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Abstract

In recent years, there has been much controversy regarding the relationship between infor-

mation and black holes. In order to avoid information loss, an acceptably general unitary

model requires that infalling information be scrambled and then emitted as Hawking radia-

tion. We set up a scheme to explore the influence of event horizon geometry on information

scrambling for a black hole model from Matrix theory - M-theory in the light-cone frame -

using highly-parallelizable Runge-Kutta evolution. Previous examination of this system con-

sidered only fermionic degrees of freedom. We include the coupling between fermionic and

bosonic degrees of freedom. We find that information scrambling has a strange dependence

on geometry – involving atypical periodic behavior – with no immediate interpretation.
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Chapter 1

Introduction – The Information

Paradox

Two facts about black holes, when taken together, have unsettled physicists for decades.

The first is that any form of “stuff,” from photons to penguins, cannot escape after falling

through a black hole’s event horizon. The second is that over time, black holes evaporate

out of existence via a process called Hawking radiation.1 The first fact comes from general

relativity, whereas the second comes from quantum theory.

Black holes seem to be pulling a fast one on us. We send some quantum state (our most

general way of representing “stuff”) through a black hole’s event horizon, and inside the event

horizon it must remain. After some finite time, the black hole has evaporated away and our

quantum state is nowhere to be seen. This problem is called “the information paradox,”

since it is concerned with understanding what happens to the information contained in our

state.2

1In this sense, a black hole is a thermal object: it has a temperature and an entropy associated with this

process.
2One of the key lessons of quantum information theory is that information is physical [1]. It is worth noting

how one might encode information in a quantum state. Compare, for instance, the classical byte 00101111

with the spin chain state |↓〉 |↓〉 |↑〉 |↓〉 |↑〉 |↑〉 |↑〉 |↑〉. The study of quantum information is richer that its
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Figure 1.1: In Hawking radiation, particle-antiparticle (electron-positron in this figure) cre-

ation occurs just outside the black hole’s event horizon in such a way that one particle (the

electron) falls into the black hole while the other (the positron) escapes. This process causes

black holes to evaporate over time.

A natural reaction to this thought-experiment is to suppose that our quantum state

has been irretrievably lost. This idea is anathema to the modern physicist. In quantum

mechanics, states are evolved in time via unitary transformations.3 Unitary transformations

are special because they preserve probability amplitudes.4 Given an initial state |ψ(0)〉, we

have that the state at time t is given by |ψ(t)〉 = Û(t) |ψ(0)〉, where Û(t) is a unitary operator.

If Û(t) is unitary, we have that 〈ψ(t)|ψ(t)〉 = 〈ψ(0)| Û †(t)Û(t) |ψ(0)〉 = 〈ψ(0)|ψ(0)〉 = 1; this

forbids information loss.5

classical counterpart since in the quantum case one may consider information states that are superpositions

of multiple states.
3This is a direct result of the Schrödinger equation. If you aren’t famililar with unitary transformations,

see section 1.4.
4In other words, for a unitary transformation U and any two states |ψ〉 and |φ〉, we have that 〈φ|U†U |ψ〉 =

〈φ|ψ〉. This is an equivalent definition to those given in section 1.4.
5Another way of seeing that unitary operators forbid information loss is by noting that that the inverse

operator U† is always well-defined. Via this inverse we may always reconstruct our initial state. However,
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If Û(t) were not unitary, however, we would have that 〈ψ(t)|ψ(t)〉 6= 1. Imagine preparing

an electron in the spin state |ψ(0)〉 = |+z〉, waiting for some time t, and then measuring the

z-component of the electron’s spin. Non-unitary evolution would allow the particle’s final

spin state to be |ψ(t)〉 = 1√
3
|+z〉 + 1√

3
|−z〉. According to the probabilistic interpretation

of quantum mechanics, a subsequent measurement of the z-component of the particle’s spin

would have a 1
3

chance of measuring +~
2

and a 1
3

chance of measuring −~
2
. What about

the remaining 1
3
? We might try to interpret the missing 1

3
as the probability that the

final measurement returns no value because the electron has “disappeared.” However, since

such an operator Û(t) is forbidden from being a time-evolution operator by the Schrödinger

equation, we shouldn’t worry too much about interpreting this strange final state.

The most popular proposed resolution to the information paradox that doesn’t invoke

information loss supposes that an in-falling quantum state is communicated to the outside

world via the black hole’s evaporation process. Most formulations of this idea invoke a

concept called Black Hole Complementarity.

1.1 Black Hole Complementarity

Black Hole Complementary (BHC)[2] supposes a dual description of black holes. To the

outside observer, the event horizon has microphysical degrees of freedom. If an outside

observer decides to jump onto the horizon, however, she quickly discovers that it has no

substance, and she falls through. The reason for BHC’s name is that there is complementarity

between observations made inside the event horizon and those made in the outside universe.

Namely, the observer inside the horizon does not observe the horizon to have substance, but

is unable to report this lack of substance to her colleagues in the outside universe due to the

standard black hole gravitational limitations.

since the inverse is necessarily linear, we have that U†0 = 0. In other words, the only way for information

to be lost when acted on by a unitary operator is for the information to never have existed in the first place.
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Many attempted resolutions to the information loss problem rely on BHC’s interpretation

of the event horizon as a physical membrane. To the outside observer, in-falling quantum

states become entangled with the black hole’s degrees of freedom by interaction with the

event horizon membrane. The initial quantum state is then imprinted onto the black hole’s

Hawking radiation, and an outside observer is able to retrieve the information by collecting

Hawking radiation.6

The BHC argument relies on three postulates, which assert the validity of (1) quantum

theory, (2) semi-classical general relativity7, and (3) statistical mechanics in describing black

hole physics from the vantage point of a distant observer. An informal but important fourth

postulate of BHC is that an in-falling observer “experiences nothing out of the ordinary”

when crossing the event horizon. In other words, the in-falling observer detects no violations

of the laws of physics. (For our case, the important law of physics that must be preserved is

the No-Cloning Theorem of quantum mechanics.)

In 2012, a group from UCSB argued [3] that the postulates of BHC are inconsistent.

The group proposed that a conservative resolution might be that in-falling observers burn

up at the event horizon due to some sort of “firewall.” Today, there is no consensus as to

what happens when information crosses the event horizon. Although there has yet to be a

resolution, these recent developments have caused many to reexamine quantum information

in the context of black holes.

6



Figure 1.2: Objects at different temperatures equilibrate over time once they are put into

thermal contact. This maximizes the total entropy of the system. We can imagine a quantum

analogue to this process, in which two initially uncorrelated systems are allowed to interact

(i.e. the system’s Hamiltonian couples the subsystems). This interaction will cause the

system’s entanglement entropy to change.

1.2 Black Holes and the No-Cloning Theorem

We previously mentioned the idea that in-falling information becomes entangled with the

black hole’s degrees of freedom. This process is called information scrambling, and is most

easily explained via a thermal analogy (see Fig. 1.2). Take two objects of different tempera-

ture and put them into thermal contact. After some time, the objects will have equilibrated

to the same temperature. This maximizes the thermal entropy of the system, and thus is a

thermal scrambling time. Analogously, take two quantum systems to be initially uncorrelated

and let them interact. This interaction will cause the degree to which the subsystems are

correlated with each other to change over time. In this case, the quantity we are concerned

with is the system’s entanglement entropy, the formula for which is given in Chapter 3. For

some systems with initially uncorrelated subsystems, the entanglement entropy approaches

6BHC does not give the specifics of how in-falling information might interact with the membrane. It

is not hard to believe, however, that via some mechanism some Hawking radiation photon could end up

entangled with the spin state of an in-falling particle.
7Semi-classical general relativity is an approximation of quantum gravity in which matter is described

via quantum mechanics and the spacetime metric (i.e. gravity) is treated classically.
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some equilibrium value, around which it fluctuates.

We call a system scrambled if any subsystem with less than half of the system’s degrees

of freedom has some nontrivial fraction of the maximum possible entanglement entropy and

exhibits thermal-like fluctuations in this entropy. Now take a scrambled system and add

a degree of freedom. For our purposes, the initially scrambled system is the black hole

and the new degree of freedom is some infalling qubit8. The new system will no longer

be completely scrambled since adding a degree of freedom in a pure state will decrease the

system’s entanglement entropy significantly. After some time, the added information will

diffuse over the black hole’s degrees of freedom, and the new system will be scrambled. The

amount of time this re-scrambling takes defines the scrambling time τsc.

For an infalling qubit, the black hole’s scrambling time defines how long it takes for the

entire black hole to “know” about the qubit. The idea is that subsequent Hawking radiation,

assuming that it has some nontrivial interaction with the black hole, can also “learn” about

the qubit from the black hole; a particle of Hawking radiation emitted after the scrambling

time can then contain some or all of the information from the qubit.

It was shown by Hayden and Preskill [4] that, under the right conditions, the time

it takes an observer outside the black hole to reconstruct the initial qubit by collecting

Hawking radiation is approximately the scrambling time τsc. Thus, in the BHC picture, the

information paradox is resolved. The firewall proposal tells us that BHC has some problems;

in terms of the information paradox, there are still details to iron out. Information scrambling

may still play an important role in resolving the information problem, though either in some

tweak of the BHC paradigm or in some other theory altogether, and thus it is worth studying.

It turns out that we can put a lower bound on the scrambling time for a black hole.

