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We establish a construction of the bulk local operators in AdS by considering CFT at finite energy scale. Without assuming any
prior knowledge about the bulk, the solution to the bulk free field equation automatically appears in the field theory arguments.
In the radial quantization formalism, we find a properly regularized version of our initial construction. Possible generalizations
beyond pure AdS are also discussed.

1. Introduction

The AdS/CFT correspondence [1–4] implies a duality
between the quantumgravity in𝑑+1-dimensional anti-de Sit-
ter space and the𝑑-dimensional conformal field theorywhich
is defined on the boundary of AdS�푑+1. The AdS metric in the
Poincaré patch is given by

d𝑠2 = 1𝑧2 (d𝑧2 + 𝜂�휇]d𝑥�휇d𝑥]) , (1)

where the boundary is the 𝑑-dimensional flat space at 𝑧 =0. The relations between the boundary data of AdS and
the CFT quantities have been well established in [4] by the
field-operator correspondence. That is, the correlators of a
conformal primary operatorO(𝑥) in the CFT are reproduced
by the asymptotical data of a bulk field 𝜙 near the boundary.
However, the explicit CFT construction of the bulk local
degree of freedoms 𝜙(𝑥, 𝑧) inside the AdS space is not
well understood yet. The earlier attempts [5–7] suggested to
reconstruct 𝜙(𝑥, 𝑧) by propagating the bulk modes from the
bulk to the boundary, and then [8–10] showed that it is equiv-
alent to the smearing operator construction. In this letter,
we suggest a different construction based on almost purely
CFT arguments. In Section 2.1, we establish the construction
by considering CFT at finite energy scale. The possible

divergence and the prescription of regulator are discussed in
Section 2.2. Then in Section 3, we find that our construction
can get improved in the radial quantization formalism. We
summarize our main results in Section 4, and a possible way
of generalizing the construction beyond pure AdS is also
proposed there.

2. CFT Construction of Bulk Local Operators

2.1. Renormalized Primary at Finite Energy Scale. It has
been pointed out qualitatively [1–4, 11] that the bulk radial
direction 𝑧 is related to the energy scale in the dual field
theory. In order to reconstruct 𝜙(𝑥, 𝑧), the first candidate is to
consider in CFT the renormalized primary operator O(𝑥, 𝜇)
which is defined at a finite energy scale 𝜇. On the other hand,
the behaviors of a primary operator under the conformal
transformation have already been encoded in its conformal
family. Thus it is natural to expect, at least in the leading
order, that the renormalization of the primary operator at a
finite energy scale will lead to a mixing between the primary
operator and its descendants

O (𝑥, 𝜇) = 𝑍 (𝜇, 𝜕)O (𝑥) . (2)

For simplicity, we will only consider the scalar operator from
now on. It is also natural to require that the renormalized
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primary operator recovers the Lorentz properties and the
scaling dimension of the original primary.Thenwe find it can
only be in the following form:

O (𝑥, 𝜇) = 𝑍 (𝜇−2◻)O (𝑥) . (3)

Is it possible to fix the explicit form of 𝑍(𝜇−2◻) by
imposing certain renormalization condition? The idea is to
give the word “primary” a renormalized meaning. In the
usual CFT language, the definition of a primary operator
is equivalent to requiring that it transforms as a tensor
under conformal transformations. We also notice that the
renormalization scale 𝜇 will transform nontrivially under
conformal transformations. Thus a direct guess is that the
proper renormalization condition should be the following.
The renormalized primary transforms as a tensor under the
generalized conformal transformations including the energy
scale.

To address the generalized conformal transformations
including the energy scale, let us firstly review the realization
of conformal algebra on the 𝑥-space. Acting on the coordi-
nates𝑥�휇, the conformal generator can be expressed as follows:

𝑃�휇∘ = −𝑖𝜕�휇,
𝑀�휇]∘ = −𝑖 (𝑥�휇𝜕] − 𝑥]𝜕�휇) ,
𝐷∘ = −𝑖𝑥�휇𝜕�휇,
𝐾�휇∘ = −𝑖 (𝑥2𝜕�휇 − 2𝑥�휇𝑥]𝜕]) .

(4)

It implies the standard conformal algebra

[𝑃�휇, 𝑃]] = 0,
[𝑀�휇],𝑀�휌�휎]
= 𝑖 (𝜂�휇�휌𝑀]�휎 + 𝜂]�휎𝑀�휇�휌 − 𝜂]�휌𝑀�휇�휎 − 𝜂�휇�휎𝑀]�휌) ,

[𝑀�휇], 𝑃�휌] = 𝑖 (𝜂�휇�휌𝑃] − 𝜂]�휌𝑃�휇) ,
[𝑀�휇], 𝐾�휌] = 𝑖 (𝜂�휇�휌𝐾] − 𝜂]�휌𝐾�휇) ,
[𝐷,𝑀�휇]] = 0,
[𝐷,𝐾�휇] = −𝑖𝐾�휇,
[𝐷, 𝑃�휇] = 𝑖𝑃�휇,
[𝐾�휇, 𝐾]] = 0,
[𝐾�휇, 𝑃]] = −2𝑖𝑀�휇] − 2𝑖𝜂�휇]𝐷.

(5)

To include the energy scale (for different approaches of
introducing the finite energy scale, see [12, 13].), a straight-
forward way is to add 𝜕/𝜕�휇 as well as 𝜇-dependent coefficients
into the realization (4). For latter convenience, we define 𝑧 ≡1/𝜇 and equivalently consider 𝑧 instead. From the fact that
the energy scale is Poincaré invariant, we conclude that the

forms of 𝑃�휇 and𝑀�휇] remain intact. The scaling dimension of
energy scale is obviously 1; thus we can easily write down the
following generalized form of dilatation𝐷:

𝐷∘ = −𝑖 (𝑧𝜕�푧 + 𝑥�휇𝜕�휇) . (6)

For the special conformal generator, the strategy is to take its
most general ansatz

𝐾�휇∘ = −𝑖 [𝑥2𝛿]�휇 − 2𝑥�휇𝑥] + 𝑓�휇] (𝑧, 𝑥)] 𝜕] − 𝑖𝑔�휇 (𝑧, 𝑥) 𝜕�푧 (7)

and then try to find the explicit form which satisfies the
conformal algebra.

From [𝐾�휇, 𝑃]] = −2𝑖𝑀�휇] − 2𝑖𝜂�휇]𝐷, we get
2𝜂�휇]𝑧𝜕�푧 = −𝜕]𝑓�휇�휌 (𝑧, 𝑥) 𝜕�휌 − 𝜕]𝑔�휇 (𝑧, 𝑥) 𝜕�푧. (8)

It implies that

𝑓�휇] (𝑧, 𝑥) = 𝛿]�휇𝑓 (𝑧) ,
𝑔�휇 (𝑧, 𝑥) = −2𝑥�휇𝑧. (9)

From [𝐷,𝐾�휇] = −𝑖𝐾�휇, we further get

𝑓 (𝑧) = 𝛼𝑧2, (10)

where 𝛼 is an arbitrary constant. Finally, we can check that
the above results satisfy [𝐾�휇, 𝐾]] = 0. In conclusion, we have

𝑃�휇∘ = −𝑖𝜕�휇,
𝑀�휇]∘ = −𝑖 (𝑥�휇𝜕] − 𝑥]𝜕�휇) ,
𝐷∘ = −𝑖 (𝑧𝜕�푧 + 𝑥�휇𝜕�휇) ,
𝐾�휇∘ = −𝑖 [(𝑥2 + 𝛼𝑧2) 𝜕�휇 − 2𝑥�휇𝑥�휌𝜕�휌 − 2𝑥�휇𝑧𝜕�푧] .

