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Resumo

Nos ultimos anos, a interpretacao do cendrio cosmoldgico sofreu inimeras modificagoes,
devido as contribuigoes das pesquisas em SNe Ia e em ntcleos galaticos. Estes estudos evidenciam
a presenca de componentes exdticos no universo, a matéria e energia escuras.

Os modelos de quintesséncia descrevem esta energia escura como um campo escalar
acoplado a gravidade, considerando todo o universo permeado por ele. Na vizinhanca de um
buraco negro, este campo deverd ser absorvido, modificando a sua distribuicao de massa. Esta
acrecao de massa exdtica vem sendo interligada ao caso de buracos negros primordiais, sugerindo
um possivel mecanismo para a formagao de buracos negros supermassivos.

Utilizando uma abordagem quasi-estacionaria, consideramos a evolucao da massa de
um buraco negro de Schwarzschild na presenca de um campo cosmoldgico escalar nao mini-
mamente acoplado. A equacao da evolucao da massa é resolvida analiticamente para um acopla-
mento genérico, revelando um comportamento qualitativamente diferente do caso de acoplamento
minimo. Em particular, para buraco negros com massas menores que um certo valor critico, o
acréscimo do campo escalar pode levar a diminuicao da massa, mesmo se nenhuma energia de
phantom for envolvida. A validade fisica da abordagem quasi-estacionaria adotada e algumas
implicagoes do nosso resultado para evolugao dos buracos negros primordiais e astrofisicos sao
discutidas. Mais precisamente, nés discutimos que os dados observacionais de buracos negros

poderiam ser usados para colocar restricoes no contetido de energia nao minimamente acoplado.



Abstract

In the last years, the interpretation of the cosmological scenario suffered uncountable
modifications because of contribution of research in SNe Ia and galactic core. These studies
demonstrate the presence of exotics components in the universe, the dark matter and the dark
energy.

Quintessencial models describe this dark energy as a scalar field coupled to gravity, con-
sidering the entire universe permeated by it. In the vicinity of a black hole, this field should
be absorbed, modifying its distributions of mass. This accretion of this exotic mass has been
interconnected at the case of primordial black holes, suggesting a possible mechanism for the
formation of supermassive black holes.

By using a quasi-stationary approach, we consider the mass evolution of Schwarzschild
black holes in the presence of a nonminimally coupled cosmological scalar field. The mass evolu-
tion equation is analytically solved for generic coupling, revealing a qualitatively distinct behavior
from the minimal coupling case. In particular, for black hole masses smaller than a certain critical
value, the accretion of the scalar field can lead to mass decreasing even if no phantom energy is
involved. The physical validity of the adopted quasi-stationary approach and some implications
of our result for the evolution of primordial and astrophysical black holes are discussed. More
precisely, we argue that black hole observational data could be used to place constraints on the

nonminimally coupled energy content of the universe.



viii

Indice

[Agradecimentos| iv
[Resumol vi
[Abstract] vii
[Lista de Figuras| Xi
1
(1 Expansao acelerada do universo| 3
(1.1 Ewvidencias experimentais para expansao aceleradal . . . . . . . .. ... ... ... 3
(.2 Modelo ACDMI . . . . . . . . 4
[1.2.1 A Constante Cosmological . . . . . .. ... .. ... ... ... . ..... 4

[1.2.2 Estruturas Causais . . . . . . . . . . . 6

[1.2.3  Problemas com a constante cosmological . . . . . ... ... ... .. ... 11

(1.3 Quintessencial . . . . . . . . ... 11
(L4 Phantoml. . . . . . . . . e e 12
(1.5 Gas de Chaplygin| . . . . . . . . . . . . 13

2 Modelos de Quintesséencial 14
[2.1 Equacoes de movimento| . . . . . . . . ... 14
[2.2  Acoplamento minimo| . . . . . . . ... 19
2.3 Acoplamento nao minimo| . . . . .. . ... 19

[3 Distribuicao de Massa na vizinhanca de um buraco negro| 23
[3.1 Acrecao e evaporacao de matéria] . . . . . ... ..o 23
[3.2  Buracos Negros permeados por um fluido perteito| . . . . . . . .. ... ... ... 25
[3.3 Buracos Negros permeados por um campo escalar| . . . . . .. .. ... ... ... 27
[3.4  Acrecao de massa por campo escalar minimamente acopladol . . . . . . . ... .. 29
[3.4.1 Acrecao do campo| . . . . . . ... 29

[3.4.2 Taxa de variacao total damassal. . . . . . .. ... ... .00 31

[4 Acrecao de massa por campo escalar nao minimamente acoplado| 33
4.1 O campo na regiao do horizonte de eventos| . . . . . . . . . . . .. ... ... ... 33
4.2 Aevolucao demassal . . . . . . . ... 35

4.2.1 Acoplamento linear - F'(¢) =1+&¢ . . .. ... ... ... ... .. ... 37




INDICE

ix

K4.2.2  Acoplamento nao linear - F (¢) =1+&p7 . . . . . . ... ... ... ...
4.2.3  Acoplamento exponencial - F (¢) =% . . . . . . ... ... ... ...

[4.2.4  FEra da radiacao e era da matérial . . . . . ... ...

[> Consideracoes finais e Perspectivas futuras|

(A Apendice]

[Referéncias]

48
54
o8

62

64

70



Lista de Figuras

(1.1 Distancia comovel através do tempo.| . . . . . . .. . ... 9
(1.2 Distancia comovel através do tempo conforme.| . . . . . . . . ... ... 9
(1.3 Distancia propria atraves do tempo.|. . . . . . .. ... 10
2.1 Espaco de fase (¢, H)|. . . . . . . . . 20
[2.2  Potencial Efetivo em funcao do campo| . . . . . . ... ..o 21
[2.3  Parametro w no tempo| . . . . . .. .. 22
[3.1 Evolucao de um buraco negro ignorando a evaporacaol. . . . . . . . . . . .. ... 30
[3.2  Evolucao da massa de um buraco negro em relacao a massa critica.| . . . . . . . . 30
[3.3  Evolucao de um buraco negro com evaporacao de matérial. . . . . . . ... .. .. 31
[3.4 Evolucao de um buraco negro em relacao a linha critical . . . . . . ... ... ... 32
4.1  Evolucao de massa sem o termo de radiacao Hawking| . . . . . . ... ... .. .. 38
4.2  Evolucao de massa em relacao a linha critical . . . . . . . . . ... ... ... ... 39
[4.3  Distribuicao total da massa para acoplamento linear|. . . . . . . . ... ... ... 40
4.4  Solucoes da taxa de variacao total de massa variando & . . . . . . . . .. ... .. 41
[4.5  Distribuicao de massa sem o termo de radiacao Hawking, para ¢, = C7 + Cot| . . 42
4.6 Distribuicao de massa em relacao a linha critical . . . . . . .. .. ... ... ... 43
[4.7  Solucoes de acrecao de massa variando & . . . . . . .. ... 44
4.8 Distribuicao total damassal . . . . . . ... 44
[4.9  Solucoes da taxa de variacao total de massa variando & . . . . . . . . ... .. .. 45
[4.10 Distribuicao de massa sem o termo de radiacao Hawking relativa a linha critica,

para ¢ = C1 + %| ................................... 46
4.11 Solucgoes de taxa de variacao de massa, variando &, com ¢, = Cy + % ....... 46
4.12 Distribuigao total da massa, com ¢, = Cy + % ................... 47
[4.13 Solucoes de taxa de variacao total da massa, variando &, caso 2. . . . . . . . . .. 48

[4.14 Distribuicao de massa sem o termo de radiacao Hawking, com acoplamento nao

nearl. . . . . . e e e e e 50
[4.15 Distribuicao total da massa, com acoplamento nao linear| . . . . . . .. ... ... 51
[4.16 Evolucao da massa para acoplamento nao minimo, com ¢,, dependente do tempol 51
[(a) Do =Cr+Cotl . . o o oo 51
(D) Goe=Ci+ S| . ... 51
[4.17 Solucoes da massa variando &, para acoplamento nao minimo| . . . . . . . . . . .. 52
[(2) Do =C1+Cot] . . . . oo 52

[(b) P =Ci+S|. .. 52




LISTA DE FIGURAS xi
[4.18 Evolucao total da massa para acoplamento nao minimo, com ¢., dependente do |
tempo| . . . . e e e 53

|(a,) (Z)oo = Cl + Cgtl .................................. 53

(b)) b =Ci+ S . .. . 53

[4.19 Solucoes da massa com evaporacao, variando &, para acoplamento nao minimo| . . 53
|(a) ¢oo = Cl + Cgtl .................................. 53

(b)) G =Ci+ S| ... . 53

[4.20 Distribuicao de massa sem o termo de radiacao Hawking, com acoplamento expo- |
nenciall . . . . .. e 55

14.21 Distribuigao total da massa para F' (@) =¢e%?| . . . . . . . ... ... ... ... .. 55
[4.22 Evolucao da massa para acoplamento exponencial, com ¢, dependente do tempo| 56
[(2) Do =C1+Cotl . . . . oo 56

(b)) b =Ci+ S| . .. 56

[4.23 Solucoes da massa variando &, para acoplamento exponencial . . . . . . . ... .. o7
|(a) gboo = Cl + Ogtl .................................. 57

[(b) P =Ci+S|. .. 57

[4.24 Evolucao total da massa para acoplamento exponencial, com ¢,, dependente do |
TemMPO| . . . . e o7

|(a) ¢00 = Cl + Ogtl .................................. 57

[(b) P =Ci+S3|. .. . 57

[4.25 Solucoes da massa com evaporacao, variando &, para acoplamento exponencial| . . 58
|(a) ¢00 = Cl + Cztl .................................. 58

(b)) b =Cri+ S| . .. . 58




Introducao

A acrecao de matéria por objetos compactos massivos é um dos processos mais estudados
na relatividade geral [1]. Salpeter e Zeldovich foram os primeiros, em 1964, a propor que galaxias
e quasares poderiam obter parte de sua energia a partir de processos de acregao [2]. Desde entao,
estes processos de acrecao tém sido considerados como possiveis mecanismos de formacao dos
buracos negros supermassivos (SMBH) presentes no centro da maioria das galdxias ativas [3].

H4 grandes evidéncias da existéncia de buracos negros supermassivos (massa de até M >
10%My) no centro da maioria das galdxias, incluindo a Via Lactea. Os melhores resultados para a
nossa galdxia mostram M =~ 3 x 105M, [2], sendo que uma massa solar equivale a 1.9891 x 1033¢.
A origem destes buracos negros, ainda é incerta, no entanto, muitas teorias sao formuladas. Nao
se acredita atualmente que eles tenham se formado por evolucao estelar, o mais provavel é que
tenham crescido e aumentado sua massa lentamente. Uma possibilidade analisada é a de que
buracos negros primordiais podem ter dado origem aos SMBH [4-12].

Buracos negros primordiais (PBH) foram criados no final do periodo inflacionario e muitas
teorias tentam explicar sua formacao. Diversos processos fisicos podem ter levado a formagao
de PBH. Eles podem ter se formado a partir das pertubacoes, durante a transicao de fase da
equacao de estado, ou também através de defeitos topoldgicos.

A comparacao entre a densidade cosmoldgica algum tempo apds o Big Bang e a densidade
associada a um buraco negro mostra que um buraco negro primordial poderia ter massa da ordem
do seu horizonte de eventos no momento de sua formagao [13], ( M ~ % ~ 1100%253 (é) g). A massa
inicial apresenta ampla faixa de valores, aqueles formados no tempo de Planck (5,4 x 107%s)
poderiam ter massa da ordem da massa de Planck (2,2 x 107°g), e aqueles formados um segundo
ap6s o Big Bang poderiam ter massa de até 10° My, e se pudessem ser criados hoje, nao poderiam
ter massa inferior a 1M. E bastante improvavel que apos este instante PBH tenham se formado,
visto que isto teria afetado a nucleossintese primordial [14, 15].

Buracos negros com M < 10%g nao devem ser observados atualmente, pois podem ter
evaporado completamente por radiagdo de Hawking [16-18] e contribuir para o fluxo de raios
césmicos. J4 aqueles com M > 10" g poderiam produzir efeitos observdveis hoje [19], como efeito
de microlentes gravitacionais e poderiam também contribuir significativamente para quantidade
de matéria escura [20]. Se estes PBH se formaram com uma quantidade suficiente de massa
para nao evaporar completamente e a0 mesmo tempo absorveram matéria e energia em grande
quantidade, poderemos relacionar estes objetos ao buracos negros supermassivos observados hoje.

A parte esta questao, a partir da década de 90, fortes evidéncias observacionais acumularam-
se mostrando que o universo ¢ dominado por uma energia escura e passa por uma fase de expansao
acelerada [21-25], levando & introducao de novos graus de liberdade no cendrio cosmoldgico.

Um modo de descrever a energia escura seria usando um campo escalar. Estes modelos
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em cosmologia sdo chamados de Modelos de Quintesséncia [26-29]. Deste modo, consideramos
que o Universo é completamente preenchido por um campo quintessencial. Nas proximidades de
um buraco negro, este campo escalar sera absorvido e isto pode favorecer seu aumento de massa.

Nosso objetivo é mostrar que o acréscimo de massa no decorrer da vida de um buraco
negro primordial é algo relevante e nao pode ser negligenciado. Com isto, vamos analisar se
os buracos negros supermassivos de hoje podem ter sido os primordiais que absorveram muita
quintesséncia. Tentaremos assim, responder perguntas em trés assuntos diferentes. Usaremos
campo escalar ndo minimamente acoplado (como explicagdo para a energia escura) na regiao
do horizonte de eventos de um buraco negro primordial, justificando seu crescimento, levando a
formacao de um buracos negro supermassivo.

No primeiro capitulo, sera apresentada uma revisao sobre a questao da expansao acelerada,
discutindo os cosmoldgicos mais estudados na atualidade, apontando seus avancos e seus pontos
ainda obscuros. No capitulo seguinte discutiremos os modelos de quintesséncia com acoplamento
minimo e ndo minimo ao tensor de Ricci. No capitulo [3] estudaremos a acregao e evaporagao de
matéria feita por buracos negros na regiao do seu horizonte de eventos, verificando os casos de
acrecao de um fluido perfeito e de um campo escalar.

O estudo de acrecao de matéria por buracos negros, seja apenas um fluido perfeito ou ener-
gia escura na forma de campo escalar ja foi realizado, no entanto modelos de quintesséncia com
acoplamento minimo apresentam muitas restricoes enquanto modelo, indicando a necessidade
deste estudo com modelos mais completos. Assim, no capitulo[d] analisaremos detalhadamente a
taxa de variacao da massa da um buraco negro, considerando modelos de quintesséncia nao mi-
nimamente acoplado, com diversos tipos de acoplamentos e em tempos diferentes. Trabalhamos
em todas as situagoes com acrecao de matéria e energia por buracos negros de Schwarzschild,
solugoes das equacoes de campo de Einstein no vacuo, com simetria esférica, sem carga e sem
rotacao.