Consider the following thought experiment (Fig. 1.3). Alice and Bob are making observations

from their spaceship just outside the event horizon of a black hole. Alice, who is holding a

8A qubit, or quantum bit, is a quantum state from a two-state (e.g. electron spin) system. When we

have a series of qubits (e.g. several eletrons) interacting in some way, we call the system a qubit chain.
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Figure 1.3: (a) Alice, holding the quantum state |ψ〉, jumps into the black hole. Bob waits

outside, and after some time τsc collects |ψ〉 from the Hawking radiation. (b) Bob then jumps

into the black hole, and Alice sends him |ψ〉. Bob is only able to retrieve |ψ〉 before reaching

the singularity if τsc <
lnS
T

. This violates the no-cloning theorem.

qubit, decides to jump through the event horizon. Bob waits outside and collects the black

hole’s Hawking radiation. After some time, Bob has collected enough Hawking radiation to

reconstruct Alice’s qubit. Bob then jumps through the event horizon, where Alice has sent

her qubit to Bob in the form of a photon. Then Bob has two identical copies of the same

qubit, which violates the no-cloning theorem of quantum mechanics.

The way to resolve this problem is to put a lower bound on how long it takes Bob to

collect Alice’s qubit from the Hawking radiation. Then we may ensure that the qubit Alice

carries into the black hole will not reach Bob before he meets his end at the singularity.

In [5, 6], Sekino and Susskind argued that, to avoid a violation of the no-cloning theorem,

the time it takes for Bob to collect Alice’s qubit, and thus the scrambling time τsc by the

argument of Hayden and Preskill, is bounded by

τsc ≥
ln S

T
, (1.1)

where T is the black hole’s temperature and S is its entropy. Most systems scramble as a

power law in entropy by τsc ∼ cS2/d, where c is a constant and d is the dimension of spacetime.

Susskind and Sekino conjectured [5, 6] that black holes are fast scramblers, saturating the
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bound (1.1). This conjecture can be motivated by considering the rate of diffusion of charge

on a black hole horizon or through Matrix theory, a framework for viewing M-theory.

1.3 Studying Scrambling via Matrix Theory

Matrix theory turns out to be an ideal setup for testing information scrambling in black holes.

Since black holes are extremal gravitational objects and the information we are considering

is quantum, it is reasonable to expect a quantum theory of gravity to be necessary in treating

the dynamics of their information scrambling.9 At this point, string theory is an attractive

candidate for such a theory. Matrix theory [7, 8] is a particular formulation of string theory10

that involves the dynamics of D0-branes coupled to each other by strings. D0-branes are

the “point particles” of string theory.11 Models for black holes in Matrix theory have been

developed in [9, 10, 11] with promising results, giving the correct scaling for a Schwarzschild

black hole’s equation of state under certain assumptions. However, such models remain

incomplete, and are unable to reproduce the correct entropy relations without additional

dynamics.[12]

In this thesis, continuing on the work of [12], we set up a Matrix model for black holes

to learn qualitative information about scrambling in quantum gravity. We put Matrix the-

ory’s bosonic variables – the spatial coordinates of and interactions between D0-branes –

into a spherical configuration representing the black hole event horizon. We then allow for

fermionic fluctuations, giving the system thermal behavior. Previous work considered only

the coupling between fermionic degrees of freedom (ignoring the bosonic parameters that rep-

resent event horizon geometry) and found that the fermionic excitations had the structure of

9We should have suspected this, given that the information paradox arises from a conflict between general

relativity and quantum theory.
10Specifically, M-theory is type IIA string theory in the strong coupling limit, and Matrix theory is M-

theory viewed in the light-cone, or infinite-momentum, gauge.
11In general, Dp-branes are p-dimensional extended objects on which open strings end.
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Figure 1.4: A qubit chain with nearest-neighbor coupling. Lines between boxes represent a

couplings between qubits, with line thickness giving a sense of coupling strength. Intuitively,

a nearest-neighbor coupling system ought to scramble more slowly than some qubit system

with a denser network of interactions.

one-dimensional qubit chains with nearest-neighbor interactions (see Fig. 1.4). In this case,

fast scrambling was not observed. To higher order, bosonic and fermionic degrees of freedom

are in fact coupled, and the previous work qualitatively showed that these interactions were

suggestive of fast scrambling.

In this thesis, we include the coupling between fermionic degrees of freedom (i.e. qubits

living on the event horizon) and bosonic degrees of freedom (i.e. black hole geometry). We

deform the event horizon from its initial spherical shape and analyze information scrambling

among the qubits living on the deformed event horizon. The idea is that fluctuations in the

event horizon occur naturally. Deforming the event horizon in extreme ways will help us

understand the effect of smaller-scale fluctuations. We do this with a computational scheme

that tracks entanglement over time for black hole systems with varying fermionic and bosonic

parameters. We do not test the fast-scrambling conjecture for technical reasons; see Chapter

3. Our goal is to learn qualitative information about the effect of black hole geometry on

information scrambling.

We found that information scrambling is highly dependent on deformation strength.

For extreme deformations, we observe period behavior, strange for a system assumed to

be psudo-thermal. While we have no immediate interpretation of our results, we suggest

that the symmetries (or asymmetries) of our deformation modes, as well as the sizes of our

deformations, play an important role.

In Chapter 2 we start from the Matrix theory Lagrangian and perform a fluctuation

analysis on our black hole model to find a structure of qubit chains in the theory. In Chapter
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3 we discuss our numerical techniques, which include highly-parallelized methods to explore

very large Hilbert spaces. In Chapter 4 we present results. Chapter 5 gives conclusions

and plans for future work. Technical details regarding gauge theory and spinors appear in

Appendices A and B, respectively.

1.4 Notation, Some Important Mathematical Defini-

tions, and Assumed Reader Knowledge

Throughout this thesis, repeated indices are summed over, except when explicitly stated:

xixi + yjyj =
∑
i

xixi +
∑
j

yjyj. (1.2)

We do not deal with covariant and contravariant tensors, so we do not distinguish between

lower and upper indices. The commutator of two matrices X and Y is given by

[X, Y ] ≡ XY − Y X. (1.3)

The anticommutator is analogously defined by

{X, Y } ≡ XY + Y X. (1.4)

The Poisson bracket for two functions f(qi, pi, t) and g(qi, pi, t) defined on N generalized

position coordinates qi, N generalized momenta pi, and time t is given by

{f, g}P.B. =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (1.5)

An important property of the Poisson bracket is that {qi, pj}P.B. = δij.

A few types of matrices are especially important for our purposes. A matrix X is said

to be hermitian if X = X†, where X† denotes the conjugate transpose of X. A matrix U

is called unitary if U †U = UU † = I. This is equivalent to requiring that | detU | = 1. The

group of all N ×N unitary matrices is denoted U(N).
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The Kroenecker delta δmn equals 1 if m = n and vanishes otherwise. The Levi-Civita

symbol εijk (also known as the antisymmetric symbol) is defined to vanish if any of the

indices are equal, to be 1 for i = 1, j = 2, k = 3, and to pick up a negative sign for any

permutation of those index values. (For example, ε123 = 1, ε213 = −1, and ε231 = 1.)

Advanced undergraduate physics majors should be able to understand this thesis. In

particular, a good grasp of undergraduate analytical mechanics (Lagrangian and Hamilto-

nian formulations) and quantum mechanics (Dirac notation, canonical quantization, density

matrices) is assumed. Certain advanced topics (gauge theory, spinors) are developed in

appendices.
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Chapter 2

Matrix Theory

In this chapter, we develop a model for black holes in Matrix theory. We then analyze

fluctuations in our fermionic degrees of freedom and find a series of coupled qubit chains.

We will use these qubit chains to simulate information scrambling in a black hole.

2.1 The Lagrangian

The Lagrangian for Matrix Theory is given by [[12]]

L =
1

2
Tr

[
(DtXi)(DtXi) +

1

2
[Xi, Xj][Xi, Xj] + ΨDtΨ + Ψγi[Xi,Ψ]

]
, (2.1)

which requires some explanation. The Xi’s are N×N hermitian matrices, where i runs from 1

to 9. Ψ is also an N×N hermitian matrix, but its entries are ten-dimensional Majorana-Weyl

spinors (See Appendix B). The γi are 16× 16 Dirac matrices for 10-dimensional Minkowski

space (see (B.2)) for our chosen representation). Our time dependence involves a “covariant

time derivative” for the U(N) gauge group

Dt ≡ ∂t − i[A, ·], (2.2)

where A is an N ×N hermitian “gauge” matrix (see Appendix A). Since no time derivatives

of A appear in the Lagrangian, A is static. In the end, since the Lagrangian needs to be a
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Figure 2.1: A plot of N = 4 Matrix theory with X1 =

( −2 a 0 0
a 0 b 0
0 b 1 0
0 0 0 2

)
and X2 =

(
0 c 0 0
c 2 d 0
0 d −2 0
0 0 0 1

)
.

The thickness of the lines connecting different D0-branes represents the strength of their

coupling, supposing that |a| < |b| and |c| < |d|.

scalar, we calculate the trace of the bracketed quantity.

Physically, the Xi encode the spatial coordinates and interactions of N D0-branes (see

Fig. 2.1). D0-branes are the point particles of string theory. The index i runs from 1 to 9

because Matrix theory has 9 spatial dimensions (with the “extra” 6 dimensions being curled

up and thus imperceptible at low energies). Specifically, a diagonal element Xi(n, n) is the

ith spatial coordinate of the nth D0-brane, while an off-diagonal element Xi(m,n) is the

strength of the coupling in the ith coordinate between the nth and mth D0-branes.

