IOPScience

Home

Search Collections Journals About Contactus My IOPscience

Clad — Automatic Differentiation Using Clang and LLVM

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2015 J. Phys.: Conf. Ser. 608 012055
(http://iopscience.iop.org/1742-6596/608/1/012055)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 131.169.4.70
This content was downloaded on 04/04/2016 at 22:55

Please note that terms and conditions apply.

iopscience.iop.org

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/608/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012055 doi:10.1088/1742-6596/608/1/012055

Clad — Automatic Differentiation Using Clang and
LLVM

V Vassilev!?, M Vassilev?, A Penev?, L Moneta!, and V Ilieva3

! CERN, PH-SFT, Geneva, Switzerland
2 FMI, University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria
3 Princeton University, Princeton, NJ, USA

E-mail: vvasilev@cern.ch

Abstract. Differentiation is ubiquitous in high energy physics, for instance in minimization
algorithms and statistical analysis, in detector alignment and calibration, and in theory.
Automatic differentiation (AD) avoids well-known limitations in round-offs and speed, which
symbolic and numerical differentiation suffer from, by transforming the source code of functions.
We will present how AD can be used to compute the gradient of multi-variate functions and
functor objects. We will explain approaches to implement an AD tool. We will show how
LLVM, Clang and Cling (ROOT’s C++11 interpreter) simplifies creation of such a tool. We
describe how the tool could be integrated within any framework. We will demonstrate a simple
proof-of-concept prototype, called Clad, which is able to generate n-th order derivatives of C++
functions and other language constructs. We also demonstrate how Clad can offload laborious
computations from the CPU using OpenCL.

1. Introduction

Both industry and science often use the mathematical apparatus of differential calculus.
Modeling financial markets, climatic changes or searching for the Higgs boson use function
optimization and thus derivatives. The numerical calculation of the derivative values yields
precision losses. They come from machine’s floating point representation and the stability of the
used numerical method. The computation fragility becomes even worse when computing higher
order derivatives. In practice the user (a programmer) must consider very carefully the input
values and the stepping delta, which sometimes can be far from trivial. Moreover, the derivative
is hard-coded and becomes a maintenance issue. The developer has to differentiate the function
mentally or using an external tool and translate it to the implementation language.

An alternative approach is the so called symbolic differentiation which overcomes the above-
described issues, but sometimes it is slow [1]. It does not offer straight forward framework
integration. For example, the function to be differentiated is hardcoded the programming
language (e.g. C++) and it has to be translated to the symbolic language, differentiated and the
result needs to be translated back to the framework’s programming language. Moreover, both
numerical and symbolic differentiation methods suffer when computing gradients and higher-
order derivatives.

Despite sometimes overlooked, there is a hybrid approach which lays in the middle of the
both extremes, resolving the mentioned issues. It is the automatic/algorithmic differentiation
(AD). A widely accepted definition of AD is “a set of techniques to numerically evaluate the

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012055 doi:10.1088/1742-6596/608/1/012055

derivative of a function specified by a computer program. AD exploits the fact that every
computer program, no matter how complicated, executes a sequence of elementary arithmetic
operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp,
log, sin, cos, etc.). By applying the chain rule repeatedly to these operations, derivatives of
arbitrary order can be computed automatically, accurately to working precision, and using at
most a small constant factor more arithmetic operations than the original program.”.

This paper is divided into sections as follows: Section 2, Related Concepts, discusses in brief
some of the existing tools in the field and demonstrates their advantages and disadvantages.
Section 3, Concepts of Clad, lays down the key concepts of our prototype — Clad. Section 4,
Implementation, uncovers some of the important technical details of the concrete realization.
Section 5, Applications, shows a few use cases in the context of the computer graphics and
high-energy physics. Section 6, Computation Offload, describes a conceptual implementation
employing parallel derivative computations. Section 7, Conclusion and Plans.

