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Abstract

We present a new empirical Type Ia supernova (SN Ia) model with three chromatic flux variation templates: one
phase dependent and two phase independent. No underlying dust extinction model or patterns of intrinsic
variability are assumed. Implemented with Stan and trained using spectrally binned Nearby Supernova Factory
spectrophotometry, we examine this model's 2D, phase-independent flux variation space using two motivated basis
representations. In both, the first phase-independent template captures variation that appears dust-like, while the
second captures a combination of effectively intrinsic variability and second-order dust-like effects. We find that
≈13% of the modeled phase-independent flux variance is not dust-like. Previous empirical SN Ia models either
assume an effective dust extinction recipe in their architecture, or only allow for a single mode of phase-
independent variation. The presented results demonstrate such an approach may be insufficient, because it could
“leak” noticeable intrinsic variation into phase-independent templates.

Unified Astronomy Thesaurus concepts: Observational cosmology (1146); Type Ia supernovae (1728)

1. Introduction

The discovery of dark energy with standardized Type Ia
supernovae (SNe Ia) solidified these transient objects' impor-
tance to cosmology (A. G. Riess et al. 1998b; S. Perlmutter
et al. 1999). SNe Ia exhibit a markedly similar peak B-band
brightness dispersion of only ~1 mag, and this dispersion can
be reduced further with multifilter photometric time series (or
light curves) by exploiting correlations between light-curve
duration (also called shape, width, or stretch) and color with

B-band maximum brightness (M. M. Phillips 1993; A. G. Riess
et al. 1996; S. Perlmutter et al. 1997; R. Tripp 1998). These
standardization results reduce the brightness dispersion by an
order of magnitude to ≈0.12 mag (D. M. Scolnic et al. 2018).
Standardization using spectra can reduce the dispersion even
further, to ≈0.08 mag (H. K. Fakhouri et al. 2015; K. Boone
et al. 2021a).
There are two errors that limit the capacity of SNe Ia to

constrain cosmological parameters: the number of observed
SNe Ia (statistical uncertainty), and errors resulting from
observation bias, modeling errors, and calibration (systema-
tics). Recent SN Ia cosmology analyses have significantly
reduced the statistical uncertainty by utilizing over 103

spectroscopically confirmed SNe Ia (M. Betoule et al. 2014;
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D. M. Scolnic et al. 2018). LSST, via the Vera Rubin
Observatory, will further increase our usable SN Ia sample by
at least an order of magnitude over 10 yr after its commission-
ing (Ž. Ivezić et al 2019). Although internal photometric
calibration will remain an important systematic to account for,
LSST will alleviate tedious intersurvey photometric calibration
systematics performed in many past analyses while still
providing impressive statistics. As a result, LSST will increase
the relative importance of systematics arising from SN Ia light-
curve modeling and standardization for constraining cosmolo-
gical parameters.

SNe Ia result from the catastrophic disruption of carbon–
oxygen white dwarfs (F. Hoyle & W. A. Fowler 1960).
Potential progenitor scenarios include accretion from a white
dwarf's companion star or merging/collision of white dwarf
binary constituents (J. Whelan & I. J. Iben 1973; I. J. Iben &
A. V. Tutukov 1984). Unfortunately, accounting for observed
SN Ia spectral variation while simultaneously recovering
established empirical relations within the context of a
detonating (or deflagrating) white dwarf framework remains a
daunting and incomplete task. For example, it is suggested that
progenitor mass can extend below an otherwise expected white
dwarf mass limit, or Chandrasekhar mass, of 1.4 Me
(R. A. Scalzo et al. 2014). See N. Soker (2019) for a recent
review of and summary of SN Ia theoretical modeling progress
and unanswered questions. Usable parametric theoretical SN Ia
models remain elusive, leaving us reliant on empirical models
trained from SN Ia observations.

1.1. Photometric Variation and Empirical Models

As mentioned, light-curve width correlates with B-band
maximum brightness so that longer duration SNe Ia are
systematically brighter (M. M. Phillips 1993). We refer to this
as the width–luminosity relation (WLR). Similarly, bluer SN Ia
light curves are systematically brighter at B-band maximum,
which we similarly refer to as the color–luminosity relation
(A. G. Riess et al. 1996).

One can interpret SN Ia empirical models as transforming
high-dimensional sets of observations to a lower-dimensional
set of parametric latent templates that inscribe dominant modes
of SN Ia variability. The first generation of models attempted to
describe light curves in standard rest-frame filters using
templates specific to those filters (A. G. Riess et al. 1996; S. Jha
et al. 2007; C. R. Burns et al. 2011), which when applied to
measurements made with different rest-frame filters required a
K-correction (A. Kim et al. 1996; P. Nugent et al. 2002) to
convert the data to the model photometric system. The
limitations of models based on broadband templates were
quickly recognized: K-corrections carry their own set of
uncertainties and biases that are correlated with model
parameters (K. S. Mandel et al. 2022). More importantly, by
restricting the templates to broad band, these models were
insensitive to substantially more complex SN Ia variability
revealed through spectroscopy.

SN Ia spectral variability is either intrinsic to SN Ia
populations or is extrinsic, instead arising from processes
external to the explosion, such as dust extinction or the SN Ia's
interaction with its circumstellar environments (P. Nugent et al.
2002; S. Jha et al. 2007). Furthermore, photometric relation-
ships emerge from spectral variation, with the temperature
dependence of Fe line blanketing at least partly driving the
WLR and explaining its wavelength dependence being such an

example (D. Kasen & S. E. Woosley 2007). Variation in
progenitor mass also contributes to the WLR, as lower-mass
SN Ia progenitors are systematically dimmer and have faster-
declining light curves compared to their more massive
counterparts (R. A. Scalzo et al. 2014). Certain spectral
features directly correlate with photometric SN Ia properties,
such as the F(6420 Å)/F(4430 Å) line ratio correlating with
maximum B-band brightness (S. Bailey et al. 2009), and the
ratio of Si II 5972 and 6355 Å (or Si II 5972 and 3858 Å)
correlating with light-curve width (P. Nugent et al. 1995).
Many SN Ia subtypes have been categorized by their spectral

variation (D. Branch et al. 2009; S. Blondin et al. 2012).
Grouping SNe Ia based on Si II velocity at maximum
brightness during a Tripp standardization procedure
(R. Tripp 1998) has been shown to reduce SN Ia dispersion
poststandardization more than use of only color and stretch
alone (X. Wang et al. 2009; R. J. Foley 2013). Furthermore,
spectral information can improve the effective total-to-selective
extinction RV estimation, with N. Chotard et al. (2011) using
spectral features to recover an effective RV value consistent the
Milky Way average of RV = 3.1. Given this plethora of spectral
variety within SNe Ia, and this variety's potential to further
improve standardization, commonly used and recent SN Ia
models make heavy use of spectroscopic observations in
training.
Most recent SN Ia models reduce the dimensionality of SN

Ia observations by constructing combinations of underlying
spectral or color variation templates, with one template
capturing the average, or fiducial, spectral evolution of SNe
Ia. This approach removes any need for K-corrections and
related uncertainty propagation (J. Guy et al. 2007;
K. S. Mandel et al. 2022). The ubiquitous SALT model family
(and its cousin SiFTO) is the canonical example of the spectral
template technique (J. Guy et al. 2007; A. Conley et al. 2008;
M. Betoule et al. 2014; J. D. R. Pierel et al. 2022). This family
of linear SN Ia models captures variation beyond a mean
spectral surface with a first-order flux variation template and a
phase-independent color template (with per-SN contribution
parameters x1 and c, respectively). SALT2's success over prior
models saw its widespread adoption and continuous improve-
ment, with the most recent version SALT3 extending its
wavelength coverage to the near-infrared (NIR; W. D. Kenwo-
rthy et al. 2021). More statistically rigorous linear spectral
template models have also been developed, such as BayeSN
with its potent hierarchical Bayesian framework (K. S. Mandel
et al. 2017, 2022; S. Thorp et al. 2021).
A plethora of sophisticated models have recently been

developed using The Nearby Supernova Factory (SNfactory)
spectrophotometric time series (G. Aldering et al. 2002).
C. Saunders et al. (2018) and their SNEMO model extracts up
to 15 linear principal functional components from a set of SN
Ia spectral surfaces trained using Gaussian processes to
maximally explain SN Ia variation. Alternatively, P. F. Léget
et al. (2020) in their SUGAR model treats SN Ia variation as a
linear combination of spectral index templates, extending the
initial work of N. Chotard et al. (2011) into a fully generative
model. SNEMO and SUGAR, along with all the models
mentioned so far, utilize linear dimensionality reduction
techniques.
K. Boone et al. (2021b) apply the Isomap method with their

Twins Embedding model to train a nonlinear parameterization
of intrinsic SN Ia variation at maximum brightness, while
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G. Stein et al. (2022) introduce a nonlinear probabilistic
autoencoder that captures intrinsic variation across both
wavelength and phase. Both find that a nonlinear approach
requires only three intrinsic model components to describe SN
Ia spectral variation where more traditional linear principal
component analysis model would require seven components or
more (C. Saunders et al. 2018). These two models also
demonstrate noticeable improvements over SALT2 in standar-
dized SN Ia dispersion from ≈0.12 to 0.09 mag. Improve-
ments through nonlinear technique application are not limited
to light-curve models: D. Rubin et al. (2015) introduce the
hierarchical Bayesian framework UNITY that allows for
nonlinear standardization, leading again to improved SN Ia
dispersion poststandardization relative to the linear Tripp
approach.

1.2. Shortcomings in Phase-independent Modeling

All past models either assume a dust extinction model for
explicit phase-independent templates (MCLS2k2, SNooPY,
SNEMO, SUGAR, BayeSN, and current nonlinear models) or
include a single phase-independent template which does not
differentiate between intrinsic and extrinsic variation (the
SALT family). Excluding the maximum brightness model
Twins Embedding, each of these models characterize phase-
independent variability with only a single model component.
Physical considerations alone demonstrate this to be an
insufficient treatment. As summarized in J. C. Weingartner &
B. T. Draine (2001), one would expect at least two extrinsic
variation parameters per SN Ia: one gauging dust column
density or optical depth (i.e., AV) and the other probing second-
order characteristics such as dust grain properties (i.e., RV).
Furthermore, it is plausible that empirical SN Ia models could
extract intrinsic variation into a phase-independent template
set. In this era of precision cosmology, modeling and
standardization systematics remain stubborn obstacles to
maximizing current and future SN Ia survey utility. Better
understanding underlying extracted modes of phase-indepen-
dent variation could answer outstanding questions about the SN
Ia population (i.e., the low SN Ia RV debate or the source of the
bias associated with host properties), and improve both SN Ia
modeling and standardization.

We present a new SN Ia empirical model to more deeply
explore the phase-independent variability of SNe Ia. This
model features three chromatic flux variation templates: one
phase dependent and two phase independent. These two phase-
dependent components provide the flexibility to account for
multiparameter dust models while also absorbing an intrinsic
time-averaged flux variation beyond that accounted for by the
phase-dependent component. All templates are physics agnos-
tic, as no assumptions are made about expected spectral
features or dust treatment. This new model is trained on
SNfactory's rest-frame spectrophotometric time series.