Since we want to model black holes using this theory, we fix a spherical configuration

of D0-branes in the first three spatial dimensions, setting the other six coordinates of the

D0-branes to zero. In other words, we ignore the “extra” dimensions of the theory. Allowing

for deformations from the sphere, our ansatz for the Xi is

Xi = ντi + xi i = 1, 2, 3, (2.3)

where ν is a positive constant of our choice, the τi are N ×N matrix representations of the

generators of the algebra su(2) and the xi are N ×N matrices. It is worth noting that the
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group SU(2) corresponding to the algebra su(2) is isomorphic to the sphere. The τi satisfy

[τi, τj] = 2iεijkτk, (2.4)

where εijk is the Levi-Civita symbol. Thus the physically-minded reader may regard the τi

as N ×N generalizations of the Pauli matrices.1 If xi = 0 for i = 1, 2, 3, we have that

X2
1 +X2

2 +X2
3 = ν2(τ 21 + τ 22 + τ 33 ) = ν2τ 2, (2.5)

where τ 2 ≡ τ 21 + τ 22 + τ 23 . Via standard quantum mechanics spin matrix constructions, one

can show that

τ 2 = `(`+ 1)IN =
N2 − 1

4
IN , (2.6)

with IN the N ×N identity matrix. We then have that

X2
1 +X2

2 +X2
3 = ν2

N2 − 1

4
IN . (2.7)

This equation is a noncommutative analogue (since matrices don’t necessarily commute) of

the equation for a sphere,

x2 + y2 + z2 = r2, (2.8)

which suggests we should view this configuration as a sort of sphere with radius

R =
ν

2

√
N2 − 1, (2.9)

which goes to νN
2

in the large N limit. Of course, the Xi are matrices, so our geometry has

noncommutative features. For that reason, this Xi configuration is called a “fuzzy” sphere.

1The algebra su(2) can be represented by square matrices of any size. The Pauli matrices give rise to the

2-dimensional, or fundamental, representation of the su(2) algebra. Here the algebra representation we use

is determined by N , the number of D0-branes and the dimension of our matrices. We construct our τi in

the same way one constructs higher-spin Pauli matrices in quantum mechanics. Then N = 2` + 1, where `

is the spin of the matrix representation.
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The xi are then our way of deforming our black hole’s event horizon away from a fuzzy

sphere configuration.

It is worth noting that this spherical configuration is unstable, although it has a long

lifetime for large N . This decay process could provide a model for Hawking radiation,

wherein black hole evaporation is represented by the D0-branes decoupling and moving out

to infinity. We defer the analysis including the dynamics of the Xi to a later study. For our

purposes, these bosonic degrees of freedom (i.e. the event horizon shape) will be static.

2.2 Matrix Decomposition

We next decompose our Ψ, A, and xi matrices via spherical harmonics matrices Y j
m:

Ψα = ψjmαY
j
m , A = ajmY

j
m , xi = xjmiY

j
m, (2.10)

where the spinor index α goes from 1 to 16 since Majorana-Weyl spinors in 10 dimensions

have 16 components (see Appendix B). Since they come from the position matrices Xi,

the xjmi are our bosonic degrees of freedom, while the ψjmα, arising from the spinor matrix

Ψ (which represents fermions) are our fermionic degrees of freedom. We choose the gauge

convention ajm = 0 (i.e. A = 0). The spherical harmonics matrices Y j
m, where j = 0, . . . , N−1

and m = −j, . . . , j, are N ×N matrices that form a basis for all N ×N hermitian matrices.

They are derived from the spherical harmonics of quantum mechanics in the next chapter.

The Y j
m satisfy

Tr
(
Y j
mY

j′

m′

)
= (−1)mNδjj′δ−mm′ (2.11)(

Y j
m

)†
= (−1)mY j

−m. (2.12)

Via the linearity of the matrix trace, we thus have that

ψjmα =
(−1)m

N
Tr
(
ΨαY

j
−m
)
, (2.13)
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so, using the fact that the Ψα are hermitian (and thus Ψα = Ψ†α = (ψjmα)†(Y j
m)† = (−1)m(ψjmα)†Y j

−m),

we find

(ψjmα)† =
(−1)2m

N
Tr
(
ΨαY

j
m

)
= (−1)m

(−1)m

N
Tr
(
ΨαY

j
m

)
(2.14)

= (−1)mψj−mα.

Via similar reasoning, one may show that

(xjmi)
† = (−1)mxj−mi. (2.15)

For the purposes of expanding and simplifying our Lagrangian, we ought to know how the Y j
m

matrices relate to our τi; then we may write the Lagrangian purely in terms of our expansion

coefficients ψjmα and xjmi. Thus, some important facts are that [?]

[
τ+, Y

j
m

]
=
√

(j −m)(j +m+ 1)Y j
m+1 (2.16)[

τ−, Y
j
m

]
=
√

(j +m)(j −m+ 1)Y j
m−1 (2.17)[

τ3, Y
j
m

]
= mY j

m, (2.18)

where τ+ = τ1 + iτ2 and τ− = τ1 − iτ2. Generally, we also have [?][
Y j
m, Y

j′

m′

]
= fjmj′m′j′′m′′(−1)m

′′
Y j′′

m′′ , (2.19)

where fjmj′m′j′′m′′ is related to the Wigner 3j and 6j symbols2 via

fjmj′m′j′′m′′ =
2

N
(−1)NN3/2

√
(2j + 1)(2j′ + 1)(2j′′ + 1)× j j′ j′′

m m′ m′′

×
 j j′ j′′

N−1
2

N−1
2

N−1
2

 (2.20)

2The Wigner 3j and 6j symbols (the round and curly-bracketed quantities in 2.20, respectively) are

numbers related to the Clebsch-Gordan coefficients of quantum mechanics. For our purposes, it is sufficient

to know that they can be looked up.
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when j + j′ + j′′ is odd, otherwise evaluating to zero. Using these relations, we may write

the Lagrangian in terms of the ψjmα, xjmi, and ajm.

The Hamiltonian splits as

H = Hx +Hx,ψ +Hψ, (2.21)

where Hx consists of only bosonic degrees of freedom, Hψ consists of only fermionic degrees

of freedom, and Hx,ψ couples the two. Since we will be fixing the Xi, we can ignore Hx. The

fermionic part of the Hamiltonian is, in term of ψjm coefficients,

Hψ =
N

4

[
N−1∑
j=0

j∑
m=−j

(−1)m
√

1 + j −m
√
j +mψj1−mγ

1ψjm

+
N−1∑
j=0

j∑
m=−j

(−1)m
√

1 + j +m
√
j −mψj−1−mγ1ψjm

+i
N−1∑
j=0

j∑
m=−j

(−1)m
√

1 + j −m
√
j +mψj1−mγ

2ψjm

−i
N−1∑
j=0

j∑
m=−j

(−1)m
√

1 + j +m
√
j −mψj−1−mγ2ψjm

−2
N−1∑
j=0

j∑
m=−j

(−1)mmψj−mγ
3ψjm

]
.

The fermionic-bosonic Hamiltonian is

Hx,ψ =
1

2
Nfjm,j′m′,j′′m′′xjmiψ

j′′

m′′γ
iψj

′

m′ . (2.22)

We now proceed to show that our fermionic degrees of freedom give rise to 8N2 qubits living

in the black hole model.

2.3 Hilbert Space

In this section we find that our fermionic degrees of freedom satisfy certain special anti-

commutation relations so that they may be interpreted as creation and annihilation operators

for a collection of 8N2 fermions (or alternatively, a system of 8N2 qubits).
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The canonical ψjmα momentum is given by

∂L

∂(∂tψ
j
mα)

= Πj
mα =

1

2
(−1)mNψj−mα =

N

2
(ψjmα)†. (2.23)

Then classical mechanics gives us the Poisson bracket relation{
ψjmα,Π

j′

m′α′

}
P.B

= δjj′δmm′δαα′ , (2.24)

and thus {
ψjmα,

(
ψj

′

m′α′

)†}
P.B

=
2

N
δjj′δmm′δαα′ . (2.25)

Via first canonical quantization, in which the Poisson bracket is replaced by an anticom-

mutator3 and the quantities inside the bracket are promoted to operators on some Hilbert

space, we have {
ψjmα,

(
ψj

′

m′α′

)†}
=

2

N
δαα′δjj′δmm′ . (2.26)

For m > 0, we rescale our fermionic variables by

sjmα ≡
√
N

2
ψjmα for m > 0, (2.27)

giving us the anticommutation relations{
sjmα, (s

j′

m′α′)
†
}

= δαα′δjj′δmm′ ,
{
sjmα, s

j′

m′α′

}
= 0 ,

{
(sjmα)†, (sj

′

m′α′)
†
}

= 0, (2.28)

where α = 1, ..., 16 and m > 0. This is the canonical creation/annihilation algebra for a

collection of fermions. It is analogous to the algebra for the ladder operators of a harmonic

oscillator, although in this case the use of anticommutators instead of commutators implies

that our system is fermionic. Since (ψj0α)† = ψj0α by (2.14), the m = 0 case is special; if we

define

Γjα ≡
√
Nψj0α =⇒ {Γjα,Γj′α′} = 2δαα′δjj′ . (2.29)

3Technically, we can have {f, g}P.B. → − i
~ [f, g] or {f, g}P.B. → − i

~{f, g}, with f and g being promoted

to operators. Since the ψjm come from a spinor, which represents fermions, it makes more sense to use the

anticommutator. We also ignore the factor of − i
~ ; it ends up not affecting our simulation.
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This is the anticommutation relation for what we call a Clifford algebra. We will derive

raising and lowering operators from the Clifford algebra in a moment.