(11)

In fact, this is exactly the isometry generator of the AdS space
when𝛼 > 0 and it suggests to identify√𝛼𝑧 herewith the stan-
dardAdS radial coordinate.We also notice that it corresponds
to dS�푑+1 when 𝛼 is negative, but we will only concentrate
on the AdS case in this paper.

Given the generalized conformal transformation includ-
ing the energy scale (11), we can try to decide the form of𝑍(𝑧2◻) by our renormalization condition on primary. For a
scalar in the {𝑥, 𝑧} space, we can expand it by powers of 𝑧

Φ (𝑧, 𝑥) = 𝑧Δ ∞∑
�푛=0

𝑧�푛Φ�푛 (𝑥) . (12)

The scalar transformation rule

Φ̃ (𝑧̃, 𝑥) = Φ (𝑧, 𝑥) (13)
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implies that the terms appearing in the power expansion
should transform as follows:

[𝑃�휇, Φ�푛 (𝑥)] = 𝑖𝜕�휇Φ�푛 (𝑥) ,
[𝑀�휇], Φ�푛 (𝑥)] = 𝑖 (𝑥�휇𝜕] − 𝑥]𝜕�휇)Φ�푛 (𝑥) ,
[𝐷,Φ�푛 (𝑥)] = 𝑖 (Δ + 𝑛 + 𝑥�휇𝜕�휇)Φ�푛 (𝑥) ,
[𝐾�휇, Φ0 (𝑥)] = 𝑖 [𝑥2𝜕�휇 − 2𝑥�휇𝑥]𝜕] − 2𝑥�휇Δ]Φ0 (𝑥) ,
[𝐾�휇, Φ1 (𝑥)]
= 𝑖 [𝑥2𝜕�휇 − 2𝑥�휇𝑥]𝜕] − 2𝑥�휇 (Δ + 1)]Φ1 (𝑥) ,

[𝐾�휇, Φ�푛 (𝑥)]
= 𝑖𝛼𝜕�휇Φ�푛−2 (𝑥)
+ 𝑖 [𝑥2𝜕�휇 − 2𝑥�휇𝑥]𝜕] − 2𝑥�휇 (Δ + 𝑛)]Φ�푛 (𝑥)

(𝑛 > 1) .

(14)

Now the task is to construct Φ�푛(𝑥) by the primary O and its
scalar descendants ◻�푚O. From the conformal transformation
rules of the primary we can deduce that

[𝑃�휇, ◻�푛O (𝑥)] = 𝑖𝜕�휇◻�푛O (𝑥) ,
[𝑀�휇], ◻�푛O (𝑥)] = [𝑖 (𝑥�휇𝜕] − 𝑥]𝜕�휇) + Σ(O)]�휌 ] ◻�푛O (𝑥) ,
[𝐷, ◻�푛O (𝑥)] = 𝑖 (Δ + 2𝑛 + 𝑥�휇𝜕�휇) ◻�푛O (𝑥) ,
[𝐾�휇,O (𝑥)] = [𝑖 (𝑥2𝜕�휇 − 2𝑥�휇𝑥]𝜕] − 2𝑥�휇Δ) − 2𝑥]Σ(O)�휇] ]
⋅ O (𝑥) ,

[𝐾�휇, ◻�푛O (𝑥)] = 2𝑛 [𝑑 − 2 (Δ + 𝑛)] 𝑖𝜕�휇◻�푛−1O (𝑥)
− 4𝑛Σ(O)�휇] 𝜕]◻�푛−1O (𝑥)
+ [𝑖 (𝑥2𝜕�휇 − 2𝑥�휇𝑥�휌𝜕�휌 − 2𝑥�휇 (Δ + 2𝑛)) − 2𝑥�휌Σ(O)�휇�휌 ]
⋅ ◻�푛O (𝑥)

(𝑛 ≥ 1) .

(15)

Comparing with (14), it implies the unique identification

Φ2�푛+1 = 0,
Φ2�푛 = (−1)�푛 𝛼�푛Γ (Δ − 𝑑/2 + 1)4�푛𝑛!Γ (Δ − 𝑑/2 + 𝑛 + 1) ◻�푛O.

(16)

In conclusion, up to an overall constant, our arguments show
that the renormalized primary at energy scale𝜇 = 1/𝑧 is given
by

O (𝑥, 𝑧) = 𝑍 (𝑧2◻)O (𝑥)
= 0𝐹1 (; Δ − 𝑑2 + 1; −𝛼𝑧

2

4 ◻)O (𝑥) , (17)

and 𝑧ΔO(𝑥, 𝑧) corresponds to a bulk scalar field 𝜙(𝑥, 𝑧). In
the 𝛼 = 0 limit, it actually comes back to the usual language
of CFT.

We notice that 𝑍(𝑧2◻) obtained in (17) is nothing but the
Fourier transformation of the solutions to the bulk free field
equation withΦ(𝑧 → 0) ∼ 𝑧Δ behavior at the boundary.This
construction is different from the one suggested in [5–10].The

approach there encountered only the 𝑘2 = 󳨀→𝑘 2 − 𝑤2 < 0 part
of the bulkΦ(𝑧 → 0) ∼ 𝑧Δ modes, and thus it cannot be gen-
eralized to the Euclidean AdS case. Instead, our construction
encounters all the bulk Φ(𝑧 → 0) ∼ 𝑧Δ modes since it is the
honest Fourier transformation. Obviously, (17) is applicable
for both signatures.

2.2. Two-Point Correlators: The Divergent Regime and the
Regulator. As a consistency check, let us use (17) to recover
the well-known bulk-boundary propagator. We find

𝑧Δ ⟨O (𝑧, 𝑥)O (𝑥�耠)⟩
= ⟨𝑧Δ 0𝐹1 (; Δ − 𝑑2 + 1; −𝛼𝑧

2

4 ◻)O (𝑥)O (𝑥�耠)⟩
= 𝑧Δ(𝑥 − 𝑥�耠)2Δ

∞∑
�푛=0

Δ (Δ + 1) ⋅ ⋅ ⋅ (Δ + 𝑛 − 1)𝑛!
⋅ ( −𝛼𝑧2(𝑥 − 𝑥�耠)2)

�푛 .

(18)

In the regime |𝑥−𝑥�耠|2 > 𝛼𝑧2, the series is convergent and gives
rise to the expected form of the bulk-boundary propagator

𝐾(𝑥, 𝑧; 𝑥�耠) = ( 𝑧𝛼𝑧2 + (𝑥 − 𝑥�耠)2)
Δ . (19)

However, in the regime |𝑥−𝑥�耠|2 < 𝛼𝑧2, the series (18) is diver-
gent. In fact, this result is not surprising.The𝑍(𝑧2◻) given in
(17) is just the Φ(𝑧 → 0) ∼ 𝑧Δ modes of the bulk solution,
while the Fourier transformation of (19) is a linear combina-
tion of the Φ(𝑧 → 0) ∼ 𝑧Δ modes and the Φ(𝑧 → 0) ∼ 𝑧�푑−Δ
modes [14] which regulate the divergence of (18). The exis-
tence of theΦ(𝑧 → 0) ∼ 𝑧�푑−Δ constituent in (19) can be easily
seen from the 𝑧 → 0 limit [15]

lim
�푧→0

( 𝑧𝛼𝑧2 + (𝑥 − 𝑥�耠)2)
Δ ∼ 𝑧�푑−Δ𝛿 (𝑥 − 𝑥�耠) . (20)

Although both the Φ(𝑧 → 0) ∼ 𝑧Δ and Φ(𝑧 → 0) ∼ 𝑧�푑−Δ
modes diverge exponentially as 𝑧 → ∞, the combination
is well-behaved in the interior since the two divergences
cancel with each other.The explicit computation of the corre-
sponding Fourier transformations is performed in Appendix.

