) φ∞ = C1 + C2
tβ

Figura 4.18: Evolução total da massa para acoplamento não mı́nimo, com φ∞ dependente do

tempo

Novamente, para valores de massa inicial, M0 < Mcr, a massa do buraco negro irá evaporar

completamente; e para M0 > Mcr, para mesmas condições iniciais que os casos de acoplamento

linear, temos mais soluções de evaporação e aquelas nas quais vemos crescimento, este acontece

de modo mais lento. A Figura (4.18b) mostra que para M0 > Mcr, o buraco negro cresce

indefinidamente em um intervalo de tempo menor que no caso do acoplamento F (φ) = 1 + ξφ.

A Figura (4.19) acreção e evaporação variando ξ. Vemos o mesmo comportamento que os

casos de acoplamento linear, ou seja, as diferenças entre soluções podem ser desprezadas.
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(a) φ∞ = C1 + C2t

1.00000 1.00005 1.00010 1.00015 1.00020 1.00025 1.00030
0.04

0.05

0.06

0.07

0.08

0.09

0.10

t

M

(b) φ∞ = C1 + C2
tβ

Figura 4.19: Soluções da massa com evaporação, variando ξ, com ξ = 0, 1, 2, 3, 4, 5.
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4.2.3 Acoplamento exponencial - F (φ) = eξφ

No caso de α = 0, as funções f (t) e g (t) ficam,

f (t) = 16π
(

1 + ξ2eξ(φ∞+φ̇∞t)
)
φ̇2
∞ (4.56)

e

g (t) = 4πξeξ(φ∞+φ̇∞t)φ̇∞. (4.57)

Podemos escrever agora

G (t) = e−4πeξφ∞(eξφ̇∞t−1) (4.58)

e

H (t) = 16πφ̇2
∞

∫ t

0

(
1 + ξ2eξ(φ∞+φ̇∞s)

)
e−4πeξφ∞(eξφ̇∞t−1)ds (4.59)

ou

H (t) = 16πφ̇2
∞e

4πeξφ∞
[∫ t

0

e−4πξeξ(φ∞+φ̇∞s)
ds+ ξ2

∫ t

0

e−4πξeξ(φ∞+φ̇∞s)+ξ(φ∞+φ̇∞s)ds

]
, (4.60)

escrevendo φ∞ + φ̇∞s = τ , para φ̇∞ positivo,

H∞ = 16πφ̇∞e
4πeξφ∞

[∫ ∞
φ∞

e−4πeξτds+ ξ2

∫ ∞
φ∞

e−4πeξτ+ξτds

]
, (4.61)

fazendo ω = eξτ , dω = ξeξτdτ , a segunda integral fica,∫ ∞
φ∞

e−4πeξτ eξτdτ =

∫ ∞
eξφ∞

e−4πω dω

ξ
=

1

4πξ
e−4πeξφ∞ , (4.62)

e a primeira integral fica,∫ ∞
φ∞

e−4πeξτds =
1

ξ

∫ ∞
eξφ∞

e−4πω dω

ω
=

1

ξ

∫ ∞
4πeξφ∞

e−κ
dκ

κ
=

1

ξ
Γ
(
0, 4πeξφ∞

)
. (4.63)

A massa cŕıtica é dada por Mcr = H−1
∞ , tal que,

M−1
cr =

16πφ̇∞
ξ

e4πξφ̇∞eξφ∞
[
ξ2

4π
+
(
1 + ξ2eξφ∞

)
Γ
(
0, 4πeξφ∞

)]
, (4.64)

onde Γ (z, x) á a função Gama Incompleta [76]. Para φ∞ pequeno

M−1
cr ≈=

ξ

(16πe4πΓ (0, 4π) + (16πe4πΓ (0, 4π) + 4) ξ2)
φ̇−1
∞ , (4.65)

sendo 16πe4πΓ (0, 4π) ≈ 3.72. A equação 4.65 mostra mesmo comportamento dos casos de

acoplamentos anteriores.

A Figura (4.20) mostra o comportamento da distribuição de massa, para alguns valores

de massa inicial
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Figura 4.20: Distribuição de massa sem o termo de radiação Hawking, para F (φ) = eξφ, com

φ∞ = φ̇∞ = ξ = 1. A linha vermelha e a linha verde indicam as linha cŕıtica e massa cŕıtica,

respectivamente.

