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ABSTRACT

The work described in this thesis is an investigation of scalar-tensor theories. Scalar-
tensor theories generalise Einstein’s theory of relativity by replacing the universal
coupling constant of gravity, the Planck mass, with a dynamical scalar field. One
motivation to consider scalar-tensor theories can be found within cosmology itself.
Observations indicate that, during the very early universe, space underwent a pe-
riod of accelerated expansion. This phase of expansion is called inflation. The most
common method to implement inflation introduces a new scalar field to generate the
required vacuum energy. It is not yet clear what the fundamental nature of this scalar
field should be, and general relativity does not provide an answer to this question.
Scalar-tensor theories, on the other hand, naturally explain the existence of such a
field. During inflation it can be expected that tiny quantum gravitational corrections
can be found in the imprint of the cosmic microwave background radiation. These cor-
rections can be studied within the formalism of quantum geometrodynamics, which
is a canonical, non-perturbative theory of quantum gravity. An important object in
this formalism is the Wheeler-DeWitt equation, which governs the dynamics of the
quantised degrees of freedom. Although the Wheeler-DeWitt equation describes a
full theory of quantum gravity, it has a well-defined classical limit, and quantum grav-
itational corrections can be systematically derived from a semiclassical expansion.
The thesis starts with a review of the formalism of general relativity. It introduces

a general class of scalar-tensor theories, and presents its properties. It reviews the
formalism of inflation, and ends with the presentation of the formalism of inflation
within the context of a general scalar-tensor theory.
Furthermore, it presents the consequences of a general scalar-tensor theory in

the context of semiclassical quantum gravity. The basis for this investigation is the
canonical approach to quantum gravity, called quantum geometrodynamics. This
is a canonical and non-perturbative formulation of quantum gravity, in which the
Hamiltonian of the theory of general relativity is quantised in an analogous way as in
non-relativistic quantum mechanics. The formalism is generalised to a general class
of scalar-tensor theories. It is demonstrated how quantum geometrodynamics can be
used to estimate the form and magnitude of the first quantum gravitational correc-
tions.
Then, the thesis considers the formalism of quantum geometrodynamics within an

inflationary model. The corrected Schrödinger equation that arises in the semiclassi-
cal expansion of the Wheeler-DeWitt equation is related to inflationary observables.
The form of these corrections is derived and the magnitude is estimated. It is found
that the quantum gravitational corrections in the inflationary power spectrum are too
small to be detected by current experiments, although they are in principle observ-
able. The corrections are found to have a clear observational signature.
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INTRODUCTION

1
1.1 THE THEORETICAL DESCRIPTION OF GRAVITY

In recent years experiments, such as those performed with the Planck satellite,
have given a new wealth of data that can be used to piece together the structure of
the cosmos. This has resulted in a theoretical description in the form of the Lambda
cold dark matter (Λcdm) model of cosmology which, ultimately, is based on Einstein’s
theory of general relativity.
As a description of gravity, the theory of general relativity is highly successful. It

accurately describes gravitational time dilatation and redshift, planetary motion in
the solar system, and the bending of light as it moves through space. General relativity
has withstood the test of time up to the present, as it provides an accurate description
of recent observations. Perhaps the most prominent examples are the experimental
observation of gravitational waves and the shadow of the supermassive black hole
in the centre of the galaxy M87. With all these data in favour of Einstein’s theory
one cannot help but wonder whether there is a deeper, more fundamental theory of
which general relativity is a low-energy limit.
These considerations are partially based on observations that cannot be explained

by general relativity alone. The observation of galaxies at the edge of the observable
universe found that the universe is to a large extent the same in every direction. Since
there is nothing that indicates to distinguish the solar system from any other location
in spacetime, it is therefore reasonable to postulate that the universe is the same at
each point in space. Although an isoptropic and homogeneous universe is expected
from the cosmic Big Bang, this seems to be in direct contradiction with the principle
of causality, and the theory of general relativity offers no explanation.
An extension of general relativity introduces a vacuum energy which drives a phase

of accelerated expansion during the early universe. This vacuum energy is provided
by the potential of a dynamical scalar field, the existence of which has to be postu-
lated. Over time, the scalar field reaches the minimum of its potential, which leads to
the decay of the vacuum energy into particles. Tiny density fluctuations in the scalar
field give rise to the inhomogeneities that eventually form the large-scale structure
that is observed in the sky. This, in a nutshell, describes the formalism of cosmic in-
flation.
Although inflation is able to explain the formation of large-scale structure and the

homogeneity and isotropy of the universe, it offers no motivation for the fundamental
nature of the scalar field. This is somewhat unsatisfying, as the scalar field provides
a dynamical origin for inflation. However, it is possible to find models in which the
existence of this field is explained naturally. One particular class of models replaces
the universal coupling constant of gravity, the Planck mass, with a scalar field that is
dynamical. The resulting theory is called a scalar-tensor theory. This seemingly sim-
ple modification of Einstein’s theory of gravity has profound implications. The dy-
namical nature of the scalar field results in a coupling of matter to gravity that is no
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longer universal: particles in different regions of spacetime would, in general, expe-
rience a different gravitating force. Therefore, scalar-tensor theories are not entirely
compatible with equivalence principle in the Einsteinian sense.
Scalar-tensor theories open up the possibility to unify the standard model of parti-

cle physics with the standard model of cosmology in a single effective field theory that
bridges the gap between the electroweak symmetry breaking scale and the Planck
scale. One particularly attractive model identifies the Higgs field of particle physics
with the cosmological inflaton which, from a field theoretical perspective, has the
feature of being minimal, as it does not require the introduction of additional funda-
mental scalar fields.
It is natural to wonder what other consequences could arise from an alternative

formulation of gravity. Since scalar-tensor theories form a connection between gravity
and particle physics, they could conceivably give rise to an enhancement of quantum
gravitational effects. These effects are typically suppressed by inverse powers of the
Planck mass 𝑀P in quantised formulations of general relativity. In order to estimate
the magnitude of these quantum gravitational effects it is convenient to express the
Planck mass in terms of the reduced Planck constant ℏ, the speed of light 𝑐 and
Newton’s gravitational constant 𝐺N:

𝑀P ≡ √ ℏ𝑐
8𝜋𝐺N

≈ 2.4 × 1018 GeV 𝑐−2.

This is an enormous number and, as a result, quantum gravitational effects are be-
yond the reach of the current generation of detectors. However, these small effects
may become sizeable—or at least conceptually observable—within the formalism of
scalar-tensor theories, where the Planck mass is replaced with a dynamical field.
A conceptually simple formulation of quantum gravity is based on the canonical

formulation of general relativity. The canonical variables in this formulation are the
components of the spatial metric, which are described by a Hamiltonian. This Hamil-
tonian leads to constraint equations that, when appropriately quantised, results in a
non-perturbative theory of quantum gravity called quantum geometrodynamics. The
central object in quantum geometrodynamics is the Wheeler-DeWitt equation, which
describes the full quantum dynamics of the canonical degrees of freedom. As a re-
sult, the full Wheeler-DeWitt equation is tremendously complicated, and can only be
solved in special cases. Nevertheless, useful quantum gravitational information can
still be extracted from the equation, as it allows a systematic semiclassical expansion
to be performed in regions where the wave function is approximately classical. The
effects of quantum gravity arise from such a procedure in the same way as relativistic
corrections would arise from a perturbative expansion of the Klein-Gordon equation.
A natural scenario in which quantum gravitational corrections can be related to ob-

servations is the aforementioned inflationary epoch of the early universe. Tiny quan-
tum fluctuations have left their imprint in the anisotropies of the cosmic background
radiation. It may be expected that quantum gravitational fluctuations may be part of
these quantum fluctuations. They are expected to play a role in the early universe,
as the energy density of the universe can be estimated to be within a few orders of
magnitude of the Planck scale.
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1.2 CONTENTS OF THIS THESIS

The discussion above sets the stage for what follows in the rest of this work. The
goal of this dissertation is twofold. First and foremost, the formalism of quantum
geometrodynamics will be generalised, so that it includes a very general class of
scalar-tensor theories. Second of all, this formalism is applied to inflation in order
to investigate the impact of the non-minimal coupling of scalar-tensor theories to the
magnitude of the quantum gravitational corrections to the inflationary power spectra.
This work is structured as follows. In chapter 2 a summary of the conventional

formulation of general relativity is presented. The dynamical nature of spacetime
imposes the condition that the theory is invariant under certain classes of transfor-
mations, known as coordinate transformations, diffeomorphisms or gauge transformations.
The result is that the set of fields that is used to describe the spacetime carries with
it certain redundancies, and as a result not all the degrees of freedom of the gravi-
tational field are dynamical. In this chapter a formalism, called the Arnowitt-Deser-
Misner (adm) formalism, will be presented that makes this redundancy evident, and
facilitates the identification of the dynamical degrees of freedom, as well as the con-
straints that arise from the non-dynamical fields.
In chapter 3 a modification of the theory of general relativity is explored. This

modification, called a scalar-tensor theory, replaces the universal coupling constant of
gravity to matter with a general, non-trivial, coupling between the gravitational metric
tensor and matter fields. These theories have different formulations, which are related
to non-linear field redefinitions, which are presented in this chapter. Furthermore,
the chapter presents an investigation of the consequences of a non-trivial coupling of
gravity to matter for a selected number of cosmologically relevant theories.
In chapter 4 a review of the application of general relativity to cosmology is pre-

sented, which forms the basis of the description of the period of cosmic inflation in
the early universe. This formalism is extended such that it includes a general class of
scalar-tensor theories. The chapter will conclude with a derivation of the inflationary
parameters. The results of this chapter will serve as a comparison with the results
derived in the later chapters.
In chapter 5 the general consequences are investigated that the diffeomorphism

invariance of gravitational theories, such as the theory of general relativity or scalar-
tensor theories, places on the canonical formulation of these theories. This formu-
lation culminates in the Wheeler-DeWitt equation, which is the basis for a non-
perturbative theory of quantum gravity called quantum geometrodynamics. The chap-
ter continues with an outline of how classical physics and quantum mechanics can be
obtained from a semiclassical expansion of the full wdw equation. The chapter con-
cludes with an explicit example in the formalism of general relativity with a scalar
field.
The first main result of the thesis is described in chapter 6, where the Arnowitt-

Deser-Misner formalism is used to derive the Hamiltonian for a general class of scalar-
tensor theories. The formalism of quantum geometrodynamics is then used in order
to derive the wdw equation this general model. It is then shown in detail how a
systematic semiclassical expansion of the timeless wdw equation for scalar-tensor
theories gives rise to the classical formalism. The semiclassical expansion is then
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continued, which leads to a Schrödinger equation for the quantised degrees of free-
dom. The inclusion of higher order terms in the semiclassical expansion then leads
to quantum gravitational corrections to the Schrödinger equation. The structure of
these corrections is compared with its counterpart in the semiclassical expansion in
general relativity with a minimally coupled matter field, and will briefly be discussed
in the context of Higgs inflation.
The second main result of the thesis is described in chapter 7, where the formal-

ism of quantum geometrodynamics is applied to a very general class of inflationary
scalar-tensor theories. This results in the wdw equation for a general class of infla-
tionary scalar-tensor models. A systematic semiclassical expansion of this equation
reproduces the results obtained in chapter 4. The inclusion of terms of higher or-
der in the semiclassical expansion results in the quantum gravitational corrections to
the evolution equations of the cosmic fluctuations. The solutions to these equations
are compared with their counterparts in general relativity with a minimally coupled
scalar field.

1.3 CONVENTIONS

The majority of this work is expressed in terms of natural units, in which quantities
are expressed in terms of physical constants. These constants are normalised to unity.
In particular, the reduced Planck’s constant and the speed of light are normalised to
the value ℏ = 𝑐 = 1. The Planck mass 𝑀P is then equal to 𝑀P = 1/√8𝜋𝐺N, where
𝐺N is Newton’s constant.
The equations of a geometric theory of gravitation allows a certain freedom in the

parametrisation of the gravitational metric 𝑔𝜇𝜈. In this work the convention will be
that in locally inertial coordinates the metric can be brought into the form

𝑔𝜇𝜈 = diag(−1, 1, 1, 1).

The degree in which a given metric depends on space is determined by the Christoffel
symbol Γ, the components of which are defined as

Γ𝜌
𝜇𝜈 = 1

2 𝑔𝜌𝜆(∂𝜇𝑔𝜆𝜈 + ∂𝜈𝑔𝜇𝜆 − ∂𝜆𝑔𝜇𝜈).

The curvature of spacetime is described by the Riemann tensor 𝑅𝜌
𝜎𝜇𝜈, which in this

work is defined in terms of the Christoffel symbol as

𝑅𝜌
𝜎𝜇𝜈 = ∂𝜇Γ𝜌

𝜎𝜈 − ∂𝜈Γ𝜌
𝜎𝜇 + Γ𝜌

𝜇𝜆Γ𝜆
𝜎𝜈 − Γ𝜌

𝜈𝜆Γ𝜆
𝜎𝜇.

The Ricci tensor 𝑅𝜇𝜈 is defined by the contraction of the first index of the Riemann
tensor with the third.
The symmetric part 𝑇(𝑎𝑏) and antisymmetric part 𝑇[𝑎𝑏] of a tensor 𝑇𝑎𝑏 will respec-

tively be denoted as

𝑇(𝑎𝑏) ≡ 1
2 (𝑇𝑎𝑏 + 𝑇𝑏𝑎), 𝑇[𝑎𝑏] ≡ 1

2 (𝑇𝑎𝑏 − 𝑇𝑏𝑎).
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DYNAMICS OF SPACETIME

2
The most accurate description of gravitation in physics is formulated as a dy-
namical theory of spacetime. Various such theories have been developed during the
past decades, but the conceptually simplest is Einstein’s theory of general relativity.
The theory remains successful up to the present, where in recent years general rela-
tivity was subjected to tests such as the direct detection of gravitational waves or the
direct imaging of the shadow of a black hole [3,4].
This chapter starts with a brief summary of the necessary formalism for the covari-

ant formulation of general relativity. The remaining part of the chapter is dedicated to
the foliation of spacetime in terms of hypersurfaces. Such a foliation is necessary for
a Hamiltonian formulation of gravitational theories, of which general relativity is the
most natural example. A particular application of spacetime foliation is the Arnowitt-
Deser-Misner (adm) formalism [5], which will later find its application in the canonical
quantisation procedure. This formulation and its subsequent canonical quantisation
are described in chapter 5.
There is no unique way to foliate spacetime, and indeed it is a feature of the

diffeomorphism invariance of general relativity that the choice of foliation is often
dependent on the computational applications. In addition, the hypersurfaces can be
timelike, spacelike or lightlike in character, owing to the Lorentzian structure of space
and time. Emphasis in this work is placed on the former two.
The chapter will, after its presentation of the formulation of the gravitational action

in terms of the adm formalism, conclude with a brief discussion of the restrictions
the symmetries of the universe place on the foliation of spacetime.
For more extended overviews of the formalism presented here the reader is invited

to study the many excellent available reference works. Examples of such are found in
the references [6–15].

2.1 COVARIANT FORMULATION OF GRAVITY

General relativity is described by the Einstein-Hilbert action

𝑆EH[𝑔] = 𝜅 ∫
ℳ

(𝑅 − 2Λ) √−𝑔 d4𝑥, (2.1)

up to boundary terms that will be derived at the end of this chapter. Here, 𝑅 is the
Ricci tensor that is calculated from the metric tensor 𝑔, 𝜅 is half the square of the
Planck mass 𝑀P = (8𝜋𝐺N)−1/2 and Λ is the cosmological constant. The integration
covers the entire spacetime manifold ℳ.
Any theory that describes nature should in some way incorporate matter, which

is described by its action 𝑆m. The energy and momentum content of matter is then
described by the energy-momentum tensor 𝑇𝜇𝜈, which is defined as

𝑇𝜇𝜈 ≡
2

√−𝑔
𝛿𝑆m
𝛿𝑔𝜇𝜈 .
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The Einstein-Hilbert action leads to the Einstein field equations of motion, which de-
termine the dynamics of the gravitational metric. These dynamics are fixed by the
condition that they ensure that the action is invariant under small perturbations. This
can be formulated as the condition 𝛿𝑆 = 0. The variation of the Einstein-Hilbert
action then leads to, up to boundary terms, the field equations for the metric tensor:

𝑅𝜇𝜈 − 1
2 𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 = 1

2 𝜅−1𝑇𝜇𝜈. (2.2)

It follows from the Bianchi identity and the metric-compatibility condition that 𝑇𝜇𝜈
is covariantly conserved:

∇𝜇𝑇𝜇𝜈 = 1
2 𝜅−1∇𝜇 (𝑅𝜇𝜈 − 1

2 𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈) = 0.

A consistent derivation of the Einstein field equations requires a careful analysis of
the boundary terms. This will be done in section 2.6, for completeness.

2.2 FOLIATION OF SPACETIME

The Hamiltonian formulation of general relativity is the necessary framework in
which inflationary cosmology and canonical quantum gravity can be described. Since
the Hamiltonian can be regarded as the generator of time evolution, the Hamiltonian
framework places a special significance on the coordinate of time. In contrast, general
relativity unites space and time in the single object of spacetime, which, in addition,
is itself dynamical. Any Hamiltonian formulation of general relativity would there-
fore have to formulate its covariance such that one can distinguish a time parameter
along which evolution can be defined. This is typically accomplished within the adm
formalism. This section gives a systematic expansion of spacetime in terms of spatial
hypersurfaces, which are connected by the integral curves of a vector that takes the
role of the generator of time.
Consider a smooth manifold ℳ of dimension 𝑑 + 1. The manifold ℳ is equipped

with a metric 𝑔, which in local coordinates can be expressed as 𝑔𝜇𝜈. ℳ is taken to be
Lorentzian, by which it is meant that ℳ can be brought in the local canonical form

𝑔𝜇𝜈 = diag(−1, 1, 1, …, 1, 1).

In order to guarantee that a meaningful foliation of spacetime exists it is necessary
that ℳ is not entirely arbitrary, but subject to certain restrictions, which will be made
precise below.
A hypersurface Σ of ℳ is a submanifold that can, in principle, be timelike, lightlike

or spacelike. Such a submanifold can be formed as a level surface of some scalar field
𝑇, such that

𝑇(𝑥𝜇) = constant.

The existence of such a scalar field requires that spacetime has a certain structure: it
must be able to support Cauchy surfaces.
A Cauchy surface is a spacelike hypersurface Σ in ℳ such that each timelike or

lightlike curve intersects Σ only once. A manifold that admits a Cauchy surface is
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called globally hyperbolic. The nature of the spacetime foliation considered in this work
limits the class of acceptable spacetimes to globally hyperbolic spacetimes. This is
not a strong restriction; most spacetimes of both astrophysical and cosmological
interest are of this nature. The topology of a spacetime that is globally hyperbolic
is the product ℝ × Σ, where ℝ corresponds with a timelike coordinate, and Σ is a
general manifold which, in the context of the canonical formalism that is introduced
in chapter 5, is typically spacelike. For globally hyperbolic spacetimes there exists
a smooth scalar field 𝑇, which has a nowhere vanishing gradient. A foliation is then
defined by the level surfaces Σ𝑡 of 𝑇, which define 𝑑-dimensional submanifolds of ℳ.
Since the gradient of 𝑇 is non-zero everywhere, level surfaces are non-intersecting:

Σ𝑡 ∩ Σ𝑡′ = ⌀ for 𝑡 ≠ 𝑡′.

Each hypersurface is called a leaf of the foliation. In the following the character of
the leaves—whether they are timelike or spacelike—is kept general, but it is assumed
that their union composes the whole of ℳ:

ℳ = ⋃
𝑡∈ℝ

Σ𝑡.

2.3 INTRINSIC HYPERSURFACE GEOMETRY

For a given foliation on the spacetime manifold ℳ one can study the intrinsic geom-
etry of tensor fields on the leaves Σ𝑡.

Σ̂ Σ𝑡

ℳ
Φ𝑡

Figure 2.1 Hypersurfaces Σ𝑡 in ℳ as an embedding of Σ̂.

The leaves can be described as the embedding of a manifold Φ𝑡 : Σ̂ → Σ𝑡 in ℳ, as
depicted in figure 2.1. This Σ̂ has dimension 𝑑, and can thus intrinsically be described
by coordinates 𝑥𝑎 (𝑎 = 1, …, 𝑑). The embedding map Φ𝑡 induces the Jacobi matrix
𝑒𝜇

𝑎 as

𝑒𝜇
𝑎 ≡

∂𝑋𝜇

∂𝑥𝑎 ,

and can be used to push forward tangent vectors from Σ𝑡 to ℳ. For example:
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∂𝑎 = 𝑒𝜇
𝑎∂𝜇.

The 𝑒𝜇
𝑎 form a linearly independent set of tangent vectors in Σ𝑡. Vectors 𝑛𝜇 normal

to Σ𝑡 are then implicitly defined through the relation

𝑒𝜇
𝑎𝑛𝜇 = 0.

The tangent vectors 𝑒𝜇
𝑎 can be used to construct a metric 𝛾𝑎𝑏 on Σ̂. The 𝑒𝜇

𝑎 define
a pullback from ℳ to Σ̂. A metric on Σ̂ is naturally given by the pullback of the
restriction of 𝑔𝜇𝜈 to Σ𝑡:

𝛾𝑎𝑏 = 𝑒𝜇
𝑎𝑒𝜈

𝑏 𝑔𝜇𝜈.

This is a metric on Σ̂, as it is a scalar under coordinate transformations of the 𝑋𝜇 in
ℳ, but a rank 2 tensor under coordinate transformations of the 𝑥𝑎 in Σ̂.
One can go on and define vector and tensor fields on Σ̂. A covariant derivative

D can be defined for these fields which is compatible with the induced metric. This
covariant derivative then satisfies the Ricci identity on Σ̂. For example, for a vector
𝑣𝑎 one obtains

[D𝑐, D𝑑] 𝑣𝑎 = (s)𝑅𝑎
𝑏𝑐𝑑𝑣𝑏, (2.3)

where (s)𝑅𝑎
𝑏𝑐𝑑 is the Riemann tensor constructed from 𝛾𝑎𝑏.

2.4 EXTRINSIC HYPERSURFACE GEOMETRY

Spacetime foliations can be described purely in terms of hypersurfaces in the ambient
manifold ℳ, where Σ𝑡 is not considered to be an intrinsic manifold.
Given the scalar field 𝑇 a covector 𝑇𝜇 normal to the hypersurfaces Σ𝑡 can be

constructed through

𝑇𝜇 = ∇𝜇𝑇.

The norm of 𝑇𝜇 is parametrised by a scalar function 𝑁:

𝑔𝜇𝜈𝑇𝜇𝑇𝜈 = 𝑁−2.

The function 𝑁 is called the lapse function. It plays an important role in the canonical
formulation of general relativity. Of importance for this section is the unit normal
covector 𝑛𝜇, which is defined as

𝑛𝜇 ≡ 𝜀𝑁∇𝜇𝑇, (2.4)

where 𝜀 = 1 for timelike hypersurfaces and 𝜀 = −1 for spacelike hypersurfaces. The
sign is chosen such that the normal vector 𝑛𝜇 points in the direction of increasing 𝑇.
The norm of 𝑛𝜇 depends on the character of the hypersurfaces, that is, whether they
are spacelike, timelike or lightlike:

𝑛𝜇𝑛𝜇 = 𝜀. (2.5)
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From the point of view of the foliation of the manifold, 𝑛𝜇 distinguishes a preferred
direction in ℳ. It is then natural to define the projectors parallel and perpendicular
to 𝑛𝜇:

P∥
𝜇

𝜈 = 𝜀𝑛𝜇𝑛𝜈,

P⊥
𝜇

𝜈 = 𝛿𝜇
𝜈 − 𝜀𝑛𝜇𝑛𝜈.

It is straightforward to see that

P∥
𝜇

𝜈 + P⊥
𝜇

𝜈 = 𝛿𝜇
𝜈 ,

P∥
𝜇

𝜌 P∥
𝜌

𝜈 = P∥
𝜇

𝜈,

P⊥
𝜇

𝜌 P⊥
𝜌

𝜈 = P⊥
𝜇

𝜈.

Tensor fields in the kernel of P∥
𝜇

𝜈 are called tangential or, if the hypersurfaces are
spacelike, spatial tensors. Since their contraction with 𝑛𝜇 vanishes, they can be pulled
back to Σ̂ with no loss of information.
A projected covariant derivative D𝜇 along Σ𝑡 can be defined through the projection

of each index of the covariant derivative ∇𝜇 on ℳ to Σ𝑡. For example, the covariant
for a tangential vector 𝑣𝜇 can be written as

D𝜇 𝑣𝜈 = P⊥
𝛼

𝜇 P⊥
𝛽

𝜈 ∇𝛼𝑣𝛽. (2.6)

For tangential tensors this derivative coincides with the intrinsic covariant derivative,
and the pullback in this case amounts to a coordinate transformation from Σ𝑡 to Σ̂:

D𝑎 𝑣𝑏 = 𝑒𝜇
𝑎𝑒𝜈

𝑏 D𝜇 𝑣𝜈.

In general, each index of a tensor in ℳ can be decomposed in terms of parts parallel
and orthogonal to the normal vector. This results in a polynomial in 𝑛𝜇. For the
decomposition of the metric one obtains

𝑔𝜇𝜈 = 𝛿𝛼
𝜇𝛿𝛽

𝜈 𝑔𝛼𝛽

= (P⊥
𝛼

𝜇 + P∥
𝛼

𝜇) (P⊥
𝛽

𝜈 + P∥
𝛽

𝜈) 𝑔𝜇𝜈

= P⊥
𝛼

𝜇 P⊥
𝛽

𝜈𝑔𝛼𝛽 + 𝜀𝑛𝜇𝑛𝜈. (2.7)

A tangential tensor will be denoted by a tilde, for example:

P⊥
𝛼

𝜇 P⊥
𝛽

𝜈𝑔𝛼𝛽 = 𝑔̃𝜇𝜈.

The first funda-
mental form is
related to the in-
duced metric via
𝛾𝑎𝑏=𝑒𝜇

𝑎𝑒𝜈
𝑏𝛾𝜇𝜈.

The object 𝑔̃𝜇𝜈 is known as the first fundamental form. In order to keep notational
clarity it will be convenient to define it as a separate symbol:

𝛾𝜇𝜈 ≡ 𝑔̃𝜇𝜈.

As 𝛾𝜇𝜈 corresponds to the induced metric on Σ𝑡, as far as tangential tensors are
concerned, indices can be raised or lowered with 𝛾𝜇𝜈 just as well as with 𝑔𝜇𝜈.
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For 𝑛𝜇 one can define the acceleration 𝑎𝜇:

𝑎𝜇 ≡ 𝑛𝜈∇𝜈𝑛𝜇. (2.8)

It can be seen that 𝑎𝜇 is a tangential tensor, as its contraction with 𝑛𝜇 vanishes by
(2.5). One can also define the second fundamental form 𝐾̃𝜇𝜈 via the relation

𝐾̃𝜇𝜈 ≡ P⊥
𝛼

𝜇 P⊥
𝛽

𝜈∇𝛼𝑛𝛽 = ∇𝜇𝑛𝜈 − 𝜀𝑛𝜇𝑎𝜈. (2.9)

It follows from (2.4) that 𝐾̃𝜇𝜈 is symmetric. The geometric meaning of the second
fundamental form can be inferred from figure 2.2. The normal vector 𝑛𝜇 describes a
vector field in ℳ. Therefore, if the normal vector 𝑛𝜇 at point 𝑝 is parallel transported
to point 𝑞, the resulting vector 𝑛̃𝜇 will in general not coincide with the normal vector
𝑛𝜇 at 𝑞. The difference between these two vectors, when projected onto Σ𝑡, gives a
measure for the curvature of Σ𝑡. This curvature is not intrinsic to Σ𝑡 itself, but is an
effect of its embedding in ℳ. For this reason 𝐾̃𝜇𝜈 is frequently called the extrinsic
curvature.

𝑝

𝑞

𝑛𝜇(𝑝)

𝑛𝜇(𝑞)
𝑛̃𝜇(𝑞)

Σ𝑡

Figure 2.2 Geometric interpretation of 𝐾̃𝜇𝜈.

The extrinsic curvature is a tangential tensor by construction.
The evolution of spatial tensors is naturally given by the Lie derivative along 𝑛𝜇.

One important case is the Lie derivative of the induced metric. From (2.7) and (2.9)
it follows that

(ℒ𝑛 𝛾)𝜇𝜈 = 𝑛𝛼∇𝛼𝛾𝜇𝜈 + 𝛾𝛼𝜈∇𝜇𝑛𝛼 + 𝛾𝜇𝛼∇𝜈𝑛𝛼

= −𝜀𝑛𝛼∇𝛼(𝑛𝜇𝑛𝜈) + 𝛾𝛼𝜈(𝐾̃𝜇
𝛼 + 𝜀𝑛𝜇𝑎𝛼) + 𝛾𝜇𝛼(𝐾̃𝜈

𝛼 + 𝜀𝑛𝜈𝑎𝛼)

= 2𝐾̃𝜇𝜈.

It can be seen that in this case the normal Lie derivative of a tangential tensor again
produces a spatial tensor. This is true in general for cotensors: consider a tangential
cotensor 𝑇̃𝜈1…𝜈𝑚

. Then, its Lie derivative along 𝑛𝜇 is given by [16]

(ℒ𝑛 𝑇̃)𝜈1…𝜈𝑚
= 𝑛𝜇∇𝜇𝑇̃𝜈1…𝜈𝑚

+
𝑚

∑
𝑖=1

𝑇̃𝜈1…𝜇…𝜈𝑚
∇𝜈𝑖

𝑛𝜇. (2.10)

Now, contraction of (2.10) with 𝑛𝜈𝑘 for some 1 ≤ 𝑘 ≤ 𝑚 leads to
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𝑛𝜈𝑘(ℒ𝑛 𝑇̃)𝜈1…𝜈𝑚
= 𝑛𝜈𝑘𝑛𝛼∇𝛼𝑇̃𝜈1…𝜈𝑚

+ 𝑇̃𝜈1…𝛼…𝜈𝑚
𝑛𝜈𝑘∇𝜈𝑘

𝑛𝛼

= 𝑛𝛼∇𝛼(𝑛𝛽𝑇̃𝜈1…𝛽…𝜈𝑚
)

= 0.

That the tangential property is preserved under Lie differentiation only for cotensors
is not a strong restriction. The relevant decompositions can be formulated purely in
terms of cotensors.

2.4.1 Decomposition of curvature

Although tensors can generally be decomposed as a polynomial in the normal cov-
ector 𝑛𝜇, it is nevertheless instructive to calculate the non-trivial components of the
Riemann tensor and its various contractions explicitly.

The Riemann tensor To begin with, it is straightforward to give the components which
are partially projected along the normal vector 𝑛𝜇. With (2.9) it is found that

∇𝜇∇𝜈𝑛𝜌 = ∇𝜇𝐾̃𝜈
𝜌 + 𝜀𝑎 𝜌∇𝜇𝑛𝜈 + 𝜀𝑛𝜈∇𝜇𝑎 𝜌.

The derivative of 𝑛𝜈 in the second term can be eliminated by repeated substitution
of (2.9). One then obtains

∇𝜇∇𝜈𝑛𝜌 = ∇𝜇𝐾̃𝜈
𝜌 + 𝜀𝐾̃𝜇𝜈𝑎 𝜌 + 𝑛𝜇𝑎 𝜌𝑎𝜈 + 𝜀𝑛𝜈∇𝜇𝑎 𝜌.

Antisymmetrisation over the indices 𝜇 and 𝜈 leads to, after the index 𝜌 is lowered,

𝑅𝜌𝜎𝜇𝜈𝑛𝜎 = 2∇[𝜇𝐾̃𝜈]𝜌 + 2𝑎𝜌𝑛[𝜇𝑎𝜈] − 2𝜀𝑛[𝜇∇𝜈]𝑎𝜌. (2.11)

The symmetries of the Riemann tensor ensure that all other contractions are related
to this one by a sign. Contraction of (2.11) with 𝑛𝜇, one obtains

𝑅𝜌𝜎𝜇𝜈𝑛𝜎𝑛𝜇 = (ℒ𝑛 𝐾̃)𝜈𝜌 − 𝐾̃𝜈𝜆𝐾̃𝜌
𝜆 − 𝜀𝐾̃𝜈𝜆𝑛𝜌𝑎𝜆 + 𝜀𝑎𝜌𝑎𝜈

− ∇𝜈𝑎𝜌 + 𝜀𝑛𝜈(ℒ𝑛 𝑎)𝜌 − 𝜀𝑛𝜈𝐾̃𝜌
𝛼𝑎𝛼 − 𝑛𝜌𝑛𝜈𝑎𝜆𝑎𝜆. (2.12)

Further contractions with 𝑛𝜇 will vanish due to the symmetries of the Riemann tensor.
Projection of (2.11) onto Σ𝑡 results in the Codazzi-Mainardi relation

P⊥
𝜌

𝛼 P⊥
𝜇

𝛽 P⊥
𝜈

𝛾𝑅𝜌𝜎𝜇𝜈𝑛𝜎 = D𝛽 𝐾̃𝛾𝛼 − D𝛾 𝐾̃𝛽𝛼. (2.13)

Projection of (2.12) onto Σ𝑡, one obtains

𝑅𝜌𝜎𝜇𝜈 P⊥
𝜌

𝛼 P⊥
𝜈

𝛽𝑛𝜎𝑛𝜇 = (ℒ𝑛 𝐾̃)𝛼𝛽 − 𝐾̃𝛼𝜆𝐾̃𝛽
𝜆 − (D𝛽 −𝜀𝑎𝛽)𝑎𝛼.

The tangential components of the Riemann tensor can be found by use of the Ricci
identity (2.3) for a spatial vector 𝑣𝜇 on Σ𝑡:

[D𝜇, D𝜈] 𝑣𝜌 = (s)𝑅𝜌
𝜎𝜇𝜈𝑣𝜎.
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Equation (2.6) can be used to express the left-hand side in terms of projections of
the ambient space covariant derivatives. The result obtained in this way is the Gauss
relation

P⊥
𝜌

𝛼 P⊥
𝜎

𝛽 P⊥
𝜇

𝛾 P⊥
𝜈

𝛿𝑅𝜌𝜎𝜇𝜈 = (s)𝑅𝛼𝛽𝛾𝛿 − 2𝜀𝐾̃𝛼[𝛾𝐾̃𝛿]𝛽. (2.14)

This completes the derivation of the non-trivial components of the Riemann tensor.
All others are either equal to zero or related the ones above by symmetry.

The Ricci tensor The Ricci tensor is formed out of the contraction of the Riemann
tensor, and its normal and tangential components can therefore straightforwardly be
computed from the results above.
To begin with, it can be verified that (ℒ𝑛 𝐾̃)𝜇𝜈 satisfies

𝛾𝜇𝜈(ℒ𝑛 𝐾̃)𝜇𝜈 = ℒ𝑛 𝐾̃ + 2𝐾̃𝛼𝛽𝐾̃𝛼𝛽.

With this identity the normal-normal component of the Ricci tensor can be computed
through the contraction of (2.12) with 𝑔𝜇𝜈. The result is

𝑅𝜇𝜈𝑛𝜇𝑛𝜈 = − ℒ𝑛 𝐾̃ − 𝐾̃𝜇𝜈𝐾̃𝜇𝜈 + ∇𝜇𝑎𝜇. (2.15)

Contraction of (2.13) with 𝛾𝛼𝛽 results in the contracted Codazzi equation, which is the
mixed component of the Ricci tensor:

P⊥
𝜈

𝛼𝑅𝜇𝜈𝑛𝜇 = D𝜆 𝐾̃𝛼
𝜆 − D𝛼 𝐾̃𝜆

𝜆. (2.16)

Contraction of the Gauss relation with 𝛾𝛼𝛽 and substitution of (2.15) results in the
contracted Gauss relation

P⊥
𝜇

𝛼 P⊥
𝜈

𝛽𝑅𝜇𝜈 = (s)𝑅𝛼𝛽 − 𝜀𝐾̃𝐾̃𝛼𝛽 + 2𝐾̃𝛼𝜆𝐾̃𝜆
𝛽

− 𝜀(ℒ𝑛 𝐾̃)𝛼𝛽 + 𝜀(D𝛽 −𝜀𝑎𝛽)𝑎𝛼. (2.17)

This completes the decomposition of the normal and tangential components of the
Ricci tensor.

The Ricci scalar The Ricci scalar can now be obtained via contraction of the Ricci
tensor with the inverse metric. Substitution of (2.7), (2.15) and (2.17) yields

𝑅 = 𝛾𝜇𝜈 P⊥
𝛼

𝜈 P⊥
𝛽

𝜈𝑅𝛼𝛽 + 𝜀𝑛𝜇𝑛𝜈𝑅𝜇𝜈.

In the litera-
ture the scalar
Gauss relation
is also known
as the Gauss-

Codazzi equation.

Substitution of (2.15) and (2.17) yields the scalar Gauss relation

𝑅 = (s)𝑅 + 𝜀(𝐾̃2 − 𝐾̃𝛼𝛽𝐾̃𝛼𝛽) − 2𝜀(ℒ𝑛 +𝐾̃)𝐾̃ + 2𝜀(D𝛼 −𝜀𝑎𝛼)𝑎𝛼, (2.18)

which gives the full orthogonal decomposition of the scalar curvature in terms of
normal and tangential objects.
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2.4.2 Decomposition of the d’Alembert operator

Scalar operators can be decomposed in terms of orthogonal and tangential parts,
similar to tensors. One useful quantity that will be used later is the d’Alembert oper-
ator □ = 𝑔𝜇𝜈∇𝜇∇𝜈 for scalar fields 𝜙. Substitution of the decomposition (2.7) leads
to the following expression:

□𝜙 = 𝛾𝜇𝜈∇𝜇∇𝜈𝜙 + 𝜀𝑛𝜇𝑛𝜈∇𝜇∇𝜈𝜙

= 𝛾𝜇𝜈 P⊥
𝜌

𝜇 P⊥
𝜎

𝜈∇𝜌∇𝜎𝜙 − 𝜀𝑎𝜇 D𝜇 𝜙 + 𝜀 ℒ𝑛(ℒ𝑛 𝜙). (2.19)

The first term can be rewritten in terms of spatial derivatives and Lie derivatives along
𝑛𝜇. The covariant spatial derivative is related to the covariant ambient derivative via

D𝜇 D𝜈 𝜙 = P⊥
𝜌

𝜇 P⊥
𝜎

𝜈∇𝜌 P⊥
𝜆

𝜎∇𝜆𝜙.

Expansion of the right-hand side and yields an expression for the second covariant
derivative of 𝜙:

P⊥
𝜌

𝜇 P⊥
𝜎

𝜈∇𝜇∇𝜈𝜙 = D𝜇 D𝜈 𝜙 + 𝜀𝐾̃𝜇𝜈 ℒ𝑛 𝜙. (2.20)

The combination (2.19) with (2.20) then results in the following decomposition in
normal and tangential parts:

□𝜙 = (D𝜇 −𝜀𝑎𝜇) D𝜇 𝜙 + 𝜀 (ℒ𝑛 +𝐾̃) ℒ𝑛 𝜙.

From the d’Alembert operator it can be seen how coviariant derivatives for orthogo-
nal and tangential tensors can be constructed from the point of view of the ambient
manifold, but these will not be explicitly necessary in this work.

2.5 ADM LINE ELEMENT

The adm decomposition is a foliation of spacetime in terms of hypersurfaces of sig-
nature 𝜀, where the scalar field 𝑇 is identified with the time field that connects the
different Σ𝑡 for different values of 𝑡. Given a foliation in which the coordinates
𝑋𝜇 = 𝑋𝜇(𝑡, 𝑥𝑎) describe spacetime, the tangent vectors to the leaves Σ𝑡 are given
by

𝑒𝜇
𝑎 =

∂𝑋𝜇

∂𝑥𝑎 ∣
𝑡
,

as before, while

𝑇𝜇 =
∂𝑋𝜇

∂𝑡 ∣
𝑥

gives the components of the vector field that generates time evolution. Generally, 𝑇𝜇

will not be orthogonal to the Σ𝑡, and hence it can be decomposed into normal and
tangential parts as in figure 2.3:



26

𝑇𝜇 ≡ 𝑁𝑛𝜇 + 𝑁𝜇 = 𝑁𝑛𝜇 + 𝑁𝑎𝑒𝜇
𝑎.

Here 𝑁 is the lapse function, as before, while 𝑁𝜇 (or, equivalently, 𝑁𝑎) is called the
shift vector.

𝑃(𝑡)

𝑃(𝑡 + 𝛿𝑡)

𝑁𝑛𝜇

𝑁𝑎𝑒𝜇
𝑎

𝑇𝜇

Σ𝑡

Σ𝑡+𝛿𝑡

Figure 2.3 Decomposition of time

evolution in terms of the lapse and shift.

The line element can then readily be decomposed into tangential and normal parts:

d𝑠2 = 𝑔𝜇𝜈 d𝑋𝜇d𝑋𝜈

= (𝛾𝜇𝜈 + 𝜀𝑛𝜇𝑛𝜈) (𝑇𝜇 d𝑡 + d𝑥𝜇) (𝑇𝜈 d𝑡 + d𝑥𝜈)

= 𝜀𝑁2d𝑡2 + (d𝑥𝑎 + 𝑁𝑎d𝑡)𝛾𝑎𝑏(d𝑥𝑏 + 𝑁𝑏d𝑡). (2.21)

The last object that is left to decompose is the metric determinant. From the line
element it follows that 𝑔𝑡𝑡 = cofactor(𝑔𝑡𝑡)/𝑔 = ℎ/𝑔. Similarly, the (00) component of
𝑔𝜇𝜈 can be calculated to be 𝑔00 = 𝜀𝑁−2, and hence the volume element is given by

√𝜀𝑔 = 𝑁√𝛾. (2.22)

2.6 ADM ACTION AND BOUNDARY TERMS

In section 2.1 it was stated that the Einstein-Hilbert action must be supplemented
with boundary terms if the spacetime manifold has a non-trivial boundary. The na-
ture of these boundary terms can readily be understood within the framework of
hypersurface foliation. The treatment of these terms is given here for completeness.
A straightforward way to derive the boundary terms is through the use of the adm

spacetime foliation. Substitution of (2.18) and (2.22) into (2.1) yields the adm form
of the action:

𝑆EH = 𝜅 ∫
ℳ

[(s)𝑅 − 𝜀 (𝐾̃𝜇𝜈𝐾̃𝜇𝜈 − 𝐾̃2)

− 2𝜀 (ℒ𝑛 𝐾̃ + 𝐾̃2 − D𝜇 𝑎𝜇 + 𝜀𝑎𝜇𝑎𝜇) ]√𝛾 𝑁d𝑡d𝑑𝑥.

Comparison with (2.8) and (2.9) shows that the last term above is a total derivative:

ℒ𝑛 𝐾̃ + 𝐾̃2 − D𝜇 𝑎𝜇 + 𝜀𝑎𝜇𝑎𝜇 = ∇𝜇(𝑛𝜇𝐾̃ − 𝑎𝜇).
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Application of Stokes’ theorem then yields [16]

∫
ℳ

2𝜀 (ℒ𝑛 𝐾̃ + 𝐾̃2 − D𝜇 𝑎𝜇 + 𝜀𝑎𝜇𝑎𝜇) √𝛾 𝑁d𝑡d𝑑𝑥 = 2𝜀 ∮
∂ℳ

(𝑛𝜇𝐾̃ − 𝑎𝜇) d𝜎𝜇, (2.23)

where on the right-hand side the integration is over the boundary ∂ℳ of ℳ. On the
right-hand side integration is implied over the boundary ∂ℳ. As the hypersurface
element d𝜎𝜇 is a surface normal, it must be proportional to 𝑛𝜇. Furthermore, the
scalar surface element must correspond to a scalar surface patch on the boundary
hypersurface. It follows that

d𝜎𝜇 = 𝜀𝑛𝜇√𝛾 d𝑑𝑥, (2.24)

where the factor of 𝜀 ensures that outward flux through timelike surfaces is positive.
If the manifold
has additional
boundaries be-
yond the ones
induced by the
spacetime folia-
tion, each bound-
ary should be con-
sidered separately.

Insertion of (2.24) into (2.23) yields the Gibbons-Hawking-York (ghy) boundary term
of the action of general relativity [17,18]:

𝑆EH = 𝑆ADM − 𝑆GHY, with (2.25)

𝑆ADM ≡ 𝜅 ∫
ℳ

[(s)𝑅 − 𝜀 (𝐾̃𝜇𝜈𝐾̃𝜇𝜈 − 𝐾̃2)] √𝛾 𝑁d𝑡d𝑑𝑥,

𝑆GHY ≡ 2𝜀𝜅 ∮
∂ℳ

𝐾̃√𝛾 d𝑑𝑥.

The presence of the ghy boundary term shows that the Einstein-Hilbert action is not
differentiable from the perspective of variational calculus; it prevents the variation of
(2.25) to be written as a functional derivative. This is straightforwardly remedied by
adding this term on the left-hand side. The result is that the gravitational action is

𝑆EH + 𝑆GHY = 𝑆ADM.

The variation of 𝑆ADM then leads to (2.2). The action, of which the variation repro-
duces the Einstein field equations, can be seen to be 𝑆ADM.
The ghy boundary term diverges in spacetimes that are asymptotically flat. For

this reason, an additional boundary term is subtracted from the action, where the
integrand is equal to 2𝜀𝐾̃0√𝛾, where 𝐾̃0 is the asymptotic value of the extrinsic cur-
vature of the boundary, embedded in flat space. From the perspective of variational
calculus this extra term is a constant, and therefore it does not affect the field equa-
tions (2.2). The reason to include this term is that it renders the action finite.
The ghy boundary term can readily be generalised to modified theories of gravity,

such as higher derivative gravity or the scalar-tensor theories that are described in
chapter 3. However, such a generalisation goes beyond the scope of this work. An
extended treatment about boundary terms in general relativity, as well as their exten-
sions in theories of modified gravity, is presented in reference [19] and the references
therein.
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2.7 SYMMETRY REDUCTION

All the gravitational degrees of freedom can be represented by the spatial metric, the
lapse function and the shift vector. The functional forms of these objects within the
framework of cosmology can be inferred from physical observations, which will be
done here.
It is known from observations that the earth does not occupy a privileged position

within the solar system. Observations of the large-scale structure of the universe show
that, at length scales of the order of approximately 100 Mpc, the universe appears to
be highly homogeneous and isotropic. This is called the cosmological principle. This
has the consequence that there is no point in space that is preferred. The metric
tensor is therefore homogeneous and isotropic at these length scales.
The cosmological principle poses a requirement for the parametrisation of the met-

ric tensor. Considering (2.21), isotropy implies that the shift vector be zero every-
where. Similarly, homogeneity implies that the lapse function can only depend on
time, and that the spatial metric is both homogeneous and isotropic in space and
homogeneous in time. Thus, the adm line element reduces to

d𝑠2 = 𝜀𝑁2(𝑡)d𝑡2 + 𝑎2(𝑡)𝛾𝑎𝑏(𝐱)d𝑥𝑎d𝑥𝑏. (2.26)

The function 𝑎 implies that proper distances change with time. For this reason it is
called the scale factor. The restriction that 𝛾𝑎𝑏 be homogeneous and isotropic in space
fixes its geometry. This will be explicitly considered in chapter 4.
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SCALAR-TENSOR THEORIES

3
The theory of general relativity provides the most accurate macroscopic de-
scription of gravity as a dynamical interaction between spacetime—the dynamical
union of space and time—and the matter fields that pervade it. Nevertheless, new
discoveries led to the belief that alternative theories, based on different fundamental
principles, might provide a description of phenomena that are not straightforwardly
explained by general relativity. The origin of this belief can be traced back to a mis-
match between the theory of general relativity and observations in the large and the
small: cosmology and quantum field theory. For example, the cosmological singular-
ity at the beginning of the universeis generally taken to signify that the theory of
general relativity is not applicable during the time of the very early universe. Fur-
thermore, it is known that the universe underwent a period of accelerated expansion
at least twice during its lifetime. Although solutions to the Einstein field equations
(2.2) exist that describe universes that undergo such expansion, they provide neither
a reason why such a theory is meaningful nor a satisfying explanation of the under-
lying fundamental principles. From the side of particle physics it is known that the
theory of general relativity is non-renormalisable. Any attempt to treat general rel-
ativity as an effective theory of quantum gravity results in the presence of counter
terms that contain higher order curvature invariants, and therefore strongly modify
the theory and its subsequent predictions. Furthermore, it is known that the renor-
malisation of a theory that describes a scalar field in a curved spacetime results in
a direct coupling between the Ricci curvature and the scalar field itself. Thus, it ap-
pears that the formulation of a quantum field theory in a curved spacetime results in
a modification of the Einstein-Hilbert action (2.1).
It is therefore natural to wonder in what ways Einstein’s theory of general relativity

can be modified in order to resolve these issues. It turns out that, as a classical field
theory, these modifications can be classified into simple groups. In a 4-dimensional
spacetime general relativity is the unique relativistic field theory of which its action
yields equations of motion for the gravitational field that are second order in time.
This is a consequence of Lovelock’s theorem [20]. One must therefore find other ways
to modify general relativity if one is to insist on a spacetime that is 4-dimensional in
nature. Two such methods were described above:

I. introduce higher-order curvature invariants,

II. introduce additional field couplings.

Both approaches will be briefly investigated in the next sections, with an emphasis
on the latter. The simplest such extension of general relativity is the introduction

Such a theory is
a special case of
Horndeski’s the-
ory of gravitation
[21].

of a scalar field that is coupled to the gravitational field in a special way. Such a
coupling is said to be non-minimal, as opposed to the ordinary minimal coupling that
is exhibited by a matter field in general relativity. These models are called scalar-tensor
theories, and have various applications that are cosmological in nature. Examples
include the theory of quintessence, which aims to describe the accelerated expansion
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that is observed in the universe today, and Brans-Dicke theory, which was motivated
by philosophical considerations of the structure of the universe.
Point ii above can be realised in various ways. In addition to coupling a scalar

field to gravity in a non-minimal way, one can introduce families of scalar field, or
non-minimal couplings of vector or tensor fields. This work focusses on single-field
scalar-tensor theories, and therefore this chapter provides a brief introduction to their
general properties and relation to alternative modified theories of gravitation. For a
more comprehensive overview the reader is invited to consult the review works that
are available. An introduction to the field is provided by the references [22–28].