In order to understand the above issue better, let us
recall a simple fact in field theory. That is, the correlation
function for composite operators always has zeroth-order
UV divergence due to its composite natural. For example,
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consider the composite operator O š 𝜙�푎𝜙�푎:. The two-point
correlator ⟨OO⟩ receives zeroth-order UV divergence from
the following loop diagram even in the free theory.

•

k

•

p−k

In the coordinate space, the corresponding divergence
takes the following form:

𝑓 (Λ, 𝜇, ◻) 𝛿�푑 (𝑥 − 𝑥�耠) , (21)

where 𝜇 is the renormalization scale and Λ is the cut-
off scale. This divergence cannot be canceled by any local
counterterm in the original action. Instead, we need to define
the regularized two-point function directly and remove it
by hand. Or equivalently speaking, we need to add a local
counterterm in the free energy𝑊[𝐽]
𝑒�푊[�퐽] = ⟨𝑒�퐽O⟩ ,
𝑊 [𝐽] 󳨀→ 𝑊�푅 [𝐽]

= 𝑊 [𝐽] − ∫ d�푑𝑥∫ d�푑𝑥�耠𝑐 (𝑥 − 𝑥�耠) 𝐽 (𝑥) 𝐽 (𝑥�耠) ,
(22)

where 𝑐(𝑥 − 𝑥�耠) = 𝑐(Λ, 𝜇, ◻)𝛿�푑(𝑥 − 𝑥�耠). In principle, after the
cancelation of the divergent part, a possible remnant term in
the form𝑅(𝜇, ◻)𝛿�푑(𝑥−𝑥�耠)would still be there, and its explicit
form depends on the prescription of the regularization.

We notice that the Φ(𝑧 → 0) ∼ 𝑧�푑−Δ modes of (19) in the
coordinate space are given by

𝑧�푑−Δ 0𝐹1 (; 𝑑2 − Δ + 1; −𝛼𝑧
2

4 ◻)𝛿�푑 (𝑥 − 𝑥�耠) . (23)

It is right in the form of 𝑅(𝜇, ◻)𝛿�푑(𝑥 − 𝑥�耠) appearing above.
This fact suggests that one can understand it as the possible
remnant term.Theonly special point is that there is an infinite
order derivative operator acting on 𝛿�푑(𝑥 − 𝑥�耠). Thus it is
no longer a local function but a quasi-local term which is
identically vanishing in the outer region |𝑥 − 𝑥�耠|2 > 𝛼𝑧2.
Adding such a termdoes not affect the result (18) in the region|𝑥 − 𝑥�耠|2 > 𝛼𝑧2, and it is possible to cancel the divergence
in the region |𝑥 − 𝑥�耠|2 < 𝛼𝑧2. If we take the continuity at|𝑥 −𝑥�耠|2 = 𝛼𝑧2 as the prescription of the regularization of the
two-point function, it will pick the correct ratio between theΦ(𝑧 → 0) ∼ 𝑧Δ modes and the Φ(𝑧 → 0) ∼ 𝑧�푑−Δ modes and
then recovers (19) everywhere.This prescription is equivalent
to the momentum space IR regularity condition used in the
literatures [14]. Since it is natural to expect that effective oper-
ators defined at finite energy scale have some ambiguity in
probing the distance shorter than its typical scale, the depen-
dence on the prescription of regularization above is actually
acceptable.

One can also check that the bulk-bulk propagator can be
recovered by computing

𝑧Δ𝑧�耠Δ ⟨O (𝑧, 𝑥)O (𝑧�耠, 𝑥�耠)⟩ . (24)

Again, there is a divergent regime at short distance. If the
continuity prescription is imposed, it implies that one should
take the following regulator:

𝑧�푑−Δ�푀 𝑧Δ�푚 0𝐹1 (; 𝑑2 − Δ + 1; −𝛼𝑧
2
�푀4 ◻)

⋅ 0𝐹1 (; Δ − 𝑑2 + 1; −𝛼𝑧
2
�푚4 ◻)𝛿�푑 (𝑥 − 𝑥�耠) ,

(25)

where 𝑧�푀 = max{𝑧, 𝑧�耠} and 𝑧�푚 = min{𝑧, 𝑧�耠}.
3. Radial Quantization

3.1. Radial Quantization in CFT. In Section 2, we have
constructed the bulk local operator and also explained its
divergent regime with the regularization prescription there.
However, the present formula is not convenient in discussing
the bulk physics since the regulator should always be added
by hand. It will be pretty nice if one can find a smart formula
in which the regulator has been automatically built in. To
achieve such a formula, let us discuss the radial quantization
in usual CFT language firstly.

The radial quantization for CFT was detailedly reviewed
in [16, 17]. We will equivalently reexpress the results there by
introducing the radial expansion for the operators. Again, we
will just consider scalar primary here. The radial expansion
of a scalar primary operator O(𝑥) is given by

O (𝑥) = ∞∑
�푚=0

1𝑚!𝑥�휇1 ⋅ ⋅ ⋅ 𝑥�휇𝑚𝑂�휇1 ⋅⋅⋅�휇𝑚

+ ∞∑
�푛=0

1𝑛! 𝑥̌2Δ𝑥̌]1 ⋅ ⋅ ⋅ 𝑥̌]𝑛𝑂̌]1 ⋅⋅⋅]𝑛 ,
(26)

where 𝑥̌ is the inversion of 𝑥
𝑥̌�휇 = I ∘ 𝑥�휇 = 𝑥�휇𝑥2 . (27)

In a unitary theory, its Hermitian conjugation is induced by
the inversion

O
† (𝑥) = 𝑂̌ (−𝑥) = 1𝑥2ΔO (−𝑥̌)

= ∞∑
�푛=0

(−1)�푛𝑛! 𝑥]1 ⋅ ⋅ ⋅ 𝑥]𝑛𝑂̌]1 ⋅⋅⋅]𝑛

+ ∞∑
�푚=0

(−1)�푚𝑚! 𝑥̌2Δ𝑥̌�휇1 ⋅ ⋅ ⋅ 𝑥̌�휇𝑚𝑂�휇1 ⋅⋅⋅�휇𝑚
.

(28)

In terms of the component operators, it is given by

𝑂†
�휇1 ⋅⋅⋅�휇𝑛

= (−1)�푛 𝑂̌�휇1 ⋅⋅⋅�휇𝑛
,

𝑂̌†
�휇1 ⋅⋅⋅�휇𝑛

= (−1)�푛 𝑂�휇1 ⋅⋅⋅�휇𝑛
. (29)
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The vacuum |1⟩ is defined by

𝑂̌]1 ⋅⋅⋅]𝑛 |1⟩ = 0,
⟨1| 𝑂�휇1 ⋅⋅⋅�휇𝑚

= 0. (30)

It is equivalent to requiring that the state O(𝑥)|1⟩ and all its
descendants are regular at 𝑥 = 0, while the conjugated state⟨1|𝑂̌(𝑥) and all its descendants are also regular at 𝑥 = 0.
One can check that the vacuum |1⟩ defined in (30) is actually
conformal invariant. The conformal transformation rules of
the component operators can be deduced from the standard
rules for primary O(𝑥). We find

[𝑃�휇, 𝑂�휇1 ⋅⋅⋅�휇𝑚
] = 𝑖𝑂�휇�휇1 ⋅⋅⋅�휇𝑚

,
[𝑃�휇, 𝑂̌]1 ⋅⋅⋅]𝑛] = 𝑖 [𝑛 (𝑛 − 1) 𝜂(]1]2𝑂̌]3 ⋅⋅⋅]𝑛)�휇

− 2𝑛 (Δ + 𝑛 − 1) 𝜂�휇(]1𝑂̌]2 ⋅⋅⋅]𝑛)] ,
[𝑀�휇], 𝑂�휇1⋅⋅⋅�휇𝑚

] = 𝑖𝑚 [𝜂�휇(�휇1𝑂�휇2 ⋅⋅⋅�휇𝑚)] − 𝜂](�휇1𝑂�휇2 ⋅⋅⋅�휇𝑚)�휇] ,
[𝑀�휇], 𝑂̌]1 ⋅⋅⋅]𝑛] = 𝑖𝑛 [𝜂�휇(]1𝑂̌]2 ⋅⋅⋅]𝑛)] − 𝜂](]1𝑂̌]2 ⋅⋅⋅]𝑚)�휇] ,
[𝐷,𝑂�휇1 ⋅⋅⋅�휇𝑚