Com o termo de evaporação, as soluções são mostradas na Figura (4.21).
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Figura 4.21: Distribuição de massa para F (φ) = eξφ, com mesmas condições iniciais. A linha

em vermelho representa a linha cŕıtica.
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Solução estacionária

A Figura (4.22) mostra as soluções para alguns valores de massa inicial. A linha cŕıtica

M =
e1+2t

4 (1 + e1+2t)
(4.66)

é mostrada pela linha vermelha na Figura (4.22a) não coincide com a curva para a massa cŕıtica,

representada pela linha verde. e na Figura (4.22b), a linha cŕıtica é descrita pela linha vermelha,

dada por M = et2

4(1+e)
, e a linha azul mostra a curva para a massa cŕıtica, Mcr ∝ −t2.
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(a) φ∞ = C1 + C2t
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(b) φ∞ = C1 + C2
tβ

Figura 4.22: Evolução da massa para acoplamento exponencial, com φ∞ dependente do tempo,

com C1 = C2 = ξ = β = 1.

Na Figura (4.23) vemos que a mudança no valor de ξ, acontece apenas para ξ = 0, a

solução no caso de modelo de quintessência com acoplamento mı́nimo, para os demais valores, a

diferença acontece para um tempo muito curto e pode ser desconsiderada.
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(a) φ∞ = C1 + C2t
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Figura 4.23: Soluções da massa variando ξ, para acoplamento exponencial, com ξ = 0, 1, 2, 3, 4, 5.

Com α = 1, repetindo o processo para a obtenção da massa cŕıtica, podemos verificar

algumas soluções da massa na Figura (4.24).
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Figura 4.24: Evolução total da massa para acoplamento exponencial, com φ∞ dependente do

tempo

A Figura (4.25) apresenta acreção e evaporação variando ξ, repetindo o comportamento

sem evaporação. Na Figura (4.25b), vemos que algumas condições de massa inicial passam a

evaporar.
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Figura 4.25: Soluções da massa com evaporação, para acoplamento exponencial, variando ξ, com

ξ = 0, 1, 2, 3, 4, 5.

4.2.4 Era da radiação e era da matéria

Era da radiação e acoplamento linear

Na era da radiação, ρ ∝ a−4

ρ̇ = −4a−5ȧ = −4
ȧ

a
ρ = −4

(
8πGρ

3

)1/2

ρ, (4.67)

usando G = 1, podemos escrever

ρ =
3

32πt2
, (4.68)

o termo devido a densidade de energia na era da radiação é absorvido pelo buraco negro conforme

a acreção de Bondi, ou seja, ∝M2 e pode ser incorporado em f (t), de modo que,

f (t) = 16πφ̇2
∞ +

3

2t2
(4.69)

e

g (t) = 4πξφ̇∞. (4.70)

Podemos escrever agora

G (t) = e−4πξφ̇∞(t−t0) (4.71)

e

H (t) =
4φ̇∞
ξ

(
1− e−4πξφ̇∞(t−t0)

)
+

3

2
eβ
∫ t

t0

s−2e−4πξφ̇∞(s−t0)ds, (4.72)

fazendo β = 4πξφ̇∞t0,

H∞ =
4φ̇∞
ξ

(
1− e−4πξφ̇∞(t−t0)

)
+

3

2
e−β

∫ ∞
t0

s−2e−βsds, (4.73)
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com βs = ω, a integral fica ∫ ∞
−4πξφ̇∞t0

βω−2e−βωdω = βΓ (−1, β) , (4.74)

pois Γ (a, x) =
∫∞
x
ta−1e−tdt. Com isto,

H∞ =
4φ̇∞
ξ

(
1 +

3ξeβ

8φ̇∞t0
βΓ (−1, β)

)
, (4.75)

onde β = 4πξφ̇∞t0. Para

limx→0xΓ (−1, x) = 1, (4.76)

temos neste caso, se β for pequeno,

Mcr = H−1
∞ ≈

ξ

4φ̇∞

(
1 +

3ξ

8φ̇∞t0

)−1

. (4.77)

Discutimos no primeiro caṕıtulo que a equação de estado no caso de modelos de quint-

essência é variável no tempo, então, vamos supor, a ńıvel de exemplo, que o conteúdo de energia

escura no universo tenha mudado levemente em um instante t0 = 1s. Neste caso, em unidades

naturais, t0 = 1, 9 × 1043. Assim, φ̇∞t0 ≈ 10−18, o que justifica tomarmos β ≈ 0 para obter a

massa cŕıtica, Mcr = 1043 em unidades naturais ou Mcr = 1038g.

Num tempo t0 = 1011s, ou seja, na era radiação-matéria, teremos, φ̇∞t0 ≈ 10−7 em

unidade de Planck, que mostra, Mcr = 1049g.

Era da radiação e acoplamento não linear

Vamos entender como poderemos aplicar acoplamento não linear para a era da radiação.