Our model bears some similarities with BayeSN. Both
models are linear models implemented with Stan. How phase-
independent variability is accounted for varies in approach,
though. BayeSN implements a single-component dust extinc-
tion recipe within a hierarchical model framework, from which
they recover an effective RV that is largely consistent with the
Milky Way average. In contrast, our model has two phase-
independent templates, providing it two model degrees of
freedom for which no physical assumptions are made. Unlike
BayeSN, our model does not model spectral surface residuals.

In Section 2 we introduce the training set and its quality cuts.
We describe our model and fitting technique in Section 3, with
global model template and refit per-SN parameter results being
presented in Section 4. Finally, we provide concluding remarks
in Section 5.

2. Data

Between 2004 and 2014 SNfactory observed spectrophoto-
metric time series of nearly 300 SNe Ia (G. Aldering et al. 2002)
with the SuperNova Integral Field Spectrograph (SNIFS;
B. Lantz et al. 2004). SNIFS is continuously mounted at the
University of Hawai'i 2.2 m telescope, using dual-channel,
moderate resolution (R ~ 600–1300) spectrographs to simulta-
neously observe transient events from 3200 to 5200Å and
5100–10000Å, respectively. This unique and homogeneous SN
Ia data set is calibrated with CALSPEC and Hamuy standard
stars (M. Hamuy et al. 1992, 1994; R. C. Bohlin 2014). The
photometric calibration method is largely summarized in
C. Buton et al. (2013) with R. Pereira et al. (2013) further
describing non-photometric-night calibration. Host-galaxy-sub-
traction methodology is presented in S. Bongard et al. (2011).
Each SNe Ia has also been fit using SALT2.4 (M. Betoule et al.
2014).
For our SN Ia training sample we generate synthetic SN-

frame photometry using nλ log-distributed top-hat filters from
published rest-frame SNfactory spectra (G. Aldering et al.
2020). These spectra were first corrected for Milky Way
extinction, then their wavelengths were de-redshifted (from an
initial range of approximately 0.01 < z < 0.08), and then they
are placed on a relative luminosity scale (i.e., that equivalent to
having been observed at z= 0.05). Cosmological time dilation
is accounted for during de-redshifting. Observed spectra are in
units of 1010 erg s−1 cm−2. This work does not attempt to fit
absolute magnitudes or fit for cosmological parameters, so per-
SN redshifts are not used. Due to high-flux variance at
wavelength boundaries, and because most objects have a higher
redshift than z= 0.05, the per-spectra reference frame wave-
length range is truncated to between 3350 and 8030 Å.
The spectral resolution of this top-hat filter synthetic

photometry is flexible—for this work, we use a modest
nλ = 10 filter count. These nλ = 10 bins are spaced at constant
spectral resolution R, providing a wavelength bin size of≈400 Å
resolution for bluer bands and ≈500 Å for redder bands.
SNfactory data consist of flux densities along a uniform grid of
wavelengths. Because of this uniform spacing, we simply sum
flux densities along the wavelength range defining our top-hat
filters and then multiply said sum by the filter's wavelength range
to calculate top-hat synthetic photometry:

[ ] ( )F f . 1
i i

bin max min

max

i

min

ål l= - l
=

Similarly, each corresponding variance spectrum is summed in
quadrature to calculate synthetic photometry uncertainties.
For every observation, for the binned synthetic photometry a

signal-to-noise ratio (SNR) of at least SNR > 5 is required. It is
also required that each SN Ia have at least eight separate days
of observations. Where a single SN Ia has multiple spectra
observed within a few hours, the weighted average of these flux
values is used as a single effective observation. This decision
was made to avoid introducing two timescales in the sampling
of our light curves. Given the difficulty in constraining the date
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of maximum in SN Ia empirical models, we demand that there
exist at least one observation two days before the SALT2
maximum phase. Furthermore, no SNe Ia with an observation
gap greater than 4 days within a 4 day range before and after
the SALT2 maximum are used. SN Ia light curves do not have
significant structure less than 4 days, so gaps of this size or
smaller have no discernible impact on our results. For
consistency, the chosen maximum gap size of 4 days is the
same as our fixed Gaussian process mean predictor (GPMP)
length scale hyperparameter later described in Section 3. These
cuts leave 80 SNe Ia in the training sample.

The distribution of SN Ia color parameters for any model is
asymmetric due to the positive-definite nature of dust
extinction (D. M. Scolnic et al. 2014; K. S. Mandel et al.
2017; D. Brout & D. Scolnic 2021). SN Ia stretch parameters
such as SALT2's stretch proxy x1 are also best modeled with
asymmetric distributions (D. M. Scolnic et al. 2014). We are
interested in the Gaussian core of these distributions and partly
“symmetrize” the data set by clipping the extended tails of our
SALT2 c and x1 samples. Specifically, a 2σ clipping is done on
each SALT2 c and x1 parameter sample in the direction each
parameter's longer tail (Figure 1). The c clipping prevents
heavily reddened SNe Ia from dominating the recovered dust-
like behavior and obscuring the dust properties of the average
SN Ia in training set—this c cut removes particularly reddened
SNe Ia with peak apparent B − V > 0.18. The clipping is
motivated by our interest in the core of the SN distribution that
is used for cosmology, but comes at the expense of removing
rarer objects that potentially provide more information on
modeling SN Ia colors. A total of 73 SNe Ia remain after the
SALT2 parameter σ clippings, consisting of 1155 individual
spectra.

Relative to G. Aldering et al. (2020), and similar in spirit to
K. Boone et al. (2021b), we remove spectra having poor
extractions caused by SNR < 3; adjusting this threshold higher
up to 10 did not affect our results. This step removes seven
spectra, leaving 1148 to train the model.

3. Model

Global template parameters and per-SN parameters are
differentiated by upper-case and lower-case characters, respec-
tively. This model discretizes phase and wavelength space,

using np = 16 phase nodes ranging from −16� tp,i� 44 in 4
day intervals; as mentioned in Section 2, nλ = 10 with bins of
constant R. Each phase-dependent template is an np × nλ
matrix of parameter nodes, while each phase-independent
template is a length-nλ vector.
The model prediction of the time-dependent spectral energy

distribution evolution of an individual SN Ia is based on a
temporal interpolation over a set of wavelength-dependent light
curves at fixed phases Fλ,eff that are specific to that SN. The
interpolation is controlled by a kernel K, which operates on
Fλ,eff as shown in Equation (2). This equation is the same used
to predict the mean in a Gaussian process, so we refer to this
interpolation scheme as the GPMP:23

( ) ( ) ( ) ( )K t K t t Ff t t t , , . 2p p p0
1

, eff= -l l
-

These GPMP kernel matrices K specifically are calculated with
a stationary p= 2 Matérn covariance function C5/2 to ensure
the interpolated curves are twice differentiable:

/ (∣ ∣ ) ( )K C t t ; , . 3ij p i p j5 2 , ,
2r s= -

Fλ,eff is the light curve at wavelength λ on a grid of phase
nodes; all nλ = 10 light curves form the flux node matrix Feff.
tp,i ä tp is a vector indexing the model's np phase nodes and the
per-SN parameter t0 aligns said SN Ia's observations with the
model's phase grid. Intuitively, the first kernel matrix K in
Equation (2) maps each observation to our phase node space
after said observation phase ti is translated by t0, while the
second accounts for Fλ,eff flux node covariance at grid phases
tp,i and tp,j. GPMPs provide a natural framework to translate
observed phase ti by the per-SN t0 parameter to the model grid's
phase zero-point.
Note that t0 is not the fit date of maximum brightness—

instead, t − t0 aligns the observation phase with the model's
phase grid tp. As we train the model using rest-frame
transformed spectrophotometry, each t0 is fit in its SN Ia's
reference z= 0.05 frame. The kernel length scale hyperpara-
meter ρ is fixed to match the phase node interval resolution of 4
days, although the model is insensitive to any reasonable
choice in ρ (for example, ρ ≈ 1 week). Furthermore, by fixing
ρ = 4, the matrix K is calculated and inverted only once during
sampling. The uncertainty hyperparameter σ2 is fixed to unity
since it is divided out in Equation (2).
The Feff of each SN is decomposed via element-wise

multiplication (also called the Hadamard operation o) from a
fiducial flux template matrix F0 and a warping matrix Ω:

 ( )F F . 4eff 0 W=

F0 encodes the training sample's mean flux evolution via a set
of fiducial light curves, while Ω encodes deviations from these
fiducial light curves for a given SN Ia. Specifically, each
column Ωλ of matrix Ω, for a given λ node, is defined as:

( ) ( ) ( )Ms c L c Llog 0.4 . 50 1 ,1 1 ,1 2 ,2cW = - + + +l l l l

Mλ,1 is the λ-node column of the phase-dependent chromatic
flux variation template matrix M1. M1 therefore encodes
training sample light-curve variation. Lλ,1 and Lλ,2 are the λ-

Figure 1. SALT2 c and x1 cuts to better capture a Gaussian “core” for training.
The shaded regions correspond to 2σ clippings along the longer tail of each
respective c and x1 distribution; blue points correspond to σ-clipped SNe.

23 The use of GPMPs over other techniques (e.g., spline interpolation) is partly
historical. Our original intention was to treat model functions probabilistically,
a use for which Gaussian processes would have been suited. We later opted to
use the more conventional approach of using a deterministic function as is done
in SALT2.
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node elements of the two phase-independent chromatic flux
variation template vectors L1 and L2, respectively (these appear
as scalars in Equation (5) because of their phase independence).
Each explicit per-SN parameter is contained within the warping
template: the achromatic offset parameter χ0, the phase-
dependent chromatic flux variation parameter s1, and the two
phase-independent chromatic flux variation parameters c1 and
c2. Both differences in intrinsic brightness and peculiar velocity
effects are accounted for by the χ0 parameters.

Figure 2 illustrates this model's architecture, specifically
displaying the transformed phase-independent template basis
L1¢ and L2¢ vectors later discussed in Section 3.3. Figure 3 is a
directed acyclic graph of our model. Its conditional probability
structure only connects observations to the model flux—
deterministic connections (transformations and definitions) are
presented with dashed arrows. Global template parameters are
located in the top blue box and per-SN parameters in the
bottom red box.

3.1. Template Constraints and Per-supernova Parameter
Models

The third λ band, tp,i = 0 phase node of F0 is fixed to 1—it is
referred to here as fixed band 3 and corresponds to the
wavelength node at 4084 Å, the top-hat filter band closest to a
standard B-band. This constraint prevents any scaling degen-
eracy between F0 and the model's χ0 parameter while also
setting the specific phase node that the t0 parameter aligns
observations to. Physical consideration further requires all F0

flux node parameters be bound to greater than or equal 0, so we
enforce nonnegative values for all flux values.