3.1 SCALAR-TENSOR THEORIES OF GRAVITATION

One of the key differences between the theory of general relativity and scalar-tensor
theories can be found in their respective assumptions about the interplay between
gravity and matter. General relativity can be formulated in terms of the principle of
equivalence. This principle implies that all masses experience gravitational forces in
the same way, irrespective of their internal composition, and the gravitational cou-
pling is an absolute constant. There is no reason to assume a priori that this is a funda-
mental principle, and alternative formulations of gravitation allow for the coupling of
gravity to matter to come about through a spontaneous symmetry breaking. The cou-
pling constant of gravity would therefore vary from point to point in spacetime, and
would subsequently be dynamical. In other words, the gravitational coupling would
be, in effect, a field.
In the simplest theories that have such a dynamical formulation the actual value

of the gravitational coupling is determined in part by the matter fields, the influence
of which arises as a source in the equations of motion. In this way, the strength of
gravity is determined by the mass distribution of the universe. Scalar-tensor theories
are therefore based in part on Mach’s principle [29]. The cost for Mach’s principle
to be realised in a theory of gravitation is that the gravitational force varies over
different regions of spacetime. Therefore, these theories of gravitation violate the
strong equivalence principle.
Scalar-tensor theories replace the gravitational constant in the theory of general

relativity with a field that couples directly to the derivatives of the gravitational metric.
One of the earliest examples of this can be found in Brans-Dicke theory [30,31], where
the Planck mass is replaced by a scalar field 𝜙:

𝑆BD = ∫
ℳ

(𝜙 𝑅 − 𝜔 𝜙−1∇𝜇𝜙∇𝜇𝜙) √−𝑔 d4𝑋. (3.1)

Here, 𝜔 is the Brans-Dicke coupling constant. Scalar-tensor theories can also be mo-
tivated beyond the philosophical principles outlined above. For example, string the-
ories have scalar-tensor theories as their low-energy limit, rather than general rela-
tivity, as they predict that the spin-2 graviton has a scalar partner, called the dilaton
[32,33]. Hence, on the assumption that string theory is correct one is led to the belief
that gravitation is a scalar-tensor theory, rather than the purely geometrical theory
of general relativity.
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Of course, one final motivation for scalar-tensor theories is that there is nothing
that contradicts such a formulation of gravitation in the first place. Their structure is
conceptually different from general relativity, and merits an investigation in its own
right.
When the scalar field takes on the role of the inflaton field, scalar-tensor theories

are able to naturally explain the accelerated expansion of the early universe [34–36].
This is in contrast to traditional models of inflation, where the scalar field has to be
introduced ad hoc. In fact, the increasingly precise measurements of the inflationary
parameters show a slight preference for non-minimally coupled models. Furthermore,
the non-minimal coupling allows scalar-tensor theories to bridge the gap between
the energy scale of inflation and the energy scales accessible to particle accelerators
today. The dynamics of single-field scalar-tensor theories are described in this chapter,
and their relation to observations is described in chapter 4.

3.2 DYNAMICS OF SCALAR-TENSOR THEORIES

This work considers a generalisation of the Brans-Dicke theory (3.1) and considers
The cosmological
constant has been
neglected here,
as it is essentially
a contribution to
the potential.

the single field scalar-tensor theory described by the action

𝑆[𝑔, 𝜙] = ∫ (𝑈𝑅 − 1
2 𝐺 ∇𝜇𝜙∇𝜇𝜙 − 𝑉) √−𝑔 d4𝑋, (3.2)

where 𝑈, 𝐺 and 𝑉 are model-specific functions of 𝜙 that describe the non-minimal
coupling, normalisation of the kinetic term and potential energy of the scalar field,
respectively. For later applications it will be convenient to define a new dimensionless
function 𝑠, which in terms of 𝑈 and 𝐺 is given as

𝑠 ≡
𝑈

𝐺𝑈 + 3𝑈2
1

. (3.3)

In perturbation theory this function typically leads to a suppression of the scalar
field propagator, and for this reason it is sometimes called a suppression function in
the literature [37–39]. The subscript notation denotes derivatives of functions of the
scalar field with respect to their argument:

𝑓𝑖(𝜙) ≡
∂𝑖𝑓
∂𝜙𝑖 (𝜙).

The action (3.2) is able to account for a large number of scalar-tensor theories that
have applications in cosmology.
The field equations for 𝑔𝜇𝜈 and 𝜙 can straightforwardly be found through the

variation of (3.2) with respect to 𝑔𝜇𝜈 and 𝜙:

𝑅𝜇𝜈 − 1
2 𝑅 𝑔𝜇𝜈 = 1

2 𝑈−1𝑇𝜙
𝜇𝜈,

𝐺 □𝜙 + 1
2 𝐺1∇𝜇𝜙∇𝜇𝜙 − 𝑉1 = −𝑈1𝑅.

The effective energy-momentum tensor takes the form
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𝑇𝜙
𝜇𝜈 = 𝐺 (𝛿𝛼

𝜇𝛿𝛽
𝜈 − 1

2 𝑔𝜇𝜈𝑔𝛼𝛽) ∇𝛼𝜙 ∇𝛽𝜙 − 𝑔𝜇𝜈𝑉 + 2 ∇𝜇∇𝜈 𝑈 − 2𝑔𝜇𝜈□𝑈.

It is not difficult to see that the field equations and the energy-momentum tensor
reduce to their known expressions in the case of a minimally coupled scalar field,
where 𝑈 = 1

2 𝑀2
P. The field equation for 𝜙 can be expressed as a Klein-Gordon-type

equation that is independent of the curvature of spacetime. It can be most compactly
expressed in term of 𝑈, 𝑠 and 𝑉:

□𝜙 + 1
2 ∇𝜇 log(𝑈/𝑠)∇𝜇𝜙 − 𝑠𝑈2𝑊1 = 0, 𝑊 ≡ 𝑉𝑈−2. (3.4)

The function 𝑊 has a geometrical meaning in its own right. This will become clear
in section 3.4.

3.3 CONFORMAL TRANSFORMATIONS

Scalar-tensor theories allow a parametrisation of fields that has a similar form as
Einstein-Hilbert gravity [40]. The parametrisation of the action (3.2) is called the
Jordan frame (jf), while the parametrisation that corresponds to (2.1) is called the
Einstein frame (ef). Both frames are related to each other by a conformal transforma-
tion of the metric tensor.
This section describes the effect of a conformal transformation that takes a metric

𝑔𝜇𝜈 to a new metric 𝑔̃𝜇𝜈 on a 4-dimensional manifold. The transformation is of the
form

𝑔𝜇𝜈 = Ω 𝑔̃𝜇𝜈. (3.5)

Here, Ω(𝜙) is the conformal factor, which is a strictly positive function of the scalar
field 𝜙. The transformation (3.5) implies

𝑔𝜇𝜈 = Ω−1 𝑔̃𝜇𝜈, 𝑔1/2 = Ω2 𝑔̃1/2, Γ𝜌
𝜇𝜈 = Γ̃𝜌

𝜇𝜈 + Ω𝜌
𝜇𝜈, (3.6)

where Γ𝜌
𝜇𝜈 are the components of the Christoffel symbol of the metric 𝑔, Γ̃𝜌

𝜇𝜈 the
components of the Christoffel symbol of the metric 𝑔̃𝜇𝜈 and Ω𝜌

𝜇𝜈 the difference tensor
that contains the derivatives of the conformal factor:

Ω𝜌
𝜇𝜈 ≡ 1

2 Ω−1 (𝛿𝜌
𝜇∂𝜈Ω + 𝛿𝜌

𝜈∂𝜇Ω − 𝑔̃𝜇𝜈𝑔̃𝜌𝛼∂𝛼Ω) .

The Riemann tensor can straightforwardly be calculated through substitution:

𝑅𝜌
𝜎𝜇𝜈 = 𝑅̃𝜌

𝜎𝜇𝜈 + Ω−1 (𝑔̃𝜌𝛼𝑔̃𝜎[𝜇𝛿𝛽
𝜈] − 𝛿𝜌

[𝜇𝛿𝛼
𝜈]𝛿

𝛽
𝜎) ∇̃𝛼∇̃𝛽Ω

+ 1
2 Ω−2 (3𝛿𝜌

[𝜇𝛿𝛼
𝜈]𝛿

𝛽
𝜎 − 3𝑔̃𝜎[𝜇𝛿𝛼

𝜈]𝑔̃
𝜌𝛽 + 𝛿𝜌

[𝜇𝑔̃𝜈]𝜎𝑔̃𝛼𝛽) ∇̃𝛼Ω∇̃𝛽Ω. (3.7)

The Ricci tensor is then obtained from (3.7) by contraction of the first and third
indices

𝑅𝜇𝜈 = 𝑅̃𝜇𝜈 − Ω−1 [𝛿𝛼
𝜇𝛿𝛽

𝜈 + 1
2 𝑔̃𝜇𝜈𝑔̃𝛼𝛽] ∇̃𝛼∇̃𝛽Ω + 3

4 Ω−2𝛿𝛼
𝜇𝛿𝛽

𝜈 ∇̃𝛼Ω∇̃𝛽Ω. (3.8)



33

Finally, the Ricci scalar is found from the trace of (3.8):

𝑅 = Ω−1𝑅̃ − 3Ω−2𝑔̃𝛼𝛽∇̃𝛼∇̃𝛽Ω + 3
2 Ω−3𝑔̃𝛼𝛽∇̃𝛼Ω∇̃𝛽Ω. (3.9)

The transformations (3.6) and (3.9) will be used in combination with a non-linear
field redefinition in order to formulate (3.2) in terms of a theory that resembles the
original Einstein-Hilbert action (2.1).

3.4 FIELD PARAMETRISATIONS OF SCALAR-TENSOR THEORIES

The action (3.2), expressed in terms of the fields (𝑔𝜇𝜈, 𝜙) features a non-minimal
coupling to gravity. It can be brought into a form which resembles that of a scalar
field minimally coupled to Einstein-Hilbert gravity, by a non-linear field redefinition
(𝑔, 𝜙) → (𝑔̃, 𝜙̃). Comparison of (3.2) with (2.1) and (3.9) shows that, for the gravita-
tional sector, it is sufficient to perform a conformal transformation (3.5) 𝑔𝜇𝜈 → 𝑔̃𝜇𝜈
of the metric field. The conformal factor is given by

Ω = 𝜅𝑈−1. (3.10)

The Ricci scalar transforms according to (3.9). Substitution of the transformed Ricci
scalar into the jf action (3.2) then results in

𝑆[𝑔̃, 𝜙] = ∫ ⎛⎜
⎝

𝜅𝑅̃ −
1
2

𝜅
𝑈

𝐺𝑈 + 3𝑈2
1

𝑈 ∇̃𝜇𝜙∇̃𝜇𝜙 − 𝑉̃⎞⎟
⎠

√−𝑔̃ d4𝑋,

where the ef potential 𝑉̃ is defined as

𝑉̃ ≡ 𝜅2𝑈−2𝑉 = 𝜅2 𝑊. (3.11)

A particular feature of 𝑊 is therefore that it is invariant under frame reparametrisa-
tions: 𝑊(𝜙) = 𝑊̃(𝜙̂). Tensors in the ef will always be indicated by a tilde. Indices
of ef tensors are raised or lowered with respect to the metric 𝑔̃𝛼𝛽, and covariant de-
rivatives ∇̃𝜇 are defined with respect to the Christoffel symbol of the metric 𝑔̃𝛼𝛽. The
kinetic term can be brought into the canonical form via the redefinition 𝜙 → 𝜙̃ of the
jf scalar field 𝜙 to the ef scalar field 𝜙̃, that follows from the differential relation

(
∂𝜙̃
∂𝜙)

2
=

𝜅
𝑈

𝐺𝑈 + 3𝑈2
1

𝑈 = (
𝑈𝑠
𝜅 )

−1
, (3.12)

where the last equality follows from (3.3). In terms of the ef parametrisation (𝑔̃, 𝜙̃)
the action (3.2) reads

𝑆[𝑔̃, 𝜙̃] = ∫ ( 1
2 𝑀2

P𝑅̃ − 1
2 ∇̃𝜇𝜙̃∇̃𝜇𝜙̃ − 𝑉̃) √−𝑔̃ d4𝑋. (3.13)

In the last step, the constant 𝜅 = 1
2 𝑀2

P was again identified with half the square of
the Planck mass.
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3.5 EXAMPLES OF SCALAR-TENSOR THEORIES

With the formalism of scalar-tensor theories in place it is instructive to consider two
important cases. The first identifies the inflaton field with the standard model Higgs
field, the second identifies it with the scalaron field of 𝑓 (𝑅) theories. Their relevance
becomes apparent within the formalism of inflationary cosmology, which will be dis-
cussed in chapter 4. Both models lead to almost indistinguishable predictions for the
inflationary spectral observables [41–44]. They are both representatives of a larger
class of inflationary attractors [45,46].

3.5.1 Higgs inflation

Higgs inflation proposes that the standard model Higgs field is the inflaton [37, 38,
41, 43, 47–49]. This model has several appealing characteristics. First, there is no
need to postulate the inflaton field as a separate scalar field. This allows the standard
model of particle physics to be combined with the standard model of cosmology into
a single field theory that can be extended up to the Planck scale. Second, it obviates
the above-mentioned problem that if the Higgs field were to be minimally coupled to
gravity, renormalisation effects would induce a non-minimal coupling.
The need for Higgs inflation to be a scalar-tensor theory follows from inflationary

reasoning. The inflationary power spectra are proportional to the conformal potential
𝑊, which in the case of a minimally coupled theory does not correctly describe the
spectral amplitude. The model of Higgs inflation is described by the action

𝑆H = ∫
ℳ

( 1
2 𝑀2

P𝑅 + 𝜉𝐻†𝐻𝑅 − D𝜇 𝐻† D𝜇 𝐻 − 𝜆 (𝐻†𝐻 − 1
2 𝑣2)2) √−𝑔 d4𝑋.

Here, 𝐻 is the complex Higgs field, 𝜆 the tree-level quartic Higgs self-coupling and
𝑣 ≈ 246 GeV the electroweak symmetry breaking scale. The magnitude of the non-
minimal coupling 𝜉 ≈ 104 follows from the observational constraints placed by the
inflationary power spectra [49]. The coupling between the Higgs field and the gauge
bosons is realised by the gauge covariant derivative

D𝜇 𝐻 = (∇𝜇 − i𝑔𝐴𝑎
𝜇𝜏𝑎 − 1

2 i𝑔′𝐵𝜇)𝐻,

where 𝐴𝑎
𝜇 and 𝐵𝜇 are the 𝑆𝑈(2) and 𝑈(1) gauge bosons with the respective coupling

constants 𝑔 and 𝑔′, and 𝜏𝑎 are the generators of 𝑆𝑈(2).
The Higgs field is an 𝑆𝑈(2) doublet, and hence comprises two complex (or four

real) fields. The connection to single-field scalar tensor theories is made once one
decomposes 𝐻 in terms of four real fields 𝜙 and 𝛼𝑎:

𝐻 = 1
√2

exp(i𝜏𝑎𝛼𝑎)(0, 𝜙)𝑇.

The Goldstone fields 𝛼𝑎 can be removed from the formalism by the adoption of
the unitary gauge. The action can then be expressed in terms of 𝜙 and the massive
standard model gauge bosons
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𝑊±
𝜇 ≡ 1

√2
(𝐴1

𝜇 ∓ i𝐴2
𝜇) , 𝑍0

𝜇 ≡ (𝑔2 + 𝑔′2)−1/2 (𝑔𝐴3
𝜇 − 𝑔′𝐵𝜇) .

The result is

𝑆H = ∫
ℳ

( 1
2 𝑀2

P𝑅 + 1
2 𝜉𝑅𝜙2 − 1

2 ∇𝜇𝜙∇𝜇𝜙 − 𝑉(𝜙)) √−𝑔 d4𝑋 + 𝑆m,

where the action 𝑆m accounts for the mass terms of the gauge bosons:

𝑆m = − 1
2 ∫

ℳ

𝑣−2𝜙2𝑔𝜇𝜈 (𝑚2
𝑊𝑊+

𝜇 𝑊−
𝜈 + 𝑚2

𝑍𝑍0
𝜇𝑍0

𝜈) √−𝑔 d4𝑋.

The masses are explicitly given as 𝑚2
𝑊 = 1

2 𝑣2𝑔2 and 𝑚2
𝑍 = 1

2 𝑣2(𝑔2 + 𝑔′2). The model
functions can simply be read off from this action:

𝑈(𝜙) = 1
2 𝑀2

P + 1
2 𝜉𝜙2, 𝐺(𝜙) = 1, 𝑉(𝜙) = 1

4 𝜆 (𝜙2 − 𝑣2)2 .

The model described above neglects the Higgs coupling to the fermion fields of the
standard model, but it is sufficient to describe the caveats associated with the con-
nection between particle physics and cosmology. It will be shown in chapter 4 that
the inflationary epoch depends on the flatness of the inflaton potential. It is impor-
tant that this flatness is not spoiled by quantum corrections. There are two sources
of quantum corrections:

I. radiative corrections that originate from the standard model fields (in this exam-
ple limited to the gauge bosons),

II. renormalisation group running of the model functions 𝑈, 𝐺 and 𝑉.

For Higgs inflation, these radiative corrections and the renormalisation group im-
provement turned out to be important for the consistency with particle physics ex-
periments. A discussion of these analyses goes beyond the scope of this work. Instead,
the interested reader is referred to the investigations of references [37,38,41,43,48–51].

3.5.2 𝑓 (𝑅)-theory as a scalar-tensor theory

The equivalence
of scalar-tensor
theories and 𝑓 (𝑅)
theories holds for
classical theories.
An investigation
of perturbatively
quantised 𝑓 (𝑅)
theories is given
in [52].

Scalar-tensor theories form a quite general modification of general relativity. One
of the most successful inflationary models, 𝑓 (𝑅) theory, can actually be realised as
a scalar-tensor theory [23]. Cosmological models such as 𝑓 (𝑅) theory considers the
Einstein-Hilbert action as the low-curvature limit of a general functional of the Ricci
scalar [24,53,54]:

𝑆𝑓 (𝑅) = ∫ 𝑓 (𝑅)√−𝑔 d4𝑋. (3.14)

From the variation of this action the field equations can be found to be

𝑓 (𝑅)𝑅𝜇𝜈 − 1
2 𝑓 (𝑅)𝑔𝜇𝜈 + (𝑔𝜇𝜈□ − ∇𝜇∇𝜈) 𝑓 (𝑅) = 𝑇𝜇𝜈.
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In contrast to general relativity, 𝑓 (𝑅) theory yields equations of motion which are
up to fourth order. It will be shown in the next section that this implies that these
theories have an additional scalar degree of freedom, which can be identified with
the inflaton [55].
The action (3.14) can be formulated as a scalar-tensor theory by the introduction

of an auxiliary field 𝛼 via

𝑆𝑓 (𝑅) = ∫ [𝑓 (𝛼) + 𝑓1(𝛼)(𝑅 − 𝛼)] √−𝑔 d4𝑋. (3.15)

Recall that 𝑓1(𝛼) = ∂𝑓 /∂𝛼. The variation of (3.15) with respect to 𝛼 results in the
equation of motion 𝛼 = 𝑅, provided 𝑓2 does not vanish. Therefore (3.15) is equivalent
to (3.14). With the assumption that 𝑓1 is invertible, the inflaton field can be defined

If 𝑓1<0, one in-
stead defines the
left-hand side of

(3.16) to be −𝜙2.

by the relation

𝜙2 = 2 𝑓1(𝛼). (3.16)

This differential relation allows the auxiliary field 𝛼 to be expressed in terms of 𝜙.
The action (3.15) can then be formulated as

𝑆𝑓 (𝑅) = ∫ [ 1
2 𝜙2𝑅 − 𝑉(𝜙)] √−𝑔 d4𝑋,

where the inflaton potential is given by

𝑉(𝜙) = 1
2 𝜙2 𝛼(𝜙) − 𝑓 (𝛼(𝜙)). (3.17)

A peculiar feature of these scalar-tensor theories is that the jf can be identified by
the absence of a kinetic term. This is a consequence of the origin of 𝜙 as a function
of the non-dynamical auxiliary field 𝛼.
To see how this works in practice it is instructive to consider what a reasonable

𝑓 (𝑅) theory might be. Any such theory must predict general relativity in some limit.
As the universe appears to be flat on cosmological scales it is natural to consider a
series expansion of the Ricci scalar 𝑅:

𝑓 (𝑅) = 𝑐0 + 𝑐1𝑅 + 𝑐2𝑅2. (3.18)

The correspondence with general relativity in the low-curvature limit fixes the propor-
tionality constant 𝑐0 = −𝑀2

PΛ in the first term to be a cosmological constant, while
the proportionality constant 𝑐1 = 1

2 𝑀2
P in the second term must be half the square of

the Planck mass. The coupling constant in the second term 𝑐2 must be determined
through observations.

One motivation
for the model is
the observation
that renormal-
isation effects

induce a term that
is quadratic in 𝑅.

The model described in (3.18) is called Starobinsky inflation [54], and was one of
the earliest models of cosmological inflation. The model functions for Starobinsky
inflation are

𝑈(𝜙) = 1
2 𝜙2, 𝐺(𝜙) = 0, 𝑉(𝜙) = (16𝑐)−1𝑀2

P
⎛⎜
⎝

1 −
𝜙2

𝑀2
P

⎞⎟
⎠

2

.
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3.6 EQUIVALENCE OF FRAMES

The above discussion shows that there is no preferred frame a priori, and all frames
However, frame
transformations
are not guaran-
teed to commute
with quantisation
procedures. This
is investigated in
reference [52].

are classically equivalent. Given that it is always possible to perform a conformal
transformation to transition from the jf to the ef, it seems natural to wonder whether
it is necessary to consider the jf in the first place. After all, once the model functions
in (3.2) have been specified, one is free to transform to the ef, and subsequently
perform all calculations there.
The answer to this question is one mostly of convenience, as, for a given set of

model functions, it is not guaranteed that the scalar field 𝜙 can be expressed as a
function of 𝜙̃ in a closed form. Therefore, an analytical treatment of the ef is not
always possible or practical.
A more fundamental objection arises once one considers the imprint of perturba-

tions in an inflationary context. The expansion of the universe during its inflationary
epoch should not continue overly long if it is to correctly describe the formation of
large-scale structure that is observed in the universe today. Since the expansion of
space is inextricably tied to the strength of the gravitational field, it is generally a
function of the scalar field and therefore frame-dependent. The conditions that de-
fine the end of inflation in its conventional formulation must therefore be carefully
specified, for otherwise one would make frame-dependent predictions. Once these
conditions are put into place, it is more natural to work with the jf. This will be
illustrated in section 4.5.5.
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COSMOLOGY

4
Cosmology provides a systematic study of the structure and evolution of the
universe. The theoretical description of modern cosmology rests on the formulation
of general relativity. Since its first presentation in 1915, general relativity has caused
an explosive growth in the understanding of the structure of the cosmos. It forms
the basis for the six-parameter Lambda cold dark matter (Λcdm) model. This is the
simplest theory that provides an understanding of, among others, the physics that
followed shortly after the hot Big Bang origin of the universe, the cosmic microwave
background (cmb) radiation, the large-scale structure of the distribution of galaxies,
the abundances of hydrogen, helium and lithium, and the accelerated expansion of
the universe.
Despite its empirical success, the bare Λcdm model is left with several unanswered

questions. For example, it does not provide an explanation for the apparent flatness
of the universe. Although it is only fairly recently that the curvature of the universe
at cosmological scales has been reliably measured, the equations of motion for the
gravitational field suggest that the degree of flatness that is observed today would
require very precise initial conditions of the cosmological parameters. There is no
physical principle that predicts why this should be so. The resolution to this paradox
is, as shall be seen, provided by cosmic inflation.
This chapter gives an overview of the conventional approach to cosmology. After

that, it provides a description of cosmic inflation as an extension of the Λcdm model
in the specific context of cosmological scalar-tensor theories. These themselves are
modifications—or, depending on the point of view, extensions—of general relativity.
The reader is invited to consult the extensive references on the subject, such as ref-
erences [14,56–60].

4.1 THE COSMOLOGICAL PRINCIPLE

In chapter 2, the cosmological principle was invoked in order to reduce the line-
element to the simple form

d𝑠2 = −𝑁2(𝑡)d𝑡2 + 𝑎2(𝑡)𝛾𝑎𝑏d𝑥𝑎d𝑥𝑏,

where 𝛾𝑎𝑏 is a homogeneous and isotropic spatial metric. Again, homogeneity in
spacetime implies that 𝛾𝑎𝑏 can only be a function of the spatial coordinates. The
condition that the spatial metric should be homogeneous and isotropic in space places
a strong restriction on what the geometry of space can be. There are just three possible
geometries that have this kind of symmetry:

I. flat space,

II. spaces of constant positive curvature,

III. spaces of constant negative curvature.
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In all these cases the spatial metric can be derived from the case of constant positive
curvature, where space has the topology of a 3-dimensional hypersphere of radius 𝑎.
The embedding of this hypersphere in a 4-dimensional Euclidean space results in the
familiar constraint equation

𝛿𝑎𝑏𝑥𝑎𝑥𝑏 + 𝑧2 = 𝑎2, (4.1)

where 𝑧 is an auxiliary variable. Differentiation of this relation results in the constraint

𝑧 d𝑧 = −𝛿𝑎𝑏𝑥𝑎d𝑥𝑏.

A spatial length interval can then be obtained by insertion of this constraint into the
Euclidean metric:

dℓ2 = 𝛿𝑎𝑏d𝑥𝑎d𝑥𝑏 +
𝛿𝑎𝑏𝛿𝑐𝑑𝑥𝑎𝑥𝑐d𝑥𝑏d𝑥𝑑

𝑎2 − 𝛿𝑎𝑏𝑥𝑎𝑥𝑏 . (4.2)

This relation expresses the distance between two spatial points entirely by the three
independent coordinates 𝑥𝑎. However, a given set of coordinates (𝑥1, 𝑥2, 𝑥3) corre-
sponds to two points on the hypersphere. The metric in this representation is there-
fore degenerate. A more convenient representation is given in terms of (hyper)spher-
ical coordinates, where the 𝑥𝑎 are parametrised by the radial distance 𝑟 and the two
angles 𝜃 and 𝜙:

𝑥1 = 𝑟 sin 𝜃 cos 𝜙,
𝑥2 = 𝑟 sin 𝜃 sin 𝜙,
𝑥3 = 𝑟 cos 𝜃.

The equation for the hypersphere in this coordinate system takes the form

𝛿𝑎𝑏𝑥𝑎 d𝑥𝑏 = 𝑟 d𝑟, 𝛿𝑎𝑏d𝑥𝑎d𝑥𝑏 = d𝑟2 + 𝑟2dΩ2
2,

where dΩ2 is the metric on the unit sphere. The spatial metric (4.2) then takes the
Spaces with con-

stant negative
curvature are
given by the

3-dimensional
pseudosphere,
which cannot

be embedded in
Euclidean space.

form

dℓ2 =
d𝑟2

1 − 𝑎−2𝑟2 + 𝑟2dΩ2
2.

The metric for flat space can be obtained from (4.2) by the limit 𝑎 → ∞, while
the metric for spaces of constant negative curvature can be obtained by the formal
replacement 𝑎 → i𝑏. The spatial metric can be brought in a form compatible with
(2.26) after the rescaling 𝑟 = |𝑎|𝑟, after which one obtains

dℓ2 = |𝑎|2 (
d𝑟2

1 − 𝜘𝑟2 + 𝑟2dΩ2
2) , (4.3)

The pseudosphere
is also known as
the hyperboloid.

where 𝜘 is the normalised curvature of the spatial manifold. It takes the values 𝜘 = 0
for the plane, 𝜘 = 1 for the sphere and 𝜘 = −1 for the pseudosphere. After insertion
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of this expression into (2.26), one obtains the line element for a Friedmann-Lemaître-
Robertson-Walker universe (flrw).
The coordinate system (4.3) on the hypersphere covers half of space. This can

be seen from (4.1), which has two solutions for the auxiliary variable 𝑧. It is often
desirable to express the line element in a coordinate system that covers the whole
of space. This can be done by the introduction of a radial coordinate 𝜒, that is the
solution to the differential equation

(
d𝜒
d𝑟 )

2
=

1
1 − 𝜘𝑟2 . (4.4)

The geometric interpretation of this new radial coordinate is shown in figure 4.1 for
the case of a two-dimensional sphere and pseudosphere.

𝜒

𝜒

Figure 4.1 Geometric meaning of 𝜒 for curved spaces.

The line element (4.3) then takes the form

dℓ2 = |𝑎|2 (d𝜒2 + 𝑓 (𝜒)2dΩ2
2) , 𝑓 (𝜒) =

⎧{
⎨{⎩

sinh 𝜒 for 𝜘 = −1,
𝜒 for 𝜘 = 0,
sin 𝜒 for 𝜘 = 1.

(4.5)

4.2 THE FLRW UNIVERSE

The combination of (2.26) and (4.3) leads to the line element for the homogeneous
and isotropic universes:

d𝑠2 = −𝑁2d𝑡2 + 𝑎2𝛾𝑎𝑏d𝑥𝑎d𝑥𝑏, (4.6)

where the components of 𝛾𝑎𝑏 can be read off from (4.3). The non-vanishing compo-
nents of the Christoffel symbol for this spacetime can be computed to be

Γ0
00 = D𝑡 𝑁, Γ0

𝑎𝑏 =
𝑎2

𝑁 𝐻𝛾𝑎𝑏,

Γ𝑎
0𝑏 = 𝑁𝐻𝛿𝑎

𝑏, Γ𝑎
𝑏𝑐 = Γs𝑎

𝑏𝑐.

Here, D𝑡 is the reparametrisation invariant time derivative that was introduced in
chapter 2, 𝐻 = D𝑡 𝑎/𝑎 is the Hubble parameter and Γs𝑎

𝑏𝑐 are the components of the
Christoffel symbol calculated from the spatial metric 𝛾𝑎𝑏. The non-vanishing compo-
nents of the Riemann tensor are
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𝑅0𝑎0𝑏 = −𝑁2𝐻2 (1 +
D𝑡 𝐻
𝐻2 ) 𝑔𝑎𝑏, 𝑅𝑎𝑏𝑐𝑑 = 𝑎2(s)𝑅𝑎𝑏𝑐𝑑 + 2𝐻2𝑔𝑎[𝑐𝑔𝑑]𝑏.

(s)𝑅𝑎𝑏𝑐𝑑 is the Riemann tensor calculated from 𝛾𝑎𝑏. The Ricci tensor can be found by
contraction of the Riemann tensor with the metric. The non-vanishing components
are

𝑅00 = −3𝑁2𝐻2 (1 +
D𝑡 𝐻
𝐻2 ) , 𝑅𝑎𝑏 = (s)𝑅𝑎𝑏 + 𝐻2 (3 +

D𝑡 𝐻
𝐻2 ) 𝑔𝑎𝑏.

It will be con-
venient to ex-
press later re-

sults in terms of
the normalised
spatial curva-
ture 𝜘= 1

6
(s)𝑅.

Finally, the Ricci scalar is

𝑅 = 𝑎−2(s)𝑅 + 12𝐻2 (1 +
1
2

D𝑡 𝐻
𝐻2 ) .

Meanwhile, the energy-momentum tensor describes a perfect fluid:

𝑇𝜇𝜈 = (𝜌 + 𝑝) 𝑢𝜇𝑢𝜈 + 𝑝 𝑔𝜇𝜈. (4.7)

The four-velocity 𝑢𝜇 is normalised such that 𝑢𝜇𝑢𝜇 = −1, and, in the context of the
adm decomposition, can be identified with the normal vector 𝑛𝜇. Insertion of these
relations into the Einstein field equations (2.2) results in the Friedmann equations

𝐻2 = 1
6 𝑈−1(𝜌 − 𝑎−2𝑈(s)𝑅),

D𝑡 𝐻 = − 1
4 𝑈−1(𝜌 + 𝑝 − 2

3 𝑎−2𝑈(s)𝑅).

From the Friedmann equations one can derive the following useful identity:

3𝐻2 + D𝑡 𝐻 = 1
4 𝑈−1 (𝜌 − 𝑝 − 2

3 𝑎−2𝑈(s)𝑅) . (4.8)

Finally, the Friedmann equations lead to the continuity equation

D𝑡 (𝑈−1𝜌) + 3𝐻𝑈−1(𝜌 + 𝑝) = 0.

The continuity equation is a result of the Einstein equations and the Bianchi identity.
In the case that 𝑈 is constant it can be obtained from the time component of the
conservation of the energy-momentum tensor (4.7).

4.2.1 Time reparametrisations

The Friedmann equations imply that the only dynamical degree of freedom in the
flrw metric is the scale factor. The lapse function becomes non-dynamical. The time
derivative D𝑡 is invariant under time reparametrisations, and it is therefore frequently
convenient to pick parametrisations (gauges) that differ from the coordinate time 𝑡.
These gauges correspond to different prescriptions of the lapse function.
The simplest possible time parametrisation that is often encountered in the litera-

ture corresponds to the gauge 𝑁 = 1. This defines Friedmann time.
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Another gauge, that turns out to be useful for inflationary cosmology, is the gauge
𝑁 = 𝐻−1. It will be shown in section 4.5 that this gauge measures time in terms of
the number of e-folds the scale factor has increased with respect to some reference
value. For this reason, this time parametrisation will be denoted by 𝑁e. It is a useful
time gauge when one wants to solve the Friedmann equations numerically.
Another gauge that is particularly useful for cosmological purposes is conformal

time 𝜏, for which 𝑁 = 𝑎. When expressed in terms of conformal time, the line element
(4.6) takes the form

d𝑠2 = 𝑎2(𝜏) (−d𝜏2 + 𝛾𝑎𝑏 d𝑥𝑎d𝑥𝑏) .

The usefulness of conformal time is apparent when one considers lightlike geodesics,
for which the line element vanishes: d𝑠2 = 0. From the symmetry of the flrw universe
it follows that dΩ2 = 0, and therefore

d𝑠2 = 𝑎2(𝜏) (−d𝜏2 + d𝜒2) ,

where 𝜒 is the radial coordinate defined in (4.4). It then follows that lightlike geodesics
trace out straight lines in the (𝜏, 𝜒) plane that travel at an angle of 𝜋/4.

4.3 DE SITTER SPACE

One of the most important discoveries of the previous century is that space expands
at an accelerated rate [61,62]. Observations similarly indicate that an increased rate
of expansion also took place during the early universe. In order to study spacetimes
that have this property it is useful to temporarily extend the conditions imposed on
spacetime by the cosmological principle. In particular, in this section the cosmolog-
ical principle is considered to be a symmetry of both space and time, rather than
space alone. Such a space is called a De Sitter space, and has a special role in infla-
tionary cosmology. Due to its homogeneity and isotropy it has a constant curvature.
Its important properties are summarised here.

Alternatively, De
Sitter space can
be defined as the
embedding of a
4-dimensional
hypersphere in
5-dimensional
Minkowski space,
analogous to
the procedure
in section 4.1.

De Sitter space is a solution to the Einstein field equations (2.1) with the inclusion
of the cosmological constant. The cosmological constant can be considered as a
vacuum contribution to the energy density; its energy-momentum tensor is

𝑇Λ
𝜇𝜈 = −Λ𝑔𝜇𝜈.

Comparison with the energy-momentum tensor of a perfect fluid (4.7) leads to the
conclusion that a vacuum energy density can be described as a perfect fluid of which
the energy density and momentum are

𝜌Λ = −𝑝Λ = Λ.

Substitution of these expressions into the continuity equation leads to the conclusion
that 𝜌Λ/𝑈 is constant. It then follows from the Friedmann equations that

D𝑡 𝐻 + 𝐻2 =
D𝑡

2 𝑎
𝑎 =

𝜌Λ/𝑈
6 ≡ 𝐻2

Λ.
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The solution to this equation is

𝑎 = 𝑎1 exp(∫ 𝐻Λ 𝑁d𝑡) + 𝑎2 exp(− ∫ 𝐻Λ 𝑁d𝑡), (4.9)

where 𝑎1 and 𝑎2 are constants of integration. They can be fixed by insertion of (4.9)
into the first Friedmann equation, after which one obtains

4𝐻2
Λ𝑎1𝑎2 = 𝜘. (4.10)

Of particular interest here is flat space, for which the right-hand side vanishes. In
that case, one must set 𝑎2 to zero in order to obtain a solution that corresponds
to an expanding space. Notice that this feature is general; any non-zero curvature
will require that 𝑎1 ≠ 0. The scale factor will therefore always increase approximately
exponentially, given enough time. Substitution of the solution of (4.10) into the line-
element yields

d𝑠2 = −d𝑡2 + 𝐻−2
Λ

⎛⎜⎜⎜⎜
⎝

sinh2(𝐻Λ𝑡)
exp(2𝐻Λ𝑡)
cosh2(𝐻Λ𝑡)

⎞⎟⎟⎟⎟
⎠

⎡⎢⎢
⎣
d𝜒2 +

⎛⎜⎜⎜⎜
⎝

sinh2 𝜒
𝜒2

sin2 𝜒

⎞⎟⎟⎟⎟
⎠

dΩ2
2
⎤⎥⎥
⎦

𝜘 = −1,
𝜘 = 0,
𝜘 = 1,

where for convenience the lapse function has been set to 1. The three different solu-
tions each represent a section of the same spacetime, as one can be transformed into
another via a suitable coordinate transformation.

4.4 EVOLUTION OF THE UNIVERSE

The Friedmann equations and the continuity equation provide three equations in
order to determine four unknowns. Therefore, in order to obtain a unique solution
for these equations one would have to provide a fourth equation. This additional
equation relates the energy density 𝜌 and the pressure 𝑝 in an equation of state:

𝜌 = 𝑤 𝑝. (4.11)

The equation of state is enough to express the energy density 𝜌 as a function of the
scale factor. After substitution of the equation of state in the continuity equation it
is straightforward to verify that

𝜌(𝑎) ∝ 𝑎−3(1+𝑤) (4.12)

is a solution. The solution (4.12) can be inserted into the first Friedmann equation to
yield a differential equation for the scale factor alone. This fixes, for a given equation
of state, the behaviour of the scale factor as a function of time:

𝑎(𝑡) ∝ 𝑡
2
3 (1+𝑤)−1

.

An exception to these scaling behaviours is provided by De Sitter space, for which
𝑤 = −1. The equations of state and some of their corresponding physical conse-
quences have been gathered in table 4.1. In particular, it lists the comoving particle
horizon 𝑑H, which is defined as
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𝑑H =
𝑡

∫
𝑡0

𝑎−1(𝑡) 𝑁(𝑡)d𝑡.

The particle horizon is the distance light could have travelled from some initial time 𝑡0
until some time 𝑡. Particles that are at distances smaller than the particle horizon with
respect to each other are said to be causally connected. Also of particular importance
is the comoving Hubble radius (𝑎𝐻)−1. The physical particle horizon and the physical
Hubble radius are typically equal in cosmological models in which the strong energy
condition holds, that is, if 𝜌 + 3𝑝 > 0, and both typically increase in time.
The above discussion assumes that the energy density of the universe is completely

determined by the energy density of a single kind of matter. If different kinds of
matter are present, each would have its own equation of state and the total energy
density is formed by their sum. The energy density for each kind of matter depends
on the scale factor according to (4.12). The behaviour of the scale factor can then
be determined by substitution of the total energy density into the first Friedmann
equation.

Table 4.1 Behaviour of the scale factor and associated quantities for different

equation of state parameters.

𝑤 𝜌(𝑎) 𝑎(𝑡) 𝑑H (𝑎𝐻)−1

radiation 1
3 𝑎−4 𝑡

1
2 𝑡

1
2 𝑡

1
2

matter 0 𝑎−3 𝑡
2
3 𝑡

1
3 𝑡

1
3

curvature − 1
3 𝑎−2 𝑡 log 𝑡 constant

vacuum −1 𝑎0 e𝐻Λ𝑡 e−𝐻Λ𝑡 e−𝐻Λ𝑡

4.4.1 Epochs of the universe

As each kind of matter has its own characteristic dependence on the scale factor it is
reasonable to expect that the universe went through different phases called epochs, in
which the energy density was dominated by one particular kind of matter. In the very
early universe, the energy was dominated by a constant vacuum energy, since the
universe underwent a period of accelerated expansion. This exponential expansion
was followed by a period in which the energy content was dominated by radiation,
followed by a period in which the energy density was dominated by matter.
The first Friedmann equation serves as a constraint equation for the energy content

of the universe. Division by 𝐻2 results in

Ωr + Ωm + Ω𝜘 + ΩΛ = 1. (4.13)

with Ω𝑖 = 𝜌𝑖/𝜌0 and the critical energy density defined as 𝜌0 ≡ 6𝑈𝐻2. At present,
the universe has a small left-over vacuum energy density Λde, which is known as dark
energy. The origin of this vacuum energy is unknown. Constructions that generate
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this energy density dynamically through the introduction of another scalar field are
known as quintessence.
This section is concluded with the definition of the redshift 𝑧. Photons that are

emitted at some time 𝑡 are redshifted by the expansion of the universe when these
photons are observed today. The redshift 𝑧 quantifies this change as

1 + 𝑧 ≡
𝑎today

𝑎(𝑡) .

One usually chooses a normalisation in which 𝑎today = 1.

4.5 INFLATION

Although the bare Λcdm model is successful in describing and explaining various
properties of the universe at large, it still leaves various questions unanswered. Three
of these are the so-called flatness, horizon and monopole problems. Inflation was first
proposed independently by Starobinsky, Guth and Sato [54,63–65] and subsequently
worked out by Linde, Albrecht, Steinhardt and others [66–68] in an attempt to find
a resolution to these three problems. Since then, inflation has been developed as a
cornerstone of cosmology, and successfully predicts the anisotropies in the cmb and
the formation of large-scale structure out of small quantum fluctuations [69–75]. In
this section the basic idea of inflation will be presented, why it solves the flatness
and horizon problems (and the monopole problem as an extension), and how it is
modelled through the dynamics of a scalar field. Furthermore, the slow-roll formalism
of inflation will be introduced and used to derive the cosmological parameters for
the quantum fluctuations that are observed in the cmb today.

4.5.1 The cosmic microwave background radiation

The conventional picture proposed by the Λcdm model is that, in the early universe,
the various kinds of energy density that comprise (4.13) were in thermal equilibrium
with each other. Electrons, protons and photons were tightly coupled in an ionised
plasma that filled the universe. The energy density dropped as the universe expanded,
and as a result the universe cooled down. The electrons and protons were able to
form hydrogen once the universe had cooled down sufficiently, after which the mean

The energy den-
sity scales as 𝑎−4

for radiation.
From the Stefan-
Boltzmann law it
then follows that
𝑇 scales as 𝑎−1.

free path of the photons diverged to infinity. This moment of decoupling defines a
surface in time that is measured on earth as the surface of last scattering, which fills
the universe as the cosmic microwave background (cmb). The cmb was emitted at a
redshift of 𝑧 ≈ 1100, which implies that its original temperature of 𝑇CMB ≈ 3000 K
has been redshifted to its current measured value of 𝑇 ≈ 2.73 K.
The cmb is the most perfect realisation of a blackbody that is observed in nature,

with temperature anisotropies of the relative order Δ𝑇/𝑇 ≈ 10−5.
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4.5.2 The flatness and horizon problems

The flatness problem Observation of (4.13) leads to a peculiar puzzle. Observations
A universe where
𝜌𝜘 is the domi-
nant contribution
to the Friedmann
equation is known
as a Milne uni-
verse.

indicate that the curvature contribution to the energy density today is negligibly
small, and effectively absent. In the original Λcdm model, the Big Bang origin of
the universe was followed by an epoch where the energy content of the universe was
dominated by radiation, followed by an epoch where it was dominated by matter.
Comparison of (4.13) with table 4.1 then shows that, as the scale factor increases
with time, the curvature term should dominate, such that Ω𝜘 ≈ 1. However, this is
not the case, as the curvature of the observable universe appears to be zero.

As Ωr and Ωm
decrease faster
than Ω𝜘.

Since (4.13) predicts that any deviation from Ω𝜘 = 1 should increase with time,
it appears as if the initial conditions of the universe were greatly fine-tuned for the
curvature to be as flat as it is. This is known as the flatness problem.

The horizon problem It was mentioned before that the conventional hot Big Bang
scenario of the Λcdm model proposes that, after the Big Bang, the energy content
of the universe was first dominated by radiation, and afterwards by matter. From
table 4.1 it can be seen that, during the radiation and matter epochs, the particle
horizon grew in direct proportion to a positive power of the scale factor. The result is
that, since the Big Bang, the scale factor has increased monotonically. This, in turn,
implies that length scales that enter the horizon today have been far outside of the
horizon at the time that the surface of last scattering was emitted. This is sketched
in figure 4.2.
That the cmb nevertheless has a near homogeneous temperature suggests that

different patches in the universe were in thermal contact with each other during the
time of decoupling while they were, in actuality, causally disconnected. This paradox
is called the horizon problem.

inflation radiation matter dark energy
log 𝑎

(𝑎𝐻)−1

𝐿

today

Figure 4.2 Evolution of the comoving length scales 𝐿 over different epochs of

the universe.

Resolution through inflation Both the horizon and flatness problem can be solved with
the formalism of cosmic inflation. Inflation is a phase of accelerated expansion in the
early universe.
From figure 4.2 it follows that the universe must have undergone an epoch during

which the particle horizon, and indeed the Hubble horizon, shrank. Comparison with
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the Friedmann equations indicates that this yields the following condition on the
evolution of the scale factor:

D𝑡(𝑎𝐻)−1 < 0 ↔
D𝑡

2 𝑎
𝑎 > 0.