Adicionando o termo devido a radiação em f (t),

f (t) = 16π (1 + 2ξ) φ̇2
∞ +

3

2t2
. (4.78)

A função g (t) não muda e G (t) fica

G (t) = e−4πξ(2φ∞φ̇∞(t−t0)+φ̇2∞(t−t0)2) (4.79)

e

H (t) = 16π (1 + 2ξ) φ̇2
∞e

4πξ(t20+t0)
∫ t

t0

e−4πξ(φ̇2∞s2+2(φ∞φ̇∞−φ̇2∞t0)s)ds+

∫ t

t0

3

2
s−2e−4πξ(φ̇2∞s2+2(φ∞φ̇∞−φ̇2∞t0)s)ds, (4.80)
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que pode ser escrito como

H (t) = 16π (1 + 2ξ) φ̇∞e
4πξφ2∞e4πξ(t20+t0)

(√
π

2
−
√
π

2
erf

(
2
√
πξφ∞

))
+

+
3

2
e4πξ(t20+t0)

∫ t

0

s−2e−4πξ(φ̇2∞s2+2(φ∞φ̇∞−φ̇2∞t0)s)ds. (4.81)

Para calcularmos H∞, tomamos o limite de φ∞ → 0

H∞ = 8π (1 + 2ξ) φ̇∞
√
πe4πξ(t20+t0) +

3

2

∣∣∣φ̇∞∣∣∣ e4πξφ2∞e4πξ(t20+t0)
∫ +∞

φ̇∞(1−φ̇∞)t0+φ∞φ̇∞

e−4πξω2

ω2
dω,

(4.82)

onde ω = φ̇∞s+
(
φ∞φ̇∞ − φ̇2

∞t0

)
, dω = φ̇∞ds. A massa cŕıtica fica então

M−1
cr ≈= 8π (1 + 2ξ) φ̇∞

√
πe4πξ(t20+t0)+

+
3

2

∣∣∣φ̇∞∣∣∣ e4πξφ2∞e4πξ(t20+t0)

−e−4πξ(φ̇∞t0+(φ∞φ̇∞−φ̇2∞t0))
2

φ̇∞t0 +
(
φ∞φ̇∞ − φ̇2

∞t0

)
 . (4.83)

Era da matéria e acoplamento exponencial

Podemos também analisar um acoplamento, por exemplo, o acoplamento exponencial, na

era da matéria, onde ρ ∝ a−3, assim

ρ̇ = −3a−4ȧ = −3
ȧ

a
ρ = −3

(
8πGρ

3

)1/2

ρ, (4.84)

podemos escrever

ρ =
1

6πt2
, (4.85)

para G = 1. Podemos escrever

f (t) = 16π
(

1 + ξ2eξ(φ∞+φ̇∞t)
)
φ̇2
∞ +

8

3t2
. (4.86)

A função g (t) não muda, mas G (t), H (t) devem ser reescritas como

G (t) = e−4πeξφ∞(eξφ̇∞(s−t0)−1) (4.87)

e

H (t) = 16πφ̇2
∞

∫ t

0

(
1 + ξ2eξ(φ∞+φ̇∞(s−t0))

)
e−4πeξφ∞(eξφ̇∞(s−t0)−1)ds+

+ 16π

∫ t

0

8

3s2
e−4πeξφ∞(eξφ̇∞(s−t0)−1)ds. (4.88)
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E a massa cŕıtica pode ser obtida, fazendo t→∞

Mcr = H−1
∞ . (4.89)
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5 Considerações finais e Perspectivas

futuras

Em todos os tipos de acoplamento não mı́nimos estudados, encontramos Mcr ∝ φ̇−1
∞ . Se

considerarmos φ̇∞ da ordem da densidade cŕıtica do universo atual, ρcr ≈ 10−29g/cm3, obtemos

Mcr ≈ 1056g. Todos os buracos negros com massa inferior a este valor devem estar encolhendo

conforme a equação (4.21). Mesmo os buracos negros supermassivos no centro da galáxia, com

M ≥ 106M� ≈ 1039g estão bem abaixo deste valor.

Notamos que a velocidade com que a massa decai depende do tipo de acoplamento, nos

casos de acoplamento não linear e exponencial, a massa decresce mais rapidamente. Desse modo,

o fato de observamos buracos negros supermassivos, pode então limitar o tipo de acoplamento

usado e excluir alguns modelos de quintessência.