All chromatic flux variation templates L1, L2, and M1 have
scaling degeneracies with their respective per-SN parameters
c1, c2, and s1. For example, the transformations s1 → s1/α and
M1 → αM1 leave the model unchanged; identical degeneracies
exist for c1–L1 and c2–L2. Each scaling degeneracy is removed
by requiring these three templates be normalized. This is a
straightforward procedure for L1 and L2, where each is
instantiated in Stan as unit vectors, but a more involved
process is used to normalize the template matrix M1. We first
define a unit vector of length np × nλ that is then transformed
into M1 by “chopping” said unit vector into nλ column vectors
(each of length np) that form the column space of a now
normalized M1.

24 No further constraints or bounds are placed
on the template parameters.
Zero-mean constraints are placed on the per-SN parameter

sets c1, c2, and s1. A reference SN Ia could be selected to serve
as the c1, c2, and s1 zero-points, but we opt instead to require
these per-SN parameter sets to always have a mean of 0. These
constraints are enforced structurally by instantiating these
parameter sets as centered vectors (Appendix A).

3.2. Fitting the Model

As described in, e.g., C. Saunders et al. (2018) and D. Rubin
et al. (2022), the SNfactory data are extracted from the 15 × 15
spaxels of the SNIFS (G. Aldering et al. 2002; B. Lantz et al.
2004) that are projected as spectra onto 2000 × 4000 CCD

Figure 2. A schematic of our model's flux nodes. Each SN Ia has an effective flux node matrix Feff that is an element-wise product of the sample's fiducial flux
template F0 and a warping matrix Ω. This warping matrix includes the phase-dependent chromatic flux variation template M1, two phase-independent chromatic flux
variation templates L1

¢ and L2
¢ (which make up the 2D phase-independent chromatic variation model), and per-SN parameters χ0 (achromatic offset), s1 (phase-

dependent chromatic flux variation contribution), and c1 and c2 (phase-independent chromatic flux template contributions). Presented here are the L1
¢ and L2

¢ basis
representation of the phase-independent templates (see Section 3.3 for more information). Per-band nodes are presented in this plot having the same figure color.

24 The unit vector constraints for L1, L2, and M1 are what prevent these
templates from being described as color variation templates. If instead we
constrained these templates at a reference wavelength node to be fixed to zero,
then these templates would have units color, per the usual astronomical
definition.
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detectors. In this extraction process the Poisson noise and the
readout noise for each pixel are included with appropriate
weights. The host galaxy is subtracted from this data cube
using a reference data cube taken more than 1 yr later, as
described in S. Bongard et al. (2011). Gray dimming by clouds
is corrected as described in R. Pereira et al. (2013). The
remaining SN-only light is fit with a point-spread function
(PSF) model, as described in C. Buton et al. (2013) and
D. Rubin et al. (2022), again propagating the Poisson and
detector noise uncertainties. Due to small unmodeled PSF
shape variations, there is additional uncertainty, which is
empirically determined to be approximately 3% (P. F. Léget
et al. 2020). The final calculated uncertainties are dominated
either by this PSF shape noise or the Poisson plus detector
noise.

Initial trial runs confirmed that the nominal uncertainties
were underestimated, not having included galaxy-subtraction
errors, and that the overall distribution had broader tails than a
normal distribution. We thus added a further uncertainty equal
to 2% of each SN Ia's maximum observed flux and treat
measurement uncertainties as having a Cauchy distribution,
which led to stable convergence of the fit. The credibility of
this ansatz was checked though inspection of the pull
distribution of photometric residuals around the final best fit.
This approach has previously been used to represent model
uncertainty in B. M. Rose et al. (2021).

The first source of error preferentially increases the high-flux
observational errors, while the second largely affects low-flux
observations, particularly those 20 or more days after peak
brightness. All added uncertainties are diagonal: no covariance
is injected into our data before training.

The nominal SNfactory measurement and uncertainty are
used as the Cauchy distribution location and scale. For each
flux observation ( )f tobs

l with its corresponding measurement

uncertainty ( )f ts
l

, our likelihood function takes the form:

( ) [ ( ) ] ( )( )f t f tCauchy , . 6f t
obs s~l l l

No correlations are added between measurement errors.
The model is implemented and trained using the statistics

programming language Stan (B. Carpenter et al. 2017). Built
into Stan is a No U-Turns (NUTS) Hamiltonian Monte Carlo
(HMC) sampler well suited for sampling our model's high-
dimensional posterior. No explicit priors are placed on the
templates or per-SN parameter sets, instead leaving them with
default implicit flat priors along any aforementioned bounds
(Section 3.1).
Stan is informed with initial conditions estimated by first

running simpler versions of the model. We do this only to
improve sampling efficiency—it is not necessary for our
model's convergence. This process is done iteratively, starting
with the simplest model that only obtains the t0, F0, and χ0

parameters (a mean light-curve model). The results of this
simplest model then become the initial conditions for a more
complex model that includes the L1 and c1 parameters. Other
components (specifically, L2 and c2, and then M1 and s1) are
then added and trained using the prior model iteration's fit as
initial conditions until all the described model's components are
incorporated. Note that we use SALT2's tmax as initial
conditions for the t0 parameters when training the simplest of
these models.
With Stan's default NUTS we pull 4000 samples for each

of 16 types of instantiated samplers: 2000 warm-up followed
by 2000 samples iterations per chain. Stan is run on the
University of Pittsburgh's Computational Resource Center.25

The convergence metrics “split-R̂” and “effective sample size”
were calculated after postprocessing using techniques provided
in A. Vehtari et al. (2021). After training and postprocessing,

Figure 3. A directed acyclic graph representation of our model. Per-SN model parameters are located in the bottom red box; global template parameters are in the top
blue box. The dashed arrows are deterministic relations (transformations and definitions). The only explicit conditional probability in the model's architecture relates
observations ( )f tobs

l to modeled flux fλ(t). We use GPMP interpolation per band in mapping effective template nodes Feff nodes to a predicted flux fλ(t).

25 https://crc.pitt.edu/

6

The Astrophysical Journal, 982:110 (21pp), 2025 April 1 Hand et al.

https://crc.pitt.edu/


each SN Ia is refit with the template parameters fixed (F0, M1,
L1, and L2) to determine the final values for the per-SN Ia χ0,
s1, c1, and c2, permitting a direct comparison of these per-SN
parameters against other empirical SN Ia models.

There is no selected standard ΔMB = 0 SN Ia identified in
the training sample, leaving a nontrivial linear degeneracy
between the achromatic offset parameter χ0 and phase-
independent parameters c1 and c2. For physical reasons, c1 and
c2 should not correlate with the intrinsic magnitude, which
ideally should only be captured by χ0.

Linear transformations from P. F. Léget et al. (2020) are
used to remove correlations between both the c1 and χ0

parameters, and the c2 and χ0 parameters, as summarized in
Appendix B. Implementing this directly in the Stan model
leaves the results unchanged but does reduce the sampling
efficiency, so this step is performed after sampling.

3.3. Interpreting the Phase-independent Templates

Each sampler from Stan explores a plane spanned by the
template vectors L1 and L2.

26 Even after decorrelating χ0 from
c1 and c2, the output basis {L1, L2} is not unique, a
consequence of this model's physics-agnostic architecture. This
is because for any nonsingular linear transformation the output
basis vectors (i.e., aL1 + bL2 and cL1 + dL2 for a b c d, , , Î
and ab − cd ≠ 0) necessarily span the aforementioned plane.
To quantify this plane's convergence (as opposed to only its
basis vectors), for each posterior sample we calculate a bivector
 L L1 2=  that, by definition, spans the plane of interest.
Importantly, the bivector representation  is no longer
ambiguous.

A bivector is a geometric object representing an oriented
plane element constructed from the wedge product (see
Figure 4 for an illustration). Intuitively, a bivector corresponds
to a plane like a vector corresponds to a line, and the wedge
product is the dual to a cross product in 3D. Unlike the cross
product, the wedge product generalizes to any finite-dimen-
sional vector space greater than 2, meaning bivectors are well-
defined in this model's 10D wavelength node space. Now any
SN Ia'a phase-independent chromatic flux variation curve
c = c1L1 + c2L2 can be interpreted as residing in the plane
spanned by , regardless of the selected L1, L2 basis.

Each component of the bivector  is calculated as follows:

( )
( )

L L L L

L L L L
, 7ij

i j j i

k
n

m k
n

k m m k

1, 2, 1, 2,

1 1, 2, 1, 2,

=
-

å å -= >
l l

where L̂ i1, is the ith wavelength component of template L1 and
L̂ i2, is the ith wavelength component of template L2.
Importantly, this representation is independent of the L1, L2

choice. Note that  is normalized so as to represent a unit plane
element. With these transformed parameters ij, the model can
unambiguously be tested for convergence and the best-fit
templates be determined.

3.4. Bases for the Phase-independent Chromatic Variation
Model

We now seek a pair of vectors, L1 and L2, that span  and
readily provide insight into the physical origin of the model's
2D phase-independent chromatic flux model. Two such bases
are considered.

3.4.1. Maximum Variance Ratio Basis

The first basis, called the maximum variance ratio (MVR)27

basis, is derived directly from the corresponding c1–c2
distribution.
New and uncorrelated parameter sets c1

mvr and c2
mvr with

their relative variances maximized are found via a linear
transformation. The result is a basis for  where L1

mvr accounts
for the most chromatic flux diversity by a single template in ,
while L2

mvr captures any remaining variation. This basis
amounts to the assumption that two independent physical
effects affect chromatic flux variation (e.g., the amount of dust
or intrinsic SN Ia diversity) while designating as much of the
variance as possible to one source (e.g., dust). This assumption
provides some useful insights even if it does not totally satisfy
our physical expectations, as it does not consider additional
possible effects (e.g., the kind of dust), nor that SNe and their
progenitor environments likely correlate with said effects. This
basis's solution is found by numeric minimization; it is not
orthogonal.
The MVR basis is determined as follows. A basis centered at

the origin can be described by the angle between the unit
vectors and their orientation. Starting with an orthogonalized
output basis from Stan [ ]L L L,1

orth
2
orth= for  and a per-SN

coefficient matrix c (here arranged as an nsn × 2 matrix),
adding an extra angle θ between the basis is achieved with the

Figure 4. This is an illustration of a bivector (the blue parallelogram) v1 ∧ v2
constructed by the vectors v1 and v2 (the red vectors) in 3D. A 3D space allows
for the corresponding cross product to be included for reference (the red dashed
vector). Bivectors, like vectors, are oriented objects, with the bivector v1 ∧ v2
having a counterclockwise orientation determined by component vector
ordering (here represented with an oriented red loop). Reversing the product
order reverses a bivector's “circulation” or orientation: v2 ∧ v1 = −v1 ∧ v2.
Note that the cross product does not generalize to all finite-dimensional vector
spaces, while the wedge product ∧ does.

