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Abstract

In recent years, there has been much controversy regarding the relationship between infor-
mation and black holes. In order to avoid information loss, an acceptably general unitary
model requires that infalling information be scrambled and then emitted as Hawking radia-
tion. We set up a scheme to explore the influence of event horizon geometry on information
scrambling for a black hole model from Matrix theory - M-theory in the light-cone frame -
using highly-parallelizable Runge-Kutta evolution. Previous examination of this system con-
sidered only fermionic degrees of freedom. We include the coupling between fermionic and
bosonic degrees of freedom. We find that information scrambling has a strange dependence

on geometry — involving atypical periodic behavior — with no immediate interpretation.
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Chapter 1

Introduction — The Information

Paradox

Two facts about black holes, when taken together, have unsettled physicists for decades.
The first is that any form of “stuff,” from photons to penguins, cannot escape after falling
through a black hole’s event horizon. The second is that over time, black holes evaporate
out of existence via a process called Hawking radiation[l] The first fact comes from general
relativity, whereas the second comes from quantum theory.

Black holes seem to be pulling a fast one on us. We send some quantum state (our most
general way of representing “stuff”) through a black hole’s event horizon, and inside the event
horizon it must remain. After some finite time, the black hole has evaporated away and our
quantum state is nowhere to be seen. This problem is called “the information paradox,”
since it is concerned with understanding what happens to the information contained in our

stateE]

'In this sense, a black hole is a thermal object: it has a temperature and an entropy associated with this

process.
20ne of the key lessons of quantum information theory is that information is physical [1]. It is worth noting

how one might encode information in a quantum state. Compare, for instance, the classical byte 00101111

with the spin chain state |}) [{) [1) [4) 1) [T) [1)|1). The study of quantum information is richer that its



Event
Horizon

Figure 1.1: In Hawking radiation, particle-antiparticle (electron-positron in this figure) cre-
ation occurs just outside the black hole’s event horizon in such a way that one particle (the
electron) falls into the black hole while the other (the positron) escapes. This process causes

black holes to evaporate over time.

A natural reaction to this thought-experiment is to suppose that our quantum state
has been irretrievably lost. This idea is anathema to the modern physicist. In quantum
mechanics, states are evolved in time via unitary transformations.ﬁ Unitary transformations
are special because they preserve probability amplitudesﬁ Given an initial state |1(0)), we
have that the state at time ¢ is given by [1(t)) = U(t) |1(0)), where U(t) is a unitary operator.
If U(t) is unitary, we have that (¢ (¢)[(t)) = (¥ (0)] UT(t)U(t) 11(0)) = ((0)|1»(0)) = 1; this

forbids information loss [

classical counterpart since in the quantum case one may consider information states that are superpositions

of multiple states.
3This is a direct result of the Schrédinger equation. If you aren’t famililar with unitary transformations,

see section
“4In other words, for a unitary transformation U and any two states |¢)) and |¢), we have that (¢| UTU [1)) =

(¢|1). This is an equivalent definition to those given in section
5 Another way of seeing that unitary operators forbid information loss is by noting that that the inverse

operator Ut is always well-defined. Via this inverse we may always reconstruct our initial state. However,



If U (t) were not unitary, however, we would have that (¢)(¢)[)(t)) # 1. Imagine preparing
an electron in the spin state |1)(0)) = |+z), waiting for some time ¢, and then measuring the
z-component of the electron’s spin. Non-unitary evolution would allow the particle’s final
spin state to be |i(t)) = \/Lg |+2) + \/ig |—2z). According to the probabilistic interpretation
of quantum mechanics, a subsequent measurement of the z-component of the particle’s spin
would have a % chance of measuring +§ and a % chance of measuring —%. What about
the remaining %? We might try to interpret the missing % as the probability that the
final measurement returns no value because the electron has “disappeared.” However, since
such an operator U (t) is forbidden from being a time-evolution operator by the Schrodinger
equation, we shouldn’t worry too much about interpreting this strange final state.

The most popular proposed resolution to the information paradox that doesn’t invoke
information loss supposes that an in-falling quantum state is communicated to the outside

world via the black hole’s evaporation process. Most formulations of this idea invoke a

concept called Black Hole Complementarity.

1.1 Black Hole Complementarity

Black Hole Complementary (BHC)[2] supposes a dual description of black holes. To the
outside observer, the event horizon has microphysical degrees of freedom. If an outside
observer decides to jump onto the horizon, however, she quickly discovers that it has no
substance, and she falls through. The reason for BHC’s name is that there is complementarity
between observations made inside the event horizon and those made in the outside universe.
Namely, the observer inside the horizon does not observe the horizon to have substance, but
is unable to report this lack of substance to her colleagues in the outside universe due to the

standard black hole gravitational limitations.

since the inverse is necessarily linear, we have that UT0 = 0. In other words, the only way for information

to be lost when acted on by a unitary operator is for the information to never have existed in the first place.



Many attempted resolutions to the information loss problem rely on BHC’s interpretation
of the event horizon as a physical membrane. To the outside observer, in-falling quantum
states become entangled with the black hole’s degrees of freedom by interaction with the
event horizon membrane. The initial quantum state is then imprinted onto the black hole’s
Hawking radiation, and an outside observer is able to retrieve the information by collecting
Hawking radiationﬂ

The BHC argument relies on three postulates, which assert the validity of (1) quantum
theory, (2) semi-classical general relativity7, and (3) statistical mechanics in describing black
hole physics from the vantage point of a distant observer. An informal but important fourth
postulate of BHC is that an in-falling observer “experiences nothing out of the ordinary”
when crossing the event horizon. In other words, the in-falling observer detects no violations
of the laws of physics. (For our case, the important law of physics that must be preserved is
the No-Cloning Theorem of quantum mechanics.)

In 2012, a group from UCSB argued [3] that the postulates of BHC are inconsistent.
The group proposed that a conservative resolution might be that in-falling observers burn
up at the event horizon due to some sort of “firewall.” Today, there is no consensus as to
what happens when information crosses the event horizon. Although there has yet to be a
resolution, these recent developments have caused many to reexamine quantum information

in the context of black holes.



Figure 1.2: Objects at different temperatures equilibrate over time once they are put into
thermal contact. This maximizes the total entropy of the system. We can imagine a quantum
analogue to this process, in which two initially uncorrelated systems are allowed to interact
(i.e. the system’s Hamiltonian couples the subsystems). This interaction will cause the

system’s entanglement entropy to change.

1.2 Black Holes and the No-Cloning Theorem

We previously mentioned the idea that in-falling information becomes entangled with the
black hole’s degrees of freedom. This process is called information scrambling, and is most
easily explained via a thermal analogy (see Fig. . Take two objects of different tempera-
ture and put them into thermal contact. After some time, the objects will have equilibrated
to the same temperature. This maximizes the thermal entropy of the system, and thus is a
thermal scrambling time. Analogously, take two quantum systems to be initially uncorrelated
and let them interact. This interaction will cause the degree to which the subsystems are
correlated with each other to change over time. In this case, the quantity we are concerned
with is the system’s entanglement entropy, the formula for which is given in Chapter 3. For

some systems with initially uncorrelated subsystems, the entanglement entropy approaches

SBHC does not give the specifics of how in-falling information might interact with the membrane. It
is not hard to believe, however, that via some mechanism some Hawking radiation photon could end up

entangled with the spin state of an in-falling particle.
"Semi-classical general relativity is an approximation of quantum gravity in which matter is described

via quantum mechanics and the spacetime metric (i.e. gravity) is treated classically.



some equilibrium value, around which it fluctuates.

We call a system scrambled if any subsystem with less than half of the system’s degrees
of freedom has some nontrivial fraction of the maximum possible entanglement entropy and
exhibits thermal-like fluctuations in this entropy. Now take a scrambled system and add
a degree of freedom. For our purposes, the initially scrambled system is the black hole
and the new degree of freedom is some infalling qubitf} The new system will no longer
be completely scrambled since adding a degree of freedom in a pure state will decrease the
system’s entanglement entropy significantly. After some time, the added information will
diffuse over the black hole’s degrees of freedom, and the new system will be scrambled. The
amount of time this re-scrambling takes defines the scrambling time Ty..

For an infalling qubit, the black hole’s scrambling time defines how long it takes for the
entire black hole to “know” about the qubit. The idea is that subsequent Hawking radiation,
assuming that it has some nontrivial interaction with the black hole, can also “learn” about
the qubit from the black hole; a particle of Hawking radiation emitted after the scrambling
time can then contain some or all of the information from the qubit.

It was shown by Hayden and Preskill [4] that, under the right conditions, the time
it takes an observer outside the black hole to reconstruct the initial qubit by collecting
Hawking radiation is approximately the scrambling time 75.. Thus, in the BHC picture, the
information paradox is resolved. The firewall proposal tells us that BHC has some problems;
in terms of the information paradox, there are still details to iron out. Information scrambling
may still play an important role in resolving the information problem, though either in some
tweak of the BHC paradigm or in some other theory altogether, and thus it is worth studying.

It turns out that we can put a lower bound on the scrambling time for a black hole.
Consider the following thought experiment (Fig. . Alice and Bob are making observations

from their spaceship just outside the event horizon of a black hole. Alice, who is holding a

8A qubit, or quantum bit, is a quantum state from a two-state (e.g. electron spin) system. When we

have a series of qubits (e.g. several eletrons) interacting in some way, we call the system a qubit chain.