O acoplamento linear para a era da radiação, para um tempo t0 > 0, mostrou uma massa

cŕıtica, Mcr = 1038g, muito acima da massa de Hawking, Mcr = 1015g, num tempo superior, na

era da radiação-matéria, vimos uma massa ainda maior. Este comportamento indica que estes

buracos negros criados na era da radiação devem estar se contraindo desde então. Eles devem

ter perdido cerca de 60% de sua massa, tornando-se os supermassivos observados atualmente,

creditando o tipo de acoplamento usado nos modelos de quintessência.

Em primeira análise, consideramos φ∞ e φ̇∞ constantes e positivos, usando aproximação

quasi-estacionária. Verificamos, no entanto, que φ∞ dependente do tempo não difere bruscamente

das soluções iniciais, no caso linear, elas podem ser consideradas praticamente iguais.

Todos os gráficos referentes a distribuição de massa do buraco negro são adimensionais,

limitando nossa discutição sobre tempo de crescimento e diminuição de massa. Fizemos uma

análise qualitativa sobre a evolução temporal e pretendemos analisar quantitativamente estes

resultados.

Em todos os casos estudados consideramos buraco negro de Schwarzschild, mas dentro de

um universo em expansão acelerada, considera-se na verdade, buraco negro de Schwarzschild-de

Sitter. Os buracos negros supermassivos são observados nos centros das galáxias, no entanto,

a expansão acelerada é observada em supernovas, ou seja, em escalas diferentes, muito maiores

que as galáticas. Se considerarmos Schwarzschild-de Sitter, obteremos nos limites relevantes, os

mesmos resultados, os resultados serão diferentes apenas para buracos negros do tamanho do

universo. Este problema é também interessante, e já foi feito para o caso de fluido perfeito e

campo escalar minimamente acoplado [77]. Segue nas perspectivas de trabalho futuro desenvolver

o caso de acoplamento não mı́nimo.

Outra ponto interessante a ser trabalhado é a utilização de acoplamento não mı́nimo em

modelos de gás de Chaplygin para verificar também a formação de buracos negros supermassivos.
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Accretion of nonminimally coupled

scalar fields into black holes

O caṕıtulo 4 se trata de uma reprodução integral, detalhada e estendida, do artigo
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By using a quasi-stationary approach, we consider the mass evolution of Schwarzschild black
holes in the presence of a nonminimally coupled cosmological scalar field. The mass evolution
equation is analytically solved for generic coupling, revealing a qualitatively distinct behavior from
the minimal coupling case. In particular, for black hole masses smaller than a certain critical value,
the accretion of the scalar field can lead to mass decreasing even if no phantom energy is involved.
The physical validity of the adopted quasi-stationary approach and some implications of our result
for the evolution of primordial and astrophysical black holes are discussed. More precisely, we argue
that black hole observational data could be used to place constraints on the nonminimally coupled
energy content of the universe.
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I. INTRODUCTION

The accretion of matter is one of the most studied
physical process involving black holes. Assuming the va-
lidity of certain energy conditions for the accreting mat-
ter, the black hole mass will never decrease. In fact, if
the null energy condition holds, no classical process can
lead to mass decreasing for black holes[1]. The situation
changes completely if quantum processes are allowed: a
black hole can, in fact, shrink due to the emission of
Hawking radiation[2]. Such processes are particularly rel-
evant, for instance, to Primordial black holes (PBH)[3].
One of the most striking features of PBH is that they
could indeed evaporate completely due to the emission
of Hawking radiation. It is known, in particular, that a
PBH with mass smaller than the so called Hawking mass
MH = 1015g should have already evaporated by now.
PBH with masses close to that limit are specially rele-
vant because their emitted Hawking radiation might, in
principle, produce observable effects in the present day
universe[4].

The interest in these problems has increased con-
siderably in the last years due to the many dark en-
ergy phenomenological models that have been proposed
to described the recent accelerated expansion of the
universe[5]. Such models[6] typically involve a scalar field
pervading all the universe that could, in principle, be ab-
sorbed by any black hole, implying consequently in new
channels for black hole mass accretion[7]. It is interest-
ing to notice that the study of black holes growth in the
presence of scalar fields has been initiated before[8] the
discovery of the recent acceleration of the universe and,
thus, before the proposal of any dark energy model.