] = 𝑖 (Δ + 𝑚)𝑂�휇1 ⋅⋅⋅�휇𝑚
,

[𝐷, 𝑂̌]1 ⋅⋅⋅]𝑛] = −𝑖 (Δ + 𝑚) 𝑂̌]1 ⋅⋅⋅]𝑛 ,
[𝐾�휇, 𝑂�휇1 ⋅⋅⋅�휇𝑚

] = 𝑖 [𝑚 (𝑚 − 1) 𝜂(�휇1�휇2𝑂�휇3 ⋅⋅⋅�휇𝑚)�휇

− 2𝑚 (Δ + 𝑚 − 1) 𝜂�휇(�휇1𝑂�휇2 ⋅⋅⋅�휇𝑚)] ,
[𝐾�휇, 𝑂̌]1 ⋅⋅⋅]𝑛] = 𝑖𝑂̌�휇]1 ⋅⋅⋅]𝑛 .

(31)

Given the input data

⟨O�耠 (0) | O (0)⟩ = ⟨1| 𝑂̌�耠
0𝑂0 |1⟩ = 𝐶O󸀠O, (32)

one can decide the inner product between the states|𝜕�휇𝑛 ⋅ ⋅ ⋅ 𝜕�휇1O(0)⟩ = 𝑂�휇1 ⋅⋅⋅�휇𝑛
|1⟩ by using (31) and the conformal

invariance of the vacuum.The result is

⟨1| 𝑂̌�耠
]𝑛⋅⋅⋅]1𝑂�휇1 ⋅⋅⋅�휇𝑚 |1⟩

= 𝛿�푚�푛𝐶O󸀠O

⌊�푛/2⌋∑
�푘=0

(−1)�푛−�푘 2�푛 (𝑛!)2 Γ (Δ + 𝑛 − 𝑘)(𝑛 − 2𝑘)!𝑘! (2!)2�푘 Γ (Δ) 𝛿(�휇1(]1

⋅ ⋅ ⋅ 𝛿�휇𝑛−2𝑘]𝑛−2𝑘 𝜂]𝑛−2𝑘+1]𝑛−2𝑘+2 ⋅ ⋅ ⋅ 𝜂]𝑛−1]𝑛)𝜂�휇𝑛−2𝑘+1�휇𝑛−2𝑘+2
⋅ ⋅ ⋅ 𝜂�휇𝑛−1�휇𝑛).

(33)

Now we can reproduce the well-known two-point correlator
by the “silly” computation

⟨1|O (𝑥)O�耠 (𝑥�耠) |1⟩ = ∞∑
�푚=0

∞∑
�푛=0

1𝑚!𝑛!
⋅ 𝑥�휇1 ⋅ ⋅ ⋅ 𝑥�휇𝑚𝑥�耠]1 ⋅ ⋅ ⋅ 𝑥�耠]𝑛𝑥2(Δ+�푚) ⟨1| 𝑂̌�휇1 ⋅⋅⋅�휇𝑚

𝑂�耠
]1 ⋅⋅⋅]𝑛 |1⟩

= 𝐶O󸀠O

∞∑̂
�푛=0

∞∑
�푘=0

(−1)�푛+�푘 2�푛Γ (Δ + 𝑛 + 𝑘)𝑛!𝑘!Γ (Δ)
⋅ (𝑥 ⋅ 𝑥�耠)�푛 𝑥�耠2�푘𝑥2(Δ+�푛+�푘) .

(34)

The convergence of the series requires that |𝑥| > |𝑥�耠|. (Strictly
speaking, the convergence argument is accurate only for the
Euclidean case. For the Lorentzian case, proper analytical
continuations are needed as what usually happened in the
quantum field theory computations.) It means that the usual
CFT correlator is reproduced by the radial ordered function⟨1|R̂O(𝑥)O�耠(𝑥�耠)|1⟩. In the radial quantization where the
dilatation operator𝐷 is treated as the Hamiltonian, the radial
ordered function is the natural analogy of the time ordered
function in the usual quantum field theory.

3.2. Radial Quantization at Finite Energy Scale. Now let us
consider the CFT radial quantization in the presence of the
finite energy scale 𝜇. A direct idea is acting upon the radial
expansion (26) with the 𝑍(𝜇−2◻) in (17). We get

0𝐹1 (; Δ − 𝑑2 + 1; −𝛼𝑧
2

4 ◻)O (𝑥)
= ∞∑

�푠=0

∞∑
�푘=0

(−𝛼𝑧2)�푘 Γ (Δ − 𝑑/2 + 1)22�푘𝑘!𝑠!Γ (Δ − 𝑑/2 + 𝑘 + 1)
⋅ 𝑥]1 ⋅ ⋅ ⋅ 𝑥]𝑠𝑂�휇1 ⋅⋅⋅�휇𝑘

�휇1 ⋅⋅⋅�휇𝑘
]1⋅⋅⋅]𝑠

+ ∞∑
�푠=0

∞∑
�푙=0

(−𝛼𝑧2)�푙 Γ (Δ − 𝑑/2 + 1)22�푙𝑙!𝑠!Γ (Δ − 𝑑/2 + 𝑙 + 1)
⋅ 1𝐹0 (Δ + 2𝑙 + 𝑠; ; −𝛼𝑧2𝑥2 ) 𝑥

]1 ⋅ ⋅ ⋅ 𝑥]𝑠𝑥2(Δ+2�푙+�푠)
⋅ 𝑂̌ �휇1 ⋅⋅⋅�휇𝑙

�휇1 ⋅⋅⋅�휇𝑙 ]1 ⋅⋅⋅]𝑠 .

(35)

We notice that when |𝑥|2 > 𝛼𝑧2
1𝑥2(Δ+2�푙+�푠) 1𝐹0 (Δ + 2𝑙 + 𝑠; ; −𝛼𝑧

2

𝑥2 )
= 1(𝑥2 + 𝛼𝑧2)Δ+2�푙+�푠 ,

(36)

and it is divergent in the regime |𝑥|2 < 𝛼𝑧2. The structure
of the divergent regime is quite similar to what we have seen
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in Section 2. Thus it is natural to expect the following as the
regularized radial expansion at finite energy scale

O (𝑥, 𝑧) = ∞∑
�푚=0

1𝑚!𝑥�휇1 ⋅ ⋅ ⋅ 𝑥�휇𝑚𝑂�휇1 ⋅⋅⋅�휇𝑚
(𝑧)

+ ∞∑
�푛=0

1𝑛! 𝑥]1 ⋅ ⋅ ⋅ 𝑥]𝑛(𝑥2 + 𝛼𝑧2)Δ+�푛 𝑂̌]1 ⋅⋅⋅]𝑛 (𝑧̌) ,
(37)

where the component operator at finite energy scale is a linear
combination of the original ones

𝑂�휇1 ⋅⋅⋅�휇𝑚
(𝑧)

= ∞∑
�푘=0

(−𝛼𝑧2)�푘 Γ (Δ − 𝑑/2 + 1)22�푘𝑘!Γ (Δ − 𝑑/2 + 𝑘 + 1)𝑂]1 ⋅⋅⋅]𝑘
]1⋅⋅⋅]𝑘

�휇1⋅⋅⋅�휇𝑚
,

𝑂̌�휇1 ⋅⋅⋅�휇𝑚
(𝑧̌)

= ∞∑
�푘=0

(−𝛼𝑧̌2)�푘 Γ (Δ − 𝑑/2 + 1)22�푘𝑘!Γ (Δ − 𝑑/2 + 𝑘 + 1) 𝑂̌ ]1 ⋅⋅⋅]𝑘
]1 ⋅⋅⋅]𝑘 �휇1 ⋅⋅⋅�휇𝑚

,

(38)

and the inversion of 𝑥 and 𝑧 in the generalized scene is given
by

𝑥̌�휇 = I ∘ 𝑥�휇 = 𝑥�휇𝑥2 + 𝛼𝑧2 ,
𝑧̌ = I ∘ 𝑧 = 𝑧𝑥2 + 𝛼𝑧2 .