(@)

Figure 1.3: (a) Alice, holding the quantum state [¢)), jumps into the black hole. Bob waits
outside, and after some time 7. collects |¢) from the Hawking radiation. (b) Bob then jumps

into the black hole, and Alice sends him [¢)). Bob is only able to retrieve |1)) before reaching

InS

the singularity if 7, < %=. This violates the no-cloning theorem.

qubit, decides to jump through the event horizon. Bob waits outside and collects the black
hole’s Hawking radiation. After some time, Bob has collected enough Hawking radiation to
reconstruct Alice’s qubit. Bob then jumps through the event horizon, where Alice has sent
her qubit to Bob in the form of a photon. Then Bob has two identical copies of the same
qubit, which violates the no-cloning theorem of quantum mechanics.

The way to resolve this problem is to put a lower bound on how long it takes Bob to
collect Alice’s qubit from the Hawking radiation. Then we may ensure that the qubit Alice
carries into the black hole will not reach Bob before he meets his end at the singularity.
In 5, [6], Sekino and Susskind argued that, to avoid a violation of the no-cloning theorem,
the time it takes for Bob to collect Alice’s qubit, and thus the scrambling time 7, by the

argument of Hayden and Preskill, is bounded by

In S

T (1.1)

Toc =

where T is the black hole’s temperature and S is its entropy. Most systems scramble as a
power law in entropy by 7, ~ ¢S%? where c is a constant and d is the dimension of spacetime.

Susskind and Sekino conjectured [, 6] that black holes are fast scramblers, saturating the



bound (1.1]). This conjecture can be motivated by considering the rate of diffusion of charge

on a black hole horizon or through Matrix theory, a framework for viewing M-theory.

1.3 Studying Scrambling via Matrix Theory

Matrix theory turns out to be an ideal setup for testing information scrambling in black holes.
Since black holes are extremal gravitational objects and the information we are considering
is quantum, it is reasonable to expect a quantum theory of gravity to be necessary in treating
the dynamics of their information scrambling’] At this point, string theory is an attractive
candidate for such a theory. Matrix theory [7],[8] is a particular formulation of string theoryF_U]
that involves the dynamics of DO-branes coupled to each other by strings. DO-branes are
the “point particles” of string theory['| Models for black holes in Matrix theory have been
developed in [9] 10} [I1] with promising results, giving the correct scaling for a Schwarzschild
black hole’s equation of state under certain assumptions. However, such models remain
incomplete, and are unable to reproduce the correct entropy relations without additional
dynamics. [12]

In this thesis, continuing on the work of [12], we set up a Matrix model for black holes
to learn qualitative information about scrambling in quantum gravity. We put Matrix the-
ory’s bosonic variables — the spatial coordinates of and interactions between DO0-branes —
into a spherical configuration representing the black hole event horizon. We then allow for
fermionic fluctuations, giving the system thermal behavior. Previous work considered only
the coupling between fermionic degrees of freedom (ignoring the bosonic parameters that rep-

resent event horizon geometry) and found that the fermionic excitations had the structure of

9We should have suspected this, given that the information paradox arises from a conflict between general

relativity and quantum theory.
108pecifically, M-theory is type ITA string theory in the strong coupling limit, and Matrix theory is M-

theory viewed in the light-cone, or infinite-momentum, gauge.
Tn general, Dp-branes are p-dimensional extended objects on which open strings end.

10



Figure 1.4: A qubit chain with nearest-neighbor coupling. Lines between boxes represent a
couplings between qubits, with line thickness giving a sense of coupling strength. Intuitively,
a nearest-neighbor coupling system ought to scramble more slowly than some qubit system

with a denser network of interactions.

one-dimensional qubit chains with nearest-neighbor interactions (see Fig. . In this case,
fast scrambling was not observed. To higher order, bosonic and fermionic degrees of freedom
are in fact coupled, and the previous work qualitatively showed that these interactions were
suggestive of fast scrambling.

In this thesis, we include the coupling between fermionic degrees of freedom (i.e. qubits
living on the event horizon) and bosonic degrees of freedom (i.e. black hole geometry). We
deform the event horizon from its initial spherical shape and analyze information scrambling
among the qubits living on the deformed event horizon. The idea is that fluctuations in the
event horizon occur naturally. Deforming the event horizon in extreme ways will help us
understand the effect of smaller-scale fluctuations. We do this with a computational scheme
that tracks entanglement over time for black hole systems with varying fermionic and bosonic
parameters. We do not test the fast-scrambling conjecture for technical reasons; see Chapter
3. Our goal is to learn qualitative information about the effect of black hole geometry on
information scrambling.

We found that information scrambling is highly dependent on deformation strength.
For extreme deformations, we observe period behavior, strange for a system assumed to
be psudo-thermal. While we have no immediate interpretation of our results, we suggest
that the symmetries (or asymmetries) of our deformation modes, as well as the sizes of our
deformations, play an important role.

In Chapter 2 we start from the Matrix theory Lagrangian and perform a fluctuation

analysis on our black hole model to find a structure of qubit chains in the theory. In Chapter

11



3 we discuss our numerical techniques, which include highly-parallelized methods to explore
very large Hilbert spaces. In Chapter 4 we present results. Chapter 5 gives conclusions
and plans for future work. Technical details regarding gauge theory and spinors appear in

Appendices [A] and [B], respectively.

1.4 Notation, Some Important Mathematical Defini-
tions, and Assumed Reader Knowledge

Throughout this thesis, repeated indices are summed over, except when explicitly stated:
T Yy = Y T+ Y Yy (1.2)
( J

We do not deal with covariant and contravariant tensors, so we do not distinguish between

lower and upper indices. The commutator of two matrices X and Y is given by
(X,Y]=XY -YX. (1.3)
The anticommutator is analogously defined by
{X, Y} =XY +YX. (1.4)

The Poisson bracket for two functions f(g;, p;,t) and ¢(q;, p;,t) defined on N generalized

position coordinates ¢;, N generalized momenta p;, and time ¢ is given by

S\ (0f 89  Of 9y
{f,g}PAB. = Z (8(]1 api B apz' 8%) .

i=1

(1.5)

An important property of the Poisson bracket is that {g;, p;}p5. = 0;;.

A few types of matrices are especially important for our purposes. A matrix X is said
to be hermitian if X = X', where XT denotes the conjugate transpose of X. A matrix U
is called unitary if UTU = UUT = I. This is equivalent to requiring that |det U| = 1. The

group of all N x N unitary matrices is denoted U(N).

12



The Kroenecker delta 6,,, equals 1 if m = n and vanishes otherwise. The Levi-Civita
symbol €, (also known as the antisymmetric symbol) is defined to vanish if any of the
indices are equal, to be 1 for ¢« = 1,5 = 2,k = 3, and to pick up a negative sign for any
permutation of those index values. (For example, €193 = 1, €913 = —1, and €331 = 1.)

Advanced undergraduate physics majors should be able to understand this thesis. In
particular, a good grasp of undergraduate analytical mechanics (Lagrangian and Hamilto-
nian formulations) and quantum mechanics (Dirac notation, canonical quantization, density
matrices) is assumed. Certain advanced topics (gauge theory, spinors) are developed in

appendices.

13



Chapter 2

Matrix Theory

In this chapter, we develop a model for black holes in Matrix theory. We then analyze
fluctuations in our fermionic degrees of freedom and find a series of coupled qubit chains.

We will use these qubit chains to simulate information scrambling in a black hole.

2.1 The Lagrangian

The Lagrangian for Matrix Theory is given by [[12]]
1 1

which requires some explanation. The X;’s are N x N hermitian matrices, where ¢ runs from 1
t0 9. Wisalso an N x N hermitian matrix, but its entries are ten-dimensional Majorana-Weyl
spinors (See Appendix . The ~; are 16 x 16 Dirac matrices for 10-dimensional Minkowski
space (see (B.2)) for our chosen representation). Our time dependence involves a “covariant

time derivative” for the U(N) gauge group
D, =0, —ilA, ], (2.2)

where A is an N x N hermitian “gauge” matrix (see Appendix [A]). Since no time derivatives

of A appear in the Lagrangian, A is static. In the end, since the Lagrangian needs to be a

14



oo 9l

coupling, supposing that |a| < |b] and |c| < |d].

scalar, we calculate the trace of the bracketed quantity.

Physically, the X; encode the spatial coordinates and interactions of N DO0-branes (see
Fig. [2.1). DO-branes are the point particles of string theory. The index ¢ runs from 1 to 9
because Matrix theory has 9 spatial dimensions (with the “extra” 6 dimensions being curled
up and thus imperceptible at low energies). Specifically, a diagonal element X;(n,n) is the
i'h spatial coordinate of the n'" DO0-brane, while an off-diagonal element X;(m,n) is the
strength of the coupling in the i*" coordinate between the n'* and m'" D0-branes.