For each j = 1, . . . , N − 1 and m = 1, . . . , j, we have 16 × j (from 16 possible α values

and j possible m values) fermions that are created and annihilated with (sjmα)† and sjmα,

respectively. Then we have
∑N−1

j=1

∑j
m=1

∑1
α=1 16 = 8N(N − 1) fermions from the m > 0

sector. The Clifford algebra, we will see, gives us an additional 8 qubits per j mode, for a

total of 8N(N−1)+8N = 8N2 qubits. Thus our Hilbert space has dimension 28N2
= 256N

2
.

We define our vacuum state |Ω〉4 by

sjmα |Ω〉 = 0 j = 1, . . . , N − 1, α = 1, . . . , 16 (2.30)

and

Γ−jα |Ω〉 = 0 j = 0, . . . , N − 1 α = 1, . . . , 16 (2.31)

where we have defined

Γ+
jα ≡

1

2
(Γjα + iΓα+8) , Γ−jα ≡

1

2
(Γjα − iΓjα+8), (2.32)

where α = 1, ..., 8 and

{
Γ+
jα,Γ

−
j′α′

}
= δαα′δjj′ ,

{
Γ+
jα,Γ

+
j′α′

}
= 0 ,

{
Γ−jα,Γ

−
j′α′

}
= 0. (2.33)

To get from a Clifford algebra to raising and lowering operators, one groups the initial

operators (in our case, the Γjα) into pairs. We have chosen to combine that αth spinor

component with the α+ 8th component. We chose this combination because, as we will soon

see, it complements our chosen representation of the Dirac matrices. We may now generate

any state in our Hilbert space by acting on |Ω〉 with some number of creation operators.

We may interpret our system as either creation/annihilation operators for a collection of

4It is interesting to show that a vacuum state exists. This is essentially because {sjmα, sjmα} = 0, implying

that (sjmα)2 = 0. For a full proof, see the spinor appendix.
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fermions or as spin raising/lowering operators for a collection of qubits. In the fermion

creation/annihilation interpretation, the raising operator with indices j, m, and α creates a

fermion with those indices if such a fermion isn’t already present; if such a fermion is already

present, the state is killed since
(
(sjmα)†

)2
= (Γ+

jα)2 = 0. The annihilation operator affects a

state analogously, but removes the fermion with its indices. In the qubit interpretation, each

raising operator turns a corresponding qubit on; applied more than once (or if the qubit is

already in the “up” state), the state is killed. Thus we may interpret the 256N
2

states in

the Hilbert space as all possible configurations of 8N2 qubits. We will use these qubits to

simulate information scrambling on the fuzzy sphere.

2.4 The Fermionic Coupling Term Hψ and Qubit Chain

Structure

The fermionic Hamiltonian term, written in terms of raising and lowering operators and our

chosen representation of the γ matrices (given in the Appendix), becomes

Hψ = νN
N−1∑
j=0

j∑
m=0

8∑
α=1

[
2m
(
ψjmα

)†
ψjmα − 2m

(
ψjmβ

)†
ψjmβ

+i
√

(j −m)(j +m+ 1)(ψjmα
(
ψjm+1β

)†
+ ψjmβ

(
ψjm+1α

)†
+
(
ψjmα

)†
ψjm+1β +

(
ψjmβ

)†
ψjm+1α)

]
, (2.34)

where β ≡ α + 8. Note that the sum over α ranges from 1 to 8, with the qubit-qubit

interactions coupling each αth qubit to the β = α + 8th qubit. This is why we chose to

get raising and lowering operators from our Clifford algebra by combining Γjα and Γjα+8;

the coupling between qubits has a clearer structure. We see that the qubits with different j

don’t interact. In fact, a qubit with indices j, α, and m only interacts with the qubits with

indices j, β and m± 1. This nearest-neighbor structure is depicted in Fig. 2.2. We will see

in the next chapter that when Hx,ψ is also taken into account, the network of interactions
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Figure 2.2: A graphical representation of the qubit-qubit coupling when only Hψ is consid-

ered. Each square represents a qubit, with their m values listen below the chain. Each qubit

with spinor index α is coupling to qubits with spinor index β = α + 8. The m = 0 qubit

from our Clifford algebra is drawn in black. We see that we have two chains, connected to

each other through the m = 0 qubit.

between qubits is much more complicated. Moreover, since we are interested in the impact

of black hole geometry on information scrambling, we will need to include the Hx,ψ term in

our simulation.
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Chapter 3

The Simulation

In this chapter, we develop numerical techniques to analyze information scrambling in a qubit

chain living on a Matrix theory black hole. Methods for calculating spherical harmonics

matrices Y j
m and deformation coefficients xjm are discussed. Certain computational concerns

and simplifying approximations are also given.

3.1 Overview

The main idea of our simulation is to look at information scrambling in our qubit chain for

various (fixed) deformations of the black hole’s event horizon. Thus, when evolving the qubit

chain in time, we need to make sure to include the Hamiltonian’s fermionic-bosonic coupling

term:

Hx,ψ =
1

2
Nfjm,j′m′,j′′m′′xjmiψ

j′′

m′′γ
iψj

′

m′ , (3.1)

where Einstein notation is being used. Since both xjmi and ψjm appear, this part of the

Hamiltonian couples the qubit chain to the black hole’s geometry. Note that the ψjm (without

the lower index α) are spinors that are acted on by the γ matrices. Thus we can equivalently

write ψjmγiψ
j′

m′ as ψjmαψ
j′

m′α′γαα
′

i . At first glance, Hx,ψ doesn’t look so complicated. Upon
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further inspection, however, we see that the bosonic-fermionic interaction couples every qubit

to every other qubit in the chain (with the strengths of the interactions dependent on the

xjmi and the f coefficients). Also, whereas in the purely fermionic case only qubits with the

same j are coupled, we now have coupling between qubits with different j. Moreover, in the

purely fermionic case a qubit with index m only coupled to qubits with index m ± 1, but

when we take the bosonic-fermionic coupling into consideration all m values are coupled.

To simplify our computation, we will include only the bosonic-fermionic coupling for

i = 3. In other words, we deform the event horizon from its initial spherical shape only in

the X3 direction, setting x1 = x2 = 0. We choose to deform in the X3 direction because the

form of our representation of γ3 is especially simple (see Appendix). Moreover, we will fix

the bosonic degrees of freedom (i.e. the black hole geometry will be static). This is because,

as we will soon see, allowing for dynamics in the Xi would make our algorithm much more

complicated. In other words, we will not include the Hx term in our Hamiltonian when

evolving the system.

Via a straightforward but lengthy calculation, one may find the coupling term Hx,ψ in

terms of our raising and lowering operators and with x1 = x2 = 0. While this is necessary for

running our simulation, its form is no more enlightening than (3.1). Moreover, the expanded

coupling is exponentially more tedious to write out or look at. Thus we omit it here.

Since each α qubit is only coupled to other α qubits or β = α + 8 qubits, we have that

the 8N2 qubit system decouples into 8 qubit chains of length N2. Looking at Hx,ψ, we see

that all j and m modes are indeed coupled. Our network of interactions is thus much more

complicated than the case when only Hψ is considered. Also, the qubits are now coupled

not only to each other, but to the black hole deformation parameters xjm3. Thus we expect

more complicated dynamics when evolving the qubits in time.
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Figure 3.1: Deforming the sphere. The spheroid on the right depicts a deformation in the

Y 1
0 mode.

3.2 Evolving the Qubit Chain

The Schrödinger equation tells us that the time-evolution of some state |ψ(t)〉 is governed

by the differential equation

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 . (3.2)

For our purposes, |ψ(t)〉 is our qubit chain’s state. The basis for our Hilbert space is the set

{|ψ1〉 |ψ2〉 . . . |ψN2〉 : |ψi〉 = |↑〉 or |ψi〉 = |↓〉 for i = 1, . . . , N2}. (3.3)

For example, if N = 2, then any state of the qubit chain can be written as a (normalized)

linear combination of the basis states |↓〉 |↓〉, |↓〉 |↑〉, |↑〉 |↓〉, and |↑〉 |↑〉.

The initial state |ψ(0)〉 is chosen to be a random basis state. We calculate the xjm3 as

described in the Section 3.3 and load them into a text file that is read by the simulation.

We then evolve the qubit chain in time using a highly-parallelized fourth-order Runge-Kutta

method. The Runge-Kutta method is a standard tool used to numerically solve differential

equations. For a good overview, see [13]. By highly-parallelized, we refer to additional

numerical techniques that speed up our computation; see Section 3.5 for details.
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3.3 Calculating the Spherical Harmonics Matrices Y j
m

and Deformation Constants xjmi

Recall that the spherical harmonic matrices Y j
m played a key role in our expansion of the

Matrix theory Lagrangian. We can also use the matrices to calculate the coefficients xjmi

corresponding to a given deformation matrix xi. We describe how to construct the matrices

in this section, following [?], describe how to calculate the xjmi corresponding to some xi,

and give a few simplifying assumptions that allow us to easily explore the parameter space

of deformations.