26 In general, a plane is an affine space, not a vector space. All planes
described in this paper do pass through the embedding vector space's origin,
which ensures they are proper 2D vector subspaces. Because of this, all planes
discussed either intersect or are parallel. For brevity, in this paper we refer to
any 2D subspaces as planes.

27 We developed this technique and are not aware of any previous
equivalent use.
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transformation:

( )
˜

( )

L L

L

M
1 0

sin cos
. 8

q q

=

=

In this L̃ basis, the per-SN coefficients c cM 1¢ = - have an
orientation given by VT from the singular value decomposition
(SVD) of c U V T¢ = S . Taking VTM and normalizing its rows to
be unit vectors gives the properly oriented basis given θ. Note
that these primed components here are unrelated to those
introduced below.

For this basis, the ellipticity of its corresponding c
distribution is again found using SVD, given by
log log11 22S - S . An optimizer is used to determine the θ
that maximizes the ellipticity.

3.4.2. Cardelli–Clayton–Mathis-derived Basis

We also desire a basis that readily separates rapidly changing
chromatic flux variation (i.e., that akin to SN absorption/
emission features) from continuum-like chromatic flux varia-
tion (i.e., dust-like behavior). This continuum-like variation is
assumed to be dust-like, given dust extinction's ubiquitous
contribution to SN Ia color/chromatic flux variation. The two
phase-independent plots found in Figure 2 provide an example
of what we want from this basis—specifically, one template
being more smooth with respect to wavelength than the other.

For the second basis, the vector L1
¢ simultaneously resides

within the planes spanned by both  and the Cardelli–Clayton–
Mathis (CCM89) dust model (J. A. Cardelli et al. 1989),
defining the first basis component. This intersection ensures it
captures smooth, CCM89-like chromatic variability. The other
basis vector L2

¢ is chosen to be perpendicular to L1
¢, while still

residing in the  plane; this basis is orthogonal by construction.
Note that L2

¢ will not necessarily be perpendicular to the plane
spanned by CCM89, but is still guaranteed to provide the least
continuum-like variability with respect to (w.r.t.) wavelength
(and therefore, the most spectral-feature-like behavior) allowed
by . This basis provides a useful representation not because it
recovers a mathematically valid dust extinction curve, but
instead because it clearly separates rapidly changing chromatic
flux variation from SN continuum-like variability. It is
important to remember that intrinsic variability could still
affect the direction of the first basis vector L1

¢, which means this
basis does not guarantee a physical decomposition into
exclusive dust and intrinsic components. As such, any dust-
like properties inferred from L1 in isolation are physically
ambiguous.

The CCM89-derived basis is calculated as follows. Since
CCM89 has two basis curves a(λ) and b(λ) (one for each
parameter AV and AV/RV, respectively), one can construct a
CCM89 unit bivector  ccm from discretized curves a(λ) → a
and b(λ) → b using an appropriately modified version of
Equation (7): L̂ ai i1,  and L̂ bi i2,  . The two planes spanned
by  and  ccm then intersect within the nλ-dimensional
wavelength vector space along a line. It is the vector which
spans this intersecting line that defines the new L1

¢ template:

[ ] ( ) L Intersection , . 91 ccm=¢

We are free to choose a new L2 as long as it resides within the
subspace represented by . To minimize this L2 template's

dust-like properties, L2
¢ is defined as a θ = π/2 radian rotation

of L1
¢ within the plane spanned by  via a rotation operator
/( )R 2q :

/ /( ) ( ) ( ) L R L R4 4 . 102 1
1p p=¢ ¢ -

This rotation maximizes the component of L2
¢ that is

perpendicular to the plane spanned by  ccm . The new
{ }L L,1 2

¢ ¢ also transforms the c1 and c2 parameters sets, here
labeled c c1 1 ¢ and c c2 2 ¢.
Figure 5 provides a 3D view of the geometric intuition

involved in finding the CCM89-derived basis. All calculations
discussed here are implemented using geometric algebra, which
provides a novel approach to study oriented subspaces.
Geometric algebraic implementations for calculating intersec-
tions, projections, and rotation operations are summarized in
Appendix C. Although we exploit geometric algebra's elegance
and interpretability to perform all said operations, each
operation could be done using more classical linear algebraic
techniques if desired.

3.5. Handling Similar Solutions

In training, the samplers converge to one of three sets of very
similar solutions, as is apparent in the per-chain values of L1

shown in Figure 17. We find that simultaneously obtaining
global template and per-SN parameters leaves the resulting
samplers sensitive to the three least representative SNe Ia in the
training sample (based on residuals). These groups are
associated with slightly different solutions for these three
SNe Ia, as seen by eye and quantitatively through their χ0

solutions. Consider the following analogy: consider the inertia
tensor of a space station as being the model's global templates
and the coordinates of its crew members corresponding to the
per-SN parameters. The moment of inertia changes only
slightly if crew members move to another location on the
station (assuming the space station is much more massive than
the crew's total weight). Similarly, it is this “change in
position” of per-SN solutions that is causing a very subtle
change in template parameters, preventing complete

Figure 5. A 3D representation the CCM89 basis's geometric intuition. The blue
solid vector is the transformed L1

¢ template spanning the intersection of two
planes, one spanned by the model bivector  L L1 2=  and the other spanned
by the CCM89 bivector  a bccm =  . The red solid vector is a π/2 rotation in
the plane spanned by  that defines the transformed L2

¢ template. The
decomposition ( ) ( )L L L2 2 2= + ^¢ ¢ ¢ with respect to the CCM89 plane
spanned by  ccm is given with the red dashed arrows.
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convergence. Obviously this is not a fair comparison, but the
resulting effects are very similar, hence this comparison.

The worst performing SN Ia PTF11mkx consistently sees a
1σ difference between χ0 values between different chain
groups—considering that this χ0 parameter fit uncertainty is
only ≈1%, this tail wagging is very subtle. Indeed, when
refitting per-SN parameters with one of the group solutions as a
fixed global template (Section 4.4), all chains converge to the
same solutions for the three SNe Ia. Similarly, if two different
group solutions are separately held constant and refit
individually, the two resulting per-SN parameter sets are
indistinguishable. Because each group's solutions are consis-
tently very similar, we opt to use the weighted average of all
solutions for the best-fit template. This decision to use an
average of all groups, as opposed to using a specific solution,
has no impact on the remaining analysis.

Note that refitting with a fixed t0 parameter does not prevent
this subtle grouping, nor does cutting these three SNe Ia from
the training set. If these three aforementioned troublesome SNe
Ia are removed, the next few SNe Ia that are the least
representative of this newly trimmed sample start “wagging.”
This instability may be a feature of our model. In particular, the

flat priors we use for the c1 and c2 distributions may bias the
results for the least representative SNe Ia of a given training
sample. Considering that global template parameters again
were effectively unchanged with their removal, we retain those
three SNe Ia for the remainder of the analysis.

4. Best-fit Model Results

Our model, as implemented with Stan, consists of global
template parameters and per-SN parameters. We define the
best-fit solution to be the mode of a 365D template parameter
space,28 with each per-SN parameter marginalized before
estimating from HMC sampling the posterior's maximum. This
mode is estimated using a mean shift clustering algorithm
implemented in the scikit-learn package using the default flat
kernel (F. Pedregosa et al. 2011). To estimate a consistent best-
fit solution, bivector components L = L1 ∧ L2 (Equation 7) are
used instead of the L1 and L2 components directly. This process
is analogous to maximum a posteriori estimation of the HMC-
sampled posterior, but allows first for the aforementioned

Figure 6. Best-fit model residuals with respect to observations presented for each of our 10 bands. Eight day binned averages for each band are presented as black
diamonds, with error bars being binned standard deviations. The carets at the top and bottom edges represent points that lie outside the range of the plots.

28 159 from F0, 159 from M1, nine from L1, and nine from L2, specifically.
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postprocessing. The marginal posterior dispersion for each
parameter is presented as 68th percentile error bars. The
residuals of the best-fit model, alongside binned averages, are
presented in Figure 6.

Two of the 16 HMC samplers were rejected after fitting
because (1) their resulting mean t0 parameter values were
systematically inconsistent by 4 to 5 days with SALT2 date of
maximum, 2) the corresponding light-curve shapes were
nonphysical, and (3) these two samplers have notably
inconsistent pln values relative to the 14 retained samplers.
The 14 remaining samplers converge to three very similar
group solutions of which the weighted average is taken; see
Section 3.5 for more details.

Table 1 provides the median values and 68th percentile
upper and lower values for the per-SN light-curve model
parameters.

4.1. Phase-independent Chromatic Flux Variation Templates

Ostensibly, if  were to only capture CCM89 dust-like
behavior, then the planes spanned by  and  ccm would be
effectively parallel and any intersection poorly constrained.
This turns out to not be the case, with the best-fit solution
recovering a planar separation angle of about 80o.

4.1.1. Maximum Variance Ratio Basis

Figure 7 presents the MVR basis as described in Section 3.4.
Qualitatively, L1

mvr appears nominally more dust-like than its
counterpart L2

mvr . Figure 7 includes the best-fit CCM89 curve
R 2.18V

mvr = for reference, showcasing that its most extreme
divergence from CCM89 is blueward of 5000 Å. L2

mvr , on the
other hand, captures variation that is not readily describable as
dust-like: normal dust extinction should be absorptive across
the optical wavelength range whereas the sign flip in L2

mvr

produces simultaneous brightening/dimming on either side of
4000 Å. Although the degree of variation increases as
wavelength decreases, there is a distinct flip in behavior
around 4000 Å. Such behavior is inconsistent with dust
extinction.

The conditions for the target parameter set distributions are
to assign maximum variance to one component while keeping
the second component uncorrelated. These conditions yield a
basis consistent with the expectation that dust-like variation is
the primary contributor to SN Ia phase-independent chromatic
flux variation while intrinsic SN Ia diversity uncorrelated with
dust accounts for additional variability.

4.1.2. Cardelli–Clayton–Mathis-derived Basis

The template L1
¢ is presented in the top plot of Figure 8. As

summarized in Section 3.4, the intersection of the plane
spanned by  with the plane spanned by  ccm defines the first
phase-independent chromatic flux template L1

¢. This L1
¢

template, as expected, captures continuum-like variation akin
to dust extinction.

From L1
¢ we find an intersection total-to-selective extinction

ratio of R 2.4V
int = . As mentioned in 3.4, this RV is not

immediately physically interpretable without an AV model.
Also presented in the top plot of Figure 8 is template L2

¢ .
Unlike L1

¢, L2
¢ captures the more rapidly changing flux

variability allowable by . Specifically, L2 is capturing
wavelength variation at scales smaller than that expected by

continuum dust variability, at least within the optical regime.
Indeed, its features nominally align with spectral features. Also
note the similarity between L2

¢ and L2
mvr despite their vastly

different constructions.
L2

¢ is not perpendicular to the CCM89 plane because the
plane spanned by  is itself not perpendicular. As such, L2

¢ also
captures a dust-like component alongside its dominating
spectral-like component. The bottom panel presents this
template's decomposition into parallel and perpendicular
components defined with respect to CCM89's plane for
reference.