2. Related Concepts
Informally, the variety of incarnations of the AD can be classified in three major classes:

e Implemented via operator overloading — quick to implement at the cost of excessive amount
of memory; most compilers evaluate expressions containing overloaded operators exactly as
they are written, without performing any compile-time optimizations [2].

e Implemented via source-to-source transformations — results in faster derivative generation
than the operator overloading. The concept of the idea is to rewrite an expression in a
particular computer language, such as C++ or Fortran [3]. In order for the previously
mentioned operations to be executed, the AD tool have to perform compiler-like processes
like code parsing, code analyses, intermediate representations. The source transform
approach is considered harder to implement but on the other hand it has advantages such
as: better compiler optimizations and relatively lower amount of used memory [4].

e Implemented via compiler modules — an ideal realization of the source-to-source
transformations is implementing the AD compiler modules. Integrating automatic
differentiation capabilities in a compiler combines the advantages of both the operator
overloading and source transform approaches [5].

ADOL-C is an AD tool, based on operator overloading. It can produce first and higher order
derivatives of vector functions written in C/C++. One of its advantages is that the derived
functions are valid C/C++ routines. ADOL-C can handle codes based on classes, templates
and other C++ features. The tool supports the computation of standard objects required for
optimization purposes such as gradients, Jacobians and Hessians [6]. ADOL-C uses the concept
of active variables for denoting the possible differentiation independent variables. All of those
variables have to be declared with a special variable type. The process of derivation is based
on an ADOL-C specific internal representation and its start and finish are denoted with calls to
special service routines. Every calculation incorporating active variables within the derivation
process are recorded in a special data type. Once this is done, ADOL-C proceeds with executing
its internal algorithms for computing the derivatives.

ADIC2 is a project following the source-to-source transform for Fortran, C and C++ based
programs. It is built on top of the OpenAD project, which incorporates multiple, independent
software components [7]. ADIC2 uses the ROSE compiler framework for parsing the input source
code programs and for generating corresponding abstract syntax trees (ASTs). Unfortunately
ADIC2 is closely coupled with ROSE thus changes in ROSE may result in failures in ADIC2.
The tool uses configuration files specifying parameters and settings related to the differentiation
process. The AST is passed to a dedicated analyzer which is reducing the amount of code
passed to the differentiation algorithms. A XML based data structure is used in order to denote

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012055 doi:10.1088/1742-6596/608/1/012055

which parts of the source code should be differentiated and which parts should be marked as
statements and thus ignored by the differentiation algorithms. This XML based representation
is used by another tool producing the differentiation and a differentiated AST. ADIC2 uses again
the ROSE compiler for creating the output source code from the resulted AST.

The Fortran 95 compiler AD incorporates both the operator overloading and source transform
techniques thus it is considered as a hybrid compiler. The mathematics support is handled by
a compiler integrated module which provides overloaded versions of the arithmetic operators.
The user is allowed to select the dependent and independent variables. The compiler uses a
special active data type that is used to hold the function value as well as a vector for the
direction derivatives. The overloaded operators as well as the active data types are contained in
a compiler specific module. The independent variables as well as sections of the code that needs
to be differentiated need to be marked using directive-like statements, in order for the compiler
to recognize them. Unfortunately, no static data flow analyses of the code is conducted therefore
the achieved efficiency is not optimal [8].

Source-to-source transformation technique is considered as the ideal approach for building
large scale and run time crucial applications [9]. Furthermore, if the source-to-source
transformers are implemented as a part of an existing compiler, it makes the implementation
extremely efficient and easy to maintain at the cost of limited portability.

3. Concepts of Clad

An automatic differentiation algorithm takes a function (F') written in a programming language
(L), translates it and yields another function (F’) written in an another programming language
(R), where the translation between (F') — (F”) follows the rules of the differential calculus and
turning F’ into a derivative. For many tools (L) matches (R), i.e. the implementation language
of the input function is the same as the programming language of the differentiated function.
Usually it is so, because of design or technical limitations of the implementation. Most of the
uses of (F’) tend to be in the same framework and programming environment. An interesting
domain of research is when (L) is different from (R) but (L) compatible with (R). For example,
(F') is written in C/C++ and (F”) is written in OpenCL [10] or CUDA [11].

A derivative is produced by transforming the body of F' operation by operation. Every
operation is transformed following the well-known differentiation rules. Every statement in a
C++ function is treated as a standalone transformation entity. The translation employs the
chain rule of differentiation.