This is usually taken as the formal definition of inflation, and will be adopted in what
follows.
From the Friedmann equations it follows that, in order for a period of inflation to

be realised, the matter content of the universe must be dominated by a substance
that violates the strong energy condition: 𝜌 + 3𝑝 < 0. No known form of ordinary
matter has this property. It can be seen from table 4.1 that the only way to have an
accelerated expansion of the scale factor is for the energy content of the universe to
be dominated by vacuum energy.
To see how this solves the flatness and horizon problems, consider figure 4.2 and

figure 4.3. In the former figure it can be seen that the comoving length scales are
constant in time (indeed, this is so by definition), but the dynamical Hubble horizon
changes. In particular, it decreases during the inflationary epoch. Therefore, any
given comoving length scale 𝐿 is at some point entirely enclosed by the Hubble
horizon, given enough time.
The flatness problem is resolved similarly by the paradigm of inflation. In (4.13)

it can be seen that ΩΛ grows during the inflationary epoch, as Ω𝜘 decreases. After
inflation ends, the vacuum decays into radiation and matter. This resulted in a uni-
verse that is dominated by radiation and matter, while the curvature is negligible.

present

𝐴𝐵

Surface of last scattering

𝐴𝐵

In
f l

a
t i

on

Figure 4.3 Inflation expands small uniform patches of

space to seemingly causally disconnected distances.

If the model of inflation is correct, it is necessary to determine how long the inflation-
ary epoch should last. If it does not last long enough it cannot resolve the horizon and
flatness problems, but if it lasts too long it cannot explain the large-scale structure of
the universe. A convenient parameter that quantifies the expansion of the universe is
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the number of e-folds 𝑁e that the scale factor increased with respect to the start of
inflation at time 𝑡i. It is defined as

𝑁e = log
𝑎f
𝑎i

=
𝑡f

∫
𝑡i

𝐻 𝑁d𝑡, (4.14)

with 𝑡f the time at which inflation ends. The number of e-folds in most models of
inflation that is necessary to describe the observed flatness of the universe is 𝑁e ≈ 60.

4.5.3 Scalar-field inflation

A simple method to implement inflation is relies on the introduction of a scalar field
𝜙, called the inflaton. The energy density of the early universe is then assumed to
be dominated by the energy density of the inflaton. In this way, the inflaton field is
able to drive an accelerated expansion of space. A simple model is described by the
action

𝑆𝜙[𝜙] = − ∫ ( 1
2 ∇𝜇𝜙 ∇𝜇𝜙 + 𝑉(𝜙)) √−𝑔 d𝑋4. (4.15)

From the homogeneity of the cmb it follows that 𝜙 itself is homogeneous, and is
only a function of time. It will be shown later that, under certain conditions, the
vacuum energy Λ is then provided by the potential 𝑉(𝜙). In this regime, where the
energy density is dominated by the potential energy of the inflaton, the universe is
approximately a De Sitter universe.
The presence of structure, both in the large and small scales, indicate that inflation

must at some point come to an end. This is accommodated by the fact that the
inflaton field is dynamical, and as a result the vacuum energy will change with time.
The early universe therefore cannot be a perfect De Sitter universe. Deviations from
the De Sitter universe form the basis of the slow-roll approximation. In this regime, the
potential of the inflaton field can be said to be flat, such that the inflaton slowly rolls
down the potential.
The basis of this section will be an extension of the minimally coupled action in

(4.15). The inflaton will be described by a generic scalar-tensor theory, as described
in chapter 3. This has two advantages:

I. Current observations slightly favour models that exhibit a non-minimal coupling.

II. A non-minimal coupling could potentially give insights into the fundamental na-
ture of the inflaton field.

In recent years a plethora of models has been developed for scalar-tensor theories
[76], but the results in this work will be quite general.
The energy-momentum tensor for a homogeneous inflaton field takes the simple

form

𝑇𝜙
𝜇𝜈 = 𝜌𝜙𝑛𝜇𝑛𝜈 + 𝑝𝜙𝛾𝜇𝜈.
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The normal vector is defined as 𝑛𝜇 = −∇𝜇𝜙/√−∇𝜇𝜙∇𝜇𝜙. The energy density 𝜌𝜙

and pressure 𝑝𝜙 for a scalar-tensor theory are

𝜌𝜙 = 1
2 𝐺(D𝑡 𝜙)2 + 𝑉 − 6𝐻 D𝑡 𝑈,

𝑝𝜙 = 1
2 𝐺(D𝑡 𝜙)2 − 𝑉 + 4𝐻 D𝑡 𝑈 + 2 D𝑡

2 𝑈.

These two quantities appear in the Friedmann equations. Thus, a scalar-tensor theory
is able to produce the condition where the strong energy condition is violated, and
subsequently drive an accelerated expansion of space. Additionally, note that it is not
just the strong energy condition that is violated in scalar-tensor theories, since the
energy density is not necessarily positive. Scalar-tensor theories therefore potentially
violate the weak energy condition.

4.5.4 The slow-roll approximation

In order to have a successful phase of inflation the potential of the inflaton must
dominate its energy density. Paradoxically, this does not necessarily imply that the
scalar field moves slowly through its potential, just that the change of the potential
relative to the potential itself is small. This is sketched in figure 4.4. Once the inflaton
reaches the minimum of its potential it triggers a period of reheating, where it loses
energy due to friction. This then leads to the production of radiation and matter that
is observed today.

𝑉(𝜙)

𝜙

slow-roll reheating slow-roll

Figure 4.4 Typical slow-roll regimes

for a given potential in inflation.

The slow-roll approximation for scalar-tensor theories can be implemented by the
condition that, for any smooth function 𝑓 of 𝜙, the following inequality holds [77]:

D𝑡
2 𝑓 ≪ 𝐻 D𝑡 𝑓 ≪ 𝐻2𝑓 .

One recovers the usual notion of slow-roll inflation when 𝑓 is the identity [78]:
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D𝑡
2 𝜙 ≪ 𝐻 D𝑡 𝜙 ≪ 𝐻2𝜙.

The slow-roll condition and the equations of motion motivate the definition of the
following quantities:

𝜀1,H = −
D𝑡 𝐻
𝐻2 , 𝜀2,H = −

D𝑡
2 𝜙

𝐻 D𝑡 𝜙, (4.16.a)

𝜀3,H =
1
2

D𝑡 𝑈
𝐻𝑈 , 𝜀4,H =

1
2

D𝑡 𝑠
𝐻𝑠 , 𝜀5,H =

1
2

D𝑡
2 𝑈

𝐻2𝑈
. (4.16.b)

The first two quantities describe the dynamics of the Hubble parameter and the infla-
ton, while the remaining quantities describe the effects of the model function 𝑈, 𝑠 and
𝑉. Taken together, they define the Hubble slow-roll formalism, as they completely deter-
mine the dynamics of the Hubble parameter and the inflaton field. The Klein-Gordon
equation, the second Friedmann equation and equation (4.8) can respectively be
written as

−
𝑠𝑈2𝑊1
3𝐻 D𝑡 𝜙 = 1 − 1

3 𝜀2,𝐻 + 1
3 𝜀3,𝐻 − 1

3 𝜀4,𝐻, (4.17)

(D𝑡 𝜙)2

𝑈𝑠 = 4 [𝜀1,𝐻 + 𝜀3,𝐻 − 𝜀5,𝐻 + 3𝜀2
3,𝐻] 𝐻2, (4.18)

𝑈𝑊 = 6(1 − 1
3 𝜀1,𝐻 + 5

3 𝜀3,𝐻 + 1
3 𝜀5,𝐻)𝐻2. (4.19)

The spatial curvature has been set to zero, as inflation generically flattens any space-
time. During the inflationary epoch it is necessary, not only for the slow-roll parame-
ters to be small, but to remain small for a sufficiently long time. It is therefore useful
to introduce a hierarchy of slow-roll parameters as follows:

𝜀(𝑖+1)
𝑗,𝐻 =

D𝑡 𝜀(𝑖)
𝑗,𝐻

𝐻𝜀(𝑖)
𝑗,𝐻

, 𝑖 = 0, 1, …, 𝑗 = 1, 2, 3, 4, (4.20)

with 𝜀(0)
𝑗,𝐻 the slow-roll parameters defined in (4.16). In this manner one can extend

the slow-roll approximation to the slow-roll expansion [78], where one can expand up
to the order of the slow-roll parameters that is desired. The slow-roll approximation
then amounts to a truncation at the linear order.
From this discussion it follows that 𝜀5,𝐻 plays no role in the slow-roll approximation,

since straightforward substitution shows that

𝜀5,𝐻 = (2𝜀3,𝐻 − 𝜀1,𝐻 + 𝜀(1)
3,𝐻)𝜀3,𝐻.

Thus 𝜀5,𝐻 is quadratic in the slow-roll parameters.
There exists an additional formulation of the slow-roll approximation, which is

approximately equal to the previous one when certain conditions hold. This is the
potential formulation of the slow-roll approximation. The potential slow-roll parameters
are defined as
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𝜀1,𝑊 = 𝑠𝑈
𝑊1
𝑊

(𝑈𝑊)1
𝑈𝑊 , 𝜀2,𝑊 = 𝜀1,𝑊 + 2 (

𝑠𝑈𝑊1
𝑊 )

1
, (4.21.a)

𝜀3,𝑊 = −𝑠𝑈
𝑈1𝑊1
𝑈𝑊 , 𝜀4,𝑊 = −𝑠𝑈

𝑠1𝑊1
𝑠𝑊 . (4.21.b)

These definitions are based on the observation that, as long as the slow-roll approxi-
mation is valid, 𝑠𝑈2𝑊1 ≈ −3𝐻 D𝑡 𝜙, which can be seen by truncation of (4.17) at the
leading order. With this approximation it is not difficult to check that 𝜀1,𝐻 ≈ 𝜀1,𝑊.
Similar relations hold for the other slow-roll parameters. Their approximate equality
makes it convenient to exchange one formulation in favour of the other. It is for this
reason that the subscripts 𝐻 or 𝑊 will be omitted in what follows.
The potential formulation enables one to make direct inflationary predictions, once

the behaviour of the inflaton field is specified. The number of e-folds generated by
inflation can be expressed in terms of the inflaton field. When the leading contribution
of (4.17) is inserted into (4.14), one obtains

𝑁e =
𝜙f

∫
𝜙i

𝐻2

𝐻 D𝑡 𝜙 d𝜙 ≈ −
1
2

𝜙f

∫
𝜙i

(
𝑠𝑈𝑊1

𝑊 )
−1

d𝜙,

where 𝜙i and 𝜙f denote the field values at the beginning and end of inflation, respec-
tively.

4.5.5 Frame invariance of cosmological observables

A complication of cosmological scalar-tensor theories over their minimally coupled
counterparts is that scalar-tensor theories have to deal with the question of whether
results are truly physical, or merely an artefact of the frame parametrisation. The
issue of frame parametrisations is described in chapter 3. This section will briefly
outline how the slow-roll formalism can be formulated such that it is covariant with
respect to the transformation from the jf to the ef, and vice versa.
Since the transition from the jf to the ef involves a conformal transformation, it is

no surprise that the expansion produced by inflation is a frame-dependent concept.
It can be shown exactly that, under a frame-transition as described in section 3.5,
the number of e-folds (4.14) transforms as

𝑁e =
𝑎e

∫
𝑎i

d log 𝑎 =
𝑎e

∫
𝑎i

d log 𝑎 +
Ωe

∫
Ωi

d log Ω = 𝑁̃e + log(Ωe/Ωi).

Thus, 𝑁e is not invariant under a frame transition. Similarly, the size of the comoving
Similarly, the in-
stance at which a
comoving length

scale enters
the Hubble ra-
dius becomes

frame dependent.

Hubble radius will be a frame-dependent statement. Both of these quantities are
important for the formulation of inflationary cosmology.
The above is not necessarily a problem, as the duration of inflation itself becomes a

frame-dependent concept. One must specify a precise condition for inflation to end,
such that this condition is invariant under frame transformations. It turns out that
the frame-independent condition is when
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max(𝜀1 + 𝜀3, |𝜀1 + 𝜀2 + 3𝜀3 + 𝜀4|) = 1. (4.22)

Equation (4.22) ensures that cosmological observables are invariant under frame
transitions [79].

4.6 COSMOLOGICAL PERTURBATIONS

Observations indicate that the universe is largely homogeneous and isotropic. De-
viations from perfect homogeneity and isotropy are small, of the relative order of
10−5. This justifies a linear parametrisation of the perturbations, where the metric
and scalar field are decomposed as

𝑔𝜇𝜈(𝑡, 𝐱) = 𝑔̄𝜇𝜈(𝑡) + 𝛿𝑔𝜇𝜈(𝑡, 𝐱), 𝜙(𝑡, 𝐱) = 𝜙̄(𝑡) + 𝛿𝜙(𝑡, 𝐱). (4.23)

The background values 𝑔̄𝜇𝜈 and 𝜙̄ can be taken to be form-invariant under coordinate
transformations [80]. That is, the background values are invariant under coordinate
transformations, and generally only the perturbations are affected. It is therefore not
clear beforehand whether or not the inhomogeneities in (4.23) are physical inhomo-
geneities, or whether they are the result of some coordinate system. The effect of
coordinate transformations on the perturbations will be considered here. Under a
coordinate transformation 𝑥𝜇 → 𝑥̃𝜇 = 𝑥̃𝜇(𝑥) the metric and inflaton field transform
as

𝑔̃𝜇𝜈(𝑥̃) =
∂𝑥𝛼

∂𝑥̃𝜇
∂𝑥𝛽

∂𝑥̃𝜈 𝑔𝛼𝛽(𝑥), 𝜙̃(𝑥̃) = 𝜙(𝑥). (4.24)

Of particular importance are the infinitesimal coordinate transformations

𝑥𝜇 → 𝑥̃𝜇(𝑥) = 𝑥𝜇 − 𝜉𝜇. (4.25)

Substitution of (4.25) into (4.24) then yields the dependence of the perturbations on
the coordinate transformation up to first order in the gauge parameter:

𝛿𝑔𝜇𝜈 = 𝛿𝑔𝜇𝜈 + ℒ𝜉 𝑔𝜇𝜈, 𝛿𝜙 = 𝛿𝜙 + ℒ𝜉 𝜙. (4.26)

Here ℒ𝜉 denotes the Lie derivative along 𝜉𝜇.

4.6.1 Gauge dependence of the perturbations

Equation (4.26) can be used to determine the dependence of the perturbations of
the metric and inflaton field on coordinate transformations. In order to do so it is
convenient to characterise the degrees of freedom in terms of their irreducible repre-
sentations of the group of spatial rotations. The perturbations of the spatial part of
the metric 𝛿𝛾𝑎𝑏 are then decomposed into scalars, vectors and tensors:

𝛿𝛾𝑎𝑏 = 2ℎ 𝛾̄𝑎𝑏 + D̄𝑎D̄𝑏ℎ′ + D̄(𝑎ℎT
𝑏) + ℎTT

𝑎𝑏 . (4.27)
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The scalar degrees of freedom are parametrised by the trace ℎ and the longitudinal
vector mode ℎ′. The ℎT

𝑎 and ℎTT
𝑎𝑏 respectively denote the transverse vector degrees of

freedom and the transverse traceless tensor degrees of freedom. They satisfy

D̄𝑎ℎT
𝑎 = 𝛾̄𝑎𝑏ℎTT

𝑎𝑏 = D̄𝑎ℎTT
𝑎𝑏 = 0.

The vector degrees of freedom of the metric can similarly be decomposed in terms
of a scalar and a transverse vector:

𝛿𝑔0𝑎 = D̄𝑎𝑁′ + 𝑁T
𝑎 .

Finally, the vector component of the gauge parameter can be decomposed into 1
scalar and 1 transverse vector:

𝜉𝑎 = D̄𝑎𝜉 + 𝜉T
𝑎 .

It is then not difficult to show that, with the homogeneous and isotropic flrw back-
ground (4.6), the perturbation of the lapse transforms as

𝛿𝑁̃ = 𝛿𝑁 − 𝑁D̄𝑡(𝑁−1𝜉0), (4.28)

the perturbation of the shift vector transforms as

D̄𝑎𝑁̃′ = D̄𝑎(𝑁′ + 𝑁𝑎2[D̄𝑡(𝑎−2𝜉) + 𝑎−2𝜉0]), (4.29.a)

𝑁̃T
a = 𝑁T

𝑎 + 𝑁𝑎2D̄𝑡(𝑎−2𝜉T
𝑎 ), (4.29.b)

the perturbations of the components of the spatial metric transform as

ℎ̃ = ℎ − 1
3

¯̃𝐾𝜉0, (4.30.a)

D̄𝑎D̄𝑏ℎ̃′ = D̄𝑎D̄𝑏(ℎ′ + 2𝜉), (4.30.b)

D̄(𝑎ℎ̃T
𝑏) = D̄(𝑎(ℎT

𝑏) + 2𝜉T
𝑏)), (4.30.c)

ℎ̃TT = ℎTT
𝑎𝑏 . (4.30.d)

and finally, the perturbation of the inflaton field transforms as

𝛿𝜙̃ = 𝛿𝜙 − 𝜉0D̄𝑡𝜙̄. (4.31)

4.6.2 Gauge invariant perturbations

General relativity is special among field theories in the sense that it does not a priori
favour any single coordinate system. Occasionally, as is the case in the flrw universe,
a coordinate system can be considered to be preferable over others due to the symme-
try properties of spacetime. However, no such preferred coordinate system exists for

Also known as
gauge freedom
or diffeomor-

phism invariance.

cosmic perturbations, and hence this freedom in the choice of coordinates is prob-
lematic. It is not immediately obvious whether a given inhomogeneity is a genuine
perturbation, or merely an artefact of the chosen coordinate system.
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As an example, consider a universe that is homogeneous and isotropic, which is
filled with some quantity 𝑞(𝑡, 𝐱) = 𝑞(𝑡). The freedom in the choice of coordinates
ensures that the time variable 𝑡 = 𝑡 + 𝛿𝑡(𝑡, 𝐱) is equally valid. It follows that, in
general, 𝑞 depends on the spatial coordinates 𝐱. Under the assumption that 𝛿𝑡 ≪ 𝑡,
it can be seen that

𝑞(𝑡) = 𝑞(𝑡 − 𝛿𝑡) ≈ 𝑞(𝑡) − ∂𝑡𝑞𝛿𝑡.

The first term on the right-hand side must be interpreted as the background value of
the quantity 𝑞, while the second term defines a perturbation 𝛿𝑞(𝑡, 𝐱) that breaks the
homogeneity. This perturbation is not a physical one, but a fictitious perturbation
that results from the chosen coordinate system. This is illustrated in figure 4.5. One
can in an analogous fashion ensure that any physical perturbation vanishes.
Given that the perturbations depend on the choice of coordinate system one would

expect that any given fluctuation must be treated with great care. It is, however, pos-
sible to construct objects which are manifestly the same in each coordinate system,
and therefore represent perturbations that are genuinely physical. In this section it
will become clear that these gauge invariant objects are not unique, but can never-
theless be given representations such that their equations of motion are—at least in
form—simple. These representations will be derived here.

𝑥

𝑡

𝑡 = constant, 𝑞 = constant

𝑡 = constant, 𝑞 ≠ constant

Figure 4.5 Distribution of some quantity

𝑞 in different coordinate systems.

The simplest such object combines the trace perturbations of the metric and scalar
field perturbations. With (4.30.a) and (4.31) it is straightforward to check that

𝜛 = 𝛿𝜙 − 3(D̄𝑡𝜙̄/𝐾̃) ℎ, (4.32)

with 𝐾̃ = 3𝐻, is gauge invariant. This defines the comoving density perturbations. A
related object is the comoving curvature perturbation, which is defined as
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𝜁 = ℎ − 1
3 (𝐾̃/D̄𝑡𝜙̄)𝛿𝜙. (4.33)

The vector modes can be combined with the lapse perturbation to form the quantities

𝑤 = 𝛿𝑁 + 𝑁D̄𝑡(𝑁−1𝑁′ − 1
2 𝑎2D̄𝑡(𝑎−2ℎ′)), (4.34.a)

𝑤𝑎 = 𝑁T
𝑎 − 1

2 𝑎2𝑁D̄𝑡(𝑎−2ℎT
𝑎 ). (4.34.b)

It can straightforwardly be checked, by use of (4.28) and (4.29), that these too are
gauge invariant. Note that it is not necessary to use the perturbation of the lapse
function in the construction above. One could instead have used the scalar field
perturbation, or the trace perturbation. However, the above construction has the
satisfying property that all perturbations are used exactly once.
Although (4.34) is gauge invariant, the longitudinal mode is non-dynamical, while

the transverse vector modes decay during inflation. They will therefore be neglected
from now on.
The transverse traceless tensor perturbations are themselves gauge invariant, and

need no auxiliary variables.
Gauge invariant perturbations are not unique, as any linear combination or rescal-

ing of gauge invariant objects is again gauge invariant, as long as the coefficients of
said combination or rescaling depend only on the background variables. However,
the comoving curvature perturbation and the tensor perturbation are the simplest,
and their use is most widespread in the literature.

4.6.3 Quantised scalar perturbations

In order to perform a canonical quantisation of the gauge invariant perturbations one
would need an action for the perturbations. This can be derived from the general
action (3.2), with the insertion of the decomposition (4.23). It is sufficient to expand
the result up to second order in the perturbations, since these are assumed to be
small. The gauge invariant action for the scalar perturbations can then be derived by
expressing the perturbations by their gauge invariant combination (4.33). Although
the explicit calculation is straightforward, it requires time and care. This goes beyond
the scope of this work. For this reason, the results are briefly summarised. The explicit
calculation for the action of the comoving curvature perturbation has been calculated
in detail in reference [81] and the references therein.
The free action for the comoving curvature perturbation with a flrw background

(4.6) is

𝑆S = ∫ 𝑧2
S (D𝑡 𝜁 D𝑡 𝜁 − 𝑎−2 D𝑎 𝜁 D𝑎 𝜁) 𝑎3 𝑁d𝑡d3𝑥,

where

𝑧2
S ≡ (

D𝑡 𝜙
𝐻 )

2
𝑠−1 (1 + 1

2 𝐻−1 D𝑡 log 𝑈)−2 . (4.35)
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It is convenient to analyse the scalar perturbations in the parametrisation 𝑁 = 𝑎
(conformal time), and to introduce the Mukhanov-Sasaki (ms) variable 𝑣 through

𝑣 ≡ 𝑎𝑧S𝜁 . (4.36)

The quantised Fourier components of the ms variable are given by

𝑣(𝜏, 𝑥) =
1

(2𝜋)3/2 ∫ [𝑣𝑘(𝜏)𝑎𝐤ei𝐤⋅𝐱 + 𝑣∗
𝑘(𝜏)𝑎†

𝐤e−i𝐤⋅𝐱] d3𝑘, (4.37)

where the canonical commutation relations [𝑎𝐤′, 𝑎
†
𝐤] = 𝛿(𝐤 − 𝐤′) of the creation and

annihilation operators 𝑎𝐤 and 𝑎†
𝐤 imply that the coefficients satisfy the relation

𝑊 [𝑣𝑘(𝜏), 𝑣∗
𝑘(𝜏)] ≡ 𝑣𝑘(𝑣∗

𝑘)′ − 𝑣′𝑘𝑣∗
𝑘 = i. (4.38)

Variation of the ms action with respect to 𝑣𝑘 one finds that the Fourier modes satisfy
Note that the
Fourier modes
depend on the
magnitude of 𝐤
only, which fol-
lows from (4.39).

the relation

(𝑣𝑘)′′ + 𝜔2
𝑘𝑣𝑘 = 0, 𝜔2

𝑘 = 𝑘2 −
(𝑎𝑧S)′′

𝑎𝑧S
. (4.39)

Two boundary conditions must be imposed in order to uniquely solve this equation.
The first boundary condition is given by the Wronskian condition (4.38). The second
boundary condition is conventionally taken to be the demand that, at early times,
the modes 𝑣𝑘 enter a Lorentz invariant vacuum state. This is called the Bunch-Davies
boundary condition [82]. It states that during early times, before the onset of inflation,
the Fourier modes were simple harmonic oscillators, unaffected by curvature. During
early times the second term in 𝜔2

𝑘 can be neglected, and the solutions to (4.39) are
simple plane waves. The Wronskian boundary condition then fixes these solutions to
satisfy

lim
−𝑘𝜏→∞

𝑣𝑘 = (2𝑘)− 1
2 exp(−i 𝑘𝜏), (4.40)

which fixes the second boundary condition.
Comparison of (4.40) with (4.37) yields the observation that the Bunch-Davies

condition selects the positive frequency mode functions. For these functions the vac-
uum is the lowest energy state, since it is annihilated by the annihilation operators
𝑎𝐤:

𝑎𝐤|0⟩ = 0. (4.41)

This vacuum state is called the Bunch-Davies vacuum.
In the slow-roll approximation the frequencies can be explicitly evaluated to first

order in the slow-roll parameters:

(𝑎𝑧S)′′
𝑎𝑧S

≈ (2 − 3ℰS) 𝜏−2. (4.42)
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Here, ℰS ≡ 2𝜀1 − 𝜀2 − 𝜀4. As an intermediate step in the derivation of (4.42) it is
necessary to express the quantity 𝑎𝐻 in terms of conformal time. With the assump-
tion that the slow-roll parameters are constant, the comoving Hubble radius can be
expressed in terms of conformal time as

𝑎𝐻 = −(1 − 𝜀1)−1𝜏−1. (4.43)

Under these simplifications (4.39) can be solved analytically in terms of Bessel func-
tions 𝐽𝛼 and 𝑌𝛼, respectively of the first and second kind. Equation (4.39) can be

The solution is
frequently repre-

sented in terms of
Hankel functions
in the literature.

written in terms of the rescaled time coordinate 𝑥 = −𝑘𝜏, which leads to

𝑣𝑘(𝑥) = √𝑥 [𝐴𝑘 𝐽2𝛼(𝑥) + 𝐵𝑘 𝑌2𝛼(𝑥)] , 𝛼 = 3
4 √1 + 4

3 ℰS. (4.44)

The solution that satisfies the boundary conditions (4.38) and (4.40) is [83]

𝐴𝑘 = 1
2 (𝜋/𝑘)

1
2 exp [𝜋i( 1

4 + 𝛼)] , 𝐵𝑘 = i𝐴𝑘. (4.45)

The asymptotic boundary condition (4.40) fixes the behaviour of the ms variable in
the infinite past, before the onset of inflation.
Now that the exact solution to (4.39) has been found, it is now appropriate to make

some comments about its future-directed evolution, when 𝑥 → 0. In this regime,
the time-dependent part (4.42) dominates the Mukhanov-Sasaki equation, and by
inspection it can be seen that

𝑣𝑘 ∝ 𝑎𝑧S, 𝑥 ≪ 1.

Equation (4.36) then implies that the momentum modes of the original variable, the
comoving curvature perturbation 𝜁, become constant at small values of 𝑥. From (4.43)
it follows that the momentum modes of 𝜁 become constant once their associated
comoving wavelength exits the comoving Hubble horizon.
From the discussion in section 4.4 it follows that for these momentum modes their

wavelength is larger than the comoving Hubble radius, or even (in the inflationary
stage) the particle horizon. The spectrum therefore becomes time-independent at
these superhorizon scales, and it is sufficient to calculate the value of the spectrum at
the time 𝜏∗ when the mode 𝑘∗ exited the horizon.

4.6.4 Quantised tensor perturbations

Tensor perturbations are generated during inflation. The process closely follows that
of the scalar perturbations. More details can be found in reference [81].
Since the tensor perturbations ℎTT

𝑎𝑏 are gauge invariant by themselves, it is conve-
nient to treat them separately. Expansion of the action (3.2) in the tensor perturba-
tions results in

𝑆T = 1
2 ∫ 𝑎3𝑧2

T (D𝑡 ℎTT
𝑎𝑏 D𝑡 ℎTT𝑎𝑏 − 𝑎−2∂𝑎ℎTT

𝑎𝑏 ∂𝑎ℎTT𝑎𝑏) 𝑁d𝑡d3𝑥,

where now
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𝑧2
T = 1

2 𝑈.

The tensor perturbations can be decomposed in terms of its Fourier modes

ℎTT
𝑎𝑏 = ∑

𝐼
𝑒𝐼
𝑎𝑏ℎ𝐼,

where 𝑒𝐼
𝑎𝑏 is a polarisation tensor. It satisfies the completeness relation

𝑒𝐼
𝑎𝑏𝑒𝐽𝑎𝑏 = 𝛿𝐼𝐽.

The derivation of the equations of motion for the tensor perturbations largely follows
the derivation for the scalar perturbations.
The action for the tensor perturbations can be written in its canonical form by the

introduction of the ms variable

𝑢𝐼 ≡ 𝑎𝑧Tℎ𝐼,

and after a decomposition of 𝑢𝐼 in terms of Fourier modes

𝑢𝐼 =
1

(2𝜋)3/2 ∫ (𝑢𝐼,𝑘𝑎𝑘ei𝐤⋅𝐱 + 𝑢∗
𝐼,𝑘𝑎†

𝑘e−i𝐤⋅𝐱) d3𝑘,

the equations of motion for the Fourier modes in conformal time is then seen to be

𝑢𝐼,𝑘′′ + 𝜔2
𝑘𝑢𝐼,𝑘 = 0, 𝜔2

𝑘 = 𝑘2 −
(𝑎𝑧T)′′

𝑎𝑧T
,

which is identical to (4.39) with a different generalised mass 𝑧T. If the slow-roll ap-
proximation holds, one can derive that

(𝑎𝑧T)′′
𝑎𝑧T

≈
2 + 3ℰT

𝜏2 ,

where ℰT = 𝜀1 + 𝜀3. Given that the equations of motion for the tensor perturbation
account for two copies of the scalar perturbations with a modified frequency, it is not
necessary to perform the quantisation procedure from first principles, but it suffices
to apply the results from section 4.6.3.

4.7 INFLATIONARY OBSERVABLES

The quantum fluctuations are taken to be random, and observations indicate that
their probability distribution is, to a high extent, Gaussian. This section outlines how
these Gaussian perturbations leave their imprints on the cmb power spectrum.

4.7.1 Scalar power spectrum

Scalar-tensor the-
ories can induce
non-Gaussianities,
but these are ne-
glected in this
work.

Since the cosmic perturbations are Gaussian, their probability distribution is deter-
mined entirely in terms of their two-point correlation function and its Fourier trans-
form 𝑃𝑣 (called the power spectrum):
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𝜉𝑣(𝜏, 𝐱 − 𝐱′) ≡ ⟨𝑣(𝜏, 𝐱), 𝑣(𝜏, 𝐱′)⟩, 𝑃𝑣(𝑡, 𝐤) ≡ ∫ 𝜉𝑣(𝜏, 𝐫)𝑒i𝐤⋅𝐫 d3𝑟.

The quantum
mechanical treat-
ment follows from

the quantisa-
tion (4.37), to-
gether with the
Bunch-Davies

vacuum (4.41).

The averages are understood to be statistical averages. With these definitions the
two-point correlator of the Fourier modes can be written down as

⟨𝑣𝐤(𝜏), 𝑣𝐤′(𝜏)⟩ = 𝑃𝑣(𝜏, 𝐤)𝛿3(𝐤 − 𝐤′).

In the inflationary scenario the 𝑣 is identified with perturbations in the homogeneous
and isotropic flrw background. Isotropy of the flrw universe implies that the cor-
relation function 𝜉𝑣(𝐫) can only depend on the magnitude of the separation vector
𝐫. Consequently, the power spectrum 𝑃𝑣(𝜏, 𝐤) is only a function of the magnitude of
the wave vector 𝐤. The two-point correlation function and the power spectrum can
therefore be expressed in terms of each other as

𝜉𝑣(𝜏, 𝑟) =
∞
∫
0

𝑃𝑣(𝜏, 𝑘)
2𝜋2

sin(𝑘𝑟)
𝑘𝑟 𝑘2d𝑘, 𝑃(𝜏, 𝑘) = 4𝜋

∞
∫
0

𝜉𝑣(𝜏, 𝑟)
sin(𝑘𝑟)

𝑘𝑟 𝑟2d𝑟.

In the literature the variance of the ms variable is frequently used instead of the power
spectrum. It can be obtained from the correlation function in to limit 𝑟 → 0:

𝜉𝑣(𝜏, 0) = ⟨𝑣(𝜏, 𝐱), 𝑣(𝜏, 𝐱)⟩ = (2𝜋2)−1
∞
∫
0

Δ2(𝜏, 𝑘) d log 𝑘,

where the dimensionless power spectrum Δ2 is defined as

Δ2(𝜏, 𝑘) ≡ (2𝜋2)−1𝑘3𝑃𝑣(𝜏, 𝑘).

The above notation can be used in order to find the approximate power spectrum Δ2
S

of the comoving curvature perturbation at the moment of horizon crossing, under
the assumption the slow-roll approximation is holds. From (4.36) one obtains

Δ2
S(𝜏, 𝑘) =

1
2𝜋2

|𝑣𝑘|2

𝑧2
S

.

With (4.35), the late-time behaviour of (4.44), together with (4.45), the dimensionless
power spectrum can then be written as

Δ2
S(𝜏, 𝑘) =

𝐻2/𝑈
16𝜋2(𝜀1 + 𝜀3)

[1 − 2(𝜀1 − 𝜀3) + 2𝑐𝛾ℰS − 2ℰS log (
𝑘

𝑎𝐻)] , (4.46)

where 𝑐𝛾 ≡ 2 − 𝛾E − log 2 ≈ 0.7296 is a numerical constant, and 𝛾E is the Euler-
Mascheroni constant. The power spectrum is typically parametrised via the power
law ansatz

Δ2
S = 𝐴S(𝑘∗) (

𝑘
𝑘∗

)
𝑛S(𝑘∗)+ 1

2 𝛼S(𝑘∗)+…
. (4.47)
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Here, 𝑘∗ is an arbitrary pivot scale, which is typically identified with the mode that
enters the Hubble radius: 𝑘∗ = 𝑎𝐻.
The spectra are characterised by an amplitude 𝐴S, a scalar spectral index 𝑛S and a

running of the scalar spectral index 𝛼S. With the use of (4.19), the spectral amplitude
can be extracted from (4.46) and expressed in terms of the inflaton potential:

𝐴S ≈
𝑊

72𝜋2(𝜀1 + 𝜀3)
.

The scale dependence is parametrised by the scalar spectral index

𝑛S ≡ 1 +
d log Δ2

d log 𝑘 ∣
𝑘=𝑘∗

≈ 1 − 2ℰS.

Lastly, the spectral index itself may depend on the momentum scale. This scale de-
pendence is parametrised by the running of the scalar spectral index

𝛼S ≡
d𝑛S

d log 𝑘 ∣
𝑘=𝑘∗

≈ −2𝐻−1 D𝑡 ℰS
1 − 𝜀1

.

Notice that the running of the spectral index is itself second order in the slow-roll
parameters.

4.7.2 Tensor power spectrum

The derivation of the tensor power spectrum closely follows that of the scalar power
spectrum. The main difference is that the tensor power spectrum accounts for both
tensor polarisations. The result is

Δ2(𝜏, 𝑘) =
𝐻2

6𝜋𝑈 [1 − 2𝜀1 + 2𝑐𝛾ℰT − 2ℰT log (
𝑘

𝑎𝐻)] . (4.48)

The tensor amplitude is

𝐴T ≈
𝑊

36𝜋. (4.49)

The tensor spectral index 𝑛T and running of the tensor spectral index 𝛼T are

𝑛T ≡
dΔ2

d log 𝑘 ∣
𝑘=𝑘∗

= −2ℰT, 𝛼T ≡
d𝑛T

d log 𝑘 ∣
𝑘=𝑘∗

= −2𝐻−1 D𝑡 ℰT
1 − 𝜀1

.

The tensor-to-scalar ratio 𝑟 is defined as

𝑟 ≡ 𝐴S/𝐴P = 16ℰT,

which is a direct measure for the energy scale of inflation. Lastly, notice that the
tensor-to-scalar ratio satisfies the generic consistency condition
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𝑟 = −8𝑛T.

4.7.3 Empirical values

During the past decades the cmb power spectrum has been measured with increas-
ing precision, by experiments such as the Cosmic Background Explorer (cobe), the
Wilkinson Microwave Anisotropy Probe (wmap) and—most recently—Planck [84]. With
the assumption of the power law parametrisation (4.47), the Planck collaboration
measured the parameters of the power spectrum with respect to a pivot scale 𝑘∗ =
5 × 10–2 Mpc–1. This pivot point is typically taken to be the scale of the perturba-
tion mode that entered the horizon at 𝑁e = 60 e-folds before the end of inflation, but
the choice for the pivot point is arbitrary. The pivot scale must be chosen within the
window of scales observable in the cmb [84]:

𝑘min
∗ < 𝑘∗ < 𝑘max

∗ , 𝑘min
∗ = 1 × 10–4 Mpc–1, 𝑘max

∗ = 1 × 10–1 Mpc–1. (4.50)

Measurements of the cmb constrain 𝐴S and 𝑛S and give an upper bound on the
tensor-to-scalar ratio 𝑟. Their most recently measured values are given here for the
pivot scale 𝑘∗ = 5 × 10–2 Mpc–1 [84]:

𝐴obs
S,∗ = (2.099 ± 0.014) × 10−9 68 % CL, (4.51)

𝑛obs
S,∗ = 0.9649 ± 0.0042, 68 % CL, (4.52)

𝑟obs
∗ < 0.11 95 % CL. (4.53)

The upper bound on 𝑟obs
∗ can be converted into an upper bound on the energy scale

during inflation. This corresponds to an upper bound on the energy density, given
by the ef potential 𝑉̃ = 𝑀4

P𝑊/4, as follows from (3.11) and (4.49).
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QUANTUM GEOMETRODYNAMICS

5
The existence of the cosmological perturbations can be explained by the ap-
pealing to quantum theory. The uncertainty principle predicts that the homogeneous
inflaton field will have small, quantised fluctuation. These fluctuations will lead to de-
viations in the energy density of the universe, and as a result different parts of space
will inflate by different amounts. Similarly, the zero-point fluctuations of the gravita-
tional field will yield small, quantised deviations from the classical homogeneous and
isotropic flrw metric.
The approach of cosmological perturbation theory, where quantised fluctuations

propagate on a classical background, is justified experimentally; there are no indi-
cations so far that the gravitational interaction exhibits quantum mechanical effects.
The hope has been expressed that a quantisation of the gravitational field is unnec-
essary conceptually, and that an exact semiclassical theory is enough to describe the
fundamental interactions. The quantised degrees of freedom would then couple with
the classical degrees of freedom of the gravitational field and result in the semiclassi-
cal Einstein field equations [85]

𝑅𝜇𝜈 − 1
2 𝑅𝑔𝜇𝜈 = 2𝜅−1⟨𝜓|𝑇̂𝜇𝜈|𝜓⟩.

The object 𝑇̂𝜇𝜈 represents the energy-momentum tensor operator and 𝜓 is the quan-
tum state of the matter fields. Cosmological perturbation theory is one particular ap-
plication of semiclassical gravity. However, it is uncertain whether such a semiclassi-
cal theory is consistent. The approach has been subject to scrutiny, most prominently
in reference [86]. The question whether semiclassical gravity, or its criticism, can be
placed on a firm, irrefutable basis continues to this day. Recent discussion have, for
example, been published in the references [87–89].
However, as quantum mechanics seems to be a universal description of nature, it

is natural to wonder what whether it is possible to consistently quantise theories of
gravity, and whether any of these descriptions are realised in nature.
One of the motivations for the quantisation of gravity is the possibility of its unifi-

cation with the other three fundamental interactions: the electromagnetic force and
the strong and weak nuclear forces. Since all three of these interactions are known
to be quantised, and it has been shown that this quantisation is realised in nature. It
may be hoped that such a unification leads to a non-perturbative theory of the funda-
mental interactions, which is free from the need to renormalise the divergences that
occur in quantum field theory.
Another motivation originates in the study of cosmology and black holes. A seem-

ingly necessary feature therein is the presence of singularities, which leads to the
breakdown of current descriptions of gravity [90, 91]. Similar considerations in the
other fundamental interactions have given rise to quantum theories, and as a result
it seems reasonable that, for example, the initial singularity of the Big Bang in the
early universe eventually leads to a consistent theory of quantum gravity.
An overview of different approaches to quantum gravity can be found in reference

[92]. One such approach is based on the Hamiltonian formulation of the theory of
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general relativity. This follows the non-relativistic quantisation of classical mechan-
ics, where one imposes that the wave function of the system satisfies the Schrödinger
equation. In the context of general relativity, the canonical variables are the spatial
metrics, which are obtained by a foliation of spacetime as described in chapter 2,
and their conjugate momenta. In this way the theory of general relativity can be for-
mulated as a dynamical theory of spatial geometries, called geometrodynamics.
The Hamiltonian formalism gives rise to constraints. These constraints are a gen-

eral feature of theories that are invariant under a reparametrisation of time [93]. In
the case of general relativity—or in the present case, scalar-tensor theories—these
constraints impose certain relations between the phase space variables. The most
important of these relations is known as the Wheeler-DeWitt (wdw) equation.
The quantisation procedure of geometrodynamics is not without complications of

its own, and for this reason the treatment of the full wdw equation typically does not
go beyond the formal level. The wdw equation itself composes an infinite number of
second order partial functional differential equations which, barring highly symmet-
ric cases, are extremely difficult to solve. In addition, the terms in the wdw equation
consist of products of non-commuting operators that are evaluated at the same point.
These terms lead firstly to ambiguities in the operator ordering, and secondly to sin-
gular Dirac delta distributions. The regularisation procedure for quantum geometro-
dynamics goes beyond the scope of this work. A general overview can be found in
reference [94].
Although the regularisation of operators is as of yet an open problem in physics,

the question of operator ordering can be partially addressed. For example, one can
demand that the quantum theory is invariant under reparametrisations of the phase
space variables. This would fix the operator ordering to be the familiar Laplace-
Beltrami ordering. Furthermore, conditions can occasionally be imposed under which
the final results do not depend on the operator ordering. This was first shown in
reference [95]. The applicability of these conditions will be investigated in chapter 6.
Finally, an important hurdle in the canonical formulation of gravity is the question

whether or not it admits a probabilistic interpretation. Related to this question is the
existence of a conserved probability that is positive and normalisable. This issue will
be partially addressed in this chapter.
This chapter summarises the main results from the study of the quantisation of con-

strained systems that are necessary for the analysis that is presented in the next chap-
ters. For a comprehensive overview of the topic of quantum geometrodynamics—and
whether or not a quantised theory of gravity is needed at all–the reader is invited to
consult the references [92,94,96–99] and the references contained therein.

5.1 HAMILTONIAN FORMULATION

The Hamiltonian formulation of general relativity and similar dynamical theories
of spacetime, such as scalar-tensor theories, leads to a non-perturbative quantised
theory of gravity called quantum geometrodynamics [100,101]. The preliminary—that is,
classical—work leading up to this quantised theory is presented here. The Lagrangian
of scalar-tensor theories is presented in (3.2). It is convenient to write the action
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in the familiar form using the reparamatrisation invariant time derivative D𝑡 = ℒ𝑛,
which is the Lie derivative along the normal vector on the hypersurfaces Σ𝑡:

𝐿 = ∫ 𝑁 ( 1
2 ℳ𝐴𝐵 D𝑡 𝓆𝐴 D𝑡 𝓆𝐵 − 𝒫(𝓆)) d3𝑥. (5.1)

The indices 𝐴, 𝐵 and so on are abstract configuration space indices, and the 𝓆𝐴 indi-
cate the configuration space coordinates. The quantities ℳ𝐴𝐵 and 𝒫 are respectively
the configuration space metric and potential. Their explicit form will be derived in

Although the spa-
tial metrics are
defined with co-
variant indices,
they are con-
travariant con-
figuration space
coordinates.

chapter 6, but for the present discussion this form is not relevant. In the case of pure
Einstein-Hilbert gravity the dynamical variables are the components of the spatial
metric 𝓆𝐴 = 𝛾𝑎𝑏. For more general theories, such as scalar-tensor theories, the 𝓆𝐴

comprise all degrees of freedom. This will be considered in detail in chapter 6.
The momenta conjugate to the configuration space variables can straightforwardly

be calculated from (5.1) with the help of D𝑡:

𝓅𝐴 =
𝛿𝐿

𝛿∂0𝓆𝐴 = ℳ𝐴𝐵 D𝑡 𝓆𝐵,

𝓅𝑁 =
𝛿𝐿

𝛿∂0𝑁 = 0, 𝓅𝑁
𝑎 =

𝛿𝐿
𝛿∂0𝑁𝐴 = 0. (5.2)

The vanishing of the momenta 𝑝𝑁 and 𝑝𝑁
𝑎 , which are canonically conjugate to respec-

tively the lapse function and the shift vector, means that the system is subject to con-
straints. They are called primary constraints. They imply that the lapse function and
shift vector are not dynamical, and their value is arbitrary. This reflects the gauge
freedom of general relativity. The canonical Hamiltonian 𝐻c can then be obtained
by a Legendre transformation:

𝐻c = ∫ 𝑁𝓅𝑎 D𝑡 𝓆𝐴 d3𝑥 − 𝐿 = ∫ (𝑁ℋ⊥ + 𝑁𝑎ℋ𝑎) d3𝑥.

The Hamiltonian densities which are introduced here are defined by

𝑁ℋ⊥ = 1
2 𝑁ℳ𝐴𝐵𝓅𝐴𝓅𝐵 + 𝑁𝒫, (5.3.a)

𝑁𝑎ℋ𝑎 = 𝓅𝐴 ℒ𝐍 𝓆𝐴, (5.3.b)

with ℒ𝐍 the Lie derivative along the shift vector. The evolution of any function 𝑓 of
the coordinates and their momenta is determined by the Poisson bracket of 𝑓 with the
canonical Hamiltonian 𝐻c:

∂0 𝑓 = {𝑓 , 𝐻c} ≡ ∑
𝑖∈𝐼

∫ ⎛⎜
⎝

𝛿𝑓
𝛿𝓆 𝑖

𝛿𝐻c
𝛿𝓅𝑖

−
𝛿𝑓
𝛿𝓅𝑖

𝛿𝐻c
𝛿𝓆 𝑖

⎞⎟
⎠

d3𝑥. (5.4)

In particular, the only non-vanishing Poisson bracket of the phase space coordinates
is

{𝓆𝐴(𝑥), 𝓅𝐵(𝑥′)} = 𝛿𝐴
𝐵 𝛿(3)(𝑥, 𝑥′).

The Poisson bracket has the defining property that it satisfies the Jacobi identity
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{𝐴, {𝐵, 𝐶}} + {𝐵, {𝐶, 𝐴}} + {𝐶, {𝐴, 𝐵}} = 0, (5.5)

for any three arbitrary functions 𝐴, 𝐵 and 𝐶 of the phase space coordinates. The index
𝑖 simply ensures that all configuration space variables 𝑞𝑖 and their corresponding
canonical momenta are considered. It is not difficult to see that

{𝓅𝑁, 𝐻c} = − ∫ 𝑁ℋ⊥ d3𝑥 ≡ −𝐻⊥[𝑁], (5.6.a)

{𝓅𝑁
𝑎 , 𝐻c} = − ∫ 𝑁𝑎ℋ𝑎 d3𝑥 ≡ −𝐻∥[𝐍]. (5.6.b)

Consistency with (5.2) then demands that the Hamiltonians 𝐻⊥ and 𝐻𝑎 vanish. As
these constraints arise from the consistency of primary constraints they are called

This is technically
not an algebra,
as the brackets

involve the phase
space variables.

secondary constraints. Together, they form the Dirac hypersurface deformation algebra

{𝐻∥[𝐍], 𝐻∥[𝐌]} = 𝐻∥[[𝐍, 𝐌]], (5.7.a)

{𝐻∥[𝐍], 𝐻⊥[𝑁]} = 𝐻⊥[ℒ𝐍 𝑁], (5.7.b)

{𝐻⊥[𝑁], 𝐻⊥[𝑀]} = −𝐻∥[𝐋]. (5.7.c)

where 𝐿𝑎 = 𝑀 D 𝑎𝑁 − 𝑁 D 𝑎𝑀. The primary and secondary constraints therefore
All the constraints

are first class
in the parlance
of Dirac [96].

completely specify all conditions that are placed on the system. From their definitions
it is clear that the phase space variables 𝓆𝐴 and 𝓅𝐴 satisfy

{𝓆𝐴, 𝐻∥[𝐍]} = (ℒ𝐍 𝓆)𝐴,

{𝓅𝐴, 𝐻∥[𝐍]} = (ℒ𝐍 𝓅)𝐴,

and therefore 𝐻∥ is the generator of spatial diffeomorphisms. However, the constraint
𝐻⊥ cannot be so straightforwardly be identified with temporal diffeomorphisms. The
origin of this complication can be traced back to the hypersurface deformation alge-
bra, as the third bracket involves a dependency of 𝐿𝑎 on the spatial metric 𝛾𝑎𝑏. It can
be checked that

{𝓆𝐴, 𝐻⊥[𝑁]} = 𝑁 D𝑡 𝓆𝐴,

{𝓅𝐴, 𝐻⊥[𝑁]} = 𝑁 D𝑡 𝓅𝐴,

only on the hypersurfaces where the constraints and the equations of motion are
satisfied [102].
In many applications it is more convenient to formulate the constraints in terms

of the Hamiltonian densities ℋ⊥ and ℋ𝑎, instead of the integrated quantities 𝐻⊥ and
𝐻∥. Once the secondary constraints are implemented to hold identically, it follows
from (5.6) that

ℋ⊥ = 0, ℋ𝑎 = 0.