The mass evolution of any black hole is governed by

∗Electronic address: manu@ifi.unicamp.br
†Electronic address: asaa@ime.unicamp.br

two competing processes. The first one is Hawking ra-
diation, which decreases the black hole mass due to the
emission of a thermal radiation. The other one, which
tends to increase the black hole mass, is the accretion of
the surrounding available matter and energy. The sur-
vival or not of a PBH until nowadays, for instance, will
depend on the detailed balance of these processes. The
unexpected possibility that black hole masses could effec-
tively decrease due to the accretion of exotic (phantom)
dark energy[9] was received with great interest because,
mainly, it could alter qualitatively the evolution of any
black hole, implying, occasionally, in observational con-
sequences for both astrophysical and primordial black
holes. Since phantom dark energy violates the usual en-
ergy conditions, there is no contradiction between these
results and the classical theory of black holes. Neverthe-
less, one should keep in mind that the physical viability
of models involving phantom energy has been constantly
challenged by their severe inherent classical and quantum
instabilities[10].

In this paper, we study the mass evolution of Schwarz-
schild black holes in the presence of a nonminimally cou-
pled scalar field. A quasi-stationary approach is intro-
duced and the mass evolution equation is analytically
solved for generic coupling. Our main conclusion is that,
for black hole initial masses smaller than a certain criti-
cal value, one could indeed have mass decreasing even in
the absence of the Hawking evaporation mechanism and
without any component of phantom energy in the model.
This is a more robust scenario for mass decreasing of
black holes due to the accretion of exotic matter since
it is not plagued by the phantom energy instabilities.
Moreover, one could have, in principle, mass decreasing
for considerably larger black holes than the minimally
coupled case, with possible implications for primordial
and astrophysical black holes, which could be explored
in order to place observation constraints on the nonmin-
imally coupled energy content of the universe.



II. NONMINIMALLY COUPLED SCALAR
FIELDS AROUND BLACK HOLES

We are concerned here with a scalar field φ governed
by the action

S =
1
2

∫
d4x
√−g [F (φ)R− ∂aφ∂aφ− 2V (φ)] , (1)

surrounding a Schwarzschild black hole. Nonminimally
coupled cosmological models of the type (1) have been
intensively used in modern cosmology[11]. Models for
which it is indeed possible to reach F (φ) = 0 are known
to be plagued with singularities[12]. The hypersurface
F (φ) = 0 marks, in a sense, the boundary between stan-
dard (F (φ) > 0) and phantom-like (F (φ) < 0) behavior
for the scalar field φ[13]. We are mainly interested here
in models such that F (φ) > 0 everywhere since, in such
cases, phantom-like behavior is excluded by construction.

Since Schwarzschild spacetime is Ricci-flat, the equa-
tion of motion for φ obtained from (1) reads simply

�φ = V ′(φ), (2)

and the associated energy momentum tensor is given by

Tab = ∂aφ∂bφ− gab

2
(∂cφ∂cφ + 2V ) +∇a∇bF − gab�F.

(3)
Note that, due to Ricci-flatness of Schwarzschild space-
time, we have ∇bT

b
a = 0. By adopting the usual

Schwarzschild coordinates, the spherically symmetrical
version of Eq. (2) will be given by

−∂2φ

∂t2
+

1
r2

(
1− 2M

r

)
∂

∂r

[
r2

(
1− 2M

r

)
∂φ

∂r

]
=(

1− 2M

r

)
V ′(φ). (4)

The standard formulation of the stationary Bondi accre-
tion process[14] for this problem consists in considering
solutions of (4) with the following boundary condition

lim
r→∞φ(t, r) = φc(t), (5)

where φc(t) corresponds to the cosmological homoge-
neous and isotropic solution of the model (1), with cos-
mological and Schwarzschild time coordinates identified.
Since no back reaction of the scalar field is taken into ac-
count, our approach requires that the energy content of
the scalar field must remain bounded and small around
the black hole. Once we have a solution φ(t, r) of (4) with
bounded energy and obeying the boundary condition (5),
we assume that its energy flux on the black hole horizon
is completely absorbed by the black hole, implying that

dM

dt
=
∮

r=2M

r2T r
t dΩ . (6)

This problem was solved, for F (φ) = 1 and V (φ) = 0,
in [15]. In the Eddington-Finkelstein coordinates (v, r),

with v = t + r + 2M log (r/2M − 1) corresponding to
incoming light geodesics, the pertinent solution corre-
sponds to the stationary configuration

φ(v, r) = β + γ

(
v − r + 2M log

2M

r

)
, (7)

with β and γ constant. We do not expect to have sta-
tionary solutions like this for the generic model (1). In
fact, stationary solutions are possible only for actions
that are invariant under shifts φ → φ + λ, see [16]. We
can, however, adopt a quasi-stationary approach based
on the observation[17] that, for slowly varying cosmo-
logical solutions φc(t), the “delayed” field configuration
given by

φ(v, r) = φc

(
v − r + 2M log

2M

r

)
, (8)

is an approximated solution of (4) for certain potentials
V (φ). The validity of this approximation will assure, of
course, the validity of our quasi-stationary approach. By
substituting (8) in (4) one gets(