The chain rule in differential calculus provide mathematically proved simplification of the
translation process. It reduces the implementation complexity of the algorithm responsible for
the differentiation. There are two general flavors of implementing the differentiation: top-down
or bottom-up. In the top-down approach (also called forward mode or tangent mode) the
computations are done on every step and the byproducts are thrown away. In the bottom-up
approach (also called reverse mode or adjoint mode) the computations of the byproducts are
stored and reused. This is particularly useful when computing derivatives of the same function
with respect to different independent variables, for example when calculating function’s gradient.

0z 0z0x 020y
o azot Togor (1)

where z = f (z,y),x =g (t),y = h(t).

AD works with the assumption that a derivative exists, i.e. it does not check whether the
differentiated function is continuous at any interval. If the logic of the original function is
mathematically incorrect, there is no way how AD can produce a correct derivative.

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012055 doi:10.1088/1742-6596/608/1/012055

4. Implementation

Clad is an AD tool, implemented on top of the LLVM compiler infrastructure [12]. The
underlying compiler platform (Clang) builds an internal representation of the source code in the
form of an AST. Parts of AST are used to communicate with third-party libraries, which can
further specialize the compilation process. Because of the internal design and the communication
through well-defined representations, Clad can be packed in different ways. It can be easily
transformed from a plugin into a standalone tool or as an extension to third-party tools such as
the interactive C++ interpreter Cling [13].

Once Clad receives the necessary information, it can decide whether a derivative is requested
and produce it. It transforms the body of the candidate for differentiation and clones its AST
nodes while applying the differentiation rules. If the body is not present it tries to find user
provided directions how to proceed.

4.1. Usage

Currently, Clad is shipped as a plugin library for the Clang compiler. One can attach the library
to the Clang compiler and it will produce derivatives at compilation time as a part of the current
object file. However, this approach has some limitations: it is bound to a particular compiler
and compiler version. It is also required to compile the project, using derivatives with the same
compiler. For this reason, Clad can operate in three conceptually different modes (Figure 1),
generating derivatives in different representations. Derivatives can be a part of, either:

e an object file — if a derivative is requested Clad would put it as if it was present in the
source file;

e a source file — Clad can write out valid source code of the derivative into a source file. This
is handy when the user wants to produce the list of the requested derivatives and compile
them with another compiler;

e a shared library — Clad can write out the derivatives into a shared object (dynamic-link
library). This is useful when the user prefers another compiler, which is binary compatible
with Clang, For instance, the user wants to compile the application with GCC/ICC but
wants the derivatives to be still used.

libClad.so

Foo.cxx

Figure 1: Clad usage scenarios.

Listing 1 shows how simple is to use Clad. The example demonstrates how to produce the first
derivative of power of two (pow2). One needs to include a small header file, introducing Clad’s
runtime and use clad::differentiate function to specify which function needs to be differentiated.
It takes two arguments: function to differentiate and the position of the independent variable.
In the example below, Clad will fill in the body of pow2_darg0 statement-by-statement following
the derivation rules.

Listing 2 and 3 illustrate the textual mode in Clad. Clad can use the produced derivative
straight away or to write its source code into a file. In the Listing 2 there is the user code and
in the Listing 3 there are the automatically generated derivatives.

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012055 doi:10.1088/1742-6596/608/1/012055

#include "clad/Differentiator/Differentiator.h"

double pow2(double x) { return x * x; }

double pow2_dargO(double); // Body will be filled by Clad.

int main() {
clad::differentiate(pow2, 0);
printf ("Result is %f\n", pow2_darg0(4.2)); // Prints out 8.4
return O;

}

Listing 1: Clad will produce the body of the forward declared function.

#include "clad/Differentiator/Differentiator.h"
float examplel_dargO(float x, float y) {

return (((x + x) * y) * y);

float examplel(float x, float y) { }

return x * X *x y ¥ y;

}

void diffExamples() {
clad::differentiate(examplel, 0);
clad::differentiate(examplel, 1);

}

float examplel_dargl(float x, float y) {
return ((x * x) * y + X * x * y);

}

Listing 3: Derivatives of the function

Listing 2: Differentiation of function examplel.
examplel.

Valid C++4 functions are generated with a system-defined name inferred from original function
name, the independent variable of differentiation, and the derivative order. By construction,
the signature of the newly-generated function is the same as the derivation template function.