Since we want to model black holes using this theory, we fix a spherical configuration
of DO-branes in the first three spatial dimensions, setting the other six coordinates of the
DO0-branes to zero. In other words, we ignore the “extra” dimensions of the theory. Allowing

for deformations from the sphere, our ansatz for the X; is
Xz' =vT t+x; 1= 1, 27 3, (23)

where v is a positive constant of our choice, the 7; are N x N matrix representations of the

generators of the algebra su(2) and the x; are N x N matrices. It is worth noting that the

15



group SU(2) corresponding to the algebra su(2) is isomorphic to the sphere. The 7; satisfy
[TZ’,T]'] = 2i€ijka, (24)

where ¢ is the Levi-Civita symbol. Thus the physically-minded reader may regard the 7;

as N x N generalizations of the Pauli matrices.ﬂ If x; =0 for i = 1,2, 3, we have that
X+ X+ X2 =14t + 75+ 1m) =i (2.5)
where 72 = 72 + 77 + 72. Via standard quantum mechanics spin matrix constructions, one

can show that

N2 -1

2=l + 1)y = 1

Iy, (2.6)

with Iy the N x N identity matrix. We then have that

2 2 2 2N2_1
Xl —|—X2 +X3 =V T[N (27)

This equation is a noncommutative analogue (since matrices don’t necessarily commute) of

the equation for a sphere,

o2+t 2 =0 (2.8)
which suggests we should view this configuration as a sort of sphere with radius

R= VN2 -1, (2.9)

which goes to % in the large N limit. Of course, the X; are matrices, so our geometry has

noncommutative features. For that reason, this X; configuration is called a “fuzzy” sphere.

IThe algebra su(2) can be represented by square matrices of any size. The Pauli matrices give rise to the
2-dimensional, or fundamental, representation of the su(2) algebra. Here the algebra representation we use
is determined by NN, the number of DO-branes and the dimension of our matrices. We construct our 7; in
the same way one constructs higher-spin Pauli matrices in quantum mechanics. Then N = 2¢ + 1, where ¢

is the spin of the matrix representation.

16



The x; are then our way of deforming our black hole’s event horizon away from a fuzzy
sphere configuration.

It is worth noting that this spherical configuration is unstable, although it has a long
lifetime for large N. This decay process could provide a model for Hawking radiation,
wherein black hole evaporation is represented by the D0-branes decoupling and moving out
to infinity. We defer the analysis including the dynamics of the X; to a later study. For our

purposes, these bosonic degrees of freedom (i.e. the event horizon shape) will be static.

2.2 Matrix Decomposition
We next decompose our ¥, A, and z; matrices via spherical harmonics matrices Y7 :

moT m mr- m)

where the spinor index « goes from 1 to 16 since Majorana-Weyl spinors in 10 dimensions
have 16 components (see Appendix . Since they come from the position matrices X,

the 27

mi

are our bosonic degrees of freedom, while the v/ . arising from the spinor matrix
U (which represents fermions) are our fermionic degrees of freedom. We choose the gauge
convention a/, = 0 (i.e. A =0). The spherical harmonics matrices Y/, where j = 0,..., N—1
and m = —j,...,j, are N x N matrices that form a basis for all N x N hermitian matrices.

They are derived from the spherical harmonics of quantum mechanics in the next chapter.

The Y satisfy

Tr (yg;y,j;’,) = (=)™ N80 (2.11)

(Vi)' = (=1)"v7,. (2.12)

Via the linearity of the matrix trace, we thus have that

;o =" j
= Tr (V,Y7,), (2.13)

mo

17



s, using the fact that the W, are hermitian (and thus ¥, = ¥f = (¢ 1Y)t = (=1)™ (47, )TY7,.),
we find

. —1)2m .

() = T (w,77)
([ m(_1>m j
=(-1) — (P.Y7) (2.14)
= (_1)mwima'

Via similar reasoning, one may show that

(] )= (=)™’ . (2.15)

For the purposes of expanding and simplifying our Lagrangian, we ought to know how the Y7
matrices relate to our 7;; then we may write the Lagrangian purely in terms of our expansion

coefficients 17, and 27 .. Thus, some important facts are that [?]

[T, Y] = VG —m)(j+m+ 1)Ynj;b+1 (2.16)
[, Y3 =G +m) G —m+ 1Y, (2.17)
(73, V3] = mYy), (2.18)
where 7, =7 + i1 and - = 7y — iTe. Generally, we also have [7]
YA Y] = B 17V .19

where fjpjmsjrme is related to the Wigner 35 and 6 symbolsE| via

2
Fimgrms jormn = N(—l)NNS/Q\/(QJ' +1)(25" + 1)(25" + 1) x

N -/ -/ N -/ -/
J J J « J J J (2.20)

m m/ m//

2The Wigner 3j and 6j symbols (the round and curly-bracketed quantities in respectively) are
numbers related to the Clebsch-Gordan coefficients of quantum mechanics. For our purposes, it is sufficient

to know that they can be looked up.

18



when j + 5/ 4+ 77 is odd, otherwise evaluating to zero. Using these relations, we may write

J
ma?

the Lagrangian in terms of the ¢ , 2 . and a/,.

The Hamiltonian splits as
H=H,+ Hxﬂb + HT/M (221)

where H, consists of only bosonic degrees of freedom, H, consists of only fermionic degrees
of freedom, and H, , couples the two. Since we will be fixing the X;, we can ignore H,. The

fermionic part of the Hamiltonian is, in term of 17, coefficients,

N [ . A
Hy=" |3 2 (U145 = ma/j+mpl e,

Jj=0 m=—j
N-1 J . .
YN (VI maG—m? Ay,
j=0 m=—j
N-1 J . .
Y ()" =G+ ma] e,
=0 m=—j
N-1 J . .
=i Y Y (D)1 + g m G —mt e
=0 m=—j
N-1 J . .
=23 3 (1m0t
Jj=0 m=—j

The fermionic-bosonic Hamiltonian is

1 . A
Hap = 5N fymgrm grm @ity U (2.22)

We now proceed to show that our fermionic degrees of freedom give rise to 8N? qubits living

in the black hole model.

2.3 Hilbert Space

In this section we find that our fermionic degrees of freedom satisfy certain special anti-
commutation relations so that they may be interpreted as creation and annihilation operators

for a collection of 8N? fermions (or alternatively, a system of 8N? qubits).

19



The canonical 1/, , momentum is given by

L : 1 ; N, .
L — ]‘[ﬁm — _(_1)meJ_ma _ _( fna)T- (2.23>
9(Oyma) 2 2
Then classical mechanics gives us the Poisson bracket relation
e L } = 0/ Ommdaa 2.24
{ ma’ TTmia PB 29 3 ( )
and thus
. N 2
1]71017 (wfn’a’> } = —9; "6mm’5ao/- (225)
{ pp N

Via first canonical quantization, in which the Poisson bracket is replaced by an anticom-
mutatorﬂ and the quantities inside the bracket are promoted to operators on some Hilbert

space, we have

{ S <wi;/a/>T} = %5aa’6jj’5mm/- (2.26)

For m > 0, we rescale our fermionic variables by

. N .
s = \/wana for m >0, (2.27)

giving us the anticommutation relations

-/

{5 ha) = dawrbigdms + { oSt} =0+ {(5ha) s (1) } =0, (228)

where a« = 1,...,16 and m > 0. This is the canonical creation/annihilation algebra for a
collection of fermions. It is analogous to the algebra for the ladder operators of a harmonic
oscillator, although in this case the use of anticommutators instead of commutators implies
that our system is fermionic. Since (%aﬂ = wga by , the m = 0 case is special; if we
define

Tjo = VN, = {Tja,Tjrar} = 2000050, (2.29)

3Technically, we can have {f,g}pp. — —%[f7 glor {f,g}pB. — —%{f,g}, with f and g being promoted
to operators. Since the 7, come from a spinor, which represents fermions, it makes more sense to use the

anticommutator. We also ignore the factor of —%; it ends up not affecting our simulation.

20



This is the anticommutation relation for what we call a Clifford algebra. We will derive
raising and lowering operators from the Clifford algebra in a moment.

For each j =1,...,N —1 and m = 1,...,7, we have 16 x j (from 16 possible « values
and j possible m values) fermions that are created and annihilated with (s? )7 and s/ _,
respectively. Then we have Z;V;ll I 3L 16 = 8N(N — 1) fermions from the m > 0
sector. The Clifford algebra, we will see, gives us an additional 8 qubits per j mode, for a

total of 8N (N —1)+8N = 8N? qubits. Thus our Hilbert space has dimension 28V = 256"

We define our vacuum state [Q)ff] by
sl 1) =0 j=1,....N—-1, a=1,...,16 (2.30)
and
.12 =0 j=0,...,N—1 a=1,...,16 (2.31)

where we have defined

1 ) _ 1 .
F;ra = 5(1_‘]'& + ZFoH_g) s Fjoc = é(Fja — era+g>, (232)
where a =1, ..., 8 and
(T Toa} =00ty » {0/ Tha} =0, {T;.Thu} =0 (2.33)

To get from a Clifford algebra to raising and lowering operators, one groups the initial
operators (in our case, the T';,) into pairs. We have chosen to combine that o' spinor
component with the o + 8" component. We chose this combination because, as we will soon
see, it complements our chosen representation of the Dirac matrices. We may now generate
any state in our Hilbert space by acting on |Q2) with some number of creation operators.