Adotamos as unidades naturais, 871G = ¢ = h = 1, com assinatura da métrica (— + ++).



1 Expansao acelerada do universo

Na procura pelas explicagoes da dinamica do universo, a forca gravitacional tomou papel
cosmolégico desde a época de Newton. Quando Einstein procurou elucidagoes para o universo,
procurou solugoes para um universo homogéneo, isotrépico e estacionario, mas esta solugao
mostrou-se nao ser a mais apropriada. Devido a natureza atrativa da forca gravitacional, as
galdxias poderiam cair umas sobre as outras, colapsando-se. FEinstein imaginou que deveria
existir uma forca repulsiva que compensasse a atracao gravitacional. Para garantir a solucao
que esperava, ou seja, um universo estacionario, introduziu um termo de pressao negativa sem
justificagao fisica, em suas equagoes de campo, denominado constante cosmoldgica. A prépria
visao de Einstein, este termo, por ser um artificio matematico, retirava a simplicidade das suas
equacoes.

Com as descobertas de Hubble sobre o movimento de recessao das galaxias, ou seja, um
universo em expansao, a repulsao imaginada por Einstein tornou-se desnecesséaria e o termo da
constante cosmoldgica foi retirado de suas equacoes. Apesar disto, neste mesmo periodo, W. de
Sitter, encontrou uma solugao para a teoria modificada de Einstein (com a constante cosmoldgica)
que previa um deslocamento para o vermelho proporcional a distancia e coerente com o Principio
Cosmoldégico.

Em 1998, as pesquisas em SNe la encontraram indicios de uma aceleragao da expansao
do universo. Esta expansao nao esta prevista no Modelo Cosmoldgico Padrao e, a partir desta
descoberta, comecgaram a surgir propostas de satisfazer os modelos existentes ou mesmo a criacao
de outros [22].

1.1 Evidéncias experimentais para expansao acelerada

A principal evidéncia de que o universo estd atualmente acelerando estd relacionada a
observacao das distancias da luminosidade dos altos desvios para vermelho das Supernovas la.
As pesquisas em SNe Ia, tentando estabelecer uma extensao do diagrama de Hubble, mostraram
que o parametro de desaceleracao é negativo (go < 0), ou seja, que o universo passa por uma fase
de aceleragao [22].

Em 2003, resultados das observagoes do WMAP (Wilkinson Microwave Anisotropy Probe),
juntamente com as pesquisas de SNe Ia, estabeleceram que 2y = 1,02 £ 0, 02, para um universo
espacialmente plano [30]. O parametro de densidade total conta com contribui¢oes de matéria
barionica, Qp = 0.044, e radiacdo (neutrinos, fétons, etc), Qr = 4,76.107° [30]; e estas con-
tribuicoes nao sao suficientes para aproximar o parametro de densidade deste valor, ou seja,
existe um déficit de matéria e energia.

Paralelo a isto, estudos das velocidades de rotagao das estrelas ao redor do ntcleo galatico
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em funcao da distancia radial ao centro galatico resultam em relagoes incompativeis com o
conteido de matéria observavel. E os melhores resultados para a densidade de matéria do
universo apresentaram (2, = 0.287002. Supde-se entdo, que existe uma matéria nio visivel a
qual se denomina matéria escura e que deve estar simetricamente distribuida em toda a extensao
da galdxia, com €, ~ 0.23 [23].

Com isto, vemos que ainda existe um componente desconhecido, responséavel pelos restantes
2 = 0.73 [23]. Uma forma de resolver este problema é introduzir uma componente energética
que seja responsavel por esta possivel aceleracao.

O modelo cosmolégico mais utilizado atualmente é o modelo ACDM, por ser uma extensao
do antigo modelo cosmolégico padrao, diferenciado pelas evidéncias de matéria e energia escura.
No entanto, como veremos adiante, existem muitos pontos obscuros neste modelo e outros tém
sido criados de modo a satisfazer estes pontos. Vamos apresentar brevemente alguns destes
modelos, analisando os pontos positivos e negativos de cada um.

1.2 Modelo ACDM

Uma forma de explicar esta energia faltante, chamada energia escura, é relacioné-la a
constante cosmoldgica, colocada adequadamente de volta nas equagoes de Einstein. A energia
escura seria uma energia que nao emite luz, exerce pressao negativa e é aproximadamente ho-
mogénea, de modo a garantir a aceleracao. Com isto, temos um novo modelo cosmoldgico, o
modelo ACDM (A Cold Dark Matter), que descreve o universo com matéria escura fria, ou seja,
nao relativistica, e constante cosmoldgica A.

Como evidéncia da existéncia da constante cosmoldgica temos também a comparagao entre
a idade do universo ¢y e a idade das estrelas mais antigas no universo ¢.. Obviamente espera-se
que tg > t.. No entanto, isto nao ¢ satisfeito para um universo plano formado de matéria. Esta

relacdo somente ¢é satisfeita adicionando a constante cosmoldgica [22].

1.2.1 A Constante Cosmolégica

A explicacgao fisica associada a constante cosmoldgica, seja ela matéria ou energia, deve
ser uma distribuicao uniforme, independente das inomogeneidades da distribuicao da matéria
ordinaria. Se isto acontecesse, ela poderia afetar a interacao gravitacional, impossibilitando a
existéncia de sistemas gravitacionais tal como se conhece.

As Equacoes de Einstein, reintroduzindo a constante cosmolégica, em unidades de Planck
[31-33], sao

R, — %gw,R + Agu =87GT,,. (1.1)

onde R,, e R sao o tensor e escalar de Ricci, respectivamente, 7T, ¢ o tensor de energia e

momento e g,,, ¢ o tensor métrico.
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O escalar de Ricci € obtido da contracao do tensor de Ricci, R = g"”R,,,, e o tensor de

Ricci é uma contragao do tensor de Riemann,

Rﬁ/\y = &,FZA — I, + T\, — FZVF’;U, (1.2)
ou seja,
R, =Ry, =01, — 0,1, + 17 Iy, — T, 1%, (1.3)
onde 1
= 59”0 {07g + 090 — Ougn} (1.4)

é chamado de conexao afim e assume o papel do campo gravitacional; e o tensor métrico (entidade
geométrica) ¢¥° faz o papel de um potencial gravitacional (entidade fisica), o que d4d a idéia de
geometrizacao da gravitacgao.

Para que a forma das equagoes seja preservada, pode-se aglutinar o termo da constante
cosmoldgica no termo de fonte,

1 ~
Ry, — égWR = 87GT,,, (1.5)
definindo um novo termo de fonte A
~ g#l/
T, =T,, — = 1.6
K Y & (1.6)

No qual o tensor de energia e momento toma a forma

T;w - ﬁg,uu + (ﬁ"" ﬁ) Uy Uy, (17>

onde p é a pressao, p ¢ a densidade e u, ¢ o componente radial da 4-velocidade. O novo termo

de pressao fica

~ A
ey 1.8
P=p— g m=P—P (1.8)

e o termo de densidade fica A
p=p+ o m=pPTra (1.9)

A equacao de fluido com constante cosmoldgica fica

pa +3H (pa +pa) =0, (1.10)

sendo pp constante, de modo que
pa+pa =0, (1.11)

Substituindo a equagao de estado
p = wp, (1.12)

mostrando que w = —1.
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A solucao geral, homogénea e isotrépica das equacgbes de campo originais de Einstein
foi obtida por Friedmann. As equagoes de Friedmann descrevem a dinamica do universo e sao
obtidas calculando as componentes espaciais e temporais das equacoes de Einstein, com

a a a a a
As equagoes de movimento sao
H? = %ﬁ, (1.14)
3
e
871G
a2 = WTp(LQ (1.15)
sendo H o parametro de Hubble, dado por
1 (t
() = 41U (1.16)

onde a(t) é o fator césmico de escala fornecido pela relagao
r(t)=a(t)r(t), (1.17)

em que ty é o tempo de referéncia, podendo ser o tempo presente, e r (ty) = ¢ ¢ a distancia no
tempo presente.
Substituindo a equagao [I.14] em [1.15] obtemos

. AnG
a= —WT (p+3p) a, (1.18)
onde a densidade critica é dada por
3 A
e =—— H*— =) . 1.19
Pe= 8nG ( 3) (1.19)

Deste modo, a densidade critica é menor que a densidade critica para um universo sem constante

cosmologica.

1.2.2 Estruturas Causais

A equacao de Friedmann em termos das densidades, tal que p = pys + pa é dada por

8rG ro\3 ro\3(1+w)
2 _ =0 0
= 3 (pMO (7“) TP (r) ) ’ (1.20)

onde pyr oc a3 e pp oc a3 Multiplicando por (a?/a2), obtemos

1
. 7o 3 roy (143w)] 2
i(t) = aotto o, (2" + s (2] (1.21)
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que pode ser rescrita em funcao dos parametros de densidade [34],

1 3
a(t) = agHy [1 + Quy (— - 1> + Q4 (a® — 1)} , (1.22)
a

Lembrando que €2 = Q3 + Qp = 1.

Para o universo plano, homogéneo e isotréopico, ds = 0,

/OTO drz/oto%, (1.23)

As estruturas causais de um espago-tempo determinam como os eventos se desenvolvem em
relacao a causa e efeito. Um conceito importante em Relatividade é a causalidade, ou seja, a
nocao de que um acontecimento nao pode anteceder sua causa. Estes conceitos nos permite

descrever regides causalmente conectadas ou ndo. As estruturas causais sao [34]:

1. Cone de Luz passado

Cada evento no universo define um cone de luz. A parte interior do cone descrevem
linhas de universo do tipo tempo, ou seja, uma regiao do espago tempo na qual velocidade
da luz é maior que qualquer outro objeto, e os eventos dentro desta regiao sao causalmente
relacionados.

A parte exterior ao cone temos uma regiao com linhas de universo tipo espaco, na
qual a velocidade da luz é menor que de outros objetos, o que viola um dos principios da
relatividade geral, assim, dois eventos nesta regiao sao separados por um intervalo tipo

espaco e nao tém relacao causal.

A linha delimitadora entre as duas regioes é uma linha de universo tipo luz, onde objetos

se movem na velocidade da luz, como por exemplo fétons.

Para visualizar o cone de luz, escrevemos a equagao com os limites apropriados,

to dt/
XCL(tem) = C[ m, (124)

onde x é a coordenada comovel associada a uma galaxia observada hoje, ty é o tempo atual

e tem € 0 tempo no qual um sinal luminoso foi emitido.

2. Horizonte de Particulas

As linhas de universo sao o caminho construido por eventos. O horizonte de particulas
esta relacionado com a observacao de linhas de universo. Ele marca o tamanho do nosso
universo observavel, a distancia até o mais distante objeto que poderemos ver em qualquer
tempo. Assim, em cada momento, o horizonte de particulas é descrito por uma esfera em

torno de um observador, cujo raio ¢ igual a a distancia do objeto mais longe que se pode
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observar, ou seja, o horizonte de particulas se encontra a uma distancia igual ao raio do

universo observavel.

O horizonte de particulas pode ser construido resolvendo
t /
dt
t) = — 1.25
) = [ (1.25)

3. Horizonte de Eventos

O horizonte de eventos esta relacionado com a observacao dos eventos e estabelece
uma divisao entre os eventos que sao observaveis num momento em algum instante e os
que nunca serao observados, por nunca se encontrarem no interior de algum cone de luz

passado do observador.

A distancia do horizonte de eventos é definida pela distancia que os fétons percorreram
desde o inicio do universo durante o tempo de vida do universo e pode ser obtido por

tfinal dt/

4. BEsfera de Hubble

A esfera de Hubble é a distancia além da qual a velocidade de recessao das galaxias
excede a velocidade da luz. Isto nao viola a Relatividade porque o movimento nao é em
qualquer referencial inercial, considerando a expansao do universo. Assim, ela nao define
um horizonte, pois podemos observar galaxias além deste limite. A equagao permite
a visualizacao da esfera de Hubble.

Xue(t) = @l (1.27)

Podemos agora analisar a distancia comovel D = ryy, através do tempo e do tempo
conforme dr = %, como pode ser visto nas Figuras |D |D [34]. Fazendo

dt da
r(t)  a(t)a(t) (1.28)
D=c ;—;[1+QM (2—1)4—9,\(@2—1)]_2 (1.29)

t:/%|:1+QM(é—1).+QA(a2—1):| (1.30)

0

NI

A distancia prépria é dada por D = r (t) x e pode ser analisada na Figura (1.3)).
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Figura 1.1: Distancia comével através do tempo, com ¢ = 3,0.10°km /s, Hy = 70km.s~1. Mpc™,
Qr=0,7e Q) =0,3. A linha verde representa o horizonte de eventos; a linha azul, a esfera de
Hubble; a linha laranja, o cone de luz passado; e a linha roxa, o horizonte de particulas.

60 [ 1
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Figura 1.2: Distancia comdvel através do tempo conforme, com ¢ = 3,0.10°%km/s, Hy =
70km.s~ . Mpc™, Qp = 0,7 ¢ Qu = 0,3. A linha verde representa o horizonte de eventos;
a linha azul, a esfera de Hubble; a linha laranja, o cone de luz passado; e a linha roxa, o hori-
zonte de particulas.
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T R S Y \‘\\/

-60 -40 -20 0 20 40 60

Distancia Propria (109anos—l uz)

Figura 1.3: Distancia prépria através do tempo,com ¢ = 3,0.10°km/s, Hy = T0km.s™'.Mpc™?,
Qr=0,7e Q) =0,3. A linha verde representa o horizonte de eventos; a linha azul, a esfera de

Hubble; a linha laranja, o cone de luz passado; e a linha roxa, o horizonte de particulas.

Vejamos a Figura , o horizonte de particulas é maior que o horizonte de eventos.
Embora nao possamos ver do objetos além do horizonte de eventos, podemos ver galaxias além
dele pela luz que elas emitiram tempos atras. Estas galaxias estavam dentro do horizonte de
eventos, mas num universo em expansao, hoje elas estao fora, mas estavam dentro do horizonte
de eventos quando emitiram luz e por isto podem ser vista. Elas serao vistas para sempre. Se o
universo nao estivesse em expansao elas nunca sairiam do horizonte de eventos.