Let τi be defined as in (2.4), using the spin s = N−1
2

representation familiar from quantum

mechanics. We then define the Y j
m as N × N matrices that are polynomials of degree j in

the τi, corresponding in some sense to the spherical harmonics functions from quantum

mechanics, Y j
m(θ, φ). Let j ∈ {0, . . . , N − 1} and m ∈ {−j, . . . , j} be given. Define the

polynomial yjm(r, θ, φ) by

yjm(r, θ, φ) ≡ rjY j
m(θ, φ). (3.4)

The yjm(r, θ, φ) are homogenous polynomials of degree j in the variables x ≡ r sin θ cosφ,

y ≡ r sin θ sinφ, and z ≡ r cos θ. In other words, in each term of yjm(x, y, z), the sum of the

powers of x, y and z is j. To get the Y j
m out of yjm(x, y, z), make the following substitution:

write each term as 1
j!

times the sum of each permutation of the elements in the term, ignoring

commutativity for a moment. Then replace x with τ1, y with τ2, and z with τ3. The resulting

polynomial in τ1, τ2, and τ3 defines Y j
m. The reason for our strange substitution is that the

matrices τi don’t commute with each other, while the variables x, y, and z do. Thus there

is some ambiguity in whether we write some term in yjm(x, y, z) as xy or yx. This doesn’t

matter when x and y are commuting variables, but when we substitute them for matrices,

the order matters. Thus the only “fair” way to write the term is 1
2!

(xy + yx), since this

gives us 1
2!

(τ1τ2 + τ2τ1) every time. We will perform our simulations using N = 4, with our
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deformation matrices in the Y j
0 modes. For reference we list the N = 4 Y j

0 matrices here:

Y 0
0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (3.5)

Y 1
0 =


1.34164 0 0 0

0 0.447214 0 0

0 0 −0.447214 0

0 0 0 −1.34164


, (3.6)

Y 2
0 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


, (3.7)

Y 3
0 =


0.447214 0 0 0

0 −1.34164 0 0

0 0 1.34164 0

0 0 0 −0.447214


. (3.8)

One reason that the spherical harmonics matrices Y j
m are important is that they allow us

to calculate the coeffecients xjmi corresponding to a particular deformation matrix xi. Recall

that Xi = ντi + xi. Our interpretation is that the Xi give the coordinates of N D0-branes

and the strengths of their connections via strings. Thus we may control the black hole shape

directly via the Xi. The fermionic-bosonic coupling Hx,ψ, however, which gives us the effect

of the Xi on the evolution of the qubits, is expressed in terms of xjmi. Thus, if we want

to deform the black hole in a certain way and see how information scrambling is affected,

we need to know the xjmi corresponding to our desired deformation. To calculate xjmi for a
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particular bosonic configuration Xi, we need to use properties of the Y j
m. Recall that

Tr
(
Y j
mY

j′

m′

)
= (−1)mNδ−mm′ . (3.9)

Therefore we have that

Tr
(
XiY

j
−m
)

= (−1)mNxjmi, (3.10)

giving us a straightforward process, since we now know how to construct the Y j
m, by which

we may calculate the xjmi.

Moreover, the Lagrangian’s residual gauge freedom allows for changes of basis1, so we may

diagonalize our X3 matrix (since Hermitian matrices are always diagonalizable).2 Since the

undeformed X3 is already diagonal, this means that we can restrict ourselves to considering

diagonal deformation matrices. It turns out that each Y j
0 is diagonal, so the set {Y j

0 : j =

0, . . . , N−1} forms a basis for real diagonal N×N matrices. In other words, we only need to

consider xj03 for a diagonal deformation matrix x3. This further simplifies our Hamiltonian,

which is important in making our simulation computationally feasible. Choosing only m = 0

deformation modes also allows us to more easily explore the parameter space of deformations.

3.4 Quantifying Scrambling with Density Matrices

Our goal is to track information scrambling in the qubit chain as it evolves in time. To do

this, we calculate the qubit chain’s entanglement entropy at each time step. Entanglement

entropy gives a measure of how entangled two subsystems are with each other. First we

review density matrices, from which we may calculate entanglement entropy. For some state

|ψ〉, the density operator is given by

ρ̂ = |ψ〉 〈ψ| . (3.11)

1This is true even after we set A = 0; see Appendix A.
2Of course, this transformation will complicate X1 and X2 (since in general we cannot simultaneously

diagonalize all three), but any change of basis won’t change the fact that x1 = x2 = 0.
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Recall that one may find the matrix representation of an operator given a particular basis by

inserting the operator in the middle of an inner product of two basis states. In other words,

the (i, j) entry of the matrix A corresponding to some operator Â is given by

Aij = 〈i| Â |j〉 . (3.12)

Density operators are more interesting for multiparticle systems than for single-particle sys-

tems. Consider the state ψ = 1√
2
|↑〉1 |↑〉2 + 1√

2
|↓〉1 |↑〉2 for a two-particle spin system, with

each particle spin-1
2
. Then our density operator is

ρ̂ =
1

2
(|↑〉1 |↑〉2 + |↓〉1 |↑〉2) (〈↑|1 〈↑|2 + 〈↓|1 〈↑|2) . (3.13)

The corresponding density matrix using the states |↑〉1 |↑〉2 , |↑〉1 |↓〉2 , |↓〉1 |↑〉2, and |↓〉1 |↓〉2
as a basis is

ρ =
1

2


1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0


. (3.14)

What if we are only able to measure one of the particles? In that case, it is useful to define

the reduced density operator. We define the reduced density operator for particle 1 by

ρ̂(1) =
∑
j

〈j|2 ρ̂ |j〉2 . (3.15)

In other words, the reduced density matrix for particle 1 is the density operator traced over

the basis for particle 2. For the full density operator in 3.13, we have the reduced density

matrices

ρ1 =

1
2

1
2

1
2

1
2

 , (3.16)

ρ2 =

1 0

0 0

 . (3.17)
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The reduced density matrices ρ1 and ρ2 look quite different, but share important charac-

teristics. Looking back at (3.13), we see that no matter which state we measure particle 1,

particle 2 will have its spin pointing up. Moreover, since any measurement of particle 1’s

spin will give an answer of “up,” we can’t get any useful information about particle 2’s spin

by measuring particle 1. However, since ρ21 = ρ1 and ρ22 = ρ2, we have that both subsystems

are in pure states. In other words, the system is in a product state. Since the definition

of an entangled state is one that cannot be written as a product state, this means that the

particles are minimally entangled with each other. As we will soon see, this means that

their entanglement entropy is zero. For completeness, consider the density matrices for the

entangled state |ψ′〉 = 1√
3

(|↑〉 |↑〉+ |↑〉 |↓〉+ |↓〉 |↓〉):

ρ′ =



1
3

1
3

0 1
3

1
3

1
3

0 1
3

0 0 0 0

1
3

1
3

0 1
3


, (3.18)

ρ′1 =

2
3

1
3

1
3

1
3

 , (3.19)

ρ′2 =

1
3

1
3

1
3

2
3

 . (3.20)

In this case, ρ′1 and ρ′2 describe mixed states; the two particles are entangled with each other.

We will see that these matrices have nonzero entanglement entropy.

Note that all definitions given so far are easily generalized to n-particle systems. From a

reduced density matrix, we may calculate the entanglement entropy. For n-particle systems,

we have more freedom in choosing which subsystem to trace over when calculating our

reduced density matrix. Denote the subsystem of interest (i.e. the particles we don’t wont

to trace over) by M. Then calculate the reduced density operator for M:

ρ̂(t)M = TrM |ψ(t)〉 〈ψ(t)| , (3.21)
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whereM is the part of system not included inM. As this is the computation we use in our

simulation, we have explictly noted the time dependence of the operator. The entanglement

entropy is then given by

S(t) = −Tr [ρ(t)M ln ρ(t)M] , (3.22)

where it is important to note that we are using the matrix logarithm3, as opposed to simply

applying the logarithm to each element of the matrix. The quantity in (3.22) is known as

the von Neumann entropy of a density matrix. The entanglement entropy is simply the von

Neumann entropy of a reduced density matrix. The von Neumann entropy quantifies how

far a density matrix is from describing a pure state. Indeed, for a pure state,

ρ2 = ρ, (3.23)

which implies that 2 ln ρ = ln ρ. Therefore ln ρ = 0, so the von Neumann entropy is zero.

Moreover, the von Neumann entropy reaches its maximum for a maximally mixed state [1].

A maximally mixed state has density matrix 1
N
IN , where N is the dimension of the Hilbert

space and IN is the N -dimensional identity matrix. Then the von Neumann entropy is lnN .

Thus the von Neumann entropy describes how mixed the system described by a density

matrix is. If a reduced density matrix describes a pure state, we have that entire system is a

product state. Recall that a system is called entangled if it cannot be written as a product

state. Thus it makes sense for us to use the von Neumann entropy of a reduced density

matrix as the entanglement entropy for the system.

Returning to our example calculations, the von Neumann entropies of ρ1 and ρ2 are

zero, by the argument of the preceding paragraph. The fact that ρ′1 and ρ′2 describe mixed

states suggest that their von Neumann entropies are nonzero. To calculate their entropies,

we introduce a small trick. Matrix logarithms are, for general matrices, hard to compute.