We may interpret our system as either creation/annihilation operators for a collection of

41t is interesting to show that a vacuum state exists. This is essentially because {s?,,,s%,,} = 0, implying

that (s?,,)? = 0. For a full proof, see the spinor appendix.
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fermions or as spin raising/lowering operators for a collection of qubits. In the fermion
creation/annihilation interpretation, the raising operator with indices j, m, and « creates a
fermion with those indices if such a fermion isn’t already present; if such a fermion is already
present, the state is killed since ((szm)T)2 = (I'},)? = 0. The annihilation operator affects a
state analogously, but removes the fermion with its indices. In the qubit interpretation, each
raising operator turns a corresponding qubit on; applied more than once (or if the qubit is
already in the “up” state), the state is killed. Thus we may interpret the 256" * states in
the Hilbert space as all possible configurations of 8N? qubits. We will use these qubits to

simulate information scrambling on the fuzzy sphere.

2.4 The Fermionic Coupling Term H, and Qubit Chain
Structure

The fermionic Hamiltonian term, written in terms of raising and lowering operators and our

chosen representation of the v matrices (given in the Appendix), becomes

J
b= N TS [ () e~ 2m (45)

+Z\/ (j—m)(F+m+1)( ma( m+1ﬂ) +wm5 (wm"‘lo‘)T

+< %La)T £n+16+< inﬁ)T 3;1+1a):| ) (234)

where f = a + 8. Note that the sum over a ranges from 1 to 8, with the qubit-qubit
interactions coupling each ath qubit to the f = a + 8th qubit. This is why we chose to
get raising and lowering operators from our Clifford algebra by combining I'j, and I'j44s;
the coupling between qubits has a clearer structure. We see that the qubits with different j
don’t interact. In fact, a qubit with indices j, «, and m only interacts with the qubits with
indices j, 8 and m £ 1. This nearest-neighbor structure is depicted in Fig. 2.2l We will see

in the next chapter that when H, , is also taken into account, the network of interactions
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Soleelen

Figure 2.2: A graphical representation of the qubit-qubit coupling when only H, is consid-
ered. Each square represents a qubit, with their m values listen below the chain. Each qubit
with spinor index « is coupling to qubits with spinor index f = o + 8. The m = 0 qubit
from our Clifford algebra is drawn in black. We see that we have two chains, connected to

each other through the m = 0 qubit.

between qubits is much more complicated. Moreover, since we are interested in the impact
of black hole geometry on information scrambling, we will need to include the H, , term in

our simulation.
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Chapter 3

The Simulation

In this chapter, we develop numerical techniques to analyze information scrambling in a qubit
chain living on a Matrix theory black hole. Methods for calculating spherical harmonics
matrices Y7 and deformation coefficients 7, are discussed. Certain computational concerns

and simplifying approximations are also given.

3.1 Overview

The main idea of our simulation is to look at information scrambling in our qubit chain for
various (fixed) deformations of the black hole’s event horizon. Thus, when evolving the qubit
chain in time, we need to make sure to include the Hamiltonian’s fermionic-bosonic coupling

term:

1 ; i
He = SN fim gt omt it G5 (31)

where Einstein notation is being used. Since both xﬁn and 1)/ appear, this part of the

1
Hamiltonian couples the qubit chain to the black hole’s geometry. Note that the ¢ (without
the lower index «) are spinors that are acted on by the v matrices. Thus we can equivalently

write 7 7; i;, as W f;;,a,'yio‘a/. At first glance, H,, doesn’t look so complicated. Upon
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further inspection, however, we see that the bosonic-fermionic interaction couples every qubit
to every other qubit in the chain (with the strengths of the interactions dependent on the
xfm and the f coefficients). Also, whereas in the purely fermionic case only qubits with the
same j are coupled, we now have coupling between qubits with different j. Moreover, in the
purely fermionic case a qubit with index m only coupled to qubits with index m 4+ 1, but
when we take the bosonic-fermionic coupling into consideration all m values are coupled.

To simplify our computation, we will include only the bosonic-fermionic coupling for
1 = 3. In other words, we deform the event horizon from its initial spherical shape only in
the X3 direction, setting 7y = o = 0. We choose to deform in the X3 direction because the
form of our representation of 73 is especially simple (see Appendix). Moreover, we will fix
the bosonic degrees of freedom (i.e. the black hole geometry will be static). This is because,
as we will soon see, allowing for dynamics in the X; would make our algorithm much more
complicated. In other words, we will not include the H, term in our Hamiltonian when
evolving the system.

Via a straightforward but lengthy calculation, one may find the coupling term H,, in
terms of our raising and lowering operators and with z; = x5 = 0. While this is necessary for
running our simulation, its form is no more enlightening than . Moreover, the expanded
coupling is exponentially more tedious to write out or look at. Thus we omit it here.

Since each a qubit is only coupled to other o qubits or § = a 4+ 8 qubits, we have that
the 8 N2 qubit system decouples into 8 qubit chains of length N2. Looking at H, ,, we see
that all 7 and m modes are indeed coupled. Our network of interactions is thus much more
complicated than the case when only Hy, is considered. Also, the qubits are now coupled
not only to each other, but to the black hole deformation parameters x,jn?). Thus we expect

more complicated dynamics when evolving the qubits in time.
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Figure 3.1: Deforming the sphere. The spheroid on the right depicts a deformation in the

Yy mode.

3.2 Evolving the Qubit Chain

The Schrodinger equation tells us that the time-evolution of some state |¢(t)) is governed

by the differential equation

L0 >
tho, [0(8)) = H[$(?)) . (3.2)

For our purposes, |¢(t)) is our qubit chain’s state. The basis for our Hilbert space is the set

{I0) [¥2) . [na) = i) = 1) or ) =) fori=1,... N} (3-3)

For example, if N = 2, then any state of the qubit chain can be written as a (normalized)
linear combination of the basis states |]) [{), [{) [1), [1) [{), and [1) |1).

The initial state [1(0)) is chosen to be a random basis state. We calculate the 27 , as
described in the Section and load them into a text file that is read by the simulation.
We then evolve the qubit chain in time using a highly-parallelized fourth-order Runge-Kutta
method. The Runge-Kutta method is a standard tool used to numerically solve differential
equations. For a good overview, see [13]. By highly-parallelized, we refer to additional

numerical techniques that speed up our computation; see Section [3.5] for details.
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3.3 Calculating the Spherical Harmonics Matrices Y/
and Deformation Constants ;U‘Z;n

Recall that the spherical harmonic matrices Y played a key role in our expansion of the
Matrix theory Lagrangian. We can also use the matrices to calculate the coefficients xfm
corresponding to a given deformation matrix x;. We describe how to construct the matrices
in this section, following [?], describe how to calculate the xfm corresponding to some x;,
and give a few simplifying assumptions that allow us to easily explore the parameter space
of deformations.

Let 7; be defined as in , using the spin s = % representation familiar from quantum
mechanics. We then define the Y7 as N x N matrices that are polynomials of degree j in
the 7;, corresponding in some sense to the spherical harmonics functions from quantum

mechanics, Y7 (0,¢). Let j € {0,...,N — 1} and m € {—j,...,j} be given. Define the

polynomial y? (7,6, ¢) by

Y(r,0,0) =17Y,(0,9). (3.4)

The 3/ (r,0,$) are homogenous polynomials of degree j in the variables z = rsin 6 cos ¢,
y = rsinfsing, and z = rcosf. In other words, in each term of 3/ (z,y, z), the sum of the
powers of x,y and z is j. To get the Y out of 4/ (z,y, 2), make the following substitution:
write each term as % times the sum of each permutation of the elements in the term, ignoring
commutativity for a moment. Then replace z with 7, y with 75, and 2 with 73. The resulting
polynomial in i, 75, and 73 defines Y;7. The reason for our strange substitution is that the
matrices 7; don’t commute with each other, while the variables x,y, and z do. Thus there
is some ambiguity in whether we write some term in 3/ (z,y, 2z) as xy or yz. This doesn’t
matter when x and y are commuting variables, but when we substitute them for matrices,
1

the order matters. Thus the only “fair” way to write the term is 5(2y + yx), since this

gives us %(7‘17'2 + To1y) every time. We will perform our simulations using N = 4, with our
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deformation matrices in the Yy modes. For reference we list the N = 4 Y matrices here:

1 0 00
01 00
YE)OZ )
0010
00 01
1.34164 0
X 0 0447214
Yb =
0 0
0 0
1 0 0 0
, |0 -1 0 0
YE) - 9
0O 0 —-120
0 0 0 1
0.447214 0
0 —1.34164
vy =
0 0
0 0

0

0
—0.447214

0

0

0
1.34164

0

0

0

0
—1.34164

0

0

0
—0.447214

(3.6)

One reason that the spherical harmonics matrices Y,/ are important is that they allow us

to calculate the coeffecients 27 . corresponding to a particular deformation matrix z;. Recall

that X; = v7; + x;. Our interpretation is that the X; give the coordinates of N DO-branes

and the strengths of their connections via strings. Thus we may control the black hole shape

directly via the X;. The fermionic-bosonic coupling H, ., however, which gives us the effect

of the X; on the evolution of the qubits, is expressed in terms of xim Thus, if we want

to deform the black hole in a certain way and see how information scrambling is affected,

we need to know the 7 ; corresponding to our desired deformation. To calculate 7 ; for a
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particular bosonic configuration X;, we need to use properties of the Y. Recall that
Tr <Y%Y$,> = (1) N&_ . (3.9)
Therefore we have that

(3.10)

mae)’

Tr (X;Y7,,) = (-1)"Nu!

giving us a straightforward process, since we now know how to construct the Y7, by which
we may calculate the xfm

Moreover, the Lagrangian’s residual gauge freedom allows for changes of basig'] so we may
diagonalize our X3 matrix (since Hermitian matrices are always diagonalizable).ﬂ Since the
undeformed X3 is already diagonal, this means that we can restrict ourselves to considering
diagonal deformation matrices. It turns out that each Yoj is diagonal, so the set {YOJ Lg =
0,...,N—1} forms a basis for real diagonal N x N matrices. In other words, we only need to
consider :Uég for a diagonal deformation matrix x3. This further simplifies our Hamiltonian,
which is important in making our simulation computationally feasible. Choosing only m = 0

deformation modes also allows us to more easily explore the parameter space of deformations.