Entendemos nos graficos também porque a esfera da Hubble nao é um horizonte. Ela
se encontra dentro do horizonte de particulas e por isto objetos localizados dentro da esfera
sao obrigatoriamente observados, mas regioes fora da esfera também podem ser observados.
Localizando dois objetos, um dentro e outro fora da esfera de Hubble, que emitem ao mesmo
tempo um sinal luminoso. Como a distancia comével pode ser escrita como D = ¢/H, e o
parametro de Hubble, H = 1/t, o objeto fora da esfera estd a uma distancia maior, entdo deve
estar, necessariamente com uma velocidade de recessao maior do que a velocidade da luz.

Todos os sinais observados hoje foram emitidos quando o objeto emissor estava dentro do
cone de luz e hoje esta obrigatoriamente dentro do horizonte de particulas, caso esteja também
dentro do horizonte de eventos seus sinais emitidos hoje serao vistos eventualmente, no entanto,
se estiverem fora, os sinais emitidos hoje nunca serao visto, ou seja, os sinais observados desta
fonte serao os sinais emitidos até o momento em que saiu do horizonte de eventos e passaremos
a observa-los no momento em que este objeto adentrar o horizonte de particulas. Em qualquer
instante o cone de luz passado estd dentro do horizonte de eventos, para t tendendo ao infinito
os dois coincidem.

Pelo formato da curva do cone de luz, vemos que na origem do tempo, todos os pontos
no universo estavam causalmente conectados, o que explica a isotropia da radiagao cosmica
de fundo, provenientes de regioes nao conectadas atualmente devido ao periodo de expansao
acelerada. Comparando o formato do cone de luz na Figura [1.3| com o formato na Figura [I.1],

vemos que todos os pontos comdveis do universo estavam em um ponto fisico somente, o que
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explica sua conexao causal.

A Figura[l.2] vemos que no futuro, o horizonte de eventos, cone de luz e esfera de Hubble
coincidirao na origem, isto mostra que devido a expansao acelerada, somente eventos ocorridos
a distancias comodveis cada vez menores os atingirao, ou seja, nosso universo observavel esta
diminuindo. Caso a expansao acelerada cesse, poderemos ver eventos emitidos no futuro de
objetos cujos eventos nao observamos hoje, exatamente como ocorreu no periodo inflacionario.

Num universo estaciondrio, nao faz sentido a distingao entre as estruturas causais. Se
o universo fosse estacionario desde o principio, todos os eventos ocorridos em qualquer tempo,
sempre seriam visto, no entanto, se ele se tornasse estacionario hoje, os horizontes coincidiriam

com o cone de luz futuro, pois estariam limitados somente pela velocidade da luz.

1.2.3 Problemas com a constante cosmologica

Existem dois principais problemas com a representacao de energia escura pela constante
cosmolégica. Um deles consiste no proprio valor da constante. A teoria quantica de campos
prevé py ~ 10%kg/m3, para o periodo inflacionério, no entanto, o valor obtido atualmente é
pa ~ 1072kg/m3, diferindo em mais de 120 ordens de grandeza.

Outro dificuldade no modelo é entender por que a constante estaria dominando a energia
do universo justamente agora, ou seja, porque a densidade de energia da constante cosmologica
tem hoje a mesma ordem de grandeza que a densidade de energia da matéria. Este problema
é chamado problema da coincidéncia. Isto requer um enorme ajuste fino para fazer a constante
cosmoldgica dominar a energia do universo justamente agora, visto que, ela nao varia no tempo

[35).

1.3 Quintesséncia

Podemos substituir a constante cosmoldgica por um componente dinamico, com equacao
de estado diferente de barions, neutrinos, fétons e matéria escura. Este quinto componente é
denominado quintesséncia, cuja equacao de estado é a razao entre pressao e sua densidade de
energia [26].

A maioria dos modelos de quintesséncia mostra que —1 < w < 0, mostrando a expansao
acelerada do universo. Diferentemente da constante cosmolégica, a pressao e densidade de energia
evoluem no tempo. Componentes espacialmente homogéneos independentes do tempo sao de-
pendentes de gauge, assim, se a quintesséncia é dependente do tempo, ela é necessariamente, por
covariancia geral, um componente inomogéneo, com flutuagoes.

Este novo componente é descrito por um campo fundamental, que pode ser escalar, vetorial
ou tensorial, e que interage com a matéria apenas gravitacionalmente.

Os modelos de quintesséncia construidos com potenciais adequados, mostram coeréncia

com os dados do CMB (Cosmic Microwave Background), ou seja, apresentam mesmo valor da
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equacao de estado hoje e valor diferente da obtida em qualquer tempo passado. Estes modelos
mostram um comportamento atrator, ou seja, as solucoes sao independentes de condigoes iniciais,
mas dependentes do que acontece no universo, por exemplo, na era dominante pela radiacao, o
campo de quintesséncia se manifestava como qualquer outra radiacao, mostrando que nem sempre
a energia escura foi dominante. Assim, o universo passou de uma fase dominada pela radiacao,
para um dominada pela matéria e atualmente passa por uma fase dominada pela quintesséncia.
Estas solugbes atratoras foram denominadas por Steinhardt de solugoes trackers [27] e resolvem
o problema da coincidéncia.
Modelos de quintesséncia minimamente acoplados a gravidade tem acao dada por

S = /d4x\/—_g{R — 0,00" — 2V (¢)}. (1.31)

Para potenciais que diminuem lentamente de um grande valor do campo para um valor
préximo de zero, temos um comportamento de inflagao.
Com isto, os campos de quintesséncia sao uma possivel resposta ao problema da energia
escura, explicando a curvatura nula e a expansao acelerada do universo.

Discutiremos detalhadamente estes modelos no préximo capitulo.

1.4 Phantom

A constante cosmoldgica corresponde a um fluido com equacao de estado constante, w =
—1, entretanto, dados observacionais levam a crer num valor de w oscilante no tempo. Modelos
de quintesséncia, em geral, apresentam w > —1, o que restringe as possibilidades mediante as
observagoes.

Modelos tipo phantom respondem o outro lado da equacao de estado, eles apresentam
w < —1, abrindo uma vantagem em relagao a estes modelos de quintesséncia [36].

Phantom sao modelos de quintesséncia com termo de energia cinética nao canonico. A
energia de phantom tem densidade de energia crescente com o tempo, positiva, p, > 0, mas
pressao negativa, p, + p, < 0, o que nos fornece w < —1. A acao de um campo tipo phantom
minimamente acoplado a gravidade é dada por

S= / dan/=g {R + 0,60"6 — 2V (8} (1.32)

onde o sinal do termo de energia cinética é oposto dos modelos de quintesséncia para um
campo comum e este termo negativo viola as condigoes de energia.

Ao contrario dos modelos de quintesséncia, os phantom evoluem através do maximo do
potencial para um valor do campo préximo de zero, levando a um aumento da densidade de
energia. Em geral, os potenciais exponenciais sao usados nestes modelos, pois fornecem uma
equacao de estado w < —1.
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Embora phantom sejam descritos como campo cosmolégico classico, de modo a resolver
o problema de violagao das condigoes de energia, estes campos sofrem instabilidades quanticas
ultra violeta. Como o potencial é ilimitado por baixo, o vacuo se torna instavel [37,38].

1.5 Gas de Chaplygin

Uma outra forma de explicar a expansao acelerada e a energia escura utilizando um fluido
é através do Gés de Chaplygin [39,40].

O modelo de Gés de Chaplygin foi derivado do modelo generalizado de D-branas, e propoe
uma unificacao entre matéria e energia escura, e é caracterizado por uma equacao de estado dada
por

p= - (1.33)

onde A é uma constante positiva. Esta equacao de estado leva a um componente que se com-
porta como particula no estégios passados do universo e como constante cosmoldgica no presente,
levando a expansao acelerada. Existe também uma situacao intermediaria, na qual, este compo-
nente se manifesta como uma mistura de constante cosmoldgica e matéria.

Podemos descrever este fluido também como um campo escalar homogéneo dependente
do tempo e um potencial adequado, de modo a construir as equagoes de movimento.

Embora a interessante possibilidade de unificacao dos dois contetidos exdticos no mesmo
modelo, o Gas de Chaplygin apresenta problemas em explicar recentes dados observacionais,
como o espectro de poténcia do CMB [35]. Este problema pode, no entanto, ser resolvido no
modelo de Géas de Chaplygin generalizado, no qual a equacao de estado é fornecida por

p=—2 1.34
= (1.34)

onde a é um valor muito restrito, 0 < o < 1, o que também impoe vinculos ao modelo.
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2 Modelos de Quintesséncia

Modelos de quintesséncia sao aqueles que descrevem a energia escura como um campo
escalar. Um campo escalar é uma fungao continua no espago-tempo, ¢ (x*), que descreve uma
particula de spin nulo [41,42], cuja densidade de Lagrangiana é dada por

L= / P/ gL (6, 6,) (2.1)

onde ¢, = 0, = a%' A acao é dada por

S = /Ldt = /d4x\/—g£ (D, 0.,) - (2.2)
Calculando a variacao da acao, 4.5, obtemos a equacao de Euler-Lagrange,

oL oL 0

Para modelos de quintesséncia com tensor de Ricci acoplado a gravidade, a acao tem a

forma

S = / d'oy/=g {F () R — 0,60"6 — 2V (§)} (2.4)

onde V (¢) é o potencial de auto-interacao e F' (¢) caracteriza o tipo de acoplamento. Quando

F =1, temos um acoplamento minimo [43].

2.1 Equacoes de movimento

Para obter as equacoes de movimento aplicamos o principio de minima agao, 05 = 0,

[ e SVEGIF (6) R - 0,00 — 2V (0)] = | F(6)SR-+3F (6) R—3(0,00"0) ~25(0)

051 555 553 554 555
(2.5)
Vamos obter separadamente os termos:
1. 05y = [d*z6\/=g[F (¢) R — 0,00"p — 2V ()]
Calculando primeiramente a variacao em /—g,
N 1 N -
W=g=0(g7) =5 (=97 (=7, (2.6)
lembrando que g = —detg,,, e que para uma matriz M, tr (M~16M) = 5%;3\/[]”)7
_ _ , 1 )
0(=97") = —g 'tr (gudg") = =5 9u 09", (2.7)

2
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e’
1
OV=9 = =5V =99u09", (28)

este termo fica entao
1 1
68 = — / d4x\/—g5g“”§gﬂuRF (¢) + / d4x§\/—ggw5g“” (0,00t p +2V (4)), (2.9)

mas o tensor de Einstein é dado por

1
GHV = R‘UJ/ - égﬂyR, (210)

assim,

1
051 = /d41:\/—gég“” (F(¢)Gu — F(¢) Ruw) + /d4x§\/—ggm,59"” (000" + 2V (9)) .
(2.11)
2. 05y = [d*a\/=gF (¢) R
Usando as equacgoes e , podemos obter as variagoes do escalar de Ricci e do tensor

de Riemann, tal que,
OR = g"0R,, + R,,09" (2.12)

R?

0w = 0,007, — 05010, + §T%, %, — o7, 5+ T9,6T%, —T7,6T% (2.13)

E a variacao da conexao afim fica,

1 1
51«){# - 5591/0 {8>\guu + a,ug)\u - azlguk} + Egucr {a)\(;g;w + audg)\u - auaguk} ) (214)
mas 0 (gx,g”°) = 0, assim,
909" + g™ 0gx, = 0, (2.15)

multiplicando ambos os lados por ¢**,
59”7 = —g"* 9" 5gx,- (2.16)

Usando estas consideracoes na variacao da conexao afim,

1

1
6F§u = _igu)\gpa(sg/\p {a)\g;u/ + aug/\u - 8,/9“/\}_‘_591/0 {a)\ég;w + auég)\u - ayégu)\} . (217)

A variagao no tensor de Ricci fica,

SR, = 0R),, = 0,00, — O\, (2.18)

LAV uv?



2. MODELOS DE QUINTESSENCIA 16

que é chamada de identidade de Palatini,

1 1
5RW = §vy {gApvuégAp + V0g,, — V,)(Sgw}_§vA {gkﬂv,,(sgup + V.00, — Vpcsgw,} —

1
§g>\p {vVvuégAp - Vpr(Sgp)\ - VAV,A;ng + VAVPCSQIW} . (219)

Desse modo,

55 / d*z/—gF (¢) gApg’“’ {VuV,W695 — ViV 09,0 — VaV,09u, + VaV 09, +

+ / d*z/=gF (¢) R,,6g". (2.20)

Lembrando que ABV,V,C =V, (ABV,C)—(V,C) (V,AB), o primeiro termo da integral
fica,

/ d*z/=gF (¢) g g""V,V .65, = / d*zV, (V=9F (¢) ¢ 9"V .695,) +

- / d*z (V,o95) (Vu/—gF (¢) g¥g") . (2.21)

Integrando sobre todo espaco, do teorema de Gauss,

7{ VH/=gdS, — / V=g, (2.92)

vemos que a integral é igual a zero. utilizando a equagao ([2.16]),

3.5y = / d'ev/=g (69" V Vo F (9) = 909" g"*V . VAF (9)) + / d'z\/=gdg" F (¢) R
(2.23)

3. 0S5 = [dz/=gdF (¢) R

A variagao em F' s6 depende de ¢, assim,
693 = /d4x\/ —5¢R (2.24)

4. 054 = — fd4$\/—_95 (8M¢6“¢)

Escrevendo em termos de derivada covariante 0% = g**0,,

054 = — / d*z/=g6 (9" 0,90,¢) = — / d'x/—g69" 0,00,¢ — / d'x/—gg" 5 (8,00,0) .
(2.25)
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Calculando cada variacao separadamente,

Sy = —/d4x\/—gég“”8ﬂ¢8u¢ — /d%\/—g {g“”a 0.00,) g’ (0.60,) } 6 (Oud)
O O
(2.26)
assim,
6S) = — / dhey/=gbg" 0,00, — / d'ey/=gg"20,6 (9,9) (2:27)
mas 0 (0,¢) = 0, (d¢) e este termo fica
051=— / d'ey/=909"'V PV 6 + / d'1\/=929""V N ,$56. (2.28)
5. 055 = — [d*x\/=g20V (¢) R
A variacdo em V também depende somente de ¢, de modo que,
o5 = - [ diay=g25 00 (2.29)

Reunindo todos os termos,

08 = /d4l’v _gégwj {FGMV + Guv (vACbVACb +2V — QQIWV;AVVF) - VMVVF - Vu¢vu¢} +

oF oV
+ /d4x\/—g<5¢> —R+2¢"V,V,0—2— 7 =0. (2.30)
99 o¢
As equagoes de Einstein obtidas sao
FGo =V, 6V, — gzﬂ (Vs6V26 + 2V — 20F) + V,V, F. (2.31)
E a equagao de Klein-Gordon,
1
O¢p — V' + §F'R =0, (2.32)
onde V' e F’ denotam derivada em relagao a ¢ e = ¢V ,V,.
Considerando um universo isotrépico e espacialmente plano,
ds® = —dt* + a® (t) (do* + dy* + d=°) . (2.33)

os elementos nao nulos da conexao afim e do tensor de Ricci sao

Fij = Egijaroj = ?5]‘7 (2-34)
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a  2a*\ 3a
Rij = (— + —) 5;»,R00 = —.
a a a

O escalar de Ricci e o tensor de Einstein sdo

)
a a

2.. ) A
Gij = — (—“ + %) 5,

a

onde 0 é o componente temporal e 7, 7 os componentes espaciais.