(39)

Correspondingly, the inversion of O(𝑥, 𝑧) is
𝑂̌ (𝑥, 𝑧) = 1(𝑥2 + 𝛼𝑧2)ΔO (𝑥̌; 𝑧̌)

= ∞∑
�푛=0

1𝑛!𝑥]1 ⋅ ⋅ ⋅ 𝑥]𝑛𝑂̌]1 ⋅⋅⋅]𝑛 (𝑧)
+ ∞∑
�푚=0

1𝑚! 𝑥�휇1 ⋅ ⋅ ⋅ 𝑥�휇𝑚(𝑥2 + 𝛼𝑧2)Δ+�푛𝑂�휇1 ⋅⋅⋅�휇𝑚
(𝑧̌) .

(40)

From (29), we can see that theHermitian conjugation relation
keeps intact at finite energy scale

O
† (𝑥, 𝑧) = 𝑂̌ (−𝑥, 𝑧) . (41)

Simply by using (31), one can write down the conformal
transformation rule for the component fields at finite energy
scale directly as follows:

[𝑃�휇, 𝑂�휇1 ⋅⋅⋅�휇𝑚
(𝑧)] = 𝑖𝑂�휇�휇1 ⋅⋅⋅�휇𝑚

(𝑧) ,
[𝑃�휇, 𝑂̌�휇1 ⋅⋅⋅�휇𝑚

(𝑧)] = 𝑖 [𝛼𝑧2𝑂̌�휇1 ⋅⋅⋅�휇𝑚�휇
(𝑧)

+ 𝑚 (𝑚 − 1) 𝜂(�휇1�휇2𝑂̌�휇3 ⋅⋅⋅�휇𝑚)�휇 (𝑧)
− 2𝑚 (Δ + 𝑚 − 1 + 𝑧𝜕�푧) 𝜂�휇(�휇1𝑂̌�휇2 ⋅⋅⋅�휇𝑚) (𝑧)] ,

[𝑀�휇], 𝑂�휇1 ⋅⋅⋅�휇𝑚
(𝑧)] = 𝑖𝑚 [𝜂�휇(�휇1𝑂�휇2 ⋅⋅⋅�휇𝑚)] (𝑧)

− 𝜂](�휇1𝑂�휇2 ⋅⋅⋅�휇𝑚)�휇 (𝑧)] ,
[𝑀�휇], 𝑂̌�휇1 ⋅⋅⋅�휇𝑚

(𝑧)] = 𝑖𝑚 [𝜂�휇(]1𝑂̌]2 ⋅⋅⋅]𝑚)] (𝑧)
− 𝜂](]1𝑂̌]2 ⋅⋅⋅]𝑚)�휇 (𝑧)] ,

[𝐷,𝑂�휇1 ⋅⋅⋅�휇𝑚
(𝑧)] = 𝑖 (Δ + 𝑚 + 𝑧𝜕�푧) 𝑂�휇1 ⋅⋅⋅�휇𝑚

(𝑧) ,
[𝐷, 𝑂̌�휇1 ⋅⋅⋅�휇𝑚

(𝑧)] = −𝑖 (Δ + 𝑚 + 𝑧𝜕�푧) 𝑂̌�휇1 ⋅⋅⋅�휇𝑚
(𝑧) ,

[𝐾�휇, 𝑂�휇1 ⋅⋅⋅�휇𝑚
(𝑧)] = 𝑖 [𝛼𝑧2𝑂�휇1 ⋅⋅⋅�휇𝑚�휇

(𝑧)
+ 𝑚 (𝑚 − 1) 𝜂(�휇1�휇2𝑂�휇3 ⋅⋅⋅�휇𝑚)�휇 (𝑧)
− 2𝑚 (Δ + 𝑚 − 1 + 𝑧𝜕�푧) 𝜂�휇(�휇1𝑂�휇2 ⋅⋅⋅�휇𝑚) (𝑧)] ,

[𝐾�휇, 𝑂̌�휇1 ⋅⋅⋅�휇𝑚
(𝑧)] = 𝑖𝑂̌�휇�휇1 ⋅⋅⋅�휇𝑚

(𝑧) .

(42)

Similar to the arguments in Section 2.1, we can show that a
bulk scalar field Φ(𝑥, 𝑧) expanded as

Φ (𝑥, 𝑧) = ∞∑
�푚=0

𝑧Δ𝑚!𝑥�휇1 ⋅ ⋅ ⋅ 𝑥�휇𝑚Φ�휇1⋅⋅⋅�휇𝑚
(𝑧)

+ ∞∑
�푛=0

1𝑛! 𝑧
Δ𝑥]1 ⋅ ⋅ ⋅ 𝑥]𝑛(𝑥2 + 𝛼𝑧2)Δ+�푛 Φ̌]1⋅⋅⋅]𝑛 (𝑧̌)

(43)

indeed requires the transformation rules (42) for its compo-
nents. Thus, the regularized version (37) of primary at finite
energy scale satisfies our basic renormalization condition for
primary operators.

Parallel with (34), the standard bulk-boundary as well
as bulk-bulk propagator can be reproduced by computing
the radial ordered function ⟨1|R̂𝑂(𝑥, 𝑧)O�耠(𝑥�耠, 𝑧�耠)|1⟩. In our
present case where energy scales are introduced, the radial
order is defined by 𝑥2 + 𝛼𝑧2. Providing this radial order,
there is no ambiguity everywhere in reproducing the bulk-
boundary and bulk-bulk propagator.Therefore, (37) is indeed
the smart formula which we are looking for.

Since our construction directly comes back to the stan-
dard CFT language in the 𝛼 → 0 limit, it is possible that (37)
will not suffer from the problem about bulk locality appearing
in the smearing operator construction [18]. In order to
address it properly, one should generalize the standard results
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about OPE to the cases with finite energy scales. We hope to
report on this issue in a future work.

Formula (37) also suggests that one could define the finite
energy scale effective Hilbert space H�푧 by acting on the
vacuum |1⟩with𝑂�휇1 ⋅⋅⋅�휇𝑚

(𝑧). An interesting observation is that
H�푧 actually contains less information than the UV Hilbert
spaceH =H�푧=0. For example, considering the scalar sector,
one can construct the following state:

|𝜆⟩
= ∞∑

�푛=0

𝜆�푛Γ (Δ) Γ (Δ − 𝑑/2 + 1) Γ (𝑑/2)24�푛𝑛!Γ (Δ + 𝑛) Γ (Δ − 𝑑/2 + 𝑛 + 1) Γ (𝑛 + 𝑑/2)
⋅ 𝑂�푛 |1⟩ ,

(44)

where we denote 𝑂�푛(𝑧) = 𝑂]1 ⋅⋅⋅]𝑛
]1⋅⋅⋅]𝑛(𝑧). It is a well-defined

state inH since the norm is finite

⟨𝜆 | 𝜆⟩
= 𝐶O

∞∑
�푛=0

𝜆�푛Γ (Δ) Γ (Δ − 𝑑/2 + 1) Γ (𝑑/2)24�푛𝑛!Γ (Δ + 𝑛) Γ (Δ − 𝑑/2 + 𝑛 + 1) Γ (𝑛 + 𝑑/2) . (45)

The inner product between the state |𝜆⟩ and the states inH�푧

is given by

⟨𝜆| 𝑂�푚 (𝑧) |1⟩ = 𝐶O𝜆�푚 ∞∑
�푘=0

(−𝛼𝜆𝑧2)�푘 Γ (Δ − 𝑑/2 + 1)22�푘𝑘!Γ (Δ − 𝑑/2 + 𝑘 + 1) . (46)

Since the 0𝐹1 function has infinite number of zeros, the
inner product will be zero for infinite many 𝜆’s providing𝑧 ̸= 0. Therefore, there are an infinite number of states inH
perpendicular to the finite energy scale effectiveHilbert space
H�푧 ̸=0. Although this observation is something one could
expect for effective descriptions at finite energy scale, it may
have some possible advantages in discussing the 𝑐-theorem
and the entanglement entropy.