3.4 Quantifying Scrambling with Density Matrices

Our goal is to track information scrambling in the qubit chain as it evolves in time. To do
this, we calculate the qubit chain’s entanglement entropy at each time step. Entanglement
entropy gives a measure of how entangled two subsystems are with each other. First we
review density matrices, from which we may calculate entanglement entropy. For some state

|1}, the density operator is given by

p=1v) (¥l (3.11)

! This is true even after we set A = 0; see Appendix

20f course, this transformation will complicate X; and X, (since in general we cannot simultaneously

diagonalize all three), but any change of basis won’t change the fact that 1 = x5 = 0.
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Recall that one may find the matrix representation of an operator given a particular basis by
inserting the operator in the middle of an inner product of two basis states. In other words,

the (i, j) entry of the matrix A corresponding to some operator Ais given by
Aij = (1| Alj)- (3.12)

Density operators are more interesting for multiparticle systems than for single-particle sys-
tems. Consider the state 1) = \/Li T 1) + \/LE 14); 1), for a two-particle spin system, with

each particle spin—%. Then our density operator is

(M1 [Tho + 10 1) (CPly (4 (Hy (T2 (3.13)

1
P=3

The corresponding density matrix using the states [1); [1)y, 1)1 [4)o, [4)1 19, and [1); 1),

as a basis is

(3.14)

N | —
—_

[a)

o o o o
(a)

o o o O

0 0

What if we are only able to measure one of the particles? In that case, it is useful to define
the reduced density operator. We define the reduced density operator for particle 1 by

pay = (lap i, (3.15)

J

In other words, the reduced density matrix for particle 1 is the density operator traced over

the basis for particle 2. For the full density operator in we have the reduced density

matrices
11
pm=|> 7], (3.16)
11
2 2
10
0 0
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The reduced density matrices p; and ps look quite different, but share important charac-
teristics. Looking back at (3.13]), we see that no matter which state we measure particle 1,
particle 2 will have its spin pointing up. Moreover, since any measurement of particle 1’s

Y

spin will give an answer of “up,” we can’t get any useful information about particle 2’s spin
by measuring particle 1. However, since p? = p; and p3 = p,, we have that both subsystems
are in pure states. In other words, the system is in a product state. Since the definition
of an entangled state is one that cannot be written as a product state, this means that the

particles are minimally entangled with each other. As we will soon see, this means that

their entanglement entropy is zero. For completeness, consider the density matrices for the

entangled state [¢) = = (I1) [1) + 1) 1) + [1) 11):

1 1 1
3 3 03
1 1 1
L 1 1
pl: 3 3 3 ’ (318)
0000
1 1 1
3 3 03
2 1
n=\ "] (3.19)
3 3
11
phy = ‘:’j (3.20)
3 3

In this case, p} and p), describe mixed states; the two particles are entangled with each other.
We will see that these matrices have nonzero entanglement entropy.

Note that all definitions given so far are easily generalized to n-particle systems. From a
reduced density matrix, we may calculate the entanglement entropy. For n-particle systems,
we have more freedom in choosing which subsystem to trace over when calculating our
reduced density matrix. Denote the subsystem of interest (i.e. the particles we don’t wont

to trace over) by M. Then calculate the reduced density operator for M:

pt)m = Trxg [$(1)) (L (B)], (3.21)
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where M is the part of system not included in M. As this is the computation we use in our
simulation, we have explictly noted the time dependence of the operator. The entanglement

entropy is then given by

S(t) = =Tr[p(t)mIn p(t)m] (3.22)

where it is important to note that we are using the matrix logarithmﬁ, as opposed to simply
applying the logarithm to each element of the matrix. The quantity in is known as
the von Neumann entropy of a density matrix. The entanglement entropy is simply the von
Neumann entropy of a reduced density matrix. The von Neumann entropy quantifies how

far a density matrix is from describing a pure state. Indeed, for a pure state,

p° =, (3.23)

which implies that 2Inp = Inp. Therefore Inp = 0, so the von Neumann entropy is zero.
Moreover, the von Neumann entropy reaches its maximum for a maximally mixed state [I].
A maximally mixed state has density matrix %I ~, where N is the dimension of the Hilbert
space and Iy is the N-dimensional identity matrix. Then the von Neumann entropy is In V.
Thus the von Neumann entropy describes how mixed the system described by a density
matrix is. If a reduced density matrix describes a pure state, we have that entire system is a
product state. Recall that a system is called entangled if it cannot be written as a product
state. Thus it makes sense for us to use the von Neumann entropy of a reduced density
matrix as the entanglement entropy for the system.

Returning to our example calculations, the von Neumann entropies of p; and p, are
zero, by the argument of the preceding paragraph. The fact that p] and p), describe mixed
states suggest that their von Neumann entropies are nonzero. To calculate their entropies,
we introduce a small trick. Matrix logarithms are, for general matrices, hard to compute.

Note, however, that for a diagonal matrix A = diag(a, ..., a,), the matrix logarithm In A =

SFor matrices, n X =Y ife¥ =1+Y + Y2+ 1Y%+ ... = X.
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diag(Inay,...,Ina,). This is because, for a diagonal matrix Y = diag(y,...,ys), we have

that Y = diag(y]", ..., y"). Therefore, if we have that Y = In A for diagonal A, we have

1 1
=TI +Y + Y4 Y 4 =A
2! 3!
: . 1., :
diag(1,...,1) + diag(y1, ..., yn) + Edlag(y%, L)+ =diag(ar, ..y a,),  (3.24)
giving us that e¥" = q; for 1 = 1,...,n. In other words, y; = Ina; for each i. Note that we

were able to assume that Y is diagonal since Y is diagonal for every non-negative integer
n, which is only true for diagonal matrices. Thus we have that the von Neumann entropy

for a diagonal matrix pg = (A1,...,\,) (i.e. pg is written in its eigenbasis) is

S(pa) = —=Tr[paln pd]
= —Tr[diag(A1, ..., \p)diag(In Ay, ..., In \,)]

==Y N, (3.25)
=1

where we remember that 01n0 = 0, which can be shown via a limit argument.

This is a cute computation, but only applies to diagonal matrices. The trick is that the
von Neumann entropy is invariant under changes of basis, and thus this results applies for
all diagonalizable matrices. To see the invariance of the von Neumann entropy, note that if

Y =1In X, we have

1
I+Y+5Y2+...:X
2
UIUT+UYU' + EUYQUT +...=UXU! (3.26)

1
I+UYU + 5(UYUT)2 +...=UXUT,

where U' = U~! and U are unitary matrices and we have used the fact that UY"UT =
(UYUN)™ for all n. In other words, we have that In(UXUT) = UlIn(X)U'. Then we have
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that

S(UXU") = —Tr [UXU'In(UXU")]
= —Tr [UXU'U In(X)UT]
= —Tr [UX In(X)U"]

= —Tr[XIn(X)], (3.27)

where we have used the fact that the matrix trace is unchanged by a change of basis in the
last step. Thus the von Neumann entropy of a density operator doesn’t depend on which
basis we write it in. Moreover, since density matrices are symmetric and non-negative by

definition, they are always diagonalizable with real, non-negative eigenvalues. The for any

density matrix p with eigenvalues Ay, ..., \,, we have that
S(p) == Nl (3.28)
i=1

This is the method we use in our simulation to calculate the entanglement entropy of p(t).

As an example, recall the reduced density matrices for our entangled two-particle system:

2 1

=1 ?], (3.29)
1 1
3 3
1 1

pp=1" "7 (3.30)
1 2
3 3

A quick computation gives us that p| and p), have the same eigenvalues: 0.873 and 0.127.

Therefore

S(0}) = S(ph) = — [0.8731n(0.873) + 0.127 In(0.127)]

= 0.380644, (3.31)

the positive entanglement entropy that we expected for our entangled system. It is interesting

that S(p}) = S(p,). In fact, for a general partition M and M of some system, one has that
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S(pm) = S(pxg). We do not prove this fact here, but it further affirms that our definition
of entanglement entropy is good. Entanglement is indeed a two-way street, and that should
be reflected in our definition of entanglement entropy. For more on entanglement entropy,

see [1].