The first of these constraints is called the classical Hamiltonian constraint, while the
second is called the classical momentum constraint. The momenta can be expressed



67

as derivatives of the action through a canonical transformation. The Hamiltonian
constraint can then, by (5.3.a), be rewritten as

1
2 ℳ𝐴𝐵𝑆,𝐴𝑆,𝐵 + 𝒫 = 0, 𝓅𝐴 = 𝑆,𝐴. (5.8)

The comma denotes a functional derivative with respect to the configuration space
coordinates. Equation (5.8) is known as theHamilton-Jacobi equation of the theory. The
Hamilton-Jacobi equation completely determines the behaviour of the configuration
space coordinates 𝓆𝐴, although it does so in a way that is independent of time. In
fact, the Hamilton-Jacobi equation can be taken as a classical definition of time.
It is useful to see how this works in detail, as it will later be useful to show that the

wdw equation predicts the classical theory in its semiclassical limit. The Hamilton-
Jacobi equation can be varied with respect to 𝓆𝐴 to find

ℳ𝐴𝐵𝑆,𝐴𝑆,𝐵𝐶 + 1
2 ℳ𝐴𝐵

,𝐶𝑆,𝐴𝑆,𝐵 + 𝒫,𝐶 = 0.

The above equation can be simplified by the introduction of the vector D𝑠 through

D𝑠 𝑆,𝐶 + 1
2 ℳ𝐴𝐵

,𝐶𝑆,𝐴𝑆,𝐵 + 𝒫,𝐶 = 0, D𝑠 = ℳ𝐴𝐵𝑆,𝐴𝛿𝐵. (5.9)

Notice that the action of D𝑠 on 𝓆𝐴 results in

D𝑠 𝓆𝐴 = ℳ𝐴𝐵𝑆,𝐵. (5.10)

Comparison with (5.8) then leads to the conclusion that, provided that D𝑠 is identi-
fied with the reparametrisation invariant time derivative D𝑡, this coincides with the
ordinary Hamilton equation of motion for the configuration space coordinates. Equa-
tion (5.10) can then be inserted into (5.9) to find the Euler-Lagrange equations of
motion

D𝑡
2 𝓆𝐴 + Γ𝐴

𝐵𝐶 D𝑡 𝓆𝐵 D𝑡 𝓆𝐶 + ℳ𝐴𝐵𝒫,𝐵 = 0,

where Γ is the Christoffel symbol calculated from the configuration space metric ℳ.
It can immediately be verified that these are the Euler-Lagrange equations of motion
by performing the variation of (5.1). In summary: a solution to the Hamilton-Jacobi
equation completely determines the behaviour of the dynamical fields. A notion of
time evolution can then be obtained by the gradient of the classical action.

5.2 QUANTISATION OF CONSTRAINED SYSTEMS

The quantisation of constrained systems is carried out in the Schrödinger represen-
tation. The quantisation is realised by the imposition of the canonical commutation
relations on the coordinates and their conjugate momenta:

[𝓆𝐴(𝑥), 𝓅𝐵(𝑥′)] = i 𝛿𝐴
𝐵 𝛿(3)(𝑥, 𝑥′).

In the quantised theory the Poisson brackets are therefore replaced by commuta-
tors. The constraints (5.2) and (5.6) therefore cannot be considered to be quantum
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equations—if there were, any dynamics would be trivially absent. The quantised con-
In cosmological
scenarios Ψ is

frequently called
the wave function
of the universe.

straints are instead taken to be operators that annihilate the wave function Ψ of the
system. The algebra (5.7) ensures that these are all the conditions that are placed
on the wave function. Of particular importance are the quantised momentum con-
straints and the Hamiltonian constraint:

ℋ𝑎Ψ = 0, ℋ⊥Ψ = 0. (5.11)

The quantised Hamiltonian constraint is of such importance that it has its own
name, and is called the Wheeler-DeWitt (wdw) equation. The equations (5.11) are
the central objects in canonical quantum gravity. The wdw equation is equivalent
to a Schrödinger equation, and therefore the wave function is independent of time.
The momentum constraint implies that the wave function is invariant under spatial
diffeomorphisms [103]. Recall that the wave function depends on the 𝓆𝐴, which are
coordinates in configuration space. These coordinates represent the dynamical de-
grees of freedom of the gravitational theory, and can be represented in terms of the
𝛾𝑎𝑏 and 𝜙. The momentum constraint then implies that the wave function does not
depend on the particular values of 𝛾𝑎𝑏 and 𝜙, but on the geometry on which they are
defined. This can be accomplished by the identification of the points 𝓆𝐴 and 𝓆𝐴′ that
are the same up to a coordinate transformation. If the set of all 𝓆𝐴 on the spacetime
manifold ℳ is then temporarily denoted by 𝒞 and the set of all coordinate transfor-
mations on ℳ by C(ℳ), then the wave function depends on the elements of the space

𝒮 = 𝒞/C(ℳ).

The space 𝒮 is called superspace.
The time-independence of the wave function has no analogue in classical mechan-

ics. This can be illustrated with a simple example. Consider the dynamical represen-
tation of the 𝓆𝐴:

𝓆𝐴(𝑡, 𝐱) = ei𝐻c𝑡𝓆𝐴(0, 𝐱)e−i𝐻c𝑡,

which is the familiar quantum-mechanical evolution of the operator 𝓆𝐴 from an initial
hypersurface Σ0 to some arbitrary hypersurface Σ𝑡. The constraints imply that

𝐻cΨ = 0, Ψ†𝐻c = 0

and therefore any quantum-mechanical expectation value does not depend on time:

Ψ†𝓆𝐴(𝑡, 𝐱)Ψ = Ψ†𝓆𝐴(0, 𝐱)Ψ.

Similar expressions hold for other (products of) operators. Since observables are de-
fined as expectation values taken over ensembles, it therefore seems that no observ-
able in quantum gravity changes with time.
From this example one comes to the conclusion that nothing changes in quantum

geometrodynamics, which in the literature is known as the problem of time. If the
canonical approach to quantum gravity is valid, then time is a classical concept that
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has no meaning in quantum gravity. At best, time emerges in semiclassical domains
of superspace.
The quantisation in curved spacetimes is ambiguous, as the ordering of the classi-

cally commuting variables becomes non-trivial. The factor ordering must be imposed
by hand by some physical principle. For example, one might argue that the the-
ory is invariant under reparametrisations of the configuration space coordinates. In
this case the position representation of the momentum and the factor ordering of the
Hamiltonian take the symmetric forms

𝓅𝐴 = −i|ℳ|−
1
4 𝛿𝐴|ℳ|

1
4 , ℋ = 1

2 |ℳ|−
1
4 𝑝𝐴√|ℳ|ℳ𝐴𝐵𝑝𝐵|ℳ|−

1
4 + 𝒫.

This is the Laplace-Beltrami operator ordering of the wdw equation, and it is the op-
erator ordering that will be used in chapter 6, though other operator orderings are
common. From the above discussion it becomes clear that an additional complica-
tion of the wdw equation is the presence of singular delta functions that arise from
second order functional derivatives that are evaluated at the same spacetime point.
The treatment of these divergent terms is subtle and not well understood. In this
work these terms will be largely neglected, and the analysis kept formal.
Finally, any particular solution of the wdw equation requires initial conditions.

Although the main results obtained in chapter 6 and chapter 7 do not greatly depend
on the boundary conditions, a full discussion of the initial conditions goes beyond
the scope of this work. However, since the classical boundary conditions naturally
arise from the initial conditions imposed on the solution of the wdw equation, it is
appropriate to mention two prominent attempts to explain the initial conditions of
the wave function of the universe. These are the no-boundary condition of Hartle and
Hawking and the tunneling condition of Vilenkin and Linde [104–106].

5.3 THE SEMICLASSICAL LIMIT OF QUANTUM GEOMETRODYNAMICS

From the example in the previous section it follows time has no meaning in the quan-
tised theory. The only dynamical degrees of freedom are the spatial metrics and the
scalar field evaluated at constant time. Time can only be recovered as a (semi)classi-
cal notion, where the dynamical coordinates are classical. Solutions of the Hamilton-
Jacobi equation trace out the classical field equations. Therefore the Hamilton-Jacobi
formalism provides a notion of time in the semiclassical approximation.
Any theory of quantum gravity has to be able to reproduce known classical results

in some limit. This raises the question whether the wdw equation is able to reproduce
the classical equations of motion of general relativity (or any of its extensions) in
some semiclassical limit. The answer to this question is affirmative. It is therefore
instructive see how the classical field equations can, at least formally, be derived
from the wdw equation. This can be demonstrated in the Laplace-Beltrami factor
ordering, such that the wdw equation can be written as

− 1
2 ℳ𝐴𝐵∇𝐴∇𝐵Ψ + 𝒫Ψ = 0. (5.12)
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Here the ∇𝐴 denotes the covariant functional derivative with respect to the coordi-
nate 𝓆𝐴. The wdw equation is a second-order functional partial differential equation
of which the complexity is enormous. The full wdw equation is therefore, in practice,
unsolvable. However, perturbative solutions to the wdw equation exists, and per-
turbative analyses of the wdw equation form the foundation of the field of quantum
cosmology. A semiclassical solution of the wdw equation can be found by theWentzel-

The momentum
constraint equa-
tion can be ex-

panded in a sim-
ilar way and

ensures the in-
variance of the
wave functional

under spatial
3-dimensional dif-
feomorphisms or-
der by order [107].

Kramers-Brillioun (wkb) ansatz

Ψ(𝓆) = exp (i 𝑆(𝓆)) , (5.13)

with 𝑆 a slowly varying function. Substitution of (5.13) into (5.12) results in

− 1
2 iℳ𝐴𝐵∇𝐴∇𝐵𝑆 + 1

2 ℳ𝐴𝐵∇𝐴𝑆∇𝐵𝑆 + 𝒫 = 0.

Since 𝑆 is slowly varying the first term on the left-hand side will be negligible in com-
parison with the rest. What remains is the Hamilton-Jacobi equation for the classical
theory. From the discussion of section 5.1 one can then define a semiclassical time
variable D𝑡s by the directional derivative along the gradient of 𝑆. The semiclassical
Hamilton equations can be obtained in the same manner as before:

D𝑡s 𝓆𝐴 = 𝓅𝐴 = ∇𝐴𝑆, D𝑡s ≡ ℳ𝐴𝐵∇𝐴𝑆 ∇𝐵. (5.14)

In the derivation of this relation it is assumed that the wave function is strongly peaked
about a set of classical trajectories in configuration space. Unfortunately, this does
not necessarily have to be the case. However, there may be a hierarchy of different
degrees of freedom, some of which are approximately classical, whereas others are to
be considered as fully quantum. This has important consequences for the discussion
presented here, and allows one to connect the wdw equation to quantum field theory
in curved spacetimes.

5.3.1 The semiclassical expansion

In semiclassical approaches to quantum theories there frequently is a natural distinc-
tion between two sets of configuration space variables, say 𝒬𝐴 and 𝓆 𝑖, in the sense
that the configuration space metric and the configuration space potential decompose
into irreducible blocks

ℳ𝐴𝐵(𝒬, 𝓆) → ℳ𝐴𝐵(𝓆) + 𝓂𝐴𝐵(𝒬, 𝓆), 𝒫(𝒬, 𝓆) → 𝒫(𝒬) + 𝓅(𝒬, 𝓆). (5.15)

The submetrics ℳ𝐴𝐵 and 𝓂𝐴𝐵 are frequently metrics on the subspaces of the vari-
ables 𝒬𝐴 and 𝓆 𝑖, respectively, which means that

ℳ𝐴𝐵𝓂𝐵𝐶 = 0.

This condition will be relaxed in chapter 6, but it will be assumed in the discussion
here for presentational clarity. The distinction between the 𝒬𝐴 and 𝓆𝐴 is usually ev-
ident in the presence of a small parameter 𝜆. This parameter induces a suppression
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of the kinetic term of the 𝒬𝐴, and as a result these variables are frequently called
heavy or slow. The 𝓆𝐴 face no such suppression, and are therefore frequently called
light or fast. Furthermore, the metric 𝓂𝐴𝐵 in the context of the semiclassical expan-
sion typically does not depend strongly on the 𝒬𝐴, and it can be assumed that its
derivatives with respect to the 𝒬𝐴 can be neglected. The function 𝓅 acts as a poten-
tial for the 𝓆 𝑖, but is allowed to have some parametric dependence on the 𝒬𝐴. Under
certain conditions it is then possible to recover a notion of quantum mechanics from
the wdw equation.
Examples of a grouping of degrees of freedom into heavy and light can be found

in the Born-Oppenheimer approximation, where 𝜆 is determined by the ratio of the
atomic electron and the nuclear masses. In minimally coupled inflationary models,
𝜆 is naturally determined by the ratio of the inflaton mass and the Planck mass. In
scale-invariant models, such as scalar-tensor theories, the parameter is not manifestly
present, although it can be introduced by resorting to physical principles. One can
perform a systematic semiclassical approximation of the wdw equation. This is done
in detail in chapter 6 and chapter 7. Here a qualitative sketch is provided.
Before proceeding, it is necessary to introduce some additional notation. Because

the configuration space metric has the block structure of (5.15) it is useful to speak
of different components of the covariant derivative ∇𝐴. When discussing the abstract
semiclassical expansion of the wdw equation it is convenient to denote the compo-
nents ∇𝐴 that are compatible with the metric ℳ𝐴𝐵 by ∇̄𝐴, while the components that
are compatible with the metric 𝓂𝐴𝐵 by ∇̃𝐴.
With the decomposition (5.15) of the metric the wdw equation becomes

1
2 ∇̄𝐴∇̄𝐴Ψ + 1

2 ∇̃𝑖∇̃𝑖Ψ + 𝒫Ψ + 𝓅Ψ = 0. (5.16)

The form of the Hamiltonian suggests that approximate solutions to this equation
can be found via the use of a combined wkb-Born-Oppenheimer ansatz

Ψ(𝒬, 𝓆) = 𝜓(𝒬, 𝓆) exp[i 𝑆(𝒬)], (5.17)

where 𝑆 is a slowly varying function of the 𝒬𝐴, as before. The function 𝜓 is slowly
varying with respect to the 𝒬𝐴, but is a swiftly varying function of the 𝓆𝐴. After
substitution of the ansatz into (5.16) one can divide the result by Ψ to obtain

− 1
2 i∇̄𝐴∇̄𝐴𝑆 + 1

2 ∇̄𝐴𝑆 ∇̄𝐴𝑆 + 𝒫

− i∇̄𝐴𝑆 ∇̄𝐴 log 𝜓 − 1
2 𝜓−1∇̄𝐴∇̄𝐴𝜓 − 1

2 𝜓−1∇̃𝑖∇̃𝑖𝜓 + 𝓅 = 0.

The first three terms depend only on the 𝒬𝐴, while the remaining terms also depend
on the 𝓆 𝑖. There must therefore exist a function 𝑓 such that

− 1
2 i ∇̄𝐴∇̄𝐴𝑆 + 1

2 ∇̄𝐴𝑆 ∇̄𝐴𝑆 + 𝒫 = 𝑓 (𝒬), (5.18.a)

− i ∇̄𝐴𝑆 ∇̄𝐴𝜓 − 1
2 ∇̄𝐴∇̄𝐴𝜓 − 1

2 ∇̃𝑖∇̃𝑖𝜓 + 𝓅𝜓 = −𝑓 (𝒬)𝜓. (5.18.b)

The function 𝑓 (𝒬) parametrises the interaction between the 𝒬𝐴 and the 𝓆𝐴. To
a first approximation in the semiclassical expansion it is natural to assume that 𝑓
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A discussion that
involves differ-
ent choices of

𝑓 is provided in
reference [108].

vanishes identically. One can then assume that the higher order derivatives of 𝑆 can
be neglected. Higher order derivatives of 𝜓 with respect to the 𝒬𝐴 can similarly be
neglected. One then finds that 𝑆 satisfies the Hamilton-Jacobi equation for the 𝒬𝐴

alone. The 𝒬𝐴 are therefore classical variables in the semiclassical expansion, and
𝑆 defines a set of trajectories that coincide with the classical equations of motion for
the 𝒬𝐴. With respect to these variables the semiclassical time (5.14) can thus be
defined. Substitution of the solution of (5.18.a) into (5.18.b) then yields

i D𝑡s 𝜓 = − 1
2 𝓂 𝑖𝑗∇̃𝑖∇̃𝑗𝜓 + 𝓅𝜓 ≡ ℋm𝜓, (5.19)

where ℋm is interpreted as a Hamiltonian for the 𝓆𝐴. Thus, to leading order in the
semiclassical approximation, the wave function 𝜓 for the fast degrees of freedom

The semiclassical
time is sometimes
called wkb time
or Tomonaga-

Schwinger time.

satisfies an effective Schrödinger equation. The emergence of a Schrödinger equa-
tion connects the formalism of quantum geometrodynamics to quantum physics in
curved spacetimes. This is shown explicitly in chapter 7 in the context of quantum
cosmology, where the inflationary power spectra are derived directly from the wdw
equation. How this Schrödinger picture relates to the conventional Heisenberg pic-
ture presented in chapter 4 is shown in appendix C.
Note that a systematic semiclassical expansion of the wdw equation would expand

𝑆 and 𝜓 in powers of 𝜆. One can continue this expansion to arbitrary precision. This
leads to corrections to the Hamilton-Jacobi equation and the effective Schrödinger
equation. The corrections for the Schrödinger equation are due to the influence of the
slowly evolving background geometry on the fast degrees of freedom and can there-
fore naturally be associated with quantum gravitational effects. This was calculated
for Einstein-Hilbert gravity with a minimally coupled scalar field in [95], and will be
generalised to scalar-tensor theories in chapter 6. The influence of quantum gravity
on the inflationary power spectra was first calculated in [109,110] for Einstein-Hilbert
gravity and will be generalised for scalar-tensor theories in chapter 7.

5.4 UNITARITY IN QUANTUM GEOMETRODYNAMICS

One of the main complications in the canonical approach to quantum gravity is the
apparent lack of a Hilbert space structure. For example, the indefinite and second-
order structure of the wdw equation can result in negative probabilities. It is therefore
not obvious how the wave function can be assigned a probabilistic interpretation.
Such an interpretation is necessary in order for the effective Schrödinger equation
(5.19) to be interpreted as the emergence of quantum field theory in a curved space-
time. Since the effective Schrödinger equation arises in the semiclassical approxima-
tion of the wdw equation it is therefore natural to expect that a probabilistic inter-
pretation of quantum geometrodynamics can be defined at least semiclassically. It is
appropriate to investigate this before proceeding.
Consider the full wdw equation (5.12). All degrees of freedom are treated equally,

so no assumption about semiclassical behaviour has been made. It can be verified
by substitution that a solution to the wdw equation generates a current 𝒥𝐴 that is
conserved in superspace. To wit, one obtains
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𝒥𝐴 = 1
2 iℳ𝐴𝐵 (Ψ† ∇𝐴Ψ − Ψ ∇𝐴Ψ†) , ∇𝐴 𝒥𝐴 = 0. (5.20)

One can use the current 𝒥𝐴 to construct conserved probabilities. To do so, one can
imagine hypersurfaces Σ in superspace. The probability density d𝑃 for the system to
be in a particular configuration on this hypersurface is then

d𝑃 = 𝒥𝐴dΣ𝐴, (5.21)

where dΣ𝐴 is a normal hypersurface element. This probability is conserved and in-
variant under coordinate transformations on superspace. It can be seen from (5.20)
that this probability is not positive definite; if it is positive in some region of super-
space for some wave function Ψ, then it is negative for the wave function Ψ′ = Ψ†.
It is therefore necessary to consider under which conditions, if any, it is possible to
construct a probability density that is non-negative.
If, for the sake of illustration, all degrees of freedom are semiclassical, the Hamilton-

Jacobi formalism defines a family of classical trajectories through the function 𝑆
(which is defined through (5.13)). The dynamics of the different degrees of freedom
are then parametrised by the semiclassical time 𝑡s through (5.14). This semiclassical
time, and therefore the function 𝑆, is defined wherever the semiclassical approxima-
tion holds. From this is clear that the hypersurfaces Σ cannot be arbitrary. The clas-
sical trajectories are determined by (5.14), and from (5.13) and (5.20) it follows that
the current 𝒥𝐴 is proportional to the velocities D𝑡s 𝒬𝐴, which are tangent vectors
along the classical trajectories. It follows that an appropriate choice of hypersurfaces
Σ has the property that the trajectories in configuration space intersect the Σ exactly
once. If they intersect more than once, it follows from (5.21) that the probability is
indefinite. Negative probabilities are therefore a result of a wrong choice of hyper-
surfaces. A straightforward way to ensure that the trajectories intersect the hypersur-
faces once and only once is to identify them with surfaces of constant semiclassical
time. A hypersurface normal is then proportional to ∇𝐴𝑆. Since 𝒥𝐴 is proportional
to the classical velocities (5.14), it is similarly proportional to ∇𝐴𝑆. It then follows
that

d𝑃 = 𝒥𝐴dΣ𝐴 ∝ ∇𝐴𝑆∇𝐴𝑆

has a constant sign, which can be chosen to be positive. These two different choices
of hypersurfaces, where the classical trajectories intersect, are sketched in figure 5.1.
The emergence of a positive probability from the semiclassical expansion of the

wdw equation is not much different if some of the degrees of freedom are quantum.
If there is at least one semiclassical coordinate of configuration space, there is exists
a family of classical trajectories that flows through configuration space. Therefore,
there is still a notion of time, and one can still define equal-time hypersurfaces on
which probability is well-defined [111].
However, the situation is complicated when one considers regions of configuration

space where none of the degrees of freedom are semiclassical. It is then no longer
obvious if one can define equal-time hypersurfaces such that the wave function can
be interpreted in a probabilistic way. However, since it can be expected that quantum
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Σ2

Σ1

Figure 5.1 Different choices of hypersurfaces.

Σ1 is an acceptable hypersurface, whereas Σ2

leads to negative probabilities.

fluctuations become small when the universe is large, it seems reasonable that at
least some of the degrees of freedom must be semiclassical [111]. When at least one
semiclassical degree of freedom is present the semiclassical Hamilton-Jacobi equation
arises naturally, as was illustrated in section 5.3.1.

5.5 EXAMPLE: MINIMALLY COUPLED THEORIES

The above formalism is perhaps best understood by means of an example. In antici-
pation of the next chapters, it is therefore instructive to consider the explicit semiclas-
sical expansion of the wdw equation for general relativity with a minimally coupled
scalar field. The approach closely follows reference [95], and will be generalised in
chapter 6. The issue of operator ordering will be neglected for the sake of illustration.
The gravitational field is described by the action 𝑆ADM from section 2.6. This

action is in the canonical form (5.1) if the gravitational potential is identified with
−𝜅√𝛾(s)𝑅. The kinetic term depends on the extrinsic curvature 𝐾̃𝑎𝑏. A minimally
coupled scalar field 𝜙 with a potential 𝑉 is described by the action (3.2) with 𝑈 = 𝜅
and 𝐺 = 1. The model as a whole is therefore described by the action

𝑆 = 𝑆ADM + 𝑆𝜙, with

𝑆ADM = ∫
ℳ

𝜅√𝛾 [(s)𝑅 + 𝐾̃𝑎𝑏𝐾̃𝑎𝑏 − 𝐾̃2] 𝑁d𝑡d3𝑥,

𝑆𝜙 = ∫
ℳ

√𝛾 [ 1
2 (D𝑡 𝜙)2 − 1

2 D𝑎 𝜙 D𝑎 𝜙 − 𝑉(𝜙)] 𝑁d𝑡d3𝑥.

(5.22)

From this it can readily be found that

D𝑡 𝑞𝐴 = ( 2𝐾̃𝑎𝑏
D𝑡 𝜙 ), ℳ𝐴𝐵 = √𝛾(

1
2 𝜅𝐺𝑎𝑏𝑐𝑑 0

0 1
),



75

where 𝐺𝑎𝑏𝑐𝑑 ≡ 𝛾𝑎(𝑐𝛾𝑑)𝑏 − 𝛾𝑎𝑏𝛾𝑐𝑑 is an object known as the DeWitt metric. It corre-
sponds to the metric on the subspace of the spatial metrics 𝛾𝑎𝑏. The canonical mo-
menta and Hamiltonian can be found following the procedure from section 5.1. The
momenta are

𝑝𝑎𝑏
𝛾 = 𝜅√𝛾𝐺𝑎𝑏𝑐𝑑𝐾̃𝑐𝑑,

𝑝𝜙 = D𝑡 𝜙,

while the Hamiltonian is

𝐻 = ∫
ℳ

𝑁 (𝜅−1𝐺𝑎𝑏𝑐𝑑𝑝𝑎𝑏
𝛾 𝑝𝑐𝑑

𝛾 /√𝛾 + 1
2 𝑝2

𝜙/√𝛾 − 𝜅√𝛾(s)𝑅 + √𝛾𝑉(𝜙)) d3𝑥

+ ∫
ℳ

𝑁𝑎(−2𝛾𝑎𝑏 D𝑐 𝑝𝑏𝑐
𝛾 + 𝑝𝜙 D𝑎 𝜙) d3𝑥,

from which the Hamiltonian and momentum constraints can readily be identified.
The constraints can now be quantised by the assumption of the canonical commuta-
tion relations

[𝛾𝑎𝑏(𝐱), 𝑝𝑐𝑑
𝛾 (𝐲)] = i𝛿(3)(𝐱 − 𝐲)𝛿𝑐

(𝑎𝛿𝑑
𝑏), [𝜙(𝐱), 𝑝𝜙(𝐲)] = i𝛿(3)(𝐱 − 𝐲),

with all other commutators equal to zero. In the absence of operator ordering ambi-
guities the momentum operator takes the form of the ordinary functional derivative
𝑝𝑎𝑏

𝛾 = −i𝛿/𝛿𝛾𝑎𝑏. The quantised momentum constraint is therefore

−2𝛾𝑎𝑏 D𝑐
𝛿Ψ

𝛿𝛾𝑏𝑐
+ D𝑎 𝜙

𝛿Ψ
𝛿𝜙 = 0,

while the wdw equation is

−
𝐺𝑎𝑏𝑐𝑑

𝜅√𝛾
𝛿2Ψ

𝛿𝛾𝑎𝑏𝛿𝛾𝑐𝑑
−

1
2√𝛾

𝛿2Ψ
𝛿𝜙2 − 𝜅√𝛾(s)𝑅Ψ + √𝛾𝑉Ψ = 0. (5.23)

The wdw equation is of the form (5.16), where the small parameter can now be
identified as 𝜆 = 𝜅−1. The spatial metrics can therefore be identified as the slow
variables and the scalar field as the fast variable, in accordance with the discussion
of section 5.3.1.
The structure of the wdw equation invites an ansatz for the wave functional of the

form

Ψ = 𝜓(𝛾, 𝜙) exp[i𝑆(𝛾)]. (5.24)

Substitution of this ansatz into (5.23) results in the two separate equations (5.18.a)
and (5.18.b), which read explicitly
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− 1
2 i𝜅

𝐺𝑎𝑏𝑐𝑑

√𝛾
𝛿2𝑆

𝛿𝛾𝑎𝑏𝛿𝛾𝑐𝑑
+ 1

2 𝜅
𝐺𝑎𝑏𝑐𝑑

√𝛾
𝛿𝑆

𝛿𝛾𝑎𝑏

𝛿𝑆
𝛿𝛾𝑐𝑑

− 𝜅−1√𝛾(s)𝑅 = 0, (5.25.a)

− 1
2 i𝜅

𝐺𝑎𝑏𝑐𝑑

√𝛾
𝛿𝑆

𝛿𝛾𝑎𝑏

𝛿𝜓
𝛿𝛾𝑐𝑑

− 1
2 𝜅

𝐺𝑎𝑏𝑐𝑑

√𝛾
𝛿2𝜓

𝛿𝛾𝑎𝑏𝛿𝛾𝑐𝑑
+

1
2√𝛾

𝛿2𝜓
𝛿𝜙2 + √𝛾𝑉(𝜙)𝜓 = 0.(5.25.b)

The separation function 𝑓 has been set to zero.
The parameter 𝜆 occurs in both (5.25.a) and (5.25.b), and can be used as a

natural expansion parameter. It is readily seen that, in order to find an approximate
solution to the wdw equation (5.23), one must first solve (5.25.a). The solution 𝑆
can be substituted into (5.25.b) to find the solution 𝜓.

5.5.1 Expansion of the heavy sector

The function 𝑆 can be decomposed as a power series in 𝜆:

𝑆 = 𝜆−1𝑆0 + 𝑆1 + 𝜆𝑆2 + …, (5.26)

where the dots indicate terms of higher power in 𝜆. The semiclassical expansion of the
wdw equation divides the relation between quantummechanics and general relativity
into different levels, which can be placed in a relative hierarchy. This hierarchy is
reflected in the semiclassical expansion. The lowest order (𝜆−1) concerns the classical
dynamics of general relativity. The second-to-lowest order (𝜆0) concerns quantum
mechanics in an external, classical background. The order obtained after that (𝜆1)
concerns interactions between the quantised degrees of freedom and the gravitational
field. It is at this order that the quantum gravitational corrections can be expected
to occur. One can therefore truncate the semiclassical expansion at terms of order 𝜆
in order to get an estimate of the leading quantum gravitational effects. This will be
done in what follows.
Substitution of (5.26) into (5.25.a) then results in a polynomial in 𝜆, of which each

coefficient must vanish separately. This results in a family of equations, which can be
solved iteratively.

Order 𝒪(𝜆−1): At this order in the expansion one obtains the Hamilton-Jacobi
equation for general relativity:

𝐺𝑎𝑏𝑐𝑑

2√𝛾
𝛿𝑆0
𝛿𝛾𝑎𝑏

𝛿𝑆0
𝛿𝛾𝑐𝑑

− √𝛾(s)𝑅 = 0. (5.27)

It was discussed in section 5.3 that the Hamilton-Jacobi equation gives rise to a
semiclassical notion of time. A time derivative D𝑡s can be defined to be

D𝑡s =
𝐺𝑎𝑏𝑐𝑑

√𝛾
𝛿𝑆0
𝛿𝛾𝑎𝑏

𝛿
𝛿𝛾𝑐𝑑

. (5.28)
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It can be concluded that 𝑆0 describes a classical spacetime geometry. The semiclas-
sical expansion enables one to go beyond this classical regime, and allows one to
compute quantum corrections to the classical background geometry.

Order 𝒪(𝜆0): At this order in the expansion one obtains an equation for 𝑆1.

𝐺𝑎𝑏𝑐𝑑

√𝛾
(

𝛿𝑆0
𝛿𝛾𝑎𝑏

𝛿𝑆1
𝛿𝛾𝑐𝑑

− 1
2 i

𝛿2𝑆0
𝛿𝛾𝑎𝑏𝛿𝛾𝑐𝑑

) = 0. (5.29)

This equations has the solution 𝑆1 = i log Δ1, where Δ1 satisfies

𝐺𝑎𝑏𝑐𝑑

√𝛾
𝛿

𝛿𝛾𝑎𝑏
(Δ−2 𝛿𝑆0

𝛿𝛾𝑐𝑑
) = 0.

This is the continuity equation for the first order wkb correction for general relativity.

Order 𝒪(𝜆1): With (5.28) this equation can be written to be

D𝑡s 𝑆2 =
𝐺𝑎𝑏𝑐𝑑

2√𝛾
(i

𝛿2𝑆1
𝛿𝛾𝑎𝑏𝛿𝛾𝑐𝑑

−
𝛿𝑆1
𝛿𝛾𝑎𝑏

𝛿𝑆1
𝛿𝛾𝑐𝑑

) .

The replacement of 𝑆1 by Δ1 then results in

D𝑡s 𝑆2 =
𝐺𝑎𝑏𝑐𝑑

2√𝛾
⎛⎜
⎝

1
Δ2

1

𝛿Δ1
𝛿𝛾𝑎𝑏

𝛿Δ1
𝛿𝛾𝑐𝑑

−
1

Δ1

𝛿2Δ1
𝛿𝛾𝑎𝑏𝛿𝛾𝑐𝑑

⎞⎟
⎠

.

This is the second order wkb correction for general relativity.

5.5.2 Expansion of the fast sector

The semiclassical solution 𝑆 can be substituted into (5.25.b). This results in an evo-
lution equation for 𝜓. The truncation of 𝑆 at the leading term 𝑆0 yields

i D𝑡s 𝜓 = −
1

2√𝛾
𝛿2𝜓
𝛿𝜙2 + √𝛾𝑉𝜓 ≡ ℋ𝜙𝜓.

This is the Schrödinger equation for 𝜓, as was found in section 5.3.1. It describes a
quantised scalar field in a curved classical space.
The systematic expansion of the wdw equation leads to subleading contributions

in 𝑆 that go beyond the Schrödinger equation, in contrast to the qualitative discus-
sion of section 5.3.1. These contributions lead to a coupling between the semiclas-
sical background geometry and the scalar field 𝜙, and can be ascribed to quantum
gravitational effects.
The inclusion of these subleading terms in the semiclassical expansion of 𝑆 into

(5.25.b) leads to
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i D𝑡s 𝜓 = ℋ𝜙𝜓 + 1
2 𝜆

𝐺𝑎𝑏𝑐𝑑

√𝛾
(

𝛿2𝜓
𝛿𝛾𝑎𝑏𝛿𝛾𝑐𝑑

+ i
𝛿𝑆1
𝛿𝛾𝑎𝑏

𝛿𝜓
𝛿𝛾𝑐𝑑

) . (5.30)

There are new structures compared to the uncorrected Schrödinger equation. It is
worthwhile to note that these extra structures originate entirely from the heavy de-
grees of freedom, and therefore indicate a non-trivial influence of the gravitational
field on the light degrees of freedom. It is also worthwhile to mention that this equa-
tion is effective only in the sense that the expansion of 𝑆 was truncated at the linear
order term in 𝜆. It is therefore straightforward to see how these corrections can be
extended to arbitrary orders of 𝜆.

5.5.3 Unitarity in the semiclassical expansion

It can be expected that a semiclassical notion of probability can be defined, as (5.30)
arises as an extension of the uncorrected Schrödinger equation. It would then be pos-
sible to define a Schrödinger inner product for the light degree of freedom whenever
this notion holds. That is, for given solutions Ψ and Φ of the wdw equation, it must
be possible to define an inner product of the form

⟨Ψ|Φ⟩ = ∫ Ψ̄Φ d𝜙.

The full wdw equation does not allow such a structure, and it can be expected
that the conventional Schrödinger product breaks down once quantum gravitational
effects become relevant. In particular, the correction terms in (5.30) have, in the past,
been subject to considerable discussion, as their presence has been associated with
violations of unitarity. This could either indicate that the formalism is wrong, or that
the effective Schrödinger inner product breaks down. The later case would imply that
it would have to be replaced by a more general inner product. This section therefore
concludes with a brief consideration of the construction of a probability measure in
superspace.
It was discussed in section 5.4 that a solution Ψ to the wdw equation (5.23) gives

rise to a conserved current 𝒥𝐴. From this current a probability density d𝑃 can be
defined according to (5.21). One has to ensure that the hypersurfaces of (5.21) are
chosen properly, such that the probability is positive definite. This can be guaranteed
by considering the hypersurfaces Σ of constant 𝑆0. A normal vector 𝑛𝐴 to these
surfaces can be found to be

𝑛𝐴 = 𝜀 𝑁 ∇𝐴𝑆0,

where the Hamilton-Jacobi equation (5.27) fixes the normalisation 𝜀𝑁 to be

𝑁 = (𝜀 ∇𝐴𝑆0∇𝐴𝑆0)−1/2 , 𝜀 = sgn(√𝛾(s)𝑅).

Coordinates 𝑥𝐵 on the hypersurface can be constructed through the integral curves

𝛿𝑄𝐴

𝛿𝑥𝐵 = 𝑇𝐴
𝐵,
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where the 𝑇𝐴
𝐵 are a linear independent set of vector fields that satisfy 𝑛𝐴𝑇𝐴

𝐵 = 0
and 𝑇𝐴

𝐵𝑇𝐵
𝐶 = 𝛿𝐴

𝐶 . The metric on Σ is then

𝓂𝐴𝐵 ≡ ℳ𝐶𝐷𝑇𝐶
𝐴𝑇𝐷

𝐵.

The surface element dΣ then follows from (2.24):

dΣ = 𝜀𝑛𝐴√𝓂 ∏
𝐵

d𝑥𝐵.

It is assumed in this example that space is not flat. It was argued in chapter 4 that
this assumption does not hold in inflationary cosmology. This issue will be addressed
in chapter 7.
The components of the current can be found by substitution of the solution Ψ of the

wdw equation into the definition of the current. With the ansatz (5.24) it is found that

𝒥𝑎𝑏 = 𝜆
𝐺𝑎𝑏𝑐𝑑

√𝛾
(2|𝜓|2

𝛿𝑆
𝛿𝛾𝑐𝑑

+ i𝜓
𝛿𝜓†

𝛿𝛾𝑐𝑑
− i𝜓† 𝛿𝜓

𝛿𝛾𝑐𝑑
) ,

𝒥𝜙 = i (𝜓
𝛿𝜓†

𝛿𝜙 − 𝜓† 𝛿𝜓
𝛿𝜙) .

The probability density is therefore

d𝑃 = 𝒥𝐴dΣ𝐴 = 𝜆𝑁 [|𝜓|2 Re(D𝑡s 𝑆) − Im(𝜓̄ D𝑡s 𝜓)] √𝓂 ∏
𝐴

d𝑥𝐴.

This expression can be combined with (5.26), (5.27), (5.29) and (5.30) to give a
formal expression for the conserved probability up to linear order in 𝜆:

𝑃 = ∫
Σ

𝜆𝜓̄ [1 + 𝜆𝑁2ℋ𝜙] 𝜓 𝑁−1√𝓂 ∏
𝐴

d𝑥𝐴.

The probability provides an inner product between two states Ψ and Φ as a natural
generalisation of the Schrödinger-type inner product:

⟨Ψ|Φ⟩ = ∫ Ψ̄ [1 + 𝜆𝑁2ℋ𝜙] Φ 𝑁−1√𝓂 ∏
𝐴

d𝑥𝐴. (5.31)

This inner product is conserved (by virtue of (5.21)) and it is positive definite (the
spectrum of ℋ𝜙 is positive). It can be seen that, up to a normalisation factor orig-
inating from the heavy degrees of freedom, this inner product reduces to the fa-
miliar Schrödinger-type inner product on the space of the light degree of freedom
at the level of the uncorrected Schrödinger equation, which corresponds to the for-
mal limit 𝜆 → 0. Furthermore, new structures appear at the level of the uncorrected
Schrödinger equation. It is therefore no longer possible to define a Schrödiner-type
inner product on the space of the light degree of freedom alone. Instead, one has to
consider all the configuration space variables—both light and heavy.
It bears repeating that the results derived here are valid only when the semiclassical

approximation holds. The construction relies on the existence of the Hamilton-Jacobi
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equation, without which it is not clear whether it is possible to define appropriate
hypersurfaces on which a notion of probability can be defined. However, this ques-
tion goes outside the scope of this work. The next chapters focus exclusively on the
semiclassical regions of superspace, in which (5.31) is perfectly valid.
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QUANTUM GEOMETRODYNAMICS IN SCALAR-TENSOR THEORIES

6
The goal of this chapter is perform a semiclassical expansion of the Wheeler-
DeWitt (wdw) equation for scalar-tensor theories. The motivation for this is two-fold.
First, the semiclassical expansion of the wdw equation for Einstein-Hilbert gravity
with a minimally coupled scalar field was performed in reference [95]. The quantum
gravitational corrections were found to be suppressed by inverse powers of the square
of the Planck mass. Scalar-tensor theories replace the Planck mass with a dynam-
ical scalar field. It may therefore be expected that for certain scalar-tensor models
the quantum gravitational corrections are enhanced relative to the minimally cou-
pled theories. Second, it was shown in reference [95] that the effective Schrödinger
equation, which arises in the semiclassical expansion of the wdw equation for mini-
mally coupled theories, is independent of the operator ordering ambiguities that were
discussed in chapter 5. It is natural to ask whether such a result would still hold
in scalar-tensor theories, where the scalar field can be identified with a dynamical
Planck mass.
The semiclassical expansion of the wdw equation for minimally coupled theories

relied on the presence of the Planck mass as an expansion parameter. Scalar-tensor
theories generally do not have a manifest presence of energy scales that can be used
to serve as a natural expansion parameter. In fact, the non-minimal coupling of the
scalar field to gravity induces a derivative coupling between the scalar field and the
gravitational degrees of freedom, which prevents a direct application of the expansion
scheme. This technical difficulty is addressed here by the use of the correspondence
of the theory in the Jordan frame (jf) and the Einstein frame (ef). It is found that
a large non-minimal coupling can have strong effects on the quantum gravitational
correction terms. These effects are briefly discussed in the context of the specific
model of Higgs inflation.
The chapter is structured as follows: the Arnowitt-Deser-Misner (adm) decomposi-

tion of a general scalar-tensor theory is presented in section 6.1. The theory contains
an explicit non-minimal coupling in the jf parametrisation. The classical theory is for-
mulated in the Hamiltonian framework in section 6.2. Hence the explicit momentum
and Hamiltonian constraints are derived. The constraints are subsequently quantised
in section 6.3. The quantisation then gives rise to the wdwequation for scalar-tensor
theories. In section 6.4, the wdw equation is expressed in the ef parametrisation,
where it becomes diagonal, and perform the weighting required for the application
of the Born-Oppenheimer approximation scheme. Finally, the weighted wdw opera-
tor can be re-expressed in the jf parametrisation. In section 6.5, the semiclassical
approximation will be calculated up to the order where the first quantum gravitational
corrections arise and discuss the impact of the non-minimal coupling. The results are
summarised and listed with a brief discussion of possible applications section 6.6.
Furthermore, some technical details, that were not crucial for the main points of

this chapter, were relegated to the appendices. Detailed expressions for objects related
to the geometry of configuration space are presented in appendix A.
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6.1 SCALAR-TENSOR THEORY AND FOLIATION OF SPACETIME

The action functional of a general scalar-tensor theory in four dimensions, with a
scalar field 𝜙 non-minimally coupled to gravity, can be parametrised in terms of
three arbitrary functions 𝑈(𝜙), 𝐺(𝜙) and 𝑉(𝜙):

𝑆[𝑔, 𝜙] = ∫
ℳ

(𝑈 𝑅 − 1
2 𝐺 ∇𝜇𝜙∇𝜇𝜙 − 𝑉) √−𝑔 d4𝑋. (6.1)

Here, 𝑈 is the non-minimal coupling, 𝐺 parametrises a non-canonically normalised
kinetic term and 𝑉 is the scalar field potential. It is assumed that the manifold ℳ
is globally hyperbolic and endowed with the 4-dimensional metric 𝑔𝜇𝜈 and a metric
compatible affine connection ∇𝜇. The signature of ℳ is taken to be Lorentzian. The
Riemannian curvature 𝑅𝜌

𝜎𝜇𝜈 is defined by

𝑅𝜌
𝜎𝜇𝜈𝑣𝜎 = [∇𝜇, ∇𝜈]𝑣𝜌, 𝑣 ∈ 𝑇ℳ.

A point 𝑋 in ℳ can be described by local coordinates 𝑋𝜇. In order to express the
action (6.1) in the Hamiltonian formalism the 4-dimensional ambient space ℳ is
foliated by a one-parameter family of 3-dimensional hypersurfaces Σ𝑡 of constant
time 𝑡. Thus, the hypersurfaces Σ𝑡 are the level surfaces of a globally defined smooth
scalar time field 𝑡. The gradient of 𝑡 defines a natural unit covector field

𝑛𝜇 ≡ −
∇𝜇𝑡

√−𝑔𝜇𝜈∇𝜇𝑡 ∇𝜈𝑡
, 𝑔𝜇𝜈𝑛𝜇𝑛𝜈 = −1.

At each point in Σ𝑡, the normal vector field

𝑛𝜇 = 𝑔𝜇𝜈𝑛𝜈,

is orthogonal to Σ𝑡 and allows an orthogonal decomposition of tensor fields with
respect to 𝑛𝜇. In particular, the ambient metric decomposes as

𝑔𝜇𝜈 = 𝛾𝜇𝜈 − 𝑛𝜇𝑛𝜈.

Here, 𝛾𝜇𝜈 is the tangential part of 𝑔𝜇𝜈, which implies 𝛾𝜇𝜈𝑛𝜇 = 0. The hypersurfaces
Σ𝑡 can be considered as the embeddings of an intrinsically 3-dimensional manifold
Σ̂𝑡 into the ambient space ℳ. A point 𝑥 in Σ̂ can be described by local coordinates 𝑥𝑎.
Thus, the 4-dimensional coordinate 𝑋𝜇 = 𝑋𝜇(𝑡, 𝑥𝑎) can be parametrised in terms of
the time field 𝑡 and the 3-dimensional coordinates 𝑥𝑎. The change of 𝑋𝜇 with respect
to 𝑡 and 𝑥𝑎 can be described by the coordinate one-form

d𝑋𝜇 =
∂𝑋𝜇(𝑡, 𝑥)

∂𝑡 d𝑡 +
∂𝑋𝜇(𝑡, 𝑥)

∂𝑥𝑎 d𝑥𝑎 = 𝑡𝜇d𝑡 + 𝑒𝜇
𝑎d𝑥𝑎, (6.2)

where the time vector field 𝑡𝜇 and the soldering form 𝑒𝜇
𝑎 as

𝑡𝜇 ≡
∂𝑋𝜇(𝑡, 𝑥𝑖)

∂𝑡 ≡ 𝑁 𝑛𝜇 + 𝑁𝜇, 𝑒𝑎
𝜇 ≡

∂𝑋𝜇(𝑡, 𝑥)
∂𝑥𝑎 . (6.3)
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This orthogonal decomposition shows the component 𝑁 = 𝑁(𝑡, 𝑥) in the normal
direction 𝑛𝜇, which is called the lapse function, and the components 𝑁𝜇 = 𝑁𝜇(𝑡, 𝑥)
tangential to Σ𝑡, which form the shift vector. The soldering form 𝑒𝜇

𝑎 can be thought
of as a tangential vector with respect to the 𝜇 index, which implies that 𝑒𝜇

𝑎𝑛𝜇 = 0,
and a 3-dimensional vector with respect to the 𝑎 index. It can be used to pull back
tangential tensors in ℳ to tensors in Σ̂𝑡. These properties can be summarised for the
spatial metric and shift vector as

𝛾𝑎𝑏 ≡ 𝑒𝜇
𝑎𝑒𝜈

𝑏𝛾𝜇𝜈, 𝑁𝑎 ≡ 𝑒𝜇
𝑎𝑁𝜇,

𝛿𝜇
𝜈 = 𝑒𝜇

𝑎𝑒𝜈
𝑎, 𝛿𝑎

𝑏 = 𝑒𝑎
𝜇𝑒𝜇

𝑏.