Note, however, that for a diagonal matrix A = diag(a1, . . . , an), the matrix logarithm lnA =

3For matrices, lnX = Y if eY = 1 + Y + 1
2!Y

2 + 1
3!Y

3 + · · · = X.
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diag(ln a1, . . . , ln an). This is because, for a diagonal matrix Y = diag(y1, . . . , yn), we have

that Y m = diag(ym1 , . . . , y
m
n ). Therefore, if we have that Y = lnA for diagonal A, we have

eY = I + Y +
1

2!
Y 2 +

1

3!
Y 3 + . . . = A

diag(1, . . . , 1) + diag(y1, . . . , yn) +
1

2!
diag(y21, . . . , y

2
n) + . . . = diag(a1, . . . , an), (3.24)

giving us that eyi = ai for i = 1, . . . , n. In other words, yi = ln ai for each i. Note that we

were able to assume that Y is diagonal since Y n is diagonal for every non-negative integer

n, which is only true for diagonal matrices. Thus we have that the von Neumann entropy

for a diagonal matrix ρd = (λ1, . . . , λn) (i.e. ρd is written in its eigenbasis) is

S(ρd) = −Tr [ρd ln ρd]

= −Tr [diag(λ1, . . . , λn)diag(lnλ1, . . . , lnλn)]

= −
n∑
i=1

λi lnλi, (3.25)

where we remember that 0 ln 0 = 0, which can be shown via a limit argument.

This is a cute computation, but only applies to diagonal matrices. The trick is that the

von Neumann entropy is invariant under changes of basis, and thus this results applies for

all diagonalizable matrices. To see the invariance of the von Neumann entropy, note that if

Y = lnX, we have

I + Y +
1

2!
Y 2 + . . . = X

UIU † + UY U † +
1

2!
UY 2U † + . . . = UXU † (3.26)

I + UY U † +
1

2!
(UY U †)2 + . . . = UXU †,

where U † = U−1 and U are unitary matrices and we have used the fact that UY nU † =

(UY U †)n for all n. In other words, we have that ln(UXU †) = U ln(X)U †. Then we have
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that

S(UXU †) = −Tr
[
UXU † ln(UXU †)

]
= −Tr

[
UXU †U ln(X)U †

]
= −Tr

[
UX ln(X)U †

]
= −Tr [X ln(X)] , (3.27)

where we have used the fact that the matrix trace is unchanged by a change of basis in the

last step. Thus the von Neumann entropy of a density operator doesn’t depend on which

basis we write it in. Moreover, since density matrices are symmetric and non-negative by

definition, they are always diagonalizable with real, non-negative eigenvalues. The for any

density matrix ρ with eigenvalues λ1, . . . , λn, we have that

S(ρ) = −
n∑
i=1

λi lnλi. (3.28)

This is the method we use in our simulation to calculate the entanglement entropy of ρ(t).

As an example, recall the reduced density matrices for our entangled two-particle system:

ρ′1 =

2
3

1
3

1
3

1
3

 , (3.29)

ρ′2 =

1
3

1
3

1
3

2
3

 . (3.30)

A quick computation gives us that ρ′1 and ρ′2 have the same eigenvalues: 0.873 and 0.127.

Therefore

S(ρ′1) = S(ρ′2) = − [0.873 ln(0.873) + 0.127 ln(0.127)]

= 0.380644, (3.31)

the positive entanglement entropy that we expected for our entangled system. It is interesting

that S(ρ′1) = S(ρ′2). In fact, for a general partitionM andM of some system, one has that
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S(ρM) = S(ρM). We do not prove this fact here, but it further affirms that our definition

of entanglement entropy is good. Entanglement is indeed a two-way street, and that should

be reflected in our definition of entanglement entropy. For more on entanglement entropy,

see [1].

3.5 Computational Challenges and Technical Details

The quantum gravity aspect of Matrix theory comes into play for N � 1. Recall that the

dimension of our N2-length qubit chain’s Hilbert space is 2N
2
. Thus for just N = 4, the

qubit chain’s Hilbert space is 65, 536-dimensional. For N = 4, our simplified Hamiltonian

has around 10, 000 terms. The number of terms in our Hamiltonian is a polynomial of order

6 in N . In other words, to get interesting results, we will need a very efficient algorithm.

Thus we turn to parallelization. The basic idea of parallelization is to identify loops in a

program’s code with independent iterations and send different iterations of these loops to

different GPUs. Without parallelization, our simulation would not be possible.

Alas, technical issues besides runtime also pop up. One issue with including the Hx,ψ

coupling is that our qubit chains become much larger. The fact that our qubit chain is of

length N2 means that it becomes impractical for us to test the fast scrambling conjecture,

since at N = 5 and N = 6 the simulations begin to take prohibitively long and/or exceed

our 12 Gigabytes of GPU memory. The previous work [12] was able to explore the fast

scrambling conjecture precisely because considering only fermionic-fermionic coupling gave

qubit chains scaling in length linearly with N . In spite of these technical limitations, we find

that we are able to gather interesting qualitative information about the effect of deformations

to the black hole geometry on information scrambling.
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Chapter 4

Results and Analysis

In this section we present the results of our simulations of information scrambling in a static

deformed N = 4 Matrix theory black hole. Qualitative features of our results are discussed

as well as possible interpretations.

4.1 Simulation Parameters

We ran each simulation with N = 4, corresponding to 16 qubits. Each plot shown gives the

(normalized) entanglement entropy over time, calculated from the reduced density matrix

describing 9 of the 16 qubits. The same 9 qubits were chosen for each simulation. We

ran the simulation, with varying deformation parameters, for three different initial states.

The results for each initial state were similar, so we include here the plots for only initial

state “29876.” The number 29876, converted into binary, corresponds to a qubit chain

configuration where a “0” represents the qubit being spin down and a “1” represents the

qubit being spin up.

For each simulation, we set the fuzzy sphere radius parameter ν = 1. Since the Y 0
0 matrix

corresponds to merely a translation, we instead deformed the sphere in the Y 1
0 , Y 2

0 , and Y 3
0

modes. In other words, we ran simulations with x3 = cY j
0 for j = 1, 2, 3, where c is a scaling
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constant. We also ran simulations with x3 = 0, corresponding to no deformation. We ran

these simulations at c = 5, c = 15, and c = 50. We ran the c = 5 and c = 15 simulations

for 10,000 timesteps and the c = 50 simulations for 20,000 timesteps of half the length. In

both cases, the timestep was small enough to preserve the unitary nature of our evolution.

For unitary evolution, the trace of the density matrix must remain at 1. Our timesteps were

small enough to keep a trace of 1, to 5 decimal points, meaning that we kept our numerical

error small.

In addition to deforming the sphere in purely the Y j
0 modes, we also performed simulations

in which we separated one of the D0-branes from the others by a large distance. It is possible

that this could be a good model for Hawking radiation. The simulation parameters for this

case (e.g. timestep, initial state) were the same as for the other cases.

In all cases, we find that the entanglement entropy approaches some equilibrium value,

around which it subsequently fluctuates. We regard the first time the entropy hits its equilib-

rium value as the system’s scrambling time. We find that the information scrambling process

is extremely insensitive to deformations in the Y 1
0 mode, quite sensitive to Y 2

0 deformations,

and very sensitive to Y 3
0 deformations. For large deformations, we witness strongly periodic

behavior, strange for such a thermal system.

4.2 Analysis

Our results are indeed surprising. In [12], all plots were qualitatively similar. The extreme

insensitivity of information scrambling to a deformation in the Y 1
0 mode, in light of the

tangible effects of the Y 2
0 and Y 3

0 deformations, is strange.

Moreover, the strong periodicity of large Y 2
0 and Y 3

0 deformations show that extremely

warped Matrix theory black holes have interesting information scrambling dynamics. Look-

ing at our plots, we immediately see that as the deformation parameter c increases (i.e. the

fuzzy sphere is stretched more and more), the average entropy of the system decreases. This
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Figure 4.1: Entropy curves for no deformation and a Y 1
0 deformation with c = 50. Strangely,

we see that an extreme deformation by Y 1
0 does not affect the information scrambling process.
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Figure 4.2: Entropy curves for Y 2
0 . As c is increased, the average entropy of the thermalized

system decreases. As the deformation becomes more extreme, a second timescale describing

the system’s pseudoperiodic behavior emerges.
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Figure 4.3: Entropy curves for Y 3
0 . It seems that the scrambling process is most sensitive to

this deformation mode. For c = 50, the entropy is strongly periodic.
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Figure 4.4: Simulations in which one of the D0-branes was sent far away from the others.

This could provide some model for Hawking radiation. We see the same strong periodicity

in the entropy as for the case of large Y 2
0 and Y 3

0 deformations.
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suggests an interpretation that associates entanglement among qubits on the black hole with

spatial proximity. Indeed, we see that for large deformations, the minimum of the entropy

after thermalization scales approximately as Smin ∝ 1
c
.

It is interesting that, as c increases and thus the fermionic-bosonic coupling begins to

dominate the fermionic-fermionic coupling, we see strongly periodic behavior. Moreover,

for the undeformed fuzzy sphere, this strong period is not present. This suggests that the

asymmetry of the bosonic deformations gives rise to periodic behavior. This idea is further

supported by the fact that a deformation by Y 1
0 , which stretches the sphere uniformly, doesn’t

affect information scrambling. A possible interpretation of the periodic nature of information

scrambling on a strongly-deformed sphere is that the periods are dictated by the movement of

qubits between nodes in our asymmetric D0-brane system. It is interesting to note, however,

that the periodicity does not seem to scale at the same rate as the deformation parameter

c. This rules out the idea that the qubits are traveling around the deformed sphere at

some uniform speed. We can perhaps imagine instead that the qubits have some non-trivial

spatial interaction with each other, causing complex trajectories, an N2-body system of sorts

in which the characteristic timescale of two qubits coming together and moving apart gives

us the system’s periodicity. There are certainly interesting, perhaps even chaotic, dynamics

at play.
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Chapter 5

Conclusions and Outlook

Recent years have seen much work on the information paradox. Physicists have moved be-

yond wondering whether infalling information obeys unitary time evolution and now consider

the specifics of the unitary evolution. The goal is to understand how infalling information

interacts with the black hole degrees of freedom. It is thought that the information is scram-

bled and emitted with Hawking radiation, avoiding information loss. Black holes may be

more interesting than other information scramblers because they invoke quantum gravity and

non-commutative geometry. Perhaps, as has been conjectured, these novel features endow

the black hole with some ultra-efficient information scrambling mechanism.