4. Discussions

In the previous sections, we suggest a CFT construction of
the bulk local operators in pure AdS space. The construction
is based on considering CFT at finite energy scale. The basic
result is that bulk operator is given by acting upon the original
CFT primary with an infinite order differential operator𝑍AdS(𝜇, 𝜕). Although we do not assume any knowledge about
the bulk in advance, our arguments automatically show that𝑍AdS(𝜇, 𝜕) should be the Fourier transformation of theΦ(𝑧 →0) ∼ 𝑧Δ solution to the bulk free field equation. We also dis-
cuss the relation between the regulator of the two-point func-
tion and the Φ(𝑧 → 0) ∼ 𝑧�푑−Δ modes. In Section 3, based on
the radial quantization in CFT, we find an improved formula
of our construction in which the regulator is automatically
built in.

The next challenge is how to generalize our construction
to geometries beyond pure AdS. A naive guess is that the bulk
local operator is also effectively given by acting upon the orig-
inal CFT primary with the infinite order differential operator

𝑍Geom(𝜇, 𝜕), which is the Fourier transformation of the bulkΦ(𝑧 → 0) ∼ 𝑧Δ modes in the corresponding geometry. On
the other hand, our CFT arguments in Section 2.1 seem state
independent. Thus, it suggests that the bulk local operator
should always be given by 𝑍AdS(𝜇, 𝜕) for all asymptotic AdS
geometries which are basically very heavy excited states
in the CFT. We conjecture that these two possibilities are
actually complementary to each other. The explicit proposal
[19] for the underlying mechanism can be summarized as the
following.

Bulk geometries are actually dual to the coherent states|Geom⟩ = 𝐹(𝑇�휇])|1⟩ which is created by acting on the
vacuum |1⟩ with certain function 𝐹(𝑇�휇]) of stress tensor and
its descendants.

The bulk correlators of the dual field 𝜙(𝑥, 𝑧) can be
reproduced by computing

⟨Geom| ⋅ ⋅ ⋅ 𝑍AdS (𝜇, 𝜕)O (𝑥) ⋅ ⋅ ⋅ |Geom⟩
= ⟨1| 𝐹† (𝑇�휇]) ⋅ ⋅ ⋅ 𝑍AdS (𝜇, 𝜕)O (𝑥) ⋅ ⋅ ⋅ 𝐹 (𝑇�휇]) |1⟩ . (47)

On the other hand, by using the local conformal Ward iden-
tity [20–22], onemay convert (at least in the two-dimensional
CFT) the effects of 𝐹(𝑇�휇]) to a differential operator F̂[𝐹]
acting on the operator 𝑍AdS(𝜇, 𝜕)O(𝑥) as follows:

⟨1| 𝐹† (𝑇�휇]) ⋅ ⋅ ⋅ 𝑍AdS (𝜇, 𝜕)O (𝑥) ⋅ ⋅ ⋅ 𝐹 (𝑇�휇]) |1⟩
= ⟨1| ⋅ ⋅ ⋅ F̂ [𝐹] 𝑍AdS (𝜇, 𝜕)O (𝑥) ⋅ ⋅ ⋅ |1⟩ . (48)

The new differential operator F̂[𝐹]𝑍AdS(𝜇, 𝜕) is expected
to be exactly 𝑍Geom(𝜇, 𝜕) of the corresponding geometry.
For the black hole geometry, the horizon is the position
where the series in𝑍Geom(𝜇, 𝜕) becomes ill-defined.However,
everything could be still well defined after coming back to
the |Geom⟩ description and one can explore the black hole
interior in this formalism.

Finally, it is also possible thatmultiple states with different𝐹(𝑇�휇]) give rise to the same differential operator𝑍Geom(𝜇, 𝜕).
Thus it could be a dual CFT way to explain the entropy of
AdS black hole. If indeed so, it means that all the black hole
microstates should correspond exactly to the same geometry,
and thus one does not need to take any average over different
microgeometries. This picture seems different from what
people usually expected for quantum gravity and may offer
new possibilities to the discussions of the black hole firewall
problem [23, 24].

As the early version of this work was drawing a conclu-
sion, [25] appeared with results which partially overlap with
Section 2.1 in this manuscript. We also realized that the two-
dimensional version of their results has already appeared in
[26].
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Appendix

A. The Momentum Space Formula

In the momentum space, the general solutions to the bulk
free scalar equation are given by the linear combination of
theΦ(𝑧 → 0) ∼ 𝑧Δ modes

𝑧Δ𝑘2Δ−�푑 0𝐹1 (; Δ − 𝑑2 + 1; 𝑧
2𝑘24 )

= Γ(Δ − 𝑑2 + 1) 𝑧�푑/2 (2𝑘)Δ−�푑/2 𝐼Δ−�푑/2,
(A.1)

as well as theΦ(𝑧 → 0) ∼ 𝑧�푑−Δ modes

𝑧�푑−Δ 0𝐹1 (; 𝑑2 − Δ + 1; 𝑧
2𝑘24 )

= Γ(𝑑2 − Δ + 1) 𝑧�푑/2 (𝑘2)
Δ−�푑/2 𝐼�푑/2−Δ.

(A.2)

In the following, let us derive the Fourier transformation of
them, respectively.

A.1. Φ(𝑧 → 0) ∼ 𝑧Δ Modes. The Fourier transformation of
theΦ(𝑧 → 0) ∼ 𝑧Δ mode is

lim
Λ→∞

𝑧�푑/2(2𝜋)�푑 ∫ d�푑𝑘e−(�푧�푘)2/Λ2𝐼Δ−�푑/2 (𝑧𝑘) 𝑘Δ−�푑/2e�푖�푘(�푥−�푥󸀠)
= lim

Λ→∞

𝑧�푑/2(2𝜋)�푑 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2) √𝜋Γ ((𝑑 − 1) /2)Γ (𝑑/2)
⋅ ∫∞

0
d𝑘e−(�푧�푘)2/Λ2𝐼Δ−�푑/2 (𝑧𝑘)

⋅ 𝑘Δ+�푑/2−1 0𝐹1 (; 𝑑2 ; −𝑘
2𝑟24 ) = lim

Λ→∞

𝑧�푑/2(2𝜋)�푑
⋅ 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2) √𝜋Γ ((𝑑 − 1) /2)Γ (𝑑/2)
⋅ ∞∑
�푚=0

1𝑚!Γ (Δ + 𝑚 − 𝑑/2 + 1) ∫
∞

0
d𝑘

⋅ e−(�푧�푘)2/Λ2 (𝑧𝑘2 )
2�푚+Δ−�푑/2

⋅ 𝑘Δ+�푑/2−1 0𝐹1 (; 𝑑2 ; −𝑘
2𝑟24 ) = lim

Λ→∞

1(2𝜋)�푑
⋅ 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2) √𝜋Γ ((𝑑 − 1) /2)2Γ (𝑑/2)
⋅ ∞∑
�푚=0

2−2�푚−Δ+�푑/2𝑧−Δ𝑚!Γ (Δ + 𝑚 − 𝑑/2 + 1)Γ (Δ + 𝑚)
⋅ Λ2(Δ+�푚)

1𝐹1 (Δ + 𝑚; 𝑑2 ; −Λ
2𝑟24𝑧2 ) ,

(A.3)

where we have used the fact that the convergence radius of
0𝐹1 and 1𝐹1 is∞ and

∫�휋
0
d𝜃 (sin 𝜃)�푑−2 e�푖�푘�푟 cos �휃
= √𝜋Γ ((𝑑 − 1) /2)Γ (𝑑/2) 0𝐹1 (; 𝑑2 ; −𝑘

2𝑟24 ) ,
∫∞
0

d𝑘e−�푘2/Λ2𝑘2Δ−1+2�푛 = 12Λ2(Δ+�푛)Γ (Δ + 𝑛)
(Δ + 𝑛 > 0) .