The ambient space coordinate one-form (6.2) can therefore be written as

d𝑋𝜇 = 𝑁𝑛𝜇d𝑡 + 𝑒𝑎
𝜇 (𝑁𝑎d𝑡 + d𝑥𝑎) .

The ambient space line element then acquires the adm form

d𝑠2 = 𝑔𝜇𝜈d𝑋𝜇d𝑋𝜇

= (−𝑁2 + 𝛾𝑎𝑏𝑁𝑎𝑁𝑏) d𝑡2 + 2𝛾𝑎𝑏𝑁𝑎d𝑥𝑏d𝑡 + 𝛾𝑎𝑏d𝑥𝑎d𝑥𝑏.
(6.4)

The volume element can be decomposed as

√−𝑔 = 𝑁√𝛾. (6.5)

The affine connection D𝑎 on Σ̂𝑡 that is compatible with the metric 𝛾𝑏𝑐 defines the
3-dimensional curvature

(s)𝑅𝑎
𝑏𝑐𝑑𝑣𝑏 = [D𝑐, D𝑑] 𝑣𝑎, 𝑣 ∈ 𝑇Σ̂𝑡.

The relation between the 4-dimensional Ricci scalar 𝑅 and the 3-dimensional Ricci
scalar (s)𝑅 is given by the Gauss-Codazzi equation (2.18)

𝑅 = (s)𝑅 − (𝐾̃2 − 𝐾̃𝑎𝑏𝐾̃𝑎𝑏) − 2 (D𝑏 + 𝑎𝑏) 𝑎𝑏 + 2 (D𝑡 +𝐾̃) 𝐾̃. (6.6)

Here, (s)𝑅 is the intrinsic 3-dimensional curvature, which is calculated from the in-
duced metric 𝛾𝑎𝑏, while 𝐾̃𝑎𝑏 is the extrinsic curvature and 𝐾̃ its trace:

𝐾̃𝑎𝑏 ≡ 1
2 𝑁−1 [∂0𝛾𝑎𝑏 − (ℒ𝐍 𝛾)𝑎𝑏] = 1

2 D𝑡 𝛾𝑎𝑏 , 𝐾 ≡ 𝛾𝑎𝑏𝐾̃𝑎𝑏.

The covariant reparametrisation invariant time derivative is defined by

D𝑡 ≡ 𝑁−1 (∂0 − ℒ𝐍) , (6.7)

where ℒ𝐍 is the Lie derivative along the spatial shift vector 𝐍 = 𝑁𝑎∂𝑎. Finally, the
decomposition (6.6) involves the acceleration vector 𝑎𝑏, which is defined as

𝑎𝑏 ≡ D𝑏 log 𝑁. (6.8)
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The action (6.1) can be expressed in terms of intrinsic 3-dimensional tensors via
(6.5)-(6.8):

𝑆[𝑁, 𝐍, 𝛾, 𝜙] = ∫ 𝐿 d𝑡 = ∫ ℒ d𝑡d3𝑥. (6.9)

Here, 𝐿 and ℒ are the Lagrangian and the Lagrangian density, respectively. Up to
boundary terms, the Lagrangian density for (6.1) is explicitly given by

ℒ = 𝑁√𝛾[𝑈𝐺𝑎𝑏𝑐𝑑𝐾̃𝑎𝑏𝐾̃𝑐𝑑 + 𝑈 (s)𝑅 − 2𝑈1𝐾̃ D𝑡 𝜙 + 2Δ𝑈

+ 1
2 𝐺 (D𝑡 𝜙 D𝑡 𝜙 − D𝑎 𝜙 D𝑎 𝜙) − 𝑉 ].

Here, Δ ≡ −𝛾𝑎𝑏 D𝑎 D𝑏 denotes the 3-dimensional Laplacian. The tensor 𝐺𝑎𝑏𝑐𝑑 is the
In the literature
one frequently
encounters the
DeWitt metric

with an additional
density factor √𝛾.

DeWitt metric 𝐺𝑎𝑏𝑐𝑑 which together with its inverse 𝐺𝑎𝑏𝑐𝑑 is defined by

𝐺𝑎𝑏𝑐𝑑 ≡ 𝛾𝑎(𝑐𝛾𝑑)𝑏 − 𝛾𝑎𝑏𝛾𝑐𝑑, 𝐺𝑎𝑏𝑐𝑑 ≡ 𝛾𝑎(𝑐𝛾𝑑)𝑏 − 1
2 𝛾𝑎𝑏𝛾𝑐𝑑, (6.10)

which satisfy

𝐺𝑎𝑏𝑘𝑙𝐺𝑘𝑙𝑐𝑑 = 𝛿𝑐𝑑
𝑎𝑏 ≡ 𝛿𝑐

(𝑎𝛿𝑑
𝑏) ≡ 1

2 (𝛿𝑐
𝑎𝛿𝑑

𝑏 + 𝛿𝑐
𝑏𝛿𝑑

𝑎) .

In addition, recall that derivatives of a function 𝑓 (𝜙) with respect to its argument are
denoted by

𝑓𝑛(𝜙) ≡
∂𝑛𝑓 (𝜙)

∂𝜙 𝑛 .

6.2 CANONICAL FORMULATION AND HAMILTONIAN CONSTRAINT

It is convenient to use a compact notation for the dynamical configuration space vari-
Note that the
lapse function

and shift vector
are not dynam-
ical quantities.

ables 𝑞𝐴 and their velocities ∂0𝑞𝐴, where the superindex 𝐴 labels the corresponding
components

(𝑞𝐴) = ( 𝛾𝑎𝑏
𝜙 ), (∂0𝑞𝐴) = ( ∂0𝛾𝑎𝑏

∂0𝜙 ).

In this compact notation the Lagrangian density in (6.9) takes the form

ℒ = 1
2 ∂0𝑞𝐴ℳ𝐴𝐵 ∂0𝑞𝐵 + …,

where the configuration space metric ℳ𝐴𝐵 can be read off from the terms quadratic in
the velocities and the dots indicate lower order time derivatives terms. In components
ℳ𝐴𝐵 has the block matrix structure

(ℳ𝐴𝐵) =
√𝛾
𝑁

⎛⎜
⎝

𝑈
2 𝐺𝑎𝑏𝑐𝑑 −𝑈1𝛾𝑎𝑏

−𝑈1𝛾𝑐𝑑 𝐺
⎞⎟
⎠

. (6.11)
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Note the somewhat unorthodox inclusion of the inverse lapse function into the defi-
nition of the configuration space metric (6.11). In principle, time reparametrisation
invariance suggests that with each factor of time 𝑡 a factor of the lapse function should
be associated, such as the inverse powers of 𝑁 in the covariant time derivative (6.7).
Similarly, one would associate a factor of 𝑁 with the time differential d𝑡 in (6.9). The
inclusion of the lapse function in (6.11) will become clear in section 6.4.2, where
the transition between two particular parametrisations of the fields is discussed. In
general, the configuration space is considered formally as a differentiable manifold.
A list of the associated geometrical objects is provided in appendix A.
In terms of the covariant time derivative (6.7) the Lagrangian density (6.9) ac-

quires the compact form

ℒ = 1
2 𝑁2 D𝑡 𝑞𝐴ℳ𝐴𝐵 D𝑡 𝑞𝐵 − 𝒫, (6.12)

The tensor 𝛾𝑎𝑏,
when viewed as
metric field is
defined with
covariant spatial
indices, despite
its contravariant
superindex when
viewed as a con-
figuration space
coordinate.

where D𝑡 acts componentwise on the 𝑞𝐴. The potential 𝒫 is defined as

𝒫 ≡ 𝒫𝛾 + 𝒫𝜙,

𝒫𝛾 ≡ 𝑁 𝑃𝛾 ≡ −𝑁√𝛾𝑈 [(s)𝑅 + 2𝑈−1Δ𝑈 + 3
2 D𝑎 log 𝑈 D𝑎 log 𝑈] ,

𝒫𝜙 ≡ 𝑁 𝑃𝜙 ≡ 𝑁√𝛾 [ 1
2 𝑠−1 D𝑎 𝜙 D𝑎 𝜙 + 𝑉] ,

where the suppression function 𝑠 is defined to be

𝑠 ≡
𝑈

𝐺𝑈 + 3𝑈2
1

. (6.13)

The momenta can be calculated directly from (6.12):

𝑝𝐴 =
∂ℒ

∂(∂𝑡𝑞𝐴)
= 𝑁ℳ𝐴𝐵 D𝑡 𝑞𝐵. (6.14)

In components, the momenta read

(𝑝𝐴) = ⎛⎜
⎝

𝑝𝑎𝑏
𝛾

𝑝𝜙
⎞⎟
⎠

= √𝛾( 𝑈𝐺𝑎𝑏𝑐𝑑𝐾̃𝑐𝑑 − 𝑈1𝛾𝑎𝑏 D𝑡 𝜙
−2𝑈1𝛾𝑎𝑏𝐾̃𝑎𝑏 + 𝐺 D𝑡 𝜙

).

Relation (6.14) can be inverted to yield

D𝑡 𝑞𝐴 = 𝑁−1ℳ𝐴𝐵𝑝𝐵,

where the inverse of the configuration space metric ℳ𝐴𝐵 is defined by

ℳ𝐴𝐶ℳ𝐶𝐵 = 𝛿𝐵
𝐴, (𝛿𝐵

𝐴) = ( 𝛿𝑐𝑑
𝑎𝑏 0
0 1

).

The inverse
metric exists
whenever 𝛾𝑎𝑏
is regular and
𝑠 is defined.

Here, the (𝛿𝐴
𝐵 ) denote the components of the identity matrix on the configuration

space. The components of the inverse configuration space metric ℳ𝐴𝐵 are given
explicitly by
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(ℳ𝐴𝐵) =
𝑁
√𝛾

⎛⎜⎜⎜
⎝

2𝑈−1𝐺𝑎𝑏𝑐𝑑 + 𝑠 (𝑈1
𝑈 )

2
𝛾𝑎𝑏𝛾𝑐𝑑 −𝑠𝑈1

𝑈 𝛾𝑎𝑏

−𝑠𝑈1
𝑈 𝛾𝑐𝑑 𝑠

⎞⎟⎟⎟
⎠

. (6.15)

The Hamiltonian density ℋ is obtained by the Legendre transformation of (6.12):

ℋ = 𝑝𝐴∂𝑡𝑞𝐴 − ℒ = 1
2 𝑝𝐴ℳ𝐴𝐵𝑝𝐵 + 𝒫 + 𝑝𝐴 ℒ𝐍 𝑞𝐴. (6.16)

The total Hamiltonian is given by the spatial integral of (6.16)

𝐻 ≡ ∫ ℋ d3𝑥 ≡ ∫ (𝑁ℋ⊥ + 𝑁𝑎ℋ𝑎) d3𝑥. (6.17)

The total Hamiltonian (6.17) is constrained to vanish due to the 4-dimensional dif-
feomorphism invariance of (6.1). The constraint character becomes manifest in the
last equality of (6.17), where ℋ was written as the sum of the Hamiltonian constraint
ℋ⊥ and the momentum constraint ℋ𝑎 together with the lapse function 𝑁 and shift
vector 𝑁𝑎. The latter two act as Lagrange multipliers. Explicitly, the constraints are
given by

ℋ⊥ =
1

𝑈√𝛾
𝐺𝑎𝑏𝑐𝑑 𝑝𝑎𝑏

𝛾 𝑝𝑐𝑑
𝛾 + 𝑃𝛾 +

1
2

𝑠
√𝛾

(𝑝𝜙 −
𝑈1
𝑈 𝑝𝛾)

2
+ 𝑃𝜙, (6.18)

ℋ𝑎 = −2𝛾𝑎(𝑏 D𝑐) 𝑝𝑏𝑐
𝛾 + 𝑝𝜙 D𝑎 𝜙. (6.19)

Note that 𝑝𝛾 = 𝛾𝑎𝑏 𝑝𝑎𝑏
𝛾 denotes the trace of the gravitational momentum. The mo-

mentum constraint ℋ𝑎 is the generator of 3-dimensional diffeomorphism, while the
dynamical evolution is controlled by the Hamiltonian constraint ℋ⊥. The expressions
(6.18) and (6.19) coincide with those obtained in reference [81].

6.3 QUANTUM THEORY AND WHEELER-DEWITT EQUATION

As mentioned in the chapter 5, it is unclear whether a Hilbert space structure is a
prerequisite for canonical quantum gravity. However, in semiclassical regions of su-
perspace one can still expect an auxiliary underlying Hilbert space with Schrödinger
type inner product

⟨Φ|Ψ⟩ ≡ ∫ Φ̄[𝑞]√|ℳ|Ψ[𝑞] d𝑞. (6.20)

Here, the wave functional Ψ[𝑞] = ⟨𝑞|Ψ⟩ corresponds to the Schrödinger represen-
tation of the state |Ψ⟩ and ℳ is the determinant of the configuration space metric
ℳ𝐴𝐵. Note that the naive definition (6.20) involves the integration over all config-
urations 𝑞𝐴, which includes the unphysical ones, as (6.20) is not an inner product
on the space of the solutions to the constraints [92]. Related to the inner product is
the question of unitarity. This is a complicated problem in the context of quantum
gravity and can be discussed at various levels [97]. In particular, if quantum theory
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is a universal concept, a probabilistic interpretation would require a unitary evolu-
tion at the most fundamental level, which includes the gravitational degrees of free-
dom. However, this chapter focusses on semiclassical regions of superspace, in which
an effective probabilistic interpretation holds. The fundamental questions above are
therefore beyond the scope of this work.
In the quantum theory, the conjugated phase space variables 𝑞𝐴 and 𝑝𝐵 are pro-

moted to operators 𝑞𝐴 and 𝑝̂𝐵, which satisfy the canonical commutator relations

[𝑞𝐴, 𝑝̂𝐵] = i 𝛿𝐴
𝐵 , [𝑞𝐴, 𝑞𝐵] = [𝑝̂𝐴, 𝑝̂𝐵] = 0. (6.21)

In the position space representation, the position operator 𝑞𝐴 acts multiplicatively,
while the momentum operator 𝑝̂𝐵 acts as a derivative operator

𝑝̂𝐴 ≡ −i ℳ−1/4 𝛿
𝛿𝑞𝐴 ℳ1/4.

This representation of the momentum operator is formally self-adjoint with respect
to the inner product (6.20) and satisfies the canonical commutation relation (6.21)
[112]. The operator versions of the classical constraints (6.18) are defined by replace-
ments of the classical phase space variables by their quantum operators:

ℋ̂⊥ ≡ ℋ⊥(𝑞, 𝑝̂), ℋ̂𝑎 ≡ ℋ𝑎(𝑞, 𝑝̂).

This procedure is ambiguous due to factor ordering problems, which arise because
of (6.21). In particular, for the transition from the classical Hamiltonian constraint

ℋ⊥ = 𝑁−1 ( 1
2 𝑝𝐴ℳ𝐴𝐵𝑝𝐵 + 𝒫) (6.22)

to the quantum Hamiltonian constraint, this factor ordering ambiguity can be traced
back to the non-commutativity of the configuration space metric with the momentum
operator:

[ℳ𝐴𝐵(𝑞), 𝑝̂𝐶] ≠ 0.

The factor ordering ambiguity does not affect the principal part of the Hamiltonian
constraint operator ℋ̂⊥—only its lower derivative terms. It can be partially addressed
by the adoption of the covariant Laplace-Beltrami factor ordering, which effectively
corresponds to the replacement the quadratic form 𝑝𝐴ℳ𝐴𝐵(𝑞)𝑝𝐵 in (6.22) by the

The Laplace-
Beltrami ordering
makes it is pos-
sible to add an
additional con-
figuration space
curvature term
to □. This intro-
duces an arbitrary
parameter in the
potential.

symmetric combination

ℳ−1/4𝑝̂𝐴ℳ1/4 ℳ𝐴𝐵 ℳ1/4𝑝̂𝐵ℳ−1/4 = −ℳ𝐴𝐵∇𝐴∇𝐵 ≡ −□. (6.23)

Here, ordinary functional derivatives are abbreviated by 𝛿𝐴 and introduced the co-
variant functional derivatives ∇𝐴, defined with respect to the Christoffel connection
of the configuration space metric:

𝛿𝐴Ψ =
𝛿Ψ
𝛿𝑞𝐴 , Γ𝐶

𝐴𝐵 = 1
2 ℳ𝐶𝐷 (𝛿𝐴ℳ𝐷𝐵 + 𝛿𝐵ℳ𝐴𝐷 − 𝛿𝐷ℳ𝐴𝐵) .
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The Hamiltonian constraint operator with the factor ordering (6.23) can be written
compactly as

ℋ̂⊥ = 𝑁−1 (− 1
2 □ + 𝒫) . (6.24)

Equation (6.24) will be referred to as the wdw operator. With the geometrical quan-
tities that are provided in (A.1)-(A.6) the explicit form of the Laplace-Beltrami op-
erator (6.22) and hence the wdw operator (6.24) can be found to be

ℋ̂⊥ = −
1

√𝛾𝑈
𝐺𝑎𝑏𝑐𝑑

𝛿2

𝛿𝛾𝑎𝑏𝛿𝛾𝑐𝑑
−

7
8√𝛾𝑈

𝛾𝑎𝑏
𝛿

𝛿𝛾𝑎𝑏
+ 𝑃𝛾

−
1
2

𝑠
√𝛾

𝒟2 −
1
4

𝑠
√𝛾

(
𝑠1
𝑠 −

3
2

𝑈1
𝑈 ) 𝒟 +𝑃𝜙. (6.25)

Here, 𝒟 defines the combined derivative

𝒟 ≡
𝛿

𝛿𝜙 −
𝑈1
𝑈 𝛾𝑎𝑏

𝛿
𝛿𝛾𝑎𝑏

. (6.26)

Note, that since the Laplace-Beltrami operator □ and the potential 𝒫 are both pro-
portional to 𝑁, the explicit form of ℋ̂⊥ is independent of the lapse function.
In the quantisation prescription for constrained systems, proposed by Dirac [96],

the quantum constraints are implemented by the demand that physical states are an-
nihilated by the quantum constraint operators. The implementation of the momen-
tum constraint operator ℋ̂𝑎 ensures that the wave functional |Ψ⟩ is invariant under
3-dimensional diffeomorphisms:

ℋ̂𝑎|Ψ⟩ = 0. (6.27)

The configuration space modulo the 3-dimensional diffeomorphisms is called super-
space [100, 101]. The implementation of the Hamiltonian constraint operator ℋ̂⊥,
which governs the quantum dynamics of the wave functional Ψ, leads to the wdw
equation

ℋ̂⊥|Ψ⟩ = 0. (6.28)

At this point it is appropriate to comment on the factors of 𝛿(3)(0), which have been
suppressed in the considerations so far. The spatial 3-dimensional delta function
𝛿(3)(𝑥𝑎, 𝑥𝑏) is assumed to be a scalar bi-density with zero weight at the first argument
and unit weight at the second argument, where 𝑥𝑎 and 𝑥𝑏 are the corresponding
spatial coordinates. Given the fundamental identity

𝛿𝑞𝐴(𝑥𝑎)
𝛿𝑞𝐵(𝑥𝑏)

= 𝛿𝐴
𝐵 𝛿(3)(𝑥𝑎, 𝑥𝑏),

it is readily seen that, since one has to calculate functional derivatives that act on
local background quantities at the same point (𝑥𝑎 = 𝑥𝑏), the wdw equation contains
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factors of 𝛿(3)(0) [94]. The singular factors of undifferentiated delta functions at the
same point have to be regularised. It was suggested in reference [94] to adopt a reg-
ularisation scheme where field operators at the same point can be freely commuted,
which effectively corresponds to 𝛿(3)(0) = 0. This means that the kinetic part of the
wdw operator (6.25) is reduced to its principal (highest derivative) part, where all
functional derivatives only act on the wave functional—not on local background co-
efficients. At this point no regularisation scheme is adopted. Instead, all factors of
𝛿(3)(0) are carried through the calculation but, but their explicit occurrence is sup-
pressed for notational reasons. Explicit factors 𝛿(3)(0) can be restored easily at each
step by dimensional considerations.

6.4 WE IGHTING AND TRANSITION BETWEEN FRAMES

It is, in general, difficult to find an exact solution Ψ[𝛾, 𝜙] to the wdw equation (6.28).
Moreover, the quantum theory obtained by the naive definition of the inner product
and the Dirac quantisation scheme is not complete [97, 113]. In addition, an exact
solution to the wdw equation requires suitable boundary conditions. These boundary
conditions are the main subject of quantum cosmology. The most prominent and
physically best motivated proposals among the many choices seem to be the no-
boundary and tunneling conditions [74, 104–106, 114–117]. One might even extract
predictions and consistency equations from quantum cosmology if given a sensible
definition of a probability measure, as can be seen, for example, in the references
[118–121].
This work does not attempt to find an exact solution to the full wdw equation, but

aims to construct the semiclassical branch of the wave functional Ψ, which is limited
to a restricted region in configuration space. The approach uses a combined Born-
Oppenheimer-wkb-type approximation in order to perform a systematic expansion
of the full wdw equation [93, 95, 122–127], which allows the extraction of the first
quantum gravitational correction terms [95].

6.4.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation is well known in quantum mechanical multi-
particle systems and, and is based on a distinction between heavy degrees of freedom
𝒬 with mass 𝑚𝒬 and light degrees of freedom 𝓆 with mass 𝑚𝓆 [128]. Heavy and
light are to be understood in terms of the terminology introduced in chapter 5. The
difference in the characteristic mass scales, expressed in terms of the dimensionless
parameter

𝜆 ≡
𝑚𝓆

𝑚𝒬
≪ 1, (6.29)

implies that the heavy and light degrees of freedom vary on different characteris-
tic time scales and might therefore be interchangeably referred to as the slow and
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fast degrees of freedom, respectively. In a more abstract context, 𝜆 represents a for-
mal parameter which can be used to implement the distinction between background
(slow) and fluctuation (fast) degrees of freedom and which can be set to one after
the expansion has been performed. The distinction between slow and fast variables
motivates a product ansatz for the total wave function:

Ψ(𝒬, 𝓆) = 𝜒(𝒬) 𝜓(𝒬; 𝓆).

Here 𝜒(𝒬) is the wave function for the slow degrees of freedom 𝒬, for which a sub-
sequent wkb approximation is performed. In contrast, the wave function 𝜓(𝒬; 𝓆) for
the fast degrees of freedom 𝓆 is treated as fully quantum and depends only paramet-
rically on the 𝒬 variables.
Practically, the semiclassical expansion can be systematically performed by the fol-

lowing operations. First, the distinction between heavy and light degrees of freedom
can be implemented by the introduction of different relative weight factors for the
individual terms in the Hamilton operator by the rescaling of each factor of 𝑚𝒬 by a
power of 𝜆:

𝐻(𝒬, 𝓆) → 𝐻𝜆(𝒬, 𝓆), (6.30)

where the weighted Hamiltonian 𝐻𝜆 has the schematic structure

𝐻𝜆(𝒬, 𝓆) = 1
2 𝜆𝑚−1

𝒬 𝑃2
𝒬 + 𝑉(𝒬) + 1

2 𝑚−1
𝓆 𝑝2

𝓆 + 𝑊(𝒬, 𝓆).

Here 𝑃𝒬 and 𝑉(𝒬) are the momentum and self-interaction potential of the heavy
variables 𝒬, while 𝑝𝓆 and 𝑊(𝑄, 𝓆) are the momentum and potential of the fast vari-
ables 𝓆. The latter includes the self-interaction among the 𝓆’s as well as the interaction
between the 𝓆’s and the 𝒬’s. Second, in addition to the weighting of the Hamilton
operator (6.30), the wave function Ψ(𝓆, 𝒬) in the form of a formal power series in
𝜆:

Ψ(𝒬; 𝓆) = exp i [𝜆−1𝑆0(𝒬; 𝓆) + 𝑆1(𝒬, 𝓆) + 𝜆𝑆2(𝒬, 𝓆) + …] . (6.31)

In the context of quantum geometrodynamics, the semiclassical expansion can be
obtained by the insertion of the weighted Hamilton operator 𝐻̂𝜆 together with the
ansatz (6.31) into the wdw equation (6.28). The result can be collected as a poly-
nomial in 𝜆, of which the coefficient of each term must vanish separately. One then
obtains a family of equations for 𝑆0, 𝑆1, 𝑆2 and so on. The wave functional Ψ can be
reconstructed to the accuracy given by the respective order in 𝜆 as these equations
are solved iteratively. For the system of a scalar field 𝜙 that is minimally coupled to
gravity in 4 dimensions, the slow and fast degrees of freedom 𝒬 and 𝓆 are then asso-
ciated with the spatial metric 𝛾𝑎𝑏 and the scalar field 𝜙, respectively. The weighting
procedure then corresponds to the association of the expansion parameter 𝜆 with
each occurrence of the inverse of half the squared Planck mass 𝜅 = 1

2 𝑀P.
At the highest order of the expansion 𝒪(𝜆−2), one finds that 𝑆0(𝛾) is a function

of 𝛾𝑎𝑏 only. This is consistent with the association of the degrees of freedom in 𝛾𝑎𝑏 as
the slow variable. At the next order 𝒪(𝜆−1), one obtains an equation for 𝑆0(𝛾). Since
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the equation is of the Hamilton-Jacobi type, one recovers in a natural way the notion
of a semiclassical time from the timeless wdw equation. At order 𝒪(𝜆0) one obtains
an equation for 𝑆1(𝛾, 𝜙), which can be formulated as a Schrödinger equation for the
light scalar field degree of freedom 𝜙, where the time parameter 𝑡 is identified with
the semiclassical time and is effectively provided by the slowly changing background
geometry [93,95,122–127]. At order 𝒪(𝜆) one finds an equation for 𝑆2(𝛾, 𝜙), which
incorporates the first quantum gravitational correction terms [95].
This analysis is now extended to the case of a scalar-tensor theory. The action (6.1)

is rather general, as it involves three arbitrary functions 𝑈(𝜙), 𝐺(𝜙) and 𝑉(𝜙), and
covers almost all single field inflationary models in cosmology for different classes of
𝑈, 𝐺 and 𝑉. There are several differences compared to the minimally coupled scalar
field. First, the non-minimal coupling to gravity 𝑈 leads to a derivative coupling
between the matter and gravitational degrees of freedom, which result in a non-
diagonal wdw operator (6.25). Thus, a clear separation of slow and fast degrees of
freedom as for the minimally coupled case is no longer available. Second, in contrast
to the minimally coupled case, no constant mass scale 𝜅 is present a priori. This
make a straightforward application of the semiclassical expansion scheme difficult,
as the Born-Oppenheimer approximation relies on a clear separation of slow and fast
variables implemented in the wdw operator (6.25) by different powers of 𝜆.
This problem is addressed by the following strategy. It is well known that the scalar-

tensor theory (6.1) admits a classically equivalent parametrisation in the ef, which
resembles the action of a scalar field minimally coupled to gravity. The transition to
the ef is achieved by a particular field redefinition (𝑔, 𝜙) → (𝑔̃, 𝜙̃), which involves a
conformal transformation of the 4-dimensional metric field 𝑔𝜇𝜈 and a non-linear field
redefinition of the scalar field 𝜙. This is explained in detail in chapter 3. In view of
the adm decomposition, the conformal transformation of the 4-dimensional metric
𝑔𝜇𝜈 induces a corresponding conformal transformation of the geometrical fields 𝑁,
𝑁𝑎 and 𝛾𝑎𝑏 in the canonical theory. In terms of the ef variables, the wdw operator
(6.25) becomes diagonal, which enables a clear weighting procedure. The distinction
between heavy and light degrees of freedom can be implemented by the association of
a power of 𝜆 with each inverse power of 𝜅, owing to the presence natural mass scale
𝜅. Once this weighting procedure has been performed in the ef the wdw operator
(6.25) can be transformed back to the original jf field variables. The semiclassical
expansion can then be performed as outlined before.

6.4.2 Transition to the Einstein frame

The reparametrisation of the field variables from the jf to the ef at the level of the
4-dimensional covariant Lagrangian (3.13) induces a corresponding transformation
of the adm variables in the canonical formalism

𝑁̃ = √𝑈
𝜅 𝑁, 𝛾̃𝑎𝑏 =

𝑈
𝜅 𝛾𝑎𝑏,

∂𝜙̃
∂𝜙 = (

𝑈𝑠
𝜅 )

− 1
2
. (6.32)
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No explicit factors of the shift vector appear in the formalism, as the covariant time
derivative (6.7) renders the theory to the manifestly 3-dimensional diffeomorphism
invariant. In terms of the abstract multicomponent configuration space variables 𝑞𝐴,
the transformations (6.32) between the jf and ef can be described by the Jacobi
matrices

(
∂𝑞𝐴

∂𝑞𝐵 ) =
⎛⎜⎜⎜⎜⎜
⎝

𝑈
𝜅 𝛿𝑎𝑏

𝑐𝑑 −𝑈1
𝑈 (𝑈𝑠

𝜅 )
1
2 𝛾𝑐𝑑

0 (𝑈𝑠
𝜅 )

1
2

⎞⎟⎟⎟⎟⎟
⎠

, (6.33)

(
∂𝑞𝐵

∂𝑞𝐴 ) =
⎛⎜⎜⎜⎜
⎝

𝑈
𝜅 𝛿𝑐𝑑

𝑎𝑏
𝑈1
𝑈 𝛾̃𝑎𝑏

0 (𝑈𝑠
𝜅 )

− 1
2

⎞⎟⎟⎟⎟
⎠

. (6.34)

Note, however, that the transformations (6.32) do not simply correspond to a coor-
dinate transformation on configuration space; one would have to transform the lapse
function 𝑁 → 𝑁̃. The lapse function, in contrast to the 𝑞𝐴, is not a dynamical config-
uration space variable. Nevertheless, the inclusion of the lapse function in the defini-
tion of the configuration space metric (6.11) allows the transformation under (6.32)
to be written in the standard covariant form (6.33), (6.34). It therefore describes an
ordinary coordinate transformation on configuration space 𝑞𝐴 → 𝑞𝐴, provided that
the lapse function is rescaled according to (6.32). The lapse function 𝑁 is constant
from the viewpoint of a true coordinate transformation 𝑞𝐴 → 𝑞𝐴. In contrast, the
rescaling of the lapse function has to be taken into account for the transformation
between the jf and ef (6.32). In particular, it becomes relevant once derivatives of
the configuration space metric 𝛿𝐴ℳ𝐵𝐶 are transformed from the jf to the ef. This
generates additional terms, which will be necessary for the transformation of the
Laplace-Beltrami operator from the jf to the ef parametrisation.
The momenta transform covariantly under (6.32):

𝑝̃𝐴 =
∂𝑞𝐵

∂𝑞𝐴 𝑝𝐵. (6.35)

The components of the ef momenta, expressed in terms of the jf momenta, read

(𝑝̃𝐴) = ⎛⎜
⎝

𝑝̃𝑎𝑏
𝛾̃

𝑝̃𝜙̃

⎞⎟
⎠

= ⎛⎜⎜⎜
⎝

𝑈
𝜅 𝑝𝑎𝑏

𝛾

(𝑈𝑠
𝜅 )

1/2
(𝑝𝜙 − 𝑈1

𝑈 𝑝𝛾)
⎞⎟⎟⎟
⎠

.

Thus, beside multiplicative scaling factors, the ef scalar field momentum 𝑝̃𝜙̃ is a com-
bination of the jf scalar field momentum 𝑝𝜙 and the trace of the jf metric momentum
𝑝𝛾. This particular combination is a consequence of the original non-minimal cou-
pling responsible for the derivative mixing between the metric and the scalar field
degrees of freedom, which becomes manifest in the combined derivative operator
(6.26). The field content is diagonal, in terms of the ef parametrisation (𝛾̃𝑎𝑏, 𝜙̃).
This can be seen explicitly from the diagonal ef configuration space metric ℳ̃𝐴𝐵,
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which, together with its inverse ℳ̃𝐴𝐵, can be obtained from the jf configuration
space metric (6.11) by

ℳ̃𝐴𝐵(𝑞) =
∂𝑞𝐶

∂𝑞𝐴
∂𝑞𝐷

∂𝑞𝐵 ℳ𝐶𝐷(𝑞), ℳ̃𝐴𝐵(𝑞) =
∂𝑞𝐴

∂𝑞𝐶
∂𝑞𝐵

∂𝑞𝐷 ℳ𝐶𝐷(𝑞). (6.36)

Note that ℳ̃𝐴𝐵 and ℳ̃𝐴𝐵 transform like ordinary tensors under (6.32). The explicit
expressions for the configuration space metric and its inverse in coordinates 𝑞 read

(ℳ̃𝐴𝐵) =
√𝛾̃
𝑁̃

(
1
2 𝜅𝐺̃𝑎𝑏𝑐𝑑 0

0 1
), (ℳ̃𝐴𝐵) =

𝑁̃
√𝛾̃

( 2𝜅−1𝐺̃𝑎𝑏𝑐𝑑 0
0 1 ). (6.37)

According to the transformations (6.35) and (6.36), the quadratic form in the kinetic
part of the Hamiltonian transforms as a scalar under (6.32):

𝑝̃𝐴 ℳ̃𝐴𝐵 𝑝̃𝐵 = 𝑝𝐴 ℳ𝐴𝐵 𝑝𝐵.

Similarly, according to the general formula (3.9) and the transformation rules (6.32),
the spatial Ricci scalar in the ef variables reads

(s)𝑅̃ = (𝑈/𝜅) [(s)𝑅 + 2𝑈−1Δ𝑈 + 3
2 D𝑎 log 𝑈 D𝑎 log 𝑈] . (6.38)

According to (3.11), the ef scalar field potential and the spatial derivatives of the
scalar field 𝜙 transform under (6.32) as

D̃𝑎𝜙̃ =
∂𝜙̃
∂𝜙 D𝑎 𝜙 = (

𝑈𝑠
𝜅 )

− 1
2

D𝑎 𝜙, 𝑉̃ = (
𝑈
𝜅 )

−2
𝑉. (6.39)

Inspection of (6.38) and (6.39) leads to the conclusion that the potential transforms
as a scalar under (6.32):

𝒫̃ = 𝒫̃𝛾̃ + 𝒫̃𝜙̃ = 𝒫𝛾 + 𝒫𝜙 = 𝒫.

Here, the potentials in the ef parametrisation are given by

𝒫̃𝛾̃ = 𝑁̃𝛾̃
1
2 𝜅(s)𝑅̃, 𝒫̃𝜙̃ = 𝑁̃𝛾̃

1
2 ( 1

2 D̃𝑎𝜙̃D̃𝑎𝜙̃ + 𝑉̃) .

Finally, provided the wave functional Ψ transforms as a scalar Ψ̃(𝑞) = Ψ(𝑞), the
Laplace-Beltrami operator is seen to transform as a scalar under (6.32) as well:

□̃Ψ̃(𝑞) = ℳ̃𝐴𝐵(𝑞)∇̃𝐴∇̃𝐵Ψ̃(𝑞) = ℳ𝐴𝐵(𝑞)∇𝐴∇𝐵Ψ(𝑞) = □Ψ(𝑞). (6.40)

6.4.3 Weighting of the Hamiltonian

In analogy to the discussion of section 5.3.1, it is notationally convenient to decom-
pose the configuration space metric ℳ𝐴𝐵 in terms of submetrics 𝑀𝐴𝐵 and 𝑚𝐴𝐵:
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ℳ̃𝐴𝐵 = 𝑁̃−1(𝑀̃𝐴𝐵 + 𝑚̃𝐴𝐵), (6.41.a)

where the submetrics 𝑀̃𝐴𝐵 and 𝑚̃𝐴𝐵 are given by

𝑀̃𝐴𝐵 = 𝜅√𝛾̃(
1
2 𝐺̃𝑎𝑏𝑐𝑑 0

0 0
), 𝑚̃𝐴𝐵 = √𝛾̃( 0 0

0 1 ). (6.41.b)

It follows from the discussion above that the metrics 𝑁𝑀𝐴𝐵 and 𝑁𝑚𝐴𝐵 transform
as under a frame transformations. Their components in the jf, in addition to the
components of their inverses, have the following structure:

𝑀𝐴𝐵 = 𝑈√𝛾
⎛⎜⎜⎜
⎝

1
2 𝐺𝑎𝑏𝑐𝑑 −𝑈1

𝑈 𝛾𝑎𝑏

−𝑈1
𝑈 𝛾𝑐𝑑 −3 (𝑈1

𝑈 )
2

⎞⎟⎟⎟
⎠

, 𝑚𝐴𝐵 =
√𝛾
𝑠 ( 0 0

0 1 ). (6.41.c)

The quantities 𝑀𝐴𝐵 and 𝑚𝐴𝐵 that follow from the decomposition of the inverse ℳ𝐴𝐵

can straightforwardly be seen to have the jf components:

𝑀𝐴𝐵 =
2

𝑈√𝛾
( 𝐺𝑎𝑏𝑐𝑑 0

0 0 ), 𝑚𝐴𝐵 =
𝑠

√𝛾
⎛⎜⎜⎜
⎝

(𝑈1
𝑈 )

2
𝛾𝑎𝑏𝛾𝑐𝑑 −𝑈1

𝑈 𝛾𝑎𝑏

−𝑈1
𝑈 𝛾𝑐𝑑 1

⎞⎟⎟⎟
⎠

. (6.41.d)

The wdw operator in the ef parametrisation can, in terms of this decomposition, be
found by application of the transformations (6.32)-(6.36) to (6.24) to be

ˆ̃ℋ⊥ = √𝑈
𝜅 (− 1

2 𝑀̃𝐴𝐵∇̃𝐴∇̃𝐵 + 𝑃̃𝛾̃ − 1
2 𝑚̃𝐴𝐵∇̃𝐴∇̃𝐵 + 𝑃̃𝜙̃) .

Note that, while the Hamiltonian (6.17) transforms as a scalar under (6.32), the
wdw operator ℋ̂⊥ transforms as a scalar density. The origin of this difference can
be traced back to the inverse power of the lapse function in (6.24). In the ef the
field content is diagonal and a clear separation between the gravitational degrees of
freedom 𝛾̃𝑎𝑏 and the scalar degree of freedom 𝜙̃ is possible. The natural choice is the
identification of the gravitational variables 𝛾̃𝑎𝑏 with the slow variables and the scalar
field 𝜙̃ with the fast variables, where the terms fast and slow are to be understood
of the context of the Born-Oppenheimer approximation scheme. Therefore, in the
ef there is a clear weighting scheme by associating with each factor of 𝜅 an inverse
factor of the dimensionless expansion parameter 𝜆:

ˆ̃ℋ
𝜆
⊥ = √𝑈

𝜅 (− 1
2 𝜆𝑀̃𝐴𝐵∇̃𝐴∇̃𝐵 + 𝜆−1𝑃̃𝛾̃ − 1

2 𝑚𝐴𝐵∇̃𝐴∇̃𝐵 + 𝑃̃𝜙̃) (6.42)

Note that the overall scaling factor is irrelevant for the weighting process, as only
the relative weighting of terms in the Hamiltonian is important. The weighted wdw
operator (6.42) can be transformed back to the jf and reads

ℋ̂
𝜆
⊥ = − 1

2 𝜆𝑀𝐴𝐵∇𝐴∇𝐵 + 𝜆−1𝑃𝛾 +ℋ̂s, (6.43)
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where, in anticipation of what is to come, the Hamiltonian for the light scalar degree
of freedom ℋ̂s has been defined to be

ℋ̂s ≡ − 1
2 𝑚𝐴𝐵∇𝐴∇𝐵 + 𝑃𝜙

= −
1
2

𝑠
√𝛾

𝒟2 −
1
4

𝑠
√𝛾

(
𝑠1
𝑠 −

3
2

𝑈1
𝑈 ) 𝒟 +𝑃𝜙. (6.44)

Note that, in contrast to the minimally coupled case where the scalar field Hamilton-
ian is free of any factor ordering ambiguities, the covariant Laplace-Beltrami factor
ordering (6.23) induces a dependence on the factor ordering in the scalar Hamilton-
ian (6.44), reflected by the terms linear in 𝒟. These extra terms can be related di-
rectly to the presence of the non-minimal coupling and vanish for 𝑈 = 𝜅. Only part
of the gravitational degrees of freedom (the scale part) in 𝛾𝑎𝑏 mix with the scalar de-
grees of freedom 𝜙 and, according to the weighting scheme that was introduced in
section 6.4.3, only these parts are treated as fully quantum. This is in contrast to
the remaining gravitational degrees of freedom, which are treated as semiclassical.

6.5 SEMICLASSICAL APPROXIMATION

Substitution of (6.43) together with the semiclassical ansatz for the wave functional
(6.31) into the wdw equation (6.28) results in a polynomial in 𝜆. When the coefficient
of each term term vanishes independently, one obtains a family of equations for 𝑆0,
𝑆1, 𝑆2 and so on. The wave functional Ψ in (6.30) can be reconstructed within the
given accuracy of the approximation by the truncation of (6.31) at a fixed order in
𝜆. The resulting equations, of which the lowest order determines 𝑆0, can be solved
consecutively. In the following subsections, the equations are discussed separately at
each order.

Order 𝒪(𝜆−2) At this order in the semiclassical expansion, one obtains the following
equation for 𝑆0:

1
2 𝑚𝐴𝐵∇𝐴𝑆0∇𝐵𝑆0 = 0. (6.45)

With (6.26) and (6.41.d) it can be seen that this is equivalent to

𝒟 𝑆0 =
𝛿𝑆0
𝛿𝜙 − 𝛾𝑎𝑏

𝑈1
𝑈

𝛿𝑆0
𝛿𝛾𝑎𝑏

= 0. (6.46)

This implies that 𝑆0(𝛾, 𝜙) = 𝑆0(𝛾̃) is only a function of the particular combination

𝛾̃𝑎𝑏 =
𝑈
𝜅 𝛾𝑎𝑏,

which is nothing but the metric in the ef parametrisation (6.32).
One particular consequence of (6.46) is that any contraction of ∇𝐴𝑆0 with 𝑚𝐴𝐵

vanishes. This will be useful later in the semiclassical expansion.
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Order 𝒪(𝜆−1) At this order in the semiclassical expansion, one obtains, after use of
(6.46), the Hamilton-Jacobi equation for 𝑆0:

1
2 𝑀𝐴𝐵∇𝐴𝑆0∇𝐵𝑆0 + 𝑃𝛾 = 0. (6.47)

From the discussion in section 5.3 it then follows that (6.47) suggests the semiclas-
sical wkb time 𝑡s via

D𝑡s ≡ 𝑀𝐴𝐵∇𝐴𝑆0∇𝐵. (6.48)

In terms of this semiclassical time (6.47) manifestly acquires the structure of the
Hamilton-Jacobi equation for 𝑆0 [129]:

1
2 D𝑡s 𝑆0 + 𝑃𝛾 = 0. (6.49)

The exact wdw equation (6.36) is timeless. Therefore, the concept of time only
emerges from the semiclassical expansion at the level of the Hamilton-Jacobi equation
(6.49), which, together with the momentum constraintℋ̂𝑎Ψ = 0, can be shown to be
equivalent to the Einstein equations [122].
Thus, within the semiclassical approximation scheme, the flow of time is associated

with the slowly changing background geometry 𝑆0, which is adiabatically followed
by the quantum states of the matter fields. The wave functional to order 𝜆 is simply
given by

Ψ =
1

Δ0(𝛾̃) ,

where

Δ0(𝛾̃) ≡ exp (−i𝜆−1𝑆0) .

Order 𝒪(𝜆0) At order 𝒪(𝜆0) one obtains an equation for 𝑆1, which, when combined
with the equation of the previous orders and the definition of semiclassical time
(6.48), can be written as

0 = 𝑃𝜙 + 1
2 𝑚𝐴𝐵(∇𝐴𝑆1∇𝐵𝑆1 − i∇𝐴∇𝐵𝑆1)

+ 𝑀𝐴𝐵(∇𝐴𝑆0∇𝐵𝑆1 − 1
2 i∇𝐴∇𝐵𝑆0). (6.50)

The Born-Oppenheimer ansatz suggests that 𝑆1 be split into a part 𝜎1(𝛾̃), which only
depends on the background, and a part Σ1(𝛾, 𝜙), which cannot be reduced further:

𝑆1(𝛾, 𝜙) ≡ 𝜎1(𝛾̃) + Σ1(𝛾, 𝜙). (6.51)

There is no loss of generality in such a decomposition. Notice that it follows follows
the approach in section 5.3.1, where the wdw equation was split into an equation
that depends solely on the background metric 𝑀𝐴𝐵 and a part that depends, in
addition, on the perturbations through the metric 𝑚𝐴𝐵. One can demand that 𝜎1
satisfies the equation
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D𝑡s 𝜎 = 1
2 i𝑀𝐴𝐵∇𝐴∇𝐵𝑆0. (6.52)

Insertion of (6.51) and (6.52) into (6.50) results in an equation for Σ1 alone:

D𝑡s Σ1 = 1
2 𝑚𝐴𝐵(i∇𝐴∇𝐵Σ − ∇𝐴Σ1∇𝐵Σ1) − 𝑃. (6.53)

The wave functional 𝜓1 up to this order in the expansion is

𝜓1 ≡ exp (iΣ1) . (6.54)

Insertion of (6.54) into (6.53) results in a Schrödinger equation for 𝜓1:

i D𝑡s 𝜓1 = ℋs 𝜓1. (6.55)

The Hamilton operator ℋ̂s is defined in (6.44). Moreover, 𝜎1 is related to the Van
Vleck determinant Δ1, which naturally arises in the wkb approximation:

𝜎1 ≡ i log Δ1(𝛾̃). (6.56)

Equation (6.55) is a Schrödinger equation for the light scalar degree of freedom
where the emergent semiclassical time is controlled by the change of the geometry.
The wave functional up to this order is given by

Ψ =
𝜓1(𝛾, 𝜙)

Δ0(𝛾̃)Δ1(𝛾̃) .

At this level of the semiclassical expansion one can introduce a notion of unitarity
for the light quantum degrees of freedom. In this case, unitary evolution of the light
degrees of freedom could be defined as the condition

D𝑡s⟨𝜓1, 𝜓1⟩𝜙 = 0, (6.57)

where, in contrast to (6.20), the inner product ⟨⋅, ⋅⟩𝜙 extends only over the light
degrees of freedom. Note that such a definition of unitarity can at best be a derived
semiclassical one; its very definition (6.57) relies on the notion of a semiclassical time
D𝑡s and the derived concept of a Hilbert space of states 𝜓1 for the light degrees of
freedom. It is be expected that, at the higher orders in the semiclassical expansion,
the Klein-Gordon-type inner product has to be used, as discussed in chapter 5.

Order 𝒪(𝜆1) At this order in the semiclassical expansion one finds the equation

D𝑡s 𝑆2 = 1
2 𝑀𝐴𝐵(i∇𝐴∇𝐵𝑆1 − ∇𝐴𝑆1∇𝐵𝑆1) + 1

2 𝑚𝐴𝐵(i∇𝐴∇𝐵𝑆2 − 2∇𝐴𝑆1∇𝐵𝑆2).

The function 𝑆2 can be decomposed in the same way as 𝑆1 in (6.51):

𝑆2(𝛾, 𝜙) ≡ 𝜎2(𝛾̃) + Σ2(𝛾, 𝜙).

In analogy to (6.56), one can define

𝜎2(𝛾̃) ≡ i log Δ2
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and choose 𝜎2 to be the solution of the equation

D𝑡s 𝜎2 = − 1
2 𝑀𝐴𝐵 ⎛⎜

⎝
∇𝐴∇𝐵Δ1

Δ1
− 2

∇𝐴Δ1∇𝐵Δ1
Δ2

1

⎞⎟
⎠

. (6.58)

The functional 𝜎2(𝛾̃) can be interpreted as the second order wkb factor for the heavy
degrees of freedom in the Born-Oppenheimer approximation. What remains is an
equation for the functional Σ2(𝛾, 𝜙):

D𝑡s Σ2 = 1
2 𝑚𝐴𝐵 (i∇𝐴∇𝐵Σ2 − 2∇𝐴Σ1∇𝐵Σ2)

+ 1
2 𝑀𝐴𝐵 (i∇𝐴∇𝐵Σ1 − ∇𝐴Σ1∇𝐵Σ1 − 2∇𝐴𝜎1∇𝐵Σ1) . (6.59)

In analogy to (6.54), one can define

𝜓2 ≡ exp (i𝜆Σ2) .