In this thesis, we have explored the effects of (non-commutative) geometry on information

scrambling in a theory of quantum gravity, analyzing the interactions between the fermionic

and bosonic degrees of freedom in Matrix theory. We saw that the fermionic degrees of

freedom formed a network of interacting qubits living on the black hole’s event horizon,

represented by our fermionic degrees of freedom. We then studied the dynamics of infor-

mation scrambling among these qubits for different geometries corresponding to deformed

black holes. We found that information scrambling depends on geometry in strange ways

with no immediately obvious interpretation. In some sense, entanglement entropy scaled

inversely with distance, but in a hard to quantify way. More simulations, perhaps involving

43



even larger deformation parameters, are needed to quantify our results.

Moreover, our inability to test the fast scrambling conjecture might be circumvented

by novel computational techniques or resorting to supercomputers to get the job done. It

would also be interesting to allow dynamics in the bosonic degrees of freedom, although this

would require significant modifications to our algorithm. Having dynamic bosonic degrees

of freedom, however, would allow us to see what happens when one D0-brane decouples and

radiates away (a potential model for Hawking radiation) in a more realistic way. There are

also more tests of numerical legitimacy that we could run, including experimentation with

different timesteps. In any case, there are many options to pursue, all of which promise to

give us insight about the role of non-commutative geometry in information scrambling and

quantum gravity.
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Appendix A

A Brief Introduction to Gauge Theory

An important development in modern physics is the identification of symmetries with phys-

ical theories. In the early 1900’s Emmy Noether proved that every symmetry of a physical

system corresponds to some conserved quantity. One special type of symmetry is a gauge

symmetry, when the physics (i.e. Lagrangian) of a system is invariant under time (and

space, in the case of field theory)-dependent transformations induced by some group. In this

appendix, we demonstrate the U(N) gauge invariance of the Matrix theory Lagrangian.

Consider a variant of the Matrix theory Lagrangian where we write ∂t instead of Dt:

L =
1

2
Tr

[
(∂tXi)(∂tXi) +

1

2
[Xi, Xj][Xi, Xj] + Ψ∂tΨ + Ψγi[Xi,Ψ]

]
. (A.1)

Let N denote the dimension of our matrices. The Lagrangian (A.1) is what we call “globally

invariant”1 under unitary transformations. In other words, for some unitary matrix U ∈

U(N), the Lagrangian (A.1) doesn’t change if we make the transformations Xi → X ′i =

UXiU
−1 and Ψ → Ψ′ = UΨU−1. To see this, note that U is a constant matrix and thus

1In some sense, this is an abuse of language. The phrase global invariance generally refers to field theories,

in which our degrees of freedom are functions on spacetime. The matrices Xi and Ψ are not fields: they are

functions of time only. By global I refer to static unitary transformations
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∂t(UXiU
−1) = U(∂tXi)U

−1, so that we have

(∂tX
′
i)(∂tX

′
i) = U(∂tXi)U

−1U(∂tXi) (A.2)

= U(∂tXi)(∂tXi)U
−1. (A.3)

The way our Lagrangian is written, we can see that each term inside the trace, say B,

becomes UBU−1. Therefore the quantity inside the trace is simply having a constant unitary

transformation performed on it. Since the trace doesn’t change for unitary transformations,

the Lagrangian is invariant under constant unitary transformations. We call this global

invariance under the gauge group U(N).

We can give the Lagrangian an even stronger symmetry under unitary transformations.

Suppose instead that U were a function of time (i.e. U = U(t)), and perform the same

transformations. We then would have that

∂tX
′
i = (∂tU)XiU

−1 + U(∂tXi)U
−1 + UXi(∂tU

−1). (A.4)

We can quickly see that this will screw up the invariance of our Lagrangian, since (∂tX
′
i)(∂tX

′
i) 6=

U(∂tXi)(∂tXi)U
−1. This problem occurs for all terms involving derivatives. Looking at (A.1),

we see that we can make our Lagrangian invariant under U(t) if we can substitute for our

conventional derivative a “covariant gauge derivative” Dt such that

Dt(UXU
−1) = U(DtX)U−1. (A.5)

We thus define Dt by

DtY = ∂tY − iA, (A.6)

where A is an N × N matrix, called our gauge matrix. We can then ensure that (A.5) is

satisfied by constraining the transformation of A. Since our Lagrangian is already globally

invariant under U(N), we can write U = eiεG, where ε� 1 and G = G(t) is some hermitian

matrix. Since ε is small, we can approximate U by U = eiεG ≈ 1 + iεG. Similarly, U−1 ≈
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1− iεG. Then we have that

X ′ = UXU−1 ≈ (1 + iεG)X(1− iεG) = X + iε[G,X]. (A.7)

Let’s solve for the transformation rule of A. Plugging the transformation (A.7) into our

requirement Dt(X
′), we have that

Dt(X
′) = ∂tX − i[A′, X] + iε(∂tGX +G∂tX − ∂tXG−X∂tG)− i[A′, iε[G,X], (A.8)

while

UDt(X)U−1 = ∂tX − i[A,X] + iε[G, ∂tX, i[A,X]]. (A.9)

Equating these two expressions, grouping a few terms into commutators, and canceling the

∂tX term and a iε[G, ∂tX] term, we have

−i[A′, X] + iε[∂tG,X]− i[A′, iε[G,X]] = −i[A,X]− iε[G,−i[A,X]], (A.10)

from which we can move the iε[∂tG,X] to the other side, divide by −i, and expand and

rearrange a few commutators to get

[A′, X] + [A′, iεGX]− [A′ + iεXG] = [A+ ε∂tG,X]− [G, iεAX] + [G, iεXA]. (A.11)

If we let A′ = A+ iεXG, what happens? The first terms on each side of the equation cancel

out, and we’re left with, expanding the commutators

iε[A′GX −GXA′ − A′XG+XGA′] = iε[AXG−GXA−XAG+GXA] (A.12)

iε[ε∂tGXG−GXε∂tG−Xε∂tGG+GXε∂tG] = 0 (A.13)

O(ε2) = 0, (A.14)

which is true since ε is taken to be very small. Thus our transformation rule for A is

A′ = A+ ε∂tG. (A.15)
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Note that if A = 0, applying some constant unitary transformation to the system gives us

that A′ = 0, since ∂tU = 0 implies that ∂tG = 0. Taking this fact into consideration, we only

need to explore diagonal matrix deformations, since we may diagonalize Hermitian matrices

in our simulation without changing the physics.
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Appendix B

Spinors

In this section we derive Majorana-Weyl spinors from the Clifford algebra for the Dirac ma-

trices. Denote the dimension of spacetime by d. Denote by ηµν the d-dimensional Minkowski

metric with signature (−,+, . . . ,+).

The Dirac equation1 describes relativistic quantum mechanics for spin-1
2

particles. In his

derivation, Dirac found that the wavefunctions in his equation had to be multiplied on the

left by objects γµ (with µ = 0, . . . , d− 1) obeying the anticommutation relation

{γµ, γν} = 2ηµν . (B.1)

Since this sort of relation cannot be realized for ordinary numbers, Dirac decided to represent

the γµ as matrices, since matrices can obey nontrivial anticommutation relations. Dirac then

realized that this necessitated that the wavefunctions for spin-1
2

particles be vectors packaging

several wavefunctions together. The vectors acted on by the γµ are called spinors. Here,

following [15], we derive the conditions for Dirac, Majorana, and Weyl spinors, as well as

listing the representation of the Dirac matrices we use in this thesis.

1For a more complete description of the Dirac equation and how it involves the Dirac matrices, see [14]
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B.1 Spinors

Take the dimension of spacetime to be even, with d = 2k + 2. Important cases are d = 4

(corresponding to k = 1) and d = 10 (corresponding to k = 4). We then group the γµ into

k + 1 sets of anticommuting raising and lowering operators,

γ0± =
1

2
(±γ0 + γ1), (B.2)

γa± =
1

2
(γ2a ± γ2a+1), a = 1, . . . , k. (B.3)

One may show through exhaustive calculation that

{γa+, γb−} = δab, (B.4)

{γa+, γb+} = {γa−, γb−} = 0, (B.5)

where a, b = 0, . . . , k. These anticommutation relations are shown by brute force, plugging

(B.2) and (B.3) into the anticommutator and using (B.1). For example,

{γ0±, γa±} =
1

4

(
±γ0γ2a + iγ0γ2a+1 + γ1γ2a ± iγ1γ2a+1

±γ2aγ0 + γ2aγ1 + iγ2a+1γ0 ± iγ2a+1γ1
)

(B.6)

=
1

4

(
±{γ0γ2a}+ i{γ2a+1, γ0}+ {γ2a, γ1} ± i{γ2a+1, γ1}

)
(B.7)

= 0. (B.8)

In particular, (B.5) gives us that (γa+)2 = (γa−)2 = 0 for each a.