Differentiation may be applied not only on simple functions but also on more complex
language constructs such as:

e Templated C++ constructs;
e Classes and structs (eg. functors);

e Virtual functions.

4.1.1. Builtin Derivatives Some functions don’t have bodies, because they are only forward
declared and their implementation is in a library. The differentiation of some functions could be
steered for performance improvements. Clad has a mechanism allowing to override the default
differentiation policy and provide user-directed substitutions. Listing 4 specializes the default
behavior of the differentiation, by replacing the default cosine (cos) with a user-specified one.

The implementation of the user-specific substitutions relies on a namespace with overloaded
semantics. All substitutions need to be inside a special namespace called custom_derivatives and
to follow specific naming rules. Before Clad builds a derivative, it checks if there is already a
predefined derivative candidate. If this is the case it simply uses the one available.

All built-in derivatives rely on this mechanism. Differentiation of trigonometric functions and
the derivatives of other special functions is done using user substitutions.

4.1.2. Higher Order Derivatives and Mized Partial Derivatives Clad provides a convenient way
of obtaining n-th order derivative out of a specific function. This is possible by invoking the
templated version of the clad::differentiate function for instance see Listing 4.

Mixed derivatives are produced on Listing 5.

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012055 doi:10.1088/1742-6596/608/1/012055

I ooo
namespace custom_derivatives { double sin_dargO(double x) { return my_better_impl::cos(x); 1} }
void secondDerivative() {
clad: :differentiate<2>(sin, 0);
}

Listing 4: Generation of the second derivative of sin, using substitutions.

float example2(float x, float y) {
return x * X * y;
}
float example2_dargO(float x, float y);
auto example_darg0 = clad::differentiate(example2, 0);
auto example_darg0O_dargl = clad::differentiate(example2_darg0, 1);

Listing 5: Generation of mixed partial derivatives.

4.2. Performance

Clad works in synergy with the Clang compiler. Table 1 shows the times to compile the test cases
with and without Clad. We test the overhead in two extreme cases — one, when it differentiates
a function body with many statements (Listing 6), and another, where the body contains a very
large expression (Listing 7). In more realistic scenarios Clad’s overhead is negligible. It is so
because the functions to be differentiated are much shorter, and the volume of these functions
compared to the rest of the code is much smaller.

Table 1: Compilation times of Listing 6 and Listing 7.

Test With Clad No Clad Clad overhead
Large body 1.007s 0.993s 0.014s (1.39%)
Large expression 3.258s 2.432s 0.826s (25.35%)
double fi1(double x) { double f2(double x) {
X =X+ 2; X=X % X; X=X + X return
// ... repeated 1020 times. X+2 + X*X + xtx +
return x; // ... 1020 repetitions.
} ¥
Listing 6: Performance — Large function body. Listing 7: Performance — Large expression.

5. Applications
We explored two major application domains for the automatic differentiator Clad — computer
graphics and high-energy physics.

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012055 doi:10.1088/1742-6596/608/1/012055

5.1. Computer Graphics

We embedded Clad in a demonstration path tracer, called SmallPT [14]. We investigated how
difficult and laborious would the integration be. SmallPT shoots rays of light from the viewer
towards the scene and computes lighting properties at the intersection points. In order to do
that, it computes three partial derivatives of the function describing the surface. They form
the normal vector at the intersection point between a ray and a surface. We replaced the
hand-written implementation with invocations of Clad. The performance is comparable to the
performance of the hand-written calculations. Calculating the normal vectors using numerical
approximation is about three times slower. The timing was collected from 109 calculations of the
gradient at random points on a sphere and a hyperbolic solid. Another advantage of embedding
Clad allows even to improve the flexibility of our modification of SmallPT implementation,
because it allows to find derivatives of arbitrary implicit surfaces (not only spheres as in the
original code). The addition of a new surface is now easier, because the hand-written derivative
will not be needed.

5.2. High-Energy Physics

The ROOT Framework [15] is widely adopted in high-energy physics for data analysis. It offers
a wide range of mathematical tools for fitting and minimization. These tools use extensively
derivatives and some of them are hand-written while others are numerically calculated. We plan
on adopting Clad in ROOT6 through its C++ interpreter — Cling [13]. We expect performance
improvement and Clad is expected to become a gateway for derivative computation on General-
Purpose Computing on Graphics Processing Units (GPGPU). This work is still to be done
soon.