(2.35)

(2.36)

(2.37)

(2.38)

Podemos agora obter os componentes espaciais e temporais das equagoes de Einstein.

O componente temporal das equacoes de Einstein obtidas fornece o vinculo de energia,

-2
3H(FH—F’¢):%+V(¢),

e os componentes espaciais fornecem a equacao de Friedmann modificada,

3
2

. .2 .
—2<F+§F’2>H:3(F+2F’2)H2+1(1+F")¢ ~V—F (V' + Ho).

E a equacao de Klein-Gordon pode ser reescrita como

. G(eeH),
¢+T¢+ crr (@) =0,
onde ]
G (¢, é) H) = 38R H + 5 (1+3F") 5,
1
(@) = E(FV’ —2F'V)
¢ 3
Fi(¢) =F+ 3 (F'(9)".

onde (b denota a derivada em relagao ao tempo.

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)
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2.2 Acoplamento minimo

Modelos de quintesséncia com tensor de Ricci minimamente acoplado a gravidade sao
aqueles com F (¢) = 1. Substituindo a equagao de Klein-Gordon temos

O+3Hp+ V' (¢) =0. (2.45)

E o tensor de energia-momento, considerando que G, = T}, fica

T = 060,60 — 22 (060X +2V) . (2.46)
A densidade e pressao sao obtidas dos componentes temporal e espacial,

-2

po =Ty = % +V (), (2.47)
e
¢2
Po=Ti=% V(). (2.48)
A equacao de estado é dada por
wy = L2 (2.49)
Pe

desse modo,

2
¢ —2V(9)

W = > -

¢ +2V (¢)

No caso de gzﬁ.2 < V (¢), encontramos wy = —1, e no caso de <;§2 > V (¢), obtemos que

wg = 1, assim, limitamos os valore que w, pode ter

(2.50)

—1<wy <1 (2.51)
O grande interesse na obtencao de w estd no fato que este pode ser determinado ex-
perimentalmente. Observacoes de SNe Ia estabelecem w = —1.027013 [43]. Se as observacdes

confirmarem w < —1, todas as descricoes de energia escura com base em constante cosmologica
(w = —1) [30] ou campos minimamente acoplados serao descartadas.

Precisamos entao modelar o acoplamento de modo a satisfazer estes vinculos.

2.3 Acoplamento nao minimo

Pode-se construir modelos a partir de campos com acoplamento ndao minimo [44-55].
Vamos utilizar o acoplamento F (¢) = 1 — £¢?, € < 0, considerando um potencial exponen-
cial [43,56-62], V (¢) = Ae™7?.
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A partir das equagoes de movimento, verificamos os pontos fixos para o modelo de acopla-

mento, onde ¢ = ¢ e H = H, tal que, utilizando as equacdes de Friedmann,

o —; (1 F4/1+ Z—é) (2.52)
e o V(5)
H2 = 3F (02) (2.53)

A Figura (2.1) mostra o comportamento de ¢ e H para algumas condigdes iniciais,

30
25
2.0%
H 15
1.0
05

0.0¢
-8

Figura 2.1: Espago de fase (¢, H), para o caso —§ = A =0 = 1.

Vemos entao, que embora o potencial exponencial usado no modelo nao possua pontos fixos,
o potencial efetivo apresenta, sendo ¢_ seu valor minimo, ou seja, o ponto atrator. Este com-
portamento atrator indica a independéncia de condicoes iniciais, mostrando que este modelo de
quintesséncia é um bom modelo. Para solucdes ¢ > ¢, as solucoes se afastam, como pode ser

visto na Figura (12.2)).
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Figura 2.2: Potencial Efetivo em fun¢ao do campo, para o caso —§{ = A =0 = 1.

Assumindo G, = Ty, encontramos a densidade e pressao,

e
pe = SH>. (2.55)
A equacao de estado fica
21

que esté de acordo para uma expansao acelerada quando H > 0. A Figura mostra as curvas
de w (t) para algumas solugdes apresentadas da Figura .
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05 -

0.0

~05}

~10}

~15}

20~
0.0

20 25 3.0

Figura 2.3: Parametro w no tempo, para algumas solucoes apresentadas no espaco de fase.

Vemos que com este modelo de quintesséncia de acoplamento nao minimo, algumas
solucoes se aproximam de w = —1 por baixo, ou seja, w < —1, mostrando compatibilidade

com os dados experimentais.
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3 Distribuicao de Massa na vizinhanca

de um buraco negro

Num buraco negro, a forga gravitacional é tao intensa que qualquer forma de matéria ou
radiacao que estiver préxima sera atraida para seu interior. Na regiao do horizonte de eventos de
um buraco negro, a variacao da massa conta com dois fatores, a quantidade de matéria e energia
presente na fronteira que serd absorvida e a evaporacao por radiacao Hawking. Esta acrecao de
matéria ja tinha sido estudada supondo matéria ordindria, fluido perfeito e campo escalar [63,64],
entretanto, até a descoberta da expansao acelerada do universo, nao havia conexao entre acregao
destes componentes e energia escura. Vamos estender os processos de acrecao e evaporacao de
matéria, utilizando fluido perfeito e campo escalar.

3.1 Acrecao e evaporacao de matéria

Modelo de Acrecao de Bondi

Vamos admitir um buraco negro de massa M, sem rotagado e em repouso numa nuvem
infinita de gas, ou seja, vamos supor um buraco negro de Schwarzschild. Supondo que no in-
finito o gas estd em repouso, caracterizado por uma densidade uniforme p,, € uma pressao pPeo.
Consideramos também que o géas é adiabatico, de modo que

gl
P (i) 7 (3.1)
Poo Poo
sendo v o indice adiabatico do gas com valor 1 <y < 5/3 [1].
A equacao de conservacao do fluxo de energia é dada por

T, =0, (3.2)

ou seja,

Op by —

onde u* é a velocidade. Se considerarmos que o fluxo de particulas é esfericamente simétrico e

constante no tempo, em notacao vetorial temos,

V. (pu*) = L d (r’pu) =0, (3.4)

72 dr?

sendo u a componente radial da velocidade.
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Integrando a equagao (3.4]), encontramos um valor constante,
r*ou =K, (3.5)

com unidades Kg/s, o que pode ser interpretado como uma taxa de acregdo. Vamos escrever K

convenientemente como dM /4mdt

dM

- 4712 pu, (3.6)
mas 1 = pu”, assim,

dM .

E = 47T7"2T0 . (37)

Termo de Acrecao

Vamos considerar que no horizonte de eventos, r = 2M, todo fluxo de energia serd ab-

sorvido, assim a taxa de massa esfericamente simétrica acrescida pode ser dada por
M = % dQr*Ty = 4nr*Ty, (3.8)
r=2M

onde 7§ é o componente espago-temporal do tensor de energia-momento, que representa o fluxo

de energia absorvido pela 4rea total do horizonte, 4mr2.

Termo de Evaporacao

Ao considerar a distribuicao de massa de um buraco negro primordial, temos que levar
em consideracao nao somente a quantidade de matéria absorvida, mas também o decréscimo de
massa via radiacao Hawking.

Em teoria quantica de campos, o vacuo nao é completamente vazio. Numa dada regiao do
espaco, nao se pode fixar todos os campos em zero, pois isto viola o principio da incerteza. Deve
existir sempre um minimo de incerteza e esta manifesta-se sob a forma de pequenas flutuacoes
no vacuo. Assim, o vacuo possui pares virtuais de particulas e antiparticulas que se criam e se
aniquilam, com tempo de vida determinado pelo principio da incerteza. Estes pares sao ditos
virtuais pois nao podem ser determinados diretamente.

O conceito de energia esta relacionado com a equagao de Planck, F = vh, onde v é
a frequeéncia e h é a constante de Planck. Na teoria quantica, frequéncia positiva representa
particula e frequéncia negativa representa antiparticulas.

Quando um par virtual é criado no vacuo, a energia total é zero, no entanto, uma particula
tem energia positiva e a outra tem energia negativa. Embora isto seja proibido pela fisica classica,
enquanto o par virtual se aniquilar em tempo inferior a h/FE, o principio da incerteza nao serd
violado e estas flutuacoes serao permitidas. Supondo que antes desse tempo, uma particula de
energia negativa cruza o horizonte de eventos, o buraco negro pode absorver a particula e a outra

de energia positiva fica livre pra escapar no espago [65].
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A relatividade nao faz distin¢ao entre massa e energia, assim, o efeito no buraco negro é que
sua massa pode diminuir uma quantidade igual a energia carregada pela particula que escapou
para o infinito. Este processo funciona apenas neste sentido, o buraco negro pode perder energia,
mas nao pode ganhar por flutuagoes do vacuo, pois uma particula de energia negativa nao pode
existir fora do horizonte por um tempo superior a h/E [66].

Este processo de diminuicao da massa por radiacao Hawking é chamado de evaporagao e

¢é dada por
Q

M?’
onde o é uma constante caracteristica, que conta os graus de liberdade da particula na evap-

M= — (3.9)

oracao. O valor de a depende do modelo e é dado por,
1
- 3.10
o= (3.10)
onde I" também é uma constante dependente de modelo [67]. Integrando a equacao (3.9)), temos

a Imnassa evaporada

M= (M3 =3a(t—1t))"*, (3.11)
o que nos da o tempo de evaporagao
M}
= —. 3.12
T=4 (3.12)

Para buracos negros formados a temperaturas muito menores que a temperatura de Planck este
efeito pode ser ignorado. O célculo da radiacao de Hawking assume que nao existe recuo, ou seja,
a massa foi admitida constante. Quando dM/dt < M isto é uma boa aproximagao, entretanto,
esta consideracao falha no estagio final da evaporacao.

A radiagao emitida pelo buraco negro é radiacao de corpo negro, ou seja, tipo térmica e
transporta apenas informacgao sobre massa, carga e momento angular, o demais é perdido. No
entanto, a mecanica quantica nao permite estes processos de perda de informacao. Atualmente
acredita-se que radiacao Hawking nao é perfeitamente térmica, mas os detalhes microscopicos do
processo de evaporacao ainda nao sao bem definidos.

3.2 Buracos Negros permeados por um fluido perfeito

Vamos considerar um fluido perfeito na vizinhanca de um buraco negro, admitindo
uma acrecao estaciondria e esfericamente simétrica por um buraco negro de Schwarzschild, com

métrica

M oM\ !
ds? = — <1 — —) dt? + (1 — —> dr? 4 r* (d9? + sen®dy?) (3.13)
T

,
sendo M a massa do buraco negro, r, a coordenada radial, 6 e ¢ as coordenadas angulares.
Modelando a energia escura como um fluido perfeito com tensor de energia-momento dado
por
T" = pgu + (p + p) upuy, (3.14)
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onde p é a pressdo, p é a densidade e u, é o componente radial da 4-velocidade, sendo u' = % e
(] 2Mydt
Up = ( r ) ds*

Precisamos encontrar p e p, para isto vamos encontrar as equagoes de movimento. A

primeira ¢ tirada da lei de conservagao de energia
V., T, =0, (3.15)

para simetria esférica [68],

d

- (T5v=g) = d% (V=3 (pgor + (p + p) uot,)) = 0, (3.16)

Integrando, a equacao de movimento fica

(p+ pluou’v/—g = Cy (3.17)

ou

N

(p+p)(1 - % +u?)zztu = O, (3.18)

sendo x = r/M [10] e u = u"/c.
Outra equagao de movimento pode ser obtida de w,T}" = 0,

1
u’O,p + (p + o (v/—=gu?) = 0. 3.19
que pode ser expressa como
1 0 1 Jp
—) — g 3.20
u\/—g Or (u g) (p+p)or ( )

Para um fluido perfeito, podemos escrever a pressao como func¢ao de densidade, p = p(p),
com isto, introduzimos uma fungao n = u,/—g. Integrando a equacao (3.20)),

dp  dn

T (3.21)

n ¢ idéntico a concentracao de particulas para um gas atomico, mas que também pode descrever

um continuo sem introduzir nenhuma particula. Para um fluido que vem do infinito e é absorvido

% = exp </: ]#p;p/) , (3.22)

substituindo na equagao de movimento,

no horizonte de eventos,

: (3.23)
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onde n,, € a concentracao de energia escura no infinito e a constante adimensional A > 0.

Combinando as duas equagoes de movimento,

2 1 P dp/ Cl
—+ 1___|_22 / —):——:C’7 324
a0 =2ratten ([ ) -G - (3:21)
para
Cy = poo + P(poo)- (3.25)
A taxa de variacao da massa do buraco negro fica
dM
= ATy = Am AM? (poo + P(poo))- (3.26)

Para um fluido descrito como campo tipo phantom, p + p < 0, a lagrangeana [36],
Lypn = 0,$0"¢ — V (¢), (3.27)
possui termo de energia cinética negativa,
T, = —0o60r0, (3.28)

assim, temos uma diminui¢ao da massa do buraco negro.

3.3 Buracos Negros permeados por um campo escalar

Na vizinhanca de um buraco negro, um campo cosmolégico escalar gera um campo gravita-
cional muito mais fraco que o buraco negro, neste caso, podemos utilizar nesta regiao a métrica
de Schwazschild, mas precisamos relacionar este campo escalar trazido do infinito com o campo
absorvido pelo buraco negro na regiao do seu horizonte [69].