4.1.3. Intrinsic Variation

Both of the best-fit template representations L2
¢ and L2

mvr

capture pronounced phase-independent chromatic flux varia-
tion blueward of 4500 Å that is inconsistent with dust (see
Figure 9). Indeed, no extrinsic phenomena readily describe this
behavior. Variation blueward of 4500 Å includes the prominent
Ca II H and K feature and its Si III counterpart, Si II λ4130, C II
λ4267, Fe II λ4404, and Mg II λ4481. With our choice of
splitting the spectral range into nλ = 10 synthetic filters, the
model cannot completely distinguish between said features,
although at least one node for both L2

¢ and L2
mvr and their

corresponding variation seemingly align with the wavelength
bin where Ca II H and K is the dominant contributor to a strong
spectral feature; Si II and Fe II features also contribute to this
variation. Hints of chromatic flux variability ostensibly aligns
with the SNe Ia signature Si II λ6347 feature and O I λ7774,
which are visible in Figure 8, but in practice do not affect any
resulting model flux predictions (again, see Figure 9).
We use the same data set used by C. Saunders et al. (2018)

for their SNEMO analysis. Comparing both L2
¢ and L2

mvr to
SNEMO2 and SNEMO7 eigenvectors (with two and seven
components, respectively) yields indecisive insight, though.
Figure 6 from C. Saunders et al. (2018) shows SNEMO
eigenvectors describing similar L2

¢ or L2
mvr behavior at

maximum, but all of these eigenvectors are clearly phase
dependent—no eigenvector's evolution seems approximately
phase independent. Figures 9 through 12 from C. Saunders
et al. (2018) present some unexplained variation for SNEMO2
blueward of 4500 Å that is nominally phase independent up to
6 days postmaximum; this all but disappears with SNEMO7.
That SNEMO2, itself similar to SALT2, sees unexplained
phase-independent variability around maximum that aligns
with the L2

¢ and L2
mvr features seems indicative of our model's

performance, but such a claim taken alone is likely an
excessive interpretation.
SNfactory data are also used by K. Boone et al. (2021b) with

their Twins Embedding nonlinear model. More interesting
insight is gained in comparing their findings with our template
representations L2

¢ and L2
mvr , since Twins Embedding is

currently a phase-independent, maximum-phase model. Blue-
ward of 4500 Å, spectral variation recovered by Twins
Embedding loosely aligns with the both L2

¢ and L2
mvr templates

(see Figures 4, 6, and 10 from K. Boone et al. 2021a for
reference). Recovering this consistent variation in our phase-
independent template, albeit at lower wavelength bin resolu-
tion, lends credibility that  as a whole is capturing intrinsic
variation.
Past analyses by D. Branch et al. (1993) and A. G. Riess

et al. (1998b) find Ca II H and K features are relatively stable in
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Table 1
Model Per-supernova Parameter Median Values with 68th Percentile Upper and Lower Values

SN χ0 − 〈χ0〉 s1 c1 c2 t0 (MJD)

SNF 20060512-001 − 0.04 ± 0.03 −0.02 ± 0.01 −0.33 ± 0.09 0.12 ± 0.03 53882.5 ± 0.12
SNF 20060526-003 −0.06 ± 0.03 −0.07 ± 0.01 −0.31 ± 0.09 −0.04 ± 0.02 53893.4 ± 0.21
SNF 20061020-000 0.30 ± 0.03 0.21 ± 0.01 0.44 ± 0.11 0.08 ± 0.03 54037.9 ± 0.19
SNF 20061021-003 −0.08 ± 0.03 −0.05 ± 0.01 0.38 ± 0.08 −0.04 ± 0.02 54039.7 ± 0.13
SNF 20061022-005 −0.11 ± 0.03 −0.08 ± 0.02 −0.34 ± 0.10 0.15 ± 0.03 54040.8 ± 0.17
SNF 20061111-002 0.08 ± 0.03 −0.01 ± 0.01 −0.30 ± 0.12 −0.05 ± 0.03 54060.8 ± 0.18
SNF 20070424-003 0.08 ± 0.03 −0.05 ± 0.01 −0.26 ± 0.09 −0.07 ± 0.02 54225.8 ± 0.16
SNF 20070506-006 −0.19 ± 0.03 −0.07 ± 0.01 −0.94 ± 0.08 0.09 ± 0.02 54245.9 ± 0.10
SNF 20070630-006 −0.09 ± 0.02 −0.04 ± 0.01 −0.16 ± 0.08 −0.06 ± 0.02 54294.9 ± 0.11
SNF 20070717-003 −0.12 ± 0.02 0.03 ± 0.01 0.90 ± 0.08 −0.12 ± 0.02 54310.3 ± 0.11
SNF 20070802-000 −0.19 ± 0.03 −0.03 ± 0.01 1.00 ± 0.09 −0.15 ± 0.02 54326.7 ± 0.13
SNF 20070818-001 −0.24 ± 0.03 −0.04 ± 0.01 0.80 ± 0.10 −0.16 ± 0.01 54339.0 ± 0.18
SNF 20070831-015 −0.28 ± 0.03 −0.15 ± 0.01 −0.23 ± 0.11 −0.03 ± 0.03 54352.4 ± 0.26
SNF 20070902-018 0.11 ± 0.03 0.08 ± 0.01 0.66 ± 0.10 0.04 ± 0.03 54353.2 ± 0.17
SNF 20080507-000 −0.30 ± 0.02 −0.06 ± 0.01 0.44 ± 0.08 0.04 ± 0.02 54601.7 ± 0.16
SNF 20080510-001 −0.01 ± 0.03 −0.05 ± 0.01 −0.55 ± 0.08 −0.05 ± 0.02 54607.5 ± 0.12
SNF 20080510-005 −0.00 ± 0.03 −0.11 ± 0.01 −0.75 ± 0.11 −0.02 ± 0.03 54608.1 ± 0.18
SNF 20080512-010 0.25 ± 0.03 0.16 ± 0.02 −0.24 ± 0.09 0.12 ± 0.02 54603.9 ± 0.12
SNF 20080514-002 0.50 ± 0.02 0.20 ± 0.01 −0.73 ± 0.05 0.14 ± 0.01 54613.6 ± 0.06
SNF 20080522-000 −0.27 ± 0.02 −0.08 ± 0.01 −0.87 ± 0.08 0.20 ± 0.02 54624.3 ± 0.10
SNF 20080522-011 −0.11 ± 0.02 −0.05 ± 0.01 −1.02 ± 0.07 −0.05 ± 0.02 54619.1 ± 0.12
SNF 20080531-000 0.08 ± 0.02 0.05 ± 0.01 0.03 ± 0.07 −0.08 ± 0.02 54625.9 ± 0.11
SNF 20080614-010 0.24 ± 0.03 0.22 ± 0.01 0.55 ± 0.10 0.08 ± 0.03 54637.7 ± 0.10
SNF 20080620-000 0.13 ± 0.03 0.09 ± 0.01 0.64 ± 0.10 −0.03 ± 0.02 54642.7 ± 0.16
SNF 20080626-002 −0.16 ± 0.02 −0.08 ± 0.01 −0.47 ± 0.08 −0.08 ± 0.02 54654.0 ± 0.15
SNF 20080714-008 −0.17 ± 0.02 0.00 ± 0.01 1.68 ± 0.07 −0.20 ± 0.02 54670.0 ± 0.15
SNF 20080725-004 −0.07 ± 0.03 −0.10 ± 0.01 0.05 ± 0.08 −0.10 ± 0.02 54680.8 ± 0.20
SNF 20080803-000 −0.09 ± 0.03 −0.05 ± 0.01 0.88 ± 0.10 −0.04 ± 0.03 54693.1 ± 0.13
SNF 20080810-001 0.17 ± 0.02 0.14 ± 0.01 0.10 ± 0.07 0.11 ± 0.02 54700.9 ± 0.08
SNF 20080821-000 −0.13 ± 0.02 −0.06 ± 0.01 −0.23 ± 0.08 0.01 ± 0.02 54710.1 ± 0.15
SNF 20080825-010 −0.04 ± 0.03 0.11 ± 0.01 −0.20 ± 0.08 0.08 ± 0.02 54715.1 ± 0.10
SNF 20080909-030 −0.15 ± 0.05 −0.04 ± 0.01 −0.29 ± 0.17 0.05 ± 0.05 54733.8 ± 0.16
SNF 20080913-031 −0.19 ± 0.07 0.00 ± 0.02 0.55 ± 0.25 −0.09 ± 0.07 54734.6 ± 0.40
SNF 20080918-000 −0.15 ± 0.03 −0.11 ± 0.01 1.10 ± 0.11 −0.09 ± 0.03 54736.8 ± 0.17
CSS130502_01 0.29 ± 0.03 −0.01 ± 0.01 −1.23 ± 0.08 0.07 ± 0.02 56425.0 ± 0.14
LSQ12fhe −0.45 ± 0.03 −0.07 ± 0.01 −0.41 ± 0.12 0.22 ± 0.03 56214.9 ± 0.19
LSQ14cnm −0.00 ± 0.03 −0.00 ± 0.01 −0.88 ± 0.08 −0.03 ± 0.02 56833.9 ± 0.14
PTF09dlc −0.00 ± 0.02 −0.03 ± 0.01 −0.56 ± 0.07 −0.08 ± 0.02 55077.4 ± 0.13
PTF09dnl −0.23 ± 0.02 −0.07 ± 0.01 0.26 ± 0.06 −0.05 ± 0.02 55077.7 ± 0.16
PTF09fox 0.01 ± 0.02 −0.08 ± 0.01 −0.83 ± 0.07 −0.05 ± 0.01 55135.8 ± 0.14
PTF09foz −0.06 ± 0.02 0.11 ± 0.01 0.48 ± 0.07 −0.00 ± 0.02 55133.8 ± 0.11
PTF10hmv 0.11 ± 0.02 −0.09 ± 0.01 1.04 ± 0.06 −0.01 ± 0.02 55355.3 ± 0.11
PTF10icb 0.49 ± 0.02 0.01 ± 0.01 0.32 ± 0.07 0.03 ± 0.02 55363.7 ± 0.09
PTF10mwb 0.21 ± 0.02 0.10 ± 0.01 0.19 ± 0.06 −0.02 ± 0.02 55392.6 ± 0.08
PTF10nlg 0.03 ± 0.02 −0.03 ± 0.01 1.67 ± 0.07 −0.20 ± 0.01 55394.8 ± 0.16
PTF10qyz 0.36 ± 0.03 0.10 ± 0.01 −0.43 ± 0.10 −0.08 ± 0.02 55429.0 ± 0.12
PTF10wnm −0.00 ± 0.02 −0.09 ± 0.01 −0.66 ± 0.08 0.03 ± 0.02 55480.5 ± 0.17
PTF10wof 0.02 ± 0.03 −0.06 ± 0.01 0.12 ± 0.10 −0.12 ± 0.02 55476.7 ± 0.28
PTF11bgv 0.22 ± 0.03 0.03 ± 0.01 0.30 ± 0.08 0.14 ± 0.02 55645.6 ± 0.12
PTF11bju −0.23 ± 0.03 −0.05 ± 0.01 −0.14 ± 0.09 0.26 ± 0.02 55652.7 ± 0.14
PTF11bnx −0.00 ± 0.03 0.03 ± 0.01 1.44 ± 0.09 −0.16 ± 0.02 55655.6 ± 0.16
PTF11mkx −0.50 ± 0.04 −0.00 ± 0.01 −0.33 ± 0.13 0.27 ± 0.02 55837.8 ± 0.10
PTF11mty −0.04 ± 0.02 −0.07 ± 0.01 −0.82 ± 0.08 0.02 ± 0.02 55840.2 ± 0.12
PTF12dxm 0.34 ± 0.03 0.22 ± 0.01 0.89 ± 0.09 0.02 ± 0.02 56054.8 ± 0.09
PTF12fuu 0.18 ± 0.02 −0.05 ± 0.01 −451.28 ± 0.07 0.01 ± 0.02 56115.2 ± 0.09
PTF12grk 0.10 ± 0.03 0.12 ± 0.01 0.77 ± 0.10 −0.16 ± 0.01 56137.0 ± 0.10
PTF12iiq 0.07 ± 0.04 0.12 ± 0.01 1.17 ± 0.13 −0.17 ± 0.02 56183.6 ± 0.16
PTF13anh −0.09 ± 0.03 0.05 ± 0.01 0.51 ± 0.12 −0.15 ± 0.01 56416.1 ± 0.16
SN 2004ef 0.07 ± 0.02 0.14 ± 0.01 1.28 ± 0.06 −0.08 ± 0.02 53265.0 ± 0.08
SN 2005hc 0.00 ± 0.03 −0.07 ± 0.01 −0.61 ± 0.09 −0.03 ± 0.02 53670.5 ± 0.18
SN 2005hj −0.23 ± 0.03 −0.13 ± 0.01 −0.57 ± 0.09 0.11 ± 0.02 53677.9 ± 0.23
SN 2006cj 0.02 ± 0.02 −0.06 ± 0.01 −0.84 ± 0.06 0.04 ± 0.02 53882.4 ± 0.11
SN 2007bd 0.16 ± 0.03 0.03 ± 0.02 −0.58 ± 0.10 −0.02 ± 0.02 54207.6 ± 0.16
SN 2010dt 0.03 ± 0.03 0.00 ± 0.01 −0.44 ± 0.09 −0.10 ± 0.01 55363.4 ± 0.11
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the week before and weeks after peak B-band brightness, with
this effective phase independence being sufficiently stable to
exploit for the latter's “snapshot” methodology from which they
constrain luminosity distances. Both  basis representations do
capture intrinsic, phase-independent variation around Ca II H
and K, but this alone is not profound evidence of fundamental
Ca II H and K time independence in the SN Ia population. SN
Ia Ca II H and K features, as with all spectral features,
demonstrably evolve with time. In its current form, this model
cannot distinguish between phase-averaged spectral variation
or truly phase-independent intrinsic variation. Indeed, a goal of
this project is to demonstrate that intrinsic chromatic flux
variation can “leak” into phase-independent components,
something that is occurring in these results.