3.5 Computational Challenges and Technical Details

The quantum gravity aspect of Matrix theory comes into play for N > 1. Recall that the
dimension of our N2-length qubit chain’s Hilbert space is 2V *. Thus for just N = 4, the
qubit chain’s Hilbert space is 65, 536-dimensional. For N = 4, our simplified Hamiltonian
has around 10, 000 terms. The number of terms in our Hamiltonian is a polynomial of order
6 in N. In other words, to get interesting results, we will need a very efficient algorithm.
Thus we turn to parallelization. The basic idea of parallelization is to identify loops in a
program’s code with independent iterations and send different iterations of these loops to
different GPUs. Without parallelization, our simulation would not be possible.

Alas, technical issues besides runtime also pop up. One issue with including the H,
coupling is that our qubit chains become much larger. The fact that our qubit chain is of
length N? means that it becomes impractical for us to test the fast scrambling conjecture,
since at N = 5 and N = 6 the simulations begin to take prohibitively long and/or exceed
our 12 Gigabytes of GPU memory. The previous work [I2] was able to explore the fast
scrambling conjecture precisely because considering only fermionic-fermionic coupling gave
qubit chains scaling in length linearly with N. In spite of these technical limitations, we find
that we are able to gather interesting qualitative information about the effect of deformations

to the black hole geometry on information scrambling.
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Chapter 4

Results and Analysis

In this section we present the results of our simulations of information scrambling in a static
deformed N = 4 Matrix theory black hole. Qualitative features of our results are discussed

as well as possible interpretations.

4.1 Simulation Parameters

We ran each simulation with N = 4, corresponding to 16 qubits. Each plot shown gives the
(normalized) entanglement entropy over time, calculated from the reduced density matrix
describing 9 of the 16 qubits. The same 9 qubits were chosen for each simulation. We
ran the simulation, with varying deformation parameters, for three different initial states.
The results for each initial state were similar, so we include here the plots for only initial
state “29876.” The number 29876, converted into binary, corresponds to a qubit chain
configuration where a “0” represents the qubit being spin down and a “1” represents the
qubit being spin up.

For each simulation, we set the fuzzy sphere radius parameter v = 1. Since the Y matrix
corresponds to merely a translation, we instead deformed the sphere in the Yy, Y2, and Yy

modes. In other words, we ran simulations with x3 = chj for y = 1,2, 3, where c is a scaling
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constant. We also ran simulations with x3 = 0, corresponding to no deformation. We ran
these simulations at ¢ = 5, ¢ = 15, and ¢ = 50. We ran the ¢ = 5 and ¢ = 15 simulations
for 10,000 timesteps and the ¢ = 50 simulations for 20,000 timesteps of half the length. In
both cases, the timestep was small enough to preserve the unitary nature of our evolution.
For unitary evolution, the trace of the density matrix must remain at 1. Our timesteps were
small enough to keep a trace of 1, to 5 decimal points, meaning that we kept our numerical
error small.

In addition to deforming the sphere in purely the ij modes, we also performed simulations
in which we separated one of the DO-branes from the others by a large distance. It is possible
that this could be a good model for Hawking radiation. The simulation parameters for this
case (e.g. timestep, initial state) were the same as for the other cases.

In all cases, we find that the entanglement entropy approaches some equilibrium value,
around which it subsequently fluctuates. We regard the first time the entropy hits its equilib-
rium value as the system’s scrambling time. We find that the information scrambling process
is extremely insensitive to deformations in the Y mode, quite sensitive to Y deformations,
and very sensitive to Y deformations. For large deformations, we witness strongly periodic

behavior, strange for such a thermal system.

4.2 Analysis

Our results are indeed surprising. In [12], all plots were qualitatively similar. The extreme
insensitivity of information scrambling to a deformation in the Yy mode, in light of the
tangible effects of the Y and Y deformations, is strange.

Moreover, the strong periodicity of large Y2 and Y deformations show that extremely
warped Matrix theory black holes have interesting information scrambling dynamics. Look-
ing at our plots, we immediately see that as the deformation parameter ¢ increases (i.e. the

fuzzy sphere is stretched more and more), the average entropy of the system decreases. This
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Figure 4.1: Entropy curves for no deformation and a Y deformation with ¢ = 50. Strangely,

we see that an extreme deformation by Yy does not affect the information scrambling process.
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En(;tgnglement vs. Time - Initial State 29876 - Y20 Deformation with c=5

° o o
[N} w ~

Normalized Entanglement Entropy

=]
-

0.0 L L L L
Time

En%agwglement vs. Time - Initial State 29876 - Y20 Deformation with c=15

o o o
N w S

Normalized Entanglement Entropy

=3
-

0.00

Time

En%asnglement vs. Time - Initial State 29876 - Y20 Deformation with c=50

o o o
N w ~

Normalized Entanglement Entropy

=3
-

0.00
Time

Figure 4.2: Entropy curves for Y. As c is increased, the average entropy of the thermalized
system decreases. As the deformation becomes more extreme, a second timescale describing

the system’s pseudoperiodic behavior emerges.
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Figure 4.3: Entropy curves for Y?. It seems that the scrambling process is most sensitive to

this deformation mode. For ¢ = 50, the entropy is strongly periodic.
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EntaB%Iement vs. Time - Initial State 29876 - 1st DO-brane Translated by 100
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Figure 4.4: Simulations in which one of the DO-branes was sent far away from the others.
This could provide some model for Hawking radiation. We see the same strong periodicity

in the entropy as for the case of large Y and Y7 deformations.
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suggests an interpretation that associates entanglement among qubits on the black hole with
spatial proximity. Indeed, we see that for large deformations, the minimum of the entropy
after thermalization scales approximately as Sy, o %

It is interesting that, as ¢ increases and thus the fermionic-bosonic coupling begins to
dominate the fermionic-fermionic coupling, we see strongly periodic behavior. Moreover,
for the undeformed fuzzy sphere, this strong period is not present. This suggests that the
asymmetry of the bosonic deformations gives rise to periodic behavior. This idea is further
supported by the fact that a deformation by Y', which stretches the sphere uniformly, doesn’t
affect information scrambling. A possible interpretation of the periodic nature of information
scrambling on a strongly-deformed sphere is that the periods are dictated by the movement of
qubits between nodes in our asymmetric DO-brane system. It is interesting to note, however,
that the periodicity does not seem to scale at the same rate as the deformation parameter
c. This rules out the idea that the qubits are traveling around the deformed sphere at
some uniform speed. We can perhaps imagine instead that the qubits have some non-trivial
spatial interaction with each other, causing complex trajectories, an N2-body system of sorts
in which the characteristic timescale of two qubits coming together and moving apart gives
us the system’s periodicity. There are certainly interesting, perhaps even chaotic, dynamics

at play.
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Chapter 5

Conclusions and Outlook

Recent years have seen much work on the information paradox. Physicists have moved be-
yond wondering whether infalling information obeys unitary time evolution and now consider
the specifics of the unitary evolution. The goal is to understand how infalling information
interacts with the black hole degrees of freedom. It is thought that the information is scram-
bled and emitted with Hawking radiation, avoiding information loss. Black holes may be
more interesting than other information scramblers because they invoke quantum gravity and
non-commutative geometry. Perhaps, as has been conjectured, these novel features endow
the black hole with some ultra-efficient information scrambling mechanism.

In this thesis, we have explored the effects of (non-commutative) geometry on information
scrambling in a theory of quantum gravity, analyzing the interactions between the fermionic
and bosonic degrees of freedom in Matrix theory. We saw that the fermionic degrees of
freedom formed a network of interacting qubits living on the black hole’s event horizon,
represented by our fermionic degrees of freedom. We then studied the dynamics of infor-
mation scrambling among these qubits for different geometries corresponding to deformed
black holes. We found that information scrambling depends on geometry in strange ways
with no immediately obvious interpretation. In some sense, entanglement entropy scaled

inversely with distance, but in a hard to quantify way. More simulations, perhaps involving
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even larger deformation parameters, are needed to quantify our results.

Moreover, our inability to test the fast scrambling conjecture might be circumvented
by novel computational techniques or resorting to supercomputers to get the job done. It
would also be interesting to allow dynamics in the bosonic degrees of freedom, although this
would require significant modifications to our algorithm. Having dynamic bosonic degrees
of freedom, however, would allow us to see what happens when one D0O-brane decouples and
radiates away (a potential model for Hawking radiation) in a more realistic way. There are
also more tests of numerical legitimacy that we could run, including experimentation with
different timesteps. In any case, there are many options to pursue, all of which promise to
give us insight about the role of non-commutative geometry in information scrambling and

quantum gravity.
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Appendix A

A Brief Introduction to Gauge Theory

An important development in modern physics is the identification of symmetries with phys-
ical theories. In the early 1900’s Emmy Noether proved that every symmetry of a physical
system corresponds to some conserved quantity. One special type of symmetry is a gauge
symmetry, when the physics (i.e. Lagrangian) of a system is invariant under time (and
space, in the case of field theory)-dependent transformations induced by some group. In this
appendix, we demonstrate the U(N) gauge invariance of the Matrix theory Lagrangian.