Utilizando a métrica de Schwazschild, a equacao de Klein Gordon para um campo escalar,

na regiao do horizonte de eventos tem a forma

b 1/, oMY\ )\ oV
¢ —(1_2y)+7~2 r . 90 (3.29)
para ondas livres, ou seja, V' =0,

p=e“R(r). (3.30)
Substituindo em 1) utilizando a coordenada Kruskal, r« = r 4+ 2M log (ﬁ — 1), temos

’R 2 2M\ dR
“(1-=— ) -—=+w'R=0. 3.31
dr*2+r( r)dr*—'_w ( )
Vemos entao, que para longe a solugao ¢
efiw(t:tr)
o =— (3.32)
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e perto do horizonte, ela se torna
6—iw(t:|:r*)
p=—: (3.33)

7k

Vamos usar a coordenada v =t + 7%, de modo que (3.29) pode ser escrita como,

20,000 + %(%gb + Tlga,q ( (1 _ g) aqu) — V' (4). (3.34)

Construindo o campo, ¢ = f(v) + g(r), onde f = Bv + D, para um potencial, V = —pua,

encontramos que

2
—ur Br C
org = — . 3.35
g 3(r—2M) r—2M+r(r—2M) (3:35)
Para a solucao ser regular no horizonte, C' = 4> (B + 2% M) e g fica,
2M 2 4
g=—Br— T’" - % ~ 2BM log(r) — 5 M>pulog(r) + F. (3.36)
Incorporando F em D,
por?
¢ =Blv—r—2Mlog(r)] — 3 (5 + 2Mr + 4M? log(r)) + D. (3.37)
A solucgao geral é a superposicao da solucao de ondas livres e esta solucao.
Utilizando a expansao de Taylor, vamos impor a condicao de contorno,
B(t,00) = doo + Gl (3.38)
onde ¢, se refere ao campo cosmolégico. Fixando os valores de B e D,
2
K 2
o boo [ — 1 — 2M1 ] oM + AM?1 3.3
O = oo+ oo |V —T og2M 3<2—|— r+ OgZM) (3.39)
Temos, assintoticamente
r
B(t,00) = o + ot — —NG (3.40)
onde
Do = Do (3.41)
© 2
r
Poo = o — “T‘X’ (3.42)

Com isto, vemos que a diferenca é apenas um atraso, ou seja, o campo incorporado pelo

buraco negro é o mesmo campo no infinito, no entanto, atrasado.
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3.4 Acrecao de massa por campo escalar minimamente

acoplado

Para um campo escalar minimamente acoplado, utilizando a aproximacao feita na equacao
(3.38) e o tensor de energia momento dado pela equagao (2.46)), podemos calcular o componente

15, que nos da o termo de acregao de massa pelo buraco negro

dM

—p = 16w M2¢2. . (3.43)

3.4.1 Acrecao do campo

Considerando um potencial exponencial qualquer, V = Vye ¢, resolvendo a equacio de
Klein-Gordon dada pela equagcao ([2.45)), temos [4]

t

¢ = log (3.44)

)\\/ 8T
Calculando a derivada e substituindo em (3.43)), o termo de acregao, fica

. M2

onde k = % Resolvendo a equacao diferencial, a massa acrescida é

1 1 1 1

SN N —— 3.46

M M, (t to) ( )
Para um buraco negro com massa menor que a massa critica, M..; = t/k, a massa assintética é

dada por
M,
M, =—"2_. (3.47)

1 — kb
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10

Figura 3.1: Evolucao de um buraco negro ignorando a evaporacao, para alguns valores de massa

inicial.

10

Figura 3.2: Evolucao da massa de um buraco negro em relacao a massa critica, com os mesmos

valores de massa inicial utilizado no caso sem evaporagao.

A Figura (3.1)) mostra a evolugdo de um buraco negro para alguns valores de massa
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inicial. Na Figura (3.2)), vemos o comportamento limitado pela massa critica, descrito pela linha
vermelha, para as mesmas condicoes iniciais. Para M = M,,;, eles crescem com t; e para valores

maiores de M, eles crescem mais rapidos que t.

3.4.2 Taxa de variacao total da massa

A taxa de variacao de massa de um buraco negro considerando o termo de acrecao e
evaporagao ¢

M? a

M=k =

(3.48)

e pode ser visualizada na Figura (3.3)), com as mesmas condigoes iniciais.

10

Figura 3.3: Evolug¢ao de um buraco negro com evaporacao de matéria, para a = k = 1, com as

mesmas condigoes iniciais.

Fazendo M = 0, podemos tracar uma linha critica,
M, =/t (3.49)

A linha critica delimita uma regiao em os buracos negros crescem ou decrescem sua massa.
Ela nao indica, no entanto se este comportamento durara para sempre na evolucao deste buraco
negro. Para uma determinada condicao inicial de massa, sua curva de evolugao temporal pode
cruzar em algum ponto a curva da linha critica, decrescendo sua massa, no entanto, em um

tempo futuro, ela pode voltar a cruzar a linha critica e voltar a crescer. Entretanto, se ela cruzar
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a curva da massa critica, indicando diminui¢ao da massa, este comportamento é definitivo, ou
seja, este buraco negro nao voltard a aumentar sua massa por acregao de campo.

Na Figura , vemos que abaixo de linha critica, descrita pela linha vermelha, M < 0,
ou seja, o termo de evaporacao se sobrepoe e todos os buracos negros evaporam completamente;
e acima da linha critica, M > 0, o termo de acregao se sobrepoe e todos crescem indefinidamente.

10

Figura 3.4: Evolucao de um buraco negro em relacao a linha critica, com as mesmas condigoes

iniciais.
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4 Acrecao de massa por campo escalar

nao minimamente acoplado

4.1 O campo na regiao do horizonte de eventos

O procedimento padrao do processo estacionario de acrecao de Bondi para este tipo de

problema consiste em considerar solugoes tais que,

limy oo (1, 1) = ¢e (1) , (4.1)

onde ¢, corresponde a uma solucao homogeénea e isotropica do campo cosmologico. Nossa
aproximacao requer que a energia contida no campo escalar deve ser pequena na regiao do
buraco negro.

Em termos das coordenadas de Eddington-Finkelstein, (v,r), com v = (t + r,), onde r, é
a coordenada tartaruga, dada por

re =1+ 2M log (ﬁ - 1) . (4.2)

A solucao de ¢ corresponde a uma configuracao estacionaria,

¢(v,r):ﬁ+7[v—r+2]\/[10g (g)} (4.3)

onde ( e v s@o constantes.

Nao esperamos que para este modelo de acoplamento exista este tipo de solucao esta-
cionaria. Em geral solugoes estacionarias sao obtidas apenas para agoes invariantes pela trans-
formagao

O — 4+ A (4.4)

Entretanto, podemos considerar uma solucao quase-estaciondria, na qual, para uma variagao

lenta do campo, na vizinhanga de um buraco negro,

6 () ~ o, {U 4 2Mlog (g)} | (4.5)

A veracidade desta consideracao se da, substituindo e verificando a aproximacao na equagao de
Klein-Gordon dada pela equacao (|3.29))

(1 LM (ﬂ)g n (g)zﬁ) e+ V' (60) = 0. (4.6)

r T
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Para r — oo, ou seja, no infinito, nossa aproximacao é véalida quando

o, ~ 0 (4.7)

V' (¢e) = 0. (4.8)

A equacao (4.7) ndo é muito restritiva, nada mais é que uma condi¢ao de slow-roll [70,71].
Slow-roll significa uma rolagem lenta do campo ao longo do potencial, na dire¢ao do valor minimo
de ¢. E durante esta situagao que ocorre o periodo inflacionario. Vemos entao, que na equagao
(2.45)),

¢ < Hp < H?¢, (4.9)

ou seja, o termo <b ¢ desprezavel.

Um sistema de equagoes s6 gera solugoes inflacionarias quando a densidade de energia
potencial domina sobre a densidade de energia cinética. Da equacao de estado temos a
primeira condigao de slow-roll [72],

V(o)> o (4.10)

Para garantir as solugoes inflacionarias,

20, (4.11)
a

ou seja,
— H< H? (4.12)

Estas condicoes ainda nao justificam a consideracao sobre a derivada do potencial.
Vamos aplicar as condicoes no caso de acoplamento nao minimo. A equacao de Klein-

Gordon ([2.41)) fica

P! (b 1 " > /
=—— |(3FFH+=-(143F")F — ~ 4.1
o termo cinético morre, e
— e’ff ~ 3H¢. (4.14)
No caso de acoplamento minimo:
— V'~ 3H¢. (4.15)

As equacgoes para acoplamento minimo e nao minimo tém o mesmo comportamento. Se
fizermos F' = 1, a equagao (4.14)) recai em (4.15). Entao se“aplicarllrnos a condigao V/;, < 1, ela
acontecera da mesma forma para os dois modelos. Como ¢ < H¢ < H?¢ é aproximado para
zero, Hp < H?¢ também pode ser, permitindo que eu possa impor a condicao V' ~ 0.
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Nosso formalismo é baseado entao na condigao quasi-estacionaria, requerendo ¢, ~ 0 e
para o caso de condi¢@o nao estacionaria pode ser visto em [73].
A equagao (4.5 nos mostra que o campo no horizonte de eventos tem o valor do campo

cosmoldgico no infinito, mas que chega com certo atraso, assim,

Ge (t) R~ boo + Do (1), (4.16)

tal que doo € oo () s@o constantes.

4.2 A evolucao de massa

Considerando que para um campo escalar T, = G,

2M " 12 / p L.

0 =—F 2M(1+F") ¢, + F 2M¢C—§¢c : (4.17)
r
A distribuigao de massa fica [74]
M = 16xM |(1+ F") . — F' ig}s (4.18)
o AM ™) | '
Para uma funcao qualquer de acoplamento, podemos definir a evolugao da massa como [74]
. o

MZf(t)M2—9(t)M—W7 (4.19)

onde f(t) e g(t) sdo fungoes suaves. Primeiramente vamos considerar apenas a acre¢ao de
matéria, ou seja, a = 0.
Resolvendo a equagao diferencial de M (¢),

Moe_ ftto g(s)ds

M (t) = TN I TR, (4.20)
onde M (tg) = My. A massa pode ser escrita como
M (t) = % (4.21)
com
G () = e Jo 9)% (4.22)
e

H(t) = /t £(s)G(s)ds. (4.23)

Analisando a equagao (4.21]), vemos que se o denominador ¢ diferente de zero, a massa

diminui de acordo com a equagao (4.22)), para valores positivos de g (). Quando o denominador
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é igual a zero, temos o crescimento da massa. Para valores positivos de f (t), a funcao H (t)

crescerd monotonicamente, limitada por

Hy = tligloH (t), (4.24)
levando a um valor critico da massa,
1—M.,H(t— o0) =0. (4.25)
Assim
M, = H_/, (4.26)

Vemos entao que qualquer buraco negro com massa inicial My, tal que My < M,,, ird
evaporar completamente mesmo com a acrecao de campo escalar, e sem o termo de evaporacao
por radiacao Hawking, e este processo sera lento, pois a perda de massa tem comportamento
assintotico.

Por outro lado, aqueles buracos negros com massa inicial tal que, My > M., crescerao
muito rapidamente com a acrecao do campo escalar. Na equacao , o denominador desa-
parece para t = t.., com H (t..) = My ! mostrando que o buraco negro cresce indefinidamente
num tempo muito curto.

Voltando o termo devido a evaporagao, a massa critica pode ser obtida resolvendo a
equacao da massa, tal que

M t
M _ / dt. (4.27)
sy JA)M2 =g ()M — 55y,

Vamos analisar detalhadamente o comportamento da massa para alguns tipos de acopla-
mentos nao minimos. Os acoplamentos nao minimos escolhidos obedecem ao critério de acres-
centar o minimo de parametros adicionais ao modelo. A partir do acoplamento minimo, que
corresponde a funcao de acoplamento igual a uma constante, é natural escolher termos de
aproximacao via expansao em polindmios com constantes pequenas, por exemplo. Essa abor-
dagem garante a redutibilidade ao caso de acoplamento minimo ao mesmo tempo que adiciona
pouca complexidade ao modelo. Também deve-se considerar que em nenhum momento supoe-se
que tais acoplamentos nao minimos advém de primeiros principios, pelo contrario, a abordagem
realizada é estritamente fenomenolégica e portanto a utiliza'ig)%'ig}%o da expansao em poténcias
nao so ¢é util como correta.

Apesar das restrigoes impostas pelas observacoes em escala do sistema solar, a relatividade
geral estd em excelente concordancia com estes observagoes, consequentemente, todo modelo que
visa explicar a expansao acelerada do universo reproduz a relatividade geral na escala do sistema
solar [75], de modo que o modelo com constante cosmolégica, ACDM, e todos os modelos de
quintesséncia com os diversos tipos de acoplamentos sao validos e nao interferem em escala
planetaria.
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4.2.1 Acoplamento linear - F' (¢) =1+ £¢

Neste acoplamento linear, as fungdes f (¢) e ¢ (¢) ficam

f(t) =167 (14 F") ¢? = 1672, (4.28)
e
g(t) =4nF'¢, = A€o (4.29)
Considerando primeiramente somente a acre¢ao, ou seja, o = 0, as fungoes G (t) e H (t) sdo neste
caso ‘
G (t) = e 4meoet (4.30)
e .
4o
H(t) = % (1-G(t)). (4.31)
Para valor positivo de 92500
M, = igb;}. (4.32)
Podemos encontrar o tempo critico
1 49 :
H (to) = — = =2 (1 = e7treont), 4.33
(1) = 5 = =2 (4.33
escrita em termos da massa critica,
1 1 j
1 1_ —4n§¢>oot) 4.34
M, M, ( ‘ ’ (4.34)
de modo que,
1 My

tor (4.35)

= — log :
47T§¢oo MO - Mcr
A Figura (4.1]) mostra o comportamento da distribuigdo de massa, para alguns valores de

massa inicial
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1.00 101 1.02 1.03 1.04 1.05

Figura 4.1: Evolugao de massa sem o termo de radiagdo Hawking, para F (¢) = 1 4 £¢, com

¢oo = ¢oo = 5 =L
Ao fixarmos a taxa de variacao da massa igual a zero,

— 4Mmé 4+ 167 M?* = 0, (4.36)

encontramos uma linha critica, tal que, M = 1/4. Esta linha delimita o comportamento do
buraco negro, qualquer solucao que atravesse esta linha indicard que a massa do buraco negro
ird decrescer. Neste caso, a linha critica coincide com a massa critica, como pode ser visto na

Figura (4.2)
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5,
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Figura 4.2: Evolucao de massa sem o termo de radiacao Hawking. A linha vermelha representa

a linha critica e a massa critica.

Se considerarmos gbgo da ordem da densidade critica do universo atual, gbgo ~ Por R
1072g/cm?,
—29 3 €3l
per =107 (g/em?) x 2=, (4.37)
M
onde £, = 1,6 x 107*3cm é o comprimento de Planck e m, = 2,2 x 107°g é a massa de Planck.
Em unidades naturais, a densidade critica fica p = 1,9 x 10'% ¢ gf)oo =1,3x107%. Para calcular
a massa critica, multiplicamos pela massa de Planck, garantindo a unidade em gramas, assim,
com ¢ = 1, obtemos M,, ~ 10°¢g.

O tempo critico, é dado pela equacao , 10! em unidades naturais, multiplicando
pelo tempo de Planck (t, = 5,4 x 10~*s), temos que t.. = 10'7s, ou seja, da ordem da idade do
universo.