6. Computation Offload

Derivative calculation is very computing-intense and time-consuming process. Clad’s immediate
goal is to increase the computational performance and to make use of all computing power of the
environment. The natural evolution towards execution on GPGPUs is prominent. Computation
can be accelerated by using the offloading of calculations from CPU towards the available
GPGPUs. There are mainly two conceptually-different approaches:

e Using built-in approaches in the compiler to guide compilation (usually by ’pragma’
directives) to turn on the parallel execution, the automatic offload of specific computation-
intense parts of the code to selected accelerators. This is the approach in OpenMP 4.0
[16]. The advantage is that the code does not change significantly. If the compiler does not
support these options, it ignores the parallelisation directives gracefully. The disadvantages
are: very hard to make full use of the underlying computing architectures, because the
pragma directives cannot specialize the algorithm for all architectures; requires some effort
and re-engineering to get some parallelism.

e Using a specific programming language (such as OpenCL and CUDA) to talk to the
hardware. This approach supposes rewriting the algorithms, or parts of them. The main
advantage of this approach is that the algorithm can fully comply with the architecture of
the target hardware. The disadvantage is that it requires a lot of effort and expertise to
port it for every architecture and hardware.

We target scalability by changing semantics of the language syntax constructs and based on
them we enhance the compiler actions. A key goal for this transformations is to be as transparent
as possible. Most actions are performed automatically — at compile time. The goal is to use
most of the advantages of the above-mentioned approaches, without forcing major changes in
the user code.

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012055 doi:10.1088/1742-6596/608/1/012055

Listing 8 presents an example of CPU-calculated gradient. In the implementation we find a
sum of the partial derivatives of the Rosenbrock function.

float rosenbrock(float x[], int size) {
auto rosenbrockX = clad::differentiate(rosenbrock_func, 0);
auto rosenbrockY = clad::differentiate(rosenbrock_func, 1);
float sum = 0;
for (int i = 0; i < size-1; i++) {
float one = rosenbrockX.execute(x[i], x[i + 1]);
float two = rosenbrockY.execute(x[i], x[i + 1]);
sum += one + two;
}

return sum;

Listing 8: Rosenbrock function implementation using Clad.

Listing 9 shows how the user should specify that he/she wants the compilation to be offloaded.
The original implementation needs to be transformed into a lambda function, which is very
straight-forward and almost transparent conversion. It is not much harder than putting a
pragma directive in the source code. The code is not trivial to offload, because it has a for-loop,
which should be made parallel to be able to exploit the properties of the GPGPU architecture.
Furthermore, we need to calculate the sum of the results of the calculations, that requires
reduction in the highly parallel hardware.

float rosenbrock_offloaded(float x[], int size) {
return clad::experimental_offload([=] {
auto rosenbrockX = clad::differentiate(rosenbrock_func, 0);
auto rosenbrockY = clad::differentiate(rosenbrock_func, 1);
float sum = O;
for (int i = 0; i < size-1; i++) {
float one = rosenbrockX.execute(x[i], x[i + 1]);
float two = rosemnbrockY.execute(x[i], x[i + 1]);
sum += one + two;
¥
return sum;
s
}

Listing 9: Computation offloading — Conceptual implementation using C++11 lambda function.

After the minimalistic transformation is done, Clad should take over and perform the rest
automatically. Every call to clad::experimental_offioad is replaced by a call to a function
generated by the Clad plugin. This is done by an AST transform of the lambda function,
allowing to transmit the parameters and to invoke one or more kernels.

In order to achieve optimal performance, Clad has to keep the computing units busy, which
is far from a trivial task. Computation offload to GPGPU has to be very well planned and
should happen when processing large data sets. One of the reasons is that all data needs to be
copied through the system bus to a peripheral device, which introduces big overheads. Clad-
generated code which passes data and executes kernels, should provide optimal parallel load as
well as minimum data transfer between different types of memory (as it is possible to get too

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012055 doi:10.1088/1742-6596/608/1/012055

much latency). The use of read only, write only parameters and other similar techniques are
recommended in order to achieve better performance.