1 +
2M

r
+
(

2M

r

)2

+
(

2M

r

)3
)

φ̈c + V ′(φc) = 0, (9)

with the dot standing for the derivative with respect
to t. Hence, our approximation is valid if φ̈c ≈ 0 and
V ′(φc) ≈ 0. Due to the typical cosmological time scales,
the assumption of a quasi-stationary (φ̈c ≈ 0) evolution
around the black hole is not, in fact, too restrictive. The
same is true for the assumption V ′(φc) ≈ 0, but the argu-
ment is more involved. Assuming a small variation of φc,
the potential can be linearized as V (φc) = µφc, since the
constant factor is irrelevant here. In this case, equation
(4) will be a linear equation, and it is possible to find a
stationary solution obeying the Bondi boundary condi-
tion (5). The approximation will be valid provided φc is
small and r is kept smaller than the cosmological horizon
scale, see [7] for the details. It is interesting to notice that
the explicit examples of failure of the approximation (8)
presented in [17] corresponds clearly to situations where
one cannot assure φ̈c ≈ 0 or V ′(φc) ≈ 0.

For the solution (8), one has

T r
t =

(
2M

r

)2(
(1 + F ′′) φ̇2

c + F ′φ̈c − F ′

4M
φ̇c

)
. (10)

Also from (8), we see that, on the black hole horizon,
the field φ assumes the value of φc, propagated along
a incoming light geodesic, but arriving with a certain
“delay”[17]. Our quasi-stationary analysis neglects also
such delay and, hence, in the quasi-stationary approxi-
mation

φc(t) ≈ φ∞ + φ̇∞(t− t0), (11)

with φ∞ and φ̇∞ constants, we have

Ṁ = 16πM2 (1 + F ′′) φ̇2
∞ − 4πMF ′φ̇∞. (12)



For the minimal coupling case, F (φ) = 1 and (12) re-
duces to the usual scalar field accretion rate[15]. It is
clear, however, that for the nonminimally coupled case
one could have, in principle, Ṁ < 0 even in the absence
of phantom modes. The rate (12) corresponds only to the
accretion of the scalar field. The complete mass evolution
equation is obtained by adding to the right-handed side
a term ∝ M−2 corresponding to the Hawking radiation.
As we will see in the next section, the fact that the two
accretion terms in (12) have different signs and differ-
ent powers of M will imply in the existence of a critical
mass Mcr delimiting the mass increasing and decreasing
accretion regimes.

We finish this section by noticing that the possibility
of negative energy fluxes for nonminimally coupled scalar
fields and their implications for mass decreasing process
involving black holes has been already considered previ-
ously in another context, namely in the investigation of
the generalized second law of thermodynamics[18].

III. MASS EVOLUTION

For a generic coupling function F (φ), the complete
mass evolution equation has the general form

Ṁ = f(t)M2 − g(t)M − α

M2
, (13)

where f(t) and g(t) are smooth functions and α is a char-
acteristic constant for Hawking radiation. Let us con-
sider, initially, only the accretion process (α = 0). By
introducing M(t) = G(t)P (t), with

G(t) = e
− R t

t0
g(s) ds

, (14)

we obtain a separable equation for P (t), which can be
easily solved leading to the following solution for (13)
with α = 0

M(t) =
M0G(t)

1−M0H(t)
, (15)

where M(t0) = M0 and

H(t) =
∫ t

t0

f(s)G(s) ds. (16)

Typically, if the denominator of (15) does not vanish,
the mass M(t) decreases according to (14) for positive
g(t). Mass increasing solutions appear when the denom-
inator vanishes. For positive and well behaved f(t) and
g(t), the function H(t) will be monotonically increasing
and bounded by H∞ = limt→∞H(t), leading to a criti-
cal mass Mcr = H−1

∞ . Any black hole with initial mass
M0 such that 0 < M0 < Mcr, even in the absence of
Hawking radiation, will disappear due to the accretion
of the scalar field, but such process typically will take an
infinite amount of time. On the other hand, those black
holes with initial masses M0 > Mcr will grow by accreting

the scalar field. In fact, in this case, the denominator of
(15) vanishes for t = tcr, with H(tcr) = M0

−1, implying
that the black hole grows up to infinite mass in a finite
time. The larger is the black hole initial mass M0, the
shorter is tcr. In contrast to the 0 < M0 < Mcr case, such
behavior for M0 > Mcr is similar to that one observed for
the minimally coupled case F = 1. The qualitative evo-
lution for the case M0 = Mcr will depend on the details
of the functions f(t) and g(t).