Considerando o = 1, temos solucoes nas quais a massa pode evaporar completamente.
Resolvendo a equacao (4.19)) igual a zero,

1
— — —4AM7 + 16M?7 = 0, (4.38)
M?
para as mesmas condicoes iniciais do caso sem evaporacao, encontramos quatro solugoes possiveis

para a linha critica, sendo duas delas imaginarias, uma real e negativa, e a outra real e positiva.
Utilizando apenas a solugao real positiva, descrevemos a linha critica, conforme a Figura (4.3)).
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Figura 4.3: Distribui¢ao total da massa para mesmas condigoes iniciais. A linha em vermelho

representa a linha critica.

Vemos entao que para valores de massa inicial, tal que, Mj esteja abaixo da linha critica,
a massa do buraco negro, mesmo com acre¢cao do campo, ird decrescer; e para massas tais que,
My esteja acima deste linha, o buraco negro cresce indefinidamente em um intervalo de tempo
muito curto. O valor adotado para £ nao interfere na analise do comportamento da massa quando
levada em conta a radiacao Hawking, como mostra Figura , a diferenca é desprezavel.
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Figura 4.4: Solucoes de taxa de variagao de massa, para £ = 0,1, 2, 3,4, 5.

Vamos analisar agora o caso de ¢ estacionario, escrevendo o campo no infinito como uma
funcao. Escolhemos dois casos estacionéarios, um caso simples, ¢, = C; + Cst, e outro visando
uma possivel comparacao com tempos passados na histéria térmica do universo. Na era da
matéria ou da radiacao, a densidade de energia é descrita como at~2, vamos entao analisar um

caso estaciondrio proporcional a t =%, ¢ = C) + %.

Caso 1 - ¢, = C} + Oyt

Para alguns valores de massa inicial, na Figura (4.5) observamos que sem o termo de
evaporacao, para qualquer valor de M, a massa do buraco negro crescera indefinidamente.
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Figura 4.5: Distribui¢do de massa sem o termo de radiacdo Hawking, para F'(¢) = 1 + {¢, com

(,boo:CI_'_CQt, paraC’lngzle.

A linha critica, é dada por M = 1/4, e a massa critica,

§

M, = Z—fb;} = 1/4, (4.39)

que neste caso, coincide com a linha critica. Estas solucoes sao exatamente as mesmas para o

caso de ¢ independente do tempo, como pode ser visto na Figura (4.6)).
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5

Figura 4.6: Distribuicao de massa sem o termo de radiacao Hawking. A linha vermelha representa

a linha critica e a linha verde, a massa critica.

A Figura (4.7)) mostra solugbes para diferentes valores de £. Notamos que a linha laranja,
¢ = 0, que descreve o caso de acoplamento minimo, destoa das demais curvas, no entanto, as
curvas com acoplamento nao minimo, representadas pelos demais valores de &, diferem apenas

na velocidade com que a massa decresce para um mesmo valor de massa inicial.
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Figura 4.7: Solugoes de acrecao de massa para & =0, 1,2, 3,4, 5, mostrado pelas curvas variando

de cor laranja até azul escuro, respectivamente.

Para o = 1, o comportamento da massa pode ser visto na Figura (4.8)).

57‘
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t

1.020
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Figura 4.8: Distribuicao de massa com termo de radiacao Hawking, para mesmas condigoes
iniciais. A linha em vermelho representa a linha critica.

Vemos entao o mesmo comportamento pro caso de ¢, independente do tempo. O valor
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adotado para £ nao interfere na anélise do comportamento da massa quando levada em conta a
radiagao Hawking, como mostra Figura (4.9)), a diferenca é desprezavel.

0,40 [T T T T T T
0.09; ,
0.08; ,
'V'o.o7f— ,
o.osf—

0.05F ]

0.04 Lo )
1.00000 1.00005 1.00010 1.00015 1.00020 1.00025 1.00030
t

Figura 4.9: Solucoes de taxa de variacao de massa, para & = 0,1, 2, 3,4, 5, mostrado pelas curvas
variando de cor laranja até azul escuro, respectivamente.

Caso2—¢00201+%

Para a = 0, construimos do mesmo modo que no caso anterior a equacgao da taxa de
variacao da massa. O cdlculo da derivada igual a zero também apresenta uma linha critica
coincidente com a massa critica, com

§

M, = Zq’b;} = t2/4, (4.40)

que pode ser visto na Figura (4.10)
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Figura 4.10: Distribuigao de massa sem o termo de radiagdo Hawking, para F' (¢) = 1+ £¢, com
gboo:Cl—l—%,paraC&:Cb:g:ﬁ:l.

Neste caso, a variagao no valor de £ mostra um crescimento mais rapido com o aumento no

valor adotado, conforme a Figura (4.11]).
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Figura 4.11: Solugoes de taxa de variacao de massa, para § = 0, 1,2, 3,4, 5, mostrado pelas curvas

variando de cor laranja até azul escuro, respectivamente.
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Para o = 1, o comportamento da massa é observado na Figura (4.12)), cuja linha critica
foi obtida fixando M’ = 0, ou seja,

1 16M*m n AMr&

Et g 7 =0. (4.41)

me\””\””””
1.00 1.01 1.0 1.03 1.04 1.05

Figura 4.12: Distribuigdo total da massa, para F (¢) = 1 + ¢, para ¢ = C; + %, com
Ci=0C=¢(=0=1.

Variando o valor de &, obtemos solucoes muito proximas do caso anterior.
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Figura 4.13: Solucoes de taxa de variacao de massa, para § = 0, 1,2, 3,4, 5, mostrado pelas curvas

variando de cor laranja até azul escuro, respectivamente.

4.2.2 Acoplamento nao linear - F'(¢) = 1 + £¢?

Tomando apenas o termo de acre¢do na andlise da distribuicao da massa, as fungdes f ()

e g (t) ficam,
f(t) =167 (1+ F")¢? = 16w (1 + 2€) ¢, (4.42)
e
g(t) = 47EF G, = S7E (oo + I21) (4.43)
Com isto, obtemos que o
G (t) = im0ttt dir?) (4.44)
¢ t
H (t) = 167 (1 4 2€) ¢2, / e 4mE(2000doost0%5) g (4.45)
0
A massa critica é dada por M, = H_', tal que,
t . .
Hoo = limy_oo H (t) = 167 (1 + 2€) ¢ / e AmE (2000 boostdles?) g (4.46)
0
mas
. . ) 2
2¢oo¢oos + (]52082 = <¢oo$ + ¢oo> - ¢goa (447>

a integral fica
t .
/ (Ao o —imt(Guostone)’ g (4.48)
0
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denominando 7 = ¢uos + o, dT = Poods, para valor positivo de ¢,

400 1 Amégp2, +oc0 oo
64ﬂ_£¢go / ._6_47.(.&-7_2617_ _ e— (/ 6—47T§7'2d7_ _ / 6—47Tf7'2d7_) : (449)
o Do ‘%O‘ 0 0

fazendo w = 2v/méT,

€4W£¢g° oo 2 2V/mEpoo 2
_ / e dw —/ e “dw |, (4.50)
2V/7E|doc| \0 0

+oo
/ e dw = vr (4.51)
0 2

mas

/QW%O e dw = gerf (2\/7r_§¢oo> : (4.52)
0

podemos escrever ental

H,, — 167 ‘%’ 1+2§ AnEs, { —erf (ﬁ%)}, (4.53)

onde erf (z) é a Funcdo Erro [76]. Em geral, consideramos o campo muito pequeno, de modo
que podemos fazer a aproximacao

(4.54)

‘”N&r 1+2g

A equagao tem o mesmo comportamento que a massa critica no caso do acoplamento feito
anteriormente.

A Figura (4.14]) mostra o comportamento da distribuicao de massa, para alguns valores
de massa inicial
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Figura 4.14: Distribuigao de massa sem o termo de radiacaio Hawking, para F (¢) = 1 + £¢?,
C0m¢oo:¢oo:§:1'

A taxa de variacdo da massa igual a zero fornece a linha critica, M = 1/3 descrita pela
linha vermelha e a massa critica M., = m, descrita pela linha verde.
Para a = 1, linha critica foi obtida fixando

1
—ae T 48M?*1 +4M7 =0 (4.55)

como mostra a Figura (4.15])
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Figura 4.15: Distribuicdo total da massa, para F (@) = 1 + £¢%, com ¢oo = oo =& = = 1.

Solugao estacionaria

A Figura (4.16)) mostra a evolugao da massa para os dois casos de valor de campo.

1.02

1.03

1.04 105 100 101

1.02

1.03 1.04 1.05

t t
(a) oo = C1 + Ot (b) ¢OO:C’1+%

Figura 4.16: Evolucao da massa para acoplamento nao minimo, com ¢, dependente do tempo,

com Cy=Cy,=¢(=0=1.

Na Figura (4.16a)), vemos que mesmo sem o termo devido a radiacao Hawking, algumas
condicoes iniciais de massa podem apresentar o decréscimo da massa até total evaporacao. Neste
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caso de acoplamento, linha critica, M = %, mostrada pela linha vermelha nao coincide com a
curva para a massa critica, M., = ﬁ, representada pela linha verde.

A Figura mostra que sem o termo devido a radiagao Hawking, da mesma forma
que no caso de acoplamento linear, seja qual for a massa inicial de um buraco negro, ele crescera
indefinidamente e mais rapidamente que no caso linear. A linha critica neste caso, mostra que

M = 1(1—t—?), mostrada pela linha vermelha e a linha verde mostra a curva para a massa

6
L. 2
critica, M., = 1;%

A mudanca no valor de &£, mostra que para maiores valores, a massa decresce ou cresce,
dependendo da massa inicial adotada, mais rapidamente, como pode ser visto na Figura.
Quando fixamos & = 0 a solucao recai no caso de modelo de quintesséncia com acoplamento
minimo e esta curva, representada pela linha laranja, mostra uma diferenca significativa em

relacao as demais, assim como ja visto no primeiro caso estacionario.

0.20 —
015} 1 ]
M 010} 1M *
0.05/ 1
O'OO L L 1 n L I L Il i L L L Il I I I I ] OO’ I I I I Il I I I I Il I I I I Il I I I I Il I I I I 1
1.00 . 1.02 1.03 1.04 105 100 101 1.02 1.03 1.04 1.05
t t
c
(8) Goo = Co + Cot (b) $oo = C1 + G

Figura 4.17: Solugoes da massa variando &, com & = 0,1, 2, 3,4, 5.

Com a = 1, novamente encontramos quatro solugoes possiveis para a massa critica, com
apenas uma real e positiva. A massa critica é obtida a partir desta solucao e a distribuicao da
massa para condigoes inicias diversas é mostrada na Figura (4.18]).
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(a) poo = C1 + Cat (b) ¢oo:01+%

Figura 4.18: Evolucao total da massa para acoplamento nao minimo, com ¢, dependente do
tempo

Novamente, para valores de massa inicial, My < M,,, a massa do buraco negro iré evaporar
completamente; e para My > M,., para mesmas condicoes iniciais que os casos de acoplamento
linear, temos mais solucoes de evaporacao e aquelas nas quais vemos crescimento, este acontece
de modo mais lento. A Figura (4.18b|) mostra que para My > M,.., o buraco negro cresce
indefinidamente em um intervalo de tempo menor que no caso do acoplamento F' (¢) = 1 + £¢.

A Figura acregao e evaporacao variando £. Vemos o mesmo comportamento que os

casos de acoplamento linear, ou seja, as diferencas entre solugoes podem ser desprezadas.
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(a) poo = C1 + Cat (b) ¢oo:01+%

Figura 4.19: Solucoes da massa com evaporagcao, variando &, com & = 0,1,2,3,4,5.
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4.2.3 Acoplamento exponencial - F (¢) = e

No caso de oo = 0, as fungoes f (t) e g (t) ficam,

f(t) =167 (1 - 5265(%0%&)) 3

g (1) = amget (P40

Podemos escrever agora ‘
G (t) _ 6_47re§¢oo (e§¢oot_1)

t ] :
H (t) = 16m¢?2, / (1 + 5265(%*%05)) etme e (1) g
0

ou

t . ¢ A _
H (t) — 167T¢2O€47r65¢°° |:/ 6—47T£e€(¢°°+¢°os)d8 + §2/ 64ﬂ£e£(¢m+¢w5)+£<¢m+¢ws)d8:| 7
0 0

escrevendo ¢o + oS = T, Para ¢, positivo,

Hoo = 16mhooe™™ ™ [ / e~4m s 4 €2 / 6_4ﬂ€§T+§Td51 :

oo

fazendo w = €7, dw = £ef7dT, a segunda integral fica,

00 00
_ArebT _ dw 1, e
/ e 4me €§Td7_ — / e drw 77 e 4me 00,
. etdoo §  4mg

e a primeira integral fica,

o . 1 [ d I d 1
/ e—47re"5 ds = = 6_47"“’_w = — e_ﬁ—/i =-T (0, 4:7T€€¢OO) .
N & Jotooo w § Jametooo K §

A massa critica é dada por M, = HZ!, tal que,

§

onde I' (z,z) 4 a fungdo Gama Incompleta [76]. Para ¢, pequeno

-1 £ -1

M "~
er (16me* T (0,47) + (16me* T (0,47) +4) £2) >

. | ,
Mt = 10700 pimiuceso [4% + (14 &%) T (0, 4met?=) |

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

sendo 16we?™ T (0,47) ~ 3.72. A equagao mostra mesmo comportamento dos casos de

acoplamentos anteriores.

A Figura (4.20)) mostra o comportamento da distribuicao de massa, para alguns valores

de massa inicial
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Figura 4.20: Distribuicio de massa sem o termo de radiacio Hawking, para F (¢) = €5, com
Do = Poo = & = 1. A linha vermelha e a linha verde indicam as linha critica e massa critica,
respectivamente.

Com o termo de evaporagao, as solugoes sao mostradas na Figura (4.21)).

57‘

Cr—r—— 1 | P T s

O I T I L I | I I I I | I I L I I I I
1.0000 1.0005 1.0010 1.0015 1.0020 1.0025 1.0030
t

Figura 4.21: Distribuicio de massa para F'(¢) = €5?, com mesmas condicdes iniciais. A linha
em vermelho representa a linha critica.
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Solugao estacionaria

A Figura (4.22)) mostra as solugbes para alguns valores de massa inicial. A linha critica

61—1-215

M=——————— 4.66

4 (14 el*2t) (4.66)
é mostrada pela linha vermelha na Figura (4.22a]) ndo coincide com a curva para a massa critica,
representada pela linha verde. e na Figura (4.22b)), a linha critica é descrita pela linha vermelha,

dada por M = , e a linha azul mostra a curva para a massa critica, M, oc —t2.

et?
4(1+e)

of ]
1 1 1 1 1 1 T I I I I T I I I I T

1.000 1.005 1.010 1.015 1.020 1.000 1.005 1.010 1.015 1.020
t t

(a) ¢oo = C1 + Cot (b) doo = C1 + 2

Figura 4.22: Evolucao da massa para acoplamento exponencial, com ¢, dependente do tempo,
comCy=Cy,=¢(=0=1.