4.2. Fiducial Template

Figure 10 presents GPMP interpolations of each band's best-
fit Fλ,0 nodes as solid curves. The fixed band 3 template is the
third solid curve presented in the top plot of Figure 10. The
ubiquitous NIR bump is recovered for redder bands (bottom
plot of Figure 10), with this second maximum occurring ≈25
days after our fixed-band peak brightness as expected
(S. W. Jha et al. 2019). Apart from the reddest template curve
centered at 7401 Å, the peak brightness phase per band occurs
earlier for bluer bands and later for redder bands, again

consistent with established trends (S. W. Jha et al. 2019). As
would be expected by its I-band overlap, the reddest template
curve exhibits somewhat more complex behavior than the other
curves, such as the inflection point between its two local
maxima (bottom plot, Figure 10).
Note that each fiducial template light curve's peak brightness

phase does not align with our tp,i = 0 flux node, meaning t0

Table 1
(Continued)

SN χ0 − 〈χ0〉 s1 c1 c2 t0 (MJD)

SN 2011bc −0.05 ± 0.02 0.04 ± 0.01 1.18 ± 0.08 −0.05 ± 0.02 55669.6 ± 0.15
SN 2011be 0.22 ± 0.03 −0−0.03 ± 0.01 −1.20 ± 0.08 0.08 ± 0.02 55656.9 ± 0.12
SN 2011ga 0.05 ± 0.02 0.02 ± 0.01 −0.43 ± 0.08 −0.03 ± 0.02 55832.7 ± 0.13
SN 2011gf 0.07 ± 0.03 −0.07 ± 0.01 −1.54 ± 0.07 −0.04 ± 0.01 55833.5 ± 0.12
SN 2011hr −0.25 ± 0.03 −0.03 ± 0.01 0.12 ± 0.08 0.25 ± 0.02 55891.0 ± 0.10
SN 2012cg 0.63 ± 0.02 0.00 ± 0.01 0.67 ± 0.07 0.05 ± 0.02 56084.5 ± 0.10
SN 2012dn −0.08 ± 0.03 −0.03 ± 0.01 0.23 ± 0.09 0.20 ± 0.02 56135.1 ± 0.06
SN 2012fr −0.56 ± 0.02 −0.09 ± 0.01 −0.60 ± 0.05 −0.09 ± 0.01 56247.1 ± 0.05
SN 2013bt 0.40 ± 0.04 0.22 ± 0.01 −0.28 ± 0.11 0.12 ± 0.03 56411.4 ± 0.11

Note. Per-SN parameters χ0 − 〈χ0〉, s1, c1, and c2 have been transformed to magnitudes. The parameter t0 is the date corresponding to maximum-phase node of the
light-curve model for the third band centered at 4084 Å.

Figure 7. The blue solid line corresponds to the first MVR component L1
mvr ,

which appears nominally more consistent with dust-like variation than its
counterpart L2

mvr , given as the magenta dashed. L1
mvr has a best-fit

R 2.18V
mvr = given as the gray dotted line, with most of its divergence from

a CCM89 curve occurring blueward of 5000 Å. L2
mvr captures variation not

readily describable as dust-like.

Figure 8. The top plot presents phase-independent chromatic flux variation
templates L1

¢ and L2
¢ . L1

¢ has a recovered total-to-selective extinction of
R 2.4V

int = . The bottom plot presents a decomposition of L2
¢ into its parallel

and perpendicular components with respect to the CCM89 plane. L2
¢ clearly

captures some dust-like variability, despite being dominated by intrinsic
modes. Although the low-resolution wavelength binning prevents quantifica-
tion of spectral features, the most impressive L2

¢ variability appears in the Ca II
H and K regime.
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should not be interpreted as the fixed band 3's peak brightness
phase. This is ultimately inconsequential, requiring only that
each light curve's peak brightness phase be calculated
deterministically after fitting, and has no effect on this analysis
or its conclusions.

4.3. Phase-dependent Chromatic Flux Variation Template

As shown in Figure 10, the best-fit phase-dependent
variation template M1 exhibits stretch-like behavior across all
bands. The shaded regions in these plots show phase-dependent
light-curve variation from −0.09 < s1 < 0.09 mag, which
approximately captures the dispersion of the fit s1 parameter set
(the set's standard deviation is 0.09 mag). The lighter shaded
regions correspond to positive s1 values, while the darker
correspond to negative values. As s1 increases (decreases), the
Feff node values increases (decreases) with respect to F0's node
values, resulting in each GPMP interpolation curve's global
maximum decreasing (increasing). This change in Feff node
scaling is offset for by a change in χ0, correlating the χ0 and s1
parameter sets (see Section 4.4).

The sign ofM1 template's contribution is a function of phase:
for each curve there are two phases where the M1 template's
contribution reverses in sign. For positive (negative) s1, the
result is a narrowing (broadening) of the effective flux curve.
The phase and degree of this broadening varies between bands
in a manner consistent with D. Kasen & S. E. Woosley (2007),
being more extreme for bluer wavelengths. Furthermore,
Figure 11 plots our model's Δm3(15) as a function of s1,
demonstrating our M1 template indeed recovers stretch-like
behavior for this model's B-band analog fixed band 3.

For redder bands, stretch-like behavior is convolved with
NIR bump variation (bottom plot of Figure 10). A 3D mesh
plot (Figure 12) best illustrates these two modes of NIR

Figure 9. This figure demonstrates a ± 0.2 mag c2 variation (blue for the
CCM89 basis c2 ¢, maroon for c2

MVR ) of L2
¢ overlaid on SALT2's mean template

t = 0 phase spectrum (dashed black line). The spectrum is binned via synthetic
photometry with top-hat filters, presented as black diamonds. Flux units are
normalized by synthetic photometry wavelength 4048 Å value to unity and
example spectral features blueward of 4500 Å are presented for reference.

Figure 10. A visualization of ±0.09 mag variation in s1 on the model's fiducial
flux template F0, as warped by the phase-dependent chromatic flux template
M1. Positive s1 contribution is given by light shaded regions, while negative s1
contribution is given by the dark shaded regions. Solid lines are the GPMP-
interpolated light curve for that band's fiducial template nodes, which is
deterministic (not stochastic) in our model. The top two plots illustrate
recovered stretch-like behavior by the template M1, with broadening to
narrowing of the effective light curve as s1 increases in value. The bottom plot
captures stretch-like behavior further convolved with NIR bump variational
modes (bump location and size). Note that these figures are not portraying
model uncertainty, only model response to s1 parameter variation.

Figure 11. The model's Δm3(15) (the ΔmB(15) analog for the fixed band 3) as
a function of s1 calculated for the fixed band 3 along the training sample's
obtained s1 value range.
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variation: bump depth and bump location. As expected, these
variation modes also correlate with stretch (C. R. Burns et al.
2011; S. Dhawan et al. 2015), with stretch appearing as the
valley-like feature in Figure 12.

For fixed band 3, the phase of maximum brightness relative
to our zero-phase node is a function of s1. This movement in
maximum brightness location, made clear in Figure 10, ranges
from +1 day for our most negative s1 =−0.15 mag SN Ia to
−3 days for our most positive s1 = 0.22 mag. Again, this has
no effect on our analysis, requiring only an a posteriori
calculation at the phase of maximum brightness if desired.

4.4. Per-supernova Results

Each SN Ia is refit with template parameters fixed to the
previously discussed best-fit solution. Scatterplots comparing
parameter sets include Spearman rank correlation coefficient
(SCC) calculations alongside corresponding p-values. For
color, only the CCM89-derived basis parameter sets c1¢ and
c2 ¢ are presented. As the MVR and CCM89-derived bases yield
parallel  planes, we choose to present results from the latter
since the CCM89-derived basis is more readily interpreted—its
first component is, by definition, a mathematically valid
CCM89 curve. Note that we do not compare per-SN parameter
sets from different basis decompositions.