Consider a variant of the Matrix theory Lagrangian where we write 0; instead of Dj:

1 1
Let N denote the dimension of our matrices. The Lagrangian (A.1)) is what we call “globally
invariant”[[| under unitary transformations. In other words, for some unitary matrix U €
U(N), the Lagrangian (A.l) doesn’t change if we make the transformations X; — X/ =

UX;U ' and ¥ — ¥ = UWU!. To see this, note that U is a constant matrix and thus

'In some sense, this is an abuse of language. The phrase global invariance generally refers to field theories,
in which our degrees of freedom are functions on spacetime. The matrices X; and ¥ are not fields: they are

functions of time only. By global I refer to static unitary transformations
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H(UX;U™Y) =U(0:,X;)U™!, so that we have

(0X)(0,X)) = U@X)U ' U(9,X,) (A.2)

= U(0,X,) (0, X)) U™ (A.3)

The way our Lagrangian is written, we can see that each term inside the trace, say B,
becomes UBU!. Therefore the quantity inside the trace is simply having a constant unitary
transformation performed on it. Since the trace doesn’t change for unitary transformations,
the Lagrangian is invariant under constant unitary transformations. We call this global
invariance under the gauge group U(N).

We can give the Lagrangian an even stronger symmetry under unitary transformations.
Suppose instead that U were a function of time (i.e. U = U(t)), and perform the same

transformations. We then would have that
@X{ = (8tU)XiU_1 + U((?tXi)U_l + UXi(atU_l). (A.4)

We can quickly see that this will screw up the invariance of our Lagrangian, since (0,X;)(0,X}) #
U(0;X;)(0;X;)U~L. This problem occurs for all terms involving derivatives. Looking at (A.1]),
we see that we can make our Lagrangian invariant under U(t) if we can substitute for our

conventional derivative a “covariant gauge derivative” D, such that
D,UXUY =U(D,X)U™ " (A.5)
We thus define D, by
DY = 0,Y —iA, (A.6)

where A is an N x N matrix, called our gauge matrix. We can then ensure that (A.5)) is
satisfied by constraining the transformation of A. Since our Lagrangian is already globally
invariant under U(N), we can write U = ¢*“  where ¢ < 1 and G = G(t) is some hermitian

matrix. Since € is small, we can approximate U by U = €“ ~ 1 + ieG. Similarly, U~! ~
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1 — ieG. Then we have that
X/:UXUflm(l—i—ieG)X(l—ieG):X—i—ie[G,X]. (A.7)

Let’s solve for the transformation rule of A. Plugging the transformation (A.7)) into our

requirement D;(X’), we have that
Dy(X") = 0, X —i[A', X] +ie(0,GX + GO, X — 0, XG — X9,G) —i[A',ie[G, X], (A.8)
while
UD,(X) U™ = 0,X —i[A, X] +i€[G, 0, X, [ A, X]]. (A.9)

Equating these two expressions, grouping a few terms into commutators, and canceling the

0 X term and a i€[G, 0, X| term, we have
—i[A", X] 4+ i€[0,G, X]| — i[A',i€|G, X]] = —i[A, X]| —i€|G, —i[A, X]], (A.10)

from which we can move the i€[0,G, X] to the other side, divide by —i, and expand and

rearrange a few commutators to get
(A X] + [AiecGX] — [A +ieXG] = [A + €0,G, X] — [G,icAX] + [G,ieX A].  (A.11)

If we let A = A+ieX (G, what happens? The first terms on each side of the equation cancel

out, and we're left with, expanding the commutators

ie[AGX —GXA — AXG+ XGA'| =ie[AXG — GXA— XAG+ GXA] (A.12)
iele0,GXG — GXe0,G — Xe0,GG + GXed,G] =0 (A.13)
O(e?) = 0, (A.14)

which is true since € is taken to be very small. Thus our transformation rule for A is
A= A+ €d,G. (A.15)
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Note that if A = 0, applying some constant unitary transformation to the system gives us
that A’ = 0, since 0;U = 0 implies that 0;G = 0. Taking this fact into consideration, we only
need to explore diagonal matrix deformations, since we may diagonalize Hermitian matrices

in our simulation without changing the physics.
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Appendix B

Spinors

In this section we derive Majorana-Weyl spinors from the Clifford algebra for the Dirac ma-
trices. Denote the dimension of spacetime by d. Denote by n** the d-dimensional Minkowski
metric with signature (—,+,...,+).

The Dirac equatio describes relativistic quantum mechanics for spin—% particles. In his
derivation, Dirac found that the wavefunctions in his equation had to be multiplied on the

left by objects v* (with p=0,...,d — 1) obeying the anticommutation relation

{77} =20, (B.1)

Since this sort of relation cannot be realized for ordinary numbers, Dirac decided to represent
the v* as matrices, since matrices can obey nontrivial anticommutation relations. Dirac then
realized that this necessitated that the wavefunctions for spin—% particles be vectors packaging
several wavefunctions together. The vectors acted on by the v* are called spinors. Here,
following [15], we derive the conditions for Dirac, Majorana, and Weyl spinors, as well as

listing the representation of the Dirac matrices we use in this thesis.

For a more complete description of the Dirac equation and how it involves the Dirac matrices, see [14]
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B.1 Spinors

Take the dimension of spacetime to be even, with d = 2k + 2. Important cases are d = 4
(corresponding to k = 1) and d = 10 (corresponding to k = 4). We then group the 7 into
k + 1 sets of anticommuting raising and lowering operators,

1

70:‘: — §<:i:,yo + ,yl)’ (BQ)
1
7= SO, a=1 k. (B.3)

One may show through exhaustive calculation that

{’YCH_’ Vb_} = 5ab7 (B4)
{7a+7 7b+} = {7a7> foi} =0, (B5)
where a,b = 0,..., k. These anticommutation relations are shown by brute force, plugging

(B.2)) and (B.3) into the anticommutator and using (B.1)). For example,

a 1 a : a a . a
{,_YOi’,_Y i} :Z (:i:,_YD,_yQ + 7/')/0")/2 +1 + 7172 + Z’)/l")/Q +1

j:,YZa,yO _i_,YQa,Yl —|—Z"}/2a+1’70 :i:z-,YZaJrl,yl) (B6)
1 o . o

=7 (FO A A Ei ) (B

=0. (B.8)

In particular, (B.5]) gives us that (y27)? = (y*7)%? = 0 for each a.

We will now show that this gives us a spinor ¢ such that
v (=0 forall a. (B.9)

Take v to be a nonzero spinor acted on by the v**. If 4%~v # 0, define a new spinor v
by vy = 7°~v. Otherwise define vy by vy = v. If yv'7vg # 0, let v; = ¥ 7vy. Otherwise let
vy = vg. Performing this process through k iterations gives us a spinor vy, which will be our

(. Why is this? We have that

v, (B.10)



where aq,...,a, are the a’s for which v*7v, # 0. Now consider the action of v*~, where

a = @y, on (. Then we have

Y= ()Tt

=0, (B.11)

baa

where we have used the fact that y*»~ %~ = 0 and 7%v®* = —*y%. Now consider the case

where a # a,, for all m. Then we have

Y= (=1)PCY v,

—0, (B.12)

where C' is the product of p of the ny| and we have used the fact that a # a,, for all m implies
that v*7v, = 0. Therefore we have that ¢ obeys .
Given ¢, we may obtain a spinor representation of dimension 28! (= 32 for d = 10 and

4 for d = 4) by acting on ¢ in all possible ways with the v**, at most once for each a value

since (7°7)? = 0. We label our basis states by § = (s, ..., s;), where each s, is £3:
CF= (M)t L ()t g, (B.13)
Our original ¢ then corresponds to § = (—%, ceey —%); from ¢ we generate our entire basis

by raising various s, from —% to +% using v**". Taking the (% to be our basis states, it is
straightforward to derive the matrix elements of the v* via the definitions and anticommuta-
tion relations. Our matrices are 2¢/2 x 2%/2. Thus increasing d by two doubles the size of our
Dirac matrices, so we can conceivably iterate from lower-dimensional matrix representations

using the Kronecker product. For d = 2, we have that

0 0 1 0 0 1
v = , v = : (B.14)
-1 0 10

2p is the number of 4™~ that v*~ must move through to act on v,.
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It is easy to show that, given a representation of the Dirac matrices in d = 2k + 2, the

matrices

=%® , p=0,...,d=3, (B.15)

with 74 the 2F x 2% Dirac matrices in d — 2 dimensions and [; the 2 x 2¥ identity matrix,
satisfy the correct anticommutation relations. We are taking our 2* x 2* representation and
using the Kronecker product with the Pauli matrices to get a 2¥+1 x 28+1 representation.

The +* can be used to define the Lorentz algebra (i.e. the algebra of Lorentz transfor-
mations). The generators of the Lorentz algebra, written >** and defined by

?