For situations with large Mcr, the inclusion of Hawking
radiation will alter qualitatively only the final instants of
the mass decreasing process. In such a case, for M0 <
Mcr, the black hole also disappears, but now in a finite
time, since Hawking radiation dominates the process for
M(t)� 1. In fact, for M > Mcr, the Hawking radiation
term can be neglected and the dynamics are essentially
that one described by (15). Let us now consider some
explicit examples of the coupling function F (φ) in order
to elucidate these points.

A. F (φ) = 1 + ξφ

In this linear coupling case, equation (13) is au-
tonomous, with f(t) = 16πφ̇2

∞ and g(t) = 4πξφ̇∞, and
can be integrated by quadrature for any value of α. We
do not need, however, the exact solution here. We assume
ξ and φ to be both positive in order to avoid possible
singularities[12] and, without loss of generality, t0 = 0.
The functions G(t) and H(t) are in this case

G(t) = e−4πξφ̇∞t (17)

and

H(t) =
4φ̇∞

ξ
(1−G(t)) . (18)

For φ̇∞ positive, we have

Mcr =
ξ

4
φ̇−1
∞ , (19)

and

tcr =
1

4πξφ̇∞
log

M0

M0 −Mcr
. (20)

Notice that, for typical cosmological situations, φ̇∞ is
small, implying in large values of Mcr for ξ of the order
of unity (in Planck units). In these cases, the Hawking
radiation is important only in the final instants of the
mass decreasing phase.

B. F (φ) = 1 + ξφ2

We assume ξ > 0. We have f(t) = 16π(1 + 2ξ)φ̇2
∞ and

g(t) = 8πξ
(
φ∞φ̇∞ + φ̇2

∞t
)

in this case. The pertinent



functions are, for t0 = 0,

G(t) = e−4πξ(2φ∞φ̇∞t+φ̇2
∞t2) (21)

and

H(t) = 16π(1+2ξ)φ̇2
∞

∫ t

0

e−4πξ(2φ∞φ̇∞s+φ̇2
∞s2) ds. (22)

The critical mass is given by Mcr = H−1
∞ , with

H∞ = 4π
1 + 2ξ√

ξ

∣∣∣φ̇∞∣∣∣ e4πξφ2
∞
[
1− σerf

(
2
√

πξφ∞
)]

,

(23)
where σ = sgnφ̇∞ and erf(x) is the error function[19].
For the typical cosmological situations we have that φ∞
is very small, leading to

Mcr ≈
√

ξ

4π(1 + 2ξ)

∣∣∣φ̇∞∣∣∣−1

. (24)

Notice that, as in the previous case, Mcr ∝ φ̇−1
∞ .

C. F (φ) = eξφ

In this case, we have f(t) = 16π
(
1+ ξ2eξ(φ∞+φ̇∞t)

)
φ̇2
∞

and g(t) = 4πξφ̇∞eξ(φ∞+φ̇∞t), leading, for t0 = 0, to

G(t) = exp
(
−4πeξφ∞

(
eξφ̇∞t − 1

))
(25)

and

H(t) = 16πφ̇2
∞

∫ t

0

(
1 + ξ2eξ(φ∞+φ̇∞s)

)
G(s)ds. (26)

The critical mass is given by

M−1
cr =

16πφ̇∞
ξ

[
ξ2

4π
+ exp

(
4πeξφ∞

)
Γ
(
0, 4πeξφ∞

)]
,

(27)
where Γ(z, x) is the incomplete Gamma function[19]. For
φ∞ small, we have

Mcr ≈ ξ

a + 4ξ2
φ̇−1
∞ , (28)

where a is a numerical constant of the order of unity,
namely a = 16πe4πΓ(0, 4π) ≈ 3.72. Again, we observe
the same behavior Mcr ∝ φ̇−1

∞ .

D. Radiation era with F (φ) = 1 + ξφ

The previous examples involve only the nonminimally
scalar field in the quasi-stationary approximation. This
is not enough, for instance, to describe PBH, since they
were created in the primordial universe and have existed

for eras where dark energy was not the gravitationally
dominant content of the universe. In the radiation domi-
nated era, in particular, the universe was filled and dom-
inated by ultra relativistic matter which energy density
is described in Planck units by

εγ =
3

32πt2
. (29)

Such an energy density has been also available to be ac-
creted by the black hole and should be incorporated in
our analysis. The case of linear coupling F (φ) = 1 + ξφ
in the presence of radiation with energy density (29) cor-
responds to the choices f(t) = 16πφ̇2