In Figure 13, per-SN parameter sets for c1¢, c2 ¢, and s1 are
compared with their corresponding χ0 values. The measured
SCC value of 0.59 between the training sample's s1 and χ0

parameter sets results from a varying s1 changing the resulting
Feff scaling, requiring a compensating change in χ0 to offset
(see Section 4.3). By construction, the c1¢ and c2 ¢ sets are de-
correlated with χ0 (see Section 3.3). Higher rank correlations
are recovered for c1¢ versus s1 and c1¢ versus c2 ¢ compared to
c2 ¢ versus s1, as seen in the scatterplots of Figure 14.

We also quantify the fractional variance of the c1¢ and c2 ¢
bivariate distributions not explained by CCM89-like behavior.
Each SN Ia phase-independent chromatic flux variation vector
c L Lc c1 1 2 2= ¢ ¢ + ¢ ¢ is first normalized. The perpendicular
component with respect to the CCM89 plane spanned by
ccm of each normalized c is then calculated via a projection
operation (see Appendix C.2). This resulting distribution has a
median value of 0.13 with 68th percentiles [0.05, 0.4] and
provides a measure of our sample's fractional variance
attributable to captured phase-independent chromatic

variability which is not dust-like. Unsurprisingly, dust-like
variation, which explains the remaining ≈87% variance,
dominates the captured phase-independent variability. Even if
this dust-like variation was the exclusive result of actual dust
extinction (no “leaking” of intrinsic variability into dust-like
behavior), the remaining ≈13% variance, which instead arises
from intrinsic variability in the sample, is not negligible. ,
with L2

¢ in particular, is capturing a discernible addition of SN
Ia variation over past two-component models (i.e., SALT2).

Figure 12. A contoured 3D view of our phase-dependent variation template—
this is our model's equivalent to SALT2's M1 stretch template. The valley-like
structure corresponds to stretch-like behavior extracted by our M1 template.

Figure 13. Comparison of fit c1¢ (top, blue), c2 ¢ (middle, magenta), and s1
(bottom, yellow) samples against our χ0 samples. The correlation between χ0

and s1 arises from s1's changing of Feff's scale, which is then compensated for
by a change in χ0. There are no correlations between either c1¢ and χ0 or c2 ¢
and χ0 by construction.
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4.4.1. Comparison to SALT2

This new SN Ia model and SALT2 are trained using optical
wavelength observations, with neither making assumptions about
dust extinction, making SALT2 an obvious comparator. One
technical difference is our model's accounting for phase-dependent
variability with a multiplicative variation template as opposed to
SALT2's flux variation linear component, which is obviously
additive in flux space. Nonetheless, s1 and x1 should correlate.
This is the case as seen in Figure 15, with a rank correlation of
−0.89 between x1 and s1. As presented in Section 4.3, this model's
M1 templates obtains stretch-like behavior, just as SALT2's first-
order variation template M1(t, λ) does.

The phase-independent chromatic flux variation template
basis { }L L,1 1

¢ ¢ is selected without consideration of SALT2's CL
(λ) phase-independent chromatic variation model. As such, any
correlations between c1¢ or c2 ¢ and SALT2 c are nontrivial—as
seen in the top plot of Figure 16, only SALT2 c and c1¢ are
correlated with a rank correlation of 0.78. Considering L1

¢ is the
maximal CCM89 dust-like vector allowed, that SALT2 c and
c1¢ are strongly correlated is because SALT2's CL(λ) template
predominately captures dust-like variation. Indeed, the latest
SALT3 recovers a CL(λ) curve that is consistent with SALT2

and similarly aligns with CCM89 between 4000 and 7000 Å
(W. D. Kenworthy et al. 2021). As seen in Figure 13 of
W. D. Kenworthy et al. (2021), both of the SALT2 and SALT3
CL(λ) templates begin to diverge from CCM89 near where L2

¢

starts to exhibit most of its variability.
The bottom plot of Figure 16 demonstrates that the c2 ¢ and

SALT2 c parameter sets are uncorrelated. As one would hope,
the presented model's two-component phase-independent
chromatic variation model captures SN Ia variation beyond
that of SALT2. For reference, we provide best-fit linear
relationships between SALT2 x1 and s1, and between SALT2 c
and c1¢:

( ) ( ) ( ) ( )c c c8.74 0.88 0.094 0.056 , 111¢ =  + 

( ) ( ) ( ) ( )s x x0.089 0.004 0.0089 0.0035 . 121 1 1= -  + 

5. Conclusion

In this article, we introduce a new empirical SN Ia linear
model that expands beyond similar analyses by introducing a
second phase-independent chromatic flux variation template
into its architecture. Our model converges to a solution with
three variation components: one phase-dependent chromatic

Figure 14. Corner plot for the per-SN parameters s1, c1¢, and c2 ¢. Magenta points compare s1 and c1¢, yellow points compare c2 ¢ and c1¢, and blue points compare c2 ¢
and c1¢ parameter sets. We measure only marginal rank correlations between both c1¢ vs. s1 and c1¢ vs. c2 ¢. N is the number of SNe Ia.
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flux variation template M1 and two phase-independent
chromatic flux variation templates L1 and L2, which are
represented together by the bivector . The phase-dependent
model component recovers stretch and NIR bump variation; it
along with the phase-independent templates are consistent with
SALT2's two model components.

The model's extended phase-independent architecture cap-
tures a nuanced combination of variability. Analysis of the 2D
phase-independent chromatic flux variation plane spanned by 
is done two bases: one that maximizes variation ratios (MVR)
between the c1 and c2 parameter sets, and another that is
defined with respect to the CCM89 dust plane. The MVR
approach recovers nominally dust-like variation for its
dominant component L1

mvr , with a fit R 2.18V
MVR = , while

L2
mvr trace potentially low-resolution intrinsic features. The

CCM89 basis yields similar, albeit somewhat more physically
interpretable, results. Specifically, this basis naturally decom-
poses  into one template capturing continuum-like wave-
length variation (L1

¢) and another capturing rapidly changing
chromatic flux variation w.r.t. wavelength (L2

¢). Component L1
¢

is defined as the intersection of our model's phase-independent
chromatic flux variation plane with CCM89 dust-like behavior.
L2

¢ is orthogonal to L1
¢ and can contain phase-averaged intrinsic

spectral variation not related to the M1 template; by construc-
tion, it can also contain residual CCM89-like variation.

Despite very different construction methods, L2
¢ and L2

mvr

are remarkably similar. As derived from the CCM89 basis, the
fractional variance of intrinsic spectral variation for the 2D
phase-independent chromatic flux variation plane (with 68th
percentiles) is 0.13 0.05

0.4
-
+ —dust-like variation dominates L1

¢ and
L2

¢ in combination, but residual spectroscopic-feature-like
variation is not negligible. Despite this model's coarse
nλ = 10 wavelength bin count, we find that the features in
L2

¢ and L2
mvr both align with known SN Ia spectral features.

Because of intrinsic variation “leaking” into these two phase-

independent components, we make no strong conclusion about
the recovered dust extinction curve from either L1

¢ or L1
mvr .

In our approach of SN standardization, we avoid setting
conditions on the properties of unextinguished SNe or of dust,
and hence are unable to directly make conclusions about
foreground dust, apart from recovering a model component
whose behavior is like that of dust (specifically, CCM89).
Either forward modeling via additional postprocessing, or
directly integrating a dust model into an improved version of
our SN Ia model are options to consider—such augmentations
will be the focus of work in the future. Such future work will
also increase synthetic photometry spectral resolution to allow
for better identification of spectral features.

Figure 15. Per-SN comparison of our stretch parameter s1 vs. SALT2's stretch
proxy x1. An ordinary least squares linear best fit is provided with a solid black
line. Error bars correspond to 68th percentiles.

Figure 16. A per-SN comparison of our per-SN chromatic flux variation
parameters c1¢ (top) and c2 ¢ (bottom) against SALT2's c parameter. We
measure a clear rank anticorrelation between c1¢ and SALT2 c, but measure no
correlation between c2 ¢ and SALT2 c. We interpret this as template L2 ¢
capturing chromatic flux variation not modeled by SALT2. An ordinary least
squares linear best fit between c1¢ and SALT2 c is provided by a solid black
line. Error bars correspond to 68th percentiles.
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Appendix A
Centered Vectors for Type Ia Supernova Parameters

A centered vector is a vector v with the mean of its
components being zero. There are numerous ways to
structurally enforce centered vectors in Stan.29 For perfor-
mance reasons we opt for a shifted simplex method.

A simplex Δ of dimension n is a vector with the constraint
that its components sum to one: 1n

i
iå D = . Dividing the sum

of the simplex by its component count n gives that simplex's
mean: 〈Δ〉 = 1/n. Therefore, any simplex Δ instantiated in
Stan can be transformed via translation by a factor −1/n into

a centered simplex Δ〈0〉 with a mean of zero:

/ ( )n1 . A1i i
0D = D -á ñ

Finally, any centered vector r with component ri can be
defined as the product of a centered simplex Δ〈0〉 and a scaling
parameter r:

/( ) ( )r r r n1 . A2i i i
0= D = D -á ñ

Appendix B
Achromatic Offset and Chromatic Parameter Degeneracy

As described in P. F. Léget et al. (2020), for all SNe Ia there
is a degeneracy between an achromatic offset parameter (i.e.,
χ0) and a phase-independent chromatic variation vector (i.e.,
c1L1 + c2L2). With an explicit length-nλ vector of ones 1 to
represent achromatic offset behavior in wavelength space, one
can define a vector for each SN Ia:

( )v L Lc c1 . B10 1 1 2 2cº + +

For two arbitrary constants {α1, α2}, the vector v is invariant
under the following transformations:

v L L

L L
L L

c c

c c

1

1
1

,

,
,

.

0 1 1 1 2

1 1 1

2 2 2

0 0 1 1 2 2

c
a
a

c c a a

= ¢ + ¢ + ¢
¢ = -
¢ = -
¢ = + +

At each iteration during sampling or in postprocessing, this
degeneracy can be removed by choosing a fixed {α1, α2} and
then recalculating the components of v. Both the c1 and c2
parameter sets should be uncorrelated with peak brightness
dispersion, so α1 or α2 are calculated so that both c1 and χ0,
and c2 and χ0, are uncorrelated. Representing parameter sets as
length-nsn vectors c1, c2, and 0c ¢, and starting from the
transformation definition for 0c ¢ above, we require:

( )0, B2

c

c

c

c

c c c c

c c c c

c

c

c c c c

c c c c

1 2

1 2

1

2

1 0

2 0

1 0

2 0

1 1 1 2

2 1 2 2

1 0

2 0

1 1 1 2

2 1 2 2

s
s

s
s

a s a s
a s a s

s
s

a
a

s s
s s
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+
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= + =

c

c

c

c

c

c

¢
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⎡
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⎤
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⎤
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⎤
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⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
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or after solving for the vector [ ], T
1 2a a :

( ), B3
c

c

c c c c

c c c c

1

2

1
1 0

2 0

1 1 1 2

2 1 2 2

a
a

s
s

s s
s s= -

c

c

-
⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

where the matrix on the right-hand side of this equation is the
precision matrix for our c1 and c2 samples.
Both L1

¢ and L2
¢ are maintained as unit vectors. This is

enforced after each transformation by normalizing L1
¢ and L2

¢

by factors |L1 − α11| and |L2 − α21|, respectively. Each
parameter set for c1 and c2 is multiplied by their respective
factors to preserve the products Lc1 1

¢ and Lc2 2
¢, respectively.