The given example was tested for performance with 100 calls to Rosenbrock’s function over
1024*1024*48 float numbers. The resulting benchmarks are shown in Table 2.

Table 2: OpenCL parallel execution results.

Test Device Clock Compute Work Global Local Time
Units Group Memory Memory

Original Intel i7-2635QM 2GHz 1 - - - 12.466s

Multicore Intel i7-2635QM 2GHz 4 1024 8192MB 32KB 11.128s

ATI Radeon 6490M 150MHz 2 256 256MB 32KB 18.183s

AMD Devastator 844MHz 6 256 2047TMB 32KB 15.479s

NVIDIA Tesla K20m 705MHz 13 1024 4800MB 47KB 10.615s

The benchmarking showed that the CPU multicore is slightly faster than the original single
core computation. This is because of the copying of large amounts of data. Overall, the GPGPU
offload is very semnsitive to the particular hardware. This is mainly due to the copy of large
data sets sequentially between the host and the device. There is also latency because of the
synchronous manner of execution. The next data transfer waits for the previous computation
to be executed. In the case of NVIDIA Tesla, the CPU offload reached 50%, which is very good
result for a prototype implementation.

7. Conclusion and Plans

Derivative production is important not only in high-energy physics but in many other domains.
The automatic differentiation is often an overlooked approach to compute derivatives. It
eliminates the precision losses in the numerical differentiation and it is faster than symbolic
differentiation. It can also simplify the complexity of gradient computations. The AD tool
mainly focuses on C and partially C++, because of the complexity of the language. We presented
an innovative proof-of-concept prototype facilitating automatic differentiation, called Clad. It is
based on the industrial-strength compiler technologies Clang and LLVM. Clad can differentiate
non-trivial C++ routines and it is getting closer to production grade quality. Adding C support
is trivial, the only work that needs to be done is writing the runtime environment to be C
compliant.

We explained how it can be used to produce derivatives of various orders; how to produce
mixed derivatives; how to perform user-based substitutions, steering the differentiation process;
and how to offload computations in heterogeneous environments. There is still a lot of room for
improvements. We have a conceptual implementation in OpenCL, providing a way how to offload
computations in heterogeneous environments (making extensive use of GPGPUs). However, this
work is still experimental and it requires a lot of efforts for Clad to be made robust.

We plan to generalize the computation of gradient and Jacobian of functions. We plan
to reduce the computational complexity of these computations by making use of the reverse
automatic differentiation mode in cases of many seeds.

Another immediate plan is to integrate Clad into Cling — the C++ interpreter of ROOT6,
which would make Clad available to the entire high-energy physics community. Then, we can
proceed using Clad in ROOT’s minimization and fitting algorithms of ROOT.

ACAT2014 IOP Publishing

Journal of Physics: Conference Series 608 (2015) 012055 doi:10.1088/1742-6596/608/1/012055

Acknowledgments

The work was partially facilitated by Google Summer of Code Program 2013 and 2014,
through CERN-SFT mentoring organization. The heterogeneous environment benchmarking
are supported by the University of Plovdiv “Paisii Hilendarski” through Fund “Research” under
contract NIS14-FMIIT-002/26.03.2014.

References

(1]

3]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

Castro M, Vieira R and Biscaia Jr E 2000 Automatic differentiation tools in the dynamic simulation
of chemical engineering processes Brazilian Journal of Chemical Engineering 17 373-382 ISSN 0104-
6632 URL http://wuw.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400002&
nrm=iso

Bartholomew-Biggs M, Brown S, Christianson B and Dixon L 2000 Automatic differentiation of algorithms
Journal of Computational and Applied Mathematics 124 171-190 ISSN 0377-0427 numerical Analysis 2000.
Vol. IV: Optimization and Nonlinear Equations URL http://wuw.sciencedirect.com/science/article/
pii/S0377042700004222

Gay D 2006 Semiautomatic differentiation for efficient gradient computations Automatic Differentiation:
Applications, Theory, and Implementations (Lecture Notes in Computational Science and Engineering
vol 50) ed Biicker M, Corliss G, Naumann U, Hovland P and Norris B (Springer Berlin Heidelberg) pp
147-158 ISBN 978-3-540-28403-1 URL http://dx.doi.org/10.1007/3-540-28438-9_13