The wave functional up to this order of the expansion then reads

Ψ =
𝜓1𝜓2

Δ0Δ1Δ2
. (6.60)

It is now possible to derive a Schrödinger equation that contains the first quantum
gravitational corrections. The wave functional for the fast degrees of freedom can,
up to this order in the semiclassical expansion, be written as

𝜓 = 𝜓1𝜓2 = exp (iΣ1 + i𝜆Σ2) . (6.61)

It is straightforward to see that, when terms of quadratic order in 𝜆 are neglected,
the time derivative of the wave functional 𝜓 can be written as

i D𝑡s 𝜓 = ℋs𝜓 − 1
2 𝜆𝜓−1

1 𝑀𝐴𝐵 (∇𝐴∇𝐵𝜓1 − 2∇𝐴 log Δ1∇𝐵𝜓1) 𝜓, (6.62)

after use has been made of (6.53) and (6.59). This equation is a Schrödinger equation
for the functional 𝜓, which includes correction terms indicated by the overall factor
of 𝜆.

A brief pause is in order for the results that were obtained up to now to be sum-
marised. The semiclassical expansion of the wdw equation yielded the Hamiltonian-
Jacobi equation (6.49) at order 𝒪 (𝜆−1), which provides a definition semiclassical
time (6.48). A Schrödinger equation (6.55) was found for the wave functional of the
light degrees of freedom at order 𝒪(𝜆0). The first quantum gravitational correction
terms were encountered in the corrected Schrödinger equation (6.62) at order 𝒪 (𝜆1)
. Ultimately, the goal of this chapter is to derive the semiclassical branch (6.31) of the
full wave functional, which includes these quantum gravitational corrections. The
successive solution of the equations (6.49), (6.52), (6.53), (6.58) and (6.59) allows
one to construct this wave functional (6.31) up to the required order. In principle,
the analysis can be considered finished at that point.
However, in the following section it will be shown that (6.62) can be reformulated to

obtain a clearer interpretation of the structure of the quantum gravitational correction
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terms. Moreover, since one of the main motivations of this work is to study the
impact of the non-minimal coupling on the quantum gravitational correction terms,
it is useful to express (6.62) in a from in which the corrections can straightforwardly
be compared it to the corrections obtained for the minimally coupled case that was
analysed in [95].

6.5.1 Representation of the corrections

The solutions of equations (6.55) and (6.59), together with the solutions for 𝑆0 and
𝑆1, are sufficient to determine the wave functional up to order 𝒪 (𝜆1), as shown in
(6.60). The form of the correction terms in (6.62) is, however, not very illuminating.
In order to write these terms in a more transparent form and to compare them with the
result for the minimally coupled scalar field it is convenient to perform an orthogonal
decomposition of the correction terms, following the analysis of reference [95].
The correction terms in (6.62) can be decomposed into contributions orthogonal

and tangential to the surfaces of constant 𝑆0. These surfaces are determined entirely
by the heavy degrees of freedom, in the space determined by the submetric 𝑀𝐴𝐵:

ℳ𝐴𝐵∇𝐴𝑆0∇𝐵𝑆0 = 𝑁𝑀𝐴𝐵∇𝐴𝑆0∇𝐵 = −2𝒫𝛾,

where use has been made of (6.45), (6.48) and the Hamilton-Jacobi equation (6.49)
in the last step. A unit normal covector can therefore be defined as

𝑛𝐴 ≡ 𝜀
∇𝐴𝑆0

√𝜀∇𝐵𝑆0∇𝐵𝑆0

,

where 𝜀 = − sgn 𝒫𝛾. The corresponding unit normal vector 𝑛𝐴 is then

𝑛𝐴 = 𝜀
ℳ𝐴𝐵∇𝐵𝑆0

√𝜀∇𝐶𝑆0∇𝐶𝑆0

. (6.63)

Note that this construction breaks down whenever 𝒫𝛾 = 0. A unit normal vector
cannot be defined in this case. The corrections should then be calculated from the
form as they appear in equation (6.62).
With the assumption that a unit normal vector can be defined, one can introduce

projection operators normal and tangential to the surface of constant 𝑆0:

P⊥
𝐴

𝐵 = 𝜀𝑛𝐴𝑛𝐵, P∥
𝐴

𝐵 = 𝛿𝐴
𝐵 − 𝜀𝑛𝐴𝑛𝐵.

The gradient of ∇𝐴𝜓1 can then be decomposed as

∇𝐴𝜓1 = P⊥
𝐵

𝐴∇𝐵𝜓1 + P∥
𝐵

𝐴∇𝐵𝜓1.

The normal projection can be determined explicitly

P⊥
𝐴

𝐵∇𝐴𝜓1 = (−2𝒫𝛾)−1ℳ𝐶𝐷∇𝐶𝑆0∇𝐷𝜓1∇𝐵𝑆0 =
iℋ̂s𝜓1
2𝑃𝛾

∇𝐵𝑆0. (6.64)
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where the following identity was used:

ℳ𝐴𝐵∇𝐶𝑆0∇𝐷𝜓1 = 𝑁𝑀𝐴𝐵∇𝐴𝑆0∇𝐵𝜓1 = 𝑁 D𝑡s 𝜓1.

The components of ∇𝐴𝜓1 that are tangential to the surfaces of constant 𝑆0 can simi-
larly be written down:

𝑇𝐴 = P∥
𝐵

𝐴∇𝐵𝜓1, 𝑀𝐴𝐵𝑇𝐴𝑛𝐵 = 0. (6.65)

Note that 𝑇𝑎𝑏 is not specified explicitly the tangential contributions in the correction
terms will not be needed [95].
In terms of the orthogonal decomposition the second derivative of 𝜓1 can be found

to be

∇𝐴∇𝐵𝜓1 = 1
2 i𝑃−1

𝛾 ℋ̂s𝜓1 ∇𝐴∇𝐵𝑆0 + [ 1
2 i∇𝐴 (𝑃−1

𝛾 ℋ̂s) 𝜓1 − 1
4 i𝑃−1

𝛾 ℋ̂s∇𝐴𝜓1] ∇𝐵𝑆0

+ ∇𝐴𝑇𝐵.

Repeated use of (6.64), (6.65) and contraction with 𝑀𝐴𝐵 then leads to

𝑀𝐴𝐵∇𝐴∇𝐵𝜓1 = 1
2 i𝑃−1

𝛾 ℋ̂s𝜓1𝑀𝐴𝐵∇𝐴∇𝐵𝑆0 + 1
2 i𝑃−1

𝛾 ∇𝐵𝑆0ℋ̂s𝑇𝐴 + ∇𝐴𝑇𝐵

+ [ 1
2 i∇𝐴 (𝑃−1

𝛾 ℋ̂s) 𝜓1 − 1
4 𝑃−1

𝛾 ℋ̂s (∇𝐴𝑆0𝑃−1
𝛾 ℋ̂s𝜓1)] ∇𝐵𝑆0.(6.66)

Substitution of (6.64) and (6.66) into (6.62) allows the correction terms to be split
into an orthogonal part 𝐵𝑛, and an tangential part 𝐵𝑡:

− 1
2 𝑀𝐴𝐵(∇𝐴∇𝐵𝜓1 − 2∇𝐴 log Δ1∇𝐵𝜓1) = 𝐵𝑛 + 𝐵𝑡.

The tangential part reads

𝐵𝑡 ≡ − 1
2 𝑀𝐴𝐵 (∇𝐴𝑇𝐴 − 2∇𝐴 log Δ1 𝑇𝐵 + 1

2 i𝑃−1
𝛾 ∇𝐴𝑆0ℋ̂s𝑇𝐵) ,

while the orthogonal part reads

𝐵𝑛 ≡ 1
4 [ 1

2 𝑀𝐴𝐵∇𝐴𝑆0𝑃−1
𝛾 ℋ̂s (∇𝐵𝑆0𝑃−1

𝛾 ℋ̂s𝜓1) − i D𝑡s(𝑃−1
𝛾 ℋ̂s)𝜓1] .

Notice that derivatives of 𝜓1 can, at this order in the semiclassical expansion, be
replaced by derivatives of 𝜓:

∇𝐴 log 𝜓 = ∇𝐴 log 𝜓1 + 𝒪(𝜆).

The correction terms can thus be expressed in the form of a corrected Schrödinger
equation for 𝜓. The normal contributions to the quantum gravitational corrections
are determined by the previous orders of the expansion, while the tangential con-
tributions are undetermined and therefore arbitrary. They can therefore be set to
zero, as is done in reference [95]. The quantum gravitationally corrected Schrödinger
equation can be then be written as

i D𝑡s 𝜓 =ℋ̂s𝜓 + 1
4 𝜆 [ 1

2 𝑀𝐴𝐵∇𝐴𝑆0𝑃−1
𝛾 ℋ̂s (∇𝐵𝑆0𝑃−1

𝛾 ℋ̂s) − i D𝑡s(𝑃−1
𝛾 ℋ̂s)] 𝜓. (6.67)
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This result can be compared to the results for a minimally coupled scalar field, per-
formed in reference [95]. There are several differences, which will be discussed in the
remaining part of this section.
The last term in (6.67) has the same structure as in the minimally coupled case

and has been associated with a unitarity violating term in [95]. The appearance of
the unitarity violating term in (6.67) can be traced back to the use of the uncorrected
Schrödinger equation (6.55) in the process of reformulating the result (6.62) into a
form that resembles a Schrödinger equation for 𝜓. Moreover, the apparent unitarity
violation is to be understood here at the semiclassical level in the sense of (6.57).
Since this semiclassical concept of unitarity can be at most an effective one, as it
emerges from the semiclassical expansion itself, it is expected to break down once
quantum gravitational corrections become relevant. Instead, one would have to re-
sort to the Klein-Gordon formulation of unitarity that was introduced in section 5.3.
If one insists on the effective Schrödinger probability, the unitarity violating terms in
(6.67) can be dealt with by a formal absorption of these terms in a redefinition of
the semiclassical time 𝑡s. This is done, for example, in reference [130]. It can be seen
that this would correspond to the inclusion of backreaction terms of the light degrees
of freedom to the slow degrees of freedom. More precisely, these backreaction terms
would modify the background 𝑆0 and therefore the Hamilton-Jacobi equation (6.49),
which defines the semiclassical time (6.48). In the context of a reduced minisuper-
space model of a minimally coupled scalar field, the authors of reference [126] find
that the inclusion of backreaction terms leads to a unitary semiclassical evolution.
In the semiclassical expansion of the wdw equation for a minimally coupled scalar
field, which was treated in reference [95], backreaction terms where neglected. Since
one of the main motivations of this chapter is to determine the influence of the non-
minimal coupling in scalar-tensor theories, the unitarity violating terms are similarly
neglected.
The relevant quantum gravitational corrections can be found in (6.67), which is

the focus of the remaining discussion. This term is not of the same form as in the
minimally coupled case in reference [95]. The reason for this is that the Hamiltonian
ℋ̂s does not commute with ∇𝐴𝑆0 and 𝑃𝛾. This can be seen from (6.44). The correction
terms can be written in a form similar to those in reference [95], at the expense
of introducing commutators. In particular, if ∇𝐴𝑆0 is commuted through ℋ̂s one can
make use of the Hamilton-Jacobi equation (6.49). This is useful, as it eliminates all
occurrences of ∇𝐴𝑆0 from the corrected Schrödinger equation. It is straightforward
to verify that

1
2 𝑀𝐴𝐵∇𝐴𝑆0ℋ̂s (∇𝐵𝑆0𝑃−1

𝛾 ℋ̂s𝜓) = − 𝑃𝛾
⎧{
⎨{⎩
ℋ̂s𝑃−1

𝛾 ℋ̂s𝜓 −
𝑠

√𝛾
𝑈1
𝑈 𝒟 𝑃−1

𝛾 ℋ̂s𝜓

−
𝑠

2√𝛾
⎡⎢
⎣

(√𝑠𝑈1)1
√𝑠𝑈

−
3
4 (

𝑈1
𝑈 )

2
⎤⎥
⎦

𝑃−1
𝛾 ℋ̂s𝜓

⎫}
⎬}⎭

.

This can be inserted into (6.67), after which the corrected Schrödinger equation for
𝜓 acquires the form
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i D𝑡s 𝜓 = (1 − 𝜆𝑓 (𝜙)𝑃−1
𝛾 )ℋ̂s𝜓

− 1
4 𝜆 ⎡⎢

⎣
ℋ̂s𝑃−1

𝛾 ℋ̂s − [𝛿(3)(0)]
𝑠

√𝛾
𝑈1
𝑈 𝒟 𝑃−1

𝛾 ℋ̂s + i D𝑡s (𝑃−1
𝛾 ℋ̂s)⎤⎥

⎦
𝜓. (6.68)

Notice that explicit factors of 𝛿(3)(0) were restored and that the correction terms
from the last line in (6.68) have been collected in the function 𝑓 (𝜙):

𝑓 (𝜙) = −
[𝛿(3)(0)]2

32
𝑠

√𝛾
⎡⎢
⎣
4

𝑈2
𝑈 + 2

𝑠1𝑈1
𝑠𝑈 − 3 (

𝑈1
𝑈 )

2
⎤⎥
⎦

.

Thus, in contrast to the minimally coupled case, singular factors of 𝛿(3)(0) enter
the final result from two different sources: firstly from the Laplace-Beltrami factor
ordering (6.23) and secondly from the non-commutativity of derivatives in ℋ̂s with
background quantities.
The adopting of a regularisation procedure as described in reference [94], where the

𝛿(3)(0) contributions are regularised to zero, effectively corresponds to the omission
of all derivative terms that do not act on the wave functional. In this case, the matter
Hamiltonian ℋ̂s can be commuted to the very right, with the result being

i D𝑡s 𝜓 =ℋ̂
P
s 𝜓 − 1

4 𝜆 [𝑃𝛾−1 (ℋ̂
P
s )

2
+ i D𝑡s (𝑃−1

𝛾 ℋ̂
P
s )] 𝜓. (6.69)

The kinetic term of ℋ̂s reduces to its principal part

ℋ̂
P
s ≡ −

𝑠
2√𝛾

𝒟2 +𝑃𝜙. (6.70)

It is understood that the 𝜙 and 𝛾𝑎𝑏 derivatives in 𝒟 only act on the wave functional 𝜓
in (6.69). The form of the correction terms in (6.68) then features the same structure
as in the minimally coupled case. The only difference is that the scalar Hamilton
operator (6.70) replaces the matter Hamiltonian of the minimally coupled scalar
field

ℋ̂𝜙 = −
1

2√𝛾
𝛿2

𝛿𝜙2 + 𝑃𝜙. (6.71)

The difference between (6.70) and (6.71) consists of the generalised derivative oper-
ator 𝒟 instead of the simple 𝛿/𝛿𝜙 and the overall factor 𝑠 in the kinetic part of (6.70).
The effects of these differences can be discussed in the context of the cosmological

model of Higgs inflation, where 𝜙 is associated with the Standard Model Higgs boson
and for which the arbitrary functions in the general scalar-tensor theory (6.1) acquire
the particular form

𝑈(𝜙) = 1
2 (𝑀2

P + 𝜉𝜙2) , 𝐺(𝜙) = 1, 𝑉(𝜙) = 1
4 𝜆 (𝜙2 − 𝑣2)2 . (6.72)
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Here, 𝜉 is the non-minimal coupling constant, 𝜆 the quartic Higgs self-interaction
and 𝑣 ≈ 246 GeV the electroweak symmetry breaking scale. The form of the non-
minimal coupling function 𝑈(𝜙) in (6.72) shows that the relevant parameter is the
dimensionless combination

𝑥 ≡
√𝜉𝜙
𝑀P

.

The above results can be discussed in two relevant regions in configuration space,
which correspond to the asymptotic regimes 𝑥 ≪ 1 and 𝑥 ≫ 1. For a weak non-
minimal coupling and 𝑥 ≪ 1 the first term of 𝑈 in (6.72) dominates and one would
expect to recover the minimally coupled case. Indeed, for the functions (6.72), the
function 𝑠, defined in (6.13), can be expressed in terms of 𝑥 and 𝜉 as

𝑠 =
1 + 𝑥2

1 + (1 + 6𝜉)𝑥2 . (6.73)

Clearly, for small 𝑥, the function 𝑠 tends to one as (6.73) reduces to

𝑠 = 1 + 𝒪 (𝑥2) . (6.74)

The derivative 𝒟 becomes

𝒟 =
𝛿

𝛿𝜙 −
𝑥

1 + 𝑥2
√ 4𝜉

𝑀P
𝛾𝑎𝑏

𝛿
𝛿𝛾𝑎𝑏

.

For 𝑥 ≪ 1, the 𝛾𝑎𝑏 derivative is suppressed by 𝑥√𝜉/𝑀P:

𝒟 =
𝛿

𝛿𝜙 + 𝒪 (𝑥) . (6.75)

Thus, in view of (6.74) and (6.75), the scalar matter Hamilton operator (6.70) re-
duces to the matter Hamilton operator (6.71) for the minimally coupled scalar field
in the limit of small 𝑥. This relation is in fact a required consistency condition, as
one must recover the minimally coupled case in the limit of vanishing 𝜉.
The case of large 𝑥 can be considered next. The function 𝑠 reduces in this case to

𝑠 =
1

1 + 6𝜉 + 𝒪 (𝑥−2) ≈
1
6𝜉 ≪ 1,

where a large non-minimal coupling 𝜉 was assumed. Thus, for a strong non-minimal
coupling 𝜉, the function 𝑠 leads to a strong overall suppression of the kinetic terms
in (6.70) in the regime of large 𝑥. Nevertheless, in this regime the 𝛾𝑎𝑏 derivative in

𝒟 is still suppressed by a factor of √𝜉/𝑀P𝑥:

𝒟 =
𝛿

𝛿𝜙 + 𝒪 (𝑥−1) . (6.76)
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Therefore, independent of the coupling parameter 𝜉, the metric derivatives in 𝒟 are
suppressed in both cases for 𝑥 ≪ 1 and 𝑥 ≫ 1. This behaviour can be traced back
to the function 𝑥/(1 + 𝑥2), which tends to zero for both small and large values of 𝑥
and, for positive 𝑥, has a global maximum between the two asymptotic regimes at
𝑥 = 1. The effect of the 𝛾𝑎𝑏 derivatives is therefore the strongest for 𝜙 = 𝑀P/√𝜉,
which corresponds to 𝑥 = 1. The suppression of the kinetic term in (6.70) by the
function 𝑠 for a strong non-minimal coupling might be interpreted as the analogue
of the suppression mechanism of the Higgs propagator found in the perturbative
covariant approach to Higgs inflation [37,38,41,43,47–49].

6.6 CONCLUSION

This chapter considered the canonical quantisation of a general scalar-tensor theory.
The wdw equation was derived, after which a semiclassical expansion was performed.
At the lowest orders of this expansion the classical theory was recovered. At the
higher orders of the expansion it was found that the semiclassical wave functional
satisfies a Schrödinger equation, which includes the first quantum gravitational cor-
rection terms. Throughout this chapter the configuration space was treated as a dif-
ferentiable manifold and in appendix A all the associated geometrical tensors, in-
cluding the scalar Ricci curvature of configuration space, were derived. In particular,
it was found that, in contrast to pure gravity, the signature of the configuration space
metric for scalar-tensor theories with a non-minimally coupled scalar field depends
on the signature of spacetime. This might have interesting consequences regarding
the hyperbolicity properties of the wdw operator [131]. As required for consistency,
at each step of the calculation the results for a minimally coupled scalar field with a
canonically normalised kinetic term obtained were recovered, as they were found in
[95]. In contrast, for arbitrary field dependent functions 𝑈(𝜙) and 𝐺(𝜙), the canon-
ical quantisation and the subsequent semiclassical expansion lead to essential differ-
ences compared to the minimally coupled case—both technical and conceptual.
In particular, the non-minimal coupling 𝑈(𝜙) leads to a mixing between the grav-

itational and scalar field momenta. This intertwining of gravitational and scalar field
degrees of freedom makes it difficult to separate heavy from light degrees of freedom
in the multicomponent configuration space. While this might not pose a problem in
principle, it complicates the semiclassical expansion at the level of the exact wdw
equation. The semiclassical expansion is based on the Born-Oppenheimer approx-
imation which, in turn, requires a clear separation of heavy and light degrees of
freedom. In scalar-tensor theories, where the non-minimal coupling is parametrised
by an arbitrary non-minimal coupling function 𝑈(𝜙), there is no manifest distinc-
tion between the different degrees of freedom. This is in contrast to the minimally
coupled case, where the Planck mass 𝜅 = 1

2 𝑀2
P serves as a natural indicator for the

heavy degrees of freedom. Practically, the semiclassical expansion of the wdw equa-
tion requires a relative weighting between individual terms in the wdw operator by
different powers of 𝜆. This implements the distinction between heavy and light de-
grees of freedom. A concrete weighting procedure in case of a non-minimal coupling
is therefore difficult, as the wdw operator is non-diagonal. In order to nevertheless
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obtain a consistent and feasible weighting scheme, a transformation was performed
to the ef, in which the wdw operator is diagonal. In the ef, the distinction between
gravitational and scalar field degrees of freedom is transparent and a clear weighting
can be performed by the association of the ef metric field with the heavy degrees of
freedom and the scalar field with the light degrees of freedom. Once the weighting
has been implemented, the weighted wdw operator can then be transformed back to
the original jf variables and the semiclassical expansion can be carried out.
The justification of this procedure relies on the covariant Laplace-Beltrami or-

dering. On the basis of covariant perturbative one-loop calculations [39, 132–135],
the quantum equivalence between different parametrisations of scalar-tensor theo-
ries [134] and the equivalence between 𝑓 (𝑅)-gravity and its reformulation as a scalar-
tensor theory has been investigated for the one-loop divergences on a general back-
ground manifold in reference [52]. A similar investigation of the equivalence of the
effective action in the context of Einstein spaces can be found in reference [136].
There, it has been found that the classical equivalence is broken by off-shell contribu-
tions but is restored once the equations of motions have been used. In the geometrical
treatment of the configuration space, the quantum equivalence between the jf and
ef in the non-perturbative canonical theory can be realised, at least formally, by the
covariant Laplace-Beltrami factor ordering in the wdw operator. It would be interest-
ing to investigate whether this quantum equivalence also holds between 𝑓 (𝑅)-gravity
and its scalar-tensor formulation in quantum geometrodynamics.
For the minimally coupled scalar field case, the final result for the corrected Schrödinger

equation is independent of the factor ordering in the kinetic part of the wdw op-
erator. In contrast, for the general scalar-tensor theory (6.1) the factor ordering is
determined by the Laplace-Beltrami operator and ultimately enters the corrected
Schrödinger equation. The additional terms, which arise in the Laplace-Beltrami fac-
tor ordering, correspond to lower order derivative terms in the wdw operator and
involve delta functions evaluated at the same point. In addition, compared to the
minimally coupled case, extra commutator terms have to be taken into account in
the corrected Schrödinger equation, which also carry factors of 𝛿(3)(0). These sin-
gular delta functions need to be regulated. The adoption of a regularisation scheme
in which operators at the same point commute [94] leads to a corrected Schrödinger
equation that has the same form as for the minimally coupled scalar field, but with
the minimally coupled scalar Hamilton operator (6.71) replaced by the non-minimal
scalar Hamilton operator (6.70). The kinetic term of the latter involves derivatives
with respect to the scalar field as well as derivatives with respect to gravitational
metric. Moreover, the structure of the quantum gravitational correction terms in the
case of non-minimal coupling shows additional interesting differences compared to
the minimally coupled case. The nature of these differences have been investigated
for the specific model of non-minimal Higgs inflation [37,38,41,43,47–49]. In particu-
lar, the kinetic part of the scalar Hamilton operator (6.44) was shown to be strongly
suppressed in the regime of a strong non-minimal coupling. A similar effect has been
found in the model of Higgs inflation, where, in the presence of a strong non-minimal
coupling, the Higgs propagator is suppressed at high energies [37,43,48].
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It would be interesting to explore the features of the quantum gravitational correc-
tion terms and the influence of the non-minimal coupling in the canonical formulation
of the homogeneous and isotropic cosmological flrw background—including cos-
mological perturbations. In the semiclassical expansion of such a cosmological min-
isuperspace model the homogeneous scalar field 𝜙(𝑡) and the scale factor 𝑎(𝑡) can
be identified as the slow variables and can both be treated on an equal footing. This
is in contrast to the weighting scheme adopted in this chapter. The fast degrees of
freedom are provided in a natural way by the inhomogeneous cosmological pertur-
bations. Most importantly, such a cosmological application would allow the estima-
tion of the effect of a non-minimal coupling on quantum gravitational contributions
to the power spectrum of the cosmic microwave background radiation similar to ap-
proaches for the case of a minimally coupled scalar field [109,110,137–140]. This is
the subject of the next chapter.
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QUANTUM GRAVITATIONAL CORRECTIONS IN INFLATION

7
This chapter applies the formalism of quantum geometrodynamics to the cos-
mological Friedmann-Lemaître-Robertson-Walker (flrw) universe. The inflationary
parameters are extracted from the semiclassical expansion of the Wheeler-DeWitt
(wdw) equation. The quantum gravitational corrections to these parameters are then
determined, and their magnitude and observational signatures are discussed. The
highly symmetric flrw universe results in significant simplifications of the wdw equa-
tion. It was seen in chapter 4 that the total number of dynamical degrees of freedom
of the metric is equal to one: the homogeneous scale factor. Therefore, together with
the scalar field, the infinitely dimensional superspace is reduced to a 2-dimensional
configuration space, called minisuperspace.
The quantum corrections in these inflationary minisuperspace models can become

important. For example, in the model of Higgs inflation, the radiative corrections
and the renormalisation group improvement turned out to be crucial for the consis-
tency with particle physics experiments [37, 38, 41, 43, 48–51]. While, in this case,
the quantum corrections are dominated by the heavy standard model particles, it
is in general interesting to study the effect of quantum gravitational corrections on
inflationary predictions. In fact, the strong curvature regime during the inflationary
phase make the early universe a natural testing ground for any theory of quantum
gravity.
Although the canonical approach to quantum gravity does not come without dif-

ficulties, both at the conceptual and technical level, the wdw equation can be con-
sidered as a natural starting point for the analysis of quantum gravitational effects,
as its semiclassical expansion reproduces the classical theory and the functional
Schrödinger equation for quantised matter fields on a curved background at the low-
est orders of the expansion [95,141]. Therefore, higher order terms in the expansion
can be clearly attributed to the first quantum gravitational corrections. When ap-
plied to the inflationary universe, these corrections leave observational signatures in
the primordial power spectrum. This has been investigated for a minimally coupled
scalar field with a canonical kinetic term [109, 110, 137–140, 142]. The goal of this
chapter is to generalise these analyses to a general scalar-tensor theory of a single
scalar field with an arbitrary non-minimal coupling to gravity, a non-standard kinetic
term, and an arbitrary scalar potential.
The chapter is structured as follows: in section 7.1, the model is introduced from

which the equations of motion will be derived. The general model will be symmetry
reduced to a homogeneous and isotropic flrw universe and the inflationary dynam-
ics of the background and the cosmic perturbations will be discussed. In section 7.2
the symmetry reduced classical Hamiltonian constraint is derived. As in chapter 6,
the Hamiltonian constraint is then quantised in the Dirac formalism, which leads to
the minisuperspace the wdw equation for the background and perturbation variables.
In section 7.3 the wdw equation is expanded around a semiclassical solution, based
on a combined Born-Oppenheimer and wkb-type approximation. As before, the dy-
namical background equations and the notion of a semiclassical time are recovered
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at the lowest order. A Schrödinger equation for the perturbations is obtained at the
next order. The subsequent order yields the first quantum gravitational corrections
to the Schrödinger equation. In section 7.4 the connection is made between the re-
sults found from the semiclassical expansion of the wdw equation and the inflation-
ary power spectra. In section 7.5 the impact of the leading quantum gravitational
corrections on the inflationary power spectra and their observational consequences
are discussed. Finally, the main results and conclude in section 7.6. The results for
the subleading slow-roll contributions to the quantum gravitational corrections are
provided in appendix B.

7.1 SCALAR-TENSOR THEORIES OF INFLATION

Almost all models of inflation driven by a single scalar field 𝜙 can be covered by the
general scalar-tensor theory (3.2):

𝑆[𝑔, 𝜙] = ∫ [𝑈𝑅 − 1
2 𝐺 𝑔𝜇𝜈∇𝜇𝜙∇𝜈𝜙 − 𝑉] √−𝑔 d4𝑋 + boundary terms. (7.1)

Recall that 𝑈(𝜙), 𝐺(𝜙), and 𝑉(𝜙) are three arbitrary functions of the scalar in-
flaton field 𝜙. They respectively parametrise the non-minimal coupling to gravity,
the non-canonical kinetic term, and the scalar field potential. Spacetime is taken
to be 4-dimensional and equipped with metric 𝑔𝜇𝜈(𝑋) of mostly plus signature. The
scalar curvature is denoted by 𝑅(𝑔). Spacetime coordinates are labelled by 𝑋𝜇, with
𝜇 = 0, …, 3.

7.1.1 Field equations and energy-momentum tensor

The field equations for the metric and the Klein-Gordon equation of the inflaton are
obtained by variation of (7.1) with respect to 𝑔𝜇𝜈 and 𝜙, respectively:

𝑅𝜇𝜈 − 1
2 𝑅𝑔𝜇𝜈 = 1

2 𝑈−1𝑇𝜙
𝜇𝜈, (7.2)

□𝜙 = 𝐺−1(𝑉1 − 1
2 𝐺1∇𝜇𝜙∇𝜇𝜙 − 𝑈1𝑅), (7.3)

where the effective energy-momentum tensor 𝑇𝜙
𝜇𝜈 is defined as

𝑇𝜙
𝜇𝜈 ≡ 𝐺 (𝛿𝛼

𝜇𝛿𝛽
𝜈 − 1

2 𝑔𝜇𝜈𝑔𝛼𝛽) ∇𝛼𝜙∇𝛽𝜙 − 𝑔𝜇𝜈𝑉 + 2∇𝜇∇𝜈𝑈 − 2𝑔𝜇𝜈□𝑈. (7.4)

Here □ ≡ 𝑔𝜇𝜈∇𝜇∇𝜈 denotes the covariant d’Alembert operator.

7.1.2 Spacetime foliation

It is useful to reformulate the action in terms of the Arnowitt-Deser-Misner (adm)
formalism [5], where the 4-dimensional metric 𝑔𝜇𝜈 is expressed in terms of the lapse
function 𝑁(𝑡, 𝐱), the spatial shift vector 𝑁𝑎(𝑡, 𝐱), and the spatial metric 𝛾𝑎𝑏(𝑡, 𝐱):
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d𝑠2 = 𝑔𝜇𝜈d𝑋𝜇d𝑋𝜈 = −𝑁2d𝑡2 + 2𝑁𝑎d𝑡d𝑥𝑎 + 𝛾𝑎𝑏d𝑥𝑎d𝑥𝑏. (7.5)

Here, the spatial coordinates 𝑥𝑎, with 𝑎 = 1, …, 3, are denoted by small letters. In
terms of the adm variables, the action (7.1) can be represented as

𝑆[𝛾, 𝜙] = ∫ d𝑡d3𝑥 [ 1
2 ℳ𝐴𝐵 D𝑡 𝒬𝐴 D𝑡 𝒬𝐵 − 𝒫] , 𝒬𝐴 = ( 𝛾𝑎𝑏

𝜙 ), (7.6)

with the dynamical configuration space variables collectively denoted by 𝒬𝐴 and the
reparametrisation invariant covariant time derivative D𝑡 ≡ (∂0 − ℒ𝐍)/𝑁, with the
Lie derivative ℒ𝐍 along the spatial shift vector 𝐍 = 𝑁𝑎∂𝑎. The bilinear form ℳ𝐴𝐵

corresponds to the inverse of the configuration space metric derived in chapter 6:

ℳ𝐴𝐵 = −𝑁𝛾1/2( − 1
2 𝑈𝐺𝑎𝑏𝑐𝑑 𝑈1𝛾𝑎𝑏

𝑈1𝛾𝑐𝑑 −𝐺
). (7.7)

Note that the
configuration
space metric (7.7)
was defined with
additional inverse
factors of the
lapse function in
(6.11).

The DeWitt metric 𝐺𝑎𝑏𝑐𝑑 ≡ 𝛾𝑎(𝑐𝛾𝑑)𝑏 − 𝛾𝑎𝑏𝛾𝑐𝑑 is as defined in (6.10). The potential
𝒫, which includes the spatial gradient terms of the scalar field, is defined as

𝒫 ≡ 𝑁𝛾1/2 [ 1
2 𝑠−1 D𝑎 𝜙 D𝑎 𝜙 + 𝑉 − 𝑈(s)𝑅 − 2Δ𝑈 − 3

2 𝑈−1 D𝑎 𝑈 D𝑎 𝑈] .

Here, Δ ≡ −𝛾𝑎𝑏 D𝑎 D𝑏 is the positive definite spatial Laplacian, D𝑎 the spatial covari-
ant derivative compatible with 𝛾𝑎𝑏 and

(s)𝑅 is the three-dimensional spatial curvature.
In addition, the suppression function 𝑠 (3.3) is defined to be

𝑠 ≡
𝑈

𝐺𝑈 + 3𝑈2
1

, (7.8)

where the subscript is a shorthand for a derivative of the function with respect to the
argument.

7.1.3 Cosmological background evolution

The background spacetime is described by the spatially flat flrw line element

d𝑠2 = −𝑁2 d𝑡2 + 𝑎2𝛿𝑎𝑏 d𝑥𝑎d𝑥𝑏. (7.9)

Comparison with the adm line element (7.5) one sees that spatial flatness, homogene-
ity and isotropy imply 𝛾𝑎𝑏 = 𝑎2𝛿𝑎𝑏 and 𝑁𝑎 = 0, where the lapse function 𝑁 = 𝑁(𝑡)
and the scale factor 𝑎 = 𝑎(𝑡) are functions of time 𝑡 only. Similarly, homogeneity im-
plies that the scalar field is a function of time only 𝜙 = 𝜙(𝑡). Moreover, for the
isotropic line element (7.9) the reparametrisation invariant time derivative D𝑡 re-
duces to D𝑡 = 𝑁−1∂0.
From this point on it is convenient to introduce the conformal time 𝜏, related to

the coordinate time 𝑡 by 𝑁d𝑡 = 𝑎d𝜏. This choice corresponds to the gauge 𝑁 = 𝑎. In
terms of 𝜏, the flrw metric (7.9) acquires the manifestly conformally flat structure

𝜂𝜇𝜈 is under-
stood to be the
flat Minkowski
metric.

𝑔𝜇𝜈(𝜏) = 𝑎2(𝜏)𝜂𝜇𝜈, and the reparametrisation invariant time derivative reduces to
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a partial derivative with respect to conformal time D𝑡 = 𝑎−1∂𝜏. It is then convenient
to introduce the conformal Hubble parameter ℋ(𝜏), which is defined as

ℋ ≡
𝑎′
𝑎 .

The prime denotes a derivative with respect to conformal time 𝜏. In the flrw universe
𝑇𝜙

𝜇𝜈 takes on the form of the energy-momentum tensor of a perfect fluid:

𝑇𝜙
𝜇𝜈 = (𝜌𝜙 + 𝑝𝜙)𝑢𝜇𝑢𝜈 + 𝑝𝜙 𝑔𝜇𝜈.

Here, 𝑢𝜇 is the fluid’s four-velocity with norm 𝑢𝜇𝑢𝜇 = −1, 𝜌𝜙 is its energy density,
and 𝑝𝜙 is its pressure. Comparison with (7.4) leads to the identifications

𝜌𝜙 = 1
2 𝐺𝑎−2(𝜙′)2 + 𝑉 − 6𝑈′𝑎−2ℋ, (7.10)

𝑝𝜙 = 1
2 𝐺𝑎−2(𝜙′)2 − 𝑉 + 2𝑈′′𝑎−2 + 2𝑈′𝑎−2ℋ. (7.11)

The symmetry reduced flrw action expressed in terms of the compact notation has
a form similar to (7.6) with 𝒬𝐴 = (𝑎, 𝜙) and

ℳ𝐴𝐵 = −( 12𝑈 6𝑈1𝑎
6𝑈1𝑎 −𝐺𝑎2 ), 𝒫 = 𝑎4𝑉. (7.12)

The explicit expression for the background action is given by

𝑆bg[𝑎, 𝜙] = ∫ ℒbg (𝑎, 𝑎′, 𝜙, 𝜙′) d𝜏d3𝑥, (7.13)

ℒbg(𝑎, 𝑎′, 𝜙, 𝜙′) ≡ 𝑎4 ⎡⎢
⎣
−6

𝑈
𝑎2 (

𝑎′
𝑎 )

2
− 6

𝑈1
𝑎

𝜙′𝑎′
𝑎2 +

𝐺
2 (

𝜙′
𝑎 )

2
− 𝑉⎤⎥

⎦
. (7.14)

In particular, the derivative coupling between the gravitational and scalar field de-
grees of freedom induced by the non-minimal coupling becomes manifest. The Fried-
mann equations and the Klein-Gordon equation are obtained from the variation of
(7.13) with respect to 𝑁, 𝑎, and 𝜙, or directly from symmetry reducing the equations
of motion (7.2) and (7.3):

ℋ2 = 1
6 𝑎2 𝑈−1𝜌𝜙, (7.15)

ℋ′ = − 1
12 𝑎2 𝑈−1 (𝜌𝜙 + 3𝑝𝜙) , (7.16)

𝜙′′ + 2ℋ𝜙′ + 1
2 (log(𝑈/𝑠))𝜙′ + 𝑎2𝑠𝑈2𝑊1 = 0. (7.17)

The dimensionless ratio 𝑊 is related to the ef potential and is defined as in (3.4):

𝑊 ≡
𝑉

𝑈2 .

The spatial integral in the action (7.13) is formally divergent in a flat spatially ho-
mogeneous flrw universe. This corresponds to an infinite spatial volume 𝑉0. In or-
der to regularise the spatial integral, a large but finite reference length scale ℓ0 such
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that ℓ3
0 = 𝑉0. The reference volume 𝑉0 can then be removed from the formalism by

through a redefinition of the time variable and the scale factor, such that the action
(7.13) is independent of 𝑉0 [110,140]:

𝜏 → ℓ−1
0 𝜏, 𝑎 → ℓ0 𝑎. (7.18)

While, in this way, any dependence on the reference scale ℓ0 has been eliminated
form the formalism, the restriction of the spatial volume to a compact subregion
nevertheless has observational consequences, which are discussed in section 7.5.

7.1.4 Inflationary background dynamics in the slow-roll approximation

During the inflationary epoch the universe underwent a quasi-De Sitter stage in which
the energy density of the universe is approximately constant and effectively domi-
nated by the potential of the slowly rolling inflaton field. The slow-roll conditions for
minimally coupled theories can be generalised in scalar-tensor theories for any func-
tion 𝑓 of the inflaton field 𝜙 [77]. In terms of conformal time the slow-roll conditions

Notice that the
slow-roll condition
is slightly differ-
ent from how it
was defined in
chapter 4. The
difference is sec-
ond order in the
slow-roll approxi-
mation, and does
not influence the
main results.

are taken to be

𝑓 ′′(𝜙) ≪ ℋ𝑓 ′(𝜙) ≪ ℋ2𝑓 (𝜙). (7.19)

In particular, for the scalar-tensor theory (7.1), this encompasses the generalised
potentials 𝑓 = {𝑈, 𝐺, 𝑉}. With use of (7.10) and (7.11), within the slow-roll regime
(7.19) the background equations (7.15)-(7.17) lead to

ℋ2

𝑈𝑎2 ≈
𝑊
6 , (7.20)

3
ℋ𝜙′
𝑈2𝑎2 ≈ −𝑠𝑊1. (7.21)

The slow-roll conditions (7.19) motivate the definitions of the following four slow-
roll parameters [143], which quantify small deviations from De Sitter space:

𝜀1,ℋ ≡ 1 −
ℋ′
ℋ2 , 𝜀2,ℋ ≡ 1 −

𝜙′′
ℋ𝜙′

,

𝜀3,ℋ ≡
1
2

𝑈′
ℋ𝑈

, 𝜀4,ℋ ≡
1
2

𝑠′
ℋ𝑠

. (7.22)

The slow-roll parameters 𝜀1,ℋ and 𝜀2,ℋ are the same as for a minimally coupled
canonical scalar field, while the slow-roll parameters 𝜀3,ℋ, 𝜀4,ℋ contain information
about the non-minimal coupling 𝑈 and the generalised kinetic term 𝐺 via the func-
tion 𝑠 defined in (7.8). It is assumed that the slow-roll approximation holds. From
section 4.5.4 it then follows that the slow-roll parameters can be treated as constant.
In addition to (7.22), the potential slow-roll parameters 𝜀𝑖,𝑊 can be defined as in (4.21):
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𝜀1,𝑊 ≡
(𝑈𝑊)1

𝑈𝑊
𝑠𝑈𝑊1

𝑊 , 𝜀2,𝑊 ≡ 2 (
𝑠𝑈𝑊1

𝑊 )
1

+
𝑠𝑈𝑊1

𝑊
(𝑈𝑊)1

𝑈𝑊 ,

𝜀3,𝑊 ≡ −
𝑠𝑈1𝑊1

𝑊 , 𝜀4,𝑊 ≡ −
𝑠𝑈𝑊1

𝑊
𝑠1
𝑠 . (7.23)

The potential slow-roll parameters allow inflation to be quantified directly in terms
of the generalised potentials 𝑈, 𝐺 and 𝑉 and their derivatives. Within the slow-roll
approximation 𝜀𝑖,𝑊 ≈ 𝜀𝑖,ℋ. In what follows the slow-roll parameters will simply be
denoted as 𝜀𝑖 for both sets of slow-roll parameters (7.22) and (7.23). During the
slow-roll regime a sufficiently long quasi-De Sitter phase of inflation is realised for
|𝜀𝑖| ≪ 1, as discussed in section 4.5.4.

7.1.5 Cosmological perturbations

Small deviations from the perfect flrw universe justify a decomposition of the field
𝑔𝜇𝜈 and 𝜙 into a background 𝑔̄𝜇𝜈, 𝜙̄ and perturbation 𝛿𝑔𝜇𝜈 and 𝛿𝜙,

𝑔𝜇𝜈( 𝐱) ≡ 𝑔̄𝜇𝜈(𝜏) + 𝛿𝑔𝜇𝜈(𝜏, 𝐱), 𝜙(𝜏, 𝐱) ≡ 𝜙̄(𝜏) + 𝛿𝜙(𝜏, 𝐱). (7.24)

It was argued in section 4.6.2 that the perturbations are in general not invariant
under infinitesimal coordinate transformations. In order to unambiguously quantify
the perturbations one resorts to combinations that of 𝛿𝑔𝜇𝜈 and 𝛿𝜙 that are invariant
under coordinate transformations. The fluctuations that are relevant to inflation are
the gauge invariant transverse traceless part ℎTT

𝑎𝑏 of the metric perturbation, and the
comoving curvature perturbation 𝜁 [144]:

𝜁 ≡ ℎ −
ℋ
𝜙′

𝛿𝜙,

where ℎ is defined in (4.27). The transverse traceless metric perturbation can be
associated with primordial gravitational waves:

ℎTT
𝑎𝑏 ≡ ∑

𝐼=+,×
𝑒𝐼
𝑎𝑏ℎTT

𝐼 ,

where 𝑒𝐼
𝑎𝑏 denotes the polarisation tensor. The vector perturbations decay during

inflation.
The action for the perturbations takes on its canonical form with the introduction

of the scalar and tensor ms variables:

𝑣 ≡ 𝑎 𝑧S 𝛿𝜙g, 𝑢𝐼 ≡ 𝑎 𝑧T hTT
I . (7.25)

The corresponding factors 𝑧S and 𝑧T defined as [143]:

𝑧2
S ≡ 𝑠−1 (1 + 1

2 ℋ−1𝑈−1𝑈′)−2 (
𝜙′
ℋ

)
2

, 𝑧2
T ≡ 1

2 𝑈. (7.26)
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The action quadratic in the perturbations 𝑣 and 𝑢𝐼 reads [143]:

𝑆pert[𝑣, 𝑢] = ∫ [ℒ𝑆(𝑣, 𝑣′) + ℒ𝑇(𝑢, 𝑢′)] d𝜏d3𝑥, (7.27.a)

ℒS(𝑣, 𝑣′) ≡
1
2

⎡⎢
⎣
(𝑣′)2 + 𝛿𝑖𝑗∂𝑖𝑣∂𝑗𝑣 +

(𝑎𝑧S)′ ′
(𝑎𝑧S) 𝑣2⎤⎥

⎦
, (7.27.b)

ℒT(𝑢, 𝑢′) ≡
1
2 ∑

𝐼=+,×

⎡⎢
⎣
(𝑢′𝐼)

2 + 𝛿𝑖𝑗∂𝑖𝑢𝐼∂𝑗𝑢𝐼 +
(𝑎𝑧T)′ ′
(𝑎𝑧T) (𝑢𝐼)

2⎤⎥
⎦

. (7.27.c)

In the derivation of (7.27.b) and (7.27.c), total derivative terms are neglected and it
is assumed that the background fields satisfy their equations of motion (7.15)-(7.17).
Since the linear perturbations are assumed to be linear, the expansion stops at second
order and the total combined action of background plus perturbations reads

𝑆tot[𝑎, 𝜙, 𝑣, 𝑢] ≡ ∫ ℒtot(𝑎, 𝑎′, 𝜙, 𝜙′, 𝑣, 𝑣′, 𝑢, 𝑢′) d𝜏d3𝑥 (7.28)

= ∫ [ℒbg(𝑎, 𝑎′, 𝜙, 𝜙′) + ℒS(𝑣, 𝑣′) + ℒT(𝑢, 𝑢′)] d𝜏d3𝑥. (7.29)

The inhomogeneous perturbations can be expanded in terms of their Fourier com-
ponents:

𝑣(𝜏, 𝐱) = 𝑉−1
0 ∑

𝑘
ei𝐤⋅𝐫𝑣𝑘(𝜏), 𝑢(𝜏, 𝐱) = 𝑉−1

0 ∑
𝑘

ei𝐤⋅𝐫𝑢𝑘(𝜏). (7.30)

The Fourier components satisfy 𝑣∗
𝐤 = 𝑣−𝐤 and 𝑢∗

𝐤,𝐼 = 𝑢−𝐤,𝐼, since the position space
perturbations are real. The restriction of the spatial volume to a compact subregion
makes it necessary to perform the discrete Fourier transform (7.30) with the volume
factor 𝑉0 = ℓ3

0, introduced to regularise the spatial integral in (7.13). Moreover, due
to the isotropy of the flrw background, the mode components can only depend on
the magnitude 𝑘 ≡ |𝐤| of the wave vector 𝐤, rather than its direction. The Fourier
transformed action (7.28) then acquires the form of a sum of harmonic oscillators

𝑆pert[{𝑣𝑘}, {𝑢𝑘}] =
1

𝑉0
∑

𝑘
∫ [ℒ𝑆

𝑘 (𝑣𝑘, 𝑣′𝑘) + ℒ𝑇
𝑘 (𝑢𝑘, 𝑢′𝑘)] d𝜏, (7.31)

ℒS
𝑘 (𝑣𝑘, 𝑣′𝑘) = 1

2 [𝑣′𝑘(𝑣∗)′𝑘 − 𝜔2
S𝑣𝑘𝑣∗

𝑘] , (7.32)

ℒT
𝑘 (𝑢𝑘, 𝑢′𝑘) = 1

2 ∑
𝐼=+,×

[𝑢′𝑘,𝐼(𝑢∗)′𝑘,𝐼 − 𝜔2
T𝑢𝑘,𝐼𝑢∗

𝑘,𝐼] , (7.33)

with time-dependent frequencies

𝜔2
S(𝜏; 𝑘) ≡ 𝑘2 −

(𝑎𝑧S)′′
𝑎𝑧S

, 𝜔2
T(𝜏; 𝑘) ≡ 𝑘2 −

(𝑎𝑧T)′′
𝑎𝑧T

. (7.34)

In a similar fashion as in (7.18), it is possible to eliminate any explicit occurrence
of the reference volume in the Fourier transformed action (7.31) by the rescaling of
the wave number and Fourier components [110,140]:
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𝑘 → ℓ0𝑘, 𝑣𝑘 → ℓ−2
0 𝑣𝑘, 𝑢𝑘,𝐼 → ℓ−2

0 𝑢𝑘,𝐼. (7.35)

The Fourier transformed version of the total action (7.29) is the starting point for
the Hamiltonian formulation carried out in the next section.