∞ + (3/2)t−2 and
g(t) = 4πξφ̇∞. The G(t) and H(t) functions in this case
are

G(t) = e−4πξφ̇∞(t−t0) (30)

and

H(t) =
4φ̇∞

ξ
(1−G(t)) +

3
2

∫ t

t0

s−2e−4πξφ̇∞(s−t0) ds,

(31)
leading to

H∞ =
4φ̇∞

ξ

(
1 +

3ξeβ

8φ̇∞t0
βΓ(−1, β)

)
, (32)

with β = 4πξφ̇∞t0. Since

lim
x→0

xΓ(−1, x) = 1, (33)

we have in the present case

Mcr = H−1
∞ ≈ ξ

4φ̇∞

(
1 +

3ξ

8φ̇∞t0

)−1

, (34)

if β is small.

IV. DISCUSSION

If we assume that φ̇2
∞ is of the same order of the critical

density of the universe today (ρ0 ≈ 10−29g/cm3), we
have Mcr ≈ 1056g for coupling constants ξ of the order of
unity (in Planck units) in the three first cases considered
in the last section, allowing all the black holes in the
universe to be in the shrinking phase today. In fact,
even the galactic supermassive black holes (SMBH) with
M ≈ 106M� ≈ 1039g are far below such a limit. These
black holes would be shrinking today according to (15).
The exact characteristic decaying time will depend on the
particular coupling function. For the case of the linear
coupling, the characteristic time is, according to (17),
1017s, similar to the universe age. Notice that all the
other coupling functions considered in the last section
lead, typically, to faster decreasing mass regimes.



The fact that there are likely many black hole around
us might be used to constraint the nonminimally cou-
pled energy content of the universe during the cosmo-
logical history. Let us consider, for simplicity, the last
example of the previous section: the linear coupling case
during the radiation dominated era. Suppose that the
dark energy content of the universe has changed lightly
after, say, t0 = 1s. In this case, φ̇∞t0 ≈ 10−18 in Planck
units, justifying to take β ≈ 0 in (32) and leading to
Mcr ≈ 1038g for a coupling constant ξ of the order of
unity. Thus, only PBH with mass greater than 1038g
would escape from the shrink phase. Notice that this
mass is extremely large if compared with the usual Hawk-
ing mass MH = 1015g. Observational constraints on the
PBH mass cutoff[4] could be used, in principle, to estab-
lish constraints on the non-minimal coupling parameter
ξ, although the details depends on the coupling func-
tion F (φ). If we take t0 = 1011s, corresponding to the
radiation-matter equality era, we will have φ̇∞t0 ≈ 10−7,
leading to Mcr ≈ 1049g. This is, again, a huge mass and
implies that virtually all black holes present at the end
of radiation era have existed during all the matter dom-
inated era in a shrinking regime. They should have lost
two thirds of their mass by now, suggesting that observa-
tional data about SMBH could also be used to constraint
the nonminimally coupled energy content of the universe.

We finish by noticing two points. First, one knows that
it is not expected, in general, to have constant values for
φ∞ and φ̇∞ along the cosmological history. Equation
(13) accommodates also situations where φ∞ and φ̇∞
are functions of t. However, we should keep in mind that
our formalism is based on the assumption of a quasi-
stationary evolution, requiring φ̈c(t) ≈ 0 in order to work
properly. One needs to take backreaction into account in
order to treat non stationary situations, see, for instance,

[20] for a recent discussion.
The second point is related with the hypothesis that

φ is a field test around a Schwarzschild black-hole. This
is a good approximation provided that the energy con-
tent of the scalar field (dark energy) is negligible when
compared with the black-hole Physics scale. For the
much larger cosmological scale, on the other hand, the
scalar field is indeed the dominant energy content, be-
ing the sole responsible for the accelerated expansion of
the universe, usually described by a quasi-de Sitter so-
lution. In our universe, these two scales are very differ-
ent. Since the dark energy content is so small, in order
to probe the quasi-de Sitter properties of the spacetime
one needs to consider length scales of the same order
of the Hubble radius. It is perfectly possible, in par-
ticular, to apply condition (9) in a region far from de
black-hole (large r), but still far from the cosmological
horizon. Furthermore, provided that the effective cos-
mological constant of the accelerated expansion is small,
the dynamics near the black-hole horizon are essentially
the same of the Schwarzschild case, implying that (12) is
still valid. From a theoretical point of view, however, it is
certainly interesting to consider the problem of accretion
onto Schwarzschild-de Sitter black-holes as it is done, for
instance, in [21] for the case of perfect fluids and min-
imally coupled fields. We already know, however, that
our present analysis should arise naturally in the limit of
small Λ. These points are now under investigation.
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