Appendix C
Brief Introduction to Geometric Algebra

Geometric algebra provides a robust, elegant, and easy to
interpret framework to perform geometric operations. It extends
linear algebra by introducing the geometric product, a
combination of the inner product and outer product. Although

29 https://mc-stan.org/docs/2_18/stan-users-guide/parameterizing-centered-
vectors.html
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we directly calculate intersections, rotations, and projections/
rejections using geometric algebra, these operations can be
performed using linear algebra instead.

We will assume through that our vector space is finite
dimensional and that each vector's elements is real-valued
(specifically, we assume our vector space's field are the real
numbers ). We will also utilize a canonical basis representa-
tion of our vector, such a Cartesian basis for n,
{ ˆ ˆ ˆ }e e e, , , n1 2 ¼ . All geometric algebra calculations are imple-
mented with the Clifford package (Robert Kern and the
Clifford Team 2021). For a more detailed introduction, see
E. Hitzer (2013).

Geometric algebra extends elementary vector algebra using
the geometric product. The geometric product of two vectors
{ } x y, nÎ combines a symmetric inner (or dot) product with
an antisymmetric outer (or wedge) product:

ˆ

·

( ) ˆ ( )

xy x y x y

e

x y

x y y x e , C1

i

n

i i

i

n

j i

n

i j i j i j

1

1

å

åå

= +  =

+ - 

=

= >

ˆ∣ ∣∣ ∣ ∣ ∣∣ ∣ ˆ ( )x y x y x ycos sin . C2xy xyq q= + 

In the last step we define the angle θxy as the angle between the two
vectors x and y. The inner product maps our vectors to our
underlying field , yielding a scalar and is a symmetric
operation: x · y = y · x. The wedge product of two vectors x
and y is an antisymmetric operation: ˆ ˆ ˆ ˆe e e ei j j i = -  =

( )i j0 if = . The object output by the wedge product of two
vectors is called a bivector and is an oriented plane element.

It is common in geometric algebra to refer to a scalar as a
0-blade and a bivector as a 2-blade. Similarly, vectors such as x
and y are referred to as 1-blades. In general, a k-blade is a k-
dimensional object with can be generated by k-wedge (or k-
geometric) products of k independent vectors. These k-vectors
are themselves oriented k-dimensional subspace elements. The
produced object xy is a linear combination of two grades of k-
blades (a 0-vector and a 2-vector, specifically) that we call a
multivector. In general, a multivector is a linear combination of
k-blades. Also, each multivector M has an inverse such that via
the geometric product MM−1 = 1. Furthermore, any multi-
vector defined as a product of vectors M = a1a2...am has a
corresponding multivector called its reverse:M† = amam−1...a1.

We can derive a canonical basis of our geometric algebra
using the geometric product on our starting vector space's
canonical basis as a generating set. Because canonical basis is
orthogonal, the geometric product of canonical basis components
reduces to a wedge product for i ≠ j: ˆ ˆ ˆ ˆe e e e0i j i j= +  , or to
an inner product for i= j: ˆ ˆ ˆ · ˆe e e e 0i i i i= + . As an example, for
a vector space of dimension n= 3, the generated geometric
algebraic canonical basis has eight basis elements:
{ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ }e e e e e e e e e e e e1; , , ; , , ;1 2 3 1 2 1 3 2 3 1 2 3 . This set of basis
elements naturally fall into grades of equal subspace dimension:
one scalar element, three 1D basis vectors (the starting vector
space's canonical vector basis), three 2D basis bivectors, and one
3D basis trivector. The geometric algebra over 3 basis elements
therefore prescribes corresponding sets of orthogonal bases for all
possible subspaces that exist within 3. The generation of basis
elements generalizes naturally for any finite dimension vector
space n, with the resulting geometric algebra n having 2n

generated basis components. The respective subspaces, or grades,

of the geometric algebra (i.e., the bivector or grade-2 components)
have dimensionality ( )n

k
, where k is the grade of interest. Note that

the last element in this geometric algebra basis is called the
pseudoscalar i, since ii = −1 for any dimension n in a way
analogous with an imaginary number. Finally, we can decompose
any multivector M using a grade projection operation:

( )M M , C3
k

n

k
1

å= á ñ
=

where the k-grade projection operator 〈M〉k returns the k-blade
component of M.

C.1. Reflections and Rotations

Consider two vectors r x, nÎ . Say we reflect r along x.
This operation can be interpreted as negating the component of
r perpendicular to x. The geometric product can be used to
decompose r into its parallel and perpendicular components
relative to the unit vector x̂:

ˆ · ˆ ˆ ( )rx r x r x , C4= + 

( · ˆ ) ˆ ( ˆ ) ˆ ( )r r x x r x x . C51 1= + - -

The component ( · ˆ) ˆr x x 1- is proportional to the projection of r
onto x, while the component ( ˆ) ˆr x x 1 - is the perpendicular
(or rejected) remainder. From this decomposition we can define
a reflection r¢ of r along x:

( · ˆ ) ˆ ( ˆ ) ˆ
( ˆ · ) ˆ ( ˆ ) ˆ
( ˆ · ˆ ) ˆ
ˆ ˆ
ˆ ˆ

r r x x r x x

x r x x r x

x r x r x

xrx
xrx.

1 1

1 1

1

1

¢ = - + 
=- - 
=- + 
=-
=-

- -

- -

-

-

Here we exploit the unit vector's geometric algebra inverse
being itself ( ˆ ˆ ˆ · ˆxx x x 1= = ).
Any rotation can be decomposed into two reflections, with

the rotational plane being spanned by two vectors we reflect
against. Picking another vector y nÎ , we write the rotation r¢
of r in the plane corresponding to grade-2 (or bivector
component) of the multivector ˆ ˆR xy= as:

ˆ ˆ ˆ ˆ
†

r yxrxy

R rR.

¢ =
=

This bilinear operation on r by the unit 2-vector R is indeed a
rotation. To see this, let us insert a more illuminating form of R:

ˆ ˆ

ˆ ˆ ( )

r x y r

x y

cos
2

sin
2

cos
2

sin
2

. C6

xy xy

xy xy

q q

q q

¢ = - 

´ + 

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

To interpret this result, consider first the geometric algebra of
vector space 2 with its four generated basis elements
{ ˆ ˆ ˆ ˆ }e e e e1; , ;1 2 1 2 . In 2D any bivector ˆ ˆx y is proportional
our unit pseudoscalar ˆ ˆe e1 2, itself which behaves identically to
the imaginary number (similarly denoted as i). Substituting i for
ˆ ˆ ˆ ˆx y e e1 2 = into Equation (C6), we recover the canonical
form of a rotation by an angle θ in 2D:

/ / ( )r re e . C7i i2 2¢ = q q-
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For higher dimensions we can similarly treat the bivector
ˆ ˆx y as being the imaginary number of the 2D subspace
spanned by said bivector. Therefore, any rotation of a vector r
by an angle θ within a plane spanned by the unit
bivector ˆ ˆ ˆ x y=  can be written:

/ / ( )ˆ ˆ † r r R rRe e . C82 2¢ = =q q-

This unit bivector is interpreted as a generator of rotation
within the plane spanned by ̂; the multivector R (which has
scalar and bivector components) is called a rotor.

C.2. Projection and Rejection of Vectors onto a Bivector

Consider a vector v and a bivector . Similar to
Appendix C.1, we can decompose a v into components parallel
and perpendicular to the plane spanned by :

· ( )  v v v , C9= + 

( · ) ( ) ( )   v v v . C101 1= + - -

If the wedge product of any vector with a  is 0, then said
vector must exist within the plane spanned by that .
Alternatively, any vector with no projection onto  requires
said vector be perpendicular to . Just as in Appendix C.1, we
therefore identify this decomposition into parallel (projected)
and perpendicular (rejected) components relative to a plane
spanned by :

 ( · ) ( ) v v , C111= -

( ) ( ) v v . C121= ^ -

C.3. Intersection of Planes

This section describes the formalism readily displayed in
Figure 5. It is the most complicated of the operations we
implement using geometric algebra and is included for
completeness, despite its complexity. As with other operations,
it is possible to calculate this intersection using conventional
linear algebra techniques. Indeed, we confirmed this geometric
algebraic implementation with such a conventional approach.

Intuitively, a bivector is to a plane what a vector is to a line.
Just as one can find the intersection of two lines using their
representing vectors, one also can find the intersection of two
planes using their representing bivectors.

Consider two bivectors  and , each of which represent
two different planes. If these two planes intersect (which we
will assume they do), then there are at most two linearly
independent vectors a and b that exist each of the respective
planes spanned by  and , but that do not reside along these
two planes' intersection. Furthermore, the intersection of and
 is a well-defined, 1D subspace necessarily spanned by some
vector, a vector that we will call c. This means that  a a= 
and  c b=  , and taken together, these two bivectors span a
3D subspace (because they share the intersection subspace
spanned by c). This volume and its orientation can be
represented using a trivector a ∧ b ∧ c. Normalizing this then
trivector gives us the intersection's unit volume element:

∣ ∣ ∣ ∣
( )







a
a

b
b

i . C13=



=



We want a formal expression for c from the starting
bivectors  and , though. To get this, we first find a bivector
whose plane is simultaneously perpendicular to both  and B,
which can be done by taking the grade projection of the
geometric product  to its bivector component: B 2á ñ . The
vector perpendicular to this bivector B 2á ñ , but which still
exists within the volume spanned by the intersection unit
volume i, is the intersection vector c we are looking for. It turns
out that taking the geometric product of i with B 2á ñ performs
exactly this operation:

( )ic . C142= á ñ

Once way to think about this is that the unit volume i rotates
the bivector B 2á ñ by π/2 and projects out the vector c
perpendicular to the bivector B 2á ñ .

Appendix D
Hamiltonian Monte Carlo Sample Chains

As mentioned and interpreted in Sections 3 and 4, we
identify three HMC sampler groupings during postprocessing.
Here we present the HMC posterior. Sampling chains for the
raw L1 parameters before achromatic offset de-correlation
(Appendix B) or basis selection (Section 4.1). As such, the
sampler chains seen here are not yet physically interpretable,
nor are they used to measure convergence. Although also
present in postprocessed basis representations, the sampler
groupings are far more visible before postprocessing, providing
easier “by eye” identification. See Figure 17 for a presentation
of the HMC sample chains.
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