7.2 QUANTUM GEOMETRODYNAMICS

7.2.1 Hamiltonian formalism

The canonical quantisation of gravity is based on its Hamiltonian formulation. We
perform a Legendre transformation of ℒtot with the generalised momenta

𝜋𝑎 ≡
∂ℒtot
∂(𝑎′)

, 𝜋𝜙 ≡
∂ℒtot
∂(𝜙′)

, 𝜋𝑣,𝑘 ≡
∂ℒtot
∂(𝑣∗

𝑘)′
, 𝜋𝐼

𝑢,𝑘 ≡
∂ℒtot

∂(𝑢∗
𝑘,𝐼)′

, (7.36)

which leads to the Hamiltonian constraint

ℋtot ≡ ℋbg + ℋpert = 0. (7.37)

The individual Hamiltonians of the background and perturbation variables read

ℋbg(𝑎, 𝜙) ≡ −
𝑠

24𝑈𝑎2 (𝐺𝑎2𝜋2
𝑎 + 12𝑈1𝑎𝜋𝑎𝜋𝜙 − 12𝑈𝜋2

𝜙) + 𝑎4𝑉,

ℋpert(𝑣𝑘, 𝑢𝐼
𝑘, 𝑎, 𝜙) ≡ ∑

𝑘
ℋpert

𝑘 = ∑
𝑘

(ℋS
𝑘 + ℋT

𝑘 ) , (7.38)

ℋS
𝑘 (𝑣𝑘, 𝑎, 𝜙) ≡ 1

2 |𝜋𝑣,𝑘|2 + 1
2 𝜔2

S|𝑣𝑘|2, (7.39)

ℋT
𝑘 (𝑢𝐼

𝑘, 𝑎, 𝜙) ≡ 1
2 ∑

𝐼=+,×
(|𝜋𝐼

𝑢,𝑘|2 + 𝜔2
T|𝑢𝐼,𝑘|2) . (7.40)

7.2.2 Quantum Geometrodynamics and Wheeler-DeWitt equation

In the canonical quantisation procedure, the configuration space variables 𝑎, 𝜙, 𝑣𝑘,
𝑢𝑘,𝐼, and momenta 𝜋𝑎, 𝜋𝜙, 𝜋𝑣,𝑘, 𝜋𝐼

𝑢,𝑘, are promoted to operators that act on states Ψ
and obey the canonical commutation relations:

[𝑎, 𝜋̂𝑎] = i, [𝜙̂, 𝜋̂𝜙] = i,

[𝑣̂𝑘, 𝜋̂𝑣,𝑘′] = i 𝛿𝑘,𝑘′, [𝑢̂𝑘,𝐼, 𝜋̂
𝐽
𝑢,𝑘′] = i 𝛿𝑘,𝑘′𝛿

𝐽
𝐼,

with all other commutators equal to zero. Formally, the configuration space variables
associated with the perturbations should be doubled for a consistent quantisation.
This is done by the decomposition of the complex Fourier modes 𝑣𝑘 and 𝑢𝑘,𝐼 into
real and imaginary parts [145]. The resulting Hamiltonians are form equivalent to
(7.39) and (7.40), and therefore there is no loss in generality if one considers the
variables to be real. In the Schrödinger representation, the position space operators
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act multiplicatively and the momentum space operators act as differential operators
with the explicit form

𝜋𝑎 = −i
∂
∂𝑎 , 𝜋𝜙 = −i

∂
∂𝜙, 𝜋𝑣,𝑘 = −i

∂
∂𝑣𝑘

, 𝜋𝐼
𝑢,𝑘 = −i

∂
∂𝑢𝑘,𝐼

. (7.41)

The wdw equation is obtained by the promotion of (7.37) to an operator equation,
which acts on the wave function Ψ(𝑎, 𝜙, 𝑣𝑘, 𝑢𝑘,𝐼). In accordance with the prescription
for the quantisation of constrained systems described in chapter 5, the implementa-
tion of the classical constraint equation (7.37) at the quantum level corresponds to
the selection of only those states Ψ which are annihilated by ℋ̂tot:

ℋ̂
tot

Ψ = 0. (7.42)

The wdw equation (7.42) is defined only up to operator ordering. The results for
the semiclassical expansion performed in the subsequent sections are—as reasoned
in chapter 5—independent of the factor ordering [95].

7.3 SEMICLASSICAL EXPANSION OF THE WHEELER-DEWITT EQUATION

For almost all cases, the full wdw equation cannot be solved exactly. However, a
consistent semiclassical expansion in analogy to section 5.3.1 yields approximate
results that allow one to determine the first quantum gravitational corrections. This
semiclassical expansion is based on the combined use of a Born-Oppenheimer and
wkb-type approximation scheme. The former relies on a clear distinction between
the heavy and light degrees of freedom. In the original Born-Oppenheimer approach
to molecular physics, this distinction is based on the presence of a mass hierarchy
between different degrees of freedom. For a scalar field 𝜙 minimally coupled to Ein-
stein gravity, such a mass hierarchy could be related to the ratio 𝜆 ≡ 𝑚2

𝜙/𝑀2
P ≪ 1,

with the effective scalar field mass 𝑚𝜙. In this context, the gravitational degrees of
freedom are the heavy ones, while the scalar field degrees of freedom are the light
ones [93, 95, 122–126, 139, 140]. Such a scenario would correspond to a slowly vary-
ing background geometry on which the quantum matter (in this case the scalar field)
degrees of freedom propagate. For a scalar field non-minimally coupled to gravity,
the identification of light and heavy degrees of freedom becomes more subtle, as be-
came clear in chapter 6. In the case of the Hamiltonian (7.37), the heavy degrees of
freedom are identified with the homogeneous background variables 𝑎 and 𝜙, while
the light degrees of freedom are associated with the infinitely many degrees of free-
dom of the Fourier components of the inhomogeneous perturbations 𝑣 and 𝑢𝐼. In the
cosmological framework, this distinction follows naturally from the observed temper-
ature anisotropies Δ𝑇/𝑇 ≈ 10−5 in the cmb.

7.3.1 Implementation of the semiclassical expansion

In the following it is more convenient to temporarily return to the condensed notation
of chapter 5 and collectively denote the heavy degrees of freedom by 𝒬𝐴 ≡ (𝑎, 𝜙)
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and the light degrees of freedom by 𝓆𝑛 ≡ (𝑣𝑘, 𝑢+
𝑘 , 𝑢×

𝑘 ). The index 𝑛 labels both the
Fourier modes 𝑘 as well as the different types of perturbations. At a technical level,
the distinction between heavy and light degrees of freedom can be implemented by
the introduction of a formal weighting parameter 𝜆 in the Hamiltonian for the heavy
degrees of freedom, which can be set to one after the expansion

ℋ̂
bg

(𝑄̂, 𝜋̂𝑄) →ℋ̂
bg
𝜆 (𝑄̂, 𝜋̂𝑄) = −

𝜆
2 ℳ𝐴𝐵(𝑄̂)

∂2

∂𝑄𝐴∂𝑄𝐵 + 𝜆−1𝒫(𝑄̂). (7.43)

Here, in correspondence with the notation in (7.6), 𝒬̂𝐴 collectively denotes the oper-
ators 𝑎 and 𝜙̂, and ℳ𝐴𝐵(𝒬̂) and 𝒫(𝒬̂) denote the operator versions of (7.12). The
combination of (7.37) with (7.41) and the weighting of the background Hamiltonian
(7.43), the wdw equation has the form

(ℋ̂
bg
𝜆 + ∑

𝑛
ℋ̂

pert
𝑛 ) Ψ = 0. (7.44)

The Hamiltonian of the perturbation 𝓆𝑛 has the explicit form

ℋ̂
pert
𝑛 = 1

2
⎛⎜
⎝

−
∂2

∂𝑞2
𝑛

+ 𝜔2
𝑛𝑞2

𝑛
⎞⎟
⎠

. (7.45)

The background variables 𝑎, 𝜙 in the frequencies 𝜔2
S(𝜏; 𝑘) and 𝜔2

T(𝜏; 𝑘) are explicitly
treated as classical. Within the semiclassical expansion, this means that the variables
𝒬𝐴 enter the frequencies only parametrically via 𝜏. This procedure might be justified
a posteriori, by showing that a full quantum treatment of these variables would only
affect terms at higher order in the semiclassical expansion [109].
In what follows the hats on operators are suppressed and the following abbrevia-

tions are introduced:

∂𝐴 ≡
∂

∂𝑄𝐴 , ∂𝐴∂𝐴 ≡ ℳ𝐴𝐵∂𝐴∂𝐵.

The additive structure of the wdw equation (7.44) suggests the product ansatz

Ψ(𝒬, {𝑞𝑛}) ≡ Ψbg(𝒬)Ψpert(𝒬; {𝓆n}),

Ψpert(𝒬; {𝓆𝑛}) ≡ ∏
𝑛

Ψ𝑛(𝒬; 𝓆𝑛). (7.46)

The ansatz (7.46) can be inserted into the wdw equation (7.44). After the result has
been divided by Ψ, the terms that only depend on the background variables 𝒬 can
be separated from those that depend additionally on the perturbations 𝓆. One then
obtains a family of separate equations [108,126]:
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− 1
2 𝜆∂𝐴∂𝐴Ψbg + 𝜆−1𝒫(𝒬̂)Ψbg = 𝑓 (𝒬)Ψbg, (7.47)

∑
𝑛

⎡⎢
⎣
−

1
2

∂𝐴∂𝐴Ψ𝑛
Ψ𝑛

−
∂𝐴Ψbg∂AΨn

ΨbgΨn

+𝜆−1 ℋ𝑛Ψ𝑛
Ψ𝑛

−
1
2 ∑

𝑚≠𝑛

∂𝐴Ψ𝑛∂𝐴Ψ𝑚
Ψ𝑛Ψ𝑚

⎤⎥
⎦

= −𝑓 (𝒬). (7.48)

Here, 𝑓 (𝒬) is an arbitrary function that corresponds to the backreaction of the per-
turbations on the background. In addition, it is assumed that the random phase ap-
proximation holds:

∑
𝑛≠𝑚

∂𝐴Ψ𝑛∂𝐴Ψ𝑚
Ψ𝑛Ψ𝑚

≈ 0.

Under these assumptions, 𝑓 (𝒬) ≡ ∑𝑛 𝑓𝑛(𝒬) and (7.48) decomposes into a family
of separate equations for each 𝑛. In the following the backreaction is neglected by
the choice 𝑓𝑛(𝒬) = 0, such that the background wave function Ψbg(𝒬) satisfies the
background part of the wdw equation and (7.44) reduces to the following family of
equations:

− 1
2 𝜆∂𝐴∂𝐴Ψbg + 𝜆−1𝒫(𝒬̂)Ψbg = 0, (7.49)

− 1
2 𝜆∂𝐴∂𝐴Ψ𝑛 − 𝜆∂𝐴 log Ψbg∂AΨn + ℋnΨn = 0. (7.50)

In order to get approximate solutions to these equations one can perform a wkb-type
approximation and assume that the Ψ𝑛 depend only adiabatically on the background
variables Ψ𝑛(𝒬, 𝓆𝑛) = Ψ𝑛(𝒬; 𝓆𝑛). Concretely, a change of the background variables
𝒬 causes the Ψ𝑛 to change much slower than Ψbg:

∣∣∣∣

∂𝐴Ψbg

Ψbg

∣∣∣∣
≫ ∣

∂𝐴Ψ𝑛
Ψ𝑛

∣ . (7.51)

This motivates the following ansatz for Ψbg and Ψ𝑛, where the expansion in Ψ𝑛 starts
at order 𝒪(𝜆0) rather than 𝒪(𝜆−1):

Ψbg(𝒬) = exp {i [𝜆−1𝑆(0)(𝒬) + 𝑆(1)(𝒬) + 𝜆𝑆(2)(𝒬) + …]} , (7.52)

Ψ𝑛(𝒬; 𝓆𝑛) = exp {i [𝐼(1)
𝑛 (𝒬; 𝓆𝑛) + 𝜆𝐼(2)

𝑛 (𝒬; 𝓆𝑛) + …]} . (7.53)

Substitution of (7.52) and (7.53) into (7.49) and (7.50) leads to two polynomials
in 𝜆. If the coefficients in each of those polynomials are separately set to zero, two
families of equations are obtained: one for the background functions 𝑆(𝑗) and one
for the perturbation functions 𝐼(𝑗)

𝑛 . The resulting equations are then solved order by
order. It must be noted that the equations for the background must be solved first, as
their solutions enter the equations for the perturbations. In order to extract the first
quantum gravitational corrections, it is sufficient to consider the expansions (7.52)
and (7.53) up to 𝒪(𝜆).
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7.3.2 Hierarchy of background equations

The wave function Ψbg can be reconstructed up to 𝒪 (λ) by an iterative procedure,
where the functions 𝑆(0), 𝑆(1) and 𝑆(2) are solved order by order in the semiclassical
expansion.

𝒪(𝜆−1) At this order one obtains a Hamilton-Jacobi equation for 𝑆(0):

1
2

∂𝑆(0)

∂𝑡s
+ 𝒫 = 0. (7.54)

The semiclassical time 𝑡s arises from the expansion of the timeless wdw equation
(7.42) as the projection along the gradient of the background geometry 𝑆(0)(𝑄):

∂
∂𝑡s

≡ ∂𝐴𝑆(0)∂𝐴. (7.55)

The consistency of the semiclassical expansion requires that the classical theory is
recovered at the lowest order. Indeed, by the identification of the semiclassical time
(7.55) with the conformal time 𝜏 and the gradient of 𝑆(0) with the background mo-
menta

𝜋𝐴 =
∂𝑆(0)

∂𝒬𝐴 , (7.56)

the Hamilton-Jacobi equation (7.54) yields the equations of motion (7.15)-(7.17)
after one uses (7.56). The Hamilton-Jacobi equation therefore implies the classical
equations of motion for the background variables 𝒬 = (𝑎, 𝜙).

𝒪(𝜆0) Equipped with the semiclassical notion of time (7.55), at the next order of
the semiclassical expansion one obtains

∂𝑆(1)

∂𝜏 = 1
2 i∂𝐴∂𝐴𝑆(0). (7.57)

With the definition of the semiclassical time (7.55), the solution can be seen to be

𝑆(1) = − 1
2 i log Δ. (7.58)

Here, Δ is a function that satisfies the transport equation

∂𝐴 (Δ∂𝐴𝑆(0)) = 0.

This is consistent with the first order corrections to the wkb prefactor, where Δ is
associated with the Van Vleck determinant.

𝒪(𝜆1) The next order in the expansion yields

∂𝑆(2)

∂𝜏 = 1
2 (i ∂𝐴∂𝐴𝑆(1) − ∂𝐴𝑆(1)∂𝐴𝑆(1)) . (7.59)
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After substitution of (7.58) into (7.59) it is found that 𝑆(2) satisfies the differential
equation

∂𝑆(2)

∂𝜏 = 1
4 [∂𝐴∂𝐴 log Δ − 1

2 ∂𝐴 log Δ∂𝐴 log Δ] .

This shows that 𝑆(2) corresponds to the second order correction to the wkb prefactor.

7.3.3 Hierarchy of perturbation equations

With the approximate solution of (7.49) it is now possible to expand (7.50). The
equations (7.54)-(7.59) for the background can be used to reconstruct the Ψ𝑛 up to
first order in the expansion parameter 𝜆.

𝒪(𝜆0) The equation obtained at this order in the expansion can, with the help of
(7.55), be written as

−
∂𝐼(1)

𝑛
∂𝜏 = −

i
2

∂2𝐼(1)
𝑛

∂𝓆2
𝑛

+
1
2

∂𝐼(1)
𝑛

∂𝓆𝑛

∂𝐼(1)
𝑛

∂𝓆𝑛
+ 1

2 𝜔2
𝑛𝓆2

𝑛 . (7.60)

It can be verified by substitution that equation is equivalent to the Schrödinger equa-
tion for the states Ψ(1)

𝑛 ≡ exp(i𝐼(1)
𝑛 ):

i
∂Ψ(1)

𝑛
∂𝜏 =ℋ̂

pert
𝑛 Ψ(1)

𝑛 . (7.61)

𝒪(𝜆1) The first quantum gravitational corrections arise from the semiclassical
expansion at order 𝒪(𝜆1). With the use of (7.55), the equation obtained at this
order in the expansion can be written as

−
∂𝐼(2)

𝑛
∂𝜏 = ∂𝐴𝑆(1)∂𝐴𝐼(1)

𝑛 + 1
2 ∂𝐴𝐼(1)

𝑛 ∂𝐴𝐼(1)
𝑛 − 1

2 i∂𝐴∂𝐴𝐼(1)
𝑛

−
i
2

∂2𝐼(2)
𝑛

∂𝑞2
𝑛

+
∂𝐼(1)

𝑛
∂𝑞𝑛

∂𝐼(2)
𝑛

∂𝑞𝑛
. (7.62)

This equation can be written in the form of a corrected Schrödinger equation for the
Terms of order
𝜆2 are neglected
in the conversion
from 𝐼(2) to Ψ(2)

in the transition
from (7.62) to
(7.63),

state Ψ(2)
𝑛 ≡ Ψ(1)

𝑛 exp(i𝜆𝐼(2)
𝑛 ), where Ψ(1)

𝑛 satisfies (7.61). The equation for Ψ(2)
𝑛 is

then

i
∂Ψ(2)

𝑛
∂𝜏 =ℋ̂

pert
𝑛 Ψ(2)

𝑛 − 𝜆Ψ(2)
𝑛

⎛⎜
⎝

i
∂𝐴𝑆(1)∂𝐴Ψ(1)

𝑛
Ψ(1)

𝑛
+

1
2

∂𝐴∂𝐴Ψ(1)
𝑛

Ψ(1)
𝑛

⎞⎟
⎠

. (7.63)

The terms proportional to 𝜆 are identified as the first quantum gravitational correc-
tions. In accordance with the strategy of reference [95] these terms can be projected
along the direction normal to the hypersurfaces of constant 𝑆(0). With (7.54), (7.57)
and (7.61), the quantum gravitational correction terms can be represented in the form
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𝒱QG
𝑛 ≡ − 1

4 𝜆 Re ⎡
⎢
⎣

1
Ψ(1)

𝑛 𝒫
(ℋ̂

pert
𝑛 )

2
Ψ(1)

𝑛 + i
1

Ψ(1)
𝑛

⎛⎜⎜⎜
⎝

∂
∂𝜏

ℋ̂
pert
𝑛
𝒫

⎞⎟⎟⎟
⎠

Ψ(1)
𝑛

⎤
⎥
⎦

. (7.64)

In accordance with the treatment of reference [109, 110, 137] one can consider only
take the real part of the corrections (7.64) in order to preserve unitarity defined with
respect to the Schrödinger inner product on the Hilbert space of the perturbations.
The question of unitarity in the context of the canonical approach to quantum gravity
and the semiclassical expansion is controversially discussed and an interesting topic
on its own. It has been studied extensively in the literature [95,97,113,126,127,130,
146], and has also been discussed in chapter 5 and chapter 6. The term 𝒱QG

𝑛 in
(7.64) might be viewed as a contribution to the effective potential

i
∂Ψ(2)

𝑛
∂𝜏 = −

1
2

∂2Ψ(2)
𝑛

∂𝓆2
𝑛

+ 𝒱eff
𝑛 Ψ(2)

𝑛 , 𝒱eff
𝑛 ≡ 1

2 𝜔2
𝑛𝓆2

𝑛 + 𝒱QG
𝑛 . (7.65)

The iterative scheme of the semiclassical expansion implies that equations obtained
at lower orders in 𝜆 are used to derive equations that arise at higher orders in the
expansion. In order to solve the corrected Schrödinger equation (7.65) for Ψ(2)

𝑛 , one
is required to have knowledge about the solution Ψ(1)

𝑛 of the uncorrected Schrödinger
equation (7.61).

7.4 COSMOLOGICAL POWER SPECTRA IN THE SCHRÖDINGER PICTURE

In order to extract physical information from the semiclassical expansion it is nec-
essary to relate observations to the wkb states Ψ(𝑗)

𝑛 , where the (𝑗) indicates the or-
der of the semiclassical expansion. The inflationary perturbations are assumed to be
Gaussian, which means that they are determined by the two-point correlation func-
tion. The main observable in inflationary cosmology is the inflationary power spec-
trum, which results from a Fourier transform of the two-point correlation function.
Since observational data do not show any evidence for non-Gaussian features, higher
𝑛-point correlation functions can be neglected. This is consistent with the truncation
of (7.27.a) to quadratic order in the perturbations, since investigations of, for exam-
ple, the bispectrum would imply interaction terms cubic in the perturbations. In the
Schrödinger picture, this suggests that the Ψ(𝑗)

𝑛 obtained from the semiclassical ex-
pansion can be assumed to be normalised Gaussian states:

Ψ(𝑗)
𝑛 (𝜏; 𝑞𝑛) = 𝑁(𝑗)

𝑛 (𝜏) exp (− 1
2 Ω(𝑗)

𝑛 (𝜏)𝑞2
𝑛) , Re(Ω𝑛) > 0. (7.66)

They are fully characterised by the complex Gaussian width Ω𝑛(𝜏) which depends
parametrically on the semiclassical time 𝜏. For Gaussian states (7.66), the quantum
average in the wkb state Ψ(𝑗)

pert = ∏𝑛 Ψ(𝑗)
𝑛 can be evaluated explicitly. The two-point

correlation function in the Schrödinger picture is a simple function of the Gaussian
width [145]:
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⟨Ψ(𝑗)
pert|𝑣𝐤𝑣∗

𝐤′ |Ψ
(𝑗)
pert⟩ =

2𝜋2

𝑘3 𝑃(𝑗)
𝑣 𝛿(𝐤 − 𝐤′), (7.67.a)

𝑃(𝑗)
𝑣 (𝜏; 𝑘) ≡

𝑘3

4𝜋2Re [Ω(𝑗)
𝑣 (𝑘; 𝜏)]−1 . (7.67.b)

Similar relations hold for the tensor power spectrum. Thus, the width Ω(𝑗)
𝑛 fully de-

termines the power spectrum 𝑃(𝑗)
𝑣 up to order 𝒪(𝜆𝑗) of the semiclassical expansion.

Since the canonical field variables for the scalar and tensor perturbations 𝑣 and 𝑢𝐼

are related to the original perturbations 𝛿𝜙gi and ℎ𝐼 via (7.25), the corresponding
power spectra are related to (7.67) by

𝑃S(𝑘) ≡
1

𝑎2𝑧2
S

𝑃𝑣(𝑘), 𝑃T(𝑘) ≡
2

𝑎2𝑧2
T

𝑃𝑢(𝑘). (7.68)

The extra factor of 2 in 𝑃T(𝑘) accounts for the two polarisations. The index (𝑗) is
suppressed for notational simplicity. The power spectra can be parametrised by the
power law forms

𝑃S(𝑘) = 𝐴S(𝑘∗) (
𝑘
𝑘∗

)
𝑛S(𝑘∗)−1+…

, 𝑃T(𝑘) = 𝐴T(𝑘∗) (
𝑘
𝑘∗

)
𝑛T(𝑘∗)+…

. (7.69)

The pivot scale 𝑘∗ is chosen to correspond to a mode within the experimentally
accessible window of scales that re-entered the horizon 𝑁e e-folds after the end of
inflation. In terms of the parametrisation (7.69), the power spectra are characterised
by their amplitudes 𝐴S/T which measure the heights, and their spectral indices 𝑛S/T,
which measure the tilts

𝑛S ≡ 1 +
d log 𝑃S
d log 𝑘 ∣

𝑘=𝑘∗
, 𝑛T ≡

d log 𝑃T
d log 𝑘 ∣

𝑘=𝑘∗
. (7.70)

Since the primordial tensor modes have not yet been measured there only exists an
upper bound on 𝐴T and it is convenient to introduce the tensor-to-scalar ratio

𝑟 =
𝑃T(𝑘∗)
𝑃S(𝑘∗) . (7.71)

For single field models of inflation, there is a consistency equation that relates 𝑟 to
𝑛T:

𝑟 = −8𝑛T. (7.72)

7.4.1 Power spectra without quantum gravitational corrections

At order 𝒪(𝜆0) of the semiclassical expansion the Schrödinger equation (7.61) for
the states Ψ(1)

𝑛 (𝜏, 𝓆𝑛) was obtained. According to (7.66), the Gaussian ansatz

Ψ(1)
𝑛 = 𝑁(1)

𝑛 exp (− 1
2 Ω(1)

𝑛 𝓆2
𝑛) (7.73)



122

Equation (7.74)
can be trans-

formed into the
conventional
second order

equation via an
auxiliary vari-

able. This is ex-
plained in detail
in appendix C.

can be substituted into (7.61), after which terms of equal order in the 𝑞𝑛 can be
collected. This leads to the two separate equations

i
d𝑁(1)

d𝜏 = 1
2 Ω(1)𝑁(1), i

dΩ(1)

d𝜏 = (Ω(1))2 − 𝜔2. (7.74)

Here and in what follows the subindex 𝑛 will be suppressed. The frequency 𝜔 =
𝜔S/T is given by (7.34) for the scalar and tensor modes, respectively. The equation
for 𝑁(1)

𝑘 just reproduces the usual normalisation condition for the Gaussian. The
equation for Ω(1)

𝑘 is a first order non-linear differential equation. To linear order in the
slow-roll approximation one finds, in accordance with reference [147], the following
expressions for the frequencies of the scalar and tensor modes

𝜔2
S(𝜏, 𝑘) = 𝜔2

DS − 3
ℰS
𝜏2 , 𝜔2

T(𝜏, 𝑘) = 𝜔2
DS(𝜏, 𝑘) − 3

ℰT
𝜏2 , (7.75)

where the abbreviations ℰS and ℰT collect the contributions from the slow-roll para-
meters:

ℰS ≡ 2𝜀1 − 𝜀2 − 𝜀3 + 𝜀4, ℰT ≡ 𝜀1 + 𝜀3, (7.76)

and the universal time-dependent De Sitter frequency

𝜔2
DS(𝑘, 𝜏) ≡ 𝑘2 −

2
𝜏2 . (7.77)

The equation (7.74) for Ω(1) can be solved analytically. The result can be expressed
in terms of Bessel functions, which in turn can be expanded in powers of the slow-
roll parameters. However, since so far the analysis is restricted to the first order in
the slow-roll approximation, it is simpler to obtain the correction solutions with the

Ω(1) ≡ 𝑘(ΩDS + ℰΩℰ), (7.78)

with ℰ = ℰS/T, for scalar and tensor modes respectively. Insertion of (7.78), (7.75)
and (7.76) into (7.74) leads to a linear function in ℰ. The coefficients of this func-
tion can be set to vanish separately, which results in two separate equations. These
equations can be written in terms of variable 𝑥 ≡ −𝑘𝜏 as

dΩDS

d𝑥 = iΩ2
DS − i𝑥−2(𝑥2 − 2), (7.79)

dΩℰ
d𝑥 = 2iΩDSΩℰ + 3i𝑥−2. (7.80)

The system (7.79) and (7.80) can be solved successively. The equation for ΩDS must
be solved first, since its solution is needed to find Ωℰ. In order to solve these differen-
tial equations the physical Bunch-Davies boundary condition is imposed. Specifically,
the solution Ω(1) of (7.74) is required to match the solution Ω(1)

∞ of the equation
obtained form (7.74) in the early time limit 𝜏 → −∞ (corresponding to 𝑥 → ∞).
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Since the frequencies 𝜔S/T become time-independent for early times, the asymptotic
limit of (7.74) reads

i
dΩ(1)

∞
d𝜏 = (Ω(1)

∞ )2 − 𝑘2. (7.81)

An obvious solution to (7.81) is the time-independent Gaussian width Ω(1)
∞ = 𝑘.

Therefore, in the limit 𝜏 → −∞, the wkb wave function Ψ(1), satisfies a stationary

Schrödinger equation ℋ̂
pert

Ψ(1) = 0 with the Hamiltonian ℋ̂
pert

of a harmonic os-
cillator with time-independent frequency 𝜔∞ = 𝑘. In view of the ansatz (7.78), the
early-time asymptotic Bunch-Davies boundary condition

lim𝜏→−∞ Ω(1)(𝜏) ≡ Ω(1)
∞ = 𝑘 (7.82)

implies the asymptotic boundary conditions

lim𝑥→∞ ΩDS(𝑥) = 1, lim𝑥→∞ Ωℰ(𝑥) = 0. (7.83)

With the boundary conditions (7.83), the solutions to (7.79) and (7.80) read

ΩDS =
𝑥2 − i𝑥−1

𝑥2 + 1
, (7.84)

Ωℰ = i
1 + (2i + 𝑥)𝑥 − 2e2i𝑥𝑥3[𝜋 − i Ei(−2i𝑥)]

𝑥(𝑥 − i)2 . (7.85)

Here Ei(𝑧) is the exponential integral function of complex argument 𝑧 (defined on
the complex plane with a branch cut along the negative 𝑧-axis), which is most con-
veniently defined in terms of the exponential integral function 𝐸1(𝑧), which, in turn,
is defined explicitly by its integral representation for Re(𝑧) > 0:

Ei(𝑧) ≡ −E1(−𝑧) + 1
2 [log (𝑧) − log (

1
𝑧 )] − log (−𝑧) ,

E1(𝑧) ≡
∞
∫
1

d𝑡
e−𝑧𝑡

𝑡 , Re(𝑧) > 0.

For small (large) arguments |𝑧| ≪ 1 (|𝑧| ≫ 1), the exponential integral Ei(𝑧) has the
(asymptotic) expansions

Ei(𝑧) = 𝛾E + 1
2 [log (𝑧) − log (

1
𝑧 )] +

∞
∑
𝑘=1

1
𝑘!

𝑧𝑘

𝑘 , |𝑧| ≪ 1, (7.86)

Ei(𝑧) = 1
2 [log (𝑧) − log (

1
𝑧 )] − log (−𝑧)

+ 𝑧−1e−𝑧 [1 + 𝒪 (𝑧−1)] , |𝑧| ≫ 1.

The logarithms in the conversion between Ei and E1 arise because Ei is multivalued.
The combination of (7.84) and (7.85) with the ansatz (7.78) yields the solution for
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the Gaussian width Ω(1) to first order in the slow-roll approximation. According
to (7.67) and (7.68), the width then fully determines the inflationary scalar and
tensor power spectra. From (7.86) it can then be deduced that, at superhorizon
scales 𝑘−1 ≫ ℋ−1 (or, equivalently, 𝑥 ≪ 1), the leading behaviour of the Gaussian
width is

Re(Ω(1)) ≈ 𝑘𝑥2 [1 − 2𝑐𝛾ℰ + 2ℰ log 𝑥)] . (7.87)

Here, 𝑐𝛾 ≡ 2 − 𝛾E − log 2 ≈ 0.7296 is a numerical constant that involves the Euler-
Mascheroni constant 𝛾E ≈ 0.5772. From (7.67) and (7.68), one then obtains the
scalar and tensor power spectra

𝑃(1)
S (𝑘) ≈

1
(2𝜋𝑧S)2 (

𝑘
𝑎𝑥)

2
[1 + 2𝑐𝛾ℰS − 2ℰS log 𝑥)] , (7.88)

𝑃(1)
T (𝑘) ≈

2
(2𝜋𝑧T)2 (

𝑘
𝑎𝑥)

2
[1 + 2𝑐𝛾ℰT − 2ℰT log 𝑥)] . (7.89)

With the explicit expressions (7.76) for ℰS/T and the first order slow-roll relation
between the conformal time and the conformal Hubble parameter

𝜏 ≈ −
1 + 𝜀1

ℋ
, (7.90)

together with explicit expressions for (7.26) in terms of slow-roll parameters

𝑧2
S = 4𝑈

𝜀1 + 𝜀3
(1 + 𝜀3)2 and 𝑧2

T = 1
2 𝑈,

the inflationary power spectra to first order in the slow-roll approximation are found
to be

𝑃(1)
S (𝑘) ≈

𝑊
96𝜋2(𝜀1 + 𝜀3)

[1 − 1
3 (5𝜀1 − 6𝑐𝛾ℰS) − 2ℰS log (𝑘/ℋ) ], (7.91)

𝑃(1)
T (𝑘) ≈

𝑊
6𝜋2 [1 − 1

3 (5𝜀1 + 6𝜀3 − 6𝑐𝛾ℰT) − 2ℰT log(𝑘/𝐻)] . (7.92)

Note that, instead of (7.21), use has been made of the conformal time version of the
relation (4.19):

ℋ2

𝑈𝑎2 ≈
𝑊
6 (1 + 1

3 𝜀1 − 2𝜀3) , (7.93)

in order to express factors of ℋ2/𝑈𝑎2 in (7.91) and (7.92) in terms of 𝑊. Equation
(7.93) follows from (7.15) and (7.16) in the slow-roll approximation. Finally, the
spectral observables can be calculated by substitution of (7.91) and (7.92) into (7.70)
and (7.71):
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𝑛(1)
S = 1 − 2ℰS = 1 − 2 (2𝜀1 − 𝜀2 − 𝜀3 + 𝜀4) ,

𝑛(1)
T = −2ℰT = −2 (𝜀1 + 𝜀3) ,

𝑟(1) =
𝐴(1)

T

𝐴(1)
S

= 16 (𝜀1 + 𝜀3) = −8𝑛(1)
T . (7.94)

These expressions for the inflationary observables coincide with the expressions
found in reference [147] within the standard Heisenberg quantisation of the fluc-

Note that 𝜀1 and
𝜀2 in reference
[147] are defined
with signs oppo-
site to the defini-
tions (7.22) and
(7.23) adopted
here.

tuations propagating in the classical time-dependent flrw background. In contrast,
here the observables (7.94)-(7.94) were derived in the Schrödinger picture by per-
forming the semiclassical expansion of the wdw equation. This result provides an im-
portant consistency check for the method, as it shows that the semiclassical expansion
of the wdw equation recovers the classical background equations (7.15)-(7.17) as
well as the Schrödinger equation for the fluctuations propagating on this classical
background (7.61) order-by-order, which leads to the correct inflationary slow-roll
observables (7.94). Finally, the next order in the semiclassical expansion yields the
first quantum gravitational corrections (7.65), of which the impact on the inflation-
ary observables will be derived in the next section.

7.4.2 Power spectra including quantum gravitational corrections

In this subsection the contribution of the first quantum gravitational corrections to
the inflationary power spectra of the general scalar-tensor theory (7.1), which is ob-
tained at order 𝒪 (𝜆1) of the semiclassical expansion of the wdw equation (7.44),
will be calculated. The wkb state Ψ(2)

𝑛 at order 𝒪 (𝜆1) is defined by the corrected
Schrödinger equation (7.65). The quantum gravitational correction term (7.64) re-
quires the wkb states Ψ(1)

𝑛 obtained at order 𝒪 (𝜆0) as the solution of the uncorrected
Schrödinger equation (7.61). Under the assumption that the Ψ(1)

𝑛 have the Gauss-
ian form (7.73), the quantum gravitational corrections (7.64) can be expressed as a
function of the background potential 𝒫, as well as the frequency 𝜔2

𝑛 and the Gauss-
ian width Ω(1)

𝑛 of the scalar and tensor modes, respectively. The subindex that labels
different species and modes will again be suppressed.
The quantum gravitational corrections (7.64) read

𝒱QG = Re
⎧{
⎨{⎩

−
Ω(1) [Ω(1) − 2i∂𝜏(log 𝒫)] + 2 [(Ω(1))2 − 𝜔2]

16𝒫

−
[i∂𝜏(log 𝒫) − 3Ω(1)] [(Ω(1))2 − 𝜔2] + 2i𝜔∂𝜏𝜔

8𝒫
𝓆2

−
[(Ω(1))2 − 𝜔2]2

16𝒫
𝓆4

⎫}
⎬}⎭

. (7.95)
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Insertion of (7.95) into the corrected Schrödinger equation (7.65) with the Gaussian
ansatz

Ψ(2) = 𝑁(2)exp (− 1
2 Ω(2)𝓆2)

The terms inde-
pendent of 𝓆 only
enter the equation

for the normal-
isation factor.

yields an equation for Ω(2), after all terms of equal power in 𝓆 are collected:

i
dΩ(2)

d𝜏 = (Ω(2))2 − [𝜔2 − (𝜔QG)2] . (7.96)

Note that, since it was assumed that at each order the wkb wave function is of the
Gaussian form (7.66), the terms proportional to 𝓆4 in (7.95) are neglected. This is
consistent, as the Hamiltonian (7.37) was quantised only up to quadratic terms in
the perturbations, which implies that interactions among the perturbations were ne-
glected. This truncation might also be justified on a phenomenological basis, as so far
there is no observational evidence for primordial non-Gaussianities [148,149]. There-
fore, the assumption that the perturbations are in their vacuum (that is, Gaussian)
state seems to be a reasonable one.
The frequency 𝜔QG, which includes the quantum gravitational corrections, is de-

fined as

(𝜔QG)2 ≡
Re (Ω(1))

4𝒫
{ Im (Ω(1)) [3 Im (Ω(1)) − 2∂𝜏 (log 𝒫)]

− 3 [Re (Ω(1))2 − Im (Ω(1))2 − 𝜔2] }. (7.97)

The inhomogeneous non-linear ordinary first order differential equation (7.96) is
difficult to solve analytically. Since it is expected that the quantum gravitational con-
tributions to Ω(2) are small, (7.96) can be linearised around Ω(1):

𝛿Ω ≡ Ω(2) − Ω(1), 𝛿Ω/Ω(1) ≪ 1. (7.98)

The linearisation of (7.96), together with (7.74), leads to

i
d𝛿Ω
d𝜏 = 2Ω(1)𝛿Ω + (𝜔QG)2. (7.99)

In addition, in the following it is assumed that the quantum gravitational contribu-
tions are small compared to the slow-roll contributions proportional to ℰΩℰ in the
uncorrected Gaussian width Ω(1). That is, it is assumed that 𝛿Ω/Ω(1) ≪ |𝜀𝑖| ≪ 1.
This implies that only the dominant De Sitter contribution is kept, which corresponds
to terms 𝒪 (𝜀0

𝑖 ) in the quantum gravitational frequency (𝜔QG)2 and the De Sitter part
ΩDS in the solution Ω(1). For completeness, the observational consequences that
follow from the inclusion of the first order slow-roll contributions 𝒪 (𝜀1

𝑖 ) to the quan-
tum gravitational corrections have been worked out in appendix B. The dominant
De Sitter contribution to (𝜔QG)2 is
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(𝜔QG)2 ≈
Re (ΩDS)

4𝒫
⎧{
⎨{⎩

Im (ΩDS) [3 Im (ΩDS) − 2∂𝜏 (log 𝒫)]

− 3 [Re (ΩDS)2 − Im (ΩDS)2 − 𝜔2
DS]

⎫}
⎬}⎭

. (7.100)

In order to proceed, derivatives with respect to conformal time 𝜏 can be expressed in
terms of the variable 𝑥 by ∂𝜏 = −𝑘∂𝑥. Equation (7.100) can be simplified through the
use of (7.77), (7.78), (7.84) and the background equations of motion in the slow-roll
approximation (7.20). The potential 𝒫 can then be expressed in terms of the constant
conformal Hubble parameter in De Sitter space ℋ and the non-minimal coupling 𝑈.
The dominant De Sitter contribution to the quantum gravitational frequency is then
found to be

(𝜔QG
DS )2 ≈ −

𝑊
144𝑘

𝑥4(𝑥2 − 11)
(𝑥2 + 1)3 . (7.101)

In order to solve (7.99) with the source (7.101) one can again impose the asymptotic
Bunch-Davis boundary condition for Ω(2). That is, the Gaussian width Ω(2) is again
required to be time-independent in the limit 𝜏 → −∞ (𝑥 → ∞). In this case, (7.96)
reduces to the algebraic condition

(Ω(2)
∞ )2 = 𝑘2 +

𝑊
144𝑘 ,

where it has been used that

lim𝑥→∞(𝜔QG
DS )2 = −

𝑊
144𝑘 .

With (7.82), this implies the initial condition 𝛿Ω∞ for 𝛿Ω∞:

𝛿Ω∞ =
Ω(1)

∞
2

⎡⎢
⎣
⎛⎜
⎝

Ω(2)
∞

Ω(1)
∞

⎞⎟
⎠

2

− 1⎤⎥
⎦

=
𝑊

288𝑘2 . (7.102)

The linearised differential equation for the De Sitter part of the quantum gravitational
corrections then reads

d
d𝑥𝛿ΩDS = 2i (

𝑥2 − i𝑥−1

𝑥2 + 1
) 𝛿ΩDS − i

𝑊
144𝑘2

𝑥4(𝑥2 − 11)
(𝑥2 + 1)3 . (7.103)

With the boundary condition (7.102), the solution reads

𝛿ΩDS =
𝑊

288𝑘2
e2i𝑥𝑥2

(𝑥 − i)2
⎡⎢
⎣
3i𝜋

3 + e4

e2 + e−2i𝑥 1 + 𝑥 (𝑥 − 6i)
(𝑥 + i)2

+ 3e2 Ei(−2 − 2i𝑥) + 9e−2 Ei(2 − 2i𝑥)⎤⎥
⎦
. (7.104)
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The power spectrum (7.67), obtained from the Gaussian width Ω(2), is found to be

𝑃(2) =
𝑘3

2𝜋2
1

2Re [Ω(1) + 𝛿ΩDS]
≈ 𝑃(1) ⎡⎢

⎣
1 −

Re (𝛿ΩDS)
Re (Ω(1))

⎤⎥
⎦

. (7.105)

The superhorizon limit (𝑥 ≪ 1) of the real part of the solution (7.104) then yields

Re (𝛿ΩDS) =
𝛽0𝑊
144

𝑥2

𝑘2 + 𝒪 (𝑥4) ≈ −
𝑊
72

𝑥2

𝑘2 , (7.106)

with the numerical constant 𝛽0 ≡ [1 − 3e2 Ei(−2) − 9e−2 Ei(2)]/2 ≈ −2. The De
Sitter contribution to Ω(1) in the superhorizon limit reads

Re (Ω(1)) ≈ Re (ΩDS) ≈ 𝑘𝑥2. (7.107)

The ratio Re (𝛿ΩDS) /Re (Ω(1)) can, with (7.106) with (7.107), be found to be

𝑃(2)(𝑘) = 𝑃(1)(𝑘)[1 + 𝛿QG
DS (𝑘/𝑘0)], 𝛿QG

DS (𝑘/𝑘0) ≡
𝑊
72 (

𝑘0
𝑘 )

3
. (7.108)

The reference wavelength 𝑘0 = 𝑙−1
0 , which originated from reversing the rescalings

(7.18) and (7.35), has been reintroduced in the last step. Note that, in particular,
the uncorrected part of the power spectrum 𝑃(1) is invariant under this rescaling
due to its logarithmic dependence on the invariant ratio 𝑘/ℋ—only the quantum
gravitational corrections are affected.
Finally, the corrected scalar and tensor spectra can, with the definitions of the scalar

and tensor power spectra (7.68) and the results obtained in the previous order of the
expansion (7.88) and (7.89), be found to be

𝑃(2)
S (𝑘) ≈

𝑊
96𝜋2(𝜀1 + 𝜀3)

[1 − 1
3 (5𝜀1 − 6𝑐𝛾ℰS)

− 2ℰS log (𝑘/ℋ) + 𝛿QG
DS (𝑘/𝑘0)], (7.109)

𝑃(2)
T (𝑘) ≈

𝑊
6𝜋2 [1 − 1

3 (5𝜀1 + 6𝜀3 − 6𝑐𝛾ℰT)

− 2ℰT log(𝑘/𝐻) + 𝛿QG
DS (𝑘/𝑘0)]. (7.110)

Note that (7.109) and (7.110) only consider the dominant De Sitter contribution
(7.108) of the quantum gravitational corrections. The particular features and observ-
able consequences of the corrected power spectra (7.109) and (7.110) are discussed
in more detail in the next section.

7.5 OBSERVATIONAL SIGNATURES OF THE CORRECTIONS

In this section several features of the quantum gravitational corrections to the power
spectra, such as their observable signatures, their magnitude and the impact of the
non-minimal coupling, will be discussed.
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a. Just as the uncorrected power spectra (7.91), (7.92), the quantum gravitationally
corrected power spectra (7.109) and (7.110) become time-independent at super-
horizon scales. This is important, as it allows one to calculate the power spectrum
in the superhorizon limit at horizon crossing.

b. The dominant De Sitter part of the quantum gravitational corrections 𝛿QG
DS is uni-

versal, in the sense that it equally contributes to the scalar and tensor power
spectrum. In particular, this implies that these corrections will drop out in the
tensor-to-scalar ratio, as found in the minimally coupled case [109]. This degen-
eracy between the scalar and tensorial spectra can be broken by the inclusion of
slow-roll contributions to the quantum gravitational corrections. Although these
slow-roll contributions are additionally suppressed by powers of the slow-roll pa-
rameters and therefore even less relevant than the already minuscule dominant
De Sitter part of the quantum gravitational corrections, the analysis is of theoret-
ical interest and for completeness included in appendix B.

c. The quantum gravitational effects lead to an enhancement of the power spectra.

d. The quantum gravitational corrections have a characteristic 1/𝑘3-dependence,
which would—at least in principle—allow one to observationally distinguish be-
tween the quantum gravitational contributions and the uncorrected constant De
Sitter and logarithmic 𝑘-dependent slow-roll parts of the power spectrum.

e. The quantum gravitational corrections are heavily suppressed relative to the un-
corrected part of the power spectra. From the (𝑘0/𝑘∗)3 dependence it is clear that
the quantum gravitational corrections are large on the largest scales (smallest val-
ues of 𝑘∗) and also depend on the infrared regularising reference scale 𝑘0 ∼ ℓ−1

0 .
The latter is undetermined a priori. Note that the uncorrected part of the power
spectra is independent of the reference scale 𝑘0.
More precise statements about the magnitude of the quantum gravitational

corrections can be made by adopting the standard power law parametrisation
of the power spectra (7.69), in which the quantum gravitational corrected power
spectra (7.109) and (7.110) are characterised by their amplitudes and spectral
indices:

𝐴(2)
S ≈

𝑊∗
96𝜋2(𝜀1 + 𝜀3)

[1 − 1
3 (5𝜀1 − 6𝑐𝛾ℰS) + 𝛿QG

DS (𝑘∗/𝑘0)], (7.111)

𝐴(2)
T ≈

𝑊∗
6𝜋2 [1 − 1

3 (5𝜀1 + 6𝜀3 − 6𝑐𝛾ℰT) + 𝛿QG
DS (𝑘∗/𝑘0)] ,

𝑛(2)
S ≈ 1 − 2 (2𝜀1 − 𝜀2 − 𝜀3 + 𝜀4) − 3𝛿QG

DS (𝑘∗/𝑘0),

𝑛(2)
T ≈ −2 (𝜀1 + 𝜀3) − 3𝛿QG

DS (𝑘∗/𝑘0),

𝑟(2) ≈
𝐴(2)

T

𝐴(2)
S

≈ 𝑟(1) = 16(𝜀1 + 𝜀3) ≠ −8𝑛(2)
T . (7.112)
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𝑊∗ denotes the value of 𝑊 at the moment 𝑘∗ = ℋ∗, when the pivot mode 𝑘∗ first
crosses the horizon. Note that, according to (7.112), the quantum gravitational
corrections lead to a tiny violation of the consistency condition (7.72). The power-
law ansatz (7.69) is usually justified by the weak logarithmic scale dependence
of the power spectra. While this is true for the uncorrected part, in view of the
1/𝑘3 dependence of the quantum gravitational corrections, it seems questionable
whether such a parametrisation is adequate. The pivot scale is chosen within the
window of scales observable in the cmb [84]:

𝑘min
∗ < 𝑘∗ < 𝑘max

∗ , 𝑘min
∗ = 10−4 Mpc–1, 𝑘max

∗ = 10−1 Mpc–1. (7.113)

Measurements of the cmb constrain 𝐴S and 𝑛S and give an upper bound on the
tensor-to-scalar ratio 𝑟, here quoted for 𝑘∗ = 5 × 10–2 Mpc–1 [84]:

𝐴obs
S,∗ = (2.099 ± 0.014) × 10−9, 68 % CL (7.114)

𝑛obs
S,∗ = 0.9649 ± 0.0042, 68 % CL, (7.115)

𝑟obs
∗ < 0.11, 95 % CL. (7.116)

The upper bound on 𝑟obs
∗ is connected to an upper bound on the energy scale

during inflation. This corresponds to an upper bound on the energy density, given
by the potential 𝑉̃ = 1

4 𝑀4
P𝑊 in the ef (3.11). In terms of the inflationary observ-

ables, 𝑉̃∗ reads

𝑉̃∗ = ⎛⎜
⎝

𝑀4
P𝑊∗
4

⎞⎟
⎠

≈ 3
2 𝜋2𝑀4

P𝐴(2)
T,∗ ≈ 3

2 𝜋2𝑀4
P𝐴(2)

S,∗ 𝑟(2)
∗ . (7.117)

With the identification 𝐴(2) ≈ 𝐴(1) ≈ 𝐴obs and 𝑟(2) ≈ 𝑟(1) ≈ 𝑟obs, (7.114) and
It would be inter-
esting to compare
the energy scale
of inflation, in-

cluding quantum
gravitational cor-
rections, with the
energy scale de-
rived from quan-
tum cosmology
[118, 120, 121].