(A.4)

By using the asymptotic expansion of confluent hypergeo-
metric function

1𝐹1 (𝛼; 𝛾; 𝑧)
= Γ (𝛾)Γ (𝛾 − 𝛼)e�푖�휋�훼𝑧−�훼 2𝐹0 (𝛼, 𝛼 − 𝛾 + 1; ; − 𝑧−1)
+ Γ (𝛾)Γ (𝛼)e�푧𝑧�훼−�훾 2𝐹0 (𝛾 − 𝛼, 1 − 𝛼; ; 𝑧−1)

for − 𝜋2 < arg 𝑧 < 3𝜋2

(A.5)

we find in the regime (𝑥 − 𝑥�耠)2 > 𝑧2
lim
Λ→∞

1(2𝜋)�푑 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2) √𝜋Γ ((𝑑 − 1) /2)2Γ (𝑑/2)
⋅ ∞∑
�푚=0

2−2�푚−Δ+�푑/2𝑧−Δ𝑚!Γ (Δ + 𝑚 − 𝑑/2 + 1)Γ (Δ + 𝑚)
⋅ Λ2(Δ+�푚)

1𝐹1 (Δ + 𝑚; 𝑑2 ; −Λ
2𝑟24𝑧2 )

= 2Δ−�푑/2𝑧−Δsin (((𝑑 − 2Δ) 𝜋) /2) Γ (Δ)𝜋�푑/2+1
⋅ ∞∑
�푚=0

(−1)�푚 Γ (Δ + 𝑚)𝑚!Γ (Δ) 𝑧2(Δ+�푚)(𝑥 − 𝑥�耠)2(Δ+�푚)
= 2Δ−�푑/2sin (((𝑑 − 2Δ) 𝜋) /2) Γ (Δ)𝜋�푑/2+1 ( 𝑧𝑧2 + (𝑥 − 𝑥�耠)2)

Δ .

(A.6)

Thus theΦ(𝑧 → 0) ∼ 𝑧Δ mode reproduces𝐾(𝑧, 𝑥; 𝑥�耠) for the
region (𝑥 − 𝑥�耠)2 > 𝑧2 as expected.

For (𝑥 − 𝑥�耠)2 < 𝑧2, we exchange the order of summations
and find

lim
Λ→∞

1(2𝜋)�푑 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2) √𝜋Γ ((𝑑 − 1) /2)2Γ (𝑑/2)
⋅ ∞∑
�푚=0

2−2�푚−Δ+�푑/2𝑧−Δ𝑚!Γ (Δ + 𝑚 − 𝑑/2 + 1)Γ (Δ + 𝑚)
⋅ Λ2(Δ+�푚)

1𝐹1 (Δ + 𝑚; 𝑑2 ;
− Λ2𝑟24𝑧2 ) = lim

Λ→∞

1(2𝜋)�푑 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2)
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⋅ √𝜋Γ ((𝑑 − 1) /2)2Γ (𝑑/2)
∞∑
�푚=0

∞∑
�푛=0

2−2�푚−Δ+�푑/2𝑧−Δ𝑚!Γ (Δ + 𝑚 − 𝑑/2 + 1)
⋅ Γ (Δ + 𝑚 + 𝑛) Γ (𝑑/2)𝑛!Γ (𝑑/2 + 𝑛) Λ2(Δ+�푚) (−Λ2𝑟24𝑧2 )

�푛

= lim
Λ→∞

1(2𝜋)�푑 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2) √𝜋Γ ((𝑑 − 1) /2)2Γ (𝑑/2)
⋅ ∞∑
�푛=0

2−Δ+�푑/2Λ2Δ𝑧−ΔΓ (Δ − 𝑑/2 + 1) Γ (Δ + 𝑛) Γ (𝑑/2)𝑛!Γ (𝑑/2 + 𝑛) 1𝐹1 (Δ
+ 𝑛; Δ − 𝑑2 + 1; Λ

2

4 )(−Λ
2𝑟24𝑧2 )

�푛 = 1(2𝜋)�푑
⋅ 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2) √𝜋Γ ((𝑑 − 1) /2)2Γ (𝑑/2)
⋅ 2Δ+�푑/2𝑧−ΔΓ (Δ) sin (𝑑𝜋/2) Γ (𝑑/2)𝜋

∞∑
�푛=0

Γ (Δ + 𝑛)𝑛!Γ (Δ)
⋅ (− 𝑟2𝑧2)

�푛 [e�푖�휋Δ + lim
Λ→∞

(−1)�푛 Γ (1 − 𝑑/2 − 𝑛)Γ (Δ + 𝑛)
⋅ eΛ2/4 (Λ2

4 )
Δ+�푑/2+2�푛−1

⋅ 2𝐹0 (1 − 𝑑2 − 𝑛; 1 − Δ − 𝑛; 4Λ2
)]

= 2Δ−�푑/2Γ (Δ)𝜋�푑/2+1 e�푖�휋Δsin(𝑑𝜋2 )( 𝑧𝑧2 + (𝑥 − 𝑥�耠)2)
Δ

+ 2Δ−�푑/2𝜋�푑/2 lim
Λ→∞

∞∑
�푛=0

(−𝑟2/𝑧2)�푛𝑛!Γ (𝑑/2 + 𝑛)
⋅ eΛ2/4 (Λ2

4 )
Δ+�푑/2+2�푛−1

2𝐹0 (1 − 𝑑2 − 𝑛; 1 − Δ
− 𝑛; 4Λ2

) .
(A.7)

The result is divergent and the divergent parts are expressed
as terms with positive powers of Λ.
A.2. Φ(𝑧 → 0) ∼ 𝑧�푑−Δ Modes. For the Φ(𝑧 → 0) ∼ 𝑧Δ
modes, in the regime (𝑥 − 𝑥�耠)2 > 𝑧2, we have

lim
Λ→∞

𝑧�푑/2(2𝜋)�푑 ∫ d�푑𝑘e−(�푧�푘)2/Λ2𝐼�푑/2−Δ (𝑧𝑘) 𝑘Δ−�푑/2e�푖�푘(�푥−�푥󸀠)
= lim

Λ→∞

𝑧�푑/2(2𝜋)�푑 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2) √𝜋Γ ((𝑑 − 1) /2)Γ (𝑑/2)

⋅ ∫∞
0

d𝑘e−(�푧�푘)2/Λ2𝐼�푑/2−Δ (𝑧𝑘)
⋅ 𝑘Δ+�푑/2−1 0𝐹1 (; 𝑑2 ; −𝑘

2𝑟24 ) = lim
Λ→∞

𝑧�푑/2(2𝜋)�푑
⋅ 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2) √𝜋Γ ((𝑑 − 1) /2)Γ (𝑑/2)
⋅ ∞∑
�푚=0