4

=~ 2] (B.17)

satisfy the Lorentz algebra.
i[5H E0P] = gt 4 P — PRk — TP, (B.18)

It can be shown that the Lorentz generators ¥2%2¢*! commute with each other. Thus they
can be simultaneously diagonalized. For each a, we define

1

Sa = i6a,022a,2a+1 — ,ya—&- a— 2

v (B.19)

By definition, each (* is a simulataneous eigenstate of each S, with eigenvalues s,. Using
these spinors as a basis for the Lorentz algebra, we have what we call the 2¥*!'-dimensional
Dirac representation of the Lorentz algebra. Because each ¥ is quadratic in the v ma-
trices and each v matrix can decomposed into a linear combination of raising and lowering
operators, we have each ¥* can only change either two or none of the s, of some ¢°. In
other words, the (¥ with even and odd numbers of —1—%5 do not mix under the Lorentz gener-

ators. Thus we say that the Dirac representation of the Lorentz algebra is reducible: we can
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decompose it into multiple irreducible representations of the Lorentz algebra. To see this,

define
=i R0 AL (B.20)
which has the properties
(M*=1, {y7"}=0, [T =0 (B.21)
Note that
v = 21508 Sy, (B.22)

so that 7, written in the basis of ¢, is diagonal, taking the value 4+1 when the s, include
an even number of —%s and —1 when the s, include an odd number of —%s. The 2* states
with a v eigenvalue (called chirality) of +1 form what we call a Weyl representation of
the Lorentz algebra, while the 2* states with eigenvalue —1 form a second, distinct Weyl
representation. In other words, we may decompose the 2¥+!-dimensional Dirac representation
of spinors into two Weyl representations, each of dimension 2¥. Note that this corresponds

to a 2-dimensional representation for d = 4 and a 16-dimensional representation for d = 10.

B.1.1 Majorana spinors

Our construction of the v matrices for even spacetime dimension d = 2k + 2 is unique up to

change in basis. Thus, since
{’yu*, ’YV*} — ’yu*,ylj* _|_ ’YV*'}/M*
= {7 (B.23)
= (2n")" = 29", (B.24)
the matrices v** (and —+"*) satisfy the same Clifford algebra as the " matrices, and thus
must be related by a similarity transformation. By construction, in our ¢°, the matrix
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elements of v** are real, so we have from definitions (B.2) and (B.3) that v3,+°,... ¢!

are imaginary and the other v* are real. Define
Bi =7395...4%1 By,=~B;. (B.25)
Then we have that
d—1,u

Biy"Brt =727 () T () (B.26)

We next move the v* to the left side of the right side of the equation. If u # 3,5,...,d — 1,
we pick up a factor of (—1) for each place 4* must move, for a total of (—1)2~1 = (—1)*.

Then we have
By Byt = ()" BByt = (1) " = (=1)F 4, (B.27)

where we have used the fact that v* is real in this case. If p = 3,4,...,d — 1, we pick up

one fewer factor of (—1), since y#4* = v** =1 in this case. Then we have
Biy"Brt = (=1 BByt = (1) (=) = (=1, (B.28)
where we have used the fact that v* is complex in this case. Thus we have that, in general
Biy" Byt = (1), (B.29)
By similar means, one may show that
Boy Byt = (—1)F ke, (B.30)
Using these facts, one may show that, for B = By or B = By,
By Bl =y, (B.31)

It is then possible to show that the spinors ¢ and B~'(* transform identically under the
Lorentz group, so the Dirac representation is its own conjugate. Moreover, acting on the

chirality matrix -, one may show that

ByyByt = ByyBy ' = (—1)Fy*. (B.32)
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Thus transforming by B will change the eigenvalue of v when k is odd and not when it is
even. Moreover, for even k each Weyl representation is its own conjugate, while for odd k
each Weyl representation is conjugate to the other.

We may also enforce on spinors a Majorana condition, which relates (* to (. Ensuring

that this condition be consistent with Lorentz transformations give us the form
¢" = B¢, (B.33)

with B satisfying (B.31]). Taking the conjugate of this expression gives us that ( = B*(* =
B*B(. In other words, our condition is consistent if and only if B*B = 1. Then, using the

reality and anticommutation properties of our v matrices, one may show that
BiBy = (—1)FkD/2 0 prp, — (—1)kk=D/2, (B.34)

Thus a Majorana condition using By is possible only if £ = 0 (mod 4) or 3 (mod 4), and using
By only if £ =0 (mod 4) or 1 (mod 4). Moreover, for k = 0 (mod 4) both conditions are
possible but physically equivalent, since B; and By are related by a similarity transformation.

Finally, we may impose a Majorana condition on a Weyl spinor only if B*B = 1 and
the Weyl representation is conjugate to itself, since a representation must be closed under
conjugation for to make sense. Then, since for odd k each Weyl representation is not
self-conjugate, we cannot impose both the Majorana and Weyl conditions on a spinor; we
can only impose one or the other. For £ = 0 mod 4 (i.e. d =2 mod 8), however, a spinor can
simultaneously satisfy the Majorana and Weyl conditions. Majorana-Weyl spinors in d = 10
play an important role in string theory. It is these spinors that appear in the Lagrangian for

Matrix theory.

B.2 Our y-Matrix Representation

To make the qubit-qubit interaction in our Matrix theory Hamiltonian simpler, we choose

a specfic representation of the v matrices. Of course, the representation we choose has no
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effect on the physics at hand. The network of interactions is the same for any choice of

representation, but our choice affects how the expanded Hamiltonian looks. We use the

same representation as [12]:

04 04
04 0Oy
N =
0, —M
M 04
—14 04
0 —14
V3=
04 04
04 04

04

M
04
04
04
04
04
04

14

T2 =

04
04
14
04

04
04
04
1y

14
04
04
04

04
14
04
04

(B.35)

where 14 is the 4 x 4 identity matrix, 04 is the 4 X 4 zero matrix, and M is defined by

=
I

-1
0

o6

o o O

(B.36)



Bibliography

1]
2]

[5]

John Preskill. Quantum computation lecture notes, 1998.

Leonard Susskind, Larus Thorlacius, and John Uglum. The stretched horizon and black
hole complementarity. Phys. Rev. D, 48:3743-3761, Oct 1993. http://link.aps.org/

doi/10.1103/PhysRevD.48.3743.

Ahmed Almbheiri, Donald Marolf, Joseph Polchinski, and James Sully. Black holes:

Complementarity or firewalls? 2012. http://arxiv.org/abs/1207.3123.

Patrick Hayden and John Preskill. Black holes as mirrors: quantum information in

random subsystems. Journal of High Energy Physics, 2007(09):120, 2007.

Yasuhiro Sekino and Leonard Susskind. Fast scramblers. 2008. http://arxiv.org/

abs/0808.2096.
Leonard Susskind. Addendum to fast scramblers. arXiv preprint arXiv:1101.6048, 2011.

T. Banks, W. Fischler, S. H. Shenker, and L. Susskind. M theory as a matrix model:

A conjecture, 1996. http://arxiv.org/abs/hep-th/9610043.

Keshav Dasgupta, Mohammad M. Sheikh-Jabbari, and Mark Van Raamsdonk. Matrix
Perturbation Theory For M-theory On a PP-Wave. Journal of High Energy Physics,
2002(05):056-056, May 2002. arXiv: hep-th/0205185.

o7


http://link.aps.org/doi/10.1103/PhysRevD.48.3743
http://link.aps.org/doi/10.1103/PhysRevD.48.3743
http://arxiv.org/abs/1207.3123
http://arxiv.org/abs/0808.2096
http://arxiv.org/abs/0808.2096
http://arxiv.org/abs/hep-th/9610043

[12]

[13]

Tom Banks, W. Fischler, Igor R. Klebanov, and Leonard Susskind. Schwarzschild black
holes from matrix theory. Physical Review Letters, 80(2):226, 1998.

Tom Banks, Willy Fischler, Igor R. Klebanov, and Leonard Susskind. Schwarzschild
black holes in Matrix theory II. Journal of High Energy Physics, 1998(01):008, 1998.

Gary T. Horowitz and Emil J. Martinec. Comments on black holes in matrix theory.

Physical Review D, 57(8):4935, 1998.

Lucas Brady and Vatche Sahakian. Scrambling with matrix black holes. Phys. Rev. D,
88:046003, Aug 2013. http://link.aps.org/doi/10.1103/PhysRevD.88.046003.

Robert L. Borrelli and Courtney S. Coleman. Differential Equations: A Modeling Per-

spective. Wiley, January 2004.
David Griffiths. Introduction to Elementary Particles. Wiley-VCH, 2008.

Joseph Polchinski. String Theory, Vol. 2. Cambridge University Press, 2005.

o8


http://link.aps.org/doi/10.1103/PhysRevD.88.046003

	Introduction – The Information Paradox
	Black Hole Complementarity
	Black Holes and the No-Cloning Theorem
	Studying Scrambling via Matrix Theory
	Notation, Some Important Mathematical Definitions, and Assumed Reader Knowledge

	Matrix Theory
	The Lagrangian
	Matrix Decomposition
	Hilbert Space
	The Fermionic Coupling Term H and Qubit Chain Structure

	The Simulation
	Overview
	Evolving the Qubit Chain
	Calculating the Spherical Harmonics Matrices Yjm and Deformation Constants xjmi
	Quantifying Scrambling with Density Matrices
	Computational Challenges and Technical Details

	Results and Analysis
	Simulation Parameters
	Analysis

	Conclusions and Outlook
	Appendices
	Appendix A Brief Introduction to Gauge Theory
	Appendix Spinors
	Spinors
	Majorana spinors

	Our -Matrix Representation