(7.116) imply the upper bound

𝑊∗
72 ≈

(6𝜋2𝐴obs
S,∗ 𝑟obs

∗ )
72 ≲ 10−10. (7.118)

The estimate (7.118) shows that, independently of the choices for 𝑈, 𝐺, and 𝑉
in (7.1), for a viable inflationary model the quantum gravitational corrections to
the power spectrum are suppressed relative to the uncorrected part by

𝛿QG
DS (𝑘∗/𝑘0) ≲ 10−10 (

𝑘0
𝑘∗

)
3

.

Therefore, the only way to enhance the impact of the quantum gravitational cor-
rections is to increase the ratio 𝑘0/𝑘∗. The measurements (7.114)-(7.116) are ob-
tained at a fixed pivot point 𝑘∗ = 5 × 10–2 Mpc–1. However, this reference scale is
in principle arbitrary and only constrained to lie with the interval (7.113), which
is accessible to observations of the cmb. Since the leading quantum gravitational
correction 𝛿QG

DS is the largest for the smallest value of 𝑘∗, experiments should be
most sensitive to a detection of a potential quantum gravitational effect at 𝑘min

∗ .
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Although the infrared scale 𝑘0 is unspecified, an upper bound on 𝑘0 might be de-
rived along the lines of the discussion in reference [110]. On the one hand, the
observed scalar amplitude of the perturbations has a measured value 𝐴obs

S,∗ with
experimental uncertainty 𝛿exp ≈ 0.014. On the other hand, the dominant quan-

tum gravitational correction to the amplitude reads 𝐴(2)
S = 𝐴(1)

S (1 + 𝛿QG
DS ). The

quantum gravitational effects must satisfy 𝛿QG
DS > 𝛿exp in order to be detectable.

Conversely, the absence of a quantum gravitational effect implies an upper bound
on 𝑘0 from 𝛿QG

DS ≤ 𝛿exp. This condition can be expressed in terms of observable
quantities with the use of (7.108) and (7.117). This results in the inequality

𝑘0 ≤ ⎡⎢
⎣

72
6𝜋2𝐴obs

S,∗

𝛿exp

𝑟obs
∗

⎤⎥
⎦

1/3

𝑘∗. (7.119)

An upper bound 𝑘max
0 for 𝑘0 is obtained for if (7.119) is an equality.

Equation (7.119) largely depends on the ratio 𝛿exp/𝑟obs
∗ . It can be seen that

an increase in experimental precision will lower 𝛿exp and therefore lower 𝑘max
0 .

Conversely, since the tensor-to-scalar ratio 𝑟obs
∗ is only bounded from above, a

measurement of 𝑟obs
∗ smaller than the upper bound (7.116) would increase 𝑘max

0 .
The values from (7.114)-(7.116) can be inserted into (7.119) in order to get a
rough estimate of the order of magnitude. With 𝛿exp = 0.014 and 𝑟obs

∗ = 0.11 at
𝑘∗ = 0.05, one obtains

𝑘max
0 ≈ 21 Mpc–1. (7.120)

Note that the higher bound 𝛿exp = 1 leads to the value 𝑘max
0 ≈ 87 Mpc–1 for a

pivot point 𝑘0 = 0.05 Mpc–1, which is in agreement with the estimate obtained in
reference [110].
The length scale that corresponds to (7.120) is 𝑙max

0 = 1/𝑘max
0 ≈ 0.048 Mpc–1.

The quantum gravitational effects would be resolvable within the assumed preci-
sion for reference scales 𝑙0 < 𝑙max

0 . This can be compared to the natural choice
for the infrared cutoff, the radius of the observable universe. This corresponds
to a scale 𝑘0 ≈ 𝑘min

∗ . Since the maximum value for the quantum gravitational

effects is obtained for 𝑘∗ = 𝑘min
∗ , the ratio is (𝑘0/𝑘∗)3 = 1. If one assumes that

𝐴obs
S,∗ and 𝑟obs

∗ do not change drastically under a change of the pivot point from
𝑘∗ = 0.05 Mpc–1 to 𝑘∗ = 𝑘min

∗ , the dominant quantum gravitational corrections
to the power spectra is of order

𝛿QG
DS ≈ 10−10.

f. Finally, one should recover the results obtained in reference [109] for the minimally
coupled case as a consistency check of the results obtained here. Indeed, after sub-
stitution of the constant non-minimal coupling function 𝑈(𝜙) = 𝑀2

P/2 and 𝑉 = 𝒱
into 𝑊 = 𝑉/𝑈2, the results (7.109) and (7.110) reduce to the corresponding
expressions obtained in reference [109]. Therefore, the main impact of the non-
minimal coupling 𝑈 on the quantum gravitational corrections corresponds to a
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replacement of the constant Planck mass by the effective field-dependent Planck
mass 𝑀2

P → 𝑀2
P(𝜙) = 2𝑈(𝜙)—a result that might have been expected naively.

However, despite the arbitrariness in the field dependent non-minimal coupling
𝑈, the ratio 𝑊 = 𝑉/𝑈2 is constrained by observations for any viable scalar-tensor
theory of inflation and therefore sets an upper bound on the magnitude of the
dominant quantum gravitational corrections. Thus, for any scalar-tensor theory
of the form (7.1) which is consistent with observational data, the non-minimal
coupling 𝑈 does not lead to an enhancement of the quantum gravitational cor-
rections. Nevertheless, the impact of the generalised potentials 𝑈, 𝐺 and 𝑉 enters
in the subleading slow-roll contribution to the quantum gravitational corrections,
discussed in appendix B.

7.6 CONCLUSION

In this chapter the first quantum gravitational corrections to the inflationary power
spectra for a general scalar-tensor theory were calculated from a semi-classical ex-
pansion of the wdw equation.
The general scalar-tensor action was expanded around a flat flrw background

up to quadratic order in the perturbations. The inhomogeneous perturbations were
expanded in terms of their Fourier modes, after which the combined background
and perturbation variables were quantised in a canonical way. The quantisation of
the Hamilton constraint lead to the wdw equation which describes the exact quan-
tum dynamics. The wdw equation was then expanded around a semiclassical so-
lution based on a combined Born-Oppenheimer and wkb-type approximation. The
Born-Oppenheimer approximation relies on the division of the configuration space
variables into heavy and light degrees of freedom. In the cosmological context the
background variables are naturally identified with the heavy degrees of freedom,
while the Fourier modes of the perturbations are identified with the light degrees of
freedom. At the lowest order in the semiclassical expansion, the classical homoge-
neous background equations of motion and the notion of a background-dependent
semiclassical time were recovered from the timeless wdw equation. At the next or-
der, the Schrödinger equation for the perturbations was obtained. The perturbations
were found to evolve with respect to this semiclassical time. Finally, at the subsequent
order in the expansion, the first quantum gravitational contributions were derived.
These could be represented in the form of a corrected Schrödinger equation. In or-
der to extract the observational consequences, the inflationary power spectra were
calculated with the assumption that at each order of the expansion the semiclassical
wavefunction has a Gaussian form and satisfies the asymptotic Bunch-Davies bound-
ary condition at early times. For such Gaussian states, the inflationary power spectra
are fully determined by the real part of the Gaussian width. The assumption about
the Gaussian nature of the wave function is natural if the system is in the ground
state. A recent extension to excited states can be found in reference [142].
Under these assumptions, the standard power spectra were recovered at the level

of the uncorrected Schrödinger equation. The power spectra are standard in the sense
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that they coincide with the results that are usually obtained in the Heisenberg quanti-
sation of gauge invariant perturbations that propagate on a classical background. In
contrast, in the approach presented here these results follow directly from the semi-
classical expansion of the wdw equation. This shows that the semiclassical expansion
not only correctly reproduces the classical background equations, but also the infla-
tionary power spectra. Therefore, this provides an important consistency check for
the semiclassical treatment to the geometrodynamical approach to quantum gravity.
Finally, the first quantum gravitational corrections to the inflationary power spectra
were derived from the corrected Schrödinger equation. Since these quantum gravi-
tational corrections are highly suppressed, the analysis in this chapter was restricted
to the dominant De Sitter contribution. The first order slow-roll contributions to the
quantum gravitational corrections are derived separately in appendix B.
It was found that the dominant quantum gravitational corrections for a general

scalar-tensor theory lead to an increase in the amplitude of the inflationary scalar
and tensor power spectra. This increase is universal in the sense that it affects both
power spectra in the same way. However, even the dominant quantum gravitational
corrections are strongly suppressed compared to the uncorrected part of the power
spectra. This is in agreement with previous results obtained for a minimally coupled
scalar field [109,110,137]. Although the non-minimal coupling 𝑈 enters the quantum
gravitational corrections to the power spectra, it only enters in the dimensionless
combination 𝑊 = 𝑉/𝑈2. Since the uncorrected power spectra are proportional to
𝑊, observations put strong constraints on the value 𝑊∗ ≲ 10−9 at horizon crossing
and therefore on the magnitude of the quantum gravitational corrections. This im-
plies that, independently of the concrete choice for the generalised potentials 𝑈, 𝐺
and 𝑉 present in the general scalar-tensor theory (7.1), the dominant quantum grav-
itational corrections are strongly suppressed as long as the observational constraints
for a successful phase of inflation are satisfied. In particular, this shows that it is not
possible to enhance the quantum gravitational corrections to the inflationary power
spectra due to the presence of a non-minimal coupling. The impact of the generalised
potentials on the quantum gravitational corrections only affects the subleading slow-
roll contributions.
The quantum gravitational corrections feature a characteristic scale dependence

proportional to 𝑘−3, independently of the strong suppression factor. This has been
found in similar approaches [109,110,127,137,139,150]. This scale dependence is not
only a prediction of quantum gravity but also provides an observational signature. In
fact, the scale dependence of the quantum gravitational corrections enters the power
spectra in the form (𝑘0/𝑘∗)3, where 𝑘∗ is the pivot point and 𝑘0 the infrared regulating
scale which arises in the flat flrw universe. Although the quantum gravitational
corrections are suppressed by 𝑊∗/72 ≈ 10−10, depending on the values for 𝑘0 and 𝑘∗,
the scaling factor (𝑘0/𝑘∗)3 might increase the magnitude of the quantum gravitational
corrections. While the value of 𝑘∗ is constrained to lie within the observable window,
the value of 𝑘0 is a priori undetermined. Quantum gravitational effects are at their
strongest for a pivot point at the lower end of the allowed interval 𝑘∗ = 𝑘min

∗ ≈
10−4 Mpc–1. A natural choice for the infrared regulating scale 𝑙0 is the size of the
observable universe, which corresponds to a scale 𝑘0 = 𝑘min

∗ . For these choices of 𝑘∗
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and 𝑘0, the ratio (𝑘0/𝑘∗)3 is of order unity. In this case, quantum gravitational effects
are suppressed by a factor of 10−10. They are therefore at present unobservable.
Conversely, a value 𝑘0 ≈ 10−1 Mpc–1 would be required for quantum gravitational
effects to come into observational reach. This, in turn, would single out a preferred
astrophysical length scale 𝑙0 ≈ 10 Mpc. However, since the reference scale 𝑙0 was
introduced to regularise the infinite spatial volume integral arising in a homogeneous
and isotropic flat flrw universe, such a value seems to be inconsistent as it is well
below the smoothing scale of approximately 100 Mpc. The conclusion is therefore
that, within the available precision of the current observations, quantum gravitational
from the semiclassical expansion of the wdw equation are unobservable—even for
general scalar-tensor theories.
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DISCUSSION AND OUTLOOK

8
In this work the formalism of quantum geometrodynamics was extended to a gen-
eral single-field scalar-tensor theory. Since the formalism of quantum geometrody-
namics is complicated on both technical and conceptual grounds, the analysis de-
scribed in this work is necessarily formal. However, it is reasonable to expect that the
results obtained have physical relevance, as they were derived in a systematic semi-
classical expansion of the Wheeler-DeWitt equation. This expansion satisfies the cor-
respondence with classical physics and quantum physics, as these are reproduced at
the lowest levels.
In chapter 5 the canonical formalism was presented for a general class of scalar-

tensor theories. The diffeomorphism invariance of the theory gives rise to constraints.
The quantisation of these constraints resulted in a non-perturbative theory of quan-
tum gravity, where the quantum dynamics is dictated by the Wheeler-DeWitt equa-
tion. It was then shown that, if some of the degrees of freedom can be considered to
be semiclassical in certain regions of configuration space, the wave function of the
system could be given a probabilistic interpretation, as a notion of unitarity could be
defined in the semiclassical approximation with respect to the semiclassical time 𝑡s
that emerged from the Hamilton-Jacobi equation for the background variables. It is
still an open question whether unitarity exists at all orders in the semiclassical expan-
sion, and is an active topic of discussion in the literature. This is a question that is
left for further work. The interpretation of the wave function in quantum geometro-
dynamics is not well understood outside of semiclassical domains of superspace. It
is not clear whether a notion of unitarity can be defined if not at least one degree of
freedom in superspace is semiclassical, as one would have to resolve negative prob-
abilities. In the semiclassical domains of superspace negative probabilities can be
resolved by means of a foliation in superspace in terms of appropriate hypersurfaces.
These hypersurfaces are provided by the solution to the Hamilton-Jacobi functional
of the semiclassical degrees of freedom. It is unclear whether such a function exists
if all degrees of freedom are treated as fully quantised. This, too, would be an inter-
esting topic to pursue in a further study.
In chapter 6 it was found that the semiclassical expansion of the wdw equation

for general scalar-tensor theories is complicated by the absence of an energy scale
hierarchy, in contrast to the semiclassical expansion for minimally coupled theo-
ries. Although a distinction between the heavy and light degrees of freedom can
be made by appealing to the classical frame equivalence, the resulting Schrödinger
equation depends explicitly on the factor ordering, again in contrast to the results
for minimally coupled theories. This reflects the fact that, in contrast to a minimally
coupled scalar field in the formalism of the theory of general relativity, the scalar
field in scalar-tensor theories is a part of the gravitational interaction, and cannot
be straightforwardly isolated from the metric degrees of freedom. The factor order-
ing that was chosen was the Laplace-Beltrami factor ordering, which preserves the
equivalence between the Jordan and Einstein frame after quantisation. In addition,
it was found that the quantum gravitational corrections to the effective Schrödinger
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equation are suppressed by the non-minimal coupling function. The differences be-
tween minimally coupled theories and non-minimally coupled theories were briefly
discussed in the specific model of Higgs inflation. Since, in this case, the non-minimal
coupling is required to be strong, it can be expected that the corrections are too
small to be measured by current detectors. However, an interesting result was that
the kinetic part of the Hamiltonian of the light degree of freedom are suppressed at
large field values. This coincides with studies of the perturbative covariant approach
of Higgs inflation, where a similar suppression mechanism was found for the Higgs
propagator. However, it is unclear what this means from the perspective of the semi-
classical expansion of the wdw equation. This question is left for further study.
Finally, in chapter 7 the implications for a non-minimal coupling in a general class

of scalar-tensor theories on the quantum gravitational corrections to the inflationary
power spectra of gauge-invariant cosmological perturbations were investigated. The
general Hamiltonian that was derived in chapter 6 was evaluated for a homogeneous
and isotropic flrw universe, on which propagate small inhomogeneous perturba-
tions. The Wheeler-DeWitt equation was split into two equations—an equation that
determines the evolution of the flrw background geometry and an equation that
determines the cosmic perturbations. Both equations were solved using an iterative
semiclassical expansion, which was truncated at the level of the first quantum gravita-
tional corrections. The semiclassical expansion of the background equation resulted
in the classical Friedmann equations, which gave rise to a semiclassical concept of
time from the timeless Wheeler-DeWitt equation. The semiclassical expansion of the
equation for the perturbations gave rise to an effective Schrödinger equation, which
includes small corrections due to the quantised nature of the flrw background. The
effective Schrödinger equation was used to derive the mode equations for the infla-
tionary power spectra. The quantum gravitational corrections from the Schrödinger
equation gave rise to small perturbations in the mode equations. The dominant per-
turbations were solved analytically, while the subdominant perturbations could be
solved numerically, for a general scalar-tensor theory. It was found that the correc-
tions are proportional to the conformally invariant potential 𝑊 = 𝑉/𝑈2. The correc-
tions are therefore too small to be measured by current experiments, as observations
from the Planck experiment result in the upper bound 𝑊 ≤ 10−9.
The results obtained in this work correctly reproduce the results obtained in the

semiclassical expansion of the Wheeler-DeWitt equation for gravity with a minimally
coupled scalar field. The dominant difference of the quantum gravitational correc-
tions for a general non-minimal coupling is the formal replacement of the Planck
mass with the non-minimal coupling function 𝑈. Subdominant differences arise in
the slow-roll parameters, which carry information about the derivatives of the func-
tions 𝑈, 𝐺 and 𝑉 of the model. The homogeneity of the flrw framework requires
the introduction of a regulating cutoff scale. It is not yet clear what this cutoff scale
represents physically. In the main text it is assumed to be within the observable win-
dow of experiments, such as Planck, although there seems to be no a priori reason
why this should be so. The resolution of this apparent ambiguity could provide key
insights of the applicability of the flrw framework in the very early universe, and is
left for further work.



GEOMETRY OF CONFIGURATION SPACE

A
In this appendix the configuration space is formally considered as a (formally
infinite-dimensional) differentiable manifold with line element

d𝑠2 = ∫ ℳ𝐴𝐵 d𝑞𝐴d𝑞𝐵d𝑑𝑥.

Singular delta functions that arise from functional differentiation at the same point
are suppressed. Spacetime is assumed to be of dimensionality 𝑑 and signature 𝜀. The
starting point is the action

𝑆[𝑔, 𝜙] = ∫
ℳ

(𝑈 𝑅 + 1
2 𝐺 ∇𝜇𝜙∇𝜇𝜙 − 𝑉) √𝜀𝑔 d𝑑𝑋,

which can be foliated in terms of spatial hypersurfaces Σ𝑡. The components of the
configuration space metric can be read off in the same way as in chapter 6:

ℳ𝐴𝐵 =
𝜀√𝛾
𝑁 ( − 1

2 𝑈𝐺𝑎𝑏𝑐𝑑 𝑈1𝛾𝑎𝑏

𝑈1𝛾𝑐𝑑 −𝐺
).

A.1 CHRISTOFFEL SYMBOLS

The Christoffel symbol constructed from the configuration space metric ℳ𝐴𝐵 reads

Γ𝐶
𝐴𝐵 =

1
2ℳ𝐶𝐷 (𝛿𝐴ℳ𝐷𝐵 + 𝛿𝐵ℳ𝐴𝐷 − 𝛿𝐷ℳ𝐴𝐵) .

For the explicit components of the Christoffel symbol, one finds

Γ𝜙
𝜙𝜙 = −

1
2

⎛⎜
⎝

𝑠1
𝑠 +

2𝑑
(𝑑 − 1)2

𝑠𝑈3
1

𝑈2 −
𝑑

𝑑 − 1
𝑈1
𝑈

⎞⎟
⎠

, (A.1)

Γ𝜙𝑎𝑏
𝜙 =

1
4

⎛⎜
⎝

1 −
2

𝑑 − 1
𝑠𝑈2

1
𝑈

⎞⎟
⎠

𝛾𝑎𝑏, (A.2)

Γ𝜙𝑎𝑏𝑐𝑑 =
1
4

𝑠𝑈1
𝑑 − 1𝐺𝑎𝑏𝑐𝑑, (A.3)

Γ𝑎𝑏𝜙𝜙 =
1

2(𝑑 − 1)
⎡⎢
⎣

1
𝑠𝑈 −

4𝑑
𝑑 − 1 (

𝑈1
𝑈 )

2

+2
𝑠1
𝑠

𝑈1
𝑈 + 4

𝑈2
𝑈 +

4𝑑
(𝑑 − 1)2

𝑠𝑈4
1

𝑈3
⎤⎥
⎦

𝛾𝑎𝑏, (A.4)

Γ𝑎𝑏𝜙
𝑐𝑑 =

1
2

𝑈1
𝑈

⎡⎢
⎣
𝛿𝑐𝑑

𝑎𝑏 −
1

𝑑 − 1
⎛⎜
⎝

1 −
2

𝑑 − 1
𝑠𝑈2

1
𝑈

⎞⎟
⎠

𝛾𝑎𝑏𝛾𝑐𝑑⎤⎥
⎦

, (A.5)
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Γ𝑎𝑏
𝑒𝑓 𝑐𝑑 =

1
2𝛿((𝑐𝑑

𝑎𝑏 𝛾𝑒𝑓 )) − 𝛿(𝑐(𝑒
𝑎𝑏 𝛾𝑓 )𝑑)

+
1

4(𝑑 − 1)
⎛⎜
⎝

1 −
2

𝑑 − 1
𝑠𝑈2

1
𝑈

⎞⎟
⎠

𝛾𝑎𝑏𝐺𝑐𝑑𝑒𝑓. (A.6)

It can be verified by construction and direct substitution of (A.1)-(A.6) that the
Christoffel symbol Γ𝐶

𝐴𝐵 satisfies the metric compatibility condition

∇𝐴ℳ𝐵𝐶 = 0.

A.2 METRIC DETERMINANT

Since the DeWitt metric 𝛾
1
2 𝐺𝑎𝑏𝑐𝑑 is invertible for non-singular metrics, the determi-

nant of the configuration space metric (6.11) can be calculated by

ℳ ≡ det (ℳ𝐴𝐵) = det (ℳ𝛾𝛾) det (ℳ𝜙𝜙 − ℳ𝜙𝛾ℳ−1
𝛾𝛾 ℳ𝛾𝜙) . (A.7)

Using (6.11) and (6.15), the second determinant gives

det (ℳ𝜙𝜙 − ℳ𝜙𝛾ℳ−1
𝛾𝛾 ℳ𝛾𝜙) = −

𝜀𝛾
1
2

𝑁𝑠 . (A.8)

The remaining determinant det (ℳ𝛾𝛾) can be expressed in terms of the determinant
of the DeWitt metric:

det (ℳ𝛾𝛾) = det (−
𝜀𝑈
2𝑁𝛾1/2𝐺𝑎𝑏𝑐𝑑) = (−

𝜀𝑈
2𝑁)

𝑑(𝑑+1)
2

det (𝛾1/2𝐺𝑎𝑏𝑐𝑑) , (A.9)

where in the last step it was used that the space of symmetric rank two tensor fields
is 1

2 𝑑(𝑑 + 1)-dimensional. The trace of the unit matrix in configuration space gives

tr 𝛿𝐴
𝐵 = 1

2 𝑑(𝑑 + 1) + 1.

The determinant of the DeWitt metric 𝛾1/2𝐺𝑎𝑏𝑐𝑑 is well known [94], and can be
obtained by variation of the DeWitt metric 𝛾1/2𝐺𝑎𝑏𝑐𝑑 with respect to 𝛾𝑎𝑏. The result
reads

det (𝛾1/2𝐺𝑎𝑏𝑐𝑑) = −𝛼 (𝛾1/2)
(𝑑+1)(𝑑−4)

2 . (A.10)

Here 𝛼 is some positive constant [94]. The explicit value of this constant is irrelevant
for the results presented in this work as it cancels in all relevant expressions. Combin-
ing (A.8) with (A.9) and (A.10) one obtains the determinant of the configuration
space metric (for 𝑑 ≥ 3):

ℳ =
𝛼𝜀
𝑁𝑠 (

𝛾1/2 𝑈
2𝑁 )

𝑑(𝑑+1)
2

(𝛾1/2)−(2𝑑+1) , (A.11)
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where 𝜀2 = 1 was used in the last equality. As a consistency check ℳ can be calculated
from the metric (6.11) and the Christoffel symbols (A.1)-(A.6) as the solution to
the differential equation

𝛿𝐴 ln ℳ1/2 = Γ𝐵
𝐴𝐵.

This reproduces the same expression (A.9). In this approach 𝛼 arises as constant of
integration. Note that in the purely gravitational case, the signature of the configura-
tion space metric (DeWitt metric) is indefinite, independent of the signature of space-
time. In contrast, (A.11) implies that the signature of the configuration space metric
ℳ𝐴𝐵 does depend on the signature 𝜀 of the metric 𝑔𝜇𝜈 in the (𝑑 + 1)-dimensional
ambient space ℳ, due to the extra scalar degree of freedom 𝜙 in configuration space.

A.3 RIEMANN TENSOR CONFIGURATION SPACE

Given the expressions for the Christoffel symbols (A.1)-(A.6), it is straightforward
to calculate the non-vanishing components of the configuration space Riemann tensor

ℛ𝐴
𝐵𝐶𝐷 = 𝛿𝐶Γ𝐴

𝐵𝐷 − 𝛿𝐷Γ𝐴
𝐵𝐶 + Γ𝐴

𝐶𝐸Γ𝐸
𝐵𝐷 − Γ𝐴

𝐷𝐸Γ𝐸
𝐵𝐶.

It is convenient to express the components of the Riemann tensor with two indices
raised ℛ𝐴𝐵

𝐶𝐷 = ℳ𝐵𝐹ℛ𝐴
𝐹𝐶𝐷. There are four independent non-vanishing compo-

nents:

ℛ𝑎𝑏𝑐𝑑
𝑒𝑓 𝑔ℎ = −

𝜀𝑁𝛾− 1
2

4(𝑑 − 1)
⎡⎢
⎣

𝑑
𝑈 −

2
𝑑 − 1𝑠 (

𝑈1
𝑈 )

2
⎤⎥
⎦

𝛿[[𝑒𝑓
[[𝑎𝑏𝛿𝑔ℎ]]

𝑐𝑑]]

+
𝜀𝑁𝛾− 1

2

2(𝑑 − 1)
⎡⎢
⎣

1
𝑈 −

2
𝑑 − 1𝑠 (

𝑈1
𝑈 )

2
⎤⎥
⎦

𝛿[[𝑒𝑓
[[𝑎𝑏𝛾𝑐𝑑]]𝛾

𝑔ℎ]]

+
2𝜀𝛾− 1

2

𝑈 𝛿[[(𝑒
(𝑎 𝛾𝑓 )(𝑔𝛿ℎ)]]

(𝑐 𝛾𝑑)𝑏), (A.12)

ℛ𝑎𝑏𝑐𝑑
𝑒𝑓 𝜙 =

2𝜀𝑁𝛾− 1
2

(𝑑 − 1)2 𝑠
𝑈1
𝑈

⎡⎢
⎣

𝑑 − 1
4𝑠𝑈 +

𝑠1
2𝑠

𝑈1
𝑈 − (

𝑈1
𝑈 )

2
+

𝑈2
𝑈

⎤⎥
⎦

𝛿𝑒𝑓
[[𝑎𝑏𝛾𝑐𝑑]], (A.13)

ℛ𝑎𝑏
𝜙𝑒𝑓 𝑔ℎ =

𝜀𝑁𝛾− 1
2

4(𝑑 − 1)𝑠
𝑈1
𝑈 𝛿[[𝑒𝑓

𝑎𝑏 𝛾𝑔ℎ]], (A.14)

ℛ𝑎𝑏
𝜙𝑒𝑓

𝜙 = −
𝜀𝑁𝛾− 1

2

2(𝑑 − 1)𝑠 ⎡⎢
⎣

𝑑
4𝑠𝑈 +

𝑠1
2𝑠

𝑈1
𝑈 −

2𝑑 − 1
2(𝑑 − 1) (

𝑈1
𝑈 )

2
+

𝑈2
𝑈

⎤⎥
⎦

𝛿𝑒𝑓
𝑎𝑏

+
𝜀𝑁𝛾− 1

2

4(𝑑 − 1)𝑠 ⎡⎢
⎣

1
2𝑠𝑈 −

1
𝑑 − 1 (

𝑈1
𝑈 )

2
⎤⎥
⎦

𝛾𝑎𝑏𝛾𝑒𝑓. (A.15)
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Note that, in the above expressions, a compact notation for the (anti)symmetrisation
of a symmetric index pair was introduced:

𝐴((𝑎𝑏𝐵𝑐𝑑)) ≡ 1
2 (𝐴𝑎𝑏𝐵𝑐𝑑 + 𝐴𝑐𝑑𝐵𝑎𝑏) , 𝐴[[𝑎𝑏𝐵𝑐𝑑]] ≡ 1

2 (𝐴𝑎𝑏𝐵𝑐𝑑 − 𝐴𝑐𝑑𝐵𝑎𝑏) .

A.4 RICCI TENSOR CONFIGURATION SPACE

The configuration Ricci tensor can then be found via contraction:

ℛ𝐴
𝐵 = ℛ𝐶𝐴

𝐶𝐵. (A.16)

The explicit components are straightforwardly found to be

ℛ𝑎𝑏
𝑐𝑑 = −

𝜀𝑁𝛾− 1
2 𝑠

2(𝑑 − 1)
⎡⎢
⎣

𝑑(𝑑2 − 1)
8𝑠𝑈 +

𝑠1
2𝑠

𝑈1
𝑈 −

(𝑑 + 4)
4 (

𝑈1
𝑈 )

2
+

𝑈2
𝑈

⎤⎥
⎦

𝛿𝑐𝑑
𝑎𝑏

+
𝜀𝑁𝛾− 1

2 𝑠
8

⎡⎢
⎣

𝑑 − 6
2𝑠𝑈 −

𝑑 + 2
𝑑 − 1 (

𝑈1
𝑈 )

2
⎤⎥
⎦

𝛾𝑎𝑏𝛾𝑐𝑑,

ℛ𝑎𝑏𝜙 =
𝜀(𝑑 + 2)𝑁𝛾− 1

2 𝑠
2(𝑑 − 1)

𝑈1
𝑈

⎡⎢
⎣

𝑑 − 1
4𝑠𝑈 +

𝑠1
2𝑠

𝑈1
𝑈 − (

𝑈1
𝑈 )

2
+

𝑈2
𝑈

⎤⎥
⎦

𝛾𝑎𝑏,

ℛ𝜙𝑎𝑏 =
𝜀(𝑑 + 2)𝑁𝛾− 1

2 𝑠
16

𝑈1
𝑈 𝛾𝑎𝑏,

ℛ𝜙
𝜙 = −

𝜀𝑑𝑁𝛾− 1
2 𝑠

4 [
𝑑 + 2
4𝑠𝑈 +

𝑑 + 1
2(𝑑 − 1)

𝑠1
𝑠

𝑈1
𝑈

−
2𝑑 + 3

2(𝑑 − 1) (
𝑈1
𝑈 )

2
+

𝑑 + 1
𝑑 − 1

𝑈2
𝑈

⎤⎥
⎦

.

A.5 RICCI SCALAR CONFIGURATION SPACE

The configuration space Ricci scalar is obtained by tracing (A.16). The result is

ℛ = − 𝜀
𝑑(𝑑 + 2)(𝑑2 − 7𝑑 + 8)

32
𝑁𝛾− 1

2

𝑈

− 𝜀
𝑑(𝑑 + 1)
4(𝑑 − 1)𝑁𝛾− 1

2 𝑠 ⎡⎢
⎣

𝑠1
𝑠

𝑈1
𝑈 −

(𝑑 + 6)
4 (

𝑈1
𝑈 )

2
+ 2

𝑈2
𝑈

⎤⎥
⎦

. (A.17)

The purely gravitational contribution to the Ricci scalar with 𝑈 = 𝑈0 is given by

ℛgrav = −𝜀𝑁𝛾− 1
2

𝑑(𝑑 + 2)(𝑑2 − 7𝑑 + 4)
32 𝑈0

.
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For 𝜀 = −1, 𝑑 = 3, 𝑁 = 1 and 𝑈0 = 1
2 , this result for ℛgrav can be compared with

the expression obtained in reference [94]. The result obtained here reduces to

ℛgrav = −𝛾− 1
2

15
4 . (A.18)

This disagrees with reference [94], where ℛgrav was found to be three times the value
of (A.18).





143

QUANTUM GRAVITATIONAL CORRECTIONS IN THE SLOW-ROLL

APPROXIMATION

B
The quantum-gravitational corrections to the inflationary power spectra were
truncated in the slow-roll expansion at the contribution of a perfect De Sitter space
in chapter 7. The subleading quantum-gravitational corrections at linear order in
the slow-roll parameters are presented in this appendix. There are two reasons to
include this analysis: first, the universal character of the dominant De Sitter contri-
bution to the quantum-gravitational corrections affects both scalar and tensor modes
in the same way. It is interesting to see whether this degeneracy is lifted after the
inclusion of the slow-roll contributions. It may, in addition, allow the impact of the
quantum-gravitational corrections to the tensor-to-scalar ratio to be investigated. The
tensor-to-scalar ratio remains unaffected by the dominant universal De Sitter contri-
bution. Second, the slow-roll contributions to the quantum-gravitational corrections
also carry information about the generalised potentials 𝑈, 𝐺 and 𝑉, which charac-
terise the general scalar-tensor theory (7.1). Therefore, these contributions allow one
to determine the dependence of the quantum-gravitational corrections 𝛿QG(𝑘/𝑘0) on
the parameters of the theory. Of course, the uncorrected part of the power spectrum
is sensitive to the generalised potentials via the dependence on the generalised slow-
roll parameters.
While the following analysis is based on the assumption that the relative quantum-

gravitational corrections 𝛿Ω/Ω(1) are small and that the slow-roll approximation
|𝜀𝑖 ≪ 1| is valid, it is nevertheless useful to keep mixed terms of the form 𝛿Ω𝜀𝑖, while
neglecting terms like 𝛿Ω2 and 𝜀2

𝑖 . A complete treatment would require the higher
order slow-roll contributions to the uncorrected power spectra to be included up to the
order where they compete with the quantum-gravitational slow-roll corrections. These
terms are neglected here. Under these assumptions, one has to solve the linearised
equation (7.99) with the terms linear in the slow-roll parameters included:

d
d𝑥𝛿Ω = 2i(ΩDS + ℰΩℰ)𝛿Ω − i

𝑊
144𝑘2 (𝜔2

0 + 𝜔2
1𝜀1 + 𝜔2

3𝜀3 + ℰ𝜔2
ℰ). (B.1)

The functions 𝜔𝑖 parametrise the different slow-roll contributions to the quantum-
The bar denotes
complex conjuga-
tion.

gravitational corrections, and are defined by

𝜔2
0(𝑥) ≡

144𝑘2

𝑊 (𝜔QG
DS )2 = 𝑥4 𝑥2 − 11

(1 + 𝑥2)3 ,

𝜔2
1(𝑥) ≡ − 2

3 𝑥4 11𝑥2 − 49
(1 + 𝑥2)3 ,

𝜔2
3(𝑥) ≡ −8𝑥4 𝑥2 − 5

(1 + 𝑥2)3 ,

𝜔2
ℰ(𝑥) ≡ −

𝑥4

(1 + 𝑥2)4 [𝑃(𝑥) + 𝑄(𝑥) + 𝑄(𝑥)] ,
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with the polynomials

𝑃(𝑥) = 7𝑥6 − 21𝑥4 + 89𝑥2 − 27,
𝑄(𝑥) = e2i𝑥(i + 𝑥)4 [6𝑥4 − 34𝑥2 + 11 − i(20𝑥3 − 22𝑥)] [i𝜋 + Ei(−2i𝑥)] .

One can make a similar ansatz for the perturbation of the Gaussian width:

𝛿Ω =
𝑊

144𝑘2 (𝛿Ω0 + 𝜀1𝛿Ω1 + 𝜀3𝛿Ω3 + ℰ𝛿Ωℰ) . (B.2)

Equation (B.1) can then be written as a system of linear equations:

d𝛿Ω𝑖
d𝑥 (𝑥) = 𝑀𝑖

𝑗(𝑥)𝛿Ω𝑗(𝑥) − 𝑋𝑖(𝑥), (B.3)

with the matrix 𝑀 and the vector 𝑋 defined as

𝑀(𝑥) ≡ 2i
⎛⎜⎜⎜⎜⎜⎜
⎝

ΩDS 0 0 0
i/𝑥 ΩDS 0 0
i/𝑥 0 ΩDS 0
Ωℰ 0 0 ΩDS

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝑋 ≡ i
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜔2
0

𝜔2
1

𝜔2
3

𝜔2
ℰ

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

. (B.4)

The natural choice for the initial conditions is the asymptotic Bunch-Davis boundary
condition. Up to linear order in the slow-roll parameters (7.96) reduces to

(Ω(2)
∞ )2 = 𝑘2 +

𝑊
144𝑘 [1 − 22

3 𝜀1 − 8𝜀3 + 3
2 ℰ] .

in the limit 𝑥 → ∞. Equations (7.82) and (B.2) together imply the asymptotic values

𝛿Ω∞
𝑖 = ( 1

2 , − 11
3 , −4, 3

4 ) . (B.5)

The solution to (B.3) that satisfies this asymptotic condition can then formally be
written as

𝛿Ω𝑖(𝑥) = 𝔐𝑖
𝑗(𝑥) {𝛿Ω∞

𝑗 −
𝑥
∫
∞

[𝔐−1]𝑗
𝑘(𝑧)𝑋𝑘(𝑧) d𝑧} , (B.6)

𝔐(𝑥) ≡ [exp (
𝑥
∫
∞

𝑀(𝑦) d𝑦)]
𝑖𝑗

,

The only solution that can be explicitly calculated is 𝛿Ω0. The non-diagonal elements
of the matrix exponential prevent an analytic calculation for the remaining functions.
For the numerical evaluation of (B.3) a finite cutoff 𝑥0 for the lower integration bound
has to be chosen. For sufficiently large values of 𝑥0, the final results for the numerical
solutions 𝛿ΩN

𝑖 do not depend on this choice as they quickly asymptote their constant
values (B.5). The value has been fixed at 𝑥0 = 106 in order to compare results derived
here with those of [110]. The real parts of the 𝛿ΩN

𝑖 are plotted in figure B.1. Recall
that it is the real part of the width that appears in the power spectra.
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Figure B.1 Numerical solutions to (B.3).

The inflationary power spectra are obtained in the superhorizon limit 𝑥 ≪ 1. This
limit can be obtained directly from the numerical solutions 𝛿ΩN

𝑖 , but it is convenient
to use a hybrid analytic-numerical approach to extract the analytic 𝑥-dependence
of the power spectra in the superhorizon limit. In this regime the system of linear
equations (B.3) reduces to the simple set of equations

d𝛿ΩSH
0

d𝑥 = 2𝑥−1𝛿ΩSH
0 ,

d𝛿ΩSH
ℰ

d𝑥 = 2𝑥−1 (𝛿ΩSH
ℰ + 𝛿ΩSH

0 ) ,

d𝛿ΩSH
1

d𝑥 = 2𝑥−1 (𝛿ΩSH
1 − 𝛿ΩSH

0 ) ,
d𝛿ΩSH

3
d𝑥 = 2𝑥−1 (𝛿ΩSH

3 − 𝛿ΩSH
0 ) ,

with the real part of the solutions determined up to integration constants 𝛽𝑖:

Re (𝛿ΩSH
0 ) = 𝛽0 𝑥2, Re (𝛿ΩSH

ℰ ) = (𝛽ℰ + 2𝛽0 log 𝑥)𝑥2,

Re (𝛿ΩSH
1 ) = (𝛽1 − 2𝛽0 log 𝑥)𝑥2, Re (𝛿ΩSH

3 ) = (𝛽3 − 2𝛽0 log 𝑥)𝑥2. (B.7)

The superhorizon solutions 𝛿ΩSH
𝑖 in (B.7) are obtained from (B.3) in the limit 𝑥 ≪ 1.

Therefore, the integration constants 𝛽0 and 𝛽𝑖, 𝑖 = 1, 3, ℰ cannot be determined
by the asymptotic Bunch-Davies boundary conditions (B.5), as they are imposed
at 𝑥 ≫ 1. Instead, they have to be determined by fitting the analytic superhorizon
solutions (B.7) to the numerical solutions 𝛿ΩN

𝑖 at 𝑥 ≪ 1:

𝛽0 ≈ −1.98, 𝛽1 ≈ 3.30, 𝛽3 ≈ 4.62, 𝛽ℰ ≈ −2.24. (B.8)

Here 𝛽0 consistently reproduces the constant in the analysis of the dominant De
Sitter contribution in (7.106). The 𝛿ΩSH

𝑖 are compared to their numerical counter-
part in figure B.2. Using the analytical solutions (B.7) with the fits (B.8) for the co-
efficients 𝛽𝑖, the power spectra including the slow-roll contributions to the quantum-
gravitational corrections are compactly written as
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Figure B.2 Comparison of the numerical solution (solid lines) (B.3) to the

approximate analytical solution (dotted lines) (B.7).

𝑃(2)
S/T ≈ 𝑃(1)

S/T (1 + 𝛿QG
S/T) . (B.9)

The quantum-gravitational corrections 𝛿QG
S/T for the scalar and tensor perturbations

which include the slow-roll contributions are

𝛿QG
S/T ≈ 𝛿QG

DS [1 + 𝛽−1
0 𝛽1𝜀1 + 𝛽−1

0 𝛽3𝜀3 + (𝛽−1
0 𝛽ℰ + 2𝑐𝛾) ℰS/T

− 2(𝜀1 + 𝜀3) log 𝑥], (B.10)

where the correction 𝛿QG
DS is given by

𝛿QG
DS (𝑘/𝑘0) = −

𝛽0𝑊
144 (

𝑘0
𝑘 )

3
≈

𝑊
72 (

𝑘0
𝑘 )

3
.

From (B.10) it can be inferred that, in contrast to the dominant universal De Sitter
contribution of the quantum-gravitational corrections, the subleading slow-roll con-
tributions are different for scalar and tensor perturbations. The spectral observables
can be obtained straightforwardly by the insertion of the corrected power spectra
(B.9) into (7.70). In addition it is found that the tensor-to-scalar ratio (7.71) is no
longer unaffected by quantum-gravitational corrections.
The results obtained here can be compared to the analysis performed in [110] for a

single minimally coupled scalar field with a canonically normalised kinetic term and
an arbitrary scalar potential 𝒱. It is found that the dominant De Sitter contribution
to the quantum-gravitational corrections agree with the above results for the identi-
fications 𝒱 = 𝑀4

P𝑊/4 and 𝑈 = 1
2 𝑀2

P. However, differences can be found in the sub-
leading slow-roll contributions to the quantum-gravitational corrections considered

Furthermore, note
the difference in
notation 𝒱→𝑉.

in [110]. First, note that here the final result for the corrected power spectra is para-
metrised in terms of 𝑊. The results in [110] were expressed in terms of 𝐻2/𝑀2

P. The
conversion from 𝐻2/𝑀2

P to 𝑊 induces additional terms linear in the slow-roll parame-
ters, as can be seen in (7.93). Second, there is a true difference between both results.
This difference originates from the treatment of the ansatz (B.2) in the differential
equation (B.1). In deriving (B.3) derivatives of 𝑊 lead to the off-diagonal terms i/𝑥
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in the matrix (B.4), while the approach of [110] was to expand 𝑊 around horizon
crossing 𝑊∗ in (B.1) and to identify the additional terms linear in slow-roll to the
source term in (B.1). Consequently, one assumes a constant value 𝑊∗ in the ansatz
(B.2). Both procedures ultimately lead to different results. In particular, the imple-
mentation of boundary data becomes more complicated in the procedure followed
[110], as the corrections to the Gaussian width 𝛿Ω𝑖 do not asymptote to constant val-
ues in the early time limit—in contrast to the approach presented here, where this
arises naturally (as seen in (B.5)).
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CORRESPONDENCE BETWEEN QUANTISATION PICTURES

C
The primordial power spectra can be calculated in the Heisenberg picture, as in
chapter 4, or in the Schrödinger picture, as in chapter 7. The question of which
picture is used in the calculated of the power spectra is purely one of convenience.
The results should be independent of such a choice. This was shown in the main text.
A brief proof will be given in this appendix that both approaches can be smoothly
transformed into each other, and shows that the identification of (7.82) with the
Bunch-Davies vacuum is justified.
In the Schrödinger picture the state is described by the wavefunction 𝜓, which

satisfies the Schrödinger equation

i
∂𝜓
∂𝑡s

= ℋ𝜓, (C.1)

where the Hamiltonian ℋ is given by (7.45). In order to illustrate the identification
of (7.82) with the Bunch-Davies boundary condition the quantum-gravitational cor-
rections are neglected here, as they are absent in cosmological perturbation theory.
Using the decomposition (7.73) one obtains the differential equation for the Gauss-

ian width Ω:

i
∂Ω
∂𝑡s

= Ω2 − 𝜔2.

The boundary condition imposed on 𝜓 is that it describes the ground state of a
harmonic oscillator in the very early universe −𝑘𝑡s → ∞. The differential equation
(C.1) is first order in time. Defining an auxiliary variable 𝜇 through

Ω ≡ −i∂𝑡s
log 𝜇, (C.2)

one obtains the second order differential equation

∂2
𝑡s

𝜇 + 𝜔2𝜇 = 0. (C.3)

It can straightforwardly be seen that this is (4.39). Substitution of (C.2) into (7.74)
therefore yields the ms expression for the power spectrum:

𝑃(𝑘) =
𝑘3

2𝜋2
|𝜇|2

𝑊(𝑘) .

The function 𝑊(𝑘) is the Wronskian of the auxiliary variable 𝜇:

𝑊(𝑘) = i(𝜇∂𝑡s
𝜇∗ − 𝜇∗∂𝑡s

𝜇).

It follows from (C.3) that 𝑊(𝑘) is a constant in time. Notice that it is always possible
for 𝑊(𝑘) to be normalised to be unity, since (C.3) is a linear second order differ-
ential equation. It is therefore assumed from this point on that this choice has been
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made. The asymptotic behaviour for |𝜇| can be obtained by considering (C.2) in the
This condition is
in fact required
by the canonical

commutation rela-
tion in the Hamil-

tonian picture.

asymptotic limit:

lim
−𝑘𝑡s→∞

|𝜇|2 = 1
2 𝑘−1.

The asymptotic behaviour for 𝜇 can be found by integrating (C.2). The result is

lim
−𝑘𝑡s→∞

𝜇 = (2𝑘)−1/2 exp(i 𝑘𝑡s),

which, up to an unphysical sign, is precisely (4.40). This justifies the identification of
the initial condition (7.82) for Ω with the Bunch-Davies vacuum.
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