Bischof C H, Hovland P D and Norris B 2002 Implementation of automatic differentiation tools. PEPM ed
Thiemann P (ACM) pp 98-107 ISBN 1-58113-455-X URL http://dblp.uni-trier.de/db/conf/pepm/
pepm2002. html#BischofHNO2

Cohen M, Naumann U and Riehme J 2003 Towards differentiation-enabled Fortran 95 compiler technology
Proceedings of the 2003 ACM Symposium on Applied Computing SAC ’03 (New York, NY, USA: ACM)
pp 143-147 ISBN 1-58113-624-2 URL http://doi.acm.org/10.1145/952532.952564

Walther A and Griewank A 2012 Getting started with ADOL-C Combinatorial Scientific Computing ed
Naumann U and Schenk O (Chapman-Hall CRC Computational Science) chap 7, pp 181-202

Narayanan S H K, Norris B and Winnicka B 2010 ADIC2: Development of a component source transformation
system for differentiating C and C++ Procedia Computer Science 1 1845-1853 ISSN 1877-0509 iCCS 2010
URL http://www.sciencedirect.com/science/article/pii/S1877050910002073

Naumann U and Riehme J 2005 A differentiation-enabled Fortran 95 compiler ACM Trans. Math. Softw. 31
458-474 ISSN 0098-3500 URL http://doi.acm.org/10.1145/1114268.1114270

VoBibeck M, Giering R and Kaminski T 2008 Development and first applications of TAC++4 Advances in
Automatic Differentiation (Lecture Notes in Computational Science and Engineering vol 64) ed Bischof
C H, Biicker H M, Hovland P D, Naumann U and Utke J (Springer Berlin Heidelberg) pp 187-197 ISBN
978-3-540-68935-5 URL http://dx.doi.org/10.1007/978-3-540-68942-3_17

Gaster B, Howes L, Kaeli D R, Mistry P and Schaa D 2013 Heterogeneous Computing with OpenCL:
Revised OpenCL 1.2 Edition 2nd ed (San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.) ISBN
9780124055209

Cook S 2013 CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs 1st ed (San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.) ISBN 9780124159334

Lattner C and Adve V 2004 LLVM: A compilation framework for lifelong program analysis & transformation
Proceedings of the 2004 International Symposium on Code Generation and Optimization (CG0’04) (Palo
Alto, California)

Vasilev V, Canal P, Naumann A and Russo P 2012 Cling — the new interactive interpreter for ROOT 6 Journal
of Physics: Conference Series 396 052071 URL http://stacks.iop.org/1742-6596/396/i=5/a=052071

Beason K 2014 SmallPT: Global illumination in 99 lines of C++4 URL http://www.kevinbeason.com/
smallpt/

Brun R and Rademakers F 1997 ROOT — an object oriented data analysis framework Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 389 81-86 ISSN 0168-9002 new Computing Techniques in Physics Research V URL http:
//www.sciencedirect.com/science/article/pii/S016890029700048X

OpenMP A R B 2013 OpenMP application program interface URL http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400002&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400002&nrm=iso
http://www.sciencedirect.com/science/article/pii/S0377042700004222
http://www.sciencedirect.com/science/article/pii/S0377042700004222
http://dx.doi.org/10.1007/3-540-28438-9_13
http://dblp.uni-trier.de/db/conf/pepm/pepm2002.html#BischofHN02
http://dblp.uni-trier.de/db/conf/pepm/pepm2002.html#BischofHN02
http://doi.acm.org/10.1145/952532.952564
http://www.sciencedirect.com/science/article/pii/S1877050910002073
http://doi.acm.org/10.1145/1114268.1114270
http://dx.doi.org/10.1007/978-3-540-68942-3_17
http://stacks.iop.org/1742-6596/396/i=5/a=052071
http://www.kevinbeason.com/smallpt/
http://www.kevinbeason.com/smallpt/
http://www.sciencedirect.com/science/article/pii/S016890029700048X
http://www.sciencedirect.com/science/article/pii/S016890029700048X
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