We will now show that this gives us a spinor ζ such that

γa−ζ = 0 for all a. (B.9)

Take v to be a nonzero spinor acted on by the γa±. If γ0−v 6= 0, define a new spinor v0

by v0 = γ0−v. Otherwise define v0 by v0 = v. If γ1−v0 6= 0, let v1 = γ1−v0. Otherwise let

v1 = v0. Performing this process through k iterations gives us a spinor vk, which will be our

ζ. Why is this? We have that

ζ = γa1−γa2− . . . γan−v, (B.10)
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where a1, . . . , an are the a’s for which γa−va 6= 0. Now consider the action of γa−, where

a = am, on ζ. Then we have

γam−ζ = (−1)mγa1− . . . γam−γam− . . . γan−v

= 0, (B.11)

where we have used the fact that γam−γam− = 0 and γaγb = −γbγa. Now consider the case

where a 6= am for all m. Then we have

γa−ζ = (−1)pCγa−va

= 0, (B.12)

where C is the product of p of the γ2 and we have used the fact that a 6= am for all m implies

that γa−va = 0. Therefore we have that ζ obeys (B.9).

Given ζ, we may obtain a spinor representation of dimension 2k+1 (= 32 for d = 10 and

4 for d = 4) by acting on ζ in all possible ways with the γa+, at most once for each a value

since (γa+)2 = 0. We label our basis states by ~s = (s0, . . . , sk), where each sa is ±1
2
:

ζ~s ≡ (γk+)sk+
1
2 . . . (γ0+)s0+

1
2 ζ. (B.13)

Our original ζ then corresponds to ~s = (−1
2
, . . . ,−1

2
); from ζ we generate our entire basis

by raising various sa from −1
2

to +1
2

using γa+r. Taking the ζ~s to be our basis states, it is

straightforward to derive the matrix elements of the γµ via the definitions and anticommuta-

tion relations. Our matrices are 2d/2× 2d/2. Thus increasing d by two doubles the size of our

Dirac matrices, so we can conceivably iterate from lower-dimensional matrix representations

using the Kronecker product. For d = 2, we have that

γ0 =

 0 1

−1 0

 , γ0 =

0 1

1 0

 . (B.14)

2p is the number of γam− that γa− must move through to act on va.
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It is easy to show that, given a representation of the Dirac matrices in d = 2k + 2, the

matrices

γµ = γµk ⊗

−1 0

0 1

 , µ = 0, . . . , d− 3, (B.15)

γd−2 = Ik ⊗

0 1

1 0

 , γd−1 = Ik ⊗

0 −i

i 0

 , (B.16)

with γµk the 2k × 2k Dirac matrices in d − 2 dimensions and Ik the 2k × 2k identity matrix,

satisfy the correct anticommutation relations. We are taking our 2k × 2k representation and

using the Kronecker product with the Pauli matrices to get a 2k+1 × 2k+1 representation.

The γµ can be used to define the Lorentz algebra (i.e. the algebra of Lorentz transfor-

mations). The generators of the Lorentz algebra, written Σµν and defined by

Σµν = − i
4

[γµ, γν ] (B.17)

satisfy the Lorentz algebra.

i[Σµν ,Σσρ] = ηνσΣµρ + ηµρΣνσ − ηνρΣµσ − ηµσΣνρ. (B.18)

It can be shown that the Lorentz generators Σ2a,2a+1 commute with each other. Thus they

can be simultaneously diagonalized. For each a, we define

Sa ≡ iδa,0Σ2a,2a+1 = γa+γa− − 1

2
. (B.19)

By definition, each ζ~s is a simulataneous eigenstate of each Sa with eigenvalues sa. Using

these spinors as a basis for the Lorentz algebra, we have what we call the 2k+1-dimensional

Dirac representation of the Lorentz algebra. Because each Σµν is quadratic in the γ ma-

trices and each γ matrix can decomposed into a linear combination of raising and lowering

operators, we have each Σµν can only change either two or none of the sa of some ζ~s. In

other words, the ζ~s with even and odd numbers of +1
2
s do not mix under the Lorentz gener-

ators. Thus we say that the Dirac representation of the Lorentz algebra is reducible: we can
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decompose it into multiple irreducible representations of the Lorentz algebra. To see this,

define

γ = i−kγ0γ1 . . . γd−1, (B.20)

which has the properties

(γ)2 = 1, {γ, γµ} = 0, [γ,Σµν ] = 0. (B.21)

Note that

γ = 2k+1S0S1 . . . Sk, (B.22)

so that γ, written in the basis of ζ~s, is diagonal, taking the value +1 when the sa include

an even number of −1
2
s and −1 when the sa include an odd number of −1

2
s. The 2k states

with a γ eigenvalue (called chirality) of +1 form what we call a Weyl representation of

the Lorentz algebra, while the 2k states with eigenvalue −1 form a second, distinct Weyl

representation. In other words, we may decompose the 2k+1-dimensional Dirac representation

of spinors into two Weyl representations, each of dimension 2k. Note that this corresponds

to a 2-dimensional representation for d = 4 and a 16-dimensional representation for d = 10.

B.1.1 Majorana spinors

Our construction of the γ matrices for even spacetime dimension d = 2k+ 2 is unique up to

change in basis. Thus, since

{γµ∗, γν∗} = γµ∗γν∗ + γν∗γµ∗

= {γµ, γν}∗ (B.23)

= (2ηµν)∗ = 2ηµν , (B.24)

the matrices γµ∗ (and −γµ∗) satisfy the same Clifford algebra as the γµ matrices, and thus

must be related by a similarity transformation. By construction, in our ζ~s, the matrix
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elements of γa± are real, so we have from definitions (B.2) and (B.3) that γ3, γ5, . . . , γd−1

are imaginary and the other γµ are real. Define

B1 = γ3γ5 . . . γd−1, B2 = γB1. (B.25)

Then we have that

B1γ
µB−11 = γ3γ5 . . . γd−1γµ(γd−1)−1 . . . (γ3)−1. (B.26)

We next move the γµ to the left side of the right side of the equation. If µ 6= 3, 5, . . . , d− 1,

we pick up a factor of (−1) for each place γµ must move, for a total of (−1)
d
2
−1 = (−1)k.

Then we have

B1γ
µB−11 = (−1)kγµB1B

−1
1 = (−1)kγµ = (−1)kγµ∗, (B.27)

where we have used the fact that γµ is real in this case. If µ = 3, 4, . . . , d − 1, we pick up

one fewer factor of (−1), since γµγµ = νµµ = 1 in this case. Then we have

B1γ
µB−11 = (−1)k−1γµB1B

−1
1 = (−1)k(−γµ) = (−1)kγµ∗, (B.28)

where we have used the fact that γµ is complex in this case. Thus we have that, in general

B1γ
µB−11 = (−1)kγµ∗. (B.29)

By similar means, one may show that

B2γ
µB−12 = (−1)k+1γµ∗. (B.30)

Using these facts, one may show that, for B = B1 or B = B2,

BΣµνB−1 = −Σµν∗. (B.31)

It is then possible to show that the spinors ζ and B−1ζ∗ transform identically under the

Lorentz group, so the Dirac representation is its own conjugate. Moreover, acting on the

chirality matrix γ, one may show that

B1γB
−1
1 = B2γB

−1
2 = (−1)kγ∗. (B.32)
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Thus transforming by B will change the eigenvalue of γ when k is odd and not when it is

even. Moreover, for even k each Weyl representation is its own conjugate, while for odd k

each Weyl representation is conjugate to the other.

We may also enforce on spinors a Majorana condition, which relates ζ∗ to ζ. Ensuring

that this condition be consistent with Lorentz transformations give us the form

ζ∗ = Bζ, (B.33)

with B satisfying (B.31). Taking the conjugate of this expression gives us that ζ = B∗ζ∗ =

B∗Bζ. In other words, our condition is consistent if and only if B∗B = 1. Then, using the

reality and anticommutation properties of our γ matrices, one may show that

B∗1B1 = (−1)k(k+1)/2, B∗2B2 = (−1)k(k−1)/2. (B.34)

Thus a Majorana condition using B1 is possible only if k = 0 (mod 4) or 3 (mod 4), and using

B2 only if k = 0 (mod 4) or 1 (mod 4). Moreover, for k = 0 (mod 4) both conditions are

possible but physically equivalent, since B1 and B2 are related by a similarity transformation.

Finally, we may impose a Majorana condition on a Weyl spinor only if B∗B = 1 and

the Weyl representation is conjugate to itself, since a representation must be closed under

conjugation for (B.33) to make sense. Then, since for odd k each Weyl representation is not

self-conjugate, we cannot impose both the Majorana and Weyl conditions on a spinor; we

can only impose one or the other. For k = 0 mod 4 (i.e. d = 2 mod 8), however, a spinor can

simultaneously satisfy the Majorana and Weyl conditions. Majorana-Weyl spinors in d = 10

play an important role in string theory. It is these spinors that appear in the Lagrangian for

Matrix theory.

B.2 Our γ-Matrix Representation

To make the qubit-qubit interaction in our Matrix theory Hamiltonian simpler, we choose

a specfic representation of the γ matrices. Of course, the representation we choose has no
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effect on the physics at hand. The network of interactions is the same for any choice of

representation, but our choice affects how the expanded Hamiltonian looks. We use the

same representation as [12]:

γ1 =


04 04 04 M

04 04 −M 04

04 −M 04 04

M 04 04 04


, γ2 =


04 04 14 04

04 04 04 14

14 04 04 04

04 14 04 04


,

γ3 =


−14 04 04 04

04 −14 04 04

04 04 14 04

04 04 04 14


, (B.35)

where 14 is the 4× 4 identity matrix, 04 is the 4× 4 zero matrix, and M is defined by

M ≡


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


. (B.36)
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