Na Figura (4.23) vemos que a mudanga no valor de £, acontece apenas para & = 0, a
solugao no caso de modelo de quintesséncia com acoplamento minimo, para os demais valores, a

diferenca acontece para um tempo muito curto e pode ser desconsiderada.



4. ACRECAO DE MASSA POR CAMPO ESCALAR NAO MINIMAMENTE ACOPLADO 57

0.20 — —— ——— —
— 0.20
015/ R ]
, 0.15 .
M 010f M 0.10F 1
0.05+ 1 o005 i
ool e e ] 000l
1 1 1 1 1 710000 1.0005 1.0010 1.0015 1.0020
t t
C
(a) poo = C1 + Cat (b) poo =C1+ %2

Figura 4.23: Solugoes da massa variando &, para acoplamento exponencial, com & = 0, 1, 2, 3,4, 5.

Com « = 1, repetindo o processo para a obtencao da massa critica, podemos verificar
algumas solugoes da massa na Figura (4.24)).

O_\\V\u\\\\\\\\\\\\\\\\\\\\\\\\\7 0\\\\\\\\\\\W\\\\\7
1.0000 1.0005 1.0010 1.0015 1.0020 1.0025 1.0030 1.000 1.001 1.002 1.003 1.004 1.005
t t

C
(8) doo = Co + Cot (b) ¢oo = C1 + G4

Figura 4.24: Evolucao total da massa para acoplamento exponencial, com ¢,, dependente do
tempo

A Figura (4.25)) apresenta acregdo e evaporagao variando &, repetindo o comportamento
sem evaporacao. Na Figura (4.25b)), vemos que algumas condicoes de massa inicial passam a
evaporar.
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Figura 4.25: Solugoes da massa com evaporacao, para acoplamento exponencial, variando £, com
£=0,1,2,3,4,5.

4.2.4 FEra da radiagao e era da matéria

Era da radiacao e acoplamento linear

Na era da radiacao, p oc a™*
: 8rCio\ 2
usando G = 1, podemos escrever
3
P = 39072’ (4.68)

o termo devido a densidade de energia na era da radiagao é absorvido pelo buraco negro conforme
a acrecao de Bondi, ou seja, oc M? e pode ser incorporado em f (), de modo que,

- 3
f(t) = 16m¢2, + 3 (4.69)
e
g (t) = 47€ne. (4.70)
Podemos escrever agora _
G(t) = o~ 4mEdoo (t—t0) (4.71)
e : .
H(t) = 4¢os (1 _ 6_47rg¢'>oo(t—to)> + §e,6/ 8_26_4”§‘i)oo(5_t0)d87 (4.72)
g 2 to
fazendo ( = 47rf(ﬁoot0,
Ao - >
o= Y (1 i) s [ g 079
£ 2 to
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com (3s = w, a integral fica

/ Buw2e P dw = T (—1, 5), (4.74)
—Amooto
pois I (a,z) = [>7t*Le~dt. Com isto,
Ao ( 3¢eP )
Hy=——(1+——p'(-1,0) ), 4.75
= (e (4.75)
onde 3 = 47r§gﬁoot0. Para
limg_oxl’ (—1,2) = 1, (4.76)
temos neste caso, se 3 for pequeno,
-1
My — H ~ -5 (1 S ) . (4.77)
4¢oo 8¢oot0

Discutimos no primeiro capitulo que a equacao de estado no caso de modelos de quint-
esséncia é variavel no tempo, entao, vamos supor, a nivel de exemplo, que o contetido de energia
escura no universo tenha mudado levemente em um instante {5 = 1s. Neste caso, em unidades
naturais, fo = 1,9 x 10%. Assim, ¢uoto &~ 1078, 0 que justifica tomarmos 3 ~ 0 para obter a
massa critica, M., = 10*® em unidades naturais ou M, = 10%g.

Num tempo t, = 10's, ou seja, na era radiacio-matéria, teremos, duooto ~ 1077 em
unidade de Planck, que mostra, M, = 10%g.

Era da radiacao e acoplamento nao linear

Vamos entender como poderemos aplicar acoplamento nao linear para a era da radiacao.

Adicionando o termo devido a radiagdo em f (),

F(6) = 167 (14 26) &% + % (4.78)
A funcao ¢ (t) ndo muda e G (t) fica
G(t) = o~ 4mE (2600 boo (t—t0) +0%, (t—t0)°) (4.79)

t M . .
H (t) = 167 (1 + 2¢) éioemrs(t%ﬂo)/ 6—47r£(¢3052+2(¢00¢w_¢got0)8)d5+

to

¢ . L
/ gs26_4wg(¢gos2+z(¢oo¢oo—<z>ioto)8)ds, (4.80)

to
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que pode ser escrito como

H () = 167 (1 + 2€) oo™ 48 (t5+10) (\/7% — \gerf (2\/7r_§¢oo)) +

2

Para calcularmos H.,, tomamos o limite de ¢o, — 0

t . . .
+§e4ﬂ§(t3+to)/ 8—26*47T§(¢g<>52+2(¢oo¢oo*¢goto)S)ds' (481)
0

; ame (124t 3 dmep2, Ame(t2+t e e~ imes?
Hoo = 87 (1 4 26) oo /Tt 40) 1 2 ’%‘ ¢ AmEol pimE(13+ o)/ —dw,
z doo (1=dhoo Jtotdoodhos W
(4.82)
onde w = ¢oos + <¢OO¢OO — (ﬁgot()), dw = doods. A massa critica fica entdo
M ~=8m (1 + 2¢) gz'ﬁooﬁe“f(t‘%ﬂo)%—
—4n§ Qlﬁoot + d’ood.)oo_d.)got ?

+ g ‘Cboo‘ 647r5¢30647r§(t(2)+t0) —¢ ( ’ ( O)) (483)

bucto + (Gocboe — Bl

Era da matéria e acoplamento exponencial

Podemos também analisar um acoplamento, por exemplo, o acoplamento exponencial, na

era da matéria, onde p oc a3, assim
. 87Cip\ M2
p=—3a"%=-3%=_3 ( T p) 0, (4.84)
a 3
podemos escrever
1
= 4.85
P= (4.85)
para G = 1. Podemos escrever
F(t) =167 (1 n fzeg(%wmt)) Pt 35 (4.86)
A fungao ¢ (t) ndo muda, mas G (t), H (t) devem ser reescritas como
G (t) _ 6_47re§¢oo (654300(3*’50)_1) (487)

t ) )
H 1) = 1672, [ (14 elowsntin)) ransos (6e0t) g
0

P8 tdo (stdools—to) 1
—{—167r/ 556 (e 1) ds. (4.88)
0 38
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E a massa critica pode ser obtida, fazendo ¢t — oo

M, = H_.

(4.89)
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5 Consideracoes finais e Perspectivas

futuras

Em todos os tipos de acoplamento nao minimos estudados, encontramos M., é;ol. Se
considerarmos gz'ﬁoo da ordem da densidade critica do universo atual, p.. &~ 1072°g/cm?, obtemos
M., ~ 10°g. Todos os buracos negros com massa inferior a este valor devem estar encolhendo
conforme a equacao . Mesmo os buracos negros supermassivos no centro da galaxia, com
M > 105M, ~ 10*%¢g estao bem abaixo deste valor.

Notamos que a velocidade com que a massa decai depende do tipo de acoplamento, nos
casos de acoplamento nao linear e exponencial, a massa decresce mais rapidamente. Desse modo,
o fato de observamos buracos negros supermassivos, pode entao limitar o tipo de acoplamento
usado e excluir alguns modelos de quintesséncia.

O acoplamento linear para a era da radiacao, para um tempo t, > 0, mostrou uma massa
critica, M, = 103¢g, muito acima da massa de Hawking, M., = 10'%g, num tempo superior, na
era da radiagao-matéria, vimos uma massa ainda maior. Este comportamento indica que estes
buracos negros criados na era da radiacao devem estar se contraindo desde entao. Eles devem
ter perdido cerca de 60% de sua massa, tornando-se os supermassivos observados atualmente,
creditando o tipo de acoplamento usado nos modelos de quintesséncia.

Em primeira anélise, consideramos ¢, e gz.Soo constantes e positivos, usando aproximagao
quasi-estaciondria. Verificamos, no entanto, que ¢, dependente do tempo nao difere bruscamente
das solugodes iniciais, no caso linear, elas podem ser consideradas praticamente iguais.

Todos os graficos referentes a distribuicao de massa do buraco negro sao adimensionais,
limitando nossa discuticao sobre tempo de crescimento e diminuicao de massa. Fizemos uma
analise qualitativa sobre a evolucao temporal e pretendemos analisar quantitativamente estes
resultados.

Em todos os casos estudados consideramos buraco negro de Schwarzschild, mas dentro de
um universo em expansao acelerada, considera-se na verdade, buraco negro de Schwarzschild-de
Sitter. Os buracos negros supermassivos sao observados nos centros das galdxias, no entanto,
a expansao acelerada é observada em supernovas, ou seja, em escalas diferentes, muito maiores
que as galaticas. Se considerarmos Schwarzschild-de Sitter, obteremos nos limites relevantes, os
mesmos resultados, os resultados serao diferentes apenas para buracos negros do tamanho do
universo. Este problema é também interessante, e ja foi feito para o caso de fluido perfeito e
campo escalar minimamente acoplado [77]. Segue nas perspectivas de trabalho futuro desenvolver
o caso de acoplamento nao minimo.

Outra ponto interessante a ser trabalhado é a utilizacao de acoplamento nao minimo em
modelos de gas de Chaplygin para verificar também a formagao de buracos negros supermassivos.
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Accretion of nonminimally coupled

scalar fields into black holes

O capitulo {4 se trata de uma reproducao integral, detalhada e estendida, do artigo
(arXiv:0909.3033v2) constante na préxima pégina. O artigo foi aceito para publicac¢ao na edi¢ao
de novembro da revista Physical Review D.



Accretion of nonminimally coupled scalar fields into black holes

Manuela G. Rodrigues*
Instituto de Fisica Gleb Wataghin, UNICAMP, C.P. 6165, 13083-970 Campinas, SP, Brazil.

Alberto Saaf
Departamento de Matemdtica Aplicada, UNICAMP, C.P. 6065, 13083-859 Campinas, SP, Brazil.

By using a quasi-stationary approach, we consider the mass evolution of Schwarzschild black
holes in the presence of a nonminimally coupled cosmological scalar field. The mass evolution
equation is analytically solved for generic coupling, revealing a qualitatively distinct behavior from
the minimal coupling case. In particular, for black hole masses smaller than a certain critical value,
the accretion of the scalar field can lead to mass decreasing even if no phantom energy is involved.
The physical validity of the adopted quasi-stationary approach and some implications of our result
for the evolution of primordial and astrophysical black holes are discussed. More precisely, we argue
that black hole observational data could be used to place constraints on the nonminimally coupled

energy content of the universe.

PACS numbers:

I. INTRODUCTION

The accretion of matter is one of the most studied
physical process involving black holes. Assuming the va-
lidity of certain energy conditions for the accreting mat-
ter, the black hole mass will never decrease. In fact, if
the null energy condition holds, no classical process can
lead to mass decreasing for black holes[1]. The situation
changes completely if quantum processes are allowed: a
black hole can, in fact, shrink due to the emission of
Hawking radiation[2]. Such processes are particularly rel-
evant, for instance, to Primordial black holes (PBH)[3].
One of the most striking features of PBH is that they
could indeed evaporate completely due to the emission
of Hawking radiation. It is known, in particular, that a
PBH with mass smaller than the so called Hawking mass
My = 10'%g should have already evaporated by now.
PBH with masses close to that limit are specially rele-
vant because their emitted Hawking radiation might, in
principle, produce observable effects in the present day
universe[4].

The interest in these problems has increased con-
siderably in the last years due to the many dark en-
ergy phenomenological models that have been proposed
to described the recent accelerated expansion of the
universe[5]. Such models[6] typically involve a scalar field
pervading all the universe that could, in principle, be ab-
sorbed by any black hole, implying consequently in new
channels for black hole mass accretion[7]. It is interest-
ing to notice that the study of black holes growth in the
presence of scalar fields has been initiated before[8] the
discovery of the recent acceleration of the universe and,
thus, before the proposal of any dark energy model.

The mass evolution of any black hole is governed by
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04.70.Bw, 95.36.+x, 97.60.Lf, 98.80.Cq

two competing processes. The first one is Hawking ra-
diation, which decreases the black hole mass due to the
emission of a thermal radiation. The other one, which
tends to increase the black hole mass, is the accretion of
the surrounding available matter and energy. The sur-
vival or not of a PBH until nowadays, for instance, will
depend on the detailed balance of these processes. The
unexpected possibility that black hole masses could effec-
tively decrease due to the accretion of exotic (phantom)
dark energy[9] was received with great interest because,
mainly, it could alter qualitatively the evolution of any
black hole, implying, occasionally, in observational con-
sequences for both astrophysical and primordial black
holes. Since phantom dark energy violates the usual en-
ergy conditions, there is no contradiction between these
results and the classical theory of black holes. Neverthe-
less, one should keep in mind that the physical viability
of models involving phantom energy has been constantly
challenged by their severe inherent classical and quantum
instabilities[10].

In this paper, we study the mass evolution of Schwarz-
schild black holes in the presence of a nonminimally cou-
pled scalar field. A quasi-stationary approach is intro-
duced and the mass evolution equation is analytically
solved for generic coupling. Our main conclusion is that,
for black hole initial masses smaller than a certain criti-
cal value, one could indeed have mass decreasing even in
the absence of the Hawking evaporation mechanism and
without any component of phantom energy in the model.
This is a more robust scenario for mass decreasing of
black holes due to the accretion of exotic matter since
it is not plagued by the phantom energy instabilities.
Moreover, one could have, in principle, mass decreasing
for considerably larger black holes than the minimally
coupled case, with possible implications for primordial
and astrophysical black holes, which could be explored
in order to place observation constraints on the nonmin-
imally coupled energy content of the universe.



II. NONMINIMALLY COUPLED SCALAR
FIELDS AROUND BLACK HOLES

We are concerned here with a scalar field ¢ governed
by the action

S=1 / day/ g [F(G)R — 0,606 — 2V(#)], (1)

surrounding a Schwarzschild black hole. Nonminimally
coupled cosmological models of the type (1) have been
intensively used in modern cosmology[11]. Models for
which it is indeed possible to reach F'(¢) = 0 are known
to be plagued with singularities[12]. The hypersurface
F(#) = 0 marks, in a sense, the boundary between stan-
dard (F(¢) > 0) and phantom-like (F(¢) < 0) behavior
for the scalar field ¢[13]. We are mainly interested here
in models such that F(¢) > 0 everywhere since, in such
cases, phantom-like behavior is excluded by construction.
Since Schwarzschild spacetime is Ricci-flat, the equa-
tion of motion for ¢ obtained from (1) reads simply

O¢ =V'(¢), (2)
and the associated energy momentum tensor is given by

Gab

Top = 0a0Opp — > (0c00°¢ +2V) + V Vi F' — gopOOF.

(3)
Note that, due to Ricci-flatness of Schwarzschild space-
time, we have V,7,° = 0. By adopting the usual
Schwarzschild coordinates, the spherically symmetrical
version of Eq. (2) will be given by

9o 1 oM\ 8 [, 2M\ d¢
*W*E(PT)E{’“ (1*7)5}

(-2 )ve.

r

The standard formulation of the stationary Bondi accre-
tion process[14] for this problem consists in considering
solutions of (4) with the following boundary condition
lim 6(t,7) = 6u(t), (5)
where ¢.(t) corresponds to the cosmological homoge-
neous and isotropic solution of the model (1), with cos-
mological and Schwarzschild time coordinates identified.
Since no back reaction of the scalar field is taken into ac-
count, our approach requires that the energy content of
the scalar field must remain bounded and small around
the black hole. Once we have a solution ¢(¢,r) of (4) with
bounded energy and obeying the boundary condition (5),
we assume that its energy flux on the black hole horizon
is completely absorbed by the black hole, implying that
arr r2T,"dS). (6)
dt r=2M
This problem was solved, for F(¢) = 1 and V(¢) = 0,
in [15]. In the Eddington-Finkelstein coordinates (v,r),

with v = t + r + 2M log (r/2M — 1) corresponding to
incoming light geodesics, the pertinent solution corre-
sponds to the stationary configuration

o) =B+ (v ). @)

with 8 and ~ constant. We do not expect to have sta-
tionary solutions like this for the generic model (1). In
fact, stationary solutions are possible only for actions
that are invariant under shifts ¢ — ¢ + A, see [16]. We
can, however, adopt a quasi-stationary approach based
on the observation[17] that, for slowly varying cosmo-
logical solutions ¢.(t), the “delayed” field configuration
given by

o(v,7r) = ¢ (v —7r+2Mlog %) , (8)

is an approximated solution of (4) for certain potentials
V(¢). The validity of this approximation will assure, of
course, the validity of our quasi-stationary approach. By
substituting (8) in (4) one gets

(1 + % + (25}4>2 + <2iW>3> b+ V'(0c) =0, (9)

with the dot standing for the derivative with respect
to t. Hence, our approximation is valid if ¢. =~ 0 and
V'(¢e) = 0. Due to the typical cosmological time scales,
the assumption of a quasi-stationary (qﬁb ~ 0) evolution
around the black hole is not, in fact, too restrictive. The
same is true for the assumption V' (¢.) = 0, but the argu-
ment is more involved. Assuming a small variation of ¢,
the potential can be linearized as V(¢.) = po., since the
constant factor is irrelevant here. In this case, equation
(4) will be a linear equation, and it is possible to find a
stationary solution obeying the Bondi boundary condi-
tion (5). The approximation will be valid provided ¢, is
small and 7 is kept smaller than the cosmological horizon
scale, see [7] for the details. It is interesting to notice that
the explicit examples of failure of the approximation (8)
presented in [17] corresponds clearly to situations where
one cannot assure ¢, ~ 0 or V'(¢.) =~ 0.
For the solution (8), one has

T 2M 2 AW [P P
= (20 (0 P2 - 6.

Also from (8), we see that, on the black hole horizon,
the field ¢ assumes the value of ¢., propagated along
a incoming light geodesic, but arriving with a certain
“delay”[17]. Our quasi-stationary analysis neglects also
such delay and, hence, in the quasi-stationary approxi-
mation

De(t) = doo + Doo(t — to), (11)
with ¢, and (bm constants, we have

M =167M? (1 + F") ¢>, —4nMF'¢o.  (12)



For the minimal coupling case, F(¢) = 1 and (12) re-
duces to the usual scalar field accretion rate[15]. It is
clear, however, that for the nonminimally coupled case
one could have, in principle, M < 0 even in the absence
of phantom modes. The rate (12) corresponds only to the
accretion of the scalar field. The complete mass evolution
equation is obtained by adding to the right-handed side
a term oc M2 corresponding to the Hawking radiation.
As we will see in the next section, the fact that the two
accretion terms in (12) have different signs and differ-
ent powers of M will imply in the existence of a critical
mass M., delimiting the mass increasing and decreasing
accretion regimes.

We finish this section by noticing that the possibility
of negative energy fluxes for nonminimally coupled scalar
fields and their implications for mass decreasing process
involving black holes has been already considered previ-
ously in another context, namely in the investigation of
the generalized second law of thermodynamics[18].

III. MASS EVOLUTION

For a generic coupling function F(¢), the complete
mass evolution equation has the general form

[0

N = f()M? — g()M — <,

(13)
where f(t) and g(t) are smooth functions and « is a char-
acteristic constant for Hawking radiation. Let us con-
sider, initially, only the accretion process (a« = 0). By
introducing M (t) = G(t)P(t), with

G(t) = e Jia 951 02, (14)

we obtain a separable equation for P(t), which can be
easily solved leading to the following solution for (13)
with o =0

MyG(t)

M(t) = T MoH(D) (15)

where M (tp) = My and

H(t) = /t F(5)G(s) ds. (16)

Typically, if the denominator of (15) does not vanish,
the mass M (t) decreases according to (14) for positive
g(t). Mass increasing solutions appear when the denom-
inator vanishes. For positive and well behaved f(t) and
g(t), the function H(t) will be monotonically increasing
and bounded by Hoo = lim;—, o H(t), leading to a criti-
cal mass M. = H 0_01. Any black hole with initial mass
My such that 0 < My < M., even in the absence of
Hawking radiation, will disappear due to the accretion
of the scalar field, but such process typically will take an
infinite amount of time. On the other hand, those black
holes with initial masses My > M., will grow by accreting

the scalar field. In fact, in this case, the denominator of
(15) vanishes for ¢ = t¢,, with H (te;) = Mo}, implying
that the black hole grows up to infinite mass in a finite
time. The larger is the black hole initial mass My, the
shorter is t.,. In contrast to the 0 < My < M., case, such
behavior for My > M., is similar to that one observed for
the minimally coupled case F' = 1. The qualitative evo-
lution for the case My = M., will depend on the details
of the functions f(¢) and g(t).

For situations with large M., the inclusion of Hawking
radiation will alter qualitatively only the final instants of
the mass decreasing process. In such a case, for My <
M., the black hole also disappears, but now in a finite
time, since Hawking radiation dominates the process for
M(t) < 1. In fact, for M > M, the Hawking radiation
term can be neglected and the dynamics are essentially
that one described by (15). Let us now consider some
explicit examples of the coupling function F(¢) in order
to elucidate these points.

A, F(¢)=1+¢0

In this linear coupling case, equation (13) is au-
tonomous, with f(t) = 167¢% and g(t) = 4m€des, and
can be integrated by quadrature for any value of a. We
do not need, however, the exact solution here. We assume
¢ and ¢ to be both positive in order to avoid possible
singularities[12] and, without loss of generality, to = 0.
The functions G(t) and H(t) are in this case

G(t) = e 4780t (17)
and
4oo
For d)oo positive, we have
_ &g
MCI‘ - 4 o0 ) (19)
and
1 My

tcr = 0 lo . 20
471'6(;500 . MO - Mcr ( )

Notice that, for typical cosmological situations, (boc is
small, implying in large values of M., for £ of the order
of unity (in Planck units). In these cases, the Hawking
radiation is important only in the final instants of the
mass decreasing phase.

B. F(¢) =1+

We assume & > 0. We have f(t) = 167(1 + 2¢)$2 and
g(t) = 8n¢ (4)00(1.500 + ¢)§ot) in this case. The pertinent



functions are, for ty = 0,
G(t) = e 4mE(20cdoot+62:17) (21)
and

t - -
(1) = 16n(1+26) 6%, [ e meComdnetind) gy, (20)
0

The critical mass is given by M., = HZ!, with

Ho = 4w% oo | €47€0% [1 = oerf (2¢/7€000) |

(23)
where 0 = sgn¢.. and erf(x) is the error function[19].
For the typical cosmological situations we have that ¢
is very small, leading to

Vo~ itz ] @9

Notice that, as in the previous case, M, q%gol.
C. F(¢)=¢e?

In this case, we have f(t) = 167 (1+ 5265(¢°¢+¢"°°t)) 2
and g(t) = A€ oo e (@Fot) leading, for ty = 0, to

G(t) = exp (*471’65(%@ (ew“’t — 1)) (25)
and
H(t) = 16m¢?2, /t (1 + §2e5<¢w+¢5m3>) G(s)ds. (26)
0

The critical mass is given by

Mc_r1 = 167?500 [52 + exp (47‘(’6&%") (O, 47765%")
(27)

where I'(z, z) is the incomplete Gamma function[19]. For
doo small, we have

§

Mo = a+ 452 ¢;o ) (28)

where a is a numerical constant of the order of unity,
namely a = 167e*™T'(0,47) ~ 3.72. Again, we observe
the same behavior M, o< ¢l

D. Radiation era with F(¢) =1+ &¢

The previous examples involve only the nonminimally
scalar field in the quasi-stationary approximation. This
is not enough, for instance, to describe PBH, since they
were created in the primordial universe and have existed

for eras where dark energy was not the gravitationally
dominant content of the universe. In the radiation domi-
nated era, in particular, the universe was filled and dom-
inated by ultra relativistic matter which energy density
is described in Planck units by

3

Ey = W . (29)

Such an energy density has been also available to be ac-
creted by the black hole and should be incorporated in
our analysis. The case of linear coupling F(¢) =1+ £¢
in the presence of radiation with energy density (29) cor-
responds to the choices f(t) = 16m¢2 + (3/2)t~2 and
g(t) = 4m€do. The G(t) and H(t) functions in this case
are

G(t) = e 4mEdoe (t—t0) (30)
and
4¢oo . § ‘ —2 —A7Edos (s—to)
H(t) = c (1-G(t ))+2/tos e ds,
(31)
leading to
4(;500 3e
H, = 1 (-1, , 32
e (14 o). @

with 8 = 47€eoto. Since

lim zI'(—1,z) = 1, (33)

xr—

we have in the present case

Mcr:H(;l ~ 45 (1+
oo

3¢\ 7!
S(éwtO) ' (34)

if B is small.

IV. DISCUSSION

If we assume that ¢2 is of the same order of the critical
density of the universe today (pg =~ 1072%g/cm?®), we
have M., ~ 10°6¢ for coupling constants ¢ of the order of
unity (in Planck units) in the three first cases considered
in the last section, allowing all the black holes in the
universe to be in the shrinking phase today. In fact,
even the galactic supermassive black holes (SMBH) with
M =~ 105Mg =~ 10%%g are far below such a limit. These
black holes would be shrinking today according to (15).
The exact characteristic decaying time will depend on the
particular coupling function. For the case of the linear
coupling, the characteristic time is, according to (17),
10'7s, similar to the universe age. Notice that all the
other coupling functions considered in the last section
lead, typically, to faster decreasing mass regimes.



The fact that there are likely many black hole around
us might be used to constraint the nonminimally cou-
pled energy content of the universe during the cosmo-
logical history. Let us consider, for simplicity, the last
example of the previous section: the linear coupling case
during the radiation dominated era. Suppose that the
dark energy content of the universe has changed lightly
after, say, to = 1s. In this case, ¢ooto = 107!® in Planck
units, justifying to take 8 &~ 0 in (32) and leading to
M., = 1038g for a coupling constant £ of the order of
unity. Thus, only PBH with mass greater than 1038g
would escape from the shrink phase. Notice that this
mass is extremely large if compared with the usual Hawk-
ing mass My = 10'g. Observational constraints on the
PBH mass cutoff[4] could be used, in principle, to estab-
lish constraints on the non-minimal coupling parameter
&, although the details depends on the coupling func-
tion F(¢). If we take tg = 10'!s, corresponding to the
radiation-matter equality era, we will have d)ooto ~ 1077,
leading to M., ~ 10%%g. This is, again, a huge mass and
implies that virtually all black holes present at the end
of radiation era have existed during all the matter dom-
inated era in a shrinking regime. They should have lost
two thirds of their mass by now, suggesting that observa-
tional data about SMBH could also be used to constraint
the nonminimally coupled energy content of the universe.

We finish by noticing two points. First, one knows that
it is not expected, in general, to have constant values for
¢ and ¢o, along the cosmological history. Equation
(13) accommodates also situations where ¢oo and ¢oo
are functions of t. However, we should keep in mind that
our formalism is based on the assumption of a quasi-
stationary evolution, requiring ¢.(¢) & 0 in order to work
properly. One needs to take backreaction into account in
order to treat non stationary situations, see, for instance,

[20] for a recent discussion.

The second point is related with the hypothesis that
¢ is a field test around a Schwarzschild black-hole. This
is a good approximation provided that the energy con-
tent of the scalar field (dark energy) is negligible when
compared with the black-hole Physics scale. For the
much larger cosmological scale, on the other hand, the
scalar field is indeed the dominant energy content, be-
ing the sole responsible for the accelerated expansion of
the universe, usually described by a quasi-de Sitter so-
lution. In our universe, these two scales are very differ-
ent. Since the dark energy content is so small, in order
to probe the quasi-de Sitter properties of the spacetime
one needs to consider length scales of the same order
of the Hubble radius. It is perfectly possible, in par-
ticular, to apply condition (9) in a region far from de
black-hole (large r), but still far from the cosmological
horizon. Furthermore, provided that the effective cos-
mological constant of the accelerated expansion is small,
the dynamics near the black-hole horizon are essentially
the same of the Schwarzschild case, implying that (12) is
still valid. From a theoretical point of view, however, it is
certainly interesting to consider the problem of accretion
onto Schwarzschild-de Sitter black-holes as it is done, for
instance, in [21] for the case of perfect fluids and min-
imally coupled fields. We already know, however, that
our present analysis should arise naturally in the limit of
small A. These points are now under investigation.
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