1𝑚!Γ (−Δ + 𝑚 + 𝑑/2 + 1) ∫
∞

0
d𝑘e−(�푧�푘)2/Λ2

⋅ (𝑧𝑘2 )
2�푚−Δ+�푑/2 𝑘Δ+�푑/2−1 0𝐹1 (; 𝑑2 ; −𝑘

2𝑟24 )
= lim

Λ→∞

1(2𝜋)�푑 2𝜋(�푑−1)/2Γ ((𝑑 − 1) /2) √𝜋Γ ((𝑑 − 1) /2)2Γ (𝑑/2)
⋅ ∞∑
�푚=0

2−2�푚+Δ−�푑/2𝑧−Δ𝑚!Γ (−Δ + 𝑚 + 𝑑/2 + 1)Γ (𝑑2 + 𝑚)
⋅ Λ�푑+2�푚

1𝐹1 (𝑑2 + 𝑚; 𝑑2 ; −Λ
2𝑟24𝑧2 )

= ∞∑
�푚=0

2−2�푚+Δ−�푑/2𝑧−Δ𝑚!Γ (−Δ + 𝑚 + 𝑑/2 + 1) 2
�푚Γ (𝑑/2 + 𝑚)𝜋�푑/2Γ (−𝑚)

⋅ 𝑧�푑+2�푚(𝑥 − 𝑥�耠)�푑+2�푚 = 0,
(A.8)

where we have also used the asymptotic expansion (A.6)
of confluent hypergeometric function 1𝐹1. The above result
shows that the Φ(𝑧 → 0) ∼ 𝑧�푑−Δ mode is a quasi-local
function which is identically vanishing when (𝑥 − 𝑥�耠)2 > 𝑧2.

In the (𝑥 − 𝑥�耠)2 < 𝑧2 regime, we have

𝑧�푑/2(2𝜋)�푑 ∫ d�푑𝑘e−(�푧�푘)2/Λ2𝐼�푑/2−Δ (𝑧𝑘) 𝑘Δ−�푑/2e�푖�푘(�푥−�푥󸀠)
= 2Δ−�푑/2𝑧�푑−ΔΓ (𝑑/2 − Δ + 1) 0𝐹1 (; 𝑑2 − Δ + 1; −𝑧

2

4 ◻)
⋅ 𝛿�푑 (𝑥 − 𝑥�耠) = lim

Λ→∞

2Δ−�푑/2𝑧�푑−ΔΓ (𝑑/2 − Δ + 1) 0𝐹1 (; 𝑑2
− Δ + 1; −𝑧24 ◻) Λ�푑

2�푑𝜋�푑/2𝑧�푑 e−(�푥−�푥󸀠)2Λ2/4�푧2

= lim
Λ→∞

2Δ−�푑/2𝑧�푑−ΔΓ (𝑑/2 − Δ + 1) Λ�푑

2�푑𝜋�푑/2𝑧�푑 0𝐹1 (; 𝑑2 − Δ
+ 1; −𝑧24 ◻)

∞∑
�푚=0

1𝑚! (− (𝑥 − 𝑥
�耠)2 Λ2

4𝑧2 )
�푚

= lim
Λ→∞

2Δ−�푑/2𝑧�푑−ΔΓ (𝑑/2 − Δ + 1) Λ�푑

2�푑𝜋�푑/2𝑧�푑
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⋅ ∞∑
�푚=0

�푚∑
�푛=0

Γ (𝑑/2 − Δ + 1)𝑛!Γ (𝑑/2 − Δ + 1 + 𝑛)
⋅ Γ (𝑑/2 + 𝑚)Γ (𝑚 − 𝑛 + 1) Γ (𝑑/2 + 𝑚 − 𝑛) (Λ

2

4 )
�푚

⋅ (−(𝑥 − 𝑥�耠)2𝑧2 )
(�푚−�푛)

= lim
Λ→∞

2Δ−�푑/2𝑧�푑−ΔΓ (𝑑/2 − Δ + 1)
⋅ Λ�푑

2�푑𝜋�푑/2𝑧�푑
∞∑
�푘=0

1𝑘! 1𝐹1 (𝑑2 + 𝑘; 𝑑2 − Δ + 1; Λ
2

4 )

⋅ (−Λ2 (𝑥 − 𝑥�耠)24𝑧2 )
�푘

= 2Δ−�푑/2𝑧−Δ𝜋�푑/2
∞∑
�푘=0

[[[
e�푖(�푑�휋/2)

⋅ sin (𝜋Δ)𝜋 Γ (Δ) Γ (Δ + 𝑘)𝑘!Γ (Δ) (−(𝑥 − 𝑥�耠)2𝑧2 )
�푘

+ lim
Λ→∞

(− (𝑥 − 𝑥�耠)2 /𝑧2)�푘
𝑘!Γ (𝑑/2 + 𝑘) eΛ

2/4 (Λ2

4 )
Δ+�푑/2+2�푘−1

⋅ 2𝐹0 (1 − Δ − 𝑘, 1 − 𝑑2 − 𝑘; ; 4Λ2
)]]]

= 2Δ−�푑/2Γ (Δ)𝜋�푑/2+1 e�푖(�푑�휋/2)sin (𝜋Δ)( 𝑧𝑧2 + (𝑥 − 𝑥�耠)2)
Δ

+ lim
Λ→∞

2Δ−�푑/2𝑧−Δ𝜋�푑/2
∞∑
�푘=0

(− (𝑥 − 𝑥�耠)2 /𝑧2)�푘
𝑘!Γ (𝑑/2 + 𝑘)

⋅ eΛ2/4 (Λ2

4 )
Δ+�푑/2+2�푘−1

2𝐹0 (1 − Δ − 𝑘, 1 − 𝑑2
− 𝑘; ; 4Λ2

) .
(A.9)

As in the Φ(𝑧 → 0) ∼ 𝑧Δ case, the result is divergent and the
divergent parts are expressed as terms with positive powers
of Λ.

Comparing (A.7) and (A.9), we notice that the divergence
in the region (𝑥 − 𝑥�耠)2 < 𝑧2 can only be canceled in the
combination 𝐼Δ−�푑/2 − 𝐼�푑/2−Δ ∼ 𝐾Δ−�푑/2, (A.10)
which coincides with the answer obtained in [14] by requiring
the 𝑧 → ∞ regularity of the momentum space solution. We
also notice that the remnant finite term gives rise to exactly
the analytical continuation of the result in (𝑥 − 𝑥�耠)2 > 𝑧2
region. Thus one can take the continuity at |𝑥 − 𝑥�耠|2 = 𝑧2 as
the prescription of the regularization in the coordinate space.

The above derivations are performed under the Euclidean
signature. For the Minkowskian signature, the 2-point prop-
agator is not unique due to the existence of the light cone
singularity. Depending on which kind of 2-point propagator
was considered, the corresponding bulk momentum space
formulae are different. These different formulae are related
to the different choices of quantum states of the boundary
QFT [27, 28]. For example, as pointed in [29–31], the retarded
propagator is related to take the ingoing boundary condition
at the horizon 𝑧 → ∞, while the advanced propagator is
related to take the outcoming boundary condition at the hori-
zon 𝑧 → ∞. In these two cases, the relevant bulk momentum
space formulae are still linear combinations of the Φ(𝑧 →0) ∼ 𝑧Δ mode and the Φ(𝑧 → 0) ∼ 𝑧�푑−Δ mode. It is also pos-
sible to have the bulk momentum space formulae with purely
normalizable modes where Φ(𝑧 → 0) ∼ 𝑧Δ and 𝑘2 < 0. This
case is in fact the one being discussed in [5–7]. In our present
consideration, the formula is related to the radial quantiza-
tion which is initially well established under the Euclidean
signature. Therefore, the relevant bulk momentum space for-
mula is taken to be the simple analytical continuation of the
Euclidean one [14] which is uniquely fixed by requiring the
regularity at 𝑧 → ∞ since 𝑘2 > 0 for the Euclidean